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ABSTRACT

Dementia and associated brain pathology take years to develop. Effective interven-
tions to prevent dementia have not been found, in part because interventions are
targeted at individuals in a relatively late stage of dementia progression. This thesis
aims to develop prediction models for identifying persons at risk at an earlier stage.
Prediction targets included incident dementia as well as common brain pathologies
underlying progressive cognitive disorders in different elderly age cohorts. An ad-
ditional aim was to investigate the association of blood markers of type two diabetes
(DM2) and brain amyloid deposition, a hallmark of Alzheimer’s disease (AD).

Dementia was predicted in the Finnish population based Cardiovascular Risk Fac-
tors, Aging and Dementia (N=709 and 1,009) and Vantaa 85+ (N=245) study popula-
tions of cognitively healthy younger-old individuals (mean age 70 years) and oldest-
old individuals (88 years), respectively. Multimodal predictors were used to predict
incident dementia over a period of five to ten years using a Disease State Index (DSI)
machine learning system. Incidences of common brain pathology were predicted in
a Vantaa 85+ subpopulation (N=163, 89 years) over a four year follow up, and the
prevalence of brain amyloid deposition on positron emission tomography (PET) was
predicted in a Finnish Geriatric Intervention Study to Prevent Cognitive Impairment
and Disability (FINGER) subpopulation (N=48) of cognitively healthy younger-old
individuals (71 years) with elevated cardiovascular risks and cognition at or slightly
below population norms. Both prediction models were built using the DSI. A further
FINGER-PET subpopulation (N=41) was used for the analysis of blood DM2 markers
using a logistic regression.

Prediction of dementia in the younger-old population succeeded well (area under
the curve 0.75–0.79), and in the oldest-old population almost at the same level (0.73).
Predictors of dementia for the younger old and the oldest old were different, with
age and vascular health achieving less effective predictions for the older cohort. For
the oldest old, dementia could be predicted more accurately than most types of brain
pathology (0.61–0.72). Amyloid deposition was predicted well for the younger old
(0.78) using among other modalities magnetic resonance imaging, but the prediction
results were better than for the oldest old even without imaging. Cognition was
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a better predictor of dementia than pathology, and the apolipoprotein E genotype
was a better predictor of pathology than dementia. Out of the DM2 markers, low
levels of insulin resistance markers and a low concentration of plasminogen activator
inhibitor-1 were associated with a positive brain amyloid deposition status.

These results indicate that at-risk persons could be identified years before a diag-
nosis of dementia is given, and interventions could be targeted at those who benefit
the most. Different risk factors may have to be considered when targeting dementia
or specific pathologies. Prediction models for brain pathology—especially amyloid—
could be used to enrich study populations with persons with a specific pathology to
save costs and invasive assessments in clinical trials.

Medical Subject Headings: Aged; Alzheimer Disease; Amyloid; Brain/pathology; Cognition;
Cognitive Dysfunction; Decision Support Systems, Clinical; Dementia; Diabetes Mellitus,
Type 2; Early Medical Intervention; Incidence; Longitudinal Studies; Neuropathology; Risk
Factors
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TIIVISTELMÄ

Dementia ja sen taustalla vaikuttavat aivojen patologiset muutokset kehittyvät usei-
den vuosien aikana. Tehokkaita keinoja dementian ehkäisemiseksi ei vielä ole löy-
detty. Osin tämä saattaa johtua siitä, että ehkäisytoimia on tähän mennessä tutkit-
tu dementian melko myöhäisessä kehitysvaiheessa. Tämä väitöstyö pyrki kehittä-
mään ennustemalleja, joilla voitaisiin aiemmin tunnistaa henkilöt, joilla on suuren-
tunut dementiariski. Työssä pyrittiin ennustamaan toisaalta dementian ja toisaalta
yleisimpien aivojen dementiaan liitettyjen patologisten muutosten ilmaantumista.
Ennustemalleja sovellettiin eri-ikäisiin vanhuusiän kohortteihin. Lisäksi väitöstyös-
sä selvitettiin tyypin kaksi diabeteksen verimerkkiaineiden pitoisuuksien yhteyttä ai-
vojen amyloidiproteiinikertymien esiintyvyyteen. Amyloidiproteiinin kertyminen
aivokudokseen on yksi Alzheimerin taudin tyypillisistä muutoksista.

Dementian ilmaantuvuutta ennustettiin kahden suomalaisen väestöpohjaisen tut-
kimuksen aineistolla. Cardiovascular Risk Factors, Aging and Dementia -tutkimuk-
sen (N=709 ja 1 009) koehenkilöt olivat kognitiivisesti terveitä keskimäärin 70-vuo-
tiaita nuoria ikääntyneitä ja Vantaa 85+ -tutkimuksen (N=245) henkilöt taas keski-
määrin 88-vuotiaita vanhoja ikääntyneitä. Malleilla ennustettiin ilmaantuvuutta vi-
idestä kymmeneen vuoden ajanjaksolla ja ennustetekijöinä käytettiin eri terveyden
osa-alueilta mitattuja monityyppisiä tekijöitä. Mallit toteutettiin Disease State Index
(DSI) koneoppimisjärjestelmällä. Aivojen patologisten muutosten ilmaantumista en-
nustettiin Vantaa 85+ -tutkimuksen ruumiinavausosapopulaatiossa (N=163, ikä kes-
kimäärin 89 vuotta) keskimäärin neljän vuoden seurantajaksolla. Amyloidiprotei-
inin esiintymistä positroniemissiotomografiassa (PET) ennustettiin Finnish Geriatric
Intervention Study to Prevent Cognitive Impairment and Disability -tutkimuksen
(FINGER) pienessä osapopulaatiossa (N=48). FINGER-tutkimuksen koehenkilöt oli
valittu siten, että he olivat kognitiivisesti terveitä, mutta heidän kognition tasonsa
oli mittauksissa väestökeskiarvon mukainen tai hieman heikompi. Lisäksi heillä oli
suurentunut sydän- ja verisuonisairauksien riski. Myös patologian ennustemallit pe-
rustuivat DSI-järjestelmään. Tyypin kaksi diabeteksen merkkiaineiden ja amyloidin
suhdetta tutkittiin logistisella regressiolla hieman pienemmässä FINGER-tutkimuk-
sen osajoukossa (N=41).
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Dementian ennustaminen nuorten ikääntyneiden ryhmässä onnistui hyvin (AUC
0.75–0.79) ja vanhojen ikääntyneiden ryhmässä lähes yhtä hyvin (0.73). Tärkeim-
mät ennustetekijät poikkesivat toisistaan eri ikäryhmissä: ikä ja verisuonielimistön
terveydentila olivat huonompia ennustetekijöitä vanhojen ikääntyneiden ryhmässä.
Vanhojen ikääntyneiden ryhmässä dementian ilmaantumista pystyttiin ennustamaan
tarkemmin kuin useimpien patologisten muutosten ilmaantumista (0.61–0.72). Amy-
loidiproteiinin esiintymistä aivokuvantamisessa pystyttiin ennustamaan hyvin nuor-
ten ikääntyneiden ryhmässä (0.78), kun ennustetekijänä käytettiin muun muassa ai-
vojen magneettikuvaustuloksia. Tulokset olivat tosin parempia nuorten ikääntynei-
den ryhmässä verrattuna vanhojen ikääntyneiden ryhmään, vaikka magneettikuvaus-
tuloksia ei olisi ollut käytettävissä. Kognition taso ennusti paremmin dementian
kuin aivopatologian ilmaantuvuutta. Apolipoproteiini E:n genotyyppi taas ennusti
paremmin patologian kuin dementian ilmaantuvuutta. Tyypin kaksi sokeritaudin
merkkiaineista matalaan insuliiniresistenssiin viittaavat merkkiainepitoisuudet ja ma-
tala PAI-1-pitoisuus (plasminogeeni aktivaattori-1:n inhibiittori) olivat yhteydessä po-
sitiiviseen amyloidilöydökseen.

Nämä tulokset osoittivat, että suuremman dementiariskin henkilöt voidaan tun-
nistaa vuosia ennen sairastumista. Tänä diagnoosia edeltävänä ajanjaksona voitaisiin
toteuttaa interventioita niille, jotka niistä eniten hyötyisivät. Kohdennettavat riskite-
kijät tulisi valita sen mukaan, pyritäänkö ehkäisemään dementian tai tiettyjen patolo-
gisten muutosten ilmaantumista. Patologisten muutosten ennustemalleilla voitaisiin
rikastaa tutkimuspotilaita tietyn patologian—etenkin amyloidiproteiinin—suhteen
kustannusten ja kajoavien toimenpiteiden vähentämiseksi kliinisissä tutkimuksissa.

Yleinen suomalainen asiasanasto: aikuistyypin diabetes; aivot; Alzheimerin tauti; dementia;
ennaltaehkäisy; ennusteet; ikääntyneet; ilmaantuvuus; kognitio; pitkittäistutkimus; päätök-
sentukijärjestelmät; riskitekijät
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Kero M, Myllykangas L, Mäkelä M, Oinas M, Paetau A, Soininen H, Tanska-
nen M and Solomon A. Prediction models for dementia and neuropathology in
the oldest old: the Vantaa 85+ cohort study. Alzheimer’s Research & Therapy
11, 2019.

III Pekkala T, Hall A, Ngandu T, van Gils M, Helisalmi S, Hänninen T, Kemp-
painen N, Liu Y, Lötjönen J, Paajanen T, Rinne J O, Soininen H, Kivipelto M,
Solomon A. Detecting amyloid positivity in elderly with increased risk of cog-
nitive decline. Submitted to journal for publication.

IV Pekkala T, Hall A, Mangialasche F, Kemppainen N, Mecocci P, Ngandu T, Rinne
J O, Soininen H, Tuomilehto J, Kivipelto M and Solomon A. Association of pe-
ripheral insulin resistance and other markers of type 2 diabetes mellitus with
brain amyloid deposition in healthy individuals at risk of dementia. Submitted
to journal for publication.

The publications were adapted with the permission of the copyright owners.

13



14



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1 INTRODUCTION

Despite efforts to develop disease-modifying interventions to prevent Alzheimer’s
disease (AD), dementia and the underlying diseases are still prevalent. Addition-
ally, with populations growing older in many parts of the world, total prevalence is
expected to grow further. There are, however, signs that the age-specific incidence
might be decreasing in some regions (Seblova et al., 2018). Why this is exactly is not
clear, but improvements in living standards and reductions of certain risk factors of
dementia in the population may be partly responsible. Research into modifiable risk
factors of dementia has remained in focus as AD drug trials have so far failed, and
trials aiming to prevent cognitive decline and dementia have gained in importance.
Interventions targeting single risk factors have often not proven successful, but new
multimodal interventions have shown promise (Kivipelto et al., 2018). Globally, de-
mentia prevention has been set as a priority, and the World Health Organization has
just recently published public health guidelines for prevention that are suitable for in-
tegration into multifaceted health promotion initiatives (World Health Organization,
2019).

A problem with both disease-modifying and preventive interventions is the long
time frame of dementia development. Intervention would probably have to be under-
taken at an early stage to be effective. Recognizing at-risk individuals up to decades
earlier is challenging, although risk scores have been used to this end. One objective
of this thesis is to build and validate such models for the purposes of future trials.
An important feature of such models is also to communicate the determinants of
risk, which may be beneficial at an individual level.

Progress is being made not only on the epidemiological level with risk factors
and their mitigation, but also with the pathophysiology of AD and other primary
dementias. Measuring brain pathology via imaging and other markers offers early
information on the disease process, and may also indicate disease severity more pre-
cisely than the clinical state. Additionally, measurement of pathology can be a useful
indicator of intervention efficacy. One of the objectives of this thesis is to predict the
presence and incidence of brain pathology. Such a prediction tool could be useful
in guiding persons for further investigations, or for example to invite persons to an
intervention trial targeting that specific pathology.

Type two diabetes, like dementia, is a growing problem in modern aging societies,
and the two share risk factors. Diabetes is thought to be a risk factor for dementia,
but causality and the possible mechanisms are not yet fully clear. For example, dia-
betes increases vascular brain pathology, but findings have been conflicting regard-
ing direct causal associations with AD pathology. Other shared, rather than direct,
causal factors have also been suggested to underlie the diabetes–AD association. E.g.
hypercortisolemia associated with early stages of AD may provoke disturbances in
glucose metabolism (Notarianni, 2017). Pre-diabetes with elevated insulin resistance
may share pathological pathways with AD, and understanding these may aid in de-
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signing interventions. Thus, this thesis also investigates the association of metabolic
changes preceding DM2 and brain amyloid accumulation.
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2 REVIEW OF THE LITERATURE

2.1 COGNITIVE DECLINE AND DEMENTIA

The aging process involves changes in brain function and cognition, but these normal
changes allow an individual to age with autonomy and a well-functioning everyday
life. Cognitive impairment in this context is seen as a deviation from this path. Classi-
cally, mild cognitive impairment (MCI) is a term used to describe early steps towards
the pathological, where a subjective experience of cognitive decline can be backed up
with objectively measured impairment of cognition (Roberts and Knopman, 2013).
In the case of progressive cognitive disorders, MCI usually progresses to dementia,
which in turn is characterized by considerable functional disability due to increasing
cognitive impairment.

The term dementia referring to a form of extreme mental incapacity goes back to
the 1520s, and accounts of dementia as a mental state go back to antiquity. The term
dementia has historically been used for both senile dementia—dementia occurring in
old age—and for dementia due to a somatic or psychiatric cause such as schizophre-
nia or syphilis. Contemporary clinical practice tends towards retiring the term due
to the associated stigma in favour of neurocognitive disorder, or in the Finnish case the
term muistisairaus, memory disorder. Furthermore, as knowledge about the underlying
diseases progresses, more disease-specific terminology is being increasingly used.

The diagnostic criteria for dementia—irrespective of etiology—in different diag-
nostic systems have evolved in the past decades. The Diagnostic and Statistical Man-
ual of Mental Disorders, 4th, revised, edition from 2000 (DSM-IV-TR; American Psy-
chiatric Association, 2000), characterizes dementia as deterioration of cognition in
multiple domains. Memory deficit is a required criterion, in addition to impairment
of language skills, impairment of motor function, agnosia, or impaired executive
functioning. The impairment should represent a decline from the previous level and
be so severe that occupational or social functioning is harmed, that is, activities in
daily living (ADL) are impaired. DSM-IV-TR emphasizes cognitive testing for deter-
mining the deficits. The International Classification of Diseases 10th revision (ICD-10;
World Health Organization, 1993) defines dementia similarly primarily as a deficit of
memory.

In the fifth revision of the DSM from 2013 (DSM-5; American Psychiatric Asso-
ciation, 2013) six distinct domains of cognition are specified, and memory deficit is
not a requirement anymore. The term dementia has also been rephrased as a major
neurocognitive disorder (NCD). To represent less severe cognitive impairment that has
previously been characterized as MCI and prodromal dementia, a new diagnostic
category of mild NCD was introduced. The diagnosis of major NCD as opposed to
mild NCD requires a lack of independent ADL.

The National Institute on Aging and the Alzheimer’s Association (NIA-AA) work-
group criteria for all-cause dementia (McKhann et al., 2011) require neuropsychiatric
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symptoms that interfere with at least two practical categories of daily living. The
criteria allow deficits to be determined based on patient or informant history and a
simple clinical assessment. Similarly to the DSM-5, a memory deficit is not an abso-
lute requirement.

Neuropsychological testing is used to quantify deficits in cognition (Salmon and
Bondi, 2009), and validated methods exist to screen for and to assess the severity of
dementia. The Clinical Dementia Rating (CDR; Berg, 1988; Morris, 1993) is commonly
used to identify dementia stages from very mild to severe dementia on a four ladder
scale. The assessment is based on an interview that focuses on memory and five other
cognitive domains with the emphasis on memory deficits. The Mini-Mental State ex-
amination (MMSE; Folstein et al., 1975) is used for screening for cognitive decline in
different outpatient care settings and to gauge the development of diagnosed mem-
ory disorders. It consists of a 19-item-long test battery that tests several cognitive do-
mains and can be administered with little training. The quality of cognitive deficits is
commonly measured using The Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD; Morris et al., 1989) neuropsychological battery, which is well suited
as a first line of assessment for persons with suspected AD. More nuanced neuropsy-
chological assessments are used to either characterize very mild symptoms or to per-
form differential diagnostics (Salmon and Bondi, 2009).

Dementia, as defined above, is thought of as a syndrome that is distinctly removed
from healthy aging. The syndrome is defined as a symptomatic entity, and it can have
any of the several specific underlying pathologies as a cause. The following chapters
introduce the main causative pathologies, of which Alzheimer’s disease is the most
common and widely known.

2.2 ALZHEIMER’S DISEASE

Alzheimer’s disease was first defined as a clinical dementia entity. The first section
gives an overview of the classical phenotype-oriented diagnostic frameworks. Then,
a summary of AD pathology and associated biomarkers and examination possibilities
is given. The last section presents newer diagnostic frameworks that use biomarker
data at their core to define AD.

2.2.1 Clinical presentation and criteria for clinical diagnosis

The National Institute of Neurological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ARDRA)
guidelines for clinical AD diagnosis (McKhann et al., 1984) are based on strictly clini-
cal findings for probable AD diagnoses, and neuropathological evidence is needed for
the diagnosis of definite AD. Deficits in two or more domains of cognition are required
and neurophysiological testing is emphasized in determining the deficits. The age of
disease onset should be at 40–90 years. A category of possible AD was introduced to
describe atypical disease presentations with no other likely cause. DSM-IV-TR, simi-
lar to NINCDS-ARDRA, recognizes dementia of the Alzheimer’s type with a disease-

24



specific requirement of advancing cognitive decline with a gradual onset. Early-onset
AD-dementia (<65 years) is recognized as an additional entity, as are four subtype
qualifiers (delirium, delusions, depression, uncomplicated). Impairment of ADL is
required, in contrast to the NINCDS-ADRDA guidelines where ADL impairment is
listed as supportive for probable AD.

In 2011 the NIA-AA workgroup (McKhann et al., 2011) published updated diag-
nostic criteria for dementia with the aim of incorporating state-of-the-art scientific
knowledge on AD as causative for dementia. The core NIA-AA dementia criteria
(section 2.1) are mandated for AD diagnosis. The suggested diagnostic procedure rec-
ognizes several levels of diagnostic certainty and variability in phenotype specifically
not requiring a strict amnestic representation. As opposed to the NINCDS-ARDRA
guidelines, the criteria are more specific to AD and information on biomarkers and
genetics can optionally be included. DSM-5 was updated with the NIA-AA criteria
in mind, and with its new category of NCDs it introduced mild NCD as a parallel
to the NIA-AA’s MCI due to AD. In DSM-5, attributing NCD to AD still requires a
memory deficit, and biomarkers do not play a role.

More evidence on the pathophysiology of AD and a better understanding of the
decades-long disease development process have led to the need to set diagnostic cri-
teria for AD that do not necessitate full-blown dementia. Such criteria could be used
to identify prodromal AD, a disease state preceding dementia. The intention would be
to diagnose a specific disease, and not to start with incident dementia and retroac-
tively phenotype the dementia. That is, the idea would be to move away from the
traditional two-stage diagnosis. New criteria incorporate biomarker information, a
subject introduced in more detail in the following chapters. An International Work-
ing Group (IWG1; Dubois et al., 2007) revised the NINCDS-ADRDA criteria by con-
centrating on AD-specific cognitive deficits accompanied by supporting biomarker
findings indicative of AD disease progress. The criteria are research-focused, require
equipment for biomarker analysis, and are tuned to be more specific than earlier cri-
teria. The IWG1 criteria for probable AD are summarized as follows:

Core set of criteria A: Presence of an episodic memory impairment that 1) is re-
ported to have progressed gradually over a period of at least six months, 2) can be
verified objectively by testing, and 3) can be the solitary symptom or can be asso-
ciated with other cognitive deficits. At least one supportive feature associated with
known AD pathology is additionally required: B) a specific form of brain atrophy,
C) biomarker evidence in the cerebrospinal fluid, D) specific changes in amyloid pro-
tein neuroimaging, or E) AD autosomal mutation in the family. Exclusion criteria
include early onset or prominent non-AD symptoms, focal neurological symptoms
or early extrapyramidal symptoms, and other sufficiently severe neurological con-
ditions. Diagnosis of definite AD is warranted by the IWG1 criteria if the clinical
evidence is supported by either histopathological findings or the patient is shown to
have an AD autosomal mutation.

The older criteria have been used both in research and in clinical practice over
the last 30–40 years. The newer criteria are more aimed at research. At least in Fin-
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land, making use of other biomarker information than structural brain imaging has
been constrained to more challenging cases requiring detailed differential diagnoses
(Seppälä et al., 2013).

Better understanding of the disease and improved technology in imaging, for ex-
ample, have emphasized new challenges in defining AD. The current debate revolves
around defining AD as a biological disease entity with a certain pathological cascade
versus defining the disease in terms of clinical symptoms that also covers early stages
of the disease. The latter approach coincides with the approach of the more recent di-
agnostic frameworks presented in this section, and the former relies more strongly
on detailed biomarker profiles introduced in the following section.

2.2.2 Pathophysiology

Recognition of AD as a discrete disease identity was coupled with finding distinct
pathological lesions in the brain of the first patient to be diagnosed with Alzheimer’s
disease, Auguste D. Under the microscope Dr. Alois Alzheimer observed senile
plaques and neurofibrillary tangles that he recognized as a separate entity from vas-
cular lesions. The senile—or neuritic—plaques consist of extracellular aggregated
amyloid beta (Aβ) peptides and are indeed typical to AD. The neurofibrillary tangles
are formed by the aggregation of phosphorylated tau protein in microtubules inside
neurons, a process which is not entirely specific to AD. Vascular lesions have later
been presumed not to be linked to AD itself, but to cause cognitive decline and de-
mentia independently. Other microscopic findings include general loss of neurons
and amyloid angiopathy. (Erkinjuntti et al., 2015; Engelhardt and Grinberg, 2015;
Bondi et al., 2017)

Scientific research into AD has as of yet not produced a consensus on the exact
pathway for the occurrence of pathologic changes, or even if the recognized patho-
logical changes are causative of the disease or if they are themselves downstream
effects. Recent epidemiological studies suggest Alzheimer’s dementia pathology to
be heterogenous with a good share of cases being attributable to non-AD-type patho-
logical profiles (Boyle et al., 2019). Amyloid pathology is hypothesized as the first-
mover process, and neuritic plaques can be found in the brain decades before the ap-
pearance of first symptoms (Jack et al., 2013). The amyloid precursor protein (APP)
is a membrane-bound protein found in neurons as well as other tissues. The purpose
of APP is not fully understood. As the name suggests, the protein is best known for
the end products of its cleavage, namely Aβ peptides. APP is cleaved by β secretases
(BACE1 and -2) and γ secretase. Aβ40 and Aβ42 are the most common resulting
oligomers, and Aβ42 is prone to misfolding and thus implicated in AD pathology.
Aβ peptides are water soluble and can be found in cerebrospinal fluid (CSF), urine,
and plasma. With increasing age, these Aβ peptides are known to aggregate as dif-
fuse plaques in the neocortex. In AD, however, plaque formation is distinctly char-
acterized by dense plaque cores surrounded by a detritus of dead neurons within
a more diffuse plaque. These are neuritic plaques. Astrocytes and microglial cells
are often associated with neuritic plaques indicating an inflammatory response. Aβ
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is also known to accumulate in the walls of small arteries to cause cerebral amyloid
angiopathy (CAA), a condition known to predispose patients towards bleeds and
ischemia. (Erkinjuntti et al., 2015)

Aβ oligomers are thought to have neurotoxic and proinflammatory effects. These
effects may be partially responsible for the hyperphosphorylation of tau, a protein
typically stabilizing the structure of microtubules in cells. Hyperphosphorylated tau
is dysfunctional and aggregates pathologically in helical filaments inside the cell.
These neurofibrillary tangles are insoluble and disturb the functioning of the cell re-
sulting ultimately in neuronal loss. Tau and hyperphosphorylated tau are however
soluble, and can be measured in CSF, for instance. (Erkinjuntti et al., 2015)

Markers of both amyloid and tau pathology are used to reach a more accurate
AD diagnosis, as the purely clinical diagnostic criteria of the previous section only
warrant a likely diagnosis. The sensitivity of a clinical diagnosis is in the range 71–
87% (Beach et al., 2012). Tau pathology is thought to progress in a manner better
matching the clinical presentation of AD. The Braak staging (Braak and Braak, 1991)
is a six step staging classification describing the spread of tangles from the entorhinal
cortex through the limbic system—including the hippocampus—to the associative
and primary visual cortices. The patient is thought to be symptomatic first at the
limbic stages III–IV, and stages V–VI are usually associated with clinical AD. The
pattern of neuritic plaque formation is different, starting usually from smaller areas
of the cortex and spreading throughout the cortex into subcortical and subtentorial
structures. This spreading pattern corresponds less reliably to the clinical stage of
the disease than the spread of tangles. Therefore Aβ pathology is commonly quan-
tified using the CERAD criteria for neuropathology (Mirra et al., 1991) that simply
report the frequency of neuritic plaques in the neocortex (class 0 for none and A–C
for sparse–frequent). The CERAD frequency is sometimes adapted by considering
clinical data such as age. The two types of pathology are combined under the Na-
tional Institute for Aging and Ronald and Nancy Reagan Institute of the Alzheimer’s
Association (NIA-RIA) guidelines (NIA-RIA, 1997), which determine three stages of
AD probability based purely on pathological findings.

2.2.3 AD biomarkers and biomarker-based diagnosis

Several biomarkers for characteristic AD pathologies are in use today. In-vivo mark-
ers for AD pathology can provide support in diagnosis making in conjunction with
the clinical presentation. The development of biomarkers is keenly ongoing with aim
to identify AD in its earliest stages when AD pathology is present but no symptoms
have yet appeared. The established biomarkers of AD are proxies for Aβ pathology,
tau pathology, and general neurodegeneration. Whereas earlier these pathologies
could be assessed by analyzing CSF, nowadays imaging modalities have made it pos-
sible to gauge the brain less invasively and gain topographical information. Positron
emission tomography (PET) using common amyloid-binding ligands (e.g. Pittsburgh
compound B, PIB) correlate well with post-mortem Aβ findings (Dubois et al., 2014).
Amyloid PET is somewhat lacking in specificity in regard to AD, as a number of
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subjects show amyloid-PET positivity with no symptoms of AD (Dubois et al., 2014).
The focus on the wider AD disease course has led to the development of crite-

ria for the disease stages preceding the distinct cognitive deficits of AD dementia.
Historically, MCI has covered conditions where subjects suffer mild subjective and
objective cognitive symptoms that do not affect ADL. The term is agnostic to etiol-
ogy and does not imply any kind of progression of the impairment. Preclinical AD
and prodromal AD (Dubois, 2000) are terms that are used to specifically describe the
stages of AD that precede dementia: in the preclinical phase AD-specific pathology
exists, but no symptoms are present. In prodromal AD symptoms appear, but not at
an intensity warranting diagnosis of dementia. Patients would typically be classified
as having MCI. In prodromal AD the emphasis is on the biomarker profile.

Further development of definitions and criteria for presymptomatic AD (Dubois
and Albert, 2004; Dubois et al., 2010; Sperling et al., 2011) is ongoing. Recently, the
International Working Group criteria from 2014 (IWG2) published criteria for two
entities of preclinical AD (Dubois et al., 2014). The first criterion focuses on those
who are asymptomatic at risk of AD with either Aβ on PET or with both Aβ and
tau abnormalities in CSF. Here the priority of Aβ is evident, and imaging is seen
as more reliable than CSF analysis. Second, presymptomatic AD is defined in terms
of genetic susceptibility in the form of one of the three autosomal dominant genes
or other proven genes. Notably, in the IWG2 criteria the biomarkers for Aβ and tau
represent diagnostic markers—that is, upstream stages of the disease process—and
are preferred over downstream progression markers such as cortical atrophy or brain
glucose metabolism. Additionally, the criteria enable the diagnosis of AD without
restrictions to the phenotype. To further clarify the terminology, in 2016 the term
preclinical AD was suggested to be defined in terms of particularly high AD risk with
both Aβ and tau pathology present, as opposed to asymptomatic-at-risk representing
a state of lower risk with only one type of pathology present (Dubois et al., 2016).

The NIA-AA workgroup updated the 2011 criteria in 2018 with the aim to define
AD as a biological entity purely in terms of the pathologic disease progress (Jack
et al., 2018). The definition relies on the biomarker status as defined by the amyloid,
tau, and neurodegeneration (AT(N)) status. Table 1 summarizes this grouping of
biomarkers. The CSF total tau is seen here as a marker of neurodegeneration rather
than a marker of tauopathy as opposed to the IWG2 criteria. The framework defines
an AD continuum in terms of the AT(N) profile by requiring a positive Aβ finding—a
priority as with the IWG2 criteria—and letting T and N vary.

Some biomarkers are better suited for monitoring disease progression than for
diagnostics, as they represent downstream changes and lack specificity. Measure-
ment of medial temporal atrophy (MTA) using magnetic resonance imaging (MRI) is
a good marker for the development of AD dementia in prodromal AD, and longitudi-
nal MRI measurements are good predictors of disease progression. Hypometabolism
on PET is a good tool for differential diagnostics and the determination of AD the
subtype as well as a good estimate of the remaining brain function in AD patients
with high cognitive reserve. (Dubois et al., 2014)
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The recent advances in biomarker research and clinical studies in cohorts rep-
resenting pre-AD or very mild AD individuals have led to a discussion on how to
conceptualize AD. Dubois et al. (2018) frame the staging of AD around symptoms,
defining the preclinical stage of sporadic AD as asymptomatic at risk. Here the phase
before the AD-threshold—symptoms—is an at-risk state, not a part of the disease.
Jack and Vemuri (2018) on the other hand, with the AT(N) classification scheme aim
to frame AD as a biological entity that takes its pathological course and only in the
end manifests itself as a clinical syndrome. In this framework, the at-risk stage of
Dubois et al. corresponds with ongoing AD in the preclinical stage.

2.3 VASCULAR COGNITIVE DISORDERS

2.3.1 Clinical presentation and diagnostic criteria

Impaired blood supply to the brain may lead to cognitive deficits and dementia, a
spectrum of disorders called vascular cognitive impairment (VCI; Erkinjuntti and
Gauthier, 2009). Current guidelines identify several subtypes of vascular disorders
based on arterial anatomy and disease etiology. Disease presentation varies accord-
ing to etiology: disease in the large vessels typically causes severe symptoms abrupt-
ly, and cognitive deficits may be more or less apparent after treatment and/or reha-
bilitation. Additionally smaller, initially subclinical, events may cause lesions, such
as white matter lesions, that eventually lead to gradual cognitive deficits. Risk fac-

Table 1: AD biomarkers in the NIA-AA 2018 guidelines.

Type of
pathology

Biomarker Biomarker positive
finding

Topography
included

Other conditions linked
to biomarker positivity

Aβ CSF Aβ42 Low concentration No HIV encephalitis,
multiple system atrophy

Amyloid PET High ligand uptake Yes Acute traumatic brain
injury

Tau CSF p-tau High concentration No —

Tau PET High ligand uptake Yes Unknown

Neurode-
generation

CSF total tau High concentration No Acute traumatic brain
injury, stroke, CJD

Metabolic PET Low uptake in
AD-typical pattern

Yes CVD, corticobasal
degeneration, PPA

Structural MRI Expert assessment
of atrophy

Yes CVD, epilepsy, anoxia,
hippocampal sclerosis

Table adapted from Jack et al. (2016, 2018). Key: Aβ amyloid β protein, CJD Creutzfeldt–Jakob
disease, CSF cerebrospinal fluid, CVD cerebrovascular disease, HIV human immunodeficiency
virus, MRI magnetic resonance imaging, PET positron emission tomography, p-tau phospho-
rylated tau protein, PPA primary progressive aphasia.
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tors for vascular health are also risk factors for VCI via their effect on arteries and
possibly also through other mechanisms (Erkinjuntti et al., 2015). These risk factors
are discussed in more detail in section 2.6.

Vascular dementia (VaD) has been recognized since the 1960s as a disease entity
and nowadays it is seen as a part of the VCI spectrum. The International Society for
Vascular Behavioral and Cognitive Disorders (VASCOG; Sachdev et al., 2014) pro-
posed improvements on the then current guidelines on VaD, resulting in expanded
new guidelines for vascular cognitive disorders (VCD). The four sets of commonly
used criteria for VaD, The National Institute of Neurological Disorders and Stroke
Association Internationale pour la Recherché et l’Enseignement en Neurosciences
(NINDS-AIREN; Román et al., 1993), the State of California Alzheimer’s Disease Di-
agnostic and Treatment Centers (ADDTC; Chui et al., 1992), the DSM-IV (American
Psychiatric Association, 1994), and the ICD-10 (World Health Organization, 1993) cri-
teria, start off with a classical notion of dementia with memory impairment, diagnosis
being further specified in various ways by stroke history details, neuroimaging, and
the specific features of cognitive impairment. The ADDTC criteria differ from the
others somewhat. The 2014 VASCOG criteria improve on these criteria by modifying
the cognitive domain criteria to better take into account the frontal-executive-type
deficits over memory deficits, recognize pre-dementia-level cognitive disability, de-
fine impairment due to mixed etiology, and define the types of vascular pathology
more broadly.

According to the VASCOG criteria a diagnosis requires one or more of the fol-
lowing cognitive domains to be affected: attention and processing speed, frontal-
executive function, learning and memory, language, visuoconstructional-perceptu-
al ability, body conception, and social cognition. The deficit is defined as mild or
major—corresponding to VaD—based on objective domain measurements and on the
disability caused by the impairment. The diagnosis also requires evidence of signifi-
cant cerebrovascular disease. Neuroimaging is emphasized in determining brain le-
sions and to rule out other disorders. Imaging results are to be interpreted in light of
the clinical presentation and the temporal development of symptoms, and the result
is a diagnosis of probable VCD. Sufficient evidence from a stroke incident or a clear
finding from a neurological examination are permitted as substitutes when imag-
ing is not available thus warranting a diagnosis of possible VCD. In VCDs, cognitive
symptoms often present more severely in the acute phase and symptoms may be alle-
viated later. A period of 3 months is set as a threshold value for persistent symptoms.
The rate of progression and fluctuation of symptoms may vary due to the specific
etiology, e.g. small vessel disease may present with fluctuating symptoms due to sev-
eral successive events. Exclusion criteria include features such as memory deficit as
the early leading cognitive impairment as well as Parkinsonism.

It is common to find multiple processes impairing cognition at the same time.
Alzheimer’s pathology is often accompanied with vascular changes, and vascular
pathology decreases the threshold for clinical Alzheimer’s disease. The VASCOG
guidelines recognize this clinical challenge and encourage choosing the most promi-
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nent diagnosis, recognizing the uncertainty of the diagnosis, and acknowledging
other contributing pathologies.

2.3.2 Pathophysiology

Large vessel disease affects the larger arteries at the cortical level and is typically caused
by an atherosclerotic plaque or a cardiac embolus. This leads to a relatively large sin-
gle cortical infarction or to several smaller downstream infarctions. In many cases
focal neurological deficits are apparent alongside cognitive symptoms. Small vessel
disease refers to the stenosis of smaller perforating arteries in the brain parenchyma.
Resulting ischemic changes take the form of lacunar infarcts, white matter lesions,
perivascular space dilatation, microinfarcts, and microhemorrhages. Typically, small
vessel disease impairs executive functioning and the speed of processing. Depression
and gait disturbances can occur. Progression is typically more gradual and focal neu-
rological symptoms are less frequent. Arterial wall defects lead to intracerebral or
subarachnoid hemorrhages. Prolonged hypoperfusion can lead to sclerosis, typically
of the hippocampus, or take the form of laminar cortical sclerosis. (Erkinjuntti et al.,
2015)

No biomarker measured in CSF is specific to VCI. High total tau is indicative of
neuronal damage that can be associated with VaD. Brain lesions typical to VaD can
be determined using MRI. Bleeds of different calibres are visible, as is thinning of
cortical grey matter in small vessel disease. White matter lesions seen on an MRI are
typically quantified using the Fazekas scale (Fazekas et al., 1987).

Other angiopathies known to affect arterial function as listed by Sachdev et al.
(2014) include e.g. vasculitis, hereditary angiopathies, berry aneurysms, and CAA.
In CAA accumulation of Aβ in the walls of small vessels often leads to microhemor-
rhages or microinfarctions. An in-vivo diagnosis of CAA is based on the localization
of microhemorrhages in the cortical and subcortical regions on MRI. Amyloid-PET
imaging does not differentiate between Aβ in brain tissue and in the arteries (Gore-
lick et al., 2011). CAA is a very common vascular pathology found in AD patients
(Smith and Greenberg, 2009) and the severities of AD and CAA pathologies are sig-
nificantly correlated (Attems et al., 2005). Some studies indicate that a higher CAA
load may impair cognition independent of other pathologies (Brenowitz et al., 2015).
More specifically, CAA on neuroimaging has been associated with cognitive decline
before the first clinically presenting intracerebral hemorrhage (Banerjee et al., 2018).

2.4 LEWY BODY DEMENTIAS

Lewy body dementias comprise of the disease identities dementia with Lewy bodies
(DLB) and Parkinson’s disease dementia (PD-D), conditions that account for a significant
portion of dementia cases in older age groups. Dementia prevalence increases with
time past the Parkinson’s disease diagnosis reaching 50% at 10 years post-diagnosis.
The prevalence of DLB in patients with a dementia diagnosis is estimated to be up
to 23%. It is estimated that DLB is an underdiagnosed condition, probably due to

31



difficulties in differentiating between it and AD. (Walker et al., 2015)
According to the 2005 DLB Consortium criteria (McKeith et al., 2005), in addition

to dementia-level functional impairment, a DLB diagnosis requires the presence of
core DLB features: fluctuating cognition, recurrent visual hallucinations, and spon-
taneous parkinsonism. Supporting features include disturbances in sleep structure,
changes on brain metabolism imaging, and specific changes on electroencephalog-
raphy. These criteria have been proven to be specific but not very sensitive (Walker
et al., 2015). DSM-V defines major neurocognitive disorders with Lewy bodies similarly.
PD-D is diagnosed according to criteria published in 2007 (Emre et al., 2007). In
addition to established Parkinson’s disease the criteria require impairment in atten-
tion, executive function, visuospatial function, or free recall; and supporting features
such as apathy, depression, and delusions are acknowledged. To differentiate DLB
from PD-D, dementia should not present more than one year after the start of Parkin-
sonism. In general, cognitive deficits in Lewy body dementias are characterized by
impaired executive function and visuospatial capabilities in contrast to AD-dementia
episodic memory impairment. (Erkinjuntti et al., 2015)

α-synuclein, a protein functional in presynaptic terminals in the brain, is the pri-
mary component of Lewy bodies. The pathological mechanism of the formation of
these bodies is unclear similarly to the accumulation of Aβ in AD. No clear picture
has emerged on risk factors of α-synuclein accumulation. The bodies are associated
with neuronal dysfunction in their vicinity, but whether the formation of these inclu-
sions has a protective effect or if they represent upstream pathological processes is
unknown. In PD-D, α-synuclein pathology is thought to be more strongly associated
with dementia than in DLB, where mixed etiology with Aβ is thought to play a sig-
nificant role. The severity of dementia in PD-D and DLB is associated with the level
of AD-type pathology present, whereas there is little evidence of concurrent vascular
pathology having an effect. There are known autosomal dominant mutations that
lead to Lewy body dementias or Parkinson’s disease, and there is some evidence of
additional familial clustering of DLB not explained by them. The APOE ε4 allele is
associated with elevated risk of Lewy body dementias but not to the extent of AD.
(Walker et al., 2015)

Imaging of α-synuclein pathology is currently not possible, but single photon
emission computer tomography and metabolic PET for hypoperfusion and hypo-
metabolism have shown distinct occipital-lobe patterns in Lewy body dementias that
are not seen in AD (Minoshima et al., 2001). These tests are recognized as support-
ive features in the 2005 DLB criteria, and they can aid in the differential diagnosis
of α-synucleinopathies and AD. α-synuclein levels in cerebrospinal fluid have been
shown to some extent discriminate between dementia with Lewy bodies and AD,
whereas CSF Aβ has been shown not to (Walker et al., 2015).
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2.5 OTHER DEMENTIAS

Frontotemporal dementia (FTD) refers to a variety of syndromes which affect the
frontal and temporal neocortices. The clinical phenotype varies according to the
exact region that is affected, and the type of neuropathology also varies. Gener-
ally, the syndromes are characterized by behavioral changes, executive dysfunction,
and difficulties in language. The clinical presentation can be similar to psychiatric
conditions, and a differential diagnosis may be difficult. Clinical subtypes include
behavioural-variant FTD with a prefrontally and temporally dominated pathology, and
primary progressive aphasia of the non-fluent variant with a left-frontotemporal domi-
nated pathology and of the semantic variant with temporally dominated pathology.
As the disease progresses, the symptoms of the subtypes tend to converge as the
pathology spreads. Neuropathologically, three types of pathology are recognized:
30–50% of cases are tau dominated, in 50% of the cases TAR DNA-binding protein
with a molecular weight 43 kDa (TDP-43) is found in the form of intracellular inclu-
sions, and about 10% show fused-in-sarcoma protein inclusions. Structural MRI and
metabolic PET show regional cortical atrophy and metabolism, and amyloid PET is
used to differentiate FTD and AD. FTD has a higher relative incidence in younger
age groups compared to other types of dementia, and a number of risk genes have
been recognized. Most of the inherited disease cases are due to the genes C9orf72
and GRN, resulting in TDP proteinopathy, and MAPT, resulting in tauopathy. (Bang
et al., 2015; Erkinjuntti et al., 2015)

Hippocampal sclerosis (HS) is a somewhat unspecific pathological finding that
has a relatively high prevalence in the very old. Historically, in cases where HS had
clearly dominated typical AD pathology and an amnestic impairment was present,
the term hippocampal sclerosis dementia was used (Cykowski et al., 2017). More re-
cently HS has been strongly associated with cortical TDP-43 accumulation, and has
been shown to also commonly present with AD and LBD pathology (Nag et al., 2015).
HS without other neuropathology seems to be rare (Kero et al., 2018), and HS with-
out TDP-43 pathology seems to not be associated with cognitive decline (Nag et al.,
2015). Discussion is ongoing on how to conceptualize HS-related syndromes: HS de-
mentia has been suggested to be an amnestic variant of frontotemporal degeneration
due to similarities in pathology (Onyike et al., 2013). To differentiate from other de-
generative disorders, Nelson et al. (2016) suggest the term cerebral age-related TDP-43
with sclerosis (CARTS) to be used independently for this type of pathology. Cykowski
et al. (2017) suggest further to differentiate between CARTS and AD or FTD with
concomitant TDP-43 pathology.

2.6 RISK FACTORS FOR DEMENTIA AND BRAIN PATHOLOGY

Epidemiological studies have revealed risk factors for cognitive decline and demen-
tia, and for certain specific disease etiologies. In general, pathological processes lead-
ing to dementia are still largely unclear, which is reflected in the difficulties of linking
risk factors to a specific pathological process, or to dementia or declining cognition
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more broadly. Dementia shares well-known risk factors with e.g. cardiovascular dis-
ease, but the exact underlying mechanisms are not yet fully known.

For dementia, several risk factors have been recognized. Incidence of all-cause
dementia increases exponentially with age (Jorm and Jolley, 1998). The incidence
pattern for AD is similar, but for VaD there is greater variability in different popula-
tions. The incidence of AD in very old age is higher in women, and the VaD incidence
is higher in younger men (Jorm and Jolley, 1998). There is clear evidence of familial
susceptibility to dementia (Loy et al., 2014), partly due to the effect of specific risk
genes that have been identified.

Age and genes are immutable personal characteristics that cannot be influenced.
Research into preventable risk factors has produced a large number of tentative risk
factors related to somatic and mental health, socioeconomic status, and lifestyle. The
data are mostly observational, but randomized controlled trials do exists for some,
like blood pressure and hypercholesterolemia. However, in many cases the results
are mixed. Table 2 lists a number of potentially preventable risk factors for dementia
and gives an estimate made by the Alzheimer’s Association on the level of evidence
concerning the association with dementia (Baumgart et al., 2015). In 2017, the Na-
tional Academies of Sciences, Engineering, and Medicine and Health released a re-
port outlining recommendations on interventions for some well-established risk fac-
tors and also outlined research priorities for risk factors with insufficient data. Three
interventions were indicated as promising based on the current status of evidence:
cognitive training, blood pressure control in midlife, and increasing physical activity.
The National Academies of Sciences assessments have also been included in Table 2.

2.6.1 Education

A person’s history of education and cognitive exertion seems to be associated with
the timing and rapidity of cognitive decline in advanced age. A low level of education
has been linked to AD-dementia risk in a comprehensive meta-analysis (Caamaño-
Isorna et al., 2006). A later systematic review by Meng and D’Arcy (2012) confirmed
this for the risk of AD-dementia, VaD, and unspecified dementia. In that review, most
of the substudies reporting on brain pathology also found more severe pathological
changes in individuals with a higher education. These findings are in line with the
cognitive reserve hypothesis stating that high education and other forms of cognitive
training lead to higher resilience of the brain against pathological lesions and that
this elevates the threshold level at which cognition is impaired.

There is some evidence to suggest that cognitive reserve may have a slowing effect
on the accumulation of Aβ itself (Lo et al., 2013; Yasuno et al., 2015). Studies have also
shown an association between altered brain structure and certain surrogate markers
of cognitive reserve (Xu et al., 2015) and a higher cognitive reserve has also been
linked to changes seen in functional MRI (Anthony and Lin, 2018).
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Table 2: Dementia risk factors and protective factors. Alzheimer’s Association (AA) assess-
ment of level of evidence on association (Baumgart et al., 2015) and National Academies of
Sciences, Engineering, and Medicine and Health (NAS) recommendation on intervention (Na-
tional Academies of Sciences, Engineering, and Medicine and Health, 2017).

Effect Factor Level of evidence
on association
(AA assessment)

Recommendation for
intervention
(NAS assessment)

Risk
factors

Traumatic brain injury Strong —
Midlife obesity Moderate —
Midlife hypertension Moderate Intervention supported†

Current smoking Moderate —
Diabetes Moderate Priority for research‡

History of depression Unclear Priority for research‡

Sleep disturbances Unclear Priority for research‡

Hyperlipidemia Unclear Priority for research‡

Vitamin B12 deficiency1 — Priority for research‡

Hearing loss2 — —
Particulate air pollutants2 — —

Protective
factors

Years of formal education Strong —
Physical activity Moderate Intervention supported†

Mediterranean diet Lower Priority for research‡

Cognitive training Lower Intervention supported†

Moderate alcohol consumption Unclear —
Social engagement Unclear Priority for research‡

†: Evidence of intervention to prevent Alzheimer’s-type cognitive decline is encouraging but
inconclusive. Recommendation based on evidence, neurobiological plausibility, and benefits
to general health. ‡: Insufficient evidence to recommend intervention, additional research
needed. —: No statement made on risk factor. For additional references see 1: (Ford and
Almeida, 2019), 2: (Livingston et al., 2017), and 3: (Baumgart et al., 2015).
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2.6.2 Risk genes and causal mutations

Apolipoprotein E (APOE) gene polymorphism has been linked to the incidence of AD
(Saunders et al., 1993). APOE in peripheral tissue takes part in the uptake of lipopro-
teins such as high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in
the liver. APOE does not cross the blood–brain barrier (BBB). APOE found in the
brain and the CSF is produced by the brain parenchymal cells, but its function is
unclear. Three major alleles can be found in the population: the major type is ε3,
while ε4 is the second most common, and ε2 is the most infrequent. The ε4 allele is
the risk allele. A heterozygous ε4 genotype increases the risk of AD threefold and a
homozygous genotype 8–12-fold, and ε4-carrying AD patients are typically younger
than noncarriers (Alzheimer’s Association, 2016). ε2 may be AD-protective (Corder
et al., 1994). Frequencies of the risk allele ε4 in populations around the world range
between 8% and 31% (Eichner et al., 2002). APOE is an important consideration in
dementia research, and the effect of its polymorphism is routinely taken into account
in the study of dementia risk factors. The other known risk genes are known to be
associated with the metabolism of APP and lipids, and with the immune system (Erk-
injuntti et al., 2015). An AD-protective variant of the APP gene has also been found
(Jonsson et al., 2012). The protective effect is mediated by altered β secretase cleav-
age.

For non-sporadic AD, causal gene mutations have been found in the APP, PSEN1
and PSEN2 genes. Changes in the APP amino acid sequence increase the proportional
output frequency of the Aβ42 subtype, and so do mutations in the γ secretase coding
PSEN1 and PSEN2 genes. Down syndrome patients frequently show neuropathology
similar to AD patients (Mann, 1988), possibly due to them having three alleles of APP.

2.6.3 Cardiovascular risk factors

There is an established link between the health of the cardiovascular system and the
risk factors affecting it, and cognitive decline, dementia, and some of the specific
underlying diseases (Power et al., 2011).

Hypertension

The association between hypertension and dementia has long been studied in cross-
sectional and longitudinal studies. Age-specific effects have been found, but the re-
sults have to an extent been mixed. Some studies report on dementia overall, while
some report separate results for AD and VaD, and the data is either measured or self-
reported. A meta-analysis by Power et al. (2011) investigated populations with base-
line mean ages 50-74 and found no association between the reported hypertension
history or current hypertension and AD. Three studies investigated mid-life (<65
years) measured hypertension in association with AD and only one of those reported
a positive association between highly elevated mid-life systolic blood pressure (SBP)
and incident AD (Kivipelto et al., 2001b). Another study included in the review found
suggestive evidence for a nonlinear effect where both low and high SBP indicated
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higher risk of AD (Launer et al., 2000). An adverse effect of increased mid-life dias-
tolic hypertension on incident AD was suggested by the pooled analysis, although
no single study reached statistical significance. In their study, Launer et al. (2000)
verified the effect of high mid-life SBP on higher incidence of VaD, whereas with di-
astolic blood pressure (DBP) there was no effect. A systematic review by Sharp et al.
(2011) looking specifically at hypertension and VaD found a history of hypertension
and measured hypertension to be clearly associated with both a higher prevalence
and higher incidence. For all-cause dementia, a recent study found hypertension at
a relatively low cut-off value of SBP>130 mmHg at 50 years of age to be associated
with increased risk and this was independent of other cardiovascular diseases (Abell
et al., 2018).

For late-life-measured BP, three studies with measured values in the meta-analysis
by Power et al. (2011) reported a consistent but nonsignificant protective effect of high
DBP. SBP measures indicated a similar effect but less consistently. A 9-year-follow-
up of over-85-year-olds (Rastas et al., 2010) reported a protective effect of history of
hypertension on incident dementia, however measured baseline BP did not show
this association. A 3-year follow-up study of subjects over the age of 65 by Hayden
et al. (2006) reported a positive association between hypertension and incident VaD
in women and a negative association between hypertension and AD in both genders.
More recently, Corrada et al. (2017) found the self-reported onset of hypertension
only after the age of 80 and 90 to be associated with decreasing incidence rates of
dementia compared to controls with no hypertension.

Walker et al. (2019) found two mid-life–late-life BP profiles to be associated with
high dementia risk: both sustained hypertension from mid-life to late-life and the
development of mid-life to late-life hypotension indicated elevated risk.

Observational studies have shown the use of antihypertensive drugs to reduce
the risk of both VaD and AD (Rouch et al., 2015). Interventions treating elevated BP
have shown a positive effect on cognitive decline, but not conclusively on demen-
tia. Less than half of 11 randomized trials analysed by Rouch et al. (2015) found a
significant effect on cognitive decline or dementia with a maximal follow-up time of
4.5 years within the trials. A large SPRINT MIND trial recently showed a benefit of
aggressive BP control over traditional BP targets in terms of incidence of MCI and
incidence of either dementia or MCI, but was only suggestive for lower incidence of
dementia (SPRINT MIND Investigators for the SPRINT Research Group, 2019). In
the same study, more aggressive treatment was associated with a lesser increase of
white matter (WM) lesion volume and greater a decrease in brain volume (SPRINT
MIND Investigators for the SPRINT Research Group, 2019).

There is other supporting neuropathological evidence for the association of brain
lesions with BP. A longitudinal study by Petrovitch et al. (2000) on the effect of midlife
hypertension on brain pathology during a 36 year follow up provided insights into
the underlying brain changes: in those with elevated mid-life SBP, more Aβ plaques
were found in the neocortex and the hippocampus, and the brain weight was also
lower. Elevated DBP was associated with increased counts of neurofibrillary tan-
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gles in the hippocampus. A more recent cross-sectional study by Jeon et al. (2019)
in a stratified analysis showed differences in the association of hypertension with
brain pathology in cognitively normal subjects and in those with AD-dementia: hy-
pertension in cognitively normal APOE-ε4 noncarriers was associated with a lower
cortical thickness in AD signature regions, but not Aβ accumulation, whereas ε4 car-
riers with hypertension had a higher rate of Aβ accumulation. Among AD-dementia
subjects, hypertension was associated with lower Aβ deposition irrespective of the
APOE genotype.

Kennelly et al. (2009) summarize the mechanisms by which elevated BP—in com-
bination with other cardiovascular risk factors—causes VaD-related pathology. Dam-
age to the arterial wall in the form of reactive thickening of the media and devel-
opment of atheromatous material predispose the vessel for local thrombi. Cardiac
failure and atrial fibrillation are cardiac outcomes of hypertension that may lead to
embolus formation and infarctions.

Hypercholesterolemia

Changes in cholesterol metabolism have been associated with all-cause dementia and
especially with AD-dementia. High midlife total cholesterol has consistently been
associated with a higher rate of incident all-cause dementia in later life in systematic
reviews (Kivipelto and Solomon, 2006; Anstey et al., 2017). For late-life cholesterol,
these reviews showed no association with incident dementia. Anstey et al. (2008)
analysed studies that established normal cognition at the baseline and had available
data on dementia etiology at the follow up. Although such studies consistently found
a link between mid-life high cholesterol and AD-dementia specifically, no association
with VaD was found. A later study did find an association with both AD and VaD in
a 30-year follow up (Solomon et al., 2009). A decline in cholesterol levels from midlife
into old age has been associated with higher AD rates (Anstey et al., 2017). Studies
looking at other dyslipidemias do not form a uniform body of evidence. Some studies
have reported not finding an association between cognitive decline/dementia or high
triglycerides and high density lipoprotein (Anstey et al., 2017).

Four trials targeting individuals with high cholesterol found no effect on cogni-
tive performance or incident dementia in follow-ups ranging from 6 months to 5
years (National Academies of Sciences, Engineering, and Medicine and Health, 2017).
Combination therapy where statins are accompanied by drugs inhibiting gut choles-
terol uptake did not produce better results. Geifman et al. (2017) found evidence for
potential intervention benefits in homozygous APOE ε4 carriers in subgroup analy-
ses.

Cholesterol metabolism is essential for brain function, and brain cholesterol has
been linked to neurodegenerative diseases including AD (Björkhem, 2006). APOE is
closely related to cholesterol metabolism. Although the brain and peripheral choles-
terol pools are separated by the blood-brain barrier, they can interact via metabolites
such as oxysterols (Björkhem, 2006). Hypercholesterolemia may also increase the
risk of dementia through the vascular pathway, i.e. increased risk of cardio- and cere-
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brovascular disease.

Obesity

Obesity has a high comorbidity with other cardiovascular risk factors, most impor-
tantly metabolic syndrome, type 2 diabetes, and hypertension. Meta-analyses and
systematic reviews have reported on the effect of body composition throughout the
life course. Midlife overweight (body mass index, BMI, in kg/m2 from 25.0–27.5 to
30.0) and/or obesity (BMI >30) has been found to be associated with all-cause de-
mentia (Anstey et al., 2011), AD (Beydoun et al., 2008; Profenno et al., 2010; Anstey
et al., 2011), and VaD (Anstey et al., 2011). A stable BMI into old age was not asso-
ciated with dementia (Anstey et al., 2011), but weight gain seemed to be (Beydoun
et al., 2008). Beydoun et al. (2008) found associations with AD and VaD to be stronger
with longer follow-up times and younger baseline populations. Midlife underweight
has been associated with all-cause dementia (Beydoun et al., 2008) and AD (Anstey
et al., 2011). Old-age overweight has been found to be associated with a lower risk of
dementia (Baumgart et al., 2015). A large meta-analysis of BMI and incident demen-
tia over different time periods demonstrated this reversion of association: BMI was
shown to be a risk factor over decades-long follow-up periods and protective over
periods of less than ten years (Kivimäki et al., 2018). The authors hypothesize that
over shorter periods weight loss may be caused by preclinical dementia showing a
pattern of reversed causality.

Trials investigating the effect of increased physical activity on dementia have been
promising (National Academies of Sciences, Engineering, and Medicine and Health,
2017), but the extent to which the effect is due to body weight is unclear. Other po-
tential mechanisms include improved insulin sensitivity, reduction in hypertension
or high cholesterol, or neurological effects (Livingston et al., 2017).

Cardiovascular conditions

Specific cardiac conditions have been studied in association with cognitive decline
and dementia. Atrial fibrillation (AF) is a risk factor for dementia not only through
its association with stroke (5-fold risk of stroke in AF), but also independent of prior
stroke (Aldrugh et al., 2017). Non-stroke hypothesized causal explanations include
cerebral hypoperfusion and possibly associated altered Aβ metabolism, vascular in-
flammation, small vessel disease, and brain atrophy. Similar mechanisms may under-
lie the association between dementia and heart failure, a condition often secondary
to a coronary conditions like coronary heart disease (CHD) or AF. Systematic reviews
have confirmed the positive association between heart failure and cognitive impair-
ment (Cannon et al., 2017) and dementia (Wolters et al., 2018), and also that between
CHD and dementia (Wolters et al., 2018).
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Cardiorespiratory fitness

Overall cardiorespiratory fitness (CRF) as measured by the maximum oxygen con-
sumption has been associated with better measured cognition in a cross-sectional
analysis (Freudenberger et al., 2016) as well as in a longitudinal follow-up setting
(Pentikäinen et al., 2019). A study by Schultz et al. (2015) was able to link this effect
to AD pathology in that they found better CRF to be protective of the harmful effects
of Aβ accumulation. CRF—an aggregate measure—has been associated with hyperc-
holesterolemia, impaired fasting glucose, diabetes mellitus, hypertension, and a high
BMI (Erez et al., 2015). The association between CRF and cardiac outcomes during
follow-up was shown to be mediated by hypercholesterolemia, diabetes mellitus, and
obesity.

2.6.4 Insulin resistance and diabetes

Diabetes mellitus (DM) is a growing problem in modern societies, especially type
two diabetes (DM2) with its overall prevalence rising due to an aging population
and changing lifestyles. The pattern is similar to dementia in terms of the aging
population. Additionally, the conditions share etiological features. The APOE ε4
allele is a known risk factor of AD, and the APOE gene is a regulator of glucose
and lipid metabolism (Cheng et al., 2012). Two meta-analyses have confirmed higher
dementia incidence rates to be associated with DM (Cheng et al., 2012; Gudala et al.,
2013). The effect was reported for all-type dementia, AD-dementia, and VaD, but the
relative risk was clearly higher for VaD in both studies. Micro- and macrovascular
diseases are well-known complications of DM, and thus the association with VaD
is understandable. The effect was not mediated by APOE status. The mechanisms
linking DM and AD are still unclear. Hypotheses include vascular and metabolic
processes including insulin resistance, but no definitive link to disease progression
or pathology has been made (Gudala et al., 2013). Ahtiluoto et al. (2010) found older
individuals with DM to have higher dementia incidence rates, and in autopsy to have
lower levels of Aβ and tau pathology and more vascular pathology. An analysis by
Moran et al. (2015) across different diagnostic groups found DM2 to intensify tau
pathology but not Aβ. Roberts et al. (2014) linked DM diagnosis with AD-type brain
hypometabolism patterns but found no association with AD-type Aβ accumulation.

Insulin resistance in peripheral tissue is a hallmark of DM2. In recent years re-
search has been done on insulin resistance in the periphery and also in the central
nervous system in relation to neurodegeneration. Peripheral insulin resistance (IR)
is typically quantified using the homeostasis model assessment for insulin resistance
(HOMA-IR=[Insulin] · [Glucose] · constant) index value. For brain IR, a new tentative
blood biomarker has been suggested (Kapogiannis et al., 2015). In prediabetic and
diabetic subjects higher peripheral IR has been linked to similar brain hypometa-
bolism patterns on PET as seen in AD patients (Baker et al., 2011), a result which is
analogous to findings for DM. No association has been found between late-life IR
in cognitively healthy elderly and CSF Aβ (Laws et al., 2017) or Aβ on PET (Ekblad
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et al., 2018). There does not seem to be an Aβ association in MCI or AD subjects either
(Laws et al., 2017). Results in younger populations have been mixed (Willette et al.,
2015; Westwood et al., 2017; Ekblad et al., 2018). An association between long-lasting
IR and neurodegenerative changes on MRI—including hippocampal atrophy—has
been reported (Korf et al., 2006).

Association with brain insulin metabolism

Brain glucose metabolism is regulated in part by insulin-independent glucose trans-
porters at the BBB and also by insulin-dependent transporters at the BBB and in
plasma membranes of parenchymal brain cells. It is nowadays known that insulin
plays a role in brain metabolism and signaling, whereas before the brain was thought
to be indifferent to insulin signaling. Insulin presents itself manyfold in the central
nervous system: peripheral insulin is transported through the BBB, there are insulin-
activated signaling pathways through the BBB, and there is endogenous insulin pro-
duction in certain regions of the brain. Insulin receptors of the BBB are known to
decrease in number with aging and long-term blood hyperinsulinemia. It is hypothe-
sized, that constant peripheral IR and associated hyperinsulinemia are linked to a de-
crease in brain insulin-dependent glucose intake. Furthermore, the pattern of insulin
transporter types varies by brain region and some regions may be more dependent
on insulin-dependent glucose intake. This may make these regions more sensitive
to other pathological insults such as those seen in AD. The reason for and mecha-
nism of brain insulin production and uptake are still unclear, but it is hypothesized
that insulin signaling might be linked to neuroprotective mechanisms. Brain insulin
resistance may be linked to brain degradation through these mechanisms. Another
hypothesis suggests brain IR to promote oxidative stress, possibly a catalyst of Aβ

and tau pathology. Oxidative stress is also linked to metabolic syndrome and obesity,
which are upstream stages of the IR–DM progression. (Diehl et al., 2017)

Some insight into the interplay between insulin and Aβ has been gained in mice.
In a healthy brain insulin has been shown to promote amyloid clearing. Aβ seems
to suppress insulin receptor levels as well as interfere with insulin receptor function
thus downregulating the effect of insulin in the brain and resulting in lower Aβ clear-
ance. Furthermore, Aβ and insulin are both cleaved by the insulin-degrading enzyme
(IDE). Hyperinsulinemia may thus lead to lower levels of Aβ cleavage. IDE also ap-
parently only cleaves monomeric Aβ. It has also been confirmed that in APOE ε4
positive AD patients hippocampal IDE levels are lower than in controls. (Diehl et al.,
2017)

2.6.5 Lifestyle

Several lifestyle factors seem to be associated with dementia. Smoking in old age has
been linked to incident dementia according to several studies (Baumgart et al., 2015),
and mid-life heavy smoking was a strong predictor of late-life dementia according to
Rusanen et al. (2011). Meta-analyses have found higher physical activity to be protec-
tive against cognitive decline (Sofi et al., 2011) and also protective against dementia
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and AD (Hamer and Chida, 2009). A more recent review found leisure time physi-
cal activity to be more important than work-related activity in terms of AD incidence
(Stephen et al., 2017a). There is evidence from a meta-analysis of light to moderate al-
cohol consumption being protective against all-cause dementia, AD, and VaD, when
compared to no consumption (Anstey et al., 2009), but these results may partly be
due to selection bias and due to the fact that most studies do no differentiate between
abstainers and persons who have quit drinking.

Some nutrients and food groups have been associated with dementia, although
evidence is weaker than for some other risk factors modalities (Baumgart et al., 2015).
In case of cognitive decline more broadly, a Mediterranean diet as a dietary pattern
and B vitamins, some antioxidants, vitamin D, and unsaturated fatty acids as specific
nutrients have been associated with a protective effect on cognition in many studies
(Scarmeas et al., 2018).

2.6.6 Psychosocial

Depression is a comorbid state related to dementia, and depression is associated
with a two-fold prevalence of dementia in old age (Cherbuin et al., 2015). Study
of the causality of the two is difficult. However, depression in midlife has been
associated with increased dementia incidence in late life supporting the view that
depression might be a preventable risk factor (Byers and Yaffe, 2011). A feeling of
hopelessness—a very common symptom of depression—in midlife also had a simi-
lar association (Håkansson et al., 2015). Depression may be a result of minor damage
due to cerebrovascular disease coinciding with cognitive impairment of the vascular
type. Depression and dementia are also linked through several risk factors, such as
physical inactivity, metabolic syndrome, and low-grade inflammation. As for AD-
related pathology, depression is linked to elevated cortisol levels, and cortisol may
induce atrophy of the hippocampus. Additionally, AD patients with depression have
been reported to have higher Aβ accumulation in the hippocampus compared with
nondepressed patients possibly due to increased cortisol. (Byers and Yaffe, 2011)

The CSF Aβ profile of older adults with depression resembled that of AD patients
in a meta-analysis (Nascimento et al., 2015). There is no good-quality data on the
effects of treatment of depression on the dementia incidence. Observational studies
with very short follow-up times have shown both improvement and impairment of
cognition (National Academies of Sciences, Engineering, and Medicine and Health,
2017).

Low social participation, loneliness, and infrequent social contacts have been asso-
ciated with impaired cognition in a meta-analysis (Kuiper et al., 2015). A higher level
of social activity has been suggested to be protective, but no prevention study data
is available for the isolated effect of improved social engagement on cognition and
dementia (National Academies of Sciences, Engineering, and Medicine and Health,
2017).
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Table 3: Examples of risk factor combinations in midlife and late life modulating the risk of
dementia.

Potentiating combinations Attenuating combinations

Midlife
effects

– High alcohol consumption, smoking,
low physical activity and saturated-fat
intake have higher effect in APOE ε4 car-
riers.

– Concurrent hypertension, obesity, high
cholesterol, and low physical activity all
add to risk independently.

– Education somewhat mitigates
the risk increase due to APOE ε4.

– Physical activity reduces the risk
due to APOE ε4.

– Risk due to low education is af-
fected by complexity of occupa-
tional activity.

Late-life
effects

– Chronic heart failure, low pulse pres-
sure, and low DBP contribute to brain
hypoperfusion and higher risk.

– High SBP, DM or prediabetes, and stroke
indicate atherosclerosis/vascular dam-
age and higher risk of dementia.

– Risk due to APOE ε4 is mitigated
by leisure time activities and lack
of vascular risk factors.

Table adapted from Solomon et al. (2014a). Key: APOE apolipoprotein E, DBP and SBP dias-
tolic and systolic blood pressure, DM diabetes mellitus.

2.7 A MULTIMODAL APPROACH TO DEMENTIA RISK MANAGE-
MENT

The interactions between the aforementioned risk factors is an important field of
study, especially with future preventive interventions in mind. Prevention trials tar-
geting a single risk factor have shown no clear benefits in terms of dementia as a
primary outcome, nevertheless, a positive effect on cognition has been seen in the
case of BP, for example. A multimodal approach to dementia risk management may
be needed in the future. Solomon et al. (2014a) list examples of observed combina-
tion effects of risk factors. Table 3 shows how the effects of vascular risk factors vary
along the life course and APOE gene polymorphism interacts with life-style and car-
diovascular risk factors.

The recommendation report by the National Academies of Sciences, Engineering,
and Medicine and Health (2017) not only stated priorities for single-domain interven-
tions (see Table 2), but also indicated that multidomain interventions are needed to
investigate effective dementia prevention strategies. The aim would be to target mul-
tiple risk factors concurrently and possibly affect several pathological disease pro-
cesses. Several large-scale controlled trials with multidomain intervention strategies
are underway, or have already published results. The Prevention of Dementia by In-
tensive Vascular Care (PreDIVA) randomized controlled trial (RCT) tested the efficacy
of a nurse-led interventions targeting several cardiovascular, metabolic and lifestyle
risk factors in an older age group in a primary health care setting, but the study failed
to show an effect on dementia as the primary outcome during the 6 year follow up
(Moll van Charante et al., 2016). The Finnish Geriatric Intervention Study to Pre-
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vent Cognitive Impairment and Disability (FINGER) combined further domains in
an RCT targeting at-risk individuals as discussed in more detail in section 4.3. The
intervention group was given cognitive training and provided with social activities,
guidance on nutrition, an exercise program at the gym, and monitoring and manage-
ment of cardiovascular and metabolic risk factors. The first results did show a statis-
tically significant benefit to cognition as a primary outcome, and some subdomains
of cognition were also positively affected (Ngandu et al., 2015). In the Multidomain
Alzheimer’s Prevention Trial (MAPT) cognitive training and increased physical train-
ing were combined with nutritional guidance and an omega-3 fatty acid supplement,
but in this older population with baseline subjective memory complaints there were
no significant differences in the primary cognitive outcome between any of the three
intervention groups and the placebo group (Andrieu et al., 2017). However, post-
hoc analyses of high-risk groups defined in terms of elevated Cardiovascular Risk
Factors, Aging and Dementia (CAIDE) dementia risk score (Chhetri et al., 2018) and
brain Aβ positivity (Delrieu et al., 2019) indicated positive effects. Another ongoing
trial is trying to reduce the cardiovascular risk and maintain cognitive function with
a coach-supported interactive internet-based intervention for good diet, physical ac-
tivity, and smoking cessation (Barbera et al., 2018).

Trials with positive findings have been able to show benefits to cognition as mea-
sured by a global index, or in specific subdomains of cognition. No study has been
able to demonstrate an effect on incident dementia. Out of the large multidomain
RCTs only PreDIVA was designed to do that within a 6-year follow-up time. They
found effects in at-risk subpopulations that were not evident in the general interven-
tion population. These observations highlight the need for more efficient population
enrichment procedures. One future priority for intervention trials is to improve the
subject-selection methods by identifying those at increased risk of incident demen-
tia or possibly those with subclinical disease pathology who are likely to benefit from
the specific intervention (National Academies of Sciences, Engineering, and Medicine
and Health, 2017). Disease-specific biomarkers of pathology may prove to be valu-
able in subject selection, but they can also be helpful in monitoring intervention ef-
fects. Further research is needed in linking biomarker-characterized pathology and
clinical outcomes (National Academies of Sciences, Engineering, and Medicine and
Health, 2017).

2.8 DEMENTIA RISK MODELS AND SCORES

2.8.1 Definition of the prediction problem in a medical context

Risk modeling in medicine is multifaceted and has clinical applications for example
in diagnostics, patient selection and outcome prediction, primary prevention target-
ing, and prediction of disease progression. Practical examples include the Systematic
Coronary Risk Evaluation (SCORE; Perk et al., 2012) for prediction of cardiovascular
fatality over 10 years, the Ottawa ankle rule for prediction of fracture and the need
for a radiograph in acute trauma (Stiell et al., 1992), and the quick Sequential [Sepsis-
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related] Organ Failure Assessment (qSOFA; Singer et al., 2016) for prediction of high
mortality risk in septic patients. The term prediction is used here for the deduction
of an outcome (e.g. fracture yes/no, probability of survival at 5 years) based on a
single data point or by combining multifactorial data on the patient. The algorithm
producing this mapping between multifactorial data (predictors) and the outcome is
here defined as a prediction model. The outcome is often expressed as a binary result,
but it should be noted that the context of the prediction model gives it a statistical in-
terpretation in terms of the model’s sensitivity, specificity, positive predictive power
etc. The time perspectives of prediction models vary: models predicting the future
are called prognostic, and models in a cross-sectional setting are referred to as diagnos-
tic (Collins et al., 2015). There are no methodological differences in the construction
of the two types of models, but the interpretation of the outcome measure determines
the time frame (e.g. logistic regression). Other models, the Cox’s proportional haz-
ards model for example, incorporate time explicitly to form prognostic predictions.

Inputs of the model ultimately determine the quality of prediction. There are
broadly two approaches to prediction model building. Predictors may be meaning-
fully determined a priori based on knowledge on the biological process or on epi-
demiological data on association with the outcome being modelled. In data-driven
model building, an algorithm determines the inclusion and weighting of candidate
predictors. In prognostic models the inclusion of a predictor naturally suggests a
causative relationship with the outcome, but this does not necessarily have to be the
case. In diagnostic models the association between predictors and the outcome can
be mediated by causation, disease symptoms, or biological markers of the disease
process, for example.

In the case of prognostic disease prediction models, predictors often include risk
factors that have been associated with the condition in epidemiological studies. In the
best case causality may have been established in an RCT. In the medical field, how-
ever, patient data is usually difficult to obtain due to ethical considerations, costs,
or data quality issues. This puts constraints on the selection of model inputs, and
models differ in terms of breadth and complexity of data. Demographic and patient-
record data can be obtained without physical contact, and self-reported data and ba-
sic clinical measurements can be gathered by lower-skilled staff. More complex labo-
ratory and imaging analyses requires higher-skilled medical staff. From the patient’s
point of view some examinations are more invasive and may bear risks in form of
complications or radiation dose. Indeed, some prediction models are designed to re-
duce the need for additional analyses, and the Ottawa ankle rule is an example. The
complexity of a prediction model is determined by the set of predictors. Complex
multidomain models may incorporate predictors from multiple domains (e.g. de-
mographic, imaging, and laboratory), whereas a simpler single-domain model could
include only disease genealogy, for instance.

Prediction models are constructed in a specific research setting with a specific
subject population and known method restrictions. The characteristics of the tar-
get cohort in terms of age, demographic background, and risk factor profile are an
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important part of the definition of the model and should be properly communicated.
These, and other requirements are defined in the Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative
statement aimed at improving reporting standards in the field (Collins et al., 2015).

Prediction models are not only useful in a clinical setting, but also in research.
For early phase drug trials, for example, the identification and enrolment of high-risk
individuals could increase power of the trial, reduce the number of participants re-
quired, or reduce the intervention duration. A well-grounded prediction model can
be useful in enriching a study population beyond what can be achieved with the clas-
sical approach of defining threshold values for selected risk factors. Solomon et al.
(2019) outline two more scenarios where prediction models could be useful. Demen-
tia prevention interventions could be fitted to match specific risk profiles instead of
a blanket intervention targeting a broader cohort. Additionally, utilizing prediction
model risk estimates as trial outcomes could mitigate the need for long follow-up
times. These estimates may prove be useful also in cases where the true outcome is
very rare.

2.8.2 Diagnostics of a prediction model

The quality of a prediction model is expressed using established statistical measures
including sensitivity, specificity, positive and negative predictive value, and accu-
racy. These statistics should be used and reported together, as the choice of prediction
model parameters and the tuning of the balance between sensitivity and specificity
is to some extent arbitrary. The intended use of the model should guide the set-
ting of parameters and threshold values. For example, in some cases false negative
predictions may be potentially life threatening and should be avoided at the cost of
specificity. On the contrary, before executing a costly and laborious intervention a
very specific model may be preferred for population enrichment.

When setting threshold values for dichotomous yes/no prediction outcomes is
not justified, a more general measure of model quality is used. The receiver operating
characteristic curve is a graphical presentation of model performance in the sensitiv-
ity–specificity space used to describe the model’s ability to discriminate between in-
dividuals. The area under the curve (AUC) quantifies the information in this graph
in a single index value in the range 0.5–1, where a value of 0.5 equates to a random
prediction and 1 indicates perfect prediction. According to the statistical interpreta-
tion, AUC represents the probability that the prediction model assigns a randomly
chosen true positive case a higher risk estimate than a randomly chosen negative
case (Hanley and McNeil, 1982). Hosmer et al. (2013) suggest an experience-based
general rule of thumb for AUC interpretation as follows: values less than 0.7 indi-
cate “poor” discrimination, values between 0.7 and 0.8 “acceptable”, values between
0.8 and 0.9 “excellent”, and values greater than 0.9 “outstanding”. The C-statistic
(or concordance statistic) for a dichotomous outcome is an analogous measure origi-
nally defined in terms of logistic regression (Hosmer et al., 2013). These measures are
valid for prediction of a binary outcome at a specific time point. Variations have been
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developed for other applications such as survival analysis, for instance.
In the building stage the model is estimated using a training population, which is

a group of individuals matching the intended cohort characteristics of the model. As
a general rule, the prediction performance of the estimated model will typically be
superior in the training population compared to what it would be in other data sets
(Harrell et al., 1996). Additionally, many model types can be tuned to predict at an
arbitrarily high performance level by increasing the model complexity. Hereby the
model fit increases, but not necessarily the model’s usefulness in a general setting. The
model needs to be validated against an independent set of data. In internal validation
the study cohort itself is used by splitting it into a separate training population and
a test population, against which the performance of the model is reported. For more
generalizable and reliable assessment, external validation is performed by testing the
performance in another, independent, cohort. Studies analyzing the validation pro-
cedures used in medical prediction studies have shown deficiencies, and the TRIPOD
guidelines also aim to standardize validation reporting (Collins et al., 2015).

2.8.3 Statistical methods underlying prediction models

Regression models are typical underlying statistical methods of prediction models.
Logistic regression or Cox proportional hazards models are ways to quantify associations
between predictors and outcomes, and the resulting regression coefficients are good
candidates for prediction model weights. In recent decades machine learning meth-
ods have increasingly been applied in the medical field leading towards more data-
driven models.

A support vector machine (SVM) is an example of a statistical method used to cat-
egorize multidimensional data into prediction groups. The method relies on setting
up a hyperplane in the multidimensional space defined by predictor variables in a
way that separates groups appropriately—that is, while avoiding overfitting. The
hyperplane is set up in reference to the closest data points which the algorithm de-
fines using support vectors. In a simpler case a separation in space is obtained using
a linear hyperplane, but more complex hyperplanes can be set up by using so called
nonlinear kernel functions. (Noble, 2006; Suthaharan, 2015)

A data-driven and somewhat more abstract machine learning subspecialty are al-
gorithms consisting of nets or trees. An artificial neural network consists conceptually
of net nodes and their connections— neurons and synapses. Data flows through the
net: model inputs enter the net from one side and an outcome exits the net on the
other. Data is transformed at each node. Decision trees similarly facilitate process-
ing of the model inputs at branching points starting at the trunk, and consecutive
decisions leading towards different outcome categories are represented by leaves.
Each branching point represents an item of input data, and at each point a decision
is made about the following step. The decision is made based on a threshold value,
which is a parameter of the model. The complexity of the models varies depend-
ing on the number of layers of nodes/branches. For additional complexity, decision
trees can for example be joined to form a random forest, in which parallel outcomes of
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many trees are consolidated to a consensus outcome, or are vetted against each other
in a voting step. These models are fitted to training data. They produce typically
black-box-type models without the ability to carry out intuitive interpretations for
coefficients. (Graupe, 2007; Suthaharan, 2015)

Whatever the underlying technology of the model, internal validation is needed
to assess the generalizability of the model. In cross-validation the study population is
divided randomly in a set proportion. One subpopulation is used to train the model
and the other, nominally independent subpopulation, is used to test the model. In
10-fold cross-validation, for example, 9 out of 10 equally sized portions are used for
training and the single leave-out portion for testing. Then, each of the 9 remaining
portions are used as the testing population in sequence. This algorithm is repeated a
set number of times resulting in 10×10 cross-validation, for example.

Principal components analysis (PCA) is a statistical method used to reduce the di-
mensionality of high-dimension data. Conveniently, the resulting principal compo-
nents (PCs) often have conceptual interpretations. A PCA on n-dimensional data re-
sults in a set of n PCs. Mathematically, PCs are linear combinations (weighted sums)
of original variables with the additional condition that PCs are uncorrelated to each
other. PCs are constructed in a way that the first PC attains values (PC scores) that
explain a maximal amount of variance in the data. The next PCs are constructed sim-
ilarly to maximize the coverage of the residual variance. In a typical case, a few of the
first PCs together can explain most of the variance in a dataset. Being linear combina-
tions of original variables, PCs often combine original features in a way that may be
driven by external—although not necessarily obvious—factors. Examination of PC
loadings (weights of the linear combination) can help in assigning interpretations to
the PCs. (Dunteman, 1989)

2.8.4 Prognostic prediction of dementia

Prognostic prediction models have been constructed to estimate the risk of incident
cognitive impairment of varying severity and in different settings. Models have been
developed for predicting the conversion from MCI to AD (AUCs in the range 0.60–
0.93), all-cause dementia based on late-life predictors and midlife predictors, specific
dementias in late life, dementia in individuals with DM, and dementia in individ-
uals from different educational backgrounds (Hou et al., 2019; Tang et al., 2015). A
systematic review by Tang et al. (2015) of models published in the preceding five
years (21 articles assessed) found an overwhelming majority of models to be built
around a scoring system derived from logistic regression or Cox proportional haz-
ards models. Two were constructed using a priori epidemiological evidence. The au-
thors recognized nine distinct predictor modalities: demographic, subjective cogni-
tive complaints, neuropsychological testing, health (symptoms, diagnoses, and mea-
surements), lifestyle, diet, gene analytics, and MRI. Some models included predictors
outside of these categories, for instance family history of dementia or cognitive activ-
ity.

A recent review by Hou et al. (2019) identified 46 studies predicting incident de-
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mentia in cognitively healthy individuals. Seven of these had been externally val-
idated in terms of their discrimination performance. These seven models are sum-
marized in Table 4. Most are intended for a general population, but two models are
built to predict dementia in individuals with DM2, a known risk factor of dementia.
The Cardiovascular Risk Factors, Aging and Dementia (CAIDE; Kivipelto et al., 2006)
risk score models the midlife risk of developing incident dementia in late life, while
most of the other studies predict late-life dementia on a shorter time span of 3–10
years. The Australian National University Alzheimer’s Disease Risk Index (ANU-
ADRI; Anstey et al., 2013) has an age-adaptable design in that the scores given to
predictors are age-dependent in cases where prior research supports this approach.
For example, overweight and high cholesterol only increase risk at ages below 60.
Additionally, age-related risk is stratified according to sex.

Most models have been built using a data-driven approach, where model predic-
tors have been chosen from an available opportunistic set of variables using statisti-
cal testing. Four studies use the Cox proportional hazards model which allows for
convenient treatment of attrition in the older cohorts. Two studies utilize a priori
evidence on dementia risk factors and build models directly using predetermined
predictors. ANU-ADRI is based on a systematic review of potential risk factors and
model weights are determined from earlier published estimates. The complexity
of the models varies a lot. The most focused prediction model consists of the free-
recall score of the Free and Cued Selective Reminding Test (FCSRT-FR)—this model
is also among the best performing. Most models include age, but it should be noted
that the FCSRT-FR does not. An analysis by Mura et al. (2017) showed that com-
bining age with free recall did not improve the results. Another well-performing
model is the Taiwanese Health Improvement Network (THIN; Walters et al., 2016)
registry-based model that identified about 930,000 patients for the training cohort
and 260,000 patients for the test cohort, and analysed easily available demographic,
life-style, prescription, and diagnosis data for effects. The performance was good
in the 60–79 age group, but a model trained with 80+ individuals had practically
no predictive power. The other general-population late-life models—ANU-ADRI
and the Dementia Screening Indicator (Barnes et al., 2014)—performed both only
moderately despite ANU-ADRI’s multimodal extensive predictor set and evidence-
based selection methodology. The models built for DM2 populations both included
diabetes-related comorbidities, and the other additionally laboratory measurements
and medication information, and both had relatively long prediction horizons. They
performed equally at an acceptable performance level.

The CAIDE score combines demographic factors with cardiovascular health fac-
tors for prediction over a longer time frame. The acceptable performance of the origi-
nal study was replicated in a validation study with nearly double the follow-up time
(Exalto et al., 2013a). The validation also showed the model to work well in Asian,
black, and white cohorts (AUCs respectively 0.81, 0.75, and 0.74). However, the per-
formance was clearly worse in older cohorts (Anstey et al., 2014), most likely due to
the varied effect of BMI and cholesterol in those age groups. The CAIDE score ver-
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sion with APOE ε4 status as a predictor performed marginally better than the basic
version.

The increasing prominence of brain pathology and biomarkers in dementia re-
search has not yet penetrated into prognostic modeling. Models exist with MRI
imaging predictors and genetic information (Tang et al., 2015), but amyloid or tau
markers, or markers of LBD pathology for that matter, have not been incorporated.
As for the validation of these current and future advanced models, finding external
cohorts with the same expensive and possibly cumbersome biomarker analysis and
long follow-up times is difficult. Tang et al. (2015) point out that only few studies
take into consideration the costs associated with gathering predictor data, and that
the problem of high costs is especially amplified in a population-based setting. It
would be desirable to aim for a minimal predictor set while maintaining good predic-
tion performance. The analysis of validated models (Table 4) showed top results for a
simple score showing the impairment of free recall. The predictor was not supported
by any other predictor modality. Additionally, increasing the model complexity did
not always seem to improve prediction performance. The CAIDE score was not sig-
nificantly improved by the inclusion of APOE ε4 status, nor did it show any higher
performance when additional midlife predictors were added (Exalto et al., 2013b).

Key methodological challenges of prognostic dementia prediction models were
identified in a recent review (Goerdten et al., 2019). 33% of models were not validated
externally or internally, and only 10% were validated externally. A large portion of
the studies (44%) were built on ADNI data making the results less generalizable, es-
pecially when external validation is not performed. The authors also commented the
specific problems with machine learning models, which is the most common model
type with a 43% share of all models used. Although they are efficient and accurate,
these data-driven models rely strongly on the selected data source. This may make
them difficult to apply in other settings. Indeed, only one externally validated model
identified in Table 4 used a machine learning model. Typically the case frequency
is also higher in study populations than in a real-world setting. Models using re-
gression were noted to frequently not check underlying data assumptions, such as
linearity.

It has been suggested that prediction efforts should in the future take into account
subtle disease-induced changes in clinical testing, biomarker evidence of early dis-
ease stages, and the changing nature of biomarkers during the life course (Ritchie
and Muniz-Terrera, 2019). Furthermore, opportunities provided by modern statis-
tical approaches such as machine learning algorithms should be investigated more
thoroughly. Future prediction studies will show if incorporating new factors more
closely linked to specific disease pathologies will allow for more precise results. Such
an approach narrows the gap between purely associative risk factors and diagnostic
markers of disease, and such models would start resembling diagnostic models or
models of disease progression. In prediction models for advanced age the diagnostic
and prognostic models are easily intertwined, as the disease process is more likely
already ongoing even if symptoms are not showing.
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2.8.5 Prediction of brain amyloid

No prognostic prediction models for brain Aβ accumulation have so far been pub-
lished. Diagnostic models do exist to predict Aβ pathology as confirmed by PET
imaging or analysis of CSF, but no systematic review has been published on the re-
sults. Terminology on the subject varies in the literature and the prediction problem
has, among other terms, been framed as “imputation” or “ascertainment”. A liter-
ature search was performed on PubMed.gov on 9 May 2019. Study titles were re-
viewed, and when necessary abstracts were investigated for relevance. The search
was performed with the following search query:

(AD OR Alzheimer’s OR CSF OR PET)

AND (amyloid OR Aß OR beta-amyloid OR

amyloid-beta OR amyloidosis)

AND (prediction OR pre-screening OR

imputation OR ascertainment)

The search produced 407 results. 11 studies were identified, and two more based
on references in other reports. The results are presented in Table 5. Target populations
included cognitively normal (CN), MCI, and AD participants, but stratified results
were not reported. The youngest cohort consisted of over-50-year-olds, although
most were older. Many studies used Alzheimer’s Disease Neuroimaging Initiative
(ADNI) subcohorts that included at least 55-year-old participants. The Aβ status was
determined either by CSF analysis or PET. Some studies used a population with Aβ

CSF for training and a PET population for validation, or vice versa. Six of the models
used external validation, others used either an internal validation only or no valida-
tion at all. External validation was acknowledged only if the prediction model was
completely estimated in the training set. It did not, for example, suffice that a data-
driven MRI classifier was estimated using a separate cohort, but the weights of the
multimodal model were estimated in the test cohort (Tosun et al., 2013). Some stud-
ies saved a portion of their study population for external validation instead of using
an independent cohort. These cases have been highlighted in the table. All studies
were diagnostic, although some did use longitudinal data on cognition as a predictor.
Three of the older studies used a logistic regression to build the models, whereas the
newer models mostly used machine learning techniques. Ansart et al. (2019) tested
a random forest model, logistic regression, SVM, adaptive logistic regression, and
an adaptive boosting model (AdaBoost) on different cohorts and found the random
forest to have the best overall performance. A random forest model was also used
by two other studies, and one study used a simpler decision tree model. An SVM
was used in three studies. Two studies did not report an AUC value but reported
accuracy and positive prediction value instead.

The prediction performance varied according to the severity of the diagnoses in-
cluded in the study population, as would be expected. AUCs were at the lowest levels
in the pure-CN populations (0.77 and 0.74, non-validated) and at the highest in mixed
MCI/AD cohorts (0.87–0.88). Demographic information was included in most mod-
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els. The APOE genotype was an important predictor, especially in the cognitively
impaired. In a CN population APOE added alongside demographic information im-
proved the AUC from 0.62 (not shown in table) to 0.70 (Mielke et al., 2012), and in
an MCI cohort it improved a structural MRI predictor from AUC 0.70 to 0.88 (Tosun
et al., 2013). In an MCI/AD cohort iterative reporting of performance measures with
increasing model complexity seemed to indicate APOE as a strong predictor (com-
plete model AUC 0.87 non-validated, 0.80 validated; Lee et al., 2018). the objective
measurement of cognition had a predictive value in MCI subjects as a solitary predic-
tor (Bahar-Fuchs et al., 2013). Adding a 24-month cognitive change could improve on
the cross-sectional measure somewhat in a CN population (not shown in table; Insel
et al., 2016). Among older CN individuals objective cognitive scores were equal to
subjective memory complaints in terms of predictive power (Mielke et al., 2012). In a
cohort with MCI participants cognition and a blood assay had similar performances
on their own (AUC 0.74–0.76 validated), but the multimodal model achieved AUC
0.87 (Haghighi et al., 2015). Structural MRI data was included in five models, and its
added benefit to the model was demonstrated in two studies reporting performance
for parallel models (Tosun et al., 2013, 2014). Ansart et al. (2019) concluded that cog-
nitive scores were superior to MRI as an alternative and that adding MRI with the
cognitive scores did not improve results significantly—an important finding consid-
ering costs and practicality of the model. Structural MRI was demonstrated to be
more effective in predicting than arterial spin labeling MRI measuring brain blood
flow (Tosun et al., 2014).

2.8.6 Prediction models in prevention trials

Three dementia prediction models have so far been used in intervention trials. The
CAIDE risk score was used to select at-risk individuals to take part in the Finnish
Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FIN-
GER; Ngandu et al., 2015, see section 4.3) RCT. The target cohort was designed to in-
clude individuals with an increased risk of incident dementia based on preventable
cardiovascular risk factors and with below-average cognitive performance, yet no
substantial cognitive impairment. The CAIDE score threshold of ≥ 6 amounted to a
very mild enrichment: 84% of the available population met this requirement (Ngandu
et al., 2014) with the lowest individual late-life dementia risk of 1.9% (95% confidence
interval 0.2–3.5; Kivipelto et al., 2006) at the threshold level.

Another midlife life-style intervention trial, the Innovative Midlife Intervention
for Dementia Deterrence (In-MINDD), utilized a risk score of modifiable risk factors
constructed based on a literature search (O’Donnell et al., 2015). In this study the
score was used as an educational tool to inform participants of their individual risk
profile. The personalized Lifestyle for Brain health (LIBRA) score takes into account
coronary disease/hypertension and factors affecting those, obesity/diabetes and as-
sociated life-style practices (physical activity and diet), renal disease, and alcohol
consumption. The individual risk profiles were used to motivate the proper man-
agement of chronic diseases and to communicate in which areas lifestyles could be
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improved.
Recently, a genetic risk model was used to stratify subjects into low and high risk

groups in a delay-of-disease RCT (TOMMORROW) testing a DM2 medication on the
incidence of MCI due to AD in the high-risk group (ClinicalTrials.gov, 2018). The
risk model combines the APOE genotype, translocase of outer mitochondrial mem-
brane 40 homolog genotype, and age to produce the risk class prediction (Lutz et al.,
2016), which in turn is used as a 5-year prognosis. The prediction model had previ-
ously been externally validated for short term risk prediction. The trial was partly
designed to validate the performance of the model by comparing a low-risk group
and a high-risk placebo group, but the trial was terminated prematurely following a
futility analysis.

Prediction models in future dementia research

Ongoing research initiatives aim to build large well-managed and well-phenotyped
cohorts with a variety of risk factor information. For example, the European Preven-
tion of Alzheimer’s Dementia (EPAD) project aims to internationally improve the use
of current cohorts and develop a longitudinal cohort for research of future interven-
tions (Ritchie et al., 2016). Good quality and comprehensive risk factor coverage as
well as the inclusion of biomarker data will allow for novel prediction models, which
furthermore aid in designing new interventions. Prediction models for pathology
may in the future be helpful in cost-effectively identifying target individuals with
pathology for secondary prevention (i.e. diagnostic models) or for primary preven-
tion (i.e. models more tuned for prognostic prediction).
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3 AIMS OF THE STUDY

The general aim of this thesis was to develop prediction models for dementia and
brain pathology and to investigate associations between brain amyloid accumulation
and diabetes-related markers. Prediction models may potentially be useful in iden-
tifying at-risk individuals, targeting interventions, and finding optimal participants
to dementia research projects. Diabetes-related markers are particularly relevant in
this context given the increasing diabetes prevalence and potential mechanistic links
to dementia diseases. The specific aims were:

1 To predict incident dementia over a ten year period in a late-life cognitively
healthy population with multimodal predictors and a novel machine learning
algorithm (Study I).

2 To predict dementia and brain pathology in a population-based cohort of the
oldest of old using multimodal predictors and a novel machine learning algo-
rithm (Study II).

3 To predict the presence of in-vivo amyloid pathology in a cognitively healthy
elderly population at risk of dementia with multimodal predictors and a novel
machine learning algorithm (Study III).

4 To study the associations of insulin resistance and other markers of type-two
diabetes with brain amyloid pathology in vivo in a cognitively healthy elderly
population at risk of dementia (Study IV).
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4 SUBJECTS AND METHODS

Three separate study populations were used in this thesis project to build and val-
idate prediction models. In the two observational studies CAIDE and Vantaa 85+,
prognostic prediction models were built for dementia and brain pathology. Baseline
data from the FINGER intervention trial was used in diagnostic prediction of brain
amyloid (FINGER-PET) and to assess associations between brain amyloid status and
metabolic markers of insulin resistance and diabetes (FINGER IR/DM). These studies
and the respective outcome measures are summarized in Table 1.

4.1 THE CAIDE STUDY OF YOUNGER OLD INDIVIDUALS

The longitudinal, observational, population-based Cardiovascular Risk Factors, Ag-
ing and Dementia (CAIDE) study is an extension of cardiovascular surveys con-
ducted in the 1972–1987 within the North Karelia Project and the Finnish part of
the Monitoring Trends and Determinants in Cardiovascular Disease (FINMONICA)
study (Puska et al., 1979, 1983; Vartiainen et al., 1994). These surveys were targeted
at middle-aged persons with a mean age of 50.6 years at the initial visit. Later, for the
purposes of the CAIDE study (Kivipelto et al., 2001a,b), a random sample of 2,000
individual participants aged 65–79 years were invited to a re-examination. The struc-
ture of the study is described in more detail in Figure 1. 1,449 persons took part in
this first late-life re-examination in 1998. A second late-life follow-up was conducted
in 2005–2008. This time 1,426 participants out of the initial 2,000 were still alive, and
909 participated. Late-life visits were conducted at median ages 71.3 and 78.6 years.
The CAIDE study was approved by the local ethics committee of Kuopio University

Table 1: Outcome measures in prognostic/diagnostic prediction by category in the three study
cohorts of the thesis.

Prediction outcome by category CAIDE
N=709&1,009
(prognostic)

Vantaa 85+
N=163&97

(prognostic)

FINGER
N=48&41

(diagnostic)

Incident dementia + + -
AD pathology Aβ plaques - Post mortem In vivo

Tau tangles - Post mortem -
Vascular pathology Cerebral microinfarcts - Post mortem -

Cerebral macroinfarcts - Post mortem -
Cortical macroinfacts - Post mortem -
WM macroinfarcts - Post mortem -

Other pathology α-synuclein - Post mortem -
CAA - Post mortem -
Hippocampal sclerosis - Post mortem -
TDP-43 protein - Post mortem -

Key: AD Alzheimer’s disease, CAA Cerebral amyloid angiopathy, WM White matter
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Independent random samples from the 
North Karelia Project & FINMONICA study

Dementia N=61,
MCI N=82.

Invited random sample N=2,000
Age 65–79 y, location Kuopio & Joensuu

Midlife
1972, -77, -82, and -87

1st late-life
re-examination
1998

2nd late-life
re-examination
2005–2008

Completed cognitive assessment N=1,409,
Participants N=1,449

Invited eligible persons N=1,426
Alive, living in region, known address

Dementia before end 
of 2000 N=13.

Completed cognitive assessment N=852,
Participants N=909. New dementia N=62.

Cognitively healthy

Main study population N=709
Dementia at 2nd re-examination N=39

Extended study population N=1,009
Dementia N=151 

National health registries

- Cognitively healthy at 1st re-examination
- Participated in 2nd re-examination

- Cognitively healthy at 1st re-examination
- No dementia in registries before end of 2000
- May or may not have participated at

2nd re-examination
- Nonparticipants who died without dementia 

record excluded

Figure 1: CAIDE study design and formation of the study cohorts.

Hospital, and written informed consent was obtained from all participants.
Study I of this thesis predicted dementia in the participants of the first late-life visit

in 1998 who were verified to be cognitively healthy—that is those with no MCI or de-
mentia diagnosis. 709 of that cohort also participated in the 2005–2008 re-examination
after a mean follow-up time of 8.3 years. This cohort formed the main study popula-
tion of Study I. An extended study population was formed by augmenting this with
health registry data. For an additional 300 individuals who did not participate in the
later re-examination register information on dementia diagnoses and mortality was
used. Any relevant record in the Hospital Discharge Register, Drug Reimbursement
Register, or Cause of Death Register before the end of 2008 led the individual to be
classified as having dementia. These registers have been found to have a good posi-
tive predictive value, but lower sensitivity (Solomon et al., 2014b). Surviving nonpar-
ticipants without a diagnosis were counted as not having dementia, and those that
had died without a diagnosis before 2008 were excluded. Additionally, individuals
who had a recorded dementia diagnosis before the end of 2000 were excluded. The
mean follow-up time in this extended population was 9.0 years.
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Table 2: Baseline factors evaluated for model inclusion by category in the three study cohorts.

Population type and factors by category CAIDE Vantaa 85+ FINGER

N 709 & 1,009 245 & 163 48 & 41
Age criterion Late-life > 85 60–77
Population type General

population
General

population
At-risk

CN
Demographic1 Education + + +

Social class − + −
Cognition MMSE or SPMSQ + + −

Neuropsychological testing − − +
Subjective complaints + + −
Activities of daily living − + −

APOE genotype + + +
Comorbidities Cardiovascular2 + + −

Diabetes mellitus + + +
Stroke/TIA + + −

Vascular/DM Blood pressure + + +
Blood pressure change + − −
Lipids + + −
Cholesterol change + − −
Body mass index + + +
Body mass index change + − −
Waist-hip ratio + − −
Smoking + + −
Self-rated fitness + − −
Physical activity + − −
Insulin resistance − − +
HbA1c − − +
Blood assay of DM markers − − +

Psychosocial Depression + + −
Hopelessness + − −

Structural MRI − − +
Other Alcohol use + + −

Self-rated health + − −
Key: APOE apolipoprotein E, CN cognitively normal, DM diabetes mellitus, HbA1c gly-
cated hemoglobin, MMSE Mini mental state examination, SPMSQ Short portable mental
status questionnaire, TIA transient ischemic attack. Footnotes: 1: All studies include age
and sex, 2: Includes angina pectoris, atrial fibrillation, coronary heart disease, heart failure,
hypertension, myocardial infarction, and arteriosclerosis obliterans.
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The CAIDE late-life visits utilized a three-step procedure to assess cognition. Dur-
ing the screening phase the participants were interviewed, and a set of tests were con-
ducted to assess different cognitive domains: general cognitive screening with the
Mini-Mental State Examination (MMSE; Folstein et al., 1975), episodic memory with
the immediate word recall test (Nyberg et al., 1997; Heun et al., 1998), semantic mem-
ory with the category fluency test (Borkowski et al., 1967), psychomotor speed with the
bimanual Purdue Peg Board test (Tiffin, 1968) and the letter digit substitution test
(Wechsler, 1944), executive function with the Stroop test (Stroop, 1935), and prospective
memory with a prospective memory task (Einstein et al., 1997).

An MMSE score of ≤24 indicated a referral to the clinical assessment phase, and in
2005–2008 this was also indicated by a decrease of ≥3 points, a delayed recall word
list score ≤70% of the Finnish CERAD, or an informant claim of cognitive decline
(2005–2008 criteria were sensitized to identify MCI better). A review board assessed
the results from detailed somatic and neuropsychological testing, and when neces-
sary used blood analysis, imaging, and in some cases a CSF analysis in the differ-
ential diagnosis phase. Dementia was diagnosed according to DSM-IV and specific
dementias were identified according to established criteria. Dementia at the second
CAIDE re-examination was the prediction target in Study I. The prediction targets in
all studies of this thesis are summarized in Table 1.

Extensive data on health and behavior related factors were collected at each late-
life visit in addition to the cognitive assessments. Self-administered questionnaires
on sociodemographic characteristics, medical history, and health related behavior
were used. Depression was assessed using the Beck Depression Inventory (BDI;
Beck et al., 1961) and self-rated memory was assessed by administering the Subjec-
tive Memory Questionnaire (SMQ; Powell, 1980). The APOE genotype was assessed
from leukocytes using a polymerase chain reaction and HhaI digestion (Tsukamoto
et al., 1993). Table 2 lists all the available factor modalities and factors from the 1998
visit that were considered as potential predictors in Study I.

4.2 THE VANTAA 85+ STUDY OF OLDEST OLD INDIVIDUALS

The Vantaa 85+ study is a longitudinal observational study of cognition and post
mortem neuropathology in the oldest of the old (Polvikoski et al., 1995; Rastas et al.,
2010; Ahtiluoto et al., 2010). Residents of Vantaa—a city in southern Finland—aged
≥85 years were invited to participate in the study 1991. The study structure is out-
lined in Figure 2. The participation rate was very high at 98%. The baseline clinical
examination was successfully completed for 553 persons. A cohort of 339 individuals
completing the baseline examination who were assessed not to have dementia consti-
tuted the cohort from which the two study populations of Study 2 were derived. All
participants gave their written informed consent to participate in the baseline exami-
nation, and nearest relatives of the deceased signed written consent for the autopsies.
The study was approved by the ethics committee of the Health Centre of the City of
Vantaa.
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All Vantaa residents aged ≥85 in 1991
N=601 Did not attend baseline 

examination:
⁻ Died N=36
⁻ Not reached N=1
⁻ Refused N=11

Baseline examination N=553 Exclusion: dementia N=214

Pathology prediction cohort
N=163

Dementia prediction cohort
N=245, dementia N=97

Autopsy not conducted
N=176

Exclusion: death within 2 years
N=94

No dementia at baseline
N=339

Figure 2: Vantaa 85+ study design and formation of the study cohorts.

The dementia prediction cohort consisted of those taking part in re-examinations
in 1996, 1999, and 2001 to assess dementia. In addition, diagnoses were recorded for
101 participants prior to death. 94 participants who died within a two year window
from the baseline visit were excluded in order to limit differences in the time to death
for dementia/non-dementia participants. The dementia prediction cohort consisted
of 245 individuals.

The pathology prediction cohort of 163 persons consisted of those who did not
have dementia at the baseline and had autopsy data available. Within the Vantaa
85+ study altogether 304 autopsies were performed, and 16 out of these were on
individuals who died before the baseline visit.

Dementia was diagnosed by a two-party consensus based on somatic, cognitive,
and functioning assessments during visits and available health records. Data was
gathered at the baseline visit by a physician and a trained nurse. The baseline fac-
tors assessed for eligibility as a predictor are listed in Table 2. The MMSE and the
Short Portable Mental Status Questionnaire (SPMSQ; Pfeiffer, 1975) were used for a
cognitive assessment, and functioning was assessed with the activities of daily liv-
ing questionnaire and with the Instrumental Activities of Daily Living Scale (ADL
and IADL; Katz et al., 1963; Lawton and Brody, 1969). Competence in daily activities
was quantified on a self-rated scale of 1–6 (from independent to needs help in all ac-
tivities). Subjective memory complaint was assessed as no, a little, or yes. Depression
was assessed using the Zung Self-Rating Depression Scale (Zung et al., 1965). For sur-
veyed comorbidities, the category noted as Cardiovascular in Table 2 included angina
pectoris, heart infarction, atrial fibrillation, heart failure, arteriosclerosis obliterans,
and hypertension. HDL and LDL were determined from blood samples using enzy-
matic methods (Rastas et al., 2010). The APOE genotype was determined using DNA
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minisequencing and amplification through a polymerase chain reaction followed by
restriction enzyme digestion with HhaI (Hixson and Vernier, 1990; Syvänen et al.,
1993). DSM-III criteria were used for dementia, and appropriate established criteria
for specific dementias.

Several pathological features were identified and classified in brain autopsies.
These features are grouped in Table 1 by the pathology type. Aβ pathology (Polvikoski
et al., 1995) was classified using the CERAD protocol, and tau pathology (Myllykan-
gas et al., 1999) was classified by using Braak staging. Macroscopic and microscopic
infarcts were identified as previously described (Tanskanen et al., 2012). Addition-
ally, cerebral amyloid angiopathy (Tanskanen et al., 2012), FTD-related α-synuclein
pathology (Oinas et al., 2009), hippocampal sclerosis (Kero et al., 2018), and TDP-43
accumulation (Kero et al., 2018) were assessed.

4.3 THE FINGER TRIAL

The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Dis-
ability (FINGER) was a blinded, randomized controlled trial with the aim to test a
multidomain life-style intervention in the prevention of cognitive decline and de-
mentia (Kivipelto et al., 2013; Ngandu et al., 2014, 2015). The study had a multicentre
design and included a population-based sample of elderly persons who were at risk
of cognitive decline. The sample originated from Finnish health surveys from 1972–
2007 as shown in Figure 3. Along with an age criterion, participants were required
to have a CAIDE risk score (Kivipelto et al., 2006) greater than or equal to six to be
invited to a screening visit. In more detailed testing, candidate participants had to
meet CERAD criteria that demonstrated cognitive performance at a mean level or
somewhat lower than the Finnish general population (Hänninen et al., 2010). The
specific criteria were word list learning task of ten times three words score less than
or equal to 19, word list recall less than or equal to 75%, or an MMSE score less than
or equal to 26. Exclusion criteria included dementia, substantial cognitive decline,
MMSE less than 20, and conditions preventing safe engagement in intervention ac-
tivities (Kivipelto et al., 2013). The subsequent multidomain intervention included
diet guidance, exercise, cognitive training, and vascular monitoring over a two year
period. Results have been published showing a benefit on overall cognition (Ngandu
et al., 2015), and extended follow-ups of the study participants are still ongoing. The
study was approved by the coordinating ethics committee of the hospital District of
Helsinki and Uusimaa. Participants gave written informed consent at the screening
and baseline visits.

A subset of the participants in the Turku area—a city in south-western part of
Finland—was invited to take part in an amyloid-PET/MRI substudy. In total 48 in-
dividuals underwent PET imaging using 11C-Pittsburgh compound B (PIB) after the
baseline visit. Details on the imaging are presented by Kemppainen et al. (2017). The
FINGER-PET participants were somewhat older (mean age 70.8 vs. 69.3) than the
parent cohort due to the later initiation of the recruitment process in Turku. No other
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FINRISK surveys 1972–2007
Random population-based samples

FIN-D2D surveys 2004 & 2007
Random population-based samples

FINGER eligibility screening visit
2009–2011 N=2,654
(CERAD criterion)

FINGER prescreening 2009 N=5,496
(Age 60–77, CAIDE score ≥6)

FINGER baseline visit and 
randomization for intervention

N=1,260

FINGER-PET substudy N=48
(baseline PIB-PET & MRI)

FINGER intervention trial

FINGER PET & IR/DM cohort
N=41 (baseline PIB-PET & DM markers)

Figure 3: FINGER study design and formation of the FINGER-PET study population and the
PET & IR/DM cohort.

significant differences were noted. PIB images were analysed by two experienced
readers and a consensus visual assessment of amyloid positivity (Aβ+) was made.
Aβ+ individuals typically showed cortical retention predominantly in AD-typical re-
gions, and Aβ- persons displayed nonspecific accumulation in white matter. This
cohort constituted the prediction cohort of Study III with amyloid positivity on PIB-
PET as a prediction outcome. See Table 1 for comparison of cohorts.

Participant health data was gathered at the baseline/randomization visit by a
study physician and nurse. Cognition was measured using a modified version of
the Neuropsychological Test Battery (mNTB; Harrison et al., 2007). Subscores were
used for the executive functioning, memory, and processing speed cognitive do-
mains. Scores of individual cognitive tests were transformed into standardized Z
scores and then the sum scores for the NTB total and sub-domains were calculated
(Kivipelto et al., 2013). The APOE genotype was determined by polymerase chain re-
action using TaqMan genotyping assays for 2 single-nucleotide polymorphisms and
an allelic discrimination method (De la Vega et al., 2005).

All participants of the FINGER-PET cohort in Turku underwent at baseline a brain
3T MRI with T1-weighted sagittal sequences and FLAIR coronal sequences (Kemp-
painen et al., 2017). The cortical thickness by region and brain region volumes were
attained using the Freesurfer image analysis suite (version 5.0.3). A measure of AD-
type cortical thinning was calculated as an average of the entorhinal, inferior tem-
poral, middle temporal, and fusiform regions (Jack et al., 2015a). Medial temporal
lobe atrophy (MTA) was assessed on the Scheltens scale (Scheltens et al., 1992) by
one blinded specialist from T1-weighted images (Stephen et al., 2017b).
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41 of the FINGER-PET participants had data available on IR- and DM-related
blood markers. Fasting blood glucose, insulin, HbA1c, and a 12-item Bio-Plex Pro
Human Diabetes assays were analysed. The assays included adiponectin, adispin,
C-peptide, ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1, resistin, and visfatin.
The HOMA-IR was calculated based on insulin and glucose measures. These indi-
viduals constituted the study cohort of Study IV (see Figure 3).

4.4 DISEASE STATE INDEX

The Disease State Index (DSI) is a machine learning algorithm designed to discrim-
inate populations in terms of a condition. The discrimination is based on an index
value that—as the name implies—aims to represent the state of an underlying dis-
ease based on a body of patient data. The DSI value is a continuous value allowing
a more precise assessment of the disease state than a dichotomous algorithm would.
The version of DSI used in this thesis classifies a subject as having a disease versus not
having it, but newer versions allow classification into more than two categories. The
algorithm was originally developed at the state-run VTT Technical Research Centre
of Finland as a back end to a clinical decision support system, which allows a clin-
ician to graphically examine operation of the algorithm in terms of different model
predictors. The system has been further developed by Combinostics Ltd as part of
the EU-funded PredictAD and PredictND tools, clinical decision support systems for
AD diagnosis and differential diagnosis of dementia, respectively.

The DSI has previously been successfully used to discriminate between AD and
CN (Mattila et al., 2011) and FTD and CN/MCI (Muñoz-Ruiz et al., 2013), predict
MCI–dementia conversion (Mattila et al., 2011, 2012b; Hall et al., 2015; Rhodius-
Meester et al., 2016), and classify dementias based on structural MRI (Koikkalainen
et al., 2016) and multimodally (Tolonen et al., 2018). The model has been previously
described in detail by Mattila et al. (2011, 2012a). The algorithm is trained on a set of
individuals with empirical predictor value distributions and binary outcomes. Fig-
ure 4 shows example distributions of a predictor for positive and negative outcome
cases. In respect to this pair of distributions, a fitness function is defined:

fitness(a) =
LP (a)

LP (a) +RC(a)
=

FN(a)

FN(a) + FP (a)

Here LP (a) is the left integral of the positive outcome distribution at a and RC(a)

is the right integral of the negative outcome distribution. These correspond to the
cases with false negative and false positive predictions, respectively. The function
is monotonic with increasing values of a being assigned increasing values and amax

being assigned the maximal value of 1. Using the figure as a visual aid, it is intuitively
easy to see how the ratio of the red shaded area at the left side will grow in proportion
to the sum of the shaded areas when a moves to the right. Each predictor is assigned
a function fitnessi.

The predictors’ ability to discriminate between the outcomes varies and is re-

66



a
Factor Value

Fr
eq

ue
nc

y

 

 
LP(a)
RC(a)
Negatives
Positives

Figure 4: Derivation of the fitness function from the empirical outcome distributions. LP (a)
represents the left integral of the positive outcome distribution at a (false negative prediction
at threshold level a) and RC(a) represents the right integral of the negative outcome distribu-
tion (false positive prediction).

flected in the empirical distributions. The relevance of a predictor for the prediction
task is defined as

relevance(b) = max (0, LC(b) +RP (b)− 1)

= max (0, specificity(b) + sensitivity(b)− 1) ,

where b is the decision threshold for the factor, LC(b) is the left integral of the negative
outcome distribution, andRP (b) is the right integral of the positive outcome distribu-
tion at b. The integrals can readily be interpreted as the specificity and the sensitivity
of the classifier, respectively. The decision threshold b denotes the value of the factor
at which the fitness function reaches 0.5. Relevance assumes values in the range 0–1
which is similar to the fitness function. For categorial variables the relevance is calcu-
lated similarly, but the comparison of groups is limited to the individuals who share
the same category value.

Predictor-specific fitness function values and relevance values are combined in the
model by weighting the function values with relevance values. The composite DSI
value for an individual with its set of predictor values is defined as a weighted sum
over each predictor i:

DSI =

∑
i relevancei × fitnessi∑

i relevancei

Being an average of fitness values, DSI assumes values in the interval 0–1.
The DSI can be calculated for the complete model as described above, but also for

a smaller subset of predictors or individual predictors. Conceptually linked predic-
tors can be grouped together to assess their combined effect. Cardiovascular health,
for example, can be modelled by combining blood pressure measurements, lipid val-
ues, and smoking habits under one category.
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4.5 DATA ANALYSIS AND PREDICTION MODELS

Differences between prediction outcome groups—that is, incidence of dementia and
ascertainment of pathology—were tested for statistical significance using the χ2 test
for categorical factors and the Mann-Whitney U test for continuous and ordered fac-
tors. In the two FINGER studies (Studies III and IV) the Mann-Whitney U test was
used for all factors.

In the CAIDE model (Study I), the APOE genotype was modelled both in terms of
the ε4 carrier status and as a variable describing genotype risk order ε2ε2 < ε2ε3 <

(ε2ε4 = ε3ε3) < ε3ε4 < ε4ε4 (Corder et al., 1993, 1994). In Vantaa 85+ (Study II), the
APOE genotype was modelled in four parallel ways by including ε2 and ε4 carrier-
ships as binary factors, ε3 homozygousness as a binary factor, and all genotypes as
a categorical factor. In the FINGER PET and IR/DM studies (Studies III and IV) the
APOE genotype was modelled simply as dichotomous ε4 carrier status.

In the FINGER-PET study (Study III), volumetric MRI measures were expressed
in relation to the intracranial volume and bilateral measures were consolidated into
an average.

In order to analyse the relationship of different pathologies and dementia in the
Vantaa 85+ study (Study II), a dimension-reduction step was performed. Principal
components (PCs) were estimated for all dementia prediction cohort individuals,
and for dementia and no-dementia individuals separately. PC loadings were used
to identify interrelationships between pathology types. The PC analysis was done on
MATLAB R2015b.

4.5.1 Prediction and validation

Model predictors were identified from a group of candidate predictors by analyzing
the group mean value differences. This step reduces noise and generally improves the
DSI prediction results. Given that the empirical predictor value distributions are close
to continuous and have approximately the same variance, no significant predictor
should be excluded based on this criterion. A p-value threshold of 0.05 for statistical
significance was set in the CAIDE and Vantaa 85+ studies. Additionally, the choice of
model building parameters was investigated using a spectrum of p-value threshold
values used to filter factors according to their significance. In the smaller-population
FINGER-PET prediction model all candidate factors were used.

Predictor grouping was utilized in the CAIDE and FINGER DSI models to form
broad groups for socio-demographic features, cardiovascular health, cognition, self-
rated health measures, and MRI findings. A somewhat more granular approach was
taken in the Vantaa 85+ DSI model, in which groups were formed to gather all plasma
lipid types together, for instance, and also to group parallel APOE genotype catego-
rizations together. The grouping was held constant in all the Vantaa 85+ pathology
prediction models, but the predictor set varied according to the p-values in regard
to the specific pathology. In the reduced-dimensionality pathology prediction model
the unmodified principal component scores were used as singular predictors without
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using the DSI.
Prediction models built with the DSI were all internally validated. The CAIDE

model was trained and tested using cross-validation with the data divided into 50×5-
folds, the Vantaa 85+ models using 10×10 cross-validation for both dementia and
pathology, and the FINGER model using 100×5 cross-validation. Prediction perfor-
mance against the binary outcome in each case was reported as the AUC. The AUCs
are reported as mean values from the cross-validation folds, and dispersion values
were also reported. The CAIDE DSI model was also validated against a linear-kernel
support vector machine using the same data set.

4.5.2 Association analysis in FINGER IR/DM cohort

Logistic regression models were built to investigate the association of IR/DM mark-
ers and Aβ positivity. The DM and APOE ε4 status were included as confounders,
and blood marker concentrations were log-transformed. Statistical significance was
determined with correction for multiple comparisons using the false discovery rate
method (Benjamini and Hochberg, 1995). All analyses were run on MATLAB R2017b,
and function mnrfit was used for a logistic regression.
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5 RESULTS

5.1 PREDICTING INCIDENT DEMENTIA

Both the CAIDE late-life cohorts and the Vantaa 85+ dementia prediction cohort un-
derwent a prescreening for potential factors. Prediction models were built using the
DSI and the prediction performance was assessed in a similar manner in both studies.

All factors crossing the 5% significance level threshold were included as predic-
tors. All predictors selected for use in the CAIDE main model and the Vantaa 85+
dementia prediction model are listed in Table 2 for contrast. The table lists AUC val-
ues for predictors, predictor groups, and the complete model. Predictor-level data in
the extended population model are shown in detail in the original publication (Study
I).

5.1.1 Population characteristics, and predictors

A few key characteristics of the late-life CAIDE populations are presented in Table 1.
More detailed characteristics are presented in the Study I original publication. In
both the main and extended study populations, in the statistical testing, individu-
als who developed dementia were significantly older, did worse on most subdomain
cognitive tests, had poorer scores on the SMQ, and had a higher frequency of car-
diovascular comorbidities and the APOE ε4 allele. In the main study population,
individuals who developed dementia had also significantly a lower SBP and DBP,
and had lower scores on three more SMQ questions. In the extended population,
differences in cognitive testing results were more pronounced: MMSE aggregate and
verbal expression subdomain scores were lower in individuals who developed de-
mentia. As for the midlife–late-life changes, the BMI had on average increased by 1.6

Table 1: General characteristics of populations at baseline and frequency of outcome mea-
sures.

CAIDE Vantaa 85+ FINGER

Main
cohort

Extended
cohort

Dementia
prediction

Pathology
prediction

Aβ pre-
diction

IR/DM
cohort

N 709 1,009 245 163 48 41
Baseline mean age 70.1 yr. 70.5 yr. 88.4 yr. 88.7 yr. 71.4 yr. 71.1 yr.
Mean follow-up 8.3 yr. 9.0 yr. 5.6 yr. 4.1 yr. — —
APOE ε4 carrier 32% 34% 21% 20% 30% 30%
Diabetes mellitus 2% 3% 23% 28% 15% 15%
Incident dementia 6% 15% 40% 36% — —
Aβ positive share — — — 77% 42% 39%
Key: Aβ amyloid beta protein, APOE apolipoprotein E, IR/DM insulin resistance and dia-
betes mellitus
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Table 2: Prediction results for incident dementia in the younger-old-age CAIDE population
and in the oldest-old Vantaa 85+ population.

AUC of dementia prediction

CAIDE
main study
population1

N=709

Vantaa 85+
dementia

prediction cohort
N=245

Complete model 0.79 0.73
Age 0.67 —
Education NA 0.60
Cognitive testing 0.73 0.72

Executive functioning 0.68 NA
Episodic memory 0.64 NA
Prospective memory 0.62 NA
Psychomotor speed 0.62 NA
Verbal expression — NA
MMSE Total — 0.71
MMSE Calculation NA 0.60
MMSE Orientation NA 0.64
MMSE Other tasks NA 0.65
MMSE Wordlist NA 0.68
SPMSQ NA 0.71

Subjective Memory Questionnaire 0.64 NA
Total score 0.62 NA
Forgetting phone numbers 0.61 NA
Forgetting names of actors 0.60 NA
Forgetting clothing size 0.59 NA
Forgetting midsentence 0.58 NA

Competence in Daily Activities NA 0.61
Vascular factors 0.65 —

Systolic BP 0.63 —
Diastolic BP 0.64 —
Presence of comorbidity2 0.56 —

APOE genotype 0.59 0.58
All genotypes modelled 0.60 0.58
ε4 carrier 0.57 —
ε2 carrier NA 0.56
ε3ε3 genotype NA 0.57

“NA” indicates that the factor was not available and “—” indicates that
it was not accepted for the model after significance testing. Key: APOE
apolipoprotein E, AUC area under the ROC curve, BP blood pressure,
MMSE Mini-mental state examination, SPMSQ Short Portable Mental Sta-
tus Questionnaire, — was not available as candidate predictor. Footnotes:
1: The extended model additionally included MMSE total score and ver-
bal expression score, 2: For differences in comorbid conditions see Table 2
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kg/m2 in the no-dementia group in both populations and remained more or less on
midlife levels in the incident dementia group, i.e. −0.1 and 0.2 kg/m2 in the respec-
tive main and extended populations. These differences were statistically significant.
The SBP and DBP had both decreased significantly in the main population, as did the
DBP in the extended population. The total cholesterol was lower in late-life in the
extended population.

The Vantaa 85+ dementia prediction cohort has been characterized in detail in the
original publication (Study II). A brief overview is presented in Table 1. The group
developing dementia during the follow up was less educated, scored lower on the
MMSE and all its derivative subscores, made more errors on the SPMSQ, and had
a different distribution of APOE genotypes. No differences were observed in age,
cardiovascular factors, depression, or BMI.

5.1.2 Dementia prediction in the younger old (CAIDE)

The prediction performance in the late-life CAIDE cohort as measured by AUC was
0.79 in the main population and 0.75 in the extended population in cross-validation.
Receiver operating characteristics (ROC) curves are shown in Figure 1. Comparison
of group level AUCs in the two models are shown in Table 3, where also results from
a separate analysis with midlife–late-life changes in vascular factors are presented.
Noncross-validated complete-model AUCs were 0.84 and 0.76, respectively. Cogni-
tive testing as a category was the best predictor in both models at a respective 0.73
and 0.69, while not reaching the performance of the complete model. Other predic-
tor types did improve the model beyond that achieved for cognition. Age was the
second best performing predictor. Subjective memory assessments performed worse
than objective cognitive testing. Vascular factors did have some predictive power in
the main population, but practically none in the extended population. The APOE
genotype had poor predictive power. Changes in vascular parameters from midlife
performed somewhat better than cross-sectional values.

The DSI models were also investigated in binary prediction using different index
cut-off values. As an example from the more comprehensive table in the original
publication, a DSI threshold of 0.5 for positive prediction resulted in 0.74 accuracy,
0.73 sensitivity, and 0.74 specificity in the main population, and 0.67, 0.69, and 0.67,
respectively, in the extended population. Results for these statistics were better in
almost every case in the main population.

The CAIDE model results were validated in terms of the method used. A paral-
lel SVM was set up using the same population data and cross-validation principles.
Using the MATLAB fitcsvm function, parameters were set empirically for the best
performance. The SVM achieved an AUC score of 0.77 in the main population and
0.74 in the extended population.

Furthermore, the choice of model building parameters was investigated. Table
4 of the original publication (Study I) lists a spectrum of p-value threshold values
used to filter factors according to their significance. The results demonstrated that a
laxer requirement and a larger predictor set resulted in lower performance, as did a
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Table 3: Performance in the prognostic prediction of dementia in the CAIDE younger-old pop-
ulations.

AUC (95% confidence interval)

Main study
population

Extended study
population

Complete model 0.79 (0.79-0.80) 0.75 (0.74-0.75)
Age 0.67 (0.65-0.68) 0.66 (0.66-0.67)
Cognitive testing† 0.73 (0.73-0.74) 0.69 (0.69-0.70)
Subjective Memory Questionnaire† 0.64 (0.63-0.66) 0.58 (0.57-0.58)
Vascular factors† 0.65 (0.64-0.66) 0.53 (0.52-0.53)
APOE genotype† 0.59 (0.58-0.60) 0.60 (0.59-0.61)

Complete model with vascular changes‡ 0.80 (0.79-0.81) 0.78 (0.77-0.79)
Vascular changes 0.68 (0.66-0.69) 0.65 (0.64-0.66)

Change in systolic BP 0.65 (0.63-0.66) —
Change in diastolic BP 0.61 (0.59-0.62) 0.61 (0.59-0.62)
Change in BMI 0.68 (0.67-0.69) 0.68 (0.67-0.69)
Change in total cholesterol — 0.55 (0.54-0.57)

Key: APOE apolipoprotein E, AUC area under the ROC curve, BMI body mass
index, BP blood pressure, MMSE Mini-mental state examination, — not in-
cluded after significance filtering. Footnotes: †: Only group-level result shown,
for individual factors in the main model see Table 2; ‡: The complete model
also includes all predictors used in the upper panel of the table in the respec-
tive populations.
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Figure 1: Receiver operating curves for prediction of incident dementia in the CAIDE popula-
tions.
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very small high-relevance predictor model. No requirement for significance led to an
AUC score of 0.74 in the main population. However, the predefined threshold of 5%
was not the optimal value in either population. Exploratory analyses were conducted
to test nonlinear tail effects for BMI, blood pressure, and cholesterol. Dichotomous
variables for crossing extreme distribution tail values were added to the model, but
none of the tested cut-off values showed an effect on the overall performance.

5.1.3 Dementia prediction in the older old (Vantaa 85+)

Prediction results for dementia in the Vantaa 85+ study are shown in Table 2. In this
considerably older population the dementia incidence was much higher, but the pre-
diction performance was lower (AUC 0.73 vs. CAIDE 0.79). Here, too, an objective
assessment of cognition was the best predictor, practically on a par with the perfor-
mance in the CAIDE (AUC 0.72 vs 0.73 in CAIDE main model). MMSE and SPMSQ
were equally good predictors. All other predictor modality groups performed in the
range 0.58–0.61 or were not selected for the model in the first place. As for the parallel
APOE predictor representations, ε2 had a higher prevalence in the incident-dementia
group and indicated increased risk, and ε3ε3 was enriched in the no-dementia group
and indicated a protective effect. However, both had a poor predictive performance.

5.1.4 Dementia and neuropathology at death

In addition to the prognostic dementia prediction model, an exploratory diagnostic
prediction analysis was performed using pathology findings to predict dementia at
the time of death. Table 4 presents the characteristics of pathology in terms of having
dementia versus not having dementia. AD-pathology was significantly more preva-
lent in the dementia group, as was CAA, HS, TDP-43 protein, and cortical macroin-
farcts, but not macroinfarcts elsewhere or microinfarcts. α-synuclein pathology did
not show any significant differences.

The results from a PCA on neuropathology are presented in Table 5. The three first
PCs are shown for the entire population and subpopulations without dementia and
with dementia at death. The three PCs explained together 56–59% of the variance in
the data in each population. The first PC had strong loadings concerning both AD
neuropathological findings and CAA. In the dementia group there were also strong
negative loadings for all/cortical macroinfarcts. The first PC could be interpreted as
“AD-type pathology”.

The second PC had a different loadings profile for the dementia and no-dementia
groups. In the entire population and in the no-dementia group PC2 had a strong
positive loading for all/cortical macroinfarcts and weaker positive loadings for WM
macroinfarcts and α-synuclein. In this subpopulation the second PC could be in-
terpreted as “Vascular pathology”. In the dementia group, PC2 had large positive
loadings for most AD-type and vascular pathologies and negative loadings for HS
and TDP-43. This PC could be interpreted simply as reflecting age, as both HS and
TDP-43 occur predominantly in the very old whereas the other pathologies do occur
also in earlier old age.
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Table 4: Neuropathology characteristics at autopsy according to the dementia status for par-
ticipants without dementia at baseline in Vantaa 85+.

No dementia
(N=104)

Dementia
(N=59)

p-value

β-amyloid load 74 (71%) 52 (88%) 0.020
Tangle count 55 (53%) 44 (75%) 0.008
Neuropathological AD† 39 (38%) 38 (64%) 0.001
CAA‡ 59 (58%) 44 (76%) 0.040
Cerebral macroinfarcts 47 (45%) 33 (56%) 0.200
Cortical macroinfarcts 23 (22%) 24 (41%) 0.020
WM macroinfarcts 14 (14%) 9 (15%) 0.800
Cerebral microinfarcts‡ 16 (16%) 11 (19%) 0.700
α-synuclein 26 (25%) 22 (37%) 0.100
Hippocampal sclerosis 2 (2%) 9 (15%) 0.002
TDP-43 8 (8%) 14 (24%) 0.007
Values are shown as absolute numbers (percentages). The p-value
is calculated with the Fisher’s exact test. Footnotes: †: Defined
based on the National Institute on Aging–Alzheimer’s Association
criteria (Hyman et al., 2012) using the combination of Braak and
CERAD scores, and dichotomized as present (intermediate or high
likelihood of AD) vs. absent (low likelihood of AD); ‡: 4 partici-
pants missing data

The third PC in the dementia group had combined high positive loadings for HS
and TDP-43 and a large negative loading for α-synuclein. In the no-dementia group
PC3 was driven by the tangle count and had lower negative and positive loadings for
other types of pathology.

PC1 had moderate predictive power for the diagnostic prediction of dementia
with an AUC of 0.71. PC2 and PC3 had AUCs of 0.60 and 0.54, respectively.

5.2 PREDICTING BRAIN PATHOLOGY

5.2.1 Longitudinal prediction of pathology (Vantaa 85+)

An overview of the Vantaa 85+ pathology prediction cohort is given in Table 1 (p. 71),
and more details are included in the original publication (Study II). The cohort was
on average 88.7 years old, 19% were male, and the mean education duration was
4.1 years. The predictors for each type of pathology crossing the 5% significance
threshold are listed in Table 3 of the original publication.

Amyloid and tau related pathology

The APOE genotype was included as a predictor for all amyloid and tau related
pathologies, namely the Aβ load, tau tangle count, CAA, and neuropathological
AD which is defined here as an intermediate or high likelihood of AD based on the
NIA-AA criteria (Hyman et al., 2012). Additionally, impairment in daily activities
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Table 5: Principal components of pathology and their performance in the prediction of demen-
tia in Vantaa 85+.

Groups by outcome

Prediction cohort No dementia Dementia

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Explained variance 25% 20% 11% 26% 19% 12% 24% 21% 14%
AUC to predict dementia 0.71 0.60 0.54 — — — — — —

β-amyloid load 41 3 -31 47 6 -43 16 25 24
Tangle count 48 0 38 44 15 68 37 28 8
Neuropathological AD† 59 -7 -4 54 6 5 51 33 20
CAA 47 -3 -18 51 -2 -33 28 37 -9
All cerebral macroinfarcts -1 73 -13 -11 77 -11 -48 47 6
Cortical macroinfarcts 7 59 -15 -2 51 -19 -43 49 8
WM macroinfarcts -8 24 1 -12 25 2 -19 9 8
Cerebral microinfarcts 11 10 16 6 7 31 2 27 17
α-synuclein 5 20 81 2 23 31 -10 9 -53
Hippocampal sclerosis 0 4 -2 4 4 0 -17 -22 46
TDP-43 protein 6 1 2 4 -1 3 -7 -14 59
PC loadings expressed in percentages. Key: AUC area under the ROC curve, CAA cerebral
amyloid angiopathy, WM white matter. Footnotes: †: Defined based on the National Insti-
tute on Aging–Alzheimer’s Association criteria (Hyman et al., 2012) using a combination
of Braak and CERAD scores, and dichotomized as present (intermediate or high likelihood
of AD) vs. absent (low likelihood of AD)

predicted a higher Aβ load; a higher total cholesterol and LDL predicted a higher
tangle count; a subjective memory decline predicted a higher tangle count and neu-
ropathological AD; a lower social class predicted neuropathological AD; and having
no cardiovascular comorbidity and male sex predicted the presence of CAA.

Prediction AUCs for the four pathologies were in the range 0.64–0.68 with neu-
ropathological AD having the highest value. The APOE genotype was modelled in
all cases using multiple parallel presentations, and the effects of the alleles varied ac-
cording to the pathology. The APOE category AUCs were in the range 0.60–0.65. The
ε4 allele was predictive of all pathology types, the ε2 allele was protective against an
Aβ load and neuropathological AD, and the ε3ε3 genotype was protective against
a high tau tangle count and CAA. All other predictors had a poor predictive perfor-
mance with AUCs below 0.62.

Vascular pathology

More predictors for cerebral macroinfarcts were identified than for microinfarcts, and
the prediction results were better. Macroinfarcts overall were predicted by the pres-
ence of a cerebrovascular comorbidity, lower MMSE total score and wordlist sub-
score, higher BMI, and impairment in daily activities. The predictors varied some-
what by region, but cerebrovascular comorbidities were predictive in every case.
Cortical macroinfarcts were predicted by the APOE ε4 allele, and the ε3ε3 genotype
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was protective. The presence of WM macroinfarcts was predicted by a ε2 carriership
and both low HDL and LDL. Cerebral microinfarcts were predicted only by a lower
duration of education.

The prediction performance for WM macroinfarcts at AUC 0.76 was better than for
any other vascular pathology. The AUC was 0.71 for cortical macroinfarcts and 0.72
for macroinfarcts overall. Cholesterol was a strong predictor for WM macroinfarcts
(group level AUC 0.72). The APOE was a somewhat weaker predictor for vascular
pathology than for amyloid and tau related pathologies (at the group level 0.60–0.61
vs. 0.60–0.65). Other predictors had AUCs in the range 0.59–0.64.

Other pathology

For α-synuclein pathology no significant predictors were found. HS was predicted
by a lower MMSE total score, wordlist and other task subscores, and by being a cur-
rent smoker. These predictors had good predictive performance at AUC 0.78, and
cognition was the stronger modality (group level AUC 0.75). The deposition of TDP-
43 was predicted by having fewer depressive symptoms, and the performance was
moderate (AUC 0.69).

5.2.2 Diagnostic prediction of brain amyloid (FINGER)

Key characteristics of the FINGER-PET study are summarized in Table 1 (p. 71) for
comparison with the other studies. Results from diagnostic prediction of in vivo
amyloid positivity (Aβ+) are presented in Table 6. Twenty individuals (42%) were as-
sessed Aβ+ at baseline imaging. Aβ+ individuals had statistically significantly (95%
confidence level, p-values not corrected for multiple comparisons) higher frequency
of the APOE ε4 allele, a lower executive functioning score, and more neurodegen-
erative changes on MRI. Volumes were significantly lower in the cortex and grey
matter overall, as well as for the cerebellar cortex, thalamus, putamen, hippocampus,
amygdala, accumbens area, and ventral diencephalon. The MTA on the Scheltens
scale was more pronounced in the Aβ+ group. Sociodemographic factors, vascular
factors, overall cognition, or any of the cognitive subdomains showed no significant
differences.

All factors were included in the model. The prediction AUC of the complete
model was 0.78 in cross validation and 0.88 without cross validation. Single-predictor
AUCs were in the range 0.45–0.75. MRI was the best performing predictor category at
AUC 0.75. Volumetric FreeSurfer estimates as a group (AUC 0.72) and a visual MTA
(0.71) performed equally at a moderate level, and the AD-specific cortical thickness
measure performed worse (0.65). The APOE and the executive functioning subdo-
main score also had some predictive power at 0.69 and 0.69 each. Cognition as a
category did worse than the executive functioning score on its own. The BMI was
a stronger predictor than hypertension in the cardiovascular category, which per-
formed poorly at an AUC of 0.60. Sociodemographic factors also lacked predictive
power.

78



Table 6: FINGER-PET diagnostic prediction results for Aβ and outcome-group mean values.

Group mean

AUC (95% CI) Aβ- (N=28) Aβ+ (N=20) p-value

Complete model 0.78 (0.65–0.91)
Sociodemographic 0.54 (0.37–0.70)

Sex (female) 0.48 (0.35–0.60) 14 (50%) 8 (40%) 0.505
Age 0.45 (0.28–0.61) 70.2 71.6 0.310
Education (years) 0.59 (0.43–0.75) 9.7 8.9 0.320

Cardiovascular 0.60 (0.46–0.75)
Body mass index 0.65 (0.50–0.79) 28.9 26.2 0.088
Hypertension 0.49 (0.37–0.61) 10 (36%) 9 (45%) 0.529

APOE ε4 carrier† 0.69 (0.56–0.82) 4 (14%) 10 (53%) 0.005
Cognition 0.65 (0.49–0.81)

Total score 0.55 (0.38–0.72) 0.04 -0.09 0.421
Memory 0.54 (0.38–0.70) -0.11 0.04 0.385
Processing speed 0.57 (0.41–0.73) 0.16 -0.10 0.184
Executive function 0.69 (0.53–0.84) 0.16 -0.22 0.026

Magnetic resonance imaging 0.75 (0.61–0.89)
Volumes (% of ICV) 0.72 (0.57–0.88)

Total cortex 0.73 (0.59–0.88) 0.29 0.27 0.007
Total grey matter 0.72 (0.57–0.88) 0.39 0.36 0.009
Cerebellum cortex 0.69 (0.54–0.84) 0.063 0.059 0.027
Thalamus proper 0.70 (0.55–0.85) 9.3E-3 8.4E-3 0.022
Caudate 0.65 (0.49–0.81) 4.9E-3 4.5E-3 0.070
Putamen 0.71 (0.56–0.87) 7.0E-3 6.1E-3 0.014
Pallidum 0.61 (0.45–0.77) 1.9E-3 1.8E-3 0.198
Brain Stem 0.61 (0.45–0.77) 0.014 0.014 0.229
Hippocampus 0.70 (0.54–0.86) 5.2E-3 4.6E-3 0.019
Amygdala 0.69 (0.53–0.85) 2.3E-3 2.0E-3 0.030
Accumbens area 0.75 (0.62–0.89) 6.6E-4 5.6E-4 0.004
Ventral diencephalon 0.68 (0.53–0.83) 5.0E-3 4.7E-3 0.037
Cerebrospinal fluid 0.61 (0.44–0.78) 8.8E-4 8.1E-4 0.171
Optic chiasm 0.60 (0.41–0.78) 1.4E-4 1.2E-4 0.164
Total corpus callosum 0.62 (0.45–0.79) 2.0E-3 1.7E-3 0.058

Visual MTA (Scheltens) 0.71 (0.59–0.84) 1.0 1.6 0.007
AD cortical thickness (mm) 0.65 (0.48–0.82) 2.8 2.8 0.084

The Wilcoxon rank sum test was used to calculate p-values for all variables. AUC values from
cross validation. Key: Aβ amyloid beeta protein, APOE apolipoprotein E, AUC area under the
ROC curve, BP blood pressure, CI confidence interval, ICV intracranial volume, MTA medial
temporal lobe atrophy. Footnotes: †: One Aβ+ person was missing data
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A pragmatic analysis on the value of the different predictor modalities was also
conducted and is shown in detail in Table 4 of the Study III manuscript. A combina-
tion of modalities that require no specialized equipment—demographic information,
cardiovascular data, and cognitive measures—predicted amyloid positivity at AUC
0.62. The APOE genotype or MRI could each improve this to AUC 0.71–0.72. A
simple model using only the APOE genotype and a visual MTA assessment jointly
predicted amyloid at AUC 0.81, a result superior to that of the complete model.

5.2.3 Associations between biomarkers of DM and brain amyloid (FINGER)

The FINGER IR/DM cohort of 41 participants were on average 71.1 years old, 39%
were Aβ+, and 15% had DM (Table 1, p. 71). The frequency of DM or BMI did not dif-
fer in the outcome groups, but APOE ε4 allele was more frequent in the Aβ+ group
(56% vs. 12%). Table 7 presents the mean concentrations of the biomarkers in the
Aβ- and Aβ+ groups in the left panel. The insulin plasma concentration was statisti-
cally significantly lower in Aβ+ individuals at the 95% confidence level before correc-
tion for multiple comparisons. Differences in the insulin-related measures C-peptide
concentration—cleaved during insulin production—and HOMA-IR—a derivative in-
dex value–were significant only at the 90% confidence level. The plasminogen ac-
tivator inhibitor-1 (PAI-1) concentration was lower in Aβ+ individuals at the 95%
confidence level. Other biomarkers showed no significant differences.

Logistic regression models were built iteratively for the metabolic markers us-
ing different sets of potential confounders. The final models were estimated using
the DM status and APOE ε4 carrier status as confounders. The coefficient of the
APOE genotype was significant in all models, and that of the DM status was not in
any model. Model coefficients for all markers are presented in Table 7 in the right
panel. The linear regression model equation is included in the table legend. Before
correction for multiple comparisons, coefficients of C-peptide, insulin, PAI-1, and
HOMA-IR were significant. The coefficients indicated higher IR and elevated PAI-1
to be associated with lowered odds of Aβ+. After correction these four markers were
significant only at the 90% confidence level. Models with either BMI, age, or sex as
additional confounders showed a similar pattern, and no differences in significance
after correction were observed.
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Table 7: Population characteristics and logistic regression coefficients in the FINGER IR/DM
population.

Mean
concentrationa

Logistic regression model

Metabolic marker Aβ- Aβ+ Bb (95% CI) p-value

C-peptide (103 pg/ml) 1.31 ∗ 0.95 -5.7 (-10.4 – -1.1) 0.016†

Ghrelin (103 pg/ml) 1.57 1.55 0.1 (-6.1 – 6.3) 0.972
GIP (103 pg/ml) 0.29 0.29 -1.5 (-5.4 – 2.3) 0.436
GLP-1 (103 pg/ml) 0.59 0.58 0.0 (-8.8 – 8.8) 0.998
Glucagon (103 pg/ml) 1.07 1.00 -2.1 (-11.3 – 7.0) 0.646
Insulin (103 pg/ml) 0.27 ∗∗ 0.17 -4.5 (-8.3 – -0.8) 0.017†

Leptin (103 pg/ml) 7.55 6.06 -1.6 (-4.1 – 0.8) 0.191
PAI-1 (103 pg/ml) 5.31 ∗∗ 4.16 -13.3 (-24.0 – -2.6) 0.015†

Resistin (103 pg/ml) 2.22 2.03 -3.7 (-10.1 – 2.8) 0.266
Visfatin (103 pg/ml) 4.83 4.43 -2.0 (-6.8 – 2.7) 0.401
Adiponectin (106 pg/ml) 5.45 6.03 -0.3 (-2.3 – 1.8) 0.808
Adipsin (106 pg/ml) 1.21 1.45 1.1 (-2.1 – 4.2) 0.500
fP-Glucose (mmol/l) 5.92 6.30 4.8 (-9.3 – 18.9) 0.505
B-HbA1c (mmol/mol) 36.72 37.25 15.0 (-10.9 – 40.9) 0.258
HOMA-IR (mmol·mU/l2) 2.06 ∗ 1.33 -4.5 (-8.3 – -0.7) 0.019†

Regression: ln(YAβ+/YAβ−) = C+BDMXDM+BAPOEXAPOE+BX log(X)
Key: Aβ amyloid beta protein, GIP Gastric inhibitory polypeptide, GLP-1
Glucagon-like peptide-1, PAI-1 Plasminogen activator inhibitor-1, HbA1c
Glycated hemoglobin, HOMA-IR Homeostatic Model Assessment for In-
sulin Resistance. Footnotes: a: Group differences tested for significance
using the Mann-Whitney U test, ∗ for significance at 10% confidence level,
∗∗ for 5% ; b: Coefficient of log-transformed value.
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6 DISCUSSION

6.1 PREDICTION OF INCIDENT DEMENTIA IN THE YOUNGER
OLD

Dementia prediction up to ten years into the future in the CAIDE general popu-
lation samples of cognitively healthy individuals succeeded well (AUC 0.75–0.79).
The mean ages were 70.1 and 70.5 years in the main and extended populations, re-
spectively. The internally validated performance was on par or slightly better than
the published values for the multimodal models identified in section 2.8.4 (p. 48).
The externally validated performance is in general lower, and that would be ex-
pected for the CAIDE DSI models also. In age-matched general population cohorts
(60 yr.<age<80 yr.), the externally validated performance for previously published
prediction models was in the range of AUC 0.68–0.89 in follow-up studies of 3–6
years. For longer follow-up times of 8–10 years in DM populations and 21 years in a
general population the AUC was 0.75 in all cases. None of the externally validated
late-life prediction models included APOE genotype data, and no factors describing
longitudinal change in any modality were included apart from fasting glucose varia-
tion in a DM cohort.

Interestingly, the best performing model used a free recall score as a solitary pre-
dictor for incident dementia over a 3–5-year period. The score achieved AUC 0.89
over a four-year period in a 70-year-or-older cohort with subjective memory com-
plaints (Derby et al., 2013). Another validation study had similar results in a popu-
lation with no memory complaint requirement (Mura et al., 2017). In those studies,
adding sociodemographic predictors or APOE did not significantly improve the re-
sults. Results from the CAIDE populations mirror this in that cognitive testing results
were the best predictors. However, adding other modalities did improve prediction
results. Age was also a relatively strong predictor, as would be expected given its
well-established status as a risk factor.

Another noteworthy model with published results used only data from UK health
registries with very good results (AUC 0.84; Walters et al., 2016). The model re-
lied on recorded data only, and the authors suspected dementia diagnoses to be
under-recorded, possibly lowering performance. One would also assume that health
records would accrue more rapidly for individuals with health problems and de-
mentia risk factors, possibly leading to an enrichment of the dementia risk in the
study population. The reported AUC is in any case surprisingly high compared to
other similar prediction models. The CAIDE extended population also utilized public
health records, but not to infer predictor data, only to establish dementia diagnoses.
The sensitivity of the Finnish hospital and drug prescription registries is in the range
62–71% for AD and/or dementia, showing an underrepresentation of dementia as
hypothesized by Walters et al. (2016). The prediction results were overall poorer in
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the extended model, but the relative importance of predictor modalities remained the
same. Only the vascular measurements category did markedly worse in comparison.
The extended population may include individuals with poorer general health, who
were not able to take part in the second late-life visit. They may have had a higher
dementia incidence due to risk factors, or they may have died at a younger age before
dementia onset. The dementia incidence was higher in the extended population (15%
vs. 6%). Individuals who died without a dementia diagnosis in health registries had
to be excluded from the extended model because the DSI cannot account for disease-
free survival time as a variable but can only take into account dementia status at the
end point.

The APOE genotype, in predicting dementia, performed worse than any other
modality. For the midlife CAIDE risk score, the APOE offered a small improvement
in predictive power. Some prior models have included APOE information as it has
demonstrated a benefit in prediction, whereas other newer genetic markers have of-
fered little additional benefit (Tang et al., 2015). The APOE ε4 prevalences of 32%
(main population) and 34% (extended population) were roughly in accordance with
previously published prevalence estimates of around 33–42% for North European
middle-aged subjects and 17% for centenarians (Norberg et al., 2011). The FINGER
population had a similar ε4 prevalence.

Parameters of vascular health did not feature in the CAIDE late-life models as
prominently as they did in the midlife models. BP measurements were included
in the main model but not in the extended model. Both populations, however, in-
cluded predictors that quantify the change from midlife to the late-life prediction
baseline. Change in the BMI—that is, less weight gain in the dementia group—was a
better predictor of incident dementia than change in BP, or any cross-sectional vascu-
lar measure. The presence of cardiovascular comorbidities did not predict dementia
well, which may in part be due to the fact that only conditions severe enough to be
recorded in the Hospital Discharge Register were included. This can also explain the
relatively low recorded prevalence of DM in the CAIDE populations—2% and 3% in
the respective main and extended populations.

These results in dementia prediction in the younger old highlight the potential for
identifying individuals who are most at risk of developing dementia. These are the
individuals who would benefit the most from targeted interventions. The model was
internally validated as per current guidelines (Collins et al., 2015), and the use of a
general population sample will support good generalizability in external populations
in the future. The DSI prediction model also shows which risk factors are important at
a population level. The tool also allows for an analysis of risk profiles of individuals.
Such a feature could be useful in a clinical setting when highlighting or targeting an
individual’s most relevant risk factors.
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6.2 PREDICTION OF INCIDENT DEMENTIA IN THE OLDEST OLD

The Vantaa 85+ dementia prediction cohort was almost twenty years older than the
CAIDE late-life populations, and the sample was highly representative of the local
age cohort. 98% of all eligible residents participated initially. Despite the high base-
line mean age of 88 years, a mean follow-up time of 5.6 years was achieved. The
APOE ε4 allele prevalence was in line with published Finnish population estimates.
The Dementia incidence was high compared to the CAIDE populations at 40% per
a mean of 6 years follow up versus 6–15% per a mean of 8–9 years, which is to be
expected in this age cohort (Gardner et al., 2013).

The dementia prediction performance overall (AUC 0.73) was weaker than for the
two younger CAIDE populations (AUC 0.75–0.79), but better than for the only age-
matched validated prediction model identified in section 2.8.4 (p. 48). The health-
registry-based model by Walters et al. (2016) had practically no predictive power in
an 80+ population (AUC 0.56), although that model lacked cognitive measures. The
authors attributed the poor performance partly to the lack of routine health check-
ups and resulting lack of registry entries in that age cohort. The results for younger
cohorts were generally better than in the Vantaa 85+ study.

Measures of cognition were the best predictors of incident dementia for the Van-
taa 85+ cohort—which is analogous to the CAIDE models. However, other modali-
ties added little to the performance of cognitive questionnaires (cognition group AUC
0.72). A lower duration of education and low competence in daily activities were pre-
dictive of dementia, but had a clearly lower level of performance. Importantly, age
was not a predictor of dementia in this age group. This is contrary to what would be
expected, as the incidence in this age group is high and even relatively small base-
line age differences could potentially be reflected in differences in the incidence rates.
The FINGER eligibility criteria may have affected this. Additionally, vascular health
was not predictive. This contrasts with midlife prediction models, and also with the
CAIDE models, in which cardiovascular measurements and especially changes in
those measurements were predictive. A large autopsy study by Jellinger and Attems
(2010) may help explain this finding. The relative prevalence of a pure form of VaD
at death was shown to decrease with increasing age from age 60 to 90+, and the rel-
ative prevalence of AD and mixed-AD pathology was shown to increase. Moreover,
the prevalence of pure AD was found to decrease after the age of 90. This finding
supports the pattern seen in the Vantaa 85+ study. The mechanisms leading to vas-
cular brain pathology may be relatively less important than in younger age groups.
The clinical phenotype may perhaps be dominated by AD-type pathology and its
combined effect with other brain pathologies.

The APOE ε2 allele was predictive of incident dementia. In younger populations
ε2 is thought to be protective. The status of the ε4 allele as a poor predictor was
expected based on previous studies in the very old (Juva et al., 2000; Corrada et al.,
2013), but the outright negative effect of ε2 has not been shown before. The ε2 allele
has been shown not to be protective of dementia in the oldest of the old in shorter
follow-up studies (Skoog et al., 1998; Juva et al., 2000; Qiu et al., 2004), and one study
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demonstrated a deleterious effect on the VaD incidence (Skoog et al., 1998). In the
Vantaa 85+ cohort, homozygous ε3 genotype was protective of dementia. The nega-
tive effect of the ε2 allele may be explained by findings in the Vantaa 85+ pathology
prediction cohort as discussed in section 6.4.1.

6.3 PREDICTION OF BRAIN AMYLOID AND AD-TYPE PATHOL-
OGY

6.3.1 Frequency of amyloid beta, APOE ε4, and dementia

Two studies had available data for predicting brain Aβ accumulation. The Vantaa
85+ study focused on a general population sample with a mean age of 89 years,
whereas the FINGER-PET population consisted of at-risk individuals from a gen-
eral population of around 71 years of age. Nominally the FINGER prediction model
was diagnostic and the Vantaa 85+ model prognostic, but the mean follow-up time
of 4 years was short in the context of AD-type pathology. Aβ and tau pathology de-
velop during a period of up to decades (Jack et al., 2013), and most of the AD-type
pathology observed at the end of the Vantaa 85+ follow up was probably present at
the baseline. For this type of pathology, the model more likely represented a mixed
diagnostic/prognostic model. In-vivo PET imaging of amyloid has had good con-
cordance with neuropathologically determined Aβ positivity. The sensitivity of the
visual determination of amyloid positivity in PET imaging is 92–98%, and specificity
98–100% when using pathology as a gold standard (Clark et al., 2012; Sabri et al.,
2015). The dementia incidence of 36% in the Vantaa 85+ pathology prediction pop-
ulation is in line with previously published estimates of 18–38% in this age cohort
(Gardner et al., 2013).

The prevalence of Aβ pathology at the time of autopsy was more similar to an
AD-dementia population than an old-age CN population. The Vantaa 85+ cohort
was on average 93 years old at autopsy and 77% were Aβ+. For the 80–90-year-old
cohort, the in-vivo Aβ prevalence estimate is 33–59% for CN individuals, 60–71% for
individuals with MCI, 79–84% for individuals with AD-dementia, and 36–50% for
a VaD cohort (Jansen et al., 2015; Ossenkoppele et al., 2015). The Aβ incidence in-
creases steeply after approximately the age of 70 especially in ε4 carriers (Jack et al.,
2015b). Many participants in the Vantaa cohort were older than the range of ages for
which these prevalence estimates have been published. Additionally, a significant
portion of the nondementia group may have had MCI, for which the participants
were not tested. These facts, and methodological differences between the Vantaa 85+
post-mortem assessment and the in-vivo ascertainment of Aβ+ used in the reference
studies may explain the observed difference in Aβ prevalence. In the FINGER cohort
with a mean age of 71 years, the Aβ prevalence was 42%, which is high in compari-
son to the previously published estimate of 16–33% for CN 60–80-year-olds (10–28%
noncarriers and 29–68% carriers; Jansen et al., 2015). The prevalence range estimate
for individuals with subjective cognitive impairment is 17–35%, and for MCI 37–60%
(Jansen et al., 2015). The Aβ prevalence of the FINGER-PET population was closer to
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that of an MCI population. The effect is probably due to the FINGER recruitment cri-
teria, which may have enriched the participant population with subclinical AD-type
pathology.

The APOE ε4 prevalence of 21% in the Vantaa 85+ cohort at the baseline is roughly
in agreement with previously published data on APOE genotype frequencies in North-
ern Europe (Norberg et al., 2011). A noncarrier survival effect has been observed in
Finnish centenarians, among which the APOE ε4 frequency was 8% and the ε2 fre-
quency was enriched to 7% (Louhija et al., 1994). In the Vantaa 85+ cohort, 16% were
ε2 carriers. The surviving APOE ε4 carriers in this age group were not subjected to
the same elevated risk of incident dementia as younger carriers, although the preva-
lence among carriers remains high (Corrada et al., 2013; Gardner et al., 2013). The
APOE ε4 prevalence in the FINGER cohort at 30% was in line with previously pub-
lished estimates (Norberg et al., 2011).

6.3.2 Amyloid beta prediction

The overall prognostic amyloid prediction performance was 0.66 in the Vantaa 85+
study, rated “poor” using terminology by Hosmer et al. (2013). Previously published
diagnostic models indicate better prediction performance in younger cohorts. The
one study identified in section 2.8.5 with an older cohort used age, sex, family history
of dementia, subjective memory complaint, APOE, and a global cognitive score as
predictors and achieved an AUC value of 0.70 (Mielke et al., 2012). Considering that
no report of cross-validation being used was found, the performance of that model
is probably on par with the Vantaa 85+ model. Models with fewer modalities had
poorer performance. The predictors chosen for these models consist of risk factors
that have been studied in younger age groups, and they may not be equally relevant
in older cohorts. A similar effect has been demonstrated in the case of dementia risk
scores, which have not performed as well outside their assigned age cohorts.

The prediction of Aβ+ on PET in a younger cohort produced better results. Per-
formance of the complete FINGER-PET model including structural MRI achieved an
AUC value of 0.78, and 0.71 without MRI. Both could be considered “acceptable” as
per the criteria by Hosmer et al. (2013). Two models identified in section 2.8.5 re-
ported AUCs on models in a CN population: these were a model by Mielke et al.
(2012), and a model in a somewhat younger population (>50 yr.) that included MRI
(AUC 0.74 cross-validated; ten Kate et al., 2018). Performance in FINGER-PET study
was somewhat better, although the population was much smaller (48 vs. 483 for the
former and 337 for the latter) possibly leading to overfitting and impairing its gen-
eralizability. The AUCs of models involving MCI populations were typically greater
than 0.80. These results in the younger old cohort show the potential for such models
in identifying Aβ+ individuals even at a pre-MCI stage. A prediction model like this
would facilitate the identification of populations with a considerably higher preva-
lence of Aβ+, thus reducing the number of invasive, time-consuming, and costly
assessments during the screening process of a clinical trial, for example.

The APOE genotype is one of the two identified predictors of Aβ pathology in the
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oldest old, competence in daily activities being the other with a similar AUC value.
Prediction performance of the ε4 allele was better in the younger, late-life FINGER
population (0.69 vs. 0.60). The ε2 allele was protective against Aβ accumulation in
the Vantaa 85+ study, a finding which was analogous to another study of the oldest
old (Berlau et al., 2013). Aβ positivity has been observed to rapidly increase after the
age of 70 in ε4 carriers while maintaining more or less the same rate of increase in
noncarriers (Jack et al., 2015b), which would imply that the prediction performance
of the APOE genotype should improve with advancing age. Findings in the two
studies of this thesis contradict this, possibly due a ε4 noncarrier survival effect in
the population of the oldest old.

Cognition was not predictive of Aβ in the 85+ population, and only the executive
function subdomain was predictive in the FINGER study. Lower cognitive scores
have previously been linked to Aβ+ in CN individuals (Bennett et al., 2006; Petersen
et al., 2016), although not in all studies (Rowe et al., 2010; Oh et al., 2012; Wirth et al.,
2013). The FINGER population was mildly enriched for lower cognitive performance,
and the population thus lacked one tail of the cognitive score distribution.

Cardiovascular factors were not included in the 85+ model at all, and in the FIN-
GER population low BMI had modest predictive power while hypertension had none
at all. A low BMI at younger-old ages has previously been associated with an Aβ load
(Ewers et al., 2012; Toledo et al., 2012), although these studies also included individ-
uals with MCI and dementia at the baseline.

No sociodemographic factors—including age—were predictive. Although Aβ

pathology becomes more prevalent with increasing age, age was not a useful pre-
dictor. This may be due to a saturation effect in the Vantaa 85+ cohort with Aβ

prevalence of 77% at death, but the relatively wide age spectrum of FINGER-PET
participants (60–77 yr.) should have powered age as a predictor in that population,
especially given the previously noted accelerated increase in the Aβ prevalence after
70 years of age in ε4 carriers (Jack et al., 2015b).

Structural MRI measurements were the strongest predictors in the late-life popula-
tion, which was to be expected. Decreased brain volumes and a high MTA rating are
indicative of neurodegeneration, which is more likely to be present in the Aβ+ group.
In AD, Aβ pathology is accompanied by neurodegenerative processes, partly asso-
ciated to the tau pathology (Jack et al., 2013). These associations were also evident
in the PCA conducted in the Vantaa 85+ population. The first principal component
“AD-type pathology” strongly linked amyloid pathology and tau pathology in the
no-dementia group, and this PC also explained most of the variance in the pathol-
ogy findings. In the dementia group this effect was weaker, and presence of AD-
pathology indicated a lower macroinfarct load as expressed by the opposing signs of
the scores. However, the first PC indicated that both groups showed most variance in
relation to AD-type of pathology. That is, AD-type pathology was the most important
determinant of the pathological profile even in non-demented individuals.

Few studies of CN participants have reported on the added value of MRI in amy-
loid prediction, but prediction in cohorts with cognitively impaired individuals indi-
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cated added value of this modality. Tosun et al. (2013) showed an added benefit of
adding structural MRI to prediction using the APOE genotype, which by itself was a
strong predictor in the MCI study population (AUC from 0.81 to 0.88). Analogous fig-
ures in the FINGER-PET study showed an improvement from 0.69 to 0.81–0.82. Sim-
ilar results were found in other studies by adding MRI to the demographic data and
APOE (from 0.69 to 0.83; Tosun et al., 2014). On the other hand, change in cognition
was found to be a superior substitute to structural MRI in a multimodal prediction
model (Ansart et al., 2019).

Volumetric estimates of brain regions were the best predictors in a leave-one-out
analysis of MRI factor modalities in the FINGER-PET cohort. As part of the multi-
modal model, visual Scheltens scores of MTA were almost as predictive as the set
of volumetric measures. Such a visual rating is easier to obtain and would be more
useful in a clinical setting and most research settings as well.

6.3.3 Associations of metabolic markers of diabetes and amyloid beta

DM has been reported to have a positive association with dementia of the AD and the
VaD type, but the effect seemed to be stronger for VaD than AD (Cheng et al., 2012;
Gudala et al., 2013). Studies have shown pathology underlying an elevated demen-
tia incident rate in elderly DM patients to skew towards vascular pathology instead
of tau and Aβ pathology (Ahtiluoto et al., 2010). The DM–Aβ association was not
significant in other previous studies (Moran et al., 2015; Roberts et al., 2014). Thus,
the mechanisms of the DM–AD association are unclear, as is the role of Aβ. IR is a
hallmark of DM2, and central nervous system IR has been suggested to be linked to
Aβ pathology through neuroinflammatory pathways or through competitive cleav-
age of insulin and Aβ by the same enzyme (de la Monte, 2017). The epidemiological
evidence discussed in section 2.6.4 showed this association to be rather weak, with
no association in the elderly, and evidence being mixed in younger age groups. The
suggestive finding in this thesis of lower IR in Aβ+ elderly without dementia or sub-
stantial impairment adds to these prior studies. However, the findings in Study IV
were not significant after correction for multiple comparisons.

The prevalence of DM was 15%, and it did not differ significantly between the
outcome groups. This prevalence was in good agreement with the estimated Finnish
prevalence of DM2 (65–74 years old cohort, previously diagnosed 10%, previously
undiagnosed 12%; Peltonen et al., 2006).

To the author’s knowledge, no data has been published on the association of pe-
ripheral blood PAI-1 levels and in-vivo Aβ markers. In prior studies, PAI-1 in CSF has
been reported to have no association with AD status (Martorana et al., 2012; Leung
et al., 2015). Study IV suggested higher levels of PAI-1 to be protective against Aβ,
although not significantly after correction for multiple comparisons. PAI-1 down-
regulates the activity of the protein-cleaving plasmin system, and it is considered to
be a risk factor for atherosclerosis in the periphery due to its prothrombotic effect.
In the central nervous system, however, PAI-1 and the plasmin system may interact
with Aβ fibrils and possibly affect plaque formation (Bi Oh et al., 2015), or be directly
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neuroprotective (Cho et al., 2013).
Both the HOMA-IR and PAI-1 findings suggested a higher potential load of vas-

cular pathology in Aβ negative individuals, at least in the periphery. It is unclear
whether this association with PAI-1 is mediated through effects in the central ner-
vous system, or if the Aβ load is reduced due to effects in the cardiovascular system.
The study population was also prefiltered—albeit fairly mildly—by cardiovascular
risk and cognition. The FINGER participants with low IR represent those who have
maintained adequate insulin sensitivity despite an elevated cardiovascular risk. In
this specific subpopulation the mechanisms linking IR and Aβ accumulation may be
different.

The FINGER-PET population and the derivative IR/DM population was small
consisting of only 41 subjects. This limited the use of confounders in the regression
analysis and limited power.

The exploratory study did not find any other suggestive associations between the
tested markers and Aβ positivity. To the authors knowledge, no data has been pub-
lished on a complete assay of IR/DM markers previously. FINGER is an ongoing
longitudinal study and may in the future allow for the analysis of these markers over
time.

6.3.4 Prediction of other AD and amyloid related pathology

Tau tangles were predicted in the Vantaa 85+ population at a slightly lower perfor-
mance than for Aβ. Predictive models for the neuropathological AD status—with an
intermediate or high likelihood of AD based on a combination of Braak and CERAD
scores (Hyman et al., 2012)—had a better performance than models predicting either
Aβ or tau by themselves. The role of APOE was similar as for Aβ: ε4 allele was
predictive of pathology, and ε2 was protective. For tau, ε3 homozygousness was
protective rather than ε2 carriership. This difference may be linked to a finding by
Berlau et al. (2009) on elevated CERAD scores at autopsy in both ε2 and ε4 carriers,
although ε2 did not raise the odds of developing dementia in that study like ε4 did.

The tangle count was predicted, in contrast to Aβ pathology, by the total choles-
terol and LDL. Whether there is a vascular effect on tau pathology specifically is
unclear, or whether other mechanisms underlying the previously observed risk in-
crease associated with midlife vascular risk factors can explain the observation. The
neuropathological aggregate for AD did not have lipids or any other vascular fac-
tors as predictors. However, subjective memory decline was a predictor, although
a rather weak one. This may indicate that the aggregate measure of AD pathology
corresponds better to the clinical phenotype than Aβ or tau separately.

Cerebral amyloid angiopathy was predicted by APOE alleles in the same way as
Aβ. Interestingly, cardiovascular comorbidities were predictive of lower CAA. Arte-
rial amyloid deposition has been associated with intracerebral hemorrhages (ICHs),
and the incidence of dementia after an ICH is high (Wermer and Greenberg, 2018;
Banerjee et al., 2018). Persons with CAA without an ICH have been reported to score
lower on cognitive testing, possibly because CAA pathology of the arteries and corti-
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cal arterioles also predisposes the patient to cortical microinfarctions (Banerjee et al.,
2018). The effect seen in the Vantaa 85+ study may be partly due to a selection effect,
where at the baseline individuals with both a high cardiovascular risk load (hyper-
tension etc.) and CAA may have been excluded due to dementia or they may not
have survived to old age. The 85+ CAA population may thus represent persons with
high cardiovascular resiliency to ICH due to CAA. Cerebrovascular comorbidities,
however, did not show an effect. CAA was also predicted by male gender.

In the PC analysis of the no-dementia group, CAA contributed to the first PC—
“AD-type pathology”—with an equal contribution to neuropathological AD. In the
dementia group, CAA contributed with a somewhat smaller coefficient and vascular
pathology contributed with an opposite sign. This may point to a differential role
of CAA in amyloid accumulation in healthy individuals with subclinical amounts of
pathology and in the brain of a dementia patient where vascular insults modify the
clinical phenotype.

6.4 PREDICTION OF OTHER BRAIN PATHOLOGY

6.4.1 Vascular pathology

The prediction performance for vascular pathology was better than for other types
of pathology. The performance for WM macroinfarcts was the best, with blood lipids
being stand-out predictors. Lower HDL and lower LDL were predictive of the pres-
ence of WM macroinfarcts. This result is counterintuitive, as lower HDL could be
expected to have a negative vascular effect, and likewise a lower LDL could be ex-
pected to have a positive effect. Additionally, cerebrovascular comorbidities were
predictive of the same pathology. Perhaps cerebrovascular insults were of a more
detrimental magnitude in the high-LDL population and the results show a survival
effect. It is also possible that these lipids and their potential changes over time prior
to the baseline study visit have a completely different significance concerning the on
brain health of an 85+ population than for the vascular health of younger popula-
tions. APOE ε2 carriership was predictive of WM macroinfarcts, a finding which
also points to a survival effect. In younger populations both the ε2 and ε4 alleles
have been linked to more pronounced findings of cerebrovascular disease on MRI
(Schilling et al., 2013). The findings indicating an increased risk of WM infarcts due
to ε2 may be a possible explanation as to why the ε2 allele was predictive of dementia
in the Vantaa 85+ study.

Macroinfarcts in the cortex were predicted by the APOE genotype in the same
pattern as they were for tau. The aggregate measure of all macroinfarcts was pre-
dicted by factors better representative of the clinical state, namely poorer cognition
and competence in daily activities. It is notable, that objective measures of cognition
were predictive of vascular pathology, but not AD-type pathology.

The presence of cerebral microinfarcts was only predicted by short duration of
education. Microinfarcts are a hallmark of CAA (Wermer and Greenberg, 2018), and
these pathologies could be expected to share predictors. No meaningful link was
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seen on the PCA either.
The PCA showed a differential pattern of vascular pathology in the no-dementia

and dementia groups. The second PC “Vascular pathology” was the second most im-
portant determinant of variance in the no-dementia group, but did not show a clear
pattern in the dementia group. It would be tempting to interpret the no-dementia
cohort temporally as a pre-dementia cohort with more variability in the level of vas-
cular pathology. However, the difference seen in PC2 may also be driven by other
determinants that differentiate the no-dementia and dementia groups. A survival ef-
fect may also have an impact, as discussed above in relation to the APOE genotypes.

6.4.2 Hippocampal sclerosis, TDP-43 protein, and α-synuclein

The prevalence of HS and TDP-43 accumulation was 7% and 13%, respectively, in
the Vantaa 85+ autopsy population, as would be expected based on previously pub-
lished estimates. HS is predominantly present in the oldest of the old, and prior
research indicates a prevalence of 5–30% in 90–100-year-olds (Nelson et al., 2013).
The prevalence of the strongly HS-associated TDP-43 in cognitively healthy elderly
is estimated at 24% (13–34% at a 95% confidence interval) worldwide (Nascimento
et al., 2018), and at 14% (9–20%) in Europe.

Low cognitive measures predicted HS well, and the overall performance was
better than for other pathologies. Hippocampus-associated memory tasks—such as
wordlist task, which shows deficiencies in the HS+ autopsy population—have been
previously shown to be associated with HS, while cortex-dependent tasks such as
verbal fluency remain relatively unaffected (Nelson et al., 2013). TDP-43 was pre-
dicted only by depressive symptoms. Disease progression in TDP-43 accumulation
is varied (Nascimento et al., 2018), and it is difficult to assess whether the effect of
depressive symptoms seen here is generalizable.

No predictors were found for α-synuclein pathology, which is in line with prior
research indicating no clear pattern of risk factors.

6.5 PREDICTION OF DEMENTIA VERSUS BRAIN PATHOLOGY

The prediction of incident dementia and different brain pathologies showed differ-
ences in their overall performance and the relative importance of predictor modali-
ties, which additionally varied in importance during the life course. Figure 1 visually
summarizes the prediction results of this thesis. The horizontal axis represents the
late-life years of the life course, and in the context of this thesis this is further divided
into younger and older old age groups. Predictors are represented by spheres, whose
sizes correspond to the observed prediction performance. As evident in the upper
panel, cognition was the dominant predictor modality for dementia throughout old
age. Age was still relevant at the beginning, but not towards the end, when functional
measures gained relevance instead. Vascular predictors could be useful at the begin-
ning of the late-life period, although not to the same degree as in midlife. The APOE
genotype was not a very significant determinant of incident dementia in comparison.
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Key: Aβ amyloid beta protein, APOE apolipoprotein E, BMI body mass index, CAA cerebral
amyloid angiopathy, CardioVD cardiovascular disease, CerebroVD cerebrovascular disease,
HS hippocampal sclerosis, sMRI structural magnetic resonance imaging

Figure 1: Predictors of dementia and neuropathology in younger and older old age. Sphere
size corresponds to predictor AUC.
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For brain pathology, predictors showed a different pattern of importance. The
APOE genotype was more predictive than cognition was of Aβ pathology through-
out old age, and of neuropathological AD and CAA in the oldest of the old (also of tau
pathology, which is not shown in the figure). This underlines a disconnect between
the clinical phenotype and underlying AD and amyloid pathology. In general, AD
pathology can be found in elderly persons without cognitive impairment (Bennett
et al., 2006). Additionally, APOE ε4 has been shown to modulate the link between
Aβ load and cognition (Kantarci et al., 2012). Specifically, ε4 carriers experience more
decline in cognition with an Aβ load. An APOE ε4-stratified analysis would be in-
teresting to perform in the future to test this in the pathology populations. Cognition
was, however, a strong predictor of hippocampal sclerosis in the oldest of the old
and a weak predictor of cortical macroinfarcts, for which APOE played no role (the
pattern was somewhat different for macroinfarcts in the cortex and in WM).

Whereas a low level of education was predictive of dementia, this finding did not
seem to have a counterpart in pathology. The only effect was seen on microinfarcts
(not shown in figure), but this had a low performance. According to a definition by
Stern et al. (2018), cognitive reserve is the ability of cognitive processes to adapt to
changes and insults of the brain. Findings in the Vantaa 85+ study agree with the
notion that the cognitive reserve due to higher education is a purely functional en-
tity with no correlate in brain pathology. Cognitive reserve is thought to arise from
either neural reserve—implying resistance of certain brain regions to insults—or neu-
ral compensation, where unaffected brain regions compensate for the dysfunction of
affected regions. There is functional MRI evidence for both mechanisms, with neural
compensation becoming more important in more developed cognitive impairment
(Anthony and Lin, 2018). Among other factors, physical activity has been considered
as a contributor to cognitive reserve (in addition to the cardiovascular benefits), and
studies have shown an increase in physical activity to be associated with structural
brain changes (Rovio et al., 2010; Xu et al., 2015). None of the pathologies studied
in the Vantaa 85+ study reflect these associations. It should be noted that the mean
length of education was low at 4.3 years, and many other determinants of cognitive
reserve may have had an effect along the life course.

The negligible role of age in dementia prediction in the oldest of the old was repli-
cated in the lower pathology panel in Figure 1, where no pathology was predicted by
age apart from the FINGER-PET model in which the AUC was 0.45. Gender was also
omitted in almost all models for both dementia and pathology. However, CAA was
predicted by male gender. Male predominance has been shown at least in one study,
in which 88% of the studied AD patients had CAA, and male participants had sig-
nificantly higher CAA scores (Shinohara et al., 2016). CAA was strongly associated
with AD and was also predicted by the APOE ε4 allele. Dementia prediction models
included APOE as a predictor, but the effect of gender seen on CAA pathology did
not extend to the clinical dementia models.

Structural MRI was the dominant predictor of amyloid pathology in younger old
age. This is to be expected given the association of brain amyloid and neurodegener-
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ation and atrophy, and the elevated a priori probability of pathology due to preselec-
tion. Volumetric brain measures are typically also used as measures of brain reserve
(Stern et al., 2018). The FINGER study inclusion criteria may have led to an overrep-
resentation of low brain reserve i.e. lower brain volume on MRI possibly affecting the
generalizability of these results. Whether amyloid positive individuals with higher
brain capacity have better cognitive performance should be further investigated in
larger cohorts.

Even without MRI data, in-vivo prediction of prevalent Aβ in the younger old
was more effective than prediction in the older old group, where additional number
of years of follow up were allowed for the pathologies to develop. This, given the
similar pattern in dementia prediction, calls for earlier intervention during the life
course, where the models indicate a higher potential for intervention in causal pro-
cesses underlying the predictors, as well as better possibilities to find less advanced
targetable pathological changes.
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7 CONCLUSIONS

The findings from the studies of this thesis support the following conclusions:

– The ten-year risk of late-life dementia was predicted well by multimodal pre-
dictors. Cognition was the most important predictor, but genetic, vascular, and
life-style predictors added value.

– Changes in the parameters of vascular health may predict incident late-life de-
mentia more accurately than cross-sectional measurements.

– Cognition was the dominant predictor of incident dementia in the oldest of the
old. Other predictors recognized in younger populations lost value in this age
group.

– In the oldest of the old, the prediction of vascular pathology succeeded moder-
ately well, whereas the prediction of AD-type pathology was poor.

– Brain amyloid positivity in the cognitively healthy elderly could be predicted
using multimodal predictors including APOE genotype and structural MRI at
an moderate-to-excellent level—which would be well-suited for amyloid preva-
lence enrichment in populations.

– Two conclusions can be drawn on the role of APOE polymorphism:

– The ε4 allele predicted brain pathology better than the clinical outcome of
dementia in late life.

– The ε2 allele was not protective of all pathology in the oldest of the old; ε2
carriership may predict white matter macroinfarcts over four years.

– High insulin resistance and high levels of PAI-1 in individuals with a lower
brain amyloid burden may indicate brain resilience to higher a cardiovascular
load.

These results demonstrate how the use of machine learning systems and multi-
modal data can predict dementia and brain pathology years before incidence. This
will allow for a wider window of opportunity for prevention. The studies pointed
to novel differences in dementia and pathology prediction, which impact the choice
of predictors for different applications of the models. Additionally, prediction in
younger old individuals was more effective and may also provide more time and
opportunities for intervention. Prediction of the amyloid status proved accurate to a
level that may substantially aid in the design of intervention trials targeting amyloid,
for example. The observed link between high insulin resistance and a high level of
PAI-1, and a low amyloid burden may prove useful in early detection of disease or
offer insight into preventive strategies.
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This machine learning-based approach to multimodal prediction of both dementia
and brain pathology is relatively new in the dementia prevention field, and should be
further validated in other cohorts, including also other new and existing biomarkers
that were not tested as part of this thesis.
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8 FUTURE PERSPECTIVES

Specific key recommendations have been made to advance future dementia risk mod-
els (Ritchie and Muniz-Terrera, 2019). Risk models would benefit from biomarker
predictors that would increase their performance at an early disease stage where tra-
ditional predictors are insufficient. New markers of disease, such as tau-PET imaging,
may prove potent predictors of disease, but are not necessarily practical on a large
scale. Inclusion of a broad set of clinical predictor modalities and more precise test-
ing of cognition may help indicate earlier changes associated with disease. The DSI
machine learning algorithm with its multimodal technical design is a step towards
this goal. In dementia prediction, cognition was a strong predictor, and a model
combining even more accurate measurement of cognition and other clinical predic-
tors could be useful worldwide in under-resourced clinics with limited possibilities
for biomarker testing. For example, such a model could be used for targeting more
costly and complex biomarker testing towards smaller, better defined risk groups.
Additionally, to increase the usefulness of prediction models, modifiable risk factors
should be included for the purposes of preventive and disease-modifying efforts.
Such predictors were well represented in this thesis due to the design of the original
study cohorts. However, few were found useful in the final models, especially for
the oldest of the old. Recent guidelines on risk reduction of cognitive decline and de-
mentia by the World Health Organization (2019) recommend intervention on several
modifiable risk factors despite, in many cases, low or moderate levels of evidence, be-
cause the benefits overweigh the risks both for cognition and health generally. Early
intervention already in midlife has also been recommended, since several modifiable
risk factors in midlife show a clearer association with dementia risk compared to
older ages.

Personalized risk modeling and intervention design may be a part of the future.
Factors such as cognitive reserve or genetic susceptibility modulate a person’s base-
line risk, and other factors may affect their response to intervention. Such effects have
been observed in carriers of different APOE polymorphisms, for example (Jensen
et al., 2019). Tools such as clinical decision support systems with integration into
health care systems and interfaces for laying out personalized risk and intervention
profiles (Mattila et al., 2012a) could prove applicable and useful even in primary
care. For dementia prevention, a personalized medicine approach may be needed.
Systems that are especially economical in terms of health care system resources also
show promise, as the dementia-risk population is set to grow in light of current de-
mographics and longevity gains. For example, a recent Internet-based intervention
programme (Barbera et al., 2018) may offer a light-touch measure for dementia pre-
vention requiring only small investment on an individual-by-individual basis. There
may be interesting possibilities in combining such systems with health-register-based
prediction models that have shown good results in finding at-risk individuals (Wal-
ters et al., 2016).
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The steps taken in this thesis have contributed to the previously stated goals of
identifying at-risk populations and including biomarkers as intermediate outcomes
in prevention trials (National Academies of Sciences, Engineering, and Medicine and
Health, 2017). Pathology prediction models can identify affected individuals for ei-
ther trial participation or possibly be used as surrogate outcomes themselves in some
settings. In future, these models need to be deployed in intervention trials. New
and improved prediction model generations will probably benefit from utilizing lon-
gitudinal patient information from multiple sources, a task similar to those already
undertaken in many other fields in the big-data era.
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Rastas, S., Pirttilä, T., Mattila, K., Verkkoniemi, A., Juva, K., Niinistö, L. et al. 2010.
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