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Recently, the Bayesian approxima-

tion error approach for the treatment 

of the approximation and model-

ling errors in inverse problems has 

been proposed. The key idea in the 

approximation error approach is 

to represent not only the measure-

ment error, but also the effects of 

the computation model errors and 

uncertainties as an auxiliary ad-

ditive noise process. In this thesis, 

the approach is applied in electri-

cal impedance tomography (EIT) to 

compensate modeling errors due to 

reduced discretization, model reduc-

tion, unknown contact impedances 

and unknown shape of the body. The 

approach is evaluated with simulated 

and experimental data.
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ABSTRACT

In electrical impedance tomography (EIT), electrodes are attached on the

boundary of the object and currents are injected into the object. The volt-

ages are measured using the same electrodes and the conductivity of the

object is reconstructed based on the measured voltages. The reconstruc-

tion problem is a non-linear ill-posed inverse problem, i.e. the problem

is highly sensitive to measurement and approximation errors. The effect

of the measurement errors can be reduced by using an accurate measure-

ment system and by accurate modeling of the statistics of the error.

Approximation errors are due to an approximative computational mod-

el used in the inverse computations. In practical applications, an ade-

quately accurate mathematical model cannot often be used due to limited

computational resources, and therefore a reduced model has to be used.

Furthermore, in some cases the accurate model is not available due to un-

known shape of the body or unknown nuisance parameters in the compu-

tation model, for example. These approximation errors can cause severe

reconstruction errors with conventional measurement error models.

Recently, the approximation error approach was proposed for the

treatment of the approximation errors. The key idea in the approxima-

tion error approach is to represent the approximation errors as a noise

process in the measurement model. The statistical model of the approx-

imation error is constructed and then this model is used in the inverse

problem to compensate for the approximation errors.

In this thesis, the approximation error approach is applied for several

approximation errors in EIT. The approximation errors that are considered

are due to reduced discretization, unknown contact impedances, domain

truncation and unknown shape of the body. Furthermore, the approxi-

mation error approach is employed in a novel way enabling estimation of

the conductivity and the shape of the body. All test cases are evaluated

by using simulated and real data. The results indicate that the effect of

these errors can be efficiently compensated for by the approximation error

approach.

INSPEC thesaurus: Bayes methods; inverse problems; electric impedance; electric imped-

ance imaging; tomography; modelling; errors; reduced order systems

Yleinen suomalainen asiasanasto (YSA): bayesilainen menetelmä; tomografia; impedanssito-

mografia; approksimointi - - virheet; mallintaminen - -virheet
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ABBREVIATIONS

AEM Approximation error model

2D Two-dimensional

3D Three-dimensional

CEM Conventional error model

CM Conditional mean

CT Computerized tomography

EIT Electrical impedance tomography

FEM Finite element method

GN Gauss-Newton

LS Least squares

MAP Maximum a posteriori

MCMC Markov chain Monte Carlo

MRI Magnetic resonance imaging





NOTATIONS

(·)∗ Expectation value

(·)(`) `th sample
˜(·) Approximative model

π(·) Probability density

A(x) Forward model

Ah(x) FEM approximation of forward model

α Regularization parameter, projection coefficient vector

d Nuisance parameter

e Measurement noise

e` `th electrode

ε Approximation error

ε′ Low-rank projection of ε

η Sum of measurement and modelling errors

γ Parameterization of ∂Ω

Γ Covariance matrix

h, δ Discretization level parameter

m Number of measurements

N Dimension of conductivity vector

n Outward unit normal vector

Ns Number of samples

Ne Number of elements

Nn Number of nodes

Nel Number of electrodes

Ω Computation domain

∂Ω Boundary of domain

σ Conductivity

x Parameter vector, position vector

y Measurement vector

u Potential distribution

U Electrode potential

V Measured electrode voltage

z Contact impedance
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1 Introduction

In electrical impedance tomography (EIT), electrodes are attached

on the boundary of an object and currents are injected into the ob-

ject through these electrodes. The voltages on all electrodes are

measured and the conductivity of the object is reconstructed based

on the measured voltages and known currents; for reviews on EIT,

see [1–5].

Electrical impedance tomography has numerous applications in

biomedicine, industry, geology and nondestructive testing. The

biomedical applications include the monitoring of the lungs and

heart [1, 6–9], breast cancer detection [10, 11], and imaging of hu-

man brain activity [12]. Examples of the industrial applications

include the imaging of the multi-phase flows [13–16], the behav-

ior of the air-core within the hydrocyclone [17], sensor for optimal

control [18], slurry mixing [19], and separation [20]. The geophys-

ical applications include leak detection of waste storage tanks [21],

hydraulic barrier monitoring [22], and soil water content variations

[23]. The nondestructive testing applications include the imaging

of concrete [24], for example.

The reconstruction of the conductivity is a non-linear, ill-posed

inverse problem, which is highly sensitive to measurement and ap-

proximation errors. The effect of the measurement errors can be

reduced by using an accurate measurement system and by careful

modeling of the statistics of the measurement error, see for exam-

ple [25].

The approximation errors, on the other hand, are related to dis-

cretization of the forward model and approximations in the forward

model. In several applications, the forward model has to be reduced

since the computation resources and time are limited. The forward

model can be reduced using, for example, coarser discretization

or reducing the size of the computational domain. Further, one

has to use an approximative model when the forward model con-
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tains inaccurately known nuisance parameters. For example, the

parameterization of the boundary of the body can be unknown in

biomedical applications of EIT. One such application is EIT chest

imaging in which the accurate shape of the chest is unknown and

the shape is time dependent due to breathing. Another typical ex-

ample of unknown nuisance parameters are the electrode contact

impedances. Most of the current approaches to EIT treat the con-

tact impedances as known, fixed parameters. However, in practical

measurements they are always unknown and can change during

the measurements. For example, in industrial applications the con-

tamination of the surface of the electrodes can change the contact

impedances locally and temporally as well.

The reconstruction errors due to approximation errors can be

reduced by using the recently proposed Bayesian approximation

error approach [26,27]. The key idea in the approximation error ap-

proach is, loosely speaking, to represent not only the measurement

error, but also the effects of the computational model errors and

uncertainties as an auxiliary additive noise process in the observa-

tion model. The realization of the approximation error is obviously

unknown since its value depends on the actual unknown conduc-

tivity and possibly on uncertainly known nuisance parameters in

the forward model. However, the statistics of the related approx-

imation error can be estimated over the prior distribution models.

The statistical model of the approximation error is then used in the

reconstruction process to compensate for the effect of the approxi-

mation errors.

The approximation error approach was originally applied for

model reduction errors in EIT with numerical examples in [26]. Af-

ter that the approximation error approach has been applied for dif-

ferent approximation errors and also for other inverse problems.

The approximation error approach for the marginalization of un-

known nuisance parameters was proposed in [28]. The computed

examples were related to optical tomography in which the absorp-

tion coefficient is usually the primarily interesting parameter and

the scattering coefficient can be considered as a nuisance parameter.

2 Dissertations in Forestry and Natural Sciences No 32



Introduction

In geophysical EIT, the discretization errors and errors due to trun-

cation of the computational domain were studied in [29]. In [30],

linear approximation for the forward solution was used in EIT in-

verse problem and the linearization error was treated by using the

approximation error approach. In optical tomography, model re-

duction, domain truncation and unknown anisotropy structures

were treated in [31–34]. In [35], again related to optical tomog-

raphy, an approximative physical model (diffusion model instead

of the radiative transfer model) was used for the forward problem.

The aim of this thesis is to apply the approximation error ap-

proach to approximation errors in EIT. The approximation errors

that are considered are the errors due to reduced discretization,

truncation of the computation domain, unknown electrode contact

impedances, and unknown shape of the body. The approximation

error approach is evaluated with real laboratory measurements in

all cases. These approximation errors are pivotal in EIT, since they

make the computation of the feasible reconstructions excessively

time consuming or impossible when the conventional measurement

error models are employed.

In this thesis, following case studies of the approximation error

approach are considered:

1. The first study concern a process monitoring application. The

studied approximation errors are due to reduced discretiza-

tion and partially unknown geometry of the target. The ge-

ometry of the target is partially unknown due to unknown

height of the liquid in the laboratory vessel. By employing the

approximation error approach feasible reconstructions can be

computed using reduced discretization and by using approx-

imative computation domain.

2. The approximation error approach is applied for errors due to

discretization, truncation of the computation domain and un-

known contact impedances. These approximation errors are

encountered in a flow monitoring application. By using the

approximation error approach, the computation time can be

Dissertations in Forestry and Natural Sciences No 32 3
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reduced significantly. Furthermore, the solution of the inverse

problem becomes less complicated since the electrode contact

impedances does not have to be estimated.

3. The approximation errors due to reduced discretization and

unknown shape of the body are reduced by employing the ap-

proximation error approach. The computed examples concern

the chest imaging problem in which the shape of the chest is

unknown. The cross-section of the chest is modeled with a

model domain which is used in the inverse problem. The ap-

proach is evaluated both with simulated measurements and

measurements from a chest phantom.

4. The reconstruction of the conductivity and the shape of the

body is proposed. The approximation error approach is em-

ployed in a novel way enabling the simultaneous estimation

of the conductivity and a low rank approximation for the un-

known realization of the approximation error. In the second

stage of the approach, the unknown shape of the body is es-

timated based on the approximative joint distribution of the

approximation error and the parameterization of the bound-

ary shape. The computed examples concern the EIT chest

imaging application.

This thesis is organized as follows. The Bayesian framework for

the inverse problems and the approximation error approach is re-

viewed briefly in Chapter 2. Furthermore, the previous applications

of the approximation error approach are also reviewed in Chapter

2. In Chapter 3, the forward model and notations in the EIT for-

ward model are represented. The reconstruction problem in EIT is

also reviewed in Chapter 3. The review of the results is given in

Chapter 4. In Chapter 5, summary and conclusions of the thesis are

given.

4 Dissertations in Forestry and Natural Sciences No 32



2 Inverse problem in statisti-

cal framework

In this chapter, we present a brief review on inverse problems in

the statistical framework and typical estimates computed using this

approach. Furthermore, a review on approximation error approach

is also given. For more details of the Bayesian framework for in-

verse problems in general see [2, 26, 36, 37] and for approximation

error approach, see [26–28, 31].

We consider the inverse problem of estimating x given indirect

noisy observations (measurements) y. The model that relates the

measurements y and quantity x is y = A(x, d) + e, where A(x, d) is

the forward operator, d is a vector of possibly unknown nuisance

parameters and e is the measurement noise.

2.1 INVERSE PROBLEM

2.1.1 Construction of the posterior model

The discussion is mainly based on the references [26, 28, 31]. In the

Bayesian framework, all unknowns and measurements are consid-

ered as random variables and the uncertainty related to their val-

ues is encoded in their probability distribution models. The joint

probability density of the parameter x, nuisance parameter d, and

measurements y can be written as

π(x, d, y) = π(x, d)π(y | x, d) = π(y)π(x, d | y), (2.1)

where π(y | x, d) is the likelihood model and the probability density

π(x, d) is the prior model of x and d. The posterior density, which is

given by the Bayes formula

π(x, d | y) =
π(y | x, d)π(x, d)

π(y)
, (2.2)

Dissertations in Forestry and Natural Sciences No 32 5
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is the complete probabilistic model of the inverse problem and rep-

resents the uncertainty in the unknowns given the measurements.

In conventional approaches to inverse problems, the nuisance

parameter d is assumed to be known. Let d̃ denote a fixed value

for the parameter d. In the sequel, the tilde ·̃ refers to the models

that are to be used in the inversion. In the Bayesian formulation,

all variables that are known, such as measurements, or are treated as

fixed parameters, appear as conditioning variables. Thus, if we fix

d = d̃, instead of π(x, d | y) in (2.2), we actually consider

π(x | y, d = d̃) =
π(y | x, d = d̃)π(x)

π(y)
. (2.3)

Formally, the uncertainty in the primary interesting unknown x is

obtained by marginalization (integrating) over d in (2.2)

π(x | y) =
∫

π(x, d | y) dd. (2.4)

The posterior uncertainty of x that is predicted by (2.3) is usually

significantly overoptimistic when compared to the actual uncer-

tainty given by (2.4). In addition, any point estimates, such as the

maximum a posteriori estimate, are bound to be highly misleading.

It is important to note that π(x | y) 6= π(x | y, d′) generally with

any d′.
Unfortunately, the integral in (2.4) does not generally have an

analytical solution and can be computed only with the often exces-

sively resource demanding Markov chain Monte Carlo approach,

see for example [26, 38–40]. For this reason, approximations are

usually needed to be considered in applications with limited com-

putational resources.

2.1.2 Point and spread estimates

In practice, the posterior density is often high dimensional which

makes direct interpretation and visualization infeasible. For exam-

ple, in image reconstruction problems the dimension of the poste-

rior density can be several thousands. To interpret and visualize

6 Dissertations in Forestry and Natural Sciences No 32



Inverse problem in statistical framework

the solution, one computes point estimates from the posterior. One

of the most commonly used point estimate is the maximum a pos-

teriori (MAP) estimate

xMAP = arg max π(x | y). (2.5)

The computation of the MAP estimate leads to an optimization

problem. Another commonly used point estimate is the conditional

mean (CM) estimate. The computation of the CM estimate of the

posterior density leads to an integration problem

xCM =
∫

xπ(x | y) dx. (2.6)

The integration problem can be solved by using Markov chain Monte

Carlo (MCMC) methods.

In statistical framework, the reliability of the point estimates

can be assessed by computing spread estimates. The conditional

covariance is defined as

cov(x | y) =
∫

(x − xCM)(x − xCM)Tπ(x | y) dx. (2.7)

The computation of the conditional covariance is also an integration

problem.

2.2 CONVENTIONAL ERROR MODEL

2.2.1 Construction of the posterior model

The measurements are commonly modeled with the Gaussian ad-

ditive noise model

y = A(x, d) + e, e ∼ N (e∗, Γe) (2.8)

where A(x, d) is a non-linear forward model and e is a Gaussian

distributed noise vector with mean e∗ and covariance matrix Γe. If

parameters x, d and e are mutually independent, the likelihood can

be written as

π(y | x, d) = πe(y − A(x, d)), (2.9)

Dissertations in Forestry and Natural Sciences No 32 7
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where πe is the probability density of the noise e. Moreover, let the

prior model be the Gaussian distribution N (x∗, Γx),

π(x) ∝ exp

(

−1

2
(x − x∗)TΓ−1

x (x − x∗)
)

where x∗ ∈ R
N is the prior mean and Γx the prior covariance ma-

trix.

Then, the posterior density of x given both the measurements y

and the parameter d becomes

π(x | y, d) ∝ exp

(

−1

2
(x − x∗)TΓ−1

x (x − x∗)

− 1

2
(y − A(x, d)− e∗)TΓ−1

e (y − A(x, d)− e∗)
)

.

(2.10)

Note that the distribution (2.10) represents the posterior uncertainty

in x only if the d that is used as a fixed parameter in (2.10), corre-

sponds to the actual value of the parameter.

2.2.2 MAP-estimate with conventional error model

The MAP-estimate of the posterior density (2.10) is computed as

follows

xMAP = arg max π(x | y, d)

= arg min
{
‖Le(y − A(x, d)− e∗)‖2

+ ‖Lx(x − x∗)‖2
}

, (2.11)

where Le and Lx are Cholesky factors such that

Γ−1
e = LT

e Le, Γ−1
x = LT

x Lx.

The minimization problem (2.11) can be solved, for example, by

the Gauss-Newton algorithm [41]. We refer to (2.11) as MAP with

conventional error model (MAP-CEM).

8 Dissertations in Forestry and Natural Sciences No 32



Inverse problem in statistical framework

2.3 APPROXIMATION ERROR APPROACH

In this section, the approximation error approach is formulated to

account for discretization errors and errors due to unknown pa-

rameters d in the forward model A(x, d). Typically, the solution

of the forward model is computed using some numerical method

such as finite element method FEM [42]. In this section, the FEM

solution of the forward model A(x, d) is denoted as Ah(x, d) where

h is the discretization level parameter controlling the mesh density

and x ∈ R
Nn . It follows from the theory of finite element method

that [42]

Ah(x, d) → A(x, d) as h → 0 and Nn → ∞

Let

y = Aδ(x̄, d) + e, (2.12)

denote a (sufficiently) accurate model between the unknowns and

measurements. Here the parameter d and discretization level pa-

rameter δ are such that the error in the FEM approximation is

smaller than the measurement error. The parameterization x̄ is

dense enough in the above sense.

In practical applications, the nuisance parameter d is often un-

known. Furthermore, for reasons related to the computation time

and resources, there is often pressure to keep the discretization level

of the forward model relatively coarse. In such a case, the accurate

model (2.12) is replaced by the approximate measurement model:

y ≈ Ah(x, d̃) + e, (2.13)

where the discretization level parameter h > δ and d̃ is the approx-

imative nuisance parameter vector, and one hopes that the approxi-

mation in (2.13) is a feasible one. The relation of the representation

of the parameters x and x̄ in (2.12) and (2.13) is of the form

Px̄ = x, (2.14)

where P is a matrix that interpolates the parameter x̄ in the model

(2.12) to parameter x in the model (2.13). The model Ah(x, d̃) is the
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model that is to be used in the inversion, that is, the discretization

level and the parameters d̃ are fixed. We refer to the model Ah(x, d̃)

in (2.13) as the target model.

2.3.1 Construction of approximative posterior model

In the approximation error approach, instead of writing the approx-

imation (2.13), the accurate measurement model (2.12) is written in the

form

y = Ah(x, d̃) +
(

Aδ(x̄, d)− Ah(x, d̃)
)
+ e

= Ah(x, d̃) + ε(x̄, d) + e

= Ah(x, d̃) + η, (2.15)

where ε(x̄, d) represents the approximation error due to the dis-

cretization and approximative parameter d̃, and we denote η =

ε + e. Being a function of random variables, ε is a random vari-

able and the joint density π(ε, x̄, d) as well as the marginal density

π(x̄, ε) can be computed in principle, but in most cases these do not

have analytical expressions.

The objective in the approximation error approach is to derive a

computationally efficient approximation π̃(x | y) for the posterior

density π(x | y) based on the measurement model (2.15). When

x and d are modelled as mutually independent, and the only term

that depends on the random variable d in (2.15) is η, the posterior

model corresponding to (2.15) can be written as

π̃(x | y) = πη|x(y − Ah(x, d̃) | x)
︸ ︷︷ ︸

π(y|x)

π(x), (2.16)

see [28] for details. A complication is that the likelihood π(y |
x) in (2.16) does not in general have an analytic expression. To

obtain a computationally feasible and efficient approximation π̃(x |
y), we make the Gaussian approximation for the joint distribution

π(x, η). This is the core of the most common implementation of the

approximation error approach, in particular when computational
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efficiency is sought. Then, we obtain the Gaussian approximation

for the likelihood in (2.16), and the approximation for the posterior

model becomes:

π̃(x | y) ∝ exp

(

−1

2
(x − x∗)TΓ−1

x (x − x∗)

−1

2
(y − Ah(x, d̃)− η∗|x)

TΓ−1
η|x(y − Ah(x, d̃)− η∗|x)

)

,

(2.17)

where

η∗|x = ε∗ + e∗ + ΓηxΓ−1
x (x − x∗) (2.18)

Γη|x = Γε + Γe − ΓηxΓ−1
x Γxη , (2.19)

and where Γηx = Γεx + Γex and Γηx = ΓT
xη . When the measurement

errors e and parameter x are mutually independent, that is, Γex = 0,

we have Γηx = Γεx in Eqs. (2.17-2.19).

2.3.2 MAP-estimate with approximation error model

The computation of the MAP estimate from the posterior model

(2.17) amounts to solving the minimization problem

xMAP = arg min
{

|| Lη|x(y − Ah(x, d̃)− η∗|x) ||2

+ || Lx(x − x∗) ||2
}

, (2.20)

where the Cholesky factor LT
η|xLη|x = Γ−1

η|x. Thus, the MAP esti-

mation problem with the approximation error approach is formally

similar to the MAP estimation (2.11) with the conventional noise

model, and therefore the functional (2.20) can be minimized with

the same algorithms as the MAP with conventional noise model

(2.11). We refer to the MAP estimate (2.20) as MAP with the approx-

imation error model (MAP-AEM).

Note that in the case of non-linear forward models, the mean ε∗
and the covariances Γε, Γεx and Γxε in equations (2.18-2.19) need to

be estimated based on Monte Carlo simulations, see Section 2.3.4.
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However, this task can be done offline and needs to be done only

once for a given measurement setup, and for the expected range of

uncertainties.

2.3.3 Complete and enhanced error models

The approximation error model using the mean and covariance

defined as in equations (2.18-2.19) is referred as the complete error

model. While it is clear that ε and x are not independent, it has

turned out in several applications that a feasible approximation is

obtained by setting Γεx = 0 and ΓT
xε = 0. With this further approxi-

mation, and the earlier assumption Γex = 0, we have

η∗|x ≈ ε∗ + e∗, Γη|x ≈ Γε + Γe (2.21)

in (2.18-2.19). This approximation is called the enhanced error model,

see [26,27]. The estimates computed with the enhanced error model

were found feasible in several applications, see for example [26, 29,

31]. On the other hand, the effect of the approximation in (2.21) was

found significant in the deconvolution example in [27].

2.3.4 Computation of the statistics of the approximation error

In cases in which the measurement model is linear and the prior

model and measurement error model are Gaussian, the approxima-

tion error statistics can be computed analytically, see [26]. In other

cases the statistics is, however, typically estimated by Monte Carlo

simulation.

For the Monte Carlo simulation, we generate a set of Ns draws

from the prior models π(d) and π(x̄). The samples of the unknown

x̄ and the parameter d are denoted as: {x̄(`), d(`), ` = 1, 2, , . . . , Ns}.

These samples are then used for the computation of the accurate for-

ward solution Aδ(x̄(`), d(`)) and for the target model solution Ah(x(`), d̃)

for each of the Ns samples. For the computation of the target model

solution, the samples x(`) are obtained by x(`) = Px̄(`), see equation

(2.14).
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Given the accurate and target forward solutions, the samples

ε(`) of the approximation error are obtained as

ε(`) = Aδ(x̄(`), d(`))− Ah(Px̄(`), d̃)

for the combined unknown nuisance parameter errors and discretiza-

tion errors. Let ξ denote the stacked variables

ξ =

(

ε

x

)

.

The second order joint statistics (the mean ξ∗ and covariance ma-

trix Γξ) of the approximation error ε and the parameter x are then

estimated as

ξ∗ =
1

Ns

Ns

∑
`=1

ξ(`), Γξ =
1

Ns − 1

Ns

∑
`=1

ζ(`)ζ(`)
T
,

where

ξ(`) =

(

ε(`)

x(`)

)

, ζ(`) =

(

ε(`)

x(`)

)

−
(

ε∗
x∗

)

and

Γξ =

(

Γε Γεx

Γxε Γx

)

.

The Gaussian approximation for the joint density is written as

π(ε, x) ≈ N (ξ∗, Γξ).

2.3.5 Review of earlier work on approximation error theory

The approximation error approach was first proposed for discretiza-

tion errors with several numerical examples in [26]. The closed

form equations for the statistics of the approximation error were de-

rived in the case of the additive linear Gaussian observation model.

In this linear case, the approach was evaluated with computed ex-

amples of the full angle CT problem and image deblurring problem.

The approximation error approach was also applied to non-linear
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EIT inverse problem. Since all applications concerned discretiza-

tion errors, the term “approximation error” is commonly used also

where “modelling error” might be a more appropriate term.

In [27], the approximation error approach and discretization er-

rors in linear inverse problems were discussed. The approximation

error theory was formulated for both the complete and enhanced

error models. The approach was evaluated using a deconvolution

example. In this example, the approximations in the enhanced error

model produced significant errors and the estimates with the com-

plete error model were better than those with the enhanced error

model.

In [29], the approximation error approach was applied for er-

rors due to reduced discretization and truncation of the compu-

tation domain. The computed examples concerned a geophysical

application of EIT in which the adequately large computation do-

main leads to prohibitive computation cost. For that reason, the

computation domain was truncated near the region of interest and

the discretization of the forward model was reduced. It was found

that these approximation errors can be efficiently compensated for

by using the approximation error approach. It was also shown that

only a few samples was adequate for the estimation of the approx-

imation error statistics in this case.

In [30], a circular anomaly in the homogeneous background

was estimated using EIT. The CM estimates of the location of the

anomaly were computed using MCMC. In these computations, the

linear approximation of the EIT forward model was used due to the

heavy computation load of repetitive solutions of the full forward

problem. The linearization errors were compensated for by using

the approximation error approach and feasible estimates of the lo-

cation of the anomaly were obtained. Erroneous estimates of the

location were obtained if the approximation errors due to lineariza-

tion was not taken into account.

The approximation errors are sometimes reduced by using sim-

ilar ideas as in the approximation error approach without com-

puting the full statistics of the approximation error. For example,
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in [43], an EIT measurement from a target with the known conduc-

tivity was conducted and the corresponding forward problem was

solved using this conductivity. Then the mean of the observation

noise was estimated by computing the difference of the measured

and computed voltages. In approximation error approach, this pro-

cedure correspond to estimation of the mean of the approximation

error by using only one sample.

In addition to EIT, the approximation error approach has also

been applied to other inverse problems and other types of (approxi-

mation) errors. In optical tomography (OT), model reduction errors

were treated in [31]. Significant improvement in the estimate qual-

ity was observed when the approximation error approach was used.

Furthermore, the performance of the approximation error approach

was studied by computing the expected estimation errors by using a

simulated data set. The expected estimation errors were computed

as sample averages by using the estimated and true absorption and

scattering values. The estimation error decreased as the additive

measurement noise level decreased when the approximation error

approach was employed. On the other hand, the estimation error

increased as the additive noise level decreased below the approx-

imation error level when the conventional error model was used.

These findings were similar as in the EIT case in [26].

In [33], the approximation errors due to uncertain parameters

in the anisotropic forward model were compensated for by using

approximation error approach. The strength and direction of the

anisotropy was modeled with a few parameters and the approx-

imation error statistics were computed using a prior distribution

of these parameters. In [34], the shape of the target boundary

in OT measurements was unknown and therefore the reconstruc-

tions were computed using a model domain. Although the actual

medium was isotropic, the discrepancy between the model and the

reality could be interpreted as generation of anisotropies. How-

ever, the direction and strength of the anisotropy was unknown

also in this case and therefore this uncertainty was modeled with

approximation error approach similarly as in [33]. Feasible esti-
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mates were obtained by employing the approximation error ap-

proach, while the reconstructions with the conventional measure-

ment error model were useless.

The compensation of errors due to reduced discretization and

truncation of the computation domain in OT was studied in [32].

The approach was evaluated with laboratory measurements from a

cylindrical target. In the reduced model, the computation domain

was truncated near the measurement sensors. Feasible estimates

were obtained using the approximation error approach when the

reduced model was used. The reconstructions with the conven-

tional error model were infeasible when the same forward model

was used.

The approximation errors in OT due to a approximative math-

ematical model for light propagation in the medium and model

reduction were discussed in [35]. In that work, the computation-

ally tedious radiative transfer model was approximated with the

diffusion model. The diffusion model cannot describe light propa-

gation accurately in weakly scattering medium and near the colli-

mated light sources and the boundary of the computation domain.

It was found that the approximation error approach compensates

efficiently both errors due to incorrect forward model and model

reduction.

In [44], the approximation error approach was used to compen-

sate for errors due to first order Born approximation with an infinite

space Green’s function model in OT. In reality, the forward model

is nonlinear and data is generated on a finite domain with possi-

bly unknown background properties. It was shown that feasible

estimates can be produced by using linear reconstruction method

and the approximation error approach also in situations in which

the background optical properties are not known and a reference

measurement is not available.

In OT, the absorption coefficient is usually more interesting than

the scattering coefficient. In order to get reliable estimates of the

absorption, the scattering coefficient has to be known or estimated

simultaneously with the absorption. In [28], the scattering coef-
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ficient was approximated with an homogeneous value in inverse

computations and the approximation errors were treated with the

approximation error approach. In general terms, this procedure

can be thought as approximate premarginalization of uninterest-

ing distributed parameters. When the uninteresting parameters are

premarginalized, the resulting inverse problem is computationally

more feasible than estimation of all coefficients.

The extension and application of the approximation error ap-

proach to time-dependent linear inverse problems was considered

in [45] and to non-linear inverse problems in [46]. In these papers,

both approximation errors due to a reduced forward model and

increased time stepping in the evolution model were taken into ac-

count. In [47], the approximation error approach and discretiza-

tion errors due to spatial discretization were studied. In that work,

the temporal discretization of the model was exact as it was rep-

resented using an analytic semi-group. In [48], the approximation

error approach for large dimensional non-stationary inverse prob-

lems was proposed. An application of the approach for estimation

of the distributed thermal parameters of tissue was represented.

The approximation error approach in non-stationary inverse prob-

lems was modified to allow the updating of the approximation error

statistics during the accumulation of the measurement information

in [49]. The updating of the statistics was accomplished by com-

puting weights for the approximation error samples using the mea-

sured data. The approximation error statistics was then computed

as weighted sample average after each measurement.

In [50], the identification of a contaminant source in a lake en-

vironment by using remote sensing measurements was discussed.

The objective was to determine the location, release rate and the

time instant at which the release was started. The discretization

errors due to forward model reduction were taken into account by

employing the approximation error approach. The estimated ap-

proximation error statistics revealed the accumulation of the dis-

cretization errors with time (seen as increasing error levels). It was

found that large errors of the estimated location of the pollution
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source occurs if the approximation errors are not modeled. The lo-

cation of the release was accurately found when the approximation

error approach was used. Furthermore, the confidence limits with

the approximation error approach were feasible.

In [51], the flow of the electrically conductive fluids in porous

media was imaged using EIT. The approximation error approach

was used for compensation of errors due to model reduction and

uncertain parameters (permeability distribution) in the evolution

model. The estimates of the water saturation distributions were

significantly improved when the approximation error approach was

used.

In [52], the non-stationary concentration distribution was recon-

structed using EIT. The actual time dependent velocity field of the

flow was unknown and the mean flow was used in the evolution

model. The approximation error approach was used to compensate

for errors due to time variability of the velocity field. This approach

was extended in [53] in which the simultaneous estimation of the

concentration and a reduced order approximation for the unknown

non-stationary velocity field was proposed. The approximation er-

rors due to non-estimated part of the velocity field were treated

using the approximation error approach.

In [54], the non-stationary approximation error approach was

experimentally evaluated with three-dimensional process tomog-

raphy measurements. Electrical impedance tomography measure-

ments were conducted in case of rapidly moving fluid in a pipeline.

The approximation errors due to truncation of the computation do-

main, reduced discretization, unknown contact impedances, and

partially unknown boundary condition in the convection-diffusion

model were taken into account using approximation error approach.

The reconstructions using approximation error approach were su-

perior compared to stationary reconstructions and non-stationary

reconstructions without the approximation error approach.
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mography

In electrical impedance tomography (EIT), Nel contact electrodes e`
are attached on the boundary of the object, see figure 3.1. Currents

are injected through these electrodes and the resulting voltages are

measured using the same electrodes. The conductivity σ of the

object is estimated based on the measured voltages and known cur-

rents.

In Section 3.1, the forward model and the numerical implemen-

tation of the model are explained. The forward model describes

how the voltages on the electrodes can be determined when the

conductivity of the object and the injected currents are known. In

this thesis, the complete electrode model is used as the forward

model [55, 56]. The forward problem is solved with the finite ele-

ment method. The notations used in the finite element approxima-

tions are explained in Section 3.1. Furthermore, the measurement

error model is also represented in Section 3.1. In Section 3.2, the

inverse problem in EIT is briefly reviewed. In Section 3.3, the com-

puted estimates and prior model in this thesis are discussed. For

more detailed discussions on EIT, see for example [57–59].

3.1 FORWARD MODEL AND NOTATION

We model the EIT measurements with the complete electrode model

[55, 56]:

∇ · σ(x)∇u(x) = 0, x ∈ Ω (3.1)

u(x) + z`σ(x)
∂u(x)

∂n
= U`, x ∈ e` ⊂ ∂Ω, (3.2)

∫

e`

σ(x)
∂u(x)

∂n
dS = I`, x ∈ e` ⊂ ∂Ω, (3.3)
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e`

Ω

∂Ω

Figure 3.1: A schematic representation of an EIT experiment. The contact electrodes e` are

attached on the boundary ∂Ω of the body Ω.

σ(x)
∂u(x)

∂n
= 0, x ∈ ∂Ω \

Nel⋃

l=1

e`. (3.4)

where Ω ⊂ R
q, q = 2, 3, denote the measurement domain, x ∈ R

q

is the position vector, u(x) is the potential distribution inside Ω, n is

the outward unit normal vector at ∂Ω, σ(x) is the conductivity, and

z` is the contact impedance between the object and the electrode e`.

The currents satisfy the charge conservation law

Nel

∑
`=1

I` = 0, (3.5)

and a ground level for the voltages can be fixed by

Nel

∑
`=1

U` = 0. (3.6)

3.1.1 Finite element approximation of the forward model

The numerical approximation of the forward model (3.1-3.6) is based

on the finite element (FEM) approximation. In the FEM approxima-

tion, the domain Ω is divided into Ne disjoint elements joined at Nn

vertex nodes. The potential u and electrode potentials U ∈ R
Nel sat-

isfying the variational form (see [56]) of (3.1-3.6) are approximated
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as

uh(x) =
Nn

∑
i=1

αiφi(x), (3.7)

Uh =
Nel−1

∑
j=1

β jnj (3.8)

where the functions φi are the nodal basis functions of the finite

element mesh and vectors nj ∈ R
Nel are chosen such that condition

(3.6) holds. The parameter h denotes the size of the largest ele-

ment in the mesh and defines the discretization level. The theory

of elliptic operators guarantees that [56]

(uh(x), Uh) → (u(x), U) as h → 0 and Nn → ∞

where (u(x), U) is the solution of the variational formulation of

(3.1-3.6). The conductivity σ(x) is approximated in a basis

σ(x) =
N

∑
k=1

σkψk(x). (3.9)

Typically, ψk(x) are the nodal basis functions in a separate finite

element type mesh. In the following, we identify the conductivity

σ(x) in (3.9) with the coefficient vector σ = (σ1, . . . , σN)
T ∈ R

N .

By these choices, the numerical forward solution for each current

injection is obtained by solving a (Nn + Nel − 1) × (Nn + Nel − 1)

system of equations. For further details on the FEM approximation

of the complete electrode model, see for example [2, 60].

3.1.2 Conventional error model in EIT

The measurement noise in EIT experiments is commonly modeled

as Gaussian additive noise which is mutually independent with the

unknown conductivity. This leads to measurement model

V = Uh(σ, d) + e, e ∼ N (e∗, Γe) (3.10)

where V ∈ R
m is the vector of the measured voltages, Uh(σ, d) ∈

R
m is the forward solution corresponding to single EIT experiment,
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h is the discretization level parameter in (3.7), σ ∈ R
N is the con-

ductivity vector, and e ∈ R
m is a Gaussian distributed measurement

noise with mean e∗ ∈ R
m and covariance matrix Γe. Furthermore,

the parameter vector d represents (possibly unknown) nuisance pa-

rameters in the forward model. Typical nuisance parameters in EIT

are the contact impedances and parameters that define the shape of

the computation domain, for example.

3.2 INVERSE PROBLEM IN EIT

In this section, a brief review of inversion methods in EIT is given.

The absolute imaging is discussed in Section 3.2.1 and difference

imaging in Section 3.2.2. For more extensive reviews of the EIT re-

construction methods, see [1–3, 57–59, 61, 62]. For the mathematical

background of the EIT inverse problem, see [63] in which the EIT in-

verse problem was first formulated. Since then uniqueness and ex-

istence proofs for the EIT inverse problem with different regularity

requirements on the conductivity have been represented in [64–66],

for example.

In this thesis, the conductivity is assumed to be stationary dur-

ing the acquisition of one measurement frame both in absolute

imaging and in difference imaging. For the treatment of non-station-

ary EIT problem, see for example [67–69].

3.2.1 Absolute imaging

Most of the EIT reconstruction methods are based on the regular-

ized non-linear least squares (LS) formulation of the EIT inverse

problem, see for example [70–73]. The solution of the inverse prob-

lem in this case corresponds to minimization of the functional

‖L1(V − Uh(σ, d)− e∗)‖2 + α‖L2(σ − σ∗)‖2 (3.11)

with respect σ. The interpretation of the terms in (3.11) is dif-

ferent depending on the inversion method used. For example, in

Tikhonov regularization L1 is a weighting matrix, α is the regular-

ization parameter, L2 is the regularization matrix and σ∗ is a prior
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estimate for the conductivity. In statistical framework, the func-

tional of the form (3.11) corresponds to Gaussian models for the

noise and prior. In this case, the matrix L1 = Le is the Cholesky

factor such that Γ−1
e = LT

e Le,
√

αL2 = Lσ such that Γ−1
σ = LT

σ Lσ and

σ∗ is the mean of the Gaussian prior. The solution of the minimiza-

tion problem (3.11) can be computed using minimization algorithm

such as Gauss-Newton algorithm.

Note that significant reconstruction errors occur in many practi-

cal applications if discretization of the forward problem is reduced

or the nuisance parameter vector d is unknown.

3.2.2 Difference imaging

In absolute imaging the conductivity σ is reconstructed based on

the measured voltages V corresponding to single time instant. On

the other hand, in (time) difference imaging the difference in the

conductivity between two time instants is reconstructed. The first

step in difference imaging is to measure the reference measurement

Vref corresponding to conductivity σref. Then the actual measure-

ment V corresponding to conductivity σ is conducted and the dif-

ference δσ = σ − σref is reconstructed.

The reconstruction of the conductivity δσ in difference imaging

is based on the linearized observation model

V ≈ U(σref, d) + J(σ − σref) + e, (3.12)

where J is the Jacobian matrix (sensitivity matrix) of the forward

map evaluated at σref. The observation model (3.12) is also used in

absolute imaging when the functional (3.11) is minimized by com-

puting only one step of the minimization algorithm. One such algo-

rithm is the NOSER algorithm [74]. In difference imaging, the for-

ward solution U(σref, d) is replaced with measured reference volt-

age Vref. In this case, the observation model is of the form

V − Vref
︸ ︷︷ ︸

δV

≈ J (σ − σref)
︸ ︷︷ ︸

δσ

+e. (3.13)
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The difference in conductivity δσ can be reconstructed under the

model (3.12) by regularized least squares framework, see [16] for

example. Other methods that fall under the formalism of (3.12) are

back-projection methods [75,76] and sensitivity coefficient methods

[77].

The difference imaging is to some extent tolerant to approxi-

mation errors since absolute errors in the measured voltages are

partially canceled when the difference of the measurements is com-

puted. Due to this property the difference imaging has been fa-

voured over absolute imaging. Difference imaging has been applied

to the monitoring of the industrial processes [16, 78] and monitor-

ing of patients in clinical applications [7,79], for example. However,

the feasibility of the difference imaging is questionable in several

applications. The reference measurement is not often available or

the interesting chance in the conductivity have occurred prior to

the reference measurement. Furthermore, the absolute conductiv-

ity values cannot be obtained and the estimates are inaccurate if the

actual difference in conductivities is large. The unknown nuisance

parameters d are also a problem in difference imaging.

3.3 COMPUTED ESTIMATES AND PRIOR MODEL

In this thesis, EIT inverse problem is solved using the Bayesian in-

version approach reviewed in general formalism in Chapter 2. In

Section 3.3.1, the Bayesian estimates to be computed in this thesis

are represented and in Section 3.3.2 the prior model is represented.

3.3.1 Computed estimates

The first estimate to be computed is the MAP-estimate with the

conventional error model (2.11):

σMAP = arg max
σ≥0

π(σ | V)

= arg min
σ≥0

{
‖Le(V − Uh(σ, d)− e∗)‖2

+ ‖Lσ(σ − σ∗)‖2
}

. (3.14)
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Note that the nuisance parameter d may or may not correspond to

actual value of the parameter when this estimate is computed. Fur-

thermore, this estimate may be computed using accurate or coarse

discretization.

As a second estimate the MAP-AEM estimate (2.20) is com-

puted. The MAP-AEM estimate (2.20) with EIT notations becomes

σMAP = arg min
σ≥0

{

|| Lη|σ(V − Uh(σ, d̃)− η∗|σ) ||2

+ || Lσ(σ − σ∗) ||2
}

. (3.15)

Note that the minimization problems (3.14) and (3.15) are of

similar form than the general regularized LS solution (3.11), and

therefore the functional (3.15) can be minimized using standard al-

gorithms used in regularized LS minimization problems. In this

thesis, Gauss-Newton algorithm is used.

3.3.2 Prior model

In this thesis, a proper Gaussian smoothness prior model π(σ) is

constructed similarly as in [26, 31, 32]. In the construction of the

prior model, the conductivity is considered in the form

σ(x) = σin(x) + σhg(x)

where σin(x) is a spatially inhomogeneous conductivity with zero

mean, and σhg(x) is a spatially homogeneous conductivity of non-

zero mean. For the latter, we can write σhg(x) = cI, where I ∈ R
N

is a vector of ones and R 3 c ∼ N (σ∗, µ2
hg). The inhomogeneous

part of the conductivity is modeled as σin ∼ N (0, Γin). We model

σin and c as mutually independent, that is, with respect to the prior

model, the background conductivity is modeled mutually indepen-

dent with the inhomogeneities in the conductivity.

In practice, the homogeneous background σ∗ and the standard

deviation µhg are set using our prior information of the target. Fur-

thermore, the prior covariance Γin is constructed by choosing the
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variance of elements µ2
in (diagonal elements of Γin) and the correla-

tion length. The correlation length expresses roughly our prior esti-

mate about the expected size of the inhomogeneities in the medium.

This also means that in the model for σin, any two elements that cor-

respond to spatial locations that are further away from each other

than the correlation length, are (approximately) mutually indepen-

dent.

Thus, we have the prior covariance Γσ = Γin + µ2
hgII

T and

π(σ) = N (σ∗I, Γσ).

This prior model is a proper distribution, in that the covariance

exists in the first place.

Traditional smoothness prior models are improper, that is, the

variances are infinite, and samples cannot be drawn from such dis-

tributions. The approximation error approach, on the other hand,

is based on computing the statistics of ε over the prior distribution.

This is not possible with a prior of unbounded variances. In the

statistical framework, sophisticated non Gaussian prior models for

the conductivity can also be constructed. For more information on

the non Gaussian prior models, see for example [2, 61].
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4 Review on the results

In this chapter, a brief review of the results obtained in Publications

I-IV is given.

4.1 PUBLICATION I: DISCRETIZATION ERRORS AND ER-

RORS DUE TO PARTIALLY UNKNOWN GEOMETRY

The motivation of this research originated from a process tomogra-

phy application in which the height of the liquid in a process tank

can change over time. In this case, one approach for eliminating the

errors due to unknown height of the liquid is to estimate the free

surface between the air and the liquid simultaneously with the con-

ductivity [80, 81]. This approach increases the computational load

and requires accurate discretization of the forward problem. How-

ever, in process tomography the measurements are often done with

high frame rates and the reconstructions also have to be computed

in limited time. Therefore, the reconstructions are often computed

using coarse discretization of the forward model and the shape of

the target is not estimated. The coarse discretization and erroneous

computation domain have been shown to produce significant recon-

struction errors, see [26] and [82]. In this work, both of these errors

are taken into account by using the approximation error approach.

4.1.1 Measurement configuration

In order to evaluate the approximation error approach, the mea-

surements were conducted using a cylindrical measurement tank;

the radius and height of the tank were 20 cm and 52 cm, respec-

tively. Eighty equally spaced stainless steel electrodes were at-

tached around the surface of the tank such that they were in five

different layers. The electrode layers are denoted by thick red lines

on the boundary in Figure 4.1. The height of the computation do-

main Ω̃ used in the inverse computation was chosen to be 46 cm.
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Before the measurements the measurement tank was filled with tap

water; the height of the water level was 42 cm. The difference (4 cm)

between the height of the water level and the computation domain

Ω̃ is also denoted in Figure 4.1.

4.1.2 Computation of the approximation error statistics

The approximation error statistics due to unknown height of the

liquid and reduced discretization was estimated using methods in

Section 2.3.4. In this work, the approximation errors due to dis-

cretization and unknown height of the liquid were separated. In

this case, the accurate observation model is written in the form

V = Uh(σ, d̃) + [Uδ(σ̄, d)− Uδ(σ̄, d̃)]
︸ ︷︷ ︸

ε1

+ [Uδ(σ̄, d̃)− Uh(σ, d̃)]
︸ ︷︷ ︸

ε2

+e,

(4.1)

where ε1 is the approximation error due to inaccurate computation

domain and ε2 is the approximation error due to reduced discretiza-

tion, d is the height of the liquid in the process tank (and the height

of the accurate computation domain), d̃ = 46cm is the height of the

computation domain Ω̃ in inverse computations.

The samples of the approximation error ε1 were obtained as

ε
(`)
1 = Uδ(σ̄

(`), d(`))− Uδ(σ̄
(`), d̃). (4.2)

The height of the liquid d was modeled to be equally distributed

between 41 cm and 52 cm. The forward problems Uδ(σ̄
(`), d(`)) were

computed using 12 different meshes which heights were d(`) = 41,

42,. . ., 52 cm. This corresponds to sample size Ns = 12. The samples

of the conductivity σ̄(`) were the same homogeneous sample σ̄(`) =

σhg for all Ns samples.

The samples of the approximation error ε2 were obtained as

ε
(`)
2 = Uδ(σ̄

(`), d̃)− Uh(Pσ̄(`), d̃), (4.3)

where all forward problem solutions were computed using compu-

tation domain Ω̃. The number of samples was in this case Ns = 1
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and the mean of the discretization error was estimated based on

one homogeneous sample σ̄(`) = σhg.

The total approximation error ε is obtained as ε = ε1 + ε2. Both

ε1 and ε2 were modeled to be Gaussian random variables and en-

hanced error model was used. In this case, the mean and covariance

matrix of the approximation errors due to partially unknown geom-

etry and reduced discretization are ε∗ = ε1∗+ ε2∗ and Γε = Γε1
+ Γε2 .

The covariance matrix Γε2 = 0 since we used only one sample for

the estimation of the statistics of the discretization error and the

covariance matrix could not be estimated.

4.1.3 Results

The location of two plastic rods inside the measurement tank is

denoted in Figure 4.1. All conductivity estimates were computed

using the inverse mesh, height 46 cm. The estimates of the conduc-

tivity distribution are shown in Figure 4.1.

The difference reconstruction is shown in the upper right Figure

4.1. The reference measurement Vref was done when the water level

was 46 cm and there was only water in the tank, and the actual

measurement V was the same as in the absolute reconstructions.

The MAP-AEM estimate is shown in bottom left figure. In this

reconstruction only the discretization error statistics was taken into

account. Reconstruction errors can be seen in both the difference

and absolute reconstructions. The errors can be seen mainly near

the surface of the water in both figures.

The MAP-AEM estimate shown in the bottom right Figure 4.1

was computed using the approximation error approach, and both

the discretization and modelling error due partially unknown ge-

ometry were taken into account. As can be seen, errors due to both

the discretization error and error due to partially unknown geom-

etry can be reduced simultaneously. Furthermore, results demon-

strate that the reconstruction errors due to discretization errors can

be reduced effectively using the mean of the discretization error

based on one sample.
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4cm

Figure 4.1: Upper left: the measurement configuration viewed from the side. The dashed

lines denote the heights of the visualization layers 6, 16, 26, 36, 46 cm. Two plastic rods

and electrodes on the boundary are shown. The difference (4 cm) between the height of the

inverse mesh (46 cm) and the height of the water level (42 cm) is denoted in the figure.

Upper right: the difference reconstruction. Bottom left: the conductivity distribution com-

puted using the approximation error approach; only the discretization error is taken into

account. Bottom right: the conductivity distribution computed using the approximation

error approach; both the discretization error and the geometrical modelling error are taken

into account.
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4.2 PUBLICATION II: ERRORS DUE TO DISCRETIZATION,

MODEL REDUCTION AND UNKNOWN CONTACT IM-

PEDANCES

Most of the current approaches to EIT treat the contact impedances

as known, fixed parameters. However, in practical measurements

they are always unknown and can change during the measure-

ments. One possible approach is to estimate the contact imped-

ances simultaneously with the conductivity [83,84]. The errors due

to unknown contact impedances have been studied in [85], and it

was shown that severe reconstruction errors result if the contact

impedances are not modeled accurately.

In this section, we employ approximation error approach for

errors due to reduced discretization and unknown contact imped-

ances. For the results concerning also errors due to truncation of

the computation domain, see Publication II.

4.2.1 Measurement configuration

The measurement target was a cylindrical measurement tank, see

top left Figure 4.2. The radius and height of the cylindrical tank

were 14 cm and 7 cm, respectively. Sixteen equally spaced elec-

trodes were attached to the boundary of the tank. Fifteen trigono-

metric current patterns were used, and the voltages were measured

between adjacent electrodes. The measurement tank was filled with

tap water and a plastic rod was placed into the water near electrode

1. The diameter of the rod was 5 cm. To simulate the variation of

the contact impedances, vaseline was brushed on to the surface of

electrodes 1 and 3.

4.2.2 Computation of the approximation error statistics

Statistics of the approximation error due to discretization and un-

known contact impedances were estimated as in Section 2.3.4. The

samples of the approximation error in the case of reduced dis-
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cretization and unknown contact impedances were obtained as

ε(`) = Uδ(σ̄
(`), z(`))− Uh(Pσ̄(`), z̃). (4.4)

The samples of the approximation errors in the case of approxi-

mation errors due to unknown contact impedances were computed

as

ε(`) = Uδ(σ̄
(`), z(`))− Uδ(σ̄

(`), z̃). (4.5)

The prior model for contact impedances was a gamma distribution.

Furthermore, the contact impedances were modelled as mutually

independent and identically distributed variables. The rationale for

choosing this skewed distribution model for the elements of z was

to choose a model that (i) has most of the probability mass on small

(positive) values and (ii) has a long tail in the larger positive val-

ues. This (ad hoc) choice models (roughly) the fact that the contact

impedances in measurement tanks and process vessels are usually

relatively close to zero for clean electrodes but may have signifi-

cantly larger values for contaminated electrodes.

The samples of the contact impedances z(`) were drawn from

the prior model. The ’inaccurate’ forward problems Uh(Pσ̄(`), z̃)

and Uδ(σ̄
(`), z̃) were computed using an approximative contact im-

pedance z̃ which was in this case the mean of the prior model. The

samples of the conductivity σ̄(`) were drawn from a proper Gaus-

sian smoothness prior.

4.2.3 Results

The MAP-CEM reconstruction with the forward model Uh(σ, z̃) is

shown in middle left Figure 4.2. Discretization errors and errors

due to unknown contact impedances have caused reconstruction

errors near the boundary of the tank. The MAP-CEM reconstruc-

tion with the forward model Uδ(σ, z̃) is shown in middle right Fig-

ure 4.2. In this reconstruction, the reconstruction errors are more

severe than when coarse discretization of the forward model was

used. The MAP-CEM estimate with the estimated contact imped-

ances (forward model Uδ(σ, zest)) is shown in bottom left figure.
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This estimate serves as the reference estimate with the conventional

noise model when the contact impedances are estimated and accu-

rate discretization is used [83,84,86]. The MAP-AEM reconstruction

with the forward model Uh(σ, z̃) is shown in bottom right figure.

As can be seen in Figure 4.2, the MAP-CEM reconstruction with

the forward model Uδ(σ, zest) is similar to the MAP-AEM recon-

struction with the model Uh(σ, z̃). This indicates that discretization

errors and errors due to unknown contact impedances can be com-

pensated efficiently for by the approximation error approach. The

computation time of MAP-AEM reconstruction was only 0.78% of

that of MAP-CEM reconstruction with estimated contact imped-

ances. Furthermore, the computation of the MAP-AEM estimate

is less complicated since contact impedances does not have to be

estimated.

4.3 PUBLICATION III: ERRORS DUE TO UNKNOWN DOMAIN

BOUNDARY

The inaccurate knowledge of the shape of the target body is a ma-

jor problem in biomedical EIT. Most of the available reconstruction

methods assume that the boundary of the target body is known.

As an example, consider EIT measurements of pulmonary function

from the surface of the thorax. In principle, the shape of the pa-

tient’s thorax could be obtained from other imaging modalities such

as computerized tomography (CT) or magnetic resonance imaging

(MRI). However, such information is often not available and there-

fore the reconstruction has to be computed using an approximate

model domain. The use of an incorrect model domain has been

shown to produce severe errors in the reconstructed conductivity

images, see [85, 87–89].

There are a few distinct approaches to compensate for the er-

rors caused by inaccurately known boundary. The method pro-

posed in [90,91] eliminates the errors caused by inaccurately known

boundary in 2D EIT by using the theory of Teichmuller mappings.

The extension of the method to 3D EIT was considered in [86]. Si-
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Figure 4.2: Top: The photograph of the measurement set-up. Middle left: The MAP-

CEM estimate with forward model Uh(σ, z̃) Middle right: The MAP-CEM estimate with

forward model Uδ(σ, z̃). Bottom left: MAP-CEM estimate with with forward model

Uδ(σ, zest). Bottom right: The MAP-AEM estimate with forward model Uh(σ, z̃).
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multaneous reconstruction of the conductivity and electrode move-

ment have been proposed for difference imaging in [92, 93]. These

approaches are based on a linearized perturbation model and have

been evaluated only for relatively small movements of the bound-

ary between the measurement states. Recently, it has been demon-

strated that the so called D-bar method (see e.g [94]), which is a

direct method based on a constructive uniqueness proof for two-

dimensional (2D) EIT [65], has some tolerance against domain mod-

eling errors [95].

In this section, the approximation errors due to unknown do-

main boundary and reduced discretization were reduced by em-

ploying the approximation error approach. The numerical results

are computed both with enhanced and complete error model. In

Publication III, the enhanced error model was used. Note that, the

numerical results in Publication III were computed based on simu-

lated and real measurements. In this section, the numerical results

are computed based on simulated data in order to compute recon-

struction error estimates. The same simulated measurements were

used in this section as in Publication III.

4.3.1 Computation of the approximation error statistics

Statistics of the approximation error due to discretization and un-

known shape of the boundary were estimated as in Section 2.3.4.

The samples of the approximation error due to unknown domain

boundary and reduced discretization were obtained as

ε(`) = Uδ(σ̄
(`), γ(`))− Uh(σ

(`), γ̃), (4.6)

where γ(`) is the parameterization of the boundary of the domain

Ω(`) and γ̃ is the parameterization of the boundary of the model

domain Ω̃ that is used in the inverse problem. In this case, the

model domain Ω̃ is a circular domain with diameter ρ.

The samples of the approximation error due to pure domain

boundary errors were obtained as

ε(`) = Uδ(σ̄
(`), γ(`))− Uδ(σ

(`), γ̃). (4.7)
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The relation of the representation of the conductivities σ̄ and σ

is of the form σ̄(x) = σ(T(x)), where

T : Ω 7→ Ω̃ (4.8)

is a mapping that models the deformation of domain Ω to Ω̃. Ob-

viously, the true deformation T between the measurement domain

and model domain is not known, and one has to choose a model

for the deformation. In the numerical examples considered in this

study T is chosen such that the angle and relative distance (be-

tween the center of the domain and the boundary) of a co-ordinate

point is preserved. Although this simple deformation model seems

to work well with the test cases we have considered, we note that

other transformation models may be used as well. More advanced

choices for the transformation model can be sought for from the lit-

erature of image registration, see e.g. [96]. The deformation of the

conductivity can be represented by a linear transformation

Pσ̄ = σ, (4.9)

where P is a matrix that interpolates the nodal conductivity (see

(3.9)) in Ω into a nodal conductivity in Ω̃ according to the deforma-

tion T.

For the construction of the prior model π(γ) for generation of

the samples γ(`), 150 chest CT images were segmented and sam-

ples of the boundary parameters were obtained. The sample based

Gaussian approximation for the prior model π(γ) was constructed.

The samples γ(`) corresponding to sample domains Ω(`) were drawn

from the prior model π(γ) and the samples of the conductivity σ̄(`)

were drawn from a proper Gaussian smoothness prior. The number

of the samples was Ns = 1000.

To compute the target models Uδ(σ
(`), γ̃) and Uh(σ

(`), γ̃), the

conductivity samples were mapped from Ω(`) to model domain Ω̃

by

σ(`) = P(`)σ̄(`), P(`) : Ω(`) 7→ Ω̃,

where P(`) = P(`)(γ(`), ρ) is a matrix that interpolates nodal con-

ductivity from Ω(`) to Ω̃ according to the deformation T, see (4.9).
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Note that in this section the number of samples Ns is higher

than in Publication III. In Publication III, the explicit prior model

π(γ) was not constructed and the statistics of the approximation

error was computed using the 150 CT samples. However, we we

have noticed that in the case of the complete error model the 150

samples is not enough since the convergence of the estimates of the

covariances Γσε and Γσ require more samples.

4.3.2 Results

The actual conductivity σtrue is shown in top left Figure 4.3. The

conductivity of lungs, background and heart are 1.2, 2 and 3.6 (ar-

bitrary units), respectively.

The reconstructions in Figure 4.3 were computed using the for-

ward model Uδ(σ, γ̃), i.e. accurate discretization was used in all

reconstructions. Thus in this section the pure domain modeling

errors are investigated, for the results concerning simultaneous dis-

cretization errors and domain modeling errors, see Publication III.

The MAP-CEM reconstruction computed using the circular model

domain Ω̃ is shown in Figure 4.3. This reconstruction show intoler-

able errors. The MAP-AEM reconstructions with the enhanced and

complete error models are shown in bottom left and bottom right

Figure 4.3, respectively. As can be seen, significant improvement

in the image quality is obtained by employing the approximation

error approach. The shape of the organs in MAP-AEM reconstruc-

tions are similar but the contrast is better in that computed with the

complete error model.

The computation times and relative estimation errors ∆σ for dif-

ferent estimates are shown in table 4.1. The relative estimation error

is computed as

∆σ =
|| Pσtrue − σ ||
|| Pσtrue ||

· 100% (4.10)

As can be seen, the computation times of the MAP-AEM estimates

are almost equal. The relative estimation error of the MAP-AEM

estimates are lower than that of MAP-CEM estimate. The relative
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estimation error of the MAP-AEM estimate with the complete error

model is smaller than that of MAP-AEM with the enhanced error

model. This is due to the fact that the estimated conductivity val-

ues of the MAP-AEM with the complete error model are closer to

the actual values of the conductivity. Feasible reconstructions can

be obtained using the approximation error approach with both the

enhanced and complete error models.

Table 4.1: The relative estimation errors ∆σ (equation (4.10)) and computation times for

different reconstructions.

Estimate Error model ∆σ Time (s)

MAP-CEM conventional 35.5 60.9

MAP-AEM enhanced 21.9 50.8

MAP-AEM complete 15.4 49.1

4.4 PUBLICATION IV: APPROXIMATIVE RECOVERY OF THE

SHAPE OF THE OBJECT

In the fourth publication, the approximative recovery of the shape

of the body based on the EIT measurements is proposed. The ap-

proximation error approach is employed in a novel way in which a

low rank approximation for unknown approximation error is esti-

mated simultaneously with the conductivity. After the estimation of

the approximation error, the shape of the target body is estimated

by using an approximate joint distribution model of the approxi-

mation error and the boundary parameterization. Furthermore, the

confidence limits of the estimated boundary parameterization are

computed.

4.4.1 Measurement configuration

The measurement phantom is shown in Figure 4.4. The phantom

consist of measurement tank filled with saline and agar organs. The

38 Dissertations in Forestry and Natural Sciences No 32



Review on the results

Figure 4.3: Upper left: The actual conductivity Upper right: The MAP-CEM reconstruc-

tion Bottom left: The MAP-AEM reconstruction with the enhanced error model Bottom

right: The MAP-AEM reconstruction with the complete error model.
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shape of the cross section of the tank was obtained by segmenting

a chest CT image. The measurement tank is vertically symmetric

and the height of the tank is 5 cm. To construct the phantom, heart

and lung shaped inclusions were made of agar and placed in the

measurement tank filled with saline of conductivity 3.0 mS cm−1.

The inclusions were constructed using vertically symmetric moulds.

The conductivity of the lung and heart targets were 0.73 mS cm−1

and 5.8 mS cm−1, respectively.

4.4.2 Simultaneous estimation of the conductivity and approxi-

mation error

The samples of the approximation error due to unknown shape

of the body were obtained similarly as in Section 4.3.1 using (4.7).

The model domain Ω̃ was a cylindrical domain with diameter ρ

and the same samples γ(`) for the parameterization of the cross

sections of sample domains Ω(`) were used as in Section 4.3.1. The

sample domains were vertically symmetric and the height of the

sample domains were 5 cm (same as the height of the measurement

domain). Thus no approximation errors due to truncation of the

computation domain were present.

The estimation of the approximation error is conducted as fol-

lows. Let λ1 ≥ λ2 ≥ . . . ≥ λm denote the eigenvalues of the covari-

ance matrix Γε and let {w1, . . . , wm} be the corresponding eigenba-

sis. Note that for the Gaussian approximation error

ε − ε∗ ∈ sp{w1, . . . , wm}.

Using this relation, the realization of the modeling error is decom-

posed to mean plus two orthogonal components (ε′, ε′′), that is

ε = ε∗ +
p

∑
k=1

αkwk

︸ ︷︷ ︸

ε′

+
m

∑
j=p+1

β jwj

︸ ︷︷ ︸

ε′′

. (4.11)

Using (4.11), the measurement model (2.15) is written in the modi-
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fied form

V = Uδ(σ, γ̃) +
p

∑
k=1

αkwk + ε∗ + ε′′ + e

= Uδ(σ, γ̃) + Wα + ε∗ + ε′′ + e, (4.12)

where W = [w1, w2, . . . , wp] (m × p matrix), α = (α1, α2, . . . , αp)T ∈
R

p, ε′ represents a low-rank projection of ε in the basis of principal

eigenvectors of Γε, i.e. dimension p is chosen (significantly) smaller

than m, and ε′′ represents the non-estimated part of the approxima-

tion error. The dependence of the measurement model (4.12) on the

boundary parametrization is embedded in the approximation error

ε = ε∗ + Wα + ε′′.
Our objective is now to construct an approximation for the pos-

terior density π(σ, α|V) using the measurement model (4.12) and

estimate both the conductivity and the projection coefficients α ∈
R

p.

To obtain a computationally efficient approximation π̃(σ, α|V),

we make the technical approximation that (σ, α, e, ε′′) are mutually

Gaussian and uncorrelated. Following the approach in [28], we

obtain approximate likelihood

π̃(V|σ, α) = N (V − Uδ(σ, γ̃)− Wα − ε∗ − e∗, Γε′′ + Γe)

and the approximate posterior density becomes

π̃(σ, α | V) ∝ π+(σ)π̃(V|σ, α)π(σ)π(α). (4.13)

By the properties of the eigenvalue decomposition, the prior dis-

tribution for the projection coefficients is π(α) = N (0, Γα), where

Γα = diag(λ1, λ2, . . . , λp).

Comparing the present approach to the previous use of the ap-

proximation error approach (see e.g. [28, 97]), the main difference

in the present approach is that the Gaussian approximation is pre-

marginalized only partially over the approximation error and part

of the approximation error is treated as unknown parameters.
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The computation of the MAP estimate from the posterior model

(4.13) amounts to solving the minimization problem

(σ, α)MAP = arg min
σ≥0,α

{
|| Lε′′+e(V − U(σ, γ̃)− Wα − ε∗ − e∗) ||2

+ || Lσ(σ − σ∗) ||2 + || Lαα ||2
}

, (4.14)

where the Cholesky factor LT
ε′′+eLε′′+e = (Γε′′ + Γe)−1, LT

α Lα = Γ−1
α

and Γε′′ = ∑
m
p+1 λjw

T
j wj.

4.4.3 Estimate for the boundary shape

Once the MAP estimation problem (4.14) has been solved, an ap-

proximate estimate for the boundary parameters γ of the actual

domain Ω are estimated. For this, we use the Gaussian approxi-

mation of the joint density of ε′ = Wα and γ and find the MAP

estimate

γMAP = arg max π̃(γ|ε̂′), (4.15)

given by

γ̂ = Γγε′Γ
−1
ε′ ε̂′ + γ∗, (4.16)

where ε̂′ = WαMAP and γ∗ is the prior mean of the boundary pa-

rameters. Furthermore, the posterior covariance is obtained as

Γγ̂|ε̂′ = Γγ − Γγε′Γ
−1
ε′ ΓT

γε′ . (4.17)

Note that the covariances Γγε′ and Γε′ need to be estimated based

on the Monte Carlo simulations. As previously said, the samples of

the approximation error ε(`) were obtained using (4.7). In order to

compute covariance matrices Γγε′ and Γε′ , the samples of the low-

rank representation of the approximation error were obtained as

ε
′(`) = WWT(ε(`) − ε∗). (4.18)

Note that if there would be also other sources of approximation

error than the unknown shape of the body (for example, discretiza-

tion), then approximation errors in the measurement model should

be separated. The separation of two approximation errors is repre-

sented in Section 4.1.2. By using the separation of approximation
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errors, the basis vectors for the approximation errors due to pure

domain modeling errors could be then computed and the approx-

imation error could be estimated. Furthermore, the joint distribu-

tion of the pure approximation error due to body shape and the

parameterization of the body shape could be constructed.

4.4.4 Representation of the conductivity in the estimated do-

main

The estimation (4.14) of the conductivity σ and the projection co-

efficients α is carried out in the model domain Ω̃. Once the MAP

estimates of σ, α and γ̂ have been computed, the estimated conduc-

tivity σ is mapped from the model domain Ω̃ into the reconstructed

domain Ω̂ (that corresponds to parametrization γ̂) by a linear inter-

polation

σ̂MAP = P̃σMAP, (4.19)

where P̃ implements interpolation from domain to another accord-

ing to the inverse T−1 of the domain deformation model (4.8).

4.4.5 Results

The MAP-CEM reconstruction using the correct measurement do-

main Ω (forward model Uδ(σ, γ)) is shown in upper right Figure

4.4. This reconstruction can be taken as a reference estimate, since

no approximation errors due to domain modeling are present. The

MAP-CEM estimate computed using a cylindrical model domain

(forward model Uδ(σ, γ̃)) is shown in middle left Figure 4.4. The

reconstruction show intolerable reconstruction errors. The MAP-

AEM reconstruction (forward model Uδ(σ, γ̃) + Wα) is shown in

middle right Figure 4.4. Note that this reconstruction is computed

using the cylindrical model domain Ω̃, however, the reconstruction

is mapped to the estimated domain corresponding to estimated pa-

rameter γ̂ using (4.19). The cross section of the actual domain Ω

is shown as gray patch in bottom Figure 4.4. The reconstructed

boundary corresponding to estimated parameter γ̂ is shown with
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solid line and 2 (a posteriori) standard deviation limits with dashed

lines, for details of computation of 2 standard deviation limits, see

Publication IV. As can be seen, the MAP-AEM reconstruction is

significantly better than the MAP-CEM estimate and the estimated

boundary shape is also feasible. Furthermore, the confidence limits

of the estimated boundary are also feasible. In particular, the actual

shape of the body is between the estimated 2 standard deviation

limits. It was also found that infeasible estimates are obtained if the

actual measurement domain has small probability with respect the

prior model π(γ), see Publication IV.
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Figure 4.4: Top left: The measurement phantom. Top right: The MAP-CEM estimate com-

puted using the correct computation domain. Middle left: MAP-CEM computed using the

model domain. Middle right: MAP-AEM computed using the model domain and mapped

to the estimated domain corresponding to estimated boundary parameters γ̂. Bottom: The

cross section of the actual domain Ω is shown as gray patch. The reconstructed boundary

is shown with solid line and 2 (a posteriori) standard deviation limits with dashed lines.
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5 Summary and conclusions

In this thesis, the approximation error approach was applied for er-

rors due to reduced discretization, unknown boundary of the body,

unknown contact impedances, and truncation of the computation

domain. Furthermore, the approximation error approach was writ-

ten in a novel way enabling the reconstruction of the conductivity

and shape of the target body.

The motivation of the research stems from the practical applica-

tions of EIT in which reduced forward models have to be often used

or the forward model contains unknown nuisance parameters. The

reduced forward models are used typically due to limited compu-

tational resources and time. For example, in process tomography

the reconstructions have to be typically computed within a few mil-

liseconds. Typical examples of the unknown nuisance parameters

in EIT are the unknown contact impedances and unknown param-

eterization of the shape of the body.

In Publication I, the errors due to reduced discretization and

errors due to partially unknown geometry were compensated for

by employing the approximation error approach. The approach

was verified with real measurements from a measurement tank. It

was found that the approximation error approach is useful in pro-

cess monitoring applications in which the reconstructions should

be computed in limited time and when the height of the surface of

the liquid in a process vessel is unknown. The main advantage of

the approximation error approach is that the the actual height of

the liquid does not have to be known. Approximative knowledge

of the height of the liquid is only required when the statistics of the

approximation error is estimated.

In Publication II, the approximation error approach was applied

for the errors due to unknown contact impedances, truncation of

the computation domain and reduced discretization. The results

were evaluated with laboratory measurements and also measure-
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ments conducted in a pilot scale factory. The results indicate that

these modeling errors can be compensated for efficiently. The solu-

tion of the inverse problem with the approximation error approach

is less complicated with less tuning (prior parameters) since the

contact impedances do not have to be estimated. Furthermore, the

computation time with the approximation error approach is only

fraction of that required with the conventional noise model.

In publication III, the errors due to reduced discretization and

unknown shape of the body were compensated for by employing

the approximation error approach. The computed examples con-

cerned the chest imaging application when the reconstructions are

computed using an approximate model domain. The approach

was evaluated with both simulated and phantom measurements.

It was found that both approximation errors can be compensated

efficiently for by using the approximation error approach. In this

study, the height of the model domain and actual domain were

equal, i.e. truncation errors were not present in the measurements.

However, this is not the case in clinical applications and the trunca-

tion of the computation domain should be modeled if the approach

is applied for clinical measurements. Furthermore, in reality the

cross section of the chest varies also with respect the vertical axis.

In this study, the samples of the actual computation domains were

obtained by segmenting 2D chest CT images. With clinical applica-

tions an atlas of 3D images might have to be used.

In Publication IV, the approximation error approach was writ-

ten in a form enabling simultaneous reconstruction of conductivity

and shape of the body. The boundary estimates and confidence

limits of the estimates were feasible, i.e. the actual boundary was

essentially between the estimated posterior uncertainty limits. An

interesting further study would be to compute the reconstruction of

the conductivity in two stages. First, estimate the conductivity and

the shape of the computation domain and then estimate the con-

ductivity using the estimated computation domain. This modified

approach could be applied also for other unknown parameters such

as unknown contact impedances. The simultaneous estimation of
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the nuisance parameters with the approximation error approach

could be also used with other inverse problems.

In many practical applications the absolute reconstructions are

rarely computed since the computation burden with accurate mod-

els is prohibitively large. Furthermore, the construction of the ac-

curate model requires accurate values of the nuisance parameters

or these parameters have to estimated simultaneously with the con-

ductivity leading to more complicated inverse problem with more

prior parameters. In the approximation error approach, the accu-

rate forward model is used only prior to the measurements when

the statistics of the approximation error is estimated. Furthermore,

the accurate values of the nuisance parameters are not needed; only

the prior model of the nuisance parameters is used in the estima-

tion of the approximation error statistics. In conclusions, feasible

estimates can be computed efficiently with the reduced forward

model in the inverse problem by employing the approximation er-

ror approach. Thus, it seems possible that the absolute EIT imaging

could be used in applications that have been difficult so far with

conventional noise models.
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Recently, the Bayesian approxima-

tion error approach for the treatment 

of the approximation and model-

ling errors in inverse problems has 

been proposed. The key idea in the 

approximation error approach is 

to represent not only the measure-

ment error, but also the effects of 

the computation model errors and 

uncertainties as an auxiliary ad-

ditive noise process. In this thesis, 

the approach is applied in electri-

cal impedance tomography (EIT) to 

compensate modeling errors due to 

reduced discretization, model reduc-

tion, unknown contact impedances 

and unknown shape of the body. The 

approach is evaluated with simulated 

and experimental data.

d
issertatio

n
s | 032 | A

n
tti N

issin
en

 | M
o

d
ellin

g E
rro

rs in
 E

lectrica
l Im

p
ed

a
n

ce T
o

m
o

grap
h

y

Antti Nissinen

Modelling Errors in 
Electrical Impedance

Tomography


	artikkeli1.pdf
	1. Introduction
	2. Electrical impedance tomography
	2.1. Statistical inversion in EIT
	2.2. Approximation errors
	2.3. The measurement protocol

	3. Results
	3.1. Discretization error
	3.2. Modelling error

	4. Discussion and conclusions
	References

	artikkeli2.pdf
	1. Introduction
	2. Electrical impedance tomography
	2.1. Measurement model
	2.2. Discretization and notation of the forward problem
	2.3. Bayesian approach to the EIT inverse problem
	2.4. Modelling error approach

	3. Methods
	3.1. Case 1. Discretization errors
	3.2. Case 2. Discretization errors, domain truncation errors and errors due to unknown contact impedances
	3.3. Reference method: reconstruction with estimated contact impedances
	3.4. Prior models of the conductivity and contact impedances

	4. Results
	4.1. Case 1. Discretization errors and errors due to unknown contact impedances
	4.2. Case 2. Discretization errors, domain truncation and errors due to unknown contact impedances

	5. Conclusions
	Acknowledgments
	References




