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ABSTRACT

Background. Function is one of the most important concepts and tools in mathematics. Its
applicability depends on both conceptual and procedural knowledge. However, there are few
studies of how these two knowledge types of function relate to each other and what could be
an appropriate pedagogical implication. Even to find an instrument to measure the
knowledge types independently from each other appears to be a hard task.

Aims. The research explored how conceptual and procedural knowledge of functions can be
measured, what is the relationship between them, and how the students’ ability to apply
functions within economic and other mathematical tasks depends on the two types of
knowledge. The outcome was related to the pedagogical philosophy applied to the study
population at the upper secondary school.

Methods. Data was collected at three different stages from 476 students in economics.
Confirmatory factor analysis was applied to develop tasks to measure three components:
“procedural knowledge of functions’, ‘conceptual knowledge of functions” and ‘the ability to
apply functions’. A structural equation modelling technique allowed integrating factor
analysis and regression analysis into one statistical model to study relationships. Even if
causal relations could not be proven, the analysis was suitable to study whether the relations
suggested in the model match the sample of data.

Results. A large group of subjects showed good procedural knowledge but modest
conceptual knowledge. Conceptual scores appeared even lower among those subjects who
showed poor procedural knowledge. However, all students who scored high in conceptual
tasks, scored also high in procedural tasks. Thus, the results support the genetic view that
procedural knowledge is a necessary but not sufficient condition for conceptual knowledge.
On the other hand, procedural knowledge alone seems to be insufficient for the student to be
able to apply functions. The educational background of the subjects might have fostered this
outcome. Interviews indicated that focus of the school teaching has been on simple
procedures without links to abstract conceptual knowledge.

Conclusions. The results refer to a quite polarized pedagogy concentrating on teaching
simple procedures on one hand or giving lessons on abstract definitions without appropriate
links to procedural knowledge on the other hand. This might reinforce the polarization
among students to so-called conceptual learners and procedurally bounded learners. To
develop practical pedagogical theories, it might be important to combine the systematic
analysis of conceptual and procedural knowledge of functions with a theory of knowledge
structures and scaffolding within constructivist views of teaching and learning in general.

Key words: conceptual knowledge, function, genetic view, procedural knowledge.
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TIIVISTELMA

Tausta. Funktio on yksi matematiikan térkeimpid peruskésitteitd ja tyokaluja. Sen
soveltaminen edellyttdd sekd konseptuaalisen tiedon etta proseduraalisen tiedon hallitsemista.
On vahdn tutkimuksia siitd, miten niitd kahta ndkokohtaa tulisi painottaa. Jo pelkdstdan
konseptuaalisen ja proseduraalisen tiedon mittaaminen on haasteellista.

Tavoitteet. Tutkimuksessa selvitettiin, millaista konseptuaalista ja proseduraalista tietoa
oppilaat liittdvat funktioon kasitteeseen, miten néita tiedon lajeja voidaan mitata, mika on
niiden keskindinen suhde, ja miten ne vaikuttavat oppilaan kykyyn soveltaa funktioita
taloustieteissa. Tulokset suhteutetaan kohdejoukon samaan lukio-opetukseen.

Menetelmit. Kohdejoukkona oli 476 taloustieteen opiskelijaa, joita mitattiin kolmessa eri
vaiheessa. Konfirmatorisen faktorianalyysin avulla kehitettiin kolme eri mittaria: funktioon
liittyvan proseduraalisen tiedon mittaaminen, funktioon liittyvan konseptuaalisen tiedon
mittaaminen, sekd kyky soveltaa funktioita. Naiden vélisten suhteiden selvittdmiseksi
sovellettiin strukturaalisen mallintamisen tekniikkaa.

Tulokset. Kohdejoukon enemmistolld proseduraalinen osaaminen oli melko vahvaa, mutta
konseptuaalinen osaaminen vaatimatonta. Proseduraalista tietoa huonosti hallinneilla
konseptuaalisen tiedon hallinta oli vieldkin vaatimattomampaa. Sen sijaan kaikilla
konseptuaalisen tiedon hallinneilla my6s proseduraalisen tiedon hallinta oli korkealla tasolla.
Tulokset tukevat geneettistd nakemystd, jonka mukaan proseduraalinen tieto on vélttaimaton,
mutta ei riittdva ehto konseptuaalisen tiedon syntymiselle. Yksinomaan proseduraalinen tieto
ei takaa my0skaén sitd, ettd oppilas osaisi soveltaa funktiota, vaan hanen on hallittava my6s
konseptuaalinen tieto. Oppilaiden lukiossa saamalla matematiikan opetuksella oli ilmeinen
vaikutus tuloksiin, silldi haastattelut paljastivat opetuksen keskittyneen yksinkertaisin
proseduureihin vailla pyrkimyksia linkittaa niita kasitteelliseen tietoon.

Johtopditokset. Tulokset viittaavat polarisoituneeseen matematiikan opetukseen, missa
yhtdaltd harjoitellaan yksinkertaisia proseduureja ja toisaalta kasitellddan luentomaisesti
abstrakteja asioita linkittamattd niitd kayttokelpoiseen proseduraaliseen tietoon. Tama saa
luultavasti aikaan polarisoitumisen myds oppilaiden oppimistyyleissa: ns. konseptuaaliset
oppijat vs. proseduureihin sidotut oppijat. Edelliset pyrkivat ymmartaimaan kasitteet vailla
kiinnostusta niiden soveltamiseen, kun taas jalkimmaiset opettelevat ainoastaan
yksinkertaisia proseduureja pyrkiméttd ymmartamaan niiden pohjana olevia Kkasitteita.
Kestdvien ja elinvoimaisten pedagogisten kayttoteorioiden kehittiminen edellyttaa
matematiikan konseptuaalis-proseduraalisten tietorakenteiden systemaattista analyysid seka
samalla sen linkittdmista tieto- ja oppimisteorioihin.

Avainsanat: geneettinen nakemys, funktio, konseptuaalinen tieto, proseduraalinen tieto.
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1 Introduction

As a lecturer in mathematics I have noticed that students struggle with their courses in
economics because of their lack in mathematical understanding. They do not, for
example, understand the meaning of the derivative or the relation between time and
interest rates even though they have learned at school to make mechanical derivations
and to use a calculator. When thinking of the basic reasons behind those problems, it is
especially the poor knowledge of the concept of function that might cause the most
problems among students. Because the function is a typical example of a mathematical
object, having both conceptual and procedural features, studying the relation of those
two knowledge types in more detail was a natural choice. A recent study by Haapasalo
and Kadijevich (2000) that includes a discussion of pedagogical approaches offers a solid
framework theory to carry out empirical studies. Having access to a large group of
students gave an opportunity to collect a large sample for the analysis to be applied in
quantitative research.

In addition to analyzing students’ knowledge of functions, it was interesting to find
out how the pedagogical approach the students met at school could explain the findings
from the statistical analysis. Would the analysis reinforce my experiences as a
mathematics lecturer that most of the students focus their main attention on mechanical
algorithms and procedures without aiming to understand the mathematical concepts?
Designing a statistical analysis based on previous studies in mathematics education and
judging the outcome through the lenses of qualitative interviews seemed to be a suitable
approach to investigate this phenomenon.

After establishing the Background and Aims of the study, the quantitative and
qualitative Methods are represented. The Results have been established with the
statistical data and are therefore represented in detail, whilst the Conclusion part
discusses the pedagogical implications of the findings in more general level, giving also
suggestions for further studies.



2 Background

2.1 THE DUALITY OF MATHEMATICAL KNOWLEDGE

There is a duality of mathematical knowledge: knowing how vs. knowing why. Different
labels that are applied for this polarisation are not restricted to mathematics, but seem
important in questions of acquisition in general (Scheffler, 1965), (Hiebert & Lefevre,
1986). After discussing this duality by using the example of the function, the appropriate
terminology to be used in this dissertation will be established.

Having appropriate knowledge of the concept of the function is probably one of the
most important requirements in the study of mathematics and also within fields of
research where concepts are explained in mathematical terms as in engineering,
economics and finance. Functions are used to describe relationships between variables
and for problem solving purposes. Dubinsky and Harel (1992) claim that the concept of
the function is the single most important concept from kindergarten to graduate school.
Despite agreement on the importance of functions in compulsory school, students at the
bachelor’s level seems to struggle with problems involving functions. Numerous
concepts within the field of economics are explained or expressed by functions
represented graphically or by algebraic' expressions. As an example, students have
problems with concepts like present value and internal interest rate in finance. Systems of
equations and sequences are frequently used in finance, differentiation in social
economics and so on. Examples can also be found within the field of statistics where tests
based on distributions can hardly be understood without a reasonable idea that the
distribution is in fact a density-function. It seems obvious that the student must be able to
put the adequate meaning into the concept of a function to be able to understand
economics and statistics.

The following task in derivation, as a part of a larger test, was given to 200 economics
students:

Figure 2-1 represents two graphs in the same coordinate system. One belongs to the function
f(x), and the other to f '(x). Decide which of A and B that belongs to f(x) and which belongs to
f'(x). Explain how you arrived at your result. You can refer to A and B in your answer. It is not
necessary to sketch the graphs.

! Functions expressed in terms of polynomials or roots are denoted algebraic functions. Other functions
such as exponential, logarithmic and trigonometric functions sometimes are called non-algebraic
functions (Chiang & Wainwright, 2005). In the test used in this thesis most functions are algebraic.

2
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Figure 2-1. The graphs of a function and its derivative.

The intention of this task was to test to what extent the students manage to answer a
question about the relationship between a function and its derivative without
information of the formula for the graph. In other words, the ability to interpret the
graphs functions without the underlying algebraic processes used to draw the graphs.
Many students made an assumption for an algebraic expression for one of the functions.
A typical answer was that A was the graph of the function 1/x and, since B does not look
like the derivative of 1/x, then B had to be f(x). Others, who gave the correct answer,
provided adequate explanations without any assumptions about processes. The example
may serve as a reminder of the kind of competence students often seems to struggle with
in other disciplines than mathematics, such as economics. Very often, a phenomenon is
explained by a text referring to a graph, and no algebraic expression is given. The above
discussion serves as a background for the rationale to look at conceptual knowledge as a
factor that explains the ability to handle problems involving functions without being bound to
processes.

It is a common opinion among researchers in mathematics education that the notion
of numbers emerges through counting (Nantais, Herscovics, & Bergeron, 1984).
Consequently, the conceptual schema is constructed through procedures. Piaget’s view is
that learning begins with actions on already conceptualized concepts and after the
procedures are internalized, the individual will reflect on this procedure and gain new
conceptual knowledge (Baker & Czarnocha, 2002). Piaget can thus be interpreted as
support for the genetic view? (Haapasalo & Kadijevich, 2000; Sfard, 1994). The thought is
that the procedures result in an outcome that needs explanation and therefore stimulates
the learner to reflect on the result (Byrnes & Wasik, 1991).

The duality in conceptualisation is also referred to as procedural and conceptual
knowledge (Hiebert & Lefevre, 1986), where procedural knowledge is associated with the
ability to perform procedures, while conceptual knowledge relates to knowledge of
relationships. Procedural knowledge relies very much on computational skills and
utilisation of procedures within different representation forms. As opposed to conceptual
knowledge, procedural knowledge does not require an in-depth understanding of the

2 Genetic view: Procedural knowledge is a necessary but not sufficient condition for conceptual
knowledge (see p. 18).



underlying concept. One way of distinguishing between the two is that procedural
knowledge often relies on automated procedures and unconscious steps, while
conceptual knowledge requires conscious thinking. Hiebert & Lefevre (1986) divide
procedural knowledge in two, knowledge of forms on one side and knowledge of
algorithms and rules on the other. Knowing forms means knowing the use of symbols
and legal syntax. A student who possesses this aspect of procedural knowledge would be
aware that the expression f(x)=2x-1 is acceptable, while f3=x /() is unacceptable.
Knowledge of forms does not include knowledge on how to perform calculations or
interpretations of the expressions, but rather being able to separate right from wrong in
use of symbols. The other aspect of procedural knowledge relates to algorithms, which
are step-by-step procedures. The steps are performed in a sequential manner, and the
action to be taken on each step is determined by the state of the former. Each step can be
managed separately, more or less unrelated to other parts of the task. Conceptual
knowledge is something that is rich in relationships and in which linking relations are as
important as each piece of information itself (Hiebert & Lefevre, 1986; Hiebert & Wearne,
1986). Two categories of relations between mathematical knowledge are established. The
first is the primary level, in which the conceptual knowledge consists in recognizing the
relationship between two pieces of information at the same abstraction level. For
example, in the case of functions, the students may understand how to draw a graph and
how to calculate function values as two separate skills, but the insight that the algebraic
expression and the graph represent the same mathematical concept, is the nature of
conceptual knowledge at primary level.

The following small example is intended to illustrate how students typically approach
mathematical problems and how their suggested solutions can make us reflect upon how
they are thinking. It is not meant to give a complete picture regarding the problem of
understanding mathematics, but gives an idea of how questions related to procedural or
conceptual knowledge are embedded in “everyday” examples. The example addresses
many issues that are discussed later in this dissertation, and hopefully gives an idea of
how this study was motivated from experiences.

In an assessment, the students were given the following rational inequality:

2
Xx-4

<2 @.1)

Not surprisingly, many had a tendency to multiply equation (2.1) by x-4 on both sides, as
shown in the left column in Figure 2-2.

Wrong solution: Correct solution:
2<2(x-4) 2 2220
2<2x-8 X -4
2x =10 2 _2(x—4)SO
x=5 X -4 X -4
2—2X+8SO
X -4
—2X+1050
X -4
X<4o0rx=5

Figure 2-2. Different solution strategies for rational inequalities.
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Our first reaction, as teachers, is that these students have some lack of knowledge, but
what kind of knowledge is missing?

If we consider a student who suggests the wrong solution, what questions can be
raised regarding his or her knowledge? We know that such students do not know how to
solve the problem correctly. The reasons might be that they do not remember that one
has to take care of different possibilities of positive or negative values when multiplying
by a term, or are misled by associations to solution strategies for rational equations. Some
students have problems to reflect on an answer and detect inconsistencies in the result.
Maybe they are not able to detect that the properties of the answer are inconsistent with
the given problem. It seems that some have not developed control mechanisms to control
that the solution should meet certain properties. It might be that they are not used to
asking themselves questions like: What are the properties of the sign of x-4? How does
this relate to the inequality sign when both sides are multiplied with this expression? One
might suspect that many students avoid reflecting on the outcome of their solution. If this
is the case, maybe emphasis should be directed towards learning strategies or teaching
practices.

What can we deduce from a correct solution? Does a correct solution ensure us that
the student is familiar with rational expressions or is it just a confirmation that the
student remembers all the procedural steps involved in the solution? How do we develop
assessments to confirm that a student has a deeper understanding of the problem than
just being able to perform an algorithm, and what do we mean by “deeper
understanding”? A teacher would maybe explain this problem by use of a graphic
solution in addition to the algebraic solution as shown in Figure 2-3.

4
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Figure 2-3. Graphic solution of inequation (2.1).

One could ask to what extent students will benefit from such an explanation if they have
problems to interpret the graph or with realizing that the algebraic representation and
graphic representation are just different forms of representing the same mathematical
problem. The example raises questions about skills, ability to reflect on properties as well
as the ability to see connections between different representation forms. Perhaps teachers
assume that students understand a mathematical concept, since they perform well on
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algebraic skills and in reading from or drawing the graph. It might be that this type of
knowledge is insufficient when it comes to relating the mathematical concept to another
field as economics.

The example given in Figure 2-4 and the equation (2-2) illustrates two representations
of the same mathematical problem. A student might be capable of operating on both
representations without grasping the idea that this in fact represents the same
phenomenon. The ability to calculate f(x) by taking the square of different values for x,
and the ability to read values for the same function from the graph are consequences of
having procedural knowledge, while the realization in itself that these two
representations are the same, relates to conceptual knowledge.

f(x) = x? (2-2)

Figure 2-4. Graph of the function (2-2).

Another issue is the abstractness®in the two representation forms. Both are purely
mathematical and are not connected to practical applications or any other kind of actual
reality. In this regard, we may say that they are equal with respect to abstractness. On the
other hand, they have different properties. The expression f(x)=x? carries a more exact
description of the procedure to calculate function values while the graph is more suitable
to immediately express properties of monotony or optimization. Similar comments can
be made for other representation forms as textual and tabular representations. Especially
tables, but also text, are rich in details, but less suited as means of recalling properties of a
mathematical phenomenon. Also for these representation forms, the ability to understand
the isomorphism between them may be regarded as a characteristic of conceptual
knowledge. Hiebert and Wearne (1986) claim that mathematical incompetence often is
due to absence of connection between conceptual and procedural knowledge. It is
possible that a student is capable of adding two functions given by an algebraic

3 Hiebert & Lefevre describe abstractness as the extent to which knowledge is freed from specific
context.
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expression and also that the same person can do the same addition if the functions are
represented by graphs, but without realizing that these two operations are the same.
According to Hiebert & Wearne (1986) it is the link between the different representations,
earlier referred to as isomorphism, which is the core of conceptual knowledge.

Like many mathematical concepts, functions can be represented in different
representation forms, such as graphs, algebraic expressions, tables or words (Janvier,
1978). Different representation forms may represent the same object. Whereas a graph is
superior with respect to simplicity, when compared to a table or an algebraic expression,
it does not always contain the same level of details as the two others. Hence the
possibility to perform operations may depend on the representation.

One way of looking at these different representation forms is as means for
communicating. Sfard (2001) presents a communicational approach for learning, where
thinking can be conceptualized as a case of communication with oneself or others. She
suggests that a student whose discourse is objectified has a good sense of isomorphism
between different symbolic systems. When communicating with others, the student will
shift back and forth between the different representations, keeping the same goal or
object in mind.

Another aspect of conceptual knowledge is the reflective level where relationships are
constructed at a higher level of abstraction, less tied to context. A fact is seen as a part of
conceptual knowledge when the individual is able to recognize properties or connect the
fact to other elements of knowledge possessed by the individual (Hiebert & Wearne,
1986). Reflections that are not connected to any particular context concern whether
mathematical properties are met or not. For example, if one gets a negative function
value for a non-negative function, reflective knowledge is important to detect errors
caused by erroneous calculations. Of course, similar reflective abilities will play a part
when we talk about applications, for example in an economic context. In this study, this
characteristic will be related to the ability to apply functions.

According to Sfard (1991) structural understanding of a concept is necessary if we
want to be able to use this concept to develop more complex concepts. You need to have
a structural understanding of natural numbers to be able to perform operations on
rational numbers. The student must be able to see the concept as one unit to be able to
perform operations on the next level. This way Sfard suggests a direction of development
from operational to structural in stages that she calls operation, condensation and
reification. When a person has passed through these stages, he or she will have the basis
to develop a structural understanding of the concept. This is a requirement that the
person will be able to work at an operational level on a more advanced concept in which
the first appears as a “building block”. Others (Byrnes & Wasik, 1991) support this view
in claiming that procedural knowledge is dependent on existing conceptual knowledge
and is achieved by use of procedures. Hence concepts can be thought of as forming a
chain with respect to complexity in the same way as natural numbers are used to operate
on rational numbers, which in turn are used to develop the understanding of real
numbers and so on. If the success of moving one step forward in this chain of concepts
depends on a structural understanding of the former concept, it should be possible to
measure, to some degree, whether the student understands the concept at a structural
level. An example of two concepts related in this way is that of function and differential
equation. In working with differential equations functions are thought of as units that are
seen as a single object or entity. In Sfard’s (1991) description of operational and structural
understanding, the attention is directed towards specific mathematical concepts. Natural
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numbers are to be understood through phases of the previously mentioned stages of
operation, condensation and reification. Reification of the concept of natural numbers
must take place before one can operate on rational numbers. In this paradigm,
operational understanding is a necessary condition to achieve structural understanding
when the discussion is restricted to the same mathematical object. On the other hand,
structural understanding of natural numbers is a necessary condition to achieve
operational understanding of a more abstract concept, and in this perspective structural
understanding precedes operational understanding of a more abstract* mathematical
concept.

Herscovics & Bergeron (1983) describe a model of development of understanding
with four levels; intuitive understanding, procedural understanding, abstraction and
formalization which is essential in construction of conceptual schemas. As with Sfard’s
description of operational understanding, condensation and reification, the procedural
level is a necessary condition for abstraction. When the reification has occurred, then the
learner will be able to think about a concept as a unit that can be treated independently of
the preceding operational steps. The concept can be treated and managed as a whole and
has been interiorized into the students’ knowledge base. Obviously the separation
between operational and structural understanding is not as strictly distinct as the current
discussion might suggest, it is rather the question of degrees of understanding.

Breidenbach et al. (1992) talk about the action and process conceptions of functions.
The action conception of functions is a mental or physical manipulation of objects while
the process conception of functions involves the ability to think about functions as a
transformation from one kind of object, resulting in another kind of object. The
description of an action conception is comparable with operational understanding and
procedural knowledge as it involves such abilities as inserting numbers into algebraic
expressions and calculating results. On the other hand, a person with a process
conception will be able to combine the process with other processes, reverse processes
and understand notions such as “one to one” and “onto”. The process conception of
functions addresses a deeper understanding of functions, but it does not primarily
address the role of seeing relations, which is emphasized by Hiebert & Wearne (1986) as
typical for conceptual knowledge. There is however a clearer parallel to structural
understanding as described by Sfard (1991). Breidenbach et al. (1992) say that an action is
interiorized to become a process when the action can entirely take place, or being
imagined in the mind of the subject without necessarily running through all of the steps.
They say, “When it becomes possible for a process to be transformed by some action,
then we say that it has been encapsulated to become an object”. They also emphasize the
necessity of going from an object back to a process, de-encapsulation. In fact they discuss
ways of thinking about functions rather than stages in a conceptual development.

Davis (1992) postulates a theory that the feeling of understanding is something you
get when you manage to fit an idea into a framework of already embedded ideas. From
this view, one might deduce that if the ideas that are fundamental for the idea of
functions are not completely assembled, then students will have problems with the idea
of a function. Assuming that the concept of function is explained to be something that
describes a relation between variables, it will be difficult for the student to get a feeling
what a function is without being familiar with the concept of a variable. Similarly, if the

4 The term “abstract’ is used to mean ‘being more difficult to relate to a context’.
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student has not encapsulated the idea of a function, the student is unlikely to understand
derivation.

While mathematics can be regarded as a subject that can be understood operationally
or structurally, Skemp (1976) asks whether we are indeed talking about two subjects. He
argues that what constitutes mathematics is not the subject matter, but a particular kind
of knowledge about it. Since the two kinds of knowledge are so different, he does not
only distinguish between instrumental and relational understanding, but also between
instrumental mathematics and relational mathematics. Learning instrumental
mathematics is about learning a number of plans on how to get from the starting point to
the finishing point, while learning relational mathematics consists of building a
conceptual structure from which an unlimited number of plans makes it possible to get
from any starting point to any finishing point within the structure. Even if learning
relational mathematics is hard, it is applicable to a variety of situations while learning
instrumental mathematics is limited and makes it difficult to correct mistakes.

According to Breidenbach et al. (1992), many students do not have much
understanding of the concept of function since they do not seem to be able to construct
processes in their minds and use them to think about functions. Their findings suggest
that the students” way of thinking about functions is influenced by use of computers, and
that students tend to move from action to process conception after working with
functions in a computer environment for a while. Their study revealed that the students
were looking for a process, but they were not good at finding or constructing the process.

2.2 TERMINOLOGY

This dissertation relates to different subject areas, which require a clarification of the
terminology. The term ‘concept’ is used in three different contexts. First, the
mathematical concept is function. The term ‘concept of function’ will be established as the
present study concerns knowledge of the mathematical concept of function. Instead of
referring to ‘conceptual (resp. procedural) knowledge of the concept of function’, the
term conceptual (resp. procedural) knowledge of function is used. Second, in factor analysis
and in structural equation modelling, it is common to denote phenomena that are
represented by factors as concepts. The idea is that if there is an underlying level of
conceptual knowledge of functions, this will be reflected in the factor. A high score in
conceptual knowledge will cause a high score on the corresponding factor that represents
it. Third, and which is most important, in mathematics education the term concept
appears as an element of ‘conceptual knowledge’, referring to a type of knowledge with
certain characteristics. This needs a thorough discussion.

The duality knowing how and knowing why has been analysed by numerous
researchers. There is not a sharp distinction between the two, but both categories have
some characteristics that separate them. Dualities seem to fall into two categories with a
lot of similarities (Table 2-1).



Table 2-1. Terms found in literature to name the two categories.

Operational understanding | Structural understanding Sfard (1991)

Instrumental Relational understanding Skemp (1976), Mellin-Olsen

understanding (1981)

Fragmented conception Cohesive conception Crawford et al. (1994)

Syntactic Semantic Nesher (1986)

Procedural knowledge Conceptual knowledge Hiebert & Lefevre (1986),
Haapasalo & Kadijevich (2000)

The main idea of Sfard (1991) is that a mathematical concept, when understood
structurally, can be seen and managed as a single unit or an object, without concern with
the operations that lead to the ’structural understanding’. In this view ‘operational
understanding” precedes structural understanding, and reflects the student’s ability to
perform operations such as calculations. One could say that operational understanding
reflects the ability to perform algorithms, regardless of relations to other mathematical
topics and relations to previous knowledge and so on, while structural understanding
has to do with relational issues. These ideas are quite similar to the distinction between
instrumental understanding and relational understanding (Mellin-Olsen, 1981; R. R.
Skemp, 1976). The former is seen as a learning strategy where the latter aims for rules
instead of relations and structures. In the distinction of (Crawford et al., 1994) the
‘fragmented knowledge’ consists of knowledge about rules and formulas, whilst the
‘cohesive conception” concentrates on seeing concepts as a whole.

Having assumed that ‘understanding’ refers to the individual’s control over his/her
process of knowing, Nesher (1986) made a distinction between ‘learning algorithms” and
‘learning towards understanding’, pointing out that ‘algorithmic performance’ and
‘“understanding’ can only be examined separately after the learning has been completed.
Based on a long-term analysis, Haapasalo and Kadijevich (2000) suggest the following
dynamical characterizations for conceptual and procedural knowledge:

e Procedural knowledge denotes dynamic and successful use of specific rules,
algorithms or procedures within relevant representation forms. This usually
requires not only knowledge of the objects being used, but also knowledge of the
format and syntax required for the representational system(s) expressing them.

o Conceptual knowledge denotes knowledge of particular networks and a skilful
“drive” along them. The elements of these networks can be concepts, rules
(algorithms, procedures, etc.), and even problems (a solved problem may intro-
duce a new concept or rule) given in various representation forms.

These characterisations depart from the conventional view of Hiebert and Lefevre (1986)
that procedural knowledge would mean only rules or algorithms, represented mainly
with symbolic forms, and conceptual knowledge would mean more or less formal
declarative knowledge with definitions. As procedural knowledge, especially in its
spontaneous informal form, can be expressed also semantically and conceptual
knowledge, especially in its formal form, syntactically, the dynamic characterisation is
more general and open than that of Nesher (1986). The term “concept’ is actually defined
implicitly: it can be a knot, a link of a network, or even a network of other concepts. In the
last case we often speak about “conceptual field”.
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Haapasalo and Kadijevich (2000) give a comprehensive bridging analysis of how
these characterizations improve researchers’” views and how they fit the modern
paradigm of teaching and learning. Furthermore, they emphasize that procedural-
conceptual knowledge distinction is at least person, context and content dependent.
Hence a general classification between procedural and conceptual knowledge based on
empirical studies seems unrealistic. Despite the attention given to the nature and
relationships between procedural and conceptual knowledge, studies where procedural
and conceptual knowledge is assessed from large groups of learners seem to be absent.
Because conceptual and procedural knowledge cannot be measured directly, they see it
appropriate to try to design conceptual tasks and procedural tasks and to study students’
success in those tasks.

Because of the reasons above, it is appropriate to use the terminology of Haapasalo
and Kadijevich (2000) to form the theoretical basis of the empirical studies in this
dissertation. Furthermore, their theory gives a solid framework to discuss how
conceptual and procedural knowledge relate to each other or depend on each other and
which are the pedagogical implications. Their literature analysis reveals four views
among researchers, to be represented in Chapter 2.5 with their pedagogical implications
‘educational approach’ vs. “developmental approach’.

2.3 PROCESS AND PROCEPT

Gray and Tall (1994) make a distinction between a “process’, the cognitive representation
of a mathematical operation, and a “procedure’, which is the algorithm for implementing
a process. One process can be implemented by several procedures. For example, to
calculate values for a function by putting a value of a variable into an algebraic
expression and reading the functions values from a graph, can be regarded as two
procedures to carry out the same process. A process does not need to be carried out. It is
rather the cognitive representation of a mathematical operation that represents the
process. Concepts are processes that are encapsulated, in other words, it is the process
itself that is encapsulated as the concept. The concept of whole numbers is, according to
Gray and Tall, strictly bound to the process of counting and it is the process of counting
which is encapsulated as numbers. This is a slightly different orientation than Sfard’s’
(1991) theory of reification. Her claim is that children’s learning of whole numbers will
begin with the process of counting, the operational phase. After passing through the
stages of condensation, and finally reification, the child is capable of thinking of whole
numbers without being bounded to the processes from the operational stage. Even if the
two views described above do not represent strictly different views on what is meant by
conceptualization, it raises an interesting question. Should the process itself be regarded
as a part of the structural understanding? It might be difficult to answer this question
regardless of the situation we are studying.

Gray and Tall (1994) introduces the term procept, which represents a link between
three components, symbols, process and object. The symbols are representations that
serve as triggers for carrying out procedures, and also make it possible to overcome the
limitations of short-term memory. In terms of functions, we might say that f(x) = 2x is a
symbol that represents both the object of a function as well as the process of multiplying
an argument by two. The amalgam between the symbols, the process and the object, is
called an elementary procept.
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symbols

process

object

Figure 2-5. Symbols, processes and object as the components of an elementary procept.

In fact flx) = x + x, is another symbolization that represents the same object. Thus a
procept is in fact a class of elementary procepts as different symbols may represent the
same object. Figure 2-6 visualises an idea on the how the term procept is linked to
symbols, processes and object.

symbols symbols symbols
process process process
[
object

Figure 2-6. Procept consisting of several elementary procepts linked to the same object.

Even if the same symbols represent both objects and processes, some symbols are more
directed towards processes as descriptions of procedures than others. If we think of a
graph as a sign that represents a function, then this sign is easier to remember than an
algebraic expression. In other words, it is appropriate to overcome problems with long
term-memory. On the other hand, a graph is not a carrier of procedures in the same way
as an algebraic expression or a table. Think of standardised normal distribution. It is easy
to remember a picture of the bell shaped graph, but it is not as easy to remember the
formula for the same function, or a table of values of probabilities. The formula, however,
describes a much more precise algorithm for calculating probabilities.

Can the notion of procept help to clarify our view on the link between procedural and
conceptual knowledge of functions? If the symbols are the glue linking processes with
objects, then a representation of a function can, in a similar way, be regarded as the glue
between procedural and conceptual knowledge. Instead of talking about the classes of
elementary processes, one could talk about the classes of representations.

Although teachers and textbooks often focus on algebraic expressions, a text or table
can represent a function, too. A text might often describe a function in terms of
procedures and the functions properties. When we say that a total cost function is linear
and provides values for fixed cost and variable costs, then this text can be seen as a
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symbol that contains information about a process, as for example how to find the total
cost for a given number of units. A textbook in statistics normally contains a table of
probabilities derived from a standardised normal distribution. Given the row and the
column in the table, the process used to find a probability is trivially easy.

We may, in other words, regard different representation forms as a different form of
symbolism to describe processes that represent one object. In this manner, the procept of
function can be a useful paradigm to discuss knowledge of functions. Figure 2-7
illustrates an attempt to adapt the idea of a procept into the subject that are studied in
this dissertation by regarding different representation forms as different symbolisms. For
a specific function, a representation contains information of either procedures or
properties, or a mix of both. One can think of algebraic representations as typical carriers
of procedural information and graphic representations as typical carriers for conceptual
properties.

Going back to the question on whether the process itself is a part of the object or
whether the object is something that can be understood independent of the from process,
we can think of children’s conception of natural numbers. The process of counting to
three as well as the process of measuring something with length three, both represent the
object three. If the process of counting itself is encapsulated as the object, then the same
can be said to be true of the process of measuring. Realizing the isomorphism between
those is something more than regarding them as separate. For the idea of elementary
procepts to make sense, the boxes in Figure 2-7 must be also associated in a horizontal
direction, meaning that a deeper conceptual understanding is not only characterized by
the encapsulation of procedures but also of seeing relations.

algebraic graphic textual tabular
representation representation representation representation
of function of function of function of function

algebraic operation
of function

graphic operation
of function

textual operation
of function

tabular operation
of function

Figure 2-7. An example of how the procept of function can be seen as four elementary procepts.

The object of function
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2.4 THE GOAL OF LEARNING MATHEMATICS

The question “What should be the goal of mathematics teaching?” seems to trigger a
debate on the importance of “conceptual knowledge” vs. “computational skills”. What
does it mean that computations will be made by computers and calculators? What does it
mean to understand what kind of calculations to do (Resnick & Omanson, 1987)?
Regardless of whether procedural knowledge is a goal in itself, how important is it to
have conceptual knowledge linked to procedural knowledge? Neither procedural nor
conceptual knowledge is probably the goal for a non-mathematician. His or her
motivation for learning mathematics is to be able to apply mathematics in practice or
maybe in another academic field. This raises the question of how different kinds of
knowledge types have an effect on the ability to apply mathematics.

The next question is directed towards the consequences of teaching practices and
learning strategies. It is important to reflect on whether extended knowledge on the
research questions that are addressed can give some advice on how to improve teaching
practices. Are skills a necessary condition for understanding? If so, how should this
influence our teaching practices? Perhaps the ultimate question we should ask ourselves
is how should we “teach for understanding”? A study by Kadijevich and Haapasalo
(2001) shows that procedural- conceptual links can be promoted through learning
activities. The considerations in Chapter 2.5 show that the two knowledge types must be
somehow related in every learning process and it is the pedagogical framework theory
that matters (e.g. developmental or educational approach). Not only teaching practices,
but also students” approaches to learning, may have an impact on the learning outcome.
There is reason to believe that some students focus on memorization of procedures rather
than looking for relations. One could say that the procedural knowledge is very often what
they are looking for. If this assumption is true, at least for some students, we should think in
terms of how the student’s attention could be drawn towards deeper conceptual knowledge.

According to Resnick and Omanson (1987) a recent claim among mathematic educators is
that “there will be little need for highly practiced computational skill in the future, and that
instructional focus on intentional skills is therefore misplaced”. This claim addresses two
questions. One question is whether the first part of the sentence is true; do we really see a
tendency toward a society in which highly computational skills are redundant? The other is
whether the conclusion that the focus on skills is misplaced is correct.

There is little doubt that the number of computers and calculators is increasing, but so
is also the amount of calculations to be carried. A modern car today calculates fuel
consumption, temperature and average speed and a lot of other things, which was not
done earlier. The construction of planes, oilrigs and large buildings requires advanced
calculations performed by computers. It may even be that the need for calculation skills
increases. If someone is buying a mobile phone, and can choose between different offers
from network vendors, how can he or she decide which one is the best without
performing calculations on the cost of each alternative related to his or her need? The
intention of this study is not to prove that the claim is wrong, but argue that it is at least
highly questionable. Numerous researchers in mathematics education emphasize the
need for both skills and conceptual knowledge.

Fischbein (1993, p. 232) describes the formal and algorithmic components of
mathematics as human activities. The formal activities involve axioms, definitions,
theorems and proofs, which must be components in the reasoning activities to achieve
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conceptual understanding. The second component, the algorithmic component, refers to
skills. According to Fischbein, there is a symbiosis between those two components:

“There is a widespread misconception according to which, in mathematics, if you understand a
system of concepts, you spontaneously become able to use them in solving the corresponding
class of problems. We need skills and not only understanding, and skills can be acquired only
by practical, systematic training. The reciprocal is also sometimes forgotten. Mathematical
reasoning cannot be reduced to a system of solving procedures.” (p. 232)

For a student, the reasons for learning mathematics are to be able to solve everyday-
problems where mathematics is involved. It is reasonable to assume that algorithmic
skills alone are insufficient as a basis for applying mathematics, but also conceptual
knowledge alone is probably not enough to solve mathematical problems. Fischbein
suggests that the ability to apply mathematics also requires skills.

The curriculum for upper secondary education in Norway (Ministry of Education,
2000) states the demand for skills and what is referred to as knowledge in mathematics,
by saying that:

“More and more of us find that our studies or work require the use of advanced mathematical
skills or presuppose a knowledge of mathematics. Mathematical theory and practice are an
integral part of modern science, technology and economics, and the subject has been essential
to the development of our culture.” (p.1)

Further, the curriculum emphasizes the importance of understanding as a goal for
teaching, and not drilling on the mastery of skills:

“Many people have the impression that mathematics consists entirely of endless drilling.
Although this is an important way of teaching arithmetical skills and improving pupils’
understanding of mathematical concepts, it must not become the purpose of the teaching.
Mathematics is not a collection of "recipes” and algorithms for solving routine tasks, but a
toolbox containing the equipment needed to solve problems that require both imagination and
understanding.” (p.2)

Nesher (1986) gives an example for coping with the concept of “mean”. One way of
understanding it, the syntactic way, is being able to calculate means in practice. On the
other hand she mentions the semantic understanding of mean as understanding the
concept of the mean. The question is which approach we should use in teaching this
concept. Should the students “do means” or should they be given a set of properties for
the concept of mean. As examples of such rules, Nesher mentions that the mean value of
a set of numbers should not be outside the range of the numbers included. The mean
does not need to be among those numbers. It seems obvious that at some point, the
students must “do means” to grasp the idea, but it is important that the goal of learning
the mean does not only involve mastery of skills, but also to understand the properties of
the mean. The control system is something that is needed to decide whether an answer is
correct or not. If a person is asked to calculate the sum of two odd numbers and get an
odd number as the answer, something apart from the algorithmic operation that was
performed should tell him that the answer is wrong. That is, a control system with a
semantic rule when internalized, can operate independent of the preceding algorithm.
Even if we accept that conceptual knowledge is an important goal of teaching
mathematics, the question of how these control systems and rules are learned remains.
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“The shared belief among math educators so far is that one should teach for understanding
since this contributes to developing the monitoring control system that the student needs in
doing algorithms” (Nesher, 1986, p. 8).

The question is not whether the teaching should emphasise syntactic rules and
procedures as opposed to semantics and conceptual knowledge, but how the balance
should be. Even if we think that knowledge about procedures alone is insufficient for
working with mathematics, they might be critical as a mean for developing a deeper
conceptual knowledge. Some reflections on how procedural and conceptual knowledge
influence each other during the phases of a learning process might help to clarify the way
we think about this problem.

The ability to see relations and to put meaning into mathematical concepts is, from a
constructivist’s point of view, something that is created in the mind of the learner as
opposed to the transmission view of teaching where the word and actions of the teacher
carry the meaning (Cobb, 1988). It is more likely that rote learning of algorithms is better
suited for transmission than the case is for development of conceptual knowledge.
According to Cobb (1988, p. 89), “One of the teacher’s primary responsibility is to
facilitate profound cognitive restructuring and conceptual reorganizations”. The
constructivist view certainly points to a dilemma related to the constraints in information
passed from the teacher to the learner in the sense that it is impossible for the
mathematical meaning to be entirely embedded in the words or symbols that are
communicated. This does not mean that teaching algorithms is superfluous, but that the
teacher must be aware of the interplay between instructions on algorithms and guiding
towards knowledge. The guiding could contain elements suggesting students to look for
alternative solutions, pointing to limitations in the current knowledge and prevention of
misconceptions.

Cobb (1988) claims that students who have constructed powerful conceptual
structures will be better able to solve problems in a variety of situations a considerable
long time after the learning took place. The structures are a permanent part of the
student’s problem solving repertoire. In this regard, the ability to apply a concept can be
seen as an integrated part of conceptual knowledge. However, the ability to apply
mathematical knowledge is probably the motivation or goal for learning mathematics for
many students, rather than seeing knowledge as an isolated goal.

A rationale for learning mathematics is to be able to apply mathematics in an
everyday situation, a professional context or to be able to learn mathematics at more
advanced level. This varies among students, and neither students nor teachers can
possibly predict an individual’s future need for mathematics. Despite variation in their
future need for mathematics, most students must develop knowledge that can be applied
in unknown contexts. This view might justify that we look at the causal direction that
considers conceptual knowledge as a cause for the ability to apply. On the other hand,
working with functions and seeing applications of functions is probably important to
build conceptual knowledge. Think of the development of control mechanisms that are
needed to detect errors which is a characteristic for conceptual knowledge (Byrnes &
Wasik, 1991, p. 777). Such control mechanisms will often be related to real world
applications as for example when a student in economics discovers that the estimated
interest rate must be too low or that a price-estimate is unrealistic. One could say that it is
a goal to learn mathematics without being bound to a particular context, while on the
other hand the contexts play an important role when mathematical concepts are learned.
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Exams with focus on skills might hide an absence of conceptual knowledge. An
example typical for students in economics is the optimization of a function with more
than one variable with constraints. A frequently applied method for solving such
problems is the use of Lagrange multipliers. The students are trained in the required
routines, and the tasks are very similar. Also the context is typically limited to the context
of cost, price, revenue and income. At the exam, students are exposed to a similar
problem, and the majority of them are able to get the right solution. It is tempting to
allow ourselves to believe that the students understand the mathematics conceptually,
but this is probably not true. Schoenfeld (1982) says about this tendency that “To allow
them, and ourselves, to believe that they ‘understand’ the mathematics is deceptive and
fraudulent”. If there is a general concern that the focus of teaching is too much directed
towards skills, a reorientation towards teaching for understanding must be accomplished
by a similar focus in assessments.

Assuming it is true that we need less computational skills in the future, one cannot
deduce that instructional focus on intentional skills is misplaced. It might be that these
skills are a necessary condition for conceptual knowledge. In other words, even if the
goal of mathematics teaching is to help the pupils to achieve conceptual knowledge, the
procedural knowledge may very well be a tool to reach that goal.

To summarize this part of the discussion, it seems reasonable to say that we need
computational skills as well as conceptual knowledge, but that today’s teaching and
assessments do not pay enough attention on conceptual knowledge. Procedures are often
well defined and it is relatively easy to see if they are carried out adequately, but
conceptual knowledge is richer in relationships (Gray & Tall, 1994) and necessary to be
able to apply mathematics and reflect on the results. This research hypothesizes that both
procedural and conceptual knowledge are required to apply mathematics successfully. If
we accept that both are important, the question is rather how to teach. The development
of a sound teaching strategy should be based on an awareness of how procedural and
conceptual knowledge are related to each other.

2.5 LINKING PROCEDURAL AND CONCEPTUAL KNOWLEDGE

The discussion on procedural and conceptual knowledge represents different views in
which one type of knowledge is a necessary or maybe sufficient condition for the other,
or whether they relate to each other at all. It seems to be generally accepted that it is not
strictly one way or the other. It is hard to operate on functions without knowing the
concept of function, but it is also unlikely that one is able to put meaning into functions
without being able to operate on them. Nevertheless, it is of interest so see if there are
tendencies that are more dominant than others.

Mathematical knowledge consists of both procedural and conceptual knowledge, and
“Linking conceptual and procedural knowledge would have many advantages for
acquiring and using procedural knowledge” (Hiebert & Lefevre, 1986). Perhaps it is
possible to possess one of them, but that this is incomplete in the sense that one can have
a good feel for mathematics without being able to perform calculations or one can be able
to calculate answers without understanding their meaning. The statement indicates that it
is the link between the two knowledge types that is important for us to be able to apply
mathematics. This addresses the core of the problem in this dissertation. What are the
advantages of being able to link conceptual and procedural knowledge? First, it allows an
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individual to reason on the meaning of the object, rather than reasoning through an
intermediate language. Second, the ability to select and effectively utilize procedures will
benefit from this link (Hiebert & Lefevre, 1986). Third, conceptual knowledge will
increase the ability to detect a wrong use of procedures or inappropriate procedures in a
given situation. Also, conceptual knowledge provides the ability to monitor the outcome
of a mathematical operation, i.e. reflect on the answer. It provides a basis for building
control mechanisms for detecting whether an answer makes sense.

The distinction between procedural and conceptual knowledge can be beneficial in
the sense that they serve different cognitive functions. Byrnes and Wasik (1991) claim that
conceptual knowledge imposes organization of experiences and relate things, while
procedural knowledge is considered a mean to achieve certain goals. Assuming that both
procedural and conceptual knowledge is important in itself, and therefore a goal of
mathematical learning, it is natural to ask how knowledge types are related, also with
respect to causality. Theory suggests a variety of possible links between procedural and
conceptual knowledge, but it is hard to prove these dependencies. The word “prove”
seems highly unrealistic if one thinks in terms of drawing conclusions with absolute
certainty. Instead one can think of proofs in statistical terms, where something is proved
if the data supports the theory well enough. Literature analysis of (Haapasalo &
Kadijevich, 2000) reveals four views on causal dependencies between conceptual
knowledge (abbreviated by C) and procedural knowledge (abbreviated by P) related to
the learning process (Table 2-2).

Table 2-2. Views on the relation between procedural (P) and conceptual (C) knowledge.

Genetic view: P is a necessary but not sufficient condition for C (Kline (1980), Kitcher
(1983),Vergnaud (1990), Gray & Tall (1993) and Sfard (1994)).

Dynamic interaction view: C is a necessary but not sufficient condition for P
(Byrnes & Wasik (1991)).

Simultaneous activation view: P is a necessary and sufficient condition for C (Hiebert
(1986), Byrnes & Wasik (1991) and Haapasalo (1993)).

Inactivation view: P and C are not related (Nesher (1986) and Resnick & Omanson
(1987)).

The genetic view states that procedural knowledge is a necessary but not sufficient
condition for conceptual knowledge. This seems to be a view that is supported by many
researchers in the sense that they describe concepts as processes that are being
encapsulated (Dubinsky, 1991; Gray & Tall, 1994; Kaput, 1982; Sfard, 1991). Procedures
are, in this view, seen as a fundamental part of conceptual development and that a
cognitive shift takes place when the concept is encapsulated as an object. The procedural
phase occurs prior to the conceptual phase indicating a causal direction. In other words
procedural knowledge is seen as a necessary condition for conceptual knowledge, but
possibly not a sufficient one. Sfard (1991) argues that operational concept formation
occurs prior to structural concept formation, whether we regard this in a historical view
or we regard the individual. The historical view assumes that an individual’s
development of a mathematical concept follows in the same order as the development of
the concept in history. As an example she mentions the notion of numbers, which
originates with the process of counting. An objectified discourse of for example whole
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numbers is required that one is able to operate on rational numbers, which is the same
sequence the development has taken place historically. Even if an individual develops
skills, he or she does not necessarily have to develop conceptual knowledge according to
this view.

A contrast to the genetic view is the dynamic interaction view. The argument that
supports the dynamic interaction view, i.e. that conceptual knowledge is a necessary, but
not sufficient condition for procedural knowledge, is that conceptual knowledge makes
the construction of procedures possible (Byrnes & Wasik, 1991). One reason is the
development of control mechanisms, which are helpful to detect procedural errors.
Byrnes and Wasik claim that computational errors are caused by the fact that
mathematical symbols are meaningless to many pupils and that procedures are
meaningful only if they can be related to objects. They also argue that conceptual
knowledge will contribute to the detection of computational errors. If a pupil adds two
fractions erroneously by adding numerator with numerator and denominator with
denominator, a well-developed (conceptual) knowledge of magnitude of rational
numbers might serve as a mean for detecting computational errors and cause the student
to redo the calculation. One could ask whether improved skill in adding fractions, as in
this case, was caused directly by conceptual knowledge or the procedure repetition.

To verify the simultaneous activation view might seem to be a rather ambitious task,
since this view not only claims that procedural knowledge is a necessary, but also a
sufficient condition for conceptual knowledge. In fact it means that other explanatory
variables for conceptual knowledge should be considered redundant. However, the
rationale for the formulation of this view is probably not grounded in proofs of
redundancy. Rather, it originates from tests showing that computational errors are
caused by an impoverished conceptual knowledgebase (Byrnes & Wasik, 1991). In other
words, the studies imply that lack of conceptual knowledge causes lack of procedural
knowledge. As the term simultaneous suggests, the development of procedural and
conceptual knowledge is in some sense considered to be parallel in time. When working
with procedures, conceptual knowledge will be used and further developed. Thus,
besides trying to find empirical verification for the causal relation regarding student
scores in conceptual vs. procedural tasks, it is appropriate to study the pedagogical
power of the simultaneous activation view. Having realised that procedural links may be
established through learning activities requiring, among others, production rules
utilisation and multiple representation transformation, Kadijevich and Haapasalo (2001)
represent two constructivist technology-based environments concentrating on finding
more or less systematic instructional models. The other one of those models is utilising
CAL software, developed within the so-called MODEM project (see Haapasalo 1993).
Eronen and Haapasalo (2010) found out that utilising simultaneous activation by using
modern graphic calculator could shift the learning of mathematics from using textbooks
to playing with hands on -technology. Dynamical geometry software, especially
combined with algebra and robotics, can do the same, as Haapasalo and Samuels (2011)
describe in their comprehensive article.

The inactivation view, suggests that procedural and conceptual knowledge are not
related. Even if studies normally are not designed to prove the absence of such relations,
some studies suggest weaker relationships than one might expect. One argument in
favour of this view is that some students may have a high level of conceptual knowledge,
but lack in procedural skills. With others it might be the opposite; they may have a high
level of procedural skills and a low level of conceptual knowledge. Resnick and Omanson

19



(1987) conducted a study aimed at testing whether procedural learning would be more
successful if it was well-grounded in mathematical principles. In other words, they tested
if better conceptual knowledge would cause pupils to perform better on skill-oriented
tasks. Surprisingly, the study revealed that children seemed to fail to apply their
knowledge of principles when performing subtraction calculations. Zucker (1984) could
not find a significant correlation between algorithmic performance and understanding in
decimals, despite a sample size of 270 pupils. One cannot conclude that such a relation
does not exist, but it is surprising that the study did not result in a significant correlation
between the two types of knowledge. Even if these studies support the inactivation view,
the majority of studies regarding relationships between procedural and conceptual
knowledge support the existence of such a relationship.

The first three views all describe some causal dependencies between procedural and
conceptual knowledge. Even if the different views seem to contradict each other at first
sight, they should not be regarded as competing models that claim to be generally true.
One should rather struggle to investigate the learning process in pieces in which each
piece is studied with a particular view. Let us assume that procedural knowledge and
conceptual knowledge are mutually dependent on each other. One can consider the
learning process as taking place in time where the learner shifts between using
procedures to develop conceptual knowledge and vice versa. The first piece of this
process can be regarded with the simultaneous activation view or genetic view, and the
other with the dynamic interaction view. Another way of dividing a learning process into
pieces can be to look at how an objectified discourse of one object is required so that we
are able to operate on more advanced objects in which the first type of object is a
“building block”.

Next follows a consideration of the pedagogical implications of the three first views in
more detail. Haapasalo and Kadijevich (2000) define two pedagogical approaches, the
developmental approach and the educational approach. The first one is supported by the
genetic view and the simultaneous activation view, whilst the latter is supported by the
dynamic interaction view and the simultaneous activation view. Thus, the approaches
imply different instructional interpretations but simultaneous activation can be utilised
within the both approaches.

The developmental approach is based on the idea that procedural knowledge
precedes conceptual knowledge. This is supported by Sfard’s (1991) view that
development takes place through stages: operation, condensation and reification. The
idea is that the procedural stages must have been passed through for reification to take
place. Reification is in a way an objectification of the mathematical concept. According to
Vygotsky, interpersonal social activities will be internalized as interpersonal actions that
must be imposed on the learner by built in methods of thinking (Haapasalo & Kadijevich,
2000). In a mathematical learning process, these methods can be algorithms or
procedures.

The educational approach assumes that procedural knowledge is enabled by
conceptual knowledge. Carpenter (1986) claims that children should have an idea of the
fraction or a reasonable concept of addition and that these ideas are foundations for
performing procedures. Without the ideas, the procedures are carried out with symbols
that make no sense. Many textbooks in mathematics start the introduction of a topic by
giving a definition and follow it up by examples. In these cases, the concept-definition
comes first, before the operations are described. Even if the learning material guides the
student to change between procedural tasks and focus conceptual qualities, the
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underlying assumption often seems to be that the very first presentation of a concept
should be directed towards its definition or its properties. There are longitudinal studies
that showed a development where conceptual knowledge precedes procedural
knowledge in time (Byrnes & Wasik, 1991). In his long-term MODEM -project,
Haapasalo found that a more or less systematic model can be utilised to promote
conceptual knowledge by emphasizing multiple representations (Haapasalo, 1993;
Kadijevich & Haapasalo, 2001).

The teacher’s role may also have an important impact. Haapasalo (1993) gives
evidence that traditional mathematics teaching is polarized to apply the above-
mentioned approaches in exaggerated way. Teachers, especially on preliminary grades,
go for procedures and trust that conceptual knowledge would appear as a consequence
of that. On the other hand, especially on upper grades, mathematical concepts are
defined at first, followed by drilling and practicing. Both approaches seem to lead not
only to poor cognitive results but also to negative mathematical beliefs among students.
As Eronen and Haapasalo (2010) show, the developmental approach and the educational
approach can be combined within the quasi-systematic model of Haapasalo, for example
by utilising the theory of Vygotsky and modern technology.

Ma (1999) suggests that the teacher’s knowledge level decides their teaching strategy.
Many procedurally oriented teachers intended to teach for conceptual knowledge, but
this is not reflected in their teaching. When pupils are failing to solve problems, a lot of
teachers explain details of the algorithms rather than addressing understanding. In other
words, some teachers seem to approach the students” problem as if it were caused by the
fact that the students have forgotten an algorithm rather than explaining the
mathematical meaning of the procedures.

Finally, it is possible that the different views vary with topics. A student might for
example approach matrix algebra with a focus on procedures to begin with, while the
same student may start to learn about the derivative with an emphasis on properties and
definitions. Figure 2-8 illustrates an example of how different pieces of mathematical
education can be regarded with a combination of the views in mind.

Conceptual
knowledge of the
derivative
SA

Conceptual orG

?S:g:;g:ge of {+——p | Procedural
knowledge of the

(DI) derivative

SA

orG

Procedural

knowledge of

functions

Figure 2-8. Simultaneous activation view (SA), Genetic view (G) and Dynamic Interaction view
(DI) in different learning stages, indicated by arrows.

21



The idea is from Sfard (1991) where a similar link is described in the case of concepts in
general. The concepts of function and the derivative of functions are used in the example.
If a student’s development proceeds as steps, each indicated by an arrow, then each step
can be regarded in different views. One could assume that procedural knowledge of
functions is a condition for conceptual knowledge of functions, in accordance with the
simultaneous activation view or the genetic view. This does not mean that other causes
for conceptual knowledge are neglected, but it is a question of balancing the
consideration of keeping the model simple and not leaving out the important variables.

On the other hand, when we look at the horizontal arrow in Figure 2-8, we consider
conceptual knowledge of functions to be a necessary condition for procedural knowledge
of the derivative of functions. In that case conceptual knowledge of a concept at one level
is a condition for procedural knowledge at a more advanced level. It may be incorrect to
categorize this into the dynamic interaction view (hence the parenthesis), but
nevertheless it is important to distinguish between knowledge types within a concept
(vertical arrow) from knowledge of different concepts (horizontal arrow).

2.6 KNOWLEDGE AND APPLYING

The dichotomy in “knowledge types”, regardless of how it has been labelled, has been
used to address different aspects with respect to their nature and their relationship. These
aspects provide premises for the discussion about what kind of knowledge is important
and how this influences in the learning process. The considerations above hopefully
show that instead of speaking about “levels of knowledge” it might be more appropriate
to speak about “how a student scores in procedural or conceptual task types”, if those
tasks can be defined and designed under given pedagogical conditions.

Applying mathematics in general or functions in particular, could be regarded as an
integrated part of conceptual knowledge. In other words, one could say that being able to
apply mathematics in problem solving is one of the characteristics for conceptual
knowledge. Another approach is to regard the ability to apply as a separate phenomenon.
Cobb (1988) claims that students’ abilities to solve problems in a wide variety of
situations depend on their conceptual structures. He refers to situations that may include
mathematical tasks that are superior to the one they have conceptualized. If we interpret
this in relation to functions, we can say that students’ abilities to solve problems about
derivation of functions depend on their conceptualization of the concept of function. At
least if “solving problems about derivation”, is understood to include skill oriented tasks,
then we see a parallel to Sfard’s (1994) theory when she says that the student should have
an objectified discourse of one concept to move on to the operational phase of a more
advanced one. One example is the conceptualization of whole numbers that must be
understood conceptually before it can be applied to operate on fractions. Like whole
numbers are seen as a building block for fractions, functions can be seen as a building-
block for differentiation.

Duffy and Jonassen (1992) introduce a notion of understanding that they call the
‘performance perspective on understanding’. They distinguish between ‘understanding’
as ‘deeper understanding’ and knowledge as the mastery of skills. The performance
perspective says that understanding a topic is a matter of being able to perform in a
variety of thought demanding ways with the topic as for example representing a topic in
a new way or being able to apply a concept. Knowledge means that you can take in and
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maybe replicate what you have read or heard, but understanding requires that you are
able to interpret and put new meaning into what you have read or heard. It is also worth
commenting that the ability to apply is included in the concept of understanding as
opposed to seeing it as a separate concept. From this perspective, one could argue that
the ability to apply functions could be seen as an integrated part of conceptual
knowledge of functions. It is beneficial to separate the two into two measures.
Applications of functions can be found in a variety of disciplines outside mathematics
where economics is one of them. If the ability to apply a topic like the concept of
functions is to be included in conceptual knowledge of functions, it would have to cover
so many aspects that it would be hard to measure.

It seems reasonable to separate conceptual knowledge of functions from the ability to
apply functions in solving problems that are not purely mathematical, such as problems
within economics. Also in cases of applications, some of the problems are pure
repetitions of routines, while others are of a more conceptual nature, requiring relational
considerations. The following questions were given to students in the first year of an
economics class.

You borrow 800 000 NOK at 4,7 % interest rate per year. The loan is an annuity-loan and
will be paid off in 15 yearly payments.

What is the yearly payment when the first payment starts after one year?

What is the outstanding balance immediately after the fifth payment?

Figure 2-9. Task from the pilot study about an economic problem.

Even if the task is not purely mathematical in the sense that it addresses an economic
problem, question a cannot be said to measure much more than procedural knowledge.
The question is solved using a well-known formula for annuity. When the first payment
starts after one year, the formula can be applied directly, without any adjustments.

On the other hand, question b requires the student to choose an appropriate solution
strategy from several alternatives. The easiest strategy could be to calculate the present
value of the ten remaining payments. In fact this solution would be so similar to the one
in question a that one may claim that question b also measures procedural knowledge.
However, only a minority of the students managed to get the correct answer. In other
words, the problem was not to calculate the answer given that the solution strategy was
chosen, but it was to find an appropriate strategy. It is likely that some students are able
to use prescribed methods to solve the tasks that are similar to those in which the method
was taught, but the question of similarity is not a question of whether a task is similar or
not similar to another one. It is, rather, a question of the degree of similarity. The solution
of a problem may partly depend on already known procedures, while others may require
a more in-depth understanding.

From an analytical point of view, it is advantageous to distinguish between
procedural and conceptual knowledge of functions, and the ability to apply functions to
study to what extent the ability to apply stems from the procedural knowledge of
functions and to what extent it stems from the conceptual knowledge of functions. The
structure in Figure 2-10 is suitable to study how procedural and conceptual knowledge of
functions influences the ability to apply the functions separately.
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Figure 2-10. The ability to apply functions depending on both procedural and conceptual
knowledge.

2.7 LEARNING AND TEACHING APPROACHES

Most of the research in mathematics education is focused on younger children, while
participants of the test for this project are students mainly in their early twenties. Habits
and routines for working with mathematics are shaped during one’s years in school.
Since teachers are different in their orientation to teaching with respect to skills and
understanding, one might expect that pupils have established different ways of meeting a
learning situation.

A study by Jarvelda and Haapasalo (2005) suggests that there are three types of
learners, the conceptually oriented learner, the procedurally oriented learner and the
procedurally bounded learner. While the conceptually oriented learner advances from
conceptual knowledge to procedural knowledge, the procedural oriented learner
advances from procedural knowledge to conceptual knowledge if instructions and
learning environment are tailored to establish these procedural links. The procedurally
bounded learners are solely focused on procedures, and often without development
towards conceptual learning. One factor that might explain this is the kind of teaching
and instruction the students have met. This obviously depends on the teachers of each
individual student.

Students seem to apply different approaches to learning in a given learning context
(Entwistle & Tait, 1990), such as a course in mathematics. Some focus their attention
toward memorizing facts with less attention to understanding principles and concepts.
Others are trying to relate new knowledge to their previous knowledgebase, trying to see
relations and understand theories. Marton and S&ljo (1976) and Entwistle and Tait (1990)
have in different but related studies identified two contrasting approaches toward
learning and studying. The first one is described as a deep approach to learning, where
the course participant looks for meaning and processes the text in a holistic way. The
deep approach refers to a focus on the significant, to relate previous knowledge to new
knowledge, to relate knowledge from different courses, to relate theoretical ideas to
everyday experience, to relate and distinguish evidence and argument, and to organize
and structure content into a coherent whole. The second approach is presented as a
surface approach to learning, where the students pay attention to keywords in an
atomistic way and focus on unrelated parts of the task. Typical for the surface approach
is memorization of information for assessments. The students associate facts and concepts
unreflectively, often failing to distinguish principles from examples. They are treating the
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task as an external imposition and try to avoid failure by means of rote learning. This
distinction between learning approaches is in many regards similar to the distinction
between procedural and conceptual knowledge. Biggs (1993) also argues for the existence
of a third approach; this is a strategic approach dominated by the motive to achieve the
best grades possible, by organization of time and learning environment. However, the
distinction between the strategic approach and the surface approach is unclear, and the
two approaches are often treated as one approach. For simplicity, it is therefore sufficient
to only regard deep and surface learning approaches. Some denote approaches to
learning as learning styles, as if they are personal capabilities or personal styles
independent of situation or context (Marton & Siljo, 1976), while others claim that they
are related to the specific learning context (Entwistle & Tait, 1990; Newble & Clarke,
1987). According to Biggs (1993, p. 17) the truth lies somewhere in the middle, that
preferences depend both on students and on learning context. Even if an individual, in a
given learning situation, has a combination of both approaches, students often seem to
prefer one in favour of the other.

Students’ approaches to learning may have been affected by their beliefs in what
mathematical learning is. In the National Assessment of Educational Progress (1983) nine
out of ten students agreed with the statement that “there is always a rule to follow in
solving mathematics problems”. Not only do students seem to believe that such a rule
exists, but they also seem to think that there is only one way to solve a given problem.
The reason for this attitude is likely to be their experiences through years in school, being
exposed to situations where teachers have demonstrated procedures and given the
students numerous examples of carrying out the same procedures, until they master the
technique. If students and teachers regard a mathematical topic as being understood by
the student when the mastery of skills is established, and then continue to work with the
next topic, understanding of the next topic will obviously suffer. As an example, a
student can learn techniques on how to calculate values of a function, given different
values for the argument. This may lead many students to believe that mathematics is
something that should be memorized rather than search for meaning. Suppose this
procedure is repeated over and over again for different functions that are given
algebraically, and that little effort is spent on reflections on solutions or on relational
issues to graphic representations or other relational issues, then some students might
believe that the topic has been learned and that the student has the necessary background
to learn about the derivative.

It is not surprising that some students do not look for such things as relations
between different solution strategies or reflect on them with respect to appropriateness.
Since students” approaches to learning are determined by their expectations and beliefs,
one can assume that their school experiences have formed their beliefs.

The other issue is the strategy the teachers choose to use when they teach
mathematics. As with learning approaches, teachers will also tend to have different styles
or strategies, and it is reasonable to expect personal and contextual variations. To
improve teaching, we have to study how students learn and apply this knowledge in our
teaching. It is not a trivial task to change ones teaching strategy even if new knowledge
on students’ conception is attained. Ma (1999) compared American and Chinese teachers
and observed the teaching of teachers who had conceptual knowledge and those who
had not. An important finding in her study was that the knowledge level of the teacher
determined the teachers learning strategy. Not surprisingly, the teachers with lower
subject matter knowledge were skill oriented in their teaching strategy. The study
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revealed that the teaching in China was more oriented toward conceptual knowledge. In
China there is an attitude towards teaching problems in multiple ways and also to
organize pieces of mathematical knowledge into “knowledge packages”. They emphasize
the importance of relating new knowledge to previous knowledge. Ma observed that
these characteristics were reflected in the teacher’s approaches. Obviously, it is a
necessary condition for teaching for conceptual knowledge that the teacher herself has
sufficient conceptual knowledge, but this does not mean that it is a sufficient condition. It
is important for the teacher to be aware of the “nature” of conceptual knowledge to teach
for deeper understanding. The study also revealed that American teachers were more
procedurally oriented in their way of teaching. While the majority of the Chinese teachers
were conceptually oriented in their teaching strategy, only a minority of the US teachers
fell into this category, dependent on the topic they were teaching. Respectively 14% of the
Chinese and 77% of the US teachers displayed only procedural knowledge when teaching
subtraction with regrouping. Almost all the teachers with a deeper knowledge of the
subject were conceptually oriented in their teaching strategy, despite their possible choice
of a skill-oriented strategy. The procedurally oriented teachers tended to consider pupils’
mistakes as a problem of not knowing or remembering a procedure, while the
conceptually oriented teacher had a different teaching strategy, explaining the rationale
of the problem and separating problems into subproblems. They also spent much more
time on reflection, letting the pupils discuss and explain why they did what they did.
While Sfard’s theory suggests that structural understanding develops from operational
understanding, the conceptually oriented teachers in Ma’s study are aimed at building up
conceptual knowledge in all phases of their teaching. Of course, in this approach,
procedures are important. It is hard to imagine how a discussion of why a particular
procedure was followed could take place without knowing how to perform the
procedure.

According to Ma (1999) there is a tendency that, despite teachers” desire to teach for
conceptual knowledge, many of them focus on the mastery of skills. One can think of
several reasons for this. Some teachers may have lack of conceptual knowledge, while
others may believe that skills are the goal of learning mathematics. A third factor can be a
lack of consciousness on how to teach for conceptual knowledge. A further possibility is
that some teachers may believe that if teaching focuses on mastery of skills, conceptual
knowledge will develop by itself. If teaching is biased towards mastery of skills, the
challenge is how to teach for conceptual knowledge. Even if there is an agreement that
there is a link between procedural and conceptual knowledge, it is not well established
how instruction should be designed to create this link (Hiebert & Wearne, 1986, p. 199).
Perhaps the educational system is too much based on the tradition that students are
evaluated on whether they are able to reproduce what the teacher tells them. Philip
Jackson (1996) says that the public view on schools follows a “mimetic tradition”, seeing
knowledge as something which is transferred from the teacher to the learner.

The idea of learning for understanding is not a new idea. Berger and Luckman (1996)
argued that each human being must construct meaning. The idea of constructivism
means that the student must be able to reflect and make sense of what the teacher says
and a cognitive development must take place in each student. There seems to be a
consensus among many researchers in mathematics education that knowledge is
something that is constructed by the learner. If we accept that mathematical ideas cannot
be transmitted by words or carried from the teacher to the student by mathematical
symbols, then the role of the teacher will be to guide the student in a direction that leads
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the student to construct knowledge by reorganizing of his or her cognitive structures.
According to Cobb (1988), the challenge for the constructivist teacher is how to account
for successful communication being aware that the meaning cannot be wholly embedded
in the words or actions of the teacher. The constructivist teacher would perhaps try to
guide the student to construct knowledge by posing appropriate questions, leading the
student away from misconceptions and giving guidance in accordance with the student’s
cognitive development.
Schoenfeld (1982, p. 345) presents what he calls a pedagogical imperative:

“If one hopes for students to achieve the goals specified here — in particular, to develop the
appropriate mathematical habits and dispositions of interpretation and sense-making as well as
the appropriately mathematical modes of thought — then the communities of practice in which
they learn mathematics must reflect and support those ways of thinking. That is, classrooms
must be communities in which mathematical sense-making, of the kind we hope to have
students develop, is practiced.”

The goals he is talking about are outlined in the Source Book for College Mathematic
Teaching (Schoenfeld, 1990) where it is underlined that instructions should aim at
developing conceptual understanding rather than mechanical skills. Students should be
able to work in an environment where they can work with problems in an explorative
way, to find patterns and develop a feeling on how things work with emphasis on
structural relationships. The imperative reminds us that a reorientation towards
conceptual understanding should be accomplished by requirements for teaching
practices and learning environments.

Davis (1992) differentiates between what he calls ”"Previous view” and “Newly
emerging view” on mathematics education and suggests that we witness a new way of
thinking about doing mathematics. The “Previous view” regards the point of learning
mathematics as learning facts and algorithms. In this view, mathematical knowledge is
constructed from words and syntactic rules. Consequently, memorization plays an
important role and assessments are used to find out how students can reproduce what
they have memorized. On the other hand, the “Newly emerging view” emphasizes that
the real essence of learning mathematics takes place in the students” mind. In this view,
the mental representations are constructed by the student, and words can only be used to
guide the construction of these representations. Maybe the traditional focus on
procedural skills in assessments has led teachers to focus on “how” to do mathematics,
and in this way stimulated teachers may follow a transmission teaching strategy. In other
words, there might be an interrelation between teaching strategies and the type of
knowledge that is emphasized. Cobb (1988, pp. 88-89) claims that:

“

the classroom situation is ripe for miscommunication when the teacher possesses
structures and can “see” mathematical objects that the learners are yet to construct.”

Both Davis and Cobb are talking about changes in our view on how mathematics should
be taught, but much of the rationale for this reorientation seems to be connected to a
reorientation on what kind of mathematical understanding the students need. We might
say that teaching skills can be accomplished, at least to a certain extent, by telling and
showing how to do mathematics, but this is a method that might be insufficient for
teaching deeper conceptual knowledge.
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In most cases, teaching strategies will probably combine elements from transmission
and construction, but it might be that traditionally too much emphasis has been placed
on transmission. The distinction between the constructivist view and the view that
learning takes place through transmission raises some questions on teaching strategies. If
attention is towards rote learning of algorithms and how to carry out procedures, the
teacher can demonstrate a lot of techniques. In these situations, less attention might be
directed towards discussions on the appropriateness of the procedures or reflections on
relational issues. If a teacher tries to teach a student how to do a polynomial division, the
syntactic rules can be described and several examples can be demonstrated to the
student. As such, it might be that the teaching of skills is often accomplished by a
transmission teaching strategy. On the other hand, the development of a deeper
conceptual knowledge may suffer when such a teaching approach is applied.

The question of how we should teach is relevant for many disciplines, but it is the
intention of the present dissertation to study this in relation to mathematics. To be even
more specific, the question is how we can teach for better understanding of functions. A
project at the Harvard Graduate School of Education (Kickbusch, 1996) provided a
framework of four concepts that might be helpful for teachers when they prepare to teach
for understanding. The four concepts are called “generative topics”, “understanding
goals”, understanding performances” and “on-going assessment”. The framework is
suitable for teaching topics that are called generative topics. One could say that the idea
here is to limit the focus to a specific topic when planning for teaching. A generative topic
is a topic which is central to the discipline and which is connected to other topics within
and outside the discipline. There is no doubt that functions are central to mathematics. In
this study, the ability to apply functions has included derivation, a topic within the
discipline of mathematics, while economic applications represent connections to
economics. Understanding goals and understanding performances refers to the
identification of goals for each topic and how each goal should be accomplished by
performances that the student needs to work with. These goals should be stated and they
serve as the focus of instruction and should be limited to the actual topic in a way that
they are understandable for both teachers and students.

2.8 RESEARCH CONSIDERATIONS

What kind of “result” might come out of a study in mathematics education? Niss (1998)
has given a definition on research in mathematics didactics that might help to clarify
what a result means in this context:

“The didactics of mathematics, alias the science of mathematics education, is the scientific
scholarly field of research and development, which aims at identifying, characterizing and
understanding phenomena and processes actually or potentially involved in the teaching and
learning of mathematics at any educational level.” (pp. 4-5)

If we focus on identifying, characterising and understanding phenomena, what kind of
phenomena or problems are we talking about? How can they be described or
characterised? What kind of methods can we use to achieve a better understanding of
these phenomena? Should the focus be on the ability to apply mathematics rather than to
understand mathematics? These are two sides of the same coin. Noss (1998) claims that:
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“It is hard to understand a mathematical idea until you have used it, until you have seen its
connection with other mathematical ideas, and possible applications.” (p. 10)

but also:

“On the other hand, it is hard to use a mathematical idea until you have understood it, and
consequently the ability to apply a mathematical concept is essential.” (p. 10)

The quote from Noss addresses the main purpose of this project, which is to study how a
mathematical concept is understood at different levels, the relation between different
knowledge types and the ability to apply the concept. Studies in mathematics education
that have been occupied with similar questions are used as a rationale to set up a
hypothesis for a statistical model. Structural equation modelling technique is applied to
be able to study all aspects of the research questions within the frame of one model.
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3 Aims

The research is aiming at exploring economics students’ conceptualization of functions,
and to investigate relationship between procedural and conceptual knowledge of
functions. Another goal of the study is to investigate how the ability to apply functions in
economical and mathematical tasks depends on the two types of knowledge. Finally, a
more ambitious aim of the study is to relate the outcome of the analysis to the
pedagogical philosophy that has been applied to the study population at the upper
secondary school. Despite the attention given the nature and relationships between
procedural and conceptual knowledge by researchers in mathematics education, studies
where procedural and conceptual knowledge is assessed from large groups of learners
seem to be absent. The intention of the present study is to investigate the research
questions based on data from a large group of students.

3.1 RESEARCH QUESTIONS

The research questions in this study can be divided into two categories. The first question
addresses what we put into the concepts procedural knowledge of functions and
conceptual knowledge of functions, while the second and third questions concerns
relationships. The intention of this study is to investigate procedural and conceptual
knowledge of functions through a large sample and to reflect on the outcome of the
analysis from an empirical perspective. Even if researchers in mathematics education
have theoretical considerations of the nature of knowledge, one needs to develop
measures in order to study their relationships. Haapasalo and Kadijevich (2000)
emphasize that procedural and conceptual knowledge cannot be measured directly, but
only through procedural and conceptual tasks. One aim of the study is to develop tasks
that are reliable and valid measures for procedural and conceptual knowledge of
functions. The measures will provide a basis to analyse the relationship between
procedural and conceptual knowledge of functions and how they predict the ability to
apply functions.

When studying procedural and conceptual phenomena, one must take into account
that these phenomena are content dependent (Haapasalo & Kadijevich, 2000).
Consequently, a study should restrict the attention towards a specific mathematical
concept like functions, and the phenomena that are studied must be characterised for the
specific content that is subject to analysis. The following characterisation is used for
procedural knowledge of functions, conceptual knowledge of functions and the ability to
apply functions in this dissertation:

Procedural knowledge of functions denotes a dynamic and successful use of specific
rules, algorithms or procedures when they are applied on functions. This involves a
successful use of algorithms step by step and the utilization of rules within different
representations separately, such as algebraic and graphic representations including the
use of the format and syntax required for the representational system(s) expressing the
functions.
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Conceptual knowledge of functions denotes a successful utilization of particular
networks and relationships related to functions. This includes the utilization of
relationships between different representation forms, relationships to other mathematical
topics and previous mathematical knowledge. It also includes the ability to choose
between appropriate methods and reflect on the outcome of a mathematical task.
Conceptual knowledge of functions also includes the ability to think of a function as a
unit free from procedures and the possession of control mechanisms to check whether
properties are violated or preserved when a solution is evaluated.

The ability to apply functions is characterised as an ability to recognize and solve
problems of economics where functions are involved and to choose between appropriate
methods. The ability to apply functions also includes the ability to solve mathematical
problems involving more advanced mathematical concepts that are built on the concept
of functions.

The research questions are:

1 How can procedural and conceptual knowledge of functions be measured?

2 How do procedural and conceptual knowledge of functions relate to each other?

3 How does the ability to apply functions relate to procedural and conceptual
knowledge of functions?

Each question is analysed separately, but it is important to emphasize that they are not
seen as independent of each other, but as a whole. In fact the possibility of developing
one large model that allows the testing of all questions in one analysis makes it possible
to ask whether the model provides sound measurements and good estimates for
relations. In this regard it is also an aim to test whether the model as a whole is good,
regarding the test of the complete model as a synthesis of all the research questions.

If we look at the research questions separately, many similar issues, especially those
which concern relational ones, have been addressed earlier by other researchers in
mathematics education but are not based on large samples. The analysis of measurement
problems like in questions 2 and 3 seems to be given less attention in studies.

Question 1 is related to measurement problems and the questionnaire items in terms
of tasks are first of all developed to meet the characteristics of procedural and conceptual
knowledge of functions. It is important that the tasks are measuring what they intend to
measure, and also that the tasks satisfy certain criteria for consistency. Traditionally
students are assessed with respect to skills or procedural knowledge, and consequently
questions used in traditional mathematical assessments can be used for measuring
purposes. It is more challenging to measure conceptual knowledge, but some studies
have provided quantitative tools for this (O’Callaghan, 1994; Byrnes and Wasik, 1991;
Baker & Czarnocha, 2002; Kadijevich, 1999). The study by Baker & Czarnocha (2002),
analyzing the relationship between an individual’s ability to apply procedural
knowledge, meta-cognitive reflection and conceptual thought, used students’ scores on
written tasks through the semester to measure conceptual knowledge. In measuring of
procedural knowledge they used the students’ course average. As far as quantitative
measures for conceptual knowledge are concerned, it seems that the method has been to
provide a set of tasks where relations, properties such as order issues and non-
quantitative elements play a part. Byrnes and Wasik (1991) used questions about picture-
symbol and word-symbol isomorphism as well as questions on order to quantify
conceptual knowledge. Kadijevic (1999) claims that object-based thinking can be
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effectively assessed with objects that are not quantified, typically asked in form of textual
questions related to properties, but also such as argumentative questions on true or false
claims. Analysis of the answers to such questions will depend on interpretations and
consequently give less accurate quantitative scores. One could speak about less
reliability.

Research questions 2 and 3 are concerned with the linking of different knowledge
types. Numerous researchers have been occupied with these questions, as commented in
the previous chapters, but the methodological approach is mostly different from the one
in the present study. It is important to note that questions 2 and 3 use the term “relate to”.
That also involves the investigation of whether there exist causal directions and makes it
possible to study whether the particular views suggested by Haapasalo and Kadijevich
(2000) can be supported.

Question 2 addresses how procedural and conceptual knowledge of functions relate
to each other. The statistical model does not prove causality, but the task performances
will indicate which of the causal directions indicated by the arrows in the figures below
are supported. Based on Sfard’s (1991) theory of development from operational to
structural understanding through operation, condensation and reification one could
assume that the causal direction corresponds to Figure 3-1. The view (Haapasalo &
Kadijevich, 2000) is supported by this causal direction is the Genetic View.

Procedural
knowledge of
functions

Conceptual
knowledge of
functions

Y

Figure 3-1. Possible outcome supported by the genetic view.

Another possible outcome may be that conceptual knowledge of functions is a necessary
condition for procedural knowledge of functions. This view, the dynamic interaction
view examined by Byrnes and Wasik (1991), is shown in Figure 3-2.

Procedural Conceptual
knowledge of knowledge of
functions functions

Figure 3-2. Possible outcome supported by the dynamic interaction view.
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The simultaneous activation view assumes that conceptual knowledge is a necessary but
not sufficient condition for procedural knowledge, as recognised by Byrne (1998) and
Haapasalo (1993). In this case, the causality is bidirectional as indicated in Figure 3-3.

Procedural
knowledge of
functions

Conceptual

knowledge of
functions

Figure 3-3. Possible outcome supported by the simultaneous activation view.

Understanding a mathematical problem is not only seen as a goal in itself, but as
facilitating the achievement of other goals (Schoenfeld, 1982) as being able to apply
mathematical knowledge in other fields.

Conceptual
Procedural knowledge of
knowledge of functions
functions

The ability to
apply functions

Figure 3-4. The ability to apply functions depending on procedural and conceptual knowledge of
functions when intermediate effects between the two explanatory variables are disregarded.

The last research question is also assuming a causal relationship by asking how the
ability to apply functions depends on the two knowledge types. As stated earlier, the
model integrates the separate hypotheses into one model as shown in the path diagram
in Figure 3-4. The figure covers all the aspects that will be tested and discussed in relation
to the second and third research question.
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Conceptual
knowledge of
functions

Procedural
knowledge of
functions

The ability to
apply functions

Figure 3-5. Possible relationships investigated in the study.

The main part of the study aims at studying the research questions within the framework
of one statistical model, consisting of a measurement part and a structural part. The
measurement part of the model will be used as evidence for the answers to research
question 1, while the structural part addresses research questions 2 and 3. The intention is
to conclude on a final structure by deciding which of the arrows in Figure 3-5 that are
supported by the data and which are redundant.

A more ambitious aim of the study is, through interviews, to find supplementary
interpretations of the quantitative outcome and shape a perspective of discovering new
ideas or interesting questions and hypothesis for further research. The aim is not to
generalize findings but rather to understand and reflect on the outcome of the statistical
research and such aspects that are not covered by the research questions. The interview
addresses students’ beliefs of mathematics, beliefs of themselves as learners of
mathematics, and beliefs of their educational experiences from upper secondary school.

34



4 Methods

The subjects of this study were studying mathematics as a part of their studies in
economics at a business school, and the data of this study was collected from students in
the first year of the study. Tasks have developed to find out how the students perform on
procedural tasks, and to what extent they reveal procedural knowledge. In addition, the
tasks have been planned to measure the ability to apply mathematical concepts in
economics and differentiation. The tasks were developed to satisfy explicit criteria
covering the essence of the variables measuring knowledge. All the variables are
included into one psychometric model. The model as a whole includes several
hypotheses on how to measure knowledge and ability to apply functions. It also reflects
on how these concepts relate or depend on each other.

To carry out the test, knowledge of functions must be made operational. More
specifically, it requires characterisation of the items “procedural knowledge of functions’,
‘conceptual knowledge of functions” and the “ability to apply functions’. A set of tasks is
provided to measure these items by using a confirmatory factor analysis. This part of the
study is referred to as the measurement part. For an evaluation of an analysis to be
meaningful, it is obvious that the variables included measure what they intend to
measure. In other words, a set of tasks that are meant to reflect a student’s procedural
knowledge of functions, should ideally measure procedural knowledge of functions and
nothing else. In order to be able to do that, procedural knowledge of functions has to be
decomposed into suitable criteria that are measurable and correspond to the generally
accepted meaning of the term. Even if there is a consensus among researchers and
teachers on the meaning of procedural knowledge, the situation becomes more complex
when it comes to conceptual knowledge. The ability to apply functions, which is not an
established term, is measured by tasks addressing the ability to apply functions in
economic applications as well as a “building block” in mathematics at a more advanced
level.

It might seem difficult or even impossible to develop algorithmic skills without
having some kind of conceptual knowledge, at least on the more basic components
involved in the operations, and it is unlikely that a student can develop skills without
being able to reflect on the results. On the other hand, understanding a concept
regardless of the underlying procedures seems almost impossible, at least for the non-
mathematician. Several theories have discussed how different knowledge types depend
on each other. The rationale for the initial hypothesis about relationships relies on the
earlier research by Sfard (1991), Hiebert & Lefevre (1986), Kadijevich and Haapasalo
(2001) and others. This part of the model is referred to as the latent variable model.

The measurement model and the latent variable model are combined in a structural
equation model implemented in the software package LISREL (K. Jéreskog & Sorbom,
1993). Appendix B outlines in general the theory of structural equation modelling that is
applied in this study. These types of models are widely used in the social and human
sciences, especially when studying phenomena where variables cannot be measured
directly, as often is the case with mathematical understanding. Even if causal relations
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cannot be proven, the analysis will tell us whether the relations suggested in the model
match the sample of data (Bollen, 1989).

All the research questions raised in this study are formulated as hypotheses which are
embedded in one statistical model, but the model is not only a tool for testing hypotheses,
but also a tool for the discussion of such issues like students approaches to learning,
teaching practices, use of assessments and use of computer environments and calculators.

This chapter presents the model, which is hypothesized on the basis of the theoretical
considerations and the research questions that were discussed in chapter 3. Following the
general model theory, the background for the specific model applied in the dissertation,
as well as a discussion of the statistical methods that are involved, is described. Each
concept and the items that are supposed to measure each concept are outlined. Different
estimation techniques for estimation of parameters as well as different fit measures are
described. Chapter 4.6 describes the measurement model with special focus on
confirmatory factor analysis. Chapter 4.7 gives a background for the latent variable model,
before the synthesis of the two parts of the model is completed in chapter 4.8.

4.1 DESIGN OF THE STUDY

To meet these challenges a design in four stages was applied, denoted as the pilot test,
the main test, the post test and the interview respectively.

Pilot test _ Main test _ Post test - Interview
(n=136) Tl (n=283) "1 (n=57) “| (n=3)

Figure 4-1. Stages of the study.

The three tests were given to different groups of students at different times, but the
students were all first year students taking the same course in mathematics. In addition,
three students were interviewed about their mathematical beliefs and educational
background from upper secondary school to find possible explanations for the outcome
of the main test.

The intention of the pilot test is to try out different types of tasks in an explorative
manner to have some background for developing the tasks for the main test. The results
are used to reflect on the type of knowledge required, the level of difficulty and the tasks’
ability to reveal distinctions between students.

The main test is intended to develop the statistical model and perform analyses to
study the research questions. The development of the model includes an estimation of the
model parameters, an evaluation of model fit and the possible justifications of the model.
One of the challenges in this process was to develop an appropriate set of tasks in order
to measure the different types of knowledge. Another challenge was to find a suitable
method to judge whether the measures in the model are valid in the sense that they
measure what they intend to measure. To meet the challenge of studying concepts like
conceptual knowledge of functions, which is vague and difficult to measure directly,
these concepts were treated as factors using a factor analysis technique. Confirmatory
factor analysis was applied to develop tasks to measure three concepts: procedural
knowledge of functions, conceptual knowledge of functions and the ability to apply
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functions. Relationships between the concepts were investigated by linear regressions. A
structural equation modelling technique allowed integrating the factor analysis and the
regression analysis into one statistical model.

The purpose of the post test is to provide a tool to evaluate the validity of the
measures by using a dataset different from the dataset used in the main test. Since
validity is hard to measure by applying the data from the main test alone, the same
questions that were used in the main test were given to a new group of students. The
results from the test were compared with the students’ performance in their exams in
mathematics and business economics. The idea is that if a measure of for example
procedural knowledge of functions is valid, it is likely to predict the students’
performance in other skill-oriented mathematical tasks about functions. The validity of
the measure for conceptual knowledge of functions is evaluated in a similar way. Finally,
the validity of the measure for the ability to apply functions is held up against the
students’ performances at their exams in business economics. The post test was also
designed to evaluate the relations between the different types of knowledge that were
found in the main test using new data and a different test design.

4.2 STRUCTURAL EQUATION MODELING

As suggested by the research questions, we have to deal with concepts that need to be
measured in some way in order to discuss how they are related. Procedural knowledge of
functions, conceptual knowledge of functions and the ability to apply functions are such
concepts and will be represented by variables. The problem with such variables, in the
same way as for example variables that represent intelligence or depression, is that they
are often vague and almost impossible to measure directly in a simple way. Instead we
need a method to indirectly measure such concepts through observable items. An
appropriate methodology is to use structural equation modelling, which is a multivariate
statistical technique combining multiple regression and factor analysis.

Structural equation modelling has become a widely used statistical technique in the
social sciences, especially in psychology. Although the use of these models has evolved
rapidly the last decades, the development started early in the nineteenth century.
Spearmann (1904) discussed the concept of general intelligence by observing correlations
between performances on several problem-solving tasks. He made the observation that
children’s scores on different performance tests, which did not seem to be connected,
were correlated. He assumed that this was caused by a common underlying factor,
general intelligence. This way of treating a concept, as a construct measured through
several observable variables, is the main idea in factor analysis and is therefore suitable
for the present study. In structural equation models, the factors are represented by latent
variables that cannot be measured directly. Thurstone (1947) was also important in the
early development of factor analysis for psychometric research (Steiger & Schénemann,
1978, p. 171), as he emphasizes that it was not the individual factor scores that were
essential, but rather the discovery and nature of the factors themselves. It is therefore
important for the model in this analysis to identify the different aspects of the three
factors.

Today, two designs of factor analysis are common. One is exploratory factor analysis
used to discover underlying factors from a set of variables. In other words, the intention
of the analysis is to discover common factors for a group of variables in order to treat
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them as one factor. The other design, which is used in this study, is confirmatory factor
analysis where a priori assumptions on the link between factors and variables are tested.
The assumption on the structure between factors and variables is based on previous
research in mathematics education and on judgment. This analysis is designed to see
whether the collected data supports this structure. The word variable is here used to
address observable variables. Later, these variables are also referred to as items, while the
factors themselves are denoted latent variables.

Wright (1934), a biologist, invented path diagrams to represent linear relationships
between variables. Path analysis has been used to explore relationships between attitude
and mathematical performance, when seeking to study how such things as self-efficacy
and self-concept beliefs contribute to mathematical problem solving (Pajares & Miller,
1994). The path diagrams are essential in structural equation modelling, and are used to
describe causal relation between variables by use of arrows. Wright proposed rules to
relate the correlations or covariances of variables to equations. Relationships between
procedural knowledge of functions, conceptual knowledge of functions and the ability to
apply functions are represented by path diagrams to illustrate relationships.

According to Bollen (1989), three components are present in structural equation
modelling: path analysis, conceptual synthesis of latent variables with measurement
models and finally general estimation procedures. Factor analysis, latent variables, path
diagrams and equations are key components in a structural equation system, and it is the
synthesis of these components that constitutes the model theory. In this study, the
observations are collected from the students” outcomes in tests. Three items, ‘procedural
knowledge of functions’, ‘conceptual knowledge of functions’ and the ‘ability to apply
functions’, constitute the factors in this study. As mentioned earlier, the word “concept’ is
used often in general terms, not in the meaning ‘mathematical concept’. As an example,
‘function’ is not what is meant in this context, while ‘conceptual knowledge of functions’
is. Multiple regression equations are used to study dependencies between the latent
variables, treating them as dependent or independent variables. In fact each variable can
occur in different equations simultaneously. Some concepts may appear to be both
dependent and independent variables, as conceptual knowledge of functions might
depend on procedural knowledge of functions, but it may also be an explanatory variable
for the ability to apply functions. Problems with such endogenous variables are difficult
to treat within normal linear regression methods, but are handled properly when a
structural equation modelling technique is applied.

Even if it is usual to distinguish between the measurement part of the model and the
structural part of the model, the factor analysis and the regression equations altogether is
said to constitute a structural equation model. To distinguish between the two
components of the model, the terms measurement model and latent variable model will
be used. Since the intention is to explore a theory on mathematical understanding, some
knowledge on the underlying latent variable structure commented upon earlier and
hypothesized in the research questions is assumed. In contrast to exploratory factor
analysis where the links between the observable and latent variables are uncertain,
confirmatory factor analysis seems appropriate in this situation where we postulate
relations a priori (Byrne, 1998).

If we let the items be scored by task-scores and we let the latent variables represent
different kinds of mathematical knowledge, then we have a model structure that is
suitable to study relationships between different types of knowledge. The idea is to set up
a model based on assumptions founded in theory and practice, estimate the parameters
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and find out if the collected data supports the model. In general, procedural knowledge
of functions is probably easier to measure than the more complex and vague concept of
‘conceptual knowledge of functions’. The question is not whether a student has achieved
a conceptual knowledge of functions or not, but to what extent he or she has
accomplished different aspects of such knowledge. A “good” model should account for
the different facets of knowledge, as well as the degree to which each criterion is met. It is
important to notice that the structural equation model analysis does not serve as proof for
causality between the variables. When variables are measured at the same point in time,
as in this study, it is not possible to draw conclusions on causal relations between them
(Cramer, 2003, p. 91). However, the measurement part of the model will provide a
possibility to estimate scores on procedural and conceptual knowledge of functions for
each student that can be used to investigate causality.

The notation is in accordance with the standard LISREL notation and the model is
described in a complete path diagram as well as by equations and matrixes. Three
concepts are represented by three latent variables in the model, and are tested through a
set of tasks given to the students. For this study, three concepts (latent variables) are
included in the model:

Procedural knowledge of functions (1)
Conceptual knowledge of functions (1)
Ability to apply functions (n2).

4.3 PROCEDURAL KNOWLEDGE OF FUNCTIONS

The questions aimed at testing procedural knowledge of functions are typically questions
where the students are asked to calculate values for a given function for different values
of the arguments, drawing functions or solving inequalities. Typically, these questions
are solved following a step-by-step procedure without a need for an in-depth knowledge
of functions.

Procedural knowledge of functions was measured by the following variables (items):

Graphic procedures (x1)
Algebraic procedures (xz).

‘Graphic procedures’ refer to actions as for example drawing a graph or reading from a
graph. Such operations must be distinguished from operations where the graphs are
treated as units for the operation, as for example when two functions are added by
adding their graphs. In the same way, “algebraic procedures’ refer to problems where one
operates on one function such as computing a value.

Even if other representation forms, such as tables and texts, are used in mathematics,
it is hard to create tasks for these types of representations that distinguish between the
use of procedural and conceptual knowledge, especially for texts. A textual
representation of problems and their solutions probably requires more conscious
thinking, and is possibly more related to conceptual knowledge. Since graphs and
algebraic expressions are the dominant representation forms in teaching and learning of
mathematics, and also are clearly distinct from each other, the measurement of
procedural knowledge of functions is limited to these two variables.
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4.4 CONCEPTUAL KNOWLEDGE OF FUNCTIONS

When it comes to measuring conceptual knowledge of functions, we need characteristics for
objectification, and these characteristics needs to be measurable or at least to some extent
observable. One aspect of having a conceptual knowledge is to have a good sense of
isomorphism between different symbolic representations, keeping the same object in
mind. The students in this study were asked questions where they had to shift between
different representation forms. One example of this is to point out which graph that
corresponds to a given algebraic expression.

Another type of task to measure conceptual knowledge of functions consists of
questions where students are asked to perform operations on graphs where only the
graphs are presented and the corresponding algebraic expressions have been left out. The
intention is to test the students’ ability to operate on graphs as units, without going into
any procedural steps on the given functions.

A third set of tasks asks the students to give interpretations of functions given by
algebraic expressions. These tasks are designed to measure the students’ ability to make
reflections on the given functions, rather than to perform algorithmic procedures.

Conceptual knowledge of functions was measured by the following variables (items):

Relations between graphic and algebraic representations (y1)
Graphic interpretations (yz)
Algebraic interpretations (ys).

The first item addresses the ability to see relations between different representations of
functions. In the second item, it is the graph itself that is treated as one object. In other
words, the graph is a “unit” which is treated as a whole. This is different from the item
“algebraic procedures” (xz), where operations are performed on the elements within the
graph, such as reading a value from the graph. In this item, also the term ‘nonprocedural’
could be used, referring to an absence of algebraic procedures. In general, one might say
that a graph is a more condensed representation of a function than an algebraic
expression, and that the algebraic expression carries more detailed information on how to
carry out procedures. The idea is to ask questions where the graph carries sufficient
information to solve the task, without knowing details on procedures.

The third item is related to how functions can be treated as units when they are
represented only by names like f, and some properties are given as a text. The functions
are used as entities in the sense that, for example, one must decide what kind of
properties the product of two functions has, given some properties of the two functions
involved. One can say that students are asked to interpret the meaning of symbols like
f(x)-g(x). The meaning of a symbol arises from the connection between the symbol and the
object (function) to which it refers (Edwards, 1998, p. 70). If we think of symbols like f(x)
as carriers of the meaning of a function, the third item challenges the student to extract
meaning.
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4.5 ABILITY TO APPLY FUNCTIONS

The ability to apply functions can be thought of in two ways. One way is to apply the
concept of function on a mathematical concept to operate on a more advanced
mathematical concept at a higher level, such as differentiation or integration. Another is
to look at applications in another subject than mathematics, such as economics or
statistics. Since the students are at their first year of their study in economics, it is natural
to use examples from this domain. The economics examples are simple, typically related
to cost and income situations.

The tasks in derivation are of two types, where one is the traditional derivation of
functions given algebraically. The other type is a group of tasks to reveal how derivation
is understood by graphic representations. The ability to apply functions was measured by
the following variables:

Economic applications (ys)
Derivation (ys)
Graphic knowledge of a function and its derivative (ys).

The item that measures economic applications is related to problems involving economic
phenomena such as costs, income, profit and also the relation between them. The tasks
within the item relate to a reality outside the world of mathematics, but where
mathematical knowledge is supposed to be relevant.

There is no doubt that derivation, as measured by the second item, is in one regard a
procedural task, and a relevant question is whether it measures conceptual knowledge or
not. However, the operations refer to a more advanced concept than functions
themselves. Another aspect is the ability to reflect on the answers as for example being
aware that the exponent of the derivative f of a polynomial function f should be one
degree lower than that of the original function.

The last item concerns relational knowledge, asking the student to relate the graph of
a function with the graph of its derivative. In many ways, this item points to the core of
the concerns that have motivated for this study, namely that many students seem unable
to interpret derivation from graphs.

4.6 THE MEASUREMENT MODEL

The research questions and the discussion so far are reflected in the path diagram in
Figure 4-2 for the measurement model. The measurement model and the latent variable
model, as described in the previous chapters, form the basis for developing a structural
equation model in LISREL. It addresses many issues, not only regarding estimation
methods and fit measures, validity and reliability, but also on statistical assumptions. The
suggested structure that is visualized in the path diagrams is a suitable model for the
statistical study of the research questions.

41



yi
X1

Y2

Y3

X2

Y4

ys

Yo

Figure 4-2. The hypothesized measurement model with three latent variables and eight items.

In LISREL exogenous latent variables are represented by &’s, and endogenous latent
variables by m’s. In this notation, & is the name of the latent variable “procedural
knowledge of functions”, n1 denotes “conceptual knowledge of functions” and m2“Ability
to apply functions”. In the next chapter, outlining the complete model, the two latter are
endogenous®. The direction of the arrows indicates a causal direction, often called a
reflective (as opposed to formative) model, which means that the ability to score on the
items is considered to be a consequence of the latent variable.
The measurement model can also be described by the following equations:

X1 =ME1+ 01 (4.1)
X2 = M2E1+ &2 (4.2)
yi=2Ami+ el (4.3)
y2 =M1+ €2 (4.4)
y3 =M1+ €3 (4.5)
V4 =Aen2+ €4 (4.6)
y5=Am2+ &5 (4.7)
y6 = AsM2+ €6 (4.8)

which in matrix notation is:

X= AXE +0 (49)
y=Ante (4.10)
where:

5 In general, it is possible for two factors to load on the same item.
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The &’s and ¢’s, are the errors of measurement having an expected value of zero and are
assumed to be uncorrelated with the €’s, s and each other. They are also expected to be
homoscedastic and non-autocorrelated.

4.7 THE LATENT VARIABLE MODEL

In the other part of the model, referred to as the latent variable model, the concepts
(latent variables) are treated as variables in a set of simultaneous linear equations where
each latent variable can be considered both as a dependent or independent regression
variable.

Since we want to explore a theory on mathematical knowledge as given by the
research questions, we assume some knowledge on the underlying dependencies
between procedural knowledge of functions and conceptual knowledge of functions.

The first assumption is that the ability to apply functions is a function of the two other
latent variables. At the initial stage, conceptual knowledge of functions is assumed to be
dependent of procedural knowledge of functions®. This assumption is in fact to assume
the genetic view as illustrated in Figure 3-1, and might seem strange. However, this will
be used to estimate the parameters in the measurement model, which is used to produce
factor scores and re-evaluate the assumption on the causal direction. It is important to
notice that these estimates are independent of the assumed causal direction.

In fact, procedural knowledge of functions (&:) is assumed to have both a direct and
an indirect effect on the ability to apply functions (n2). The indirect effect goes via
conceptual knowledge of functions (m:). In other words, the total effect can be
decomposed into a direct and an indirect effect.

Total effect = Direct effect + Indirect effect

The separation of effects plays an important part when it comes to the interpretation of
the results. If the genetic view is supported, a large direct effect will indicate that it is
possible to apply functions even if the conceptual knowledge of functions is low. If the
indirect effect is the dominant one, then procedural knowledge alone does not seem to be

¢ One could argue that 1 is a condition for &, in other words that we have a bidirectional effect, but this
would have no impact of the model fit.
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sufficient to be applied at a high level. If the re-evaluation should support the dynamic
interaction view as in Figure 3-2, then conceptual knowledge of functions will have an
indirect effect on the ability to apply functions via procedural knowledge of functions, in
addition to a direct effect. So, initially, the hypothesized structure is the structure, shown
in Figures 3-1 and 4-3.

& > N1

Figure 4-3. The initially hypothesized latent variable model.

It is also important to interpret the effect that procedural knowledge of functions (£1) has
on conceptual knowledge of functions (n:). This effect will indicate whether a certain
level of procedural knowledge of functions (E1) is required to achieve conceptual
knowledge of functions (n1). Since conceptual knowledge of functions is treated as an
endogenous variable, explained only by procedural knowledge of functions, it is implicit
in the hypothesized model that we expect this effect to be significant. If not, it might be
expected that other explanatory variables should have been included.

Finally, there is also a hypothesized effect from conceptual knowledge of functions
(M) on the ability to apply functions (n2). It seems obvious that this effect is expected to
be significant. The structural model diagram reflects hypotheses about the relations
between the latent variables. The direction of the array from procedural to conceptual
knowledge assumes support for the view that procedural knowledge of functions is a
condition for conceptual knowledge of functions, and precedes conceptual knowledge in
time. As stated earlier, this must not be interpreted as if the direction of causality is
known beforehand. We could have hypothesized an opposite or bidirectional causality.

The corresponding equation form is:

Nt =y + & (4.11)
N2 = Pam + y21&1 +C2 (4.12)

which in matrix format is described by:
N=Bn+r&§+¢ (4.13)
where:
B= 0 0 r= ru O £ - & - &
B 0 Ya 0 0 &

where y’s and f’s are regression parameters and C’s are disturbance terms.
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4.8 THE COMPLETE MODEL

Combining the measurement model and the latent variable model discussed in the
previous chapters, gives the path diagram in Figure 4-4 for the complete model. The model
meets the criterion for over-identification (Byrne, 1998, p. 29) since the number of
estimable parameters is less than the number of data-points. We have 8 \’s, 2v’s, 13, 2 8's
and 6 ¢’s, altogether 19 parameters to be estimated. In general the number of data-points,
being the number of covariances and variances (or respectively correlations and 1’s) is
calculated as p*(p+1)/2 where p is the number of observable variables. Since we have 8
observable variables, the number of data-points is 36. Thus, with 36 data-points and 19
parameters to be estimated, we have an over-identified model with 17 degrees of
freedom. A positive number of degrees of freedom is necessary so that we are able to
eventually reject the hypothesis that the model fits the data, and is therefore required for
the analysis to be of any interest.

G

)\.1 )\'3 Y1 — &

o — X \

y2 — &

Y3 |e— &3
0; —» X2

Y4 <+— &

ys 4+— &5

Y6 <4+ €6

Figure 4-4. The complete structural equation model with parameters. The regression parameters
(y11, y21, B21), the factor loadings (A’s) and the disturbance terms (8's and &’s) are estimated.

Conceptual knowledge of functions (n:) and ability to apply functions (v2) are
endogenous, but an endogenous latent variable is probably determined partly by the
model. Crand Tz are the random disturbance terms being undetermined (Bollen, 1989, p.
12)".

It is important to be aware of the different kinds of effects the variables have on each
other to achieve a better understanding of the path diagram. Even if causality cannot be
proven, the arrows in combination with the estimated parameters indicate the effect of
one variable on another. A one-unit change in &: leads to A2 changes in x2 and A1 change in
x1. Similarly, a one-unit change in n: leads to Bz changes in m2. These effects are called
direct effects, as they are not mediated by another variable in the path diagram.

7 Crand Q2are not included as parameters to be estimated in the calculation of degrees of freedom.
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However, a change in & will also lead to changes in for example y2and mnz, which are
intermediated by m1. The effect of €1 on y2is ynh, meaning that one unit change in & will
lead to y11A4 units of change in changes in y2. One unit change in & will lead to both y21
change in m2in addition to a y11fz1 change in n2. This last contribution is referred to as the
indirect effect. One variable’s effect on another variable is the sum of the direct and
indirect effects (Bollen, 1989, p. 36). The total effect on n2 from E&: is therefore expressed
mathematically as y21+yuifz1.

The analysis in this study is based on the correlation matrix rather than the covariance
matrix. This has some effects on the interpretation of the estimated parameters as they
measure the expected change in the dependent variable in standard deviation units
caused by a one standard deviation change in the independent variable. In this way the
estimates are independent of scale and effects from different variables can be compared
directely.

Research questions 1 to 3 are all studied within the frame of this model or a similar
model modified for causal directions and redundant relationsships. In fact, each arrow in
the path diagram represent an hypothesis. The research question 1 will be investigated
through the measurement part of the model, while questions 2 and 3 are subject to the
latent variable part of the model.

Based on the observed covariance matrix S, between the latent variables
X1,X2,¥1,¥2,Y3,y4ys and ys, the factor loadings and regression parameters will be estimated.
The first research question is:

Research question 1: How can procedural and conceptual knowledge of functions be
measured?

This question can be studied from two perspectives. One is the intepretation of the
magnitude of the parameters, while the other is to investigate whether the items
constitute a question battery which is valid and reliable. As already mentioned, a
standardized solution will allow one to compare the relative effects from the different
items directely. As an example, one can study which category of questions (item) that
seems to have most effect on conceptual knowledge of functions.

Research questions 2 and 3 can be investigated within a paradigm of traditional
testing of hypothesis. The models allow us to determine whether these effects are
statistically significant or not. Research question 2 is in fact tested as a simple linear
regresssion:

Research question 2:  How do procedural and conceptual knowledge of functions
relate to each other?

Y11

Figure 4-5. The relationship relevant for research question 3, indicated with an arrow.

The question is whether the parameter y11in equation (4-14) is significant:
Nt =y + & (4.14)
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Looking at equation (4.14), research question 2 adrress the bfollowing hypothesis®:
Ho2:  yn=0
Hiz:  yu>0

The alternative hypothesis is one-sided and is tested by a t-test at 5 % level of
significance. There is little reason to test this two-sidedly, as there is no reason to assume
that increased performance in procedural knowledge should have a negative effect on
conceptual knowledge in general for a large group of students.

The last research question is, as mentioned earlier in this chapter, concerned with the
requirements for the ability to apply functions.

Research question 3: How does the ability to apply functions relate to procedural and
conceptual knowledge of functions?

The question can be separated into two parts. First we regard the direct effects from
procedural and conceptual knowledge of functions to the ability to apply function as
illustrated in Figure 4-6.

Y21

H =
';’

Figure 4-6. The path diagram of direct effects: from procedural knowledge of functions (&) and
conceptual knowledge of functions (n1) to the ability to apply functions (n2).

The second part is to regard conceptual knowledge of functions as an intermediate effect
as in Figure 4-7 by combining the direct and indirect effects.

P21

Figure 4-7. The path diagram of direct and indirect effects: from procedural knowledge of functions
(&) and conceptual knowledge of functions (1) to the ability to apply functions (12).

8 The number after the semicolon addresses the research question number.
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The relations in Figure 4-6 have to do with equation (4.15):
N2 = Pam + y21&1 +C2 (4.15)

The parameters P21 and y21 are tested separately one-sided by t-tests, while an R-Square

value, ranging from 0 to 1 will indicate whether the equation (4.15) as a whole is good.
The first hypothesis® related to research question 3 concerns whether an increase in

procedural knowledge of functions has a direct effect on the ability to apply functions:

Hos1: y21=0
Hiz1: y21>0

A similar test is done to test the direct effect of conceptual knowledge of functions on the
ability to apply functions:

Hos2: P2i=0
Hiz2: p21>0

Both tests are one-sided as it seems very unlikely that increased procedural or conceptual
knowledge shouls have a negative effect on the ability to apply functions.

It might be that one could argue for competing models, or that the analysis itself
would suggest a model that fits the data better and competing models will be evaluated.
The model represented in this chapter is the initially hypothesised model based on the
discussion and asumptions, presented so far.

4.9 DATA COLLECTION AND STUDY POPULATION

This study was conducted in Norway at the Norwegian Business School (BI), and data for
the main analysis was collected from 283 students studying mathematics as a part of a
three-year bachelor’s course in economics. Since the development of a suitable set of tasks
was considered critical, a pilot study, including 136 students, was done one year before
the main trial. The experiences from the pilot study were used to develop suitable tasks
to be employed in the main test. A post test was conducted to discuss validity and
relational aspects by collecting data from 57 students. Finally three students with
educational background from different upper secondary schools in Norway were chosen
to form a quasi peer group. They did not participate in doing the whole main test but
took the same course in mathematics as the students in the main test. In all, the study is
based on data from 479 first-year students at BI.

Bl is a business school offering bachelor, master and doctoral programs in business
economics and marketing. The school is located at different locations in Norway, with a
total of approximately 20,000 students, where most of the students are full-time students
in their early twenties.

The participating students’ background in mathematics could be described as weak,
although there are substantial variations between them. Only the lowest level of
mathematics from the 3-year upper secondary school is required for enrolment at the

9 Research question 3 is decomposed into two sub-questions as indicated by the subscripts 3-1 and 3-2.
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bachelor study. The students were not asked for their mathematical background in the
test, but approximately 60% had 1 year of mathematics at high school while the rest had
two or three years. A general impression is that many students struggle with
mathematics, and approximately 30-40% normally do not pass the final exam. Some
students were part-time students, which means that they use two years to take the
courses that fulltime students complete in a year. The duration of the test was set as three
hours, and the use of calculator was allowed. The pilot test took place in Oslo with 136
participating students.

After the evaluation of the pilot test, the main test was conducted with data from 283
students from three different locations, Oslo, Sandefjord and Lillestrem. The number of
students was distributed as follows:

Class Students

Sandefjord part-time 13
Sandefjord full-time 27
Lillestrgm part-time 21
Oslo class 1 full-time 105
Oslo class 2 full-time 117
Total 283

Figure 4-8. Number of subjects per location.

Finally data was collected from 57 students in Trondheim to evaluate validity and the
relations between the knowledge types. Since the purpose of the post test was to evaluate
the measures that were applied in the main test, the questions in the post test were
exactly the same as in the main test.

For practical reasons it is not common to select a purely random sample on individual
basis in this kind of study. Instead, a number of classes from different schools are
selected, and all students in these classes are included in the study. Such sampling is
referred to as cluster sampling (Ary, Jacobs, & Razavieh, 1996) where the classes are
clusters. Even if the sample is not purely random, the sample represents the population
of this study branch in Norway reasonably well. It is possible to test differences between
full-time and part-time students, or between students in larger and smaller classes, using
this sample, but that was not the intention with the study. Rather, the intention was to
include clusters that were representative of the study population.

The classes were comparable in the sense that all students followed lectures three
hours weekly, though with different teachers. To ensure that the test was performed in a
similar manner at all locations, I supervised all the tests. In Oslo and Sandefjord, the tests
were done in classes immediately after each other to avoid exchange of information
between the students in different classes. All answers were written on transparent sheets
in three copies, of which the student kept one. Another copy was later returned to the
students with corrections and comments to ensure that the students put effort in their
work with the test. No mark was given, as the test was not a part of the official evaluation
of the course, and the students who joined the test were informed about this. The use of
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books and calculators was allowed to make the test situation resemble familiar the exam
situations the students already know.

The pilot study served as a tool to evaluate different types of tasks to develop suitable
tasks for the main test. Therefore the results from the pilot study were not analysed with
the hypothesised model. Instead a combination of judgement and simple statistics was
used to evaluate the tasks with respect to their ability to measure different aspects of
knowledge. The experiences from the pilot study are presented in the following chapter
where the development of the tasks in the main test is described.

The interviews were semi-structured clinical interviews with a combination of
planned questions, but letting the students speak for themselves. The questions were
written in an interview guide and were designed to focus on the aim of the interview.
The interview questions were planned from two perspectives. The first perspective was
to ask the students about beliefs of mathematics while the second perspective was to find
out more about the students’ educational history. The students were interviewed
separately in an interview room for about 30-40 minutes each.

4.10 TASKS MEASURING THE ITEMS

This chapter gives a description of the tasks in the main test for each item, and the related
latent variables. Since the validity of the tasks can be judged by the content mainly, the
discussion is quite detailed. One often thinks of a “task” as skill-oriented, whereas the
word “problem” is associated with something that involves more than just procedures. In
the present chapter, the word “task” is used when describing the different items, whether
they measure procedural knowledge of functions, conceptual knowledge of functions or
the ability to apply functions.

It is important to keep in mind the different challenges that are required to solve a
mathematical problem. One may refer to Polya’s model of problem solving processes
which consists of four steps (Polya, 1945):

Understanding the statement of the problem
Conceiving a plan for its solution
Executing the plan

B W N~

Verifying and assessing the answer

These four steps can be helpful references when the criteria for the different tasks are
discussed. The relevant question is: What kind of knowledge is required by each of the
four steps? At first sight, it seems that stage three is the “procedural” stage, while it is
hard to see how procedures alone are sufficient to work through the other stages. All
stages are relevant with respect to conceptual knowledge and the ability to apply
functions.
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Table 4-1. Latent variables linked to items, measured by particular tasks. The task numbers refer to

Appendix A.
Item
Latent Latent variable
variable name |variable label |name Item label Tasks
Procedural X1 Graphic procedures 1,2(2)
3 knowledge of
functions X2 Algebraic procedures 2(1),3,4,23
Conceptual Y1 Relations between 6,7,8,18
N1 knowledge of graphic and algebraic
functions representations
Y2 Graphic interpretations 9,10,11,12
Y3 Algebraic interpretations | 14,15
The ability to Ya Economic applications 5,13(2),17,19
M2 apply functions |ys Derivation 13(1),16
Ve Graphic knowledge of the |20,21
derivative of a function

The intention of the pilot study was to detect the weaknesses or strengths of the different
kinds of tasks. A complete analysis of the pilot study is not given separately, since the
intention was to study the tasks as such, rather than the students’ achievements. Instead,
experiences from the pilot study are used to argue for the development of the tasks in the
main test when appropriate. The tasks in the main test are discussed item per item, which
means that all tasks that constitute an item are discussed in the same chapter. In Table 4-
1, tasks are grouped per latent variable and item.

It is of course possible to design tasks, which require mainly procedural knowledge of
functions. The difficulty lies in the development of tasks where the use of conceptual
knowledge of functions is absent when the student works with them. If a student is asked
to calculate the value of x2 + 3 for x = 2 and he or she gets a negative answer, then he or
she might conclude that the result is wrong because x? is non-negative and hence the
answer cannot be less than three. In such a case the students might redo the calculation,
based on judgments that include a type of knowledge, which can be considered as
conceptual. However, since we do not look at types of knowledge as opposites, this does
not cause severe problems for the analysis.

Tasks to measure conceptual knowledge of functions are designed in a manner, which
makes it difficult to solve them by procedural knowledge alone. Those tasks are defined
in such a way that the student is prohibited from a purely algorithmic solution strategy.

4.11 TASKS MEASURING PROCEDURAL KNOWLEDGE OF FUNCTIONS

Procedural knowledge of functions is probably reflecting the typical school mathematics
focusing on skills. Kadijevich (1999) claims that these skills are primarily fostered
through procedural tasks involving fully quantified objects. It is important to remember
that this research is about knowledge of functions. Procedures on functions will
obviously involve operations on concepts that are more elementary, such as integers.
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Baker & Czarnocha (2002) investigated to what extent cognitive development is
dependent on conceptual and procedural knowledge. They measured procedural
knowledge through a student’s average scores in mathematics. This confirms the
impression that typical school mathematics, from which these scores originate, mostly
reflects procedural knowledge. The questions in the test do not address practical
applications, to avoid disturbance, and can be solved by following an algorithm.
Presumably, no objectified or conceptual knowledge of functions is needed.

Tasks to measure procedural knowledge of functions are designed to test the
students’ ability to execute a plan, or more precisely to execute a procedure. As
mentioned earlier, this relates to the third stage in Polya’s list of four stages. Neither
understanding the problem, nor conceiving a plan for its solution, should play a critical
part. In other words, it should be trivial to understand what the student is asked for, and
the problem of choosing between different solution strategies is kept to a minimum.
Making choices between solution strategies can be seen as a process, which involves
conceptual knowledge, since choices are often based on the judgment of properties or
relationships.

The tasks can be solved using well-known algorithms and step-by-step procedures
where the next step to be performed only depends on the state of the former and the
solutions are possible to locate without seeking relation to other mathematical
representations. If a problem is presented through a graph, no other mathematical
representation of the problem is needed. Finally, tasks measuring procedural knowledge
of functions should not be related to applications or subjects from other fields of research
since applications are treated separately. Even if problems that involve such relations also
require procedural skills, it would be hard to distinguish the types of knowledge the
students applied to achieve their answers.

Two items measure procedural knowledge of functions, one related to the graphic
procedures and the other to the algebraic procedures. The scores on the items are thought
of as being caused by a common underlying factor, namely the procedural knowledge of
functions, and the scores between the items are expected to correlate to some extent. On
the other hand the two items will also account for the difference in graphic and
algebraically skills, hence two different items.

411.1 Graphic procedures

This item (x:in Table 4-1), was designed to test whether the students are able to draw a
graph, assuming that they had calculated values for a set of pairs (x, f(x)). An incorrect
graph might originate from the fact that the student is unable to calculate the values of
the function, or a lack of ability to draw the graph, even if the values for the pairs are
correct. The following task was given in the pilot study:

Given the function f(x)=2x*> -8x +6, Df = R
Calculate the value of f(x) when x = -1 and when x = 4
Sketch the graph of f(x.)

Figure 4-9. Task from the pilot study measuring the ability to perform graphic procedures.
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Only 2.2% of the students got the calculations in the first question wrong, but 17.6%
failed to sketch the graph. It seems that the reason they got the graph wrong was caused
by something else than errors in the calculations.

It is the second question, sketching the graph, which is tested in this item, while the
first part belongs to item x2 (algebraic procedures). This means that the scores are based
on the procedure of sketching graphs. Similar questions were given in the main test, but
with varying degrees of difficulty to account for the variation between students.

The questions to measure graphic procedures are:

Item Task Question
X1 1 Sketch the graph of h(x) = 2x - 1
X1 2(2) 1

The function g(x) is given by g(x) = X + ;

Sketch the graph of g(x)

Figure 4-10. Tasks to measure graphic procedures.

Question 2(2) refers to the last part of task 2.1 Even if the tasks are intended to address
the portion of procedural knowledge that is related to graphs, the students have to
calculate functional values algebraically before they sketch the graph. One could claim
that the item contains an element of algebra, but since the calculations as such are
considered trivial, the students are not expected to have many problems with this part of
the task. Hence mistakes in calculations are not expected to be a dominant source of
variation. The second task is expected to be more difficult than the first. Before answering
the second question, students were asked to calculate different values for g(x), but these
results are scored in item X2. The fact that different values were calculated first makes it
reasonable to believe that the remaining parts are purely procedural, i.e. plotting the
points into a coordinate system and drawing the graph.

Hiebert and Lefevre (1986) characterize procedural steps as “production systems that
require some sort of recognizable input for firing”. In this case the input is given as
algebraic expressions that are familiar to the students. The objects that are operated upon
are symbolic, and the students are assumed to have an objectified conception of them.
Hence the input or “starting point” should be clearly understood. Symbols such as “x”
and “+” are assumed to be familiar to the students. For a student to understand the
statement of the problem (Polya’s stage 1), he or she must also have a clear idea of what
the final state (a graph) is expected to be. That one has an idea of what a graph is, in
general, can be taken for granted. However, being able to produce the particular graph is
something else.

Conceiving a plan for the solution (Polya’s stage 2) should be unproblematic for the
simple reason that the students have worked with similar problems a number of times.
Of course, it is possible that some would try to produce the graph on a calculator, and
then try to reproduce it by drawing the same shape on the paper. This is not a common
approach, since students are familiar with the kind of answer that is expected.

10 The first part, question 2(1), asking for calculations belongs to the item ‘algebraic procedures’.
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In view of the previous comments, students who are unable to sketch the graph, may
have failed in Polya’s third stage, executing the plan. It might be that some have
discovered points that were “out of the way” and did not fit smoothly with the other
points, but got it right by calculating them again. This means that they were able to verify
that parts of the answer were wrong (Polya’s stage 4), but at least they have documented
an ability to correct it. It is impossible to decide whether the student has done the
reflection on the answers, causing the repetition of the procedure. However, we can say
with an amount of certainty that those who got it wrong were not able to execute the
algorithm.

411.2 Algebraic procedures
This item (x2in Table 4-1) probably represents the kind of procedures that the students
have most experiences with from school, and many suggest a renewed focus on exploring
patterns and seeking solutions rather than on just memorizing procedures and formulas
(Schoenfeldt, 1982). For the purpose of measuring this item, the student’s familiarity with
such tasks makes it reasonable to believe that the first and second stage in Polya’s model
should not cause problems.

To explore how tasks could detect variation between students, the following
questions were tested in the pilot study:

Given the functions:
h(x) = e¥?

k(x) = e*

When is h(x) = k(x)?

Figure 4-11. Task from the pilot study to measure algebraic procedures.

Surprisingly, only 23.5% were able to solve this task correct. According to Hiebert and
Lefevre (1986), both algorithms and symbol representation systems are parts of
procedural knowledge. It is hard to find out whether the reason for failure is a lack of
understanding of the formal language or symbols on one hand, or whether the students
are unable to complete the algorithm on the other. Exponential functions and Euler’s
number were introduced to the students just a few weeks prior to the pilot test. The
experience from this part of the pilot study was that recently introduced symbolism
should be omitted to avoid difficulties in separating errors due to misunderstanding the
symbolism and errors caused by lack of algorithmic skills.

Another weakness with the pilot study task, when it comes to measuring procedural
knowledge of functions, was that the student had to realize that if the two expressions for
the functions were equal then the exponents had to be the same. This requires
recognizing conceptual properties related to exponential functions. So, performing this
stage would require elements of conceptual knowledge. As a consequence, questions that
presumed any kind of conceptual knowledge to select an appropriate solution strategy
were omitted. This does not mean that there should be one and only one choice of
algorithm for each question, but that it should be easy to find at least one algorithm that
the student is familiar with to some degree.

The questions to measure algebraic procedures are shown in Figure 4-12.
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Item Task Question
1
X2 2 The function g(x) is given by g(x) = x + —
X
Calculate the value for g(x) when x =-5, x=-2,x =-1, x=1,x=2
and x =5
X2 3 Given f(x) = -x - 3. For which value of x is f(x) = 0?
X2 4 In this task we look at the function  f(x)=2x*>-8x+6, Df=R
Calculate f(x) when x = -1 and when x = 4
When is f(x)=0?
When is f(x)<0?
X2 23 g(x) is a linear function. Write down the expression for g(x) when g(2)=0
and g(0)=4.

Figure 4-12. Tasks to measure algebraic procedures.

Even if the values can be calculated strictly by putting a value of x into the expression of
the function, it is reasonable to believe that the students whose discourse is objectified,
will detect an error due to wrong calculation more easily, by feeling that something is
wrong with the answer and redo the calculation. The question remaining unanswered is
not whether these students have better skills, but whether they have applied their
conceptual knowledge when they were solving the problem. In tasks 2, 3 and 4 the
procedures to follow are more or less given. In solving task 23, different procedural
approaches are available. Since two points are given, one could insert the values for one
point into g(x) = ax + b to find b and then use the other point to find a. Another approach
is to insert values for both points into:

g09-g0x)=((g(x2)-g(x1))/2-x1)) - (x-x1)

to find g(x). One could argue that making a choice between different strategies is a
mental activity in itself that requires more than just procedural knowledge. However, it is
likely to believe that the students use the method they are used to, rather than making an
in depth evaluation of which method is the most appropriate. Since both procedures
require about the same amount of calculation, the probability of success is unlikely to be
dependent on the choice of procedure. At least, both procedures have been taught in the
classes at an earlier stage.

4.12 TASKS MEASURING CONCEPTUAL KNOWLEDGE OF FUNCTIONS

The items should cover the main aspects of the meaning of conceptual knowledge to
meet the criteria for content validity (Bollen, 1989), in other words, they should measure
what they intend to measure. We need to summarize the essence of the previous
discussion on the nature of conceptual knowledge of functions as discussed in chapter 2.
The items should capture the aspect of reification (Sfard, 1991), that a concept can be
understood as a unit, without thinking of the underlying procedures. Breidenbach et al.
(1992) claim that the only way to make a mathematical object is to encapsulate a process.
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The challenge is to create tasks in which the functions are treated as units and pose
questions in such a way that a procedural approach does not work.

Another important aspect concerns relations. Hiebert and Lefevre (1986) describe
conceptual knowledge as “a network in which the linking relationships are as prominent
as the discrete pieces of information”. This is in accord with “skilful drive along
networks”, appearing in the definition of conceptual knowledge on page 10. We can say
that to possess in-depth conceptual knowledge is to be able to organize and structure
content into a coherent whole by the judgment of a variety of relationships. Tasks where
the challenge lies in linking different representation forms are included. There are other
relational issues, as the ability to relate knowledge to other mathematical knowledge.
This might be previous knowledge, such as knowledge of basic arithmetic, algebra and
symbols, but also relations to more advanced concepts. As an example, tasks to relate
functions to the derivative of functions are included.

Both the second and fourth stage in Polya’s model involve judgement on relational
issues. Conceiving a plan for the solution of a problem would be impossible without
imagination or some idea of where the different strategies would lead. Planning takes
place prior to the execution of the plan (stage 3) and will be based on something else than
procedural steps.

The verification of the answer is also related to the properties of this concept.
Assessing the answer means to evaluate whether the outcome is reasonable or not. The
presence of control mechanisms is a characteristic for conceptual knowledge of functions.
One will sometimes discover that a result of a procedure is unreasonable due to the fact
that certain requirements or properties are not met. In such cases, the students are likely
to try again. However, it is problematic to test students’ capability to control the outcome
of a task, except when they accept a false result that could have been detected.

412.1 Relations between graphic and algebraic representations

This item (y1in Table 4-1) relates to different representation forms. The intention is not to
test for algebraic skills and abilities to manipulate graphs separately, but to test whether
students are able to see relations between the algebraic and graphic representations.
Haapasalo (1993) distinguishes the levels of concept identification or concept production. He
found that the latter types of tasks (i.e. tasks requiring production from one
representation form to another one) are most reliable to measure conceptual knowledge.
An essential question is whether students can make this transformation based as “skilful
drive” or does they need to do it through procedural stages.

The pilot study included the task in Figure 4.13, being a typical identification task.
The solution could be found by testing the zero points from the graphs with the algebraic
expression for f(x). As the function represented by Graph 5 is the only one that is zero
when x is 1, 2 or 3, this would lead to the correct answer. Since the students had worked
with cubic functions prior to the test, this was expected to be a type of question that many
students were able to master. The problem was that the answers, when registered as right
or wrong, gave limited information. 83.8% of the students gave a correct answer,
indicating that the majority saw these relations. The remaining 16.2% of the students
either gave a wrong answer or did not answer at all. The small number of false answers
was not enough to detect systematic patterns, and more questions were needed to
account for variation between students.
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Which graph belongs to the function f(x) = x* - 6x2 + 11x - 6
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Figure 4-13. A task from the pilot study to identify algebraic and graphic expressions.



Another type of question from the pilot study was:

Below is a sketch of the graph of the function f(x). Write down the algebraic expression for
f(x).

151 7

101

/
g -151

-204

Figure 4-14. A production task from the pilot study to measure students’ ability to produce an
algebraic representation from a graphic one.

Only 61.8% managed to give a correct answer, which was lower than expected. The most
common error was a wrong sign on the intercept constant. The task clearly addresses the
link between graphic and algebraic representations, but, again, more questions were
needed to give more detailed information.

At first sight, when we compare the two examples, one might expect a larger rate of
success on the linear function problem. In general, cubic functions are at a more
advanced mathematical level than linear functions, and the students are more familiar
with linearity. Perhaps the explanation is that multiple-choice questions, as in the first
example, challenge the students in a different way than in the second example. The first
example mainly concerns the last stage in Polya’s model. The calculations are already
produced, and the students are left to verify the answers. In the second example, the
students must conceive a plan for the solution, the second stage in that model. To quote
David Tall (1991, p. 18) when he refers to the second stage in Polya’s model: “The idea of
‘devising a plan’ is extremely daunting for the novice”, which could explain the results.
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Item Task Question
21 6 The graph of f(x) is shown below. Write down the expression for f(x).
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Which of the following expressions can the function be divided by?
(x+1) (x+2) (x+3) (x+4) (x+5) (x-1) (x-2) (x-3) (x-4) (x-5)
21 A function of third degree has the form f(x)=ax’+ bx?*+cx+d. The graph
of f(x) is sketched below. Find d.
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Figure 4-15. A task to measure students” ability to work with different representations.
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The experience from this part of the pilot was that a combination of questions involving
verification and “traditional” questions seemed like a good idea, since it is important to
cover the different aspects of conceptual knowledge of functions. The idea is to ask
questions where the students reveal their ability to shift between different representation
forms and thereby demonstrate knowledge of the isomorphism between the problem
expressed in algebraic terms and the graphs. The questions to measure the
transformation between graphic and algebraic representations are shown in Figure 4-15.

The solution of task 18 involves two steps. The first step is to draw a horizontal line
through 2 at the vertical axis and then draw a vertical line through the intersection with
the graph down on the horizontal axis. The lines can either be drawn physically, or just
be thought of as a mental activity. Secondly, the answer must be expressed algebraically
by reading the values from the x-axis and express the result correctly. An approach like
the one described here can be regarded as procedural and easy to work through, once
chosen. The most difficult part for the student is probably not to perform the procedural
steps, but the process of choosing the right procedure, which requires some knowledge of
the relationship between the different representation forms. Once again, Polya’s model is
a helpful tool to demonstrate how we can think about the nature of problems that may
arise. It is likely that stage 2 is the most challenging phase to work through. The graph is
used as an intermediate tool in the sense that the question is raised by use of a text
including an algebraic expression. This is interpreted into the graph, where some
procedures are performed. Thereafter the answer is expressed algebraically. The four
tasks are different in content and also with respect to degree of difficulty, but do all
address problems related to isomorphism.

4.12.2 Graphic interpretations

This item (y2in Table 4-1) concerns the encapsulation of a concept and is intended to
determine how students are able to handle functions as units that could be operated
upon, a characteristic for the objectification of a concept. It was necessary to raise
problems where functions are represented as unified and compact as possible, but also in
a way that does not enable a procedural solution strategy. The reason for representing the
functions by graphs, as in these tasks, is that they contain enough information to solve
the given problems, but lack information needed for a procedural approach. A graph is a
type of carrier for the functional relationship (Dorfler, 1999), but does not provide the
same details for procedural steps as an algebraic expression. Hence, graphic
representations are probably the best way to represent functions as entities. The
questions used to measure students’ ability to work with these kinds of graphic
interpretations are shown in Figure 4-16.
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Item Task Question
Y2 9 Below you see the graphs of f(x) and g(x). Sketch the graph of the
function f(x) - g(x). You don’t need to put more numbers on the axis. A
rough sketch is enough.
15
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Y2 10 The graph of f(x) is shown below. Sketch the graph of f(-x). You don’t
need to put more numbers on the axis. A rough sketch is enough.
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Y2 11 The graph of f(x) is shown below. Sketch the graph of -f(x). You don‘t
need to put more numbers on the axis. A rough sketch is enough.
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Y2 12 The graphs of two functions are shown below. Sketch the graph of the

sum of the two functions. You don’t need to put more numbers on the
axis. A rough sketch is enough.
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Figure 4-16. Tasks to measure graphic interpretations.

61




In tasks 9, 10 and 11, it is not easy, and very unlikely, that the students are able to
determine an algebraic expression for the functions. Task 9 is quite similar to the
examples than one often can find in economics where, as an example, functions for cost
and income are drawn in the same coordinate system. The difference between them will
be the profit. No problems were given regarding this similarity to economic subjects since
the idea was to distinguish this item from items that measure the ability to apply
functions.

The type of problem in tasks 10 and 11 are less familiar to the students. If the symbols
—f(x) or f(-x) are not understood, the students will have problems to pass stage 1 in
Polya’s model. It is likely that some students have an idea of mirroring the graph around
one of the axes or both. Pure guessing based on some intuition on mirroring would
involve two solutions (x-axis and y-axis) or maybe mirroring around the origin.

Task 12 can be approached by several strategies, including manipulating directly the
graphs. An alternative would be to find the algebraic expression for each linear function,
add them, and draw the graph of the sum of the expressions. In both cases, the
verification of the answer would most likely be done by inspecting the graphs.

4.12.3 Algebraic interpretations

In this item (ysin Table 4-1) functions are treated as units, being operated on as entities.
No details are given that could lead to a procedural approach, as neither algebraic
expression nor graphs are provided. The information that specifies characteristics about
the functions is given in the text. The questions used to measure students’ ability to work
with algebraic interpretations on functions are:

Item Task Question

Y3 14 Suppose f(x) is a function of third degree and that g(x) is a linear
function. What kind of function is h(x)=f(x)-g(x) ?

Y3 15 Suppose f(x) is a function of third degree and that g(x) is a function
of second degree and that f(x) can be divided by g(x). What kind of
function is j(x)=f(x)/g(x) ?

Figure 4-17. Tasks to measure algebraic interpretations.

The functions are not completely defined in the text, but in the same manner as item y»,
arithmetic operations where functions are entities that are operated on are addressed.
The questions concern the degree of polynomial functions. Evidently students have
knowledge of rules for potential expressions. Such tasks are linked to a part of the
students’ previous knowledgebase that has been established recently. The challenge is to
conceive a plan for the solution by acknowledging that these rules must be applied.

Task 15 contains the information that f(x) can be divided by g(x). It is important to
notice that the students had recently worked with polynomial division, which gives
reason to believe that understanding the statement should not cause too much trouble.

Conceptual knowledge is often related to the ability to link pieces of information. If a
student has a reasonable conception of fractions, rules for potential expressions and the
symbolic representations of functions such as f(x), the questions above will require that
the student is able to link the problems to his or her existing knowledgebase. Since the
arithmetic rules most likely are well known to students, it is reasonable to assume that
students who struggle with this task are unfamiliar with treating f(x), g(x) and h(x) as entities.
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4.13 TASKS MEASURING THE ABILITY TO APPLY FUNCTIONS

In this study, the ability to apply functions as a concept is treated separately, not as an
integrated part of conceptual knowledge of functions. This has also to do with a student’s
motives to learn mathematics. The motives are most likely that they need to use
mathematics either in further studies of mathematics or in a field where mathematics is
applied. Therefore the items that measure the ability to apply functions distinguish
between application of functions “outside” and “inside” mathematics. It is important to
emphasize that we do not study the ability of applying mathematics in general, as
personal quality. Instead, we look at the capability of applying functions in particular. As
an area of applications outside pure mathematics, it was natural to use examples from
economics, while tasks in derivation measured the mathematical applications.

Once again, Polya’s model is a suitable framework for comments. The first two
phases, to understand the problem and plan the solution, must now be considered from
many perspectives, of which functions is only one. It is about the ability to capture the
complete picture of a situation, whose solution is determined by the use of functions in
combination with elements from other areas. It seems reasonable to say that a student
with a well-developed ability to apply mathematics will be able to apply a mathematical
concept free of context, including contexts different from those in which the concept was
taught. Some of the problems are presented in a way that differs slightly from what
students are typically exposed to in the class.

It is difficult to design a test that is intended to measure the ability to apply functions
without including questions that require calculations. The calculation part is skill-
oriented, and does not address what we want to be included in these tasks. Therefore the
test addresses problems that do not require advanced skills.

The theoretical rationale for using tasks in derivation for two of the items stems from
the theory of Sfard (1991). She suggests that understanding develops from operational
understanding to structural understanding, and further to structural understanding at a
more advanced level. In this regard, one needs a structural understanding of functions to
understand the derivative at an operational level, or similarly one needs a conceptual
knowledge of functions to manage the derivative at a procedural level (Figure 4-18).

Conceptual knowledge
of the derivative

Conceptual knowledge Procedural knowledge
of function of the derivative

T

Procedural knowledge
of function

Figure 4-18. Development of knowledge via stages (indicated by arrows), following Sfard’s theory.
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Item ys relates to economic applications, focusing on problems related to cost and
income. The two other items, ys and ye, are both related to the derivative of a function,
and are as such pure mathematical problems. This means that we measure the ability to
apply the concept of a function on mathematical concept where we hypothesize that an
objectified understanding of functions is needed. The questions solved algebraically and
the questions requiring a graphic approach are split into two separate items, ys and ys.

413.1 Economic applications
This item (ysin Table 4-1) addresses basic economic problems. The pilot study included
the following problem:

The demand for a product is a linear function of the product’s price. The demand is
reduced by 7 units when the price is increased by one NOK. When the price is set to 70
NOK, the demand is 210 units. Express the demand as a function of the price. What is the
demand when the price is set to 77 NOK?

Figure 4-19. Problem from the pilot study addressing demand.

Only 47.8% of the students had a correct solution. A closer look revealed that very few set
up an expression for the demand function. They had reached a correct answer, but the
mathematical explanation was often incomplete. For example one student wrote 210-49 =
69. This suggests that students may be able to manage such problems without a symbolic
representation like an algebraic expression or a graph. In fact, there was limited evidence
on which steps the student followed to reach a solution. Even if teachers or researchers
normally struggle to identify student approaches step by step, this is not critical in this
context. What we look for is how the capability of reaching a correct solution is related to
procedural and conceptual knowledge of functions. The conclusion of the experience
from this part of the pilot-study was to include problems that are given textually and
only require one answer. The questions used to measure economic applications are
shown in Figure 4-20.

In task 5, the problem is raised textually and the student must find the solution by
interpreting the text and regard salary as a function of the total costs. As commented on
earlier, some students may be able to find the solution without expressing the solution in
terms of functions.

The word ‘function” is not used in the text, but what is important is the nature of the
given problem. The text describes an initial state, that the cost for an employee is 500,000.
In addition, the text gives some properties of the relation between an employee’s salary
and the company’s total cost of employing a person. As such, typical properties of
functions are embedded in the problem.

Task 13 asks the students to find out how the marginal cost can be calculated, given
an algebraic expression for the cost. Given a cost function, they must make
interpretations of it in an economic context. Two questions where the students are asked
to give interpretations are also included. The intention is to assess the students’ ability to
connect the answer to an economic phenomenon.

In task 17, the problem can be solved without the graph. In fact it is very hard to read
the result from the graph at all. The students are supposed to apply the expression for
K(x) to deduce that the marginal cost is 90 and thereafter combine this result with the fact
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that the profit is at its maximum when the marginal income equals the marginal cost,
which is for x=90. In this task, the student has a lot of information that is not required to
solve the problem. A part of the challenge is to decide what information is relevant and
what is not.

Item Task Question

Ya 5 The cost for a company to employ a person is the salary in addition to
other costs (taxes) estimated to be 40% of the employee’s salary.

A company’s total cost for an employee is 500.000. What is the
salary?

Ya 13 The cost of producing x units of a product is given by

K(x) = -0,1x>+6x+200 when x is in the interval [0,20].

Estimate the marginal cost for x=10. What is the interpretation of this
number?

Estimate the marginal cost for x=15. What is the interpretation of this
number in relation to the answer you got in the previous question?

Ya 17 The graphs of two functions are shown below. The linear function is a
cost function giving the total cost by producing x units of a product
and is given by K(x)=600 + 90x.

The other graph shows the total income by selling x units of the
product.
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How much is the marginal income when the profit is at its maximum?
Ya 19 A company has a linear cost function. The cost of producing 15 units
is 605 and the cost of producing 31 units is 877. What is the cost of
producing 8 units?

Figure 4-20. Tasks to measure knowledge of economic applications of functions.

Finally, task 19 is in a similar category of questions as the one given in the pilot study.
Hence the same comments account for this task as discussed previously. Again, the most
important information is to see whether a correct answer is given. It might seem strange
to disregard the strategy or procedure the students have applied, but that would involve
a judgment of procedural capabilities that would disturb the analysis. Here, in this latent
variable, the intention is just to see whether the answer is right, while distinguishing
between the employment of procedural or conceptual knowledge of functions is left to
the structural part of the model.
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4.13.2 Derivation

In this item (ysin Table 4-1), students are asked to calculate the derivative of different
functions. One might claim that this reveals only skills and not conceptual knowledge,
but it is important to keep in mind that the operations are applied to produce a new
function, namely the derivative, from a given function. Thus the functions themselves, as
given in the tasks, are not the product of the operation, but rather the starting point.
Similarly, one might claim that adding or multiplying rational numbers is also a skill
oriented task, but according to the hypothesis proposed, integers need to be objectified to
a certain extent to make possible operations on rational numbers.

The questions used to measure the item derivation are:

Item Task Question

Ys 13 The cost of producing x units of a product is given by
K(x) = -0,1x>+6x+200 when x is in the interval [0,20].
Calculate the marginal cost K'(x).

Ys 16 Calculate the derivative:
a) f(x) =4x+ 2 b) g(x) =3x4 + x2 -6x + 4
) hoo x2-2x
c X)= ~————
2x+4

d) m(x) = In(3x) e) n(x) = eax + b where a and b are constants

Figure 4-21. Tasks to measure derivation.

Task 13 could be interpreted as an economic application, but all the text regarding costs
and units could in fact have been omitted. As such the two tasks are very similar, but this
is not a theoretical problem, since they belong to the same item. What is important is to
include tasks with various degree of difficulty. This is taken care of in task 16. Question a
should be trivial to the students, while 4 and ¢ are more demanding. Exponential and
logarithmic functions were recently introduced to the students.

One can reflect upon whether the concept of a function is something that is
understood in general, or whether the complexity of the function must be taken into
consideration. In this regard, the complexity, or perhaps abstractness, of a function must
be considered. It might be that students have much more trouble with recognizing the
function in task 16 d as a function than they do with the one in task 16 a.

4.13.3 Graphic knowledge of the derivative of a function
Compared to the item ys, this item (ye in Table 4-1) probably addresses a deeper
knowledge of the derivative, since all representations are graphic. The core of the
problem is to test relationships between a function and its derivative when both are
drawn in the same coordinate system. Functions that were unknown to the students in
the sense that they were not likely to find the algebraic expression for the function are
included. As a consequence, it was practically impossible for them to find the algebraic
expressions to check the answer in a procedural manner. It is likely that they approach
such questions by trying out alternatives, in other words, with iterative use of stage four
in Polya’s model until the correct solution is found.

The following task was given in the pilot study:
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Below you see two graphs in the same coordinate system. One of them belongs to the

function f(x), and the other to f'(x). Decide which of A and B that belongs to f(x) and which
belongs to f'(x).
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Figure 4-22. A task from the pilot study to distinguish the graphs of a function and its derivative.

Only 59.6% gave a correct answer. Keeping in mind that there are two alternatives, and

that a pure guess would give approximately 50% correct answers, this told me that the
students struggled with this kind of problem.
Another similar, but more complex task was:

Below you see three graphs in the same coordinate system. One belongs to the function f(x),

the other to f'(x) and the third to f*’(x). Decide which one that belongs to f(x), f'(x) and f'(x)
respectively
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Figure 4-23. A task from the pilot study to distinguish the graphs of a function, its derivative, and
its second order derivative.

23.5% managed to give the correct answer. This confirms the impression that the
students” achievements are low in such tasks. Statistically, there are six possible answers
to this task. Since it is difficult to interpret the results of those answers that are partially
correct, questions with three graphs in the main test were omitted. Instead, several tasks
comparable to the first example from the pilot study were included.

The questions used to measure graphic knowledge of the derivative of a function are
shown in Figure 4-24.
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Item Task Question
Ye 20 The graph of a function f(x) and its derivative is shown in the same
coordinate system. Decide whether A or B is the derivative.
a)
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Ve 21 The graph of the function h(x) is shown below. Fill in a schema for
the sign of h'(x).
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When is h’(x) largest?

Figure 4-24. Tasks to measure graphic knowledge of the derivation of a function.
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Task 20 involves many possible reflections on the relationship between the function itself
and its derivative. For example, in task 20 a one could deduce that B is the derivative
from the fact that the derivative of A is at its largest value at x = 0. This requires the
students to understand that the derivative is at its largest value when the slope of A is
maximal. Thereafter, B must be recognized as a function of the slope of A, and that it has
a maximum at x = 0. Even the fact that the slope and the value for the two graphs must be
compared with respect to the same x-value is a kind of reflection that might not be
obvious to all students. Several approaches are applicable to the questions in task 20. In
question ¢, a possible path of argumentation could be that, since B has the value of zero at
x = 0, it cannot be the derivative of A, because the slope of A is nonzero. Another
approach would be to look at one of the graphs and try to find out what the derivative
would look like, and see if it fits the other. To summarize, task 20 challenges the students
to reflect on a variety of relationships between a function and its derivative. They must
find the relevant information needed to be able to make judgments on the link between
the two.

Task 21 involves two questions. The first is intended to test whether the students
understand the relationship between the slope of the graph and the sign of its derivative.
The other question can be answered by investigating the graph. It might reveal whether
students confuse the maximum of the function with the maximum of its derivative.

4.14 POST TEST

One of the weaknesses of validity discussions and fit estimates'!, not only in structural
equations models, but also in other analyses as for example linear regression, is that the
measures are often evaluated by applying the same data that are used to estimate the
model parameters. One way avoiding this problem in this study was to collect a new set
of data. The aim of the post test is to compare the outcome of the statistical analysis to the
outcome from another group of students, but with a different statistical approach. The
intention of the post test is to evaluate the validity of the measures in the main test by
comparing the test results with exam performances and to see whether the data from the
post test confirm the relationships between the different types of knowledge found in the
structural part of the model analysis. The aim of the post test is not to provide new
evidence, but to see if the sample from the post test would strengthen or weaken the
findings from the main test.

The post test was conducted on 57 first year students in Trondheim taking the same
course in mathematics as the students in the main test, but the structural equation model
was not run on the post-test data since the number of students was too low for a
meaningful analysis. Data from the post test was collected by giving the students the
same tasks as in the main test and the scores on each task were registered according to
the same procedure as in the main test. In addition, the students were identified by their
student code. For each student, three index scores were estimated (equations (4.16) and
(4.17) based on the factor loadings from the model that was estimated in chapter 5.

11 R2 in ordinary least squares linear regression is normally estimated by means of the same set of data
used to estimate the regression parameters.
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Index scores on procedural knowledge of functions, conceptual knowledge of functions
and the ability to apply functions were used to investigate whether these measures could
predict students’ performances at their exams in related topics. At the end of the same
semester, three types of performances in related topics were investigated from the exams.
The results from two exams, one in mathematics and one in business economics were
used for this purpose. The exam in mathematics was a multiple choice exam covering
basic algebra and elementary function theory, while the exam in business economics was
a regular written exam. The student identification number was used as a key to compare
each student’s performance on the post test with his or her performance at the exams.
Figure 4-24 illustrates how the index scores from the test were held up against the
performances from the exams.

Procedural and conceptual performances in mathematics were registered by
achievements from specific tasks from the multiple-choice exam in mathematics, while
application performance was indicated by the grades from the exam in business
economics. If the measures of the latent variables are valid, then the index scores should
predict the corresponding outcomes from the exams to a certain extent.

Post test
v
Index score on Index score on Index score on
Procedural Conceptual Ability to apply
knowledge of knowledge of functions
functions functions
v v v
Procedural Conceptual Application
performance in performance in performance
mathematics mathematics
A
Exam

Figure 4-25. Relationship between index scores from the test and exam performances.
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The index scores were also used as variables in regression analysis to study the
conclusions on research questions 2 and 3 related to dependencies between the three
different types of knowledge.

4.15 INTERVIEW

Of course there are factors not included in the statistical analysis that might have an
impact on conceptual development and achievements. Use of technology, students’
approaches to learning or teachers’ teaching strategies are not subject to the statistical
analysis. The statistical analysis does not reveal anything about the pedagogical approach
used when the subjects studied the conceptual and procedural knowledge involved in
the main test. Neither does it reveal anything about how mathematical beliefs and
educational background among the subjects influenced their outcomes. Understanding
that beliefs as subjective knowledge affect a person’s actions and behaviour (Maass &
Schléglmann, 2009), it is likely that students” beliefs are shaped not only by their school
background but also by the beliefs and actions from their teachers” side. Thus, interviews
were used to find out some possible explanations for the outcomes.

Because of technical reasons, direct interviews among the subjects and their teachers
were not possible. Therefore, three students from different upper secondary schools in
Norway were chosen to form a quasi peer group. They did not participate in doing the
whole main test but took the very same course in mathematics as those students who
were the subjects of the main test. In addition to a semi-structured interview, stimulated
recall was used to find out how they solved the tasks of the main test and how they
described their solution process. Two from those three students, called here Emma and
Anna, had had mathematics for two years at the upper secondary school, whilst the third
one, called Martin, had had three years advanced syllabus with mathematics.
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5 Results

This chapter presents descriptive statistics from the main test, such as mean and standard
deviation on the data at aggregated level for each item. Thereafter an estimation of model
parameters and a modification of the model are shown. Finally, a result from the post test
and experiences from the interviews are outlined. It is important to be aware that an
inferential analysis in the structural equation model, as used in this study, emphasizes
covariation rather than ordinary measures of location and scatter. In other words, the
primary focus is directed on students at an aggregated level rather than as individuals,
but some comments on students’ responses are included.

5.1 CALCULATION OF SCORES
Each task was scored on a range, which is shown in Table 5-1.

Table 5-1. Scoring range of the tasks.

Task Scale Item
1 0-4 X1
2(1) 0-6 X2
2(2) 0-5 X1
3 0-4 X2
4 0-12 X2
5 0-4 Ya
6 0-4 Y1
7 0-6 Y1
8 0-4 Y1
9 0-5 Y2
10 0-5 Y2
11 0-5 Y2
12 0-4 Y2
13(1) 0-3 Ys
13(2) 0-9 Ya
14 0-4 Y3
15 0-4 Y3
16 0-20 Ys
17 0-4 Ya
18 0-4 Y1
19 0-8 Ya
20 0-16 Ye
21 0-8 Ye
23 0-4 X2
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It is important to keep in mind that the differences in the ranges do not affect the primary
analysis in the study. Even if item x1 only gives 9 points if all answers are correct and x2
can give as much as 26 points, this does not mean that x1 has smaller impact than x2. The
point is that we are concerned with variation, not the level of the scores. Therefore the
results are independent of the range of the scale. However, in the descriptive analysis
below, the total score will be more influenced by the items with high maximum scores. A
score was also calculated for each item by adding the scores of the tasks that belong to the
item. Table 5-2 shows the scale for each item.

Table 5-2. Scale for scores aggregated on each item.

Item X1 X2 Y1 Y2 Y3 Ya Ys Ye
Scale 0-9 0-26 0-18 0-19 0-8 0-25 0-23 0-24

5.2 TOTAL SCORE

A total “sum” was estimated for each student as the sum of scores from each task. Figure
5-1 shows that the distribution’? of the total score among the students is fairly close to a
normal distribution with a mean score equal to 75.6. None of the students managed to get
the maximum possible score that is 152. The highest score among the students is 142,
while the lowest is 9. It might seem obvious that the total score follows a normal
distribution, but students’ different levels of mathematics from their school background,
might have disturbed the symmetry. On the basis of earlier experience, the impression is
that students with specialization'® in mathematics at high school achieve significantly
better results in mathematics than the rest of the students. It seems that this has not
caused skewness as far as the total score is concerned.

The mean total score on all students is 75.6, which is 49.7% of the possible maximum.
The standard deviation is 30.8 points, which corresponds to 20% of the possible
maximum. For the purpose of the statistical analysis in this study, these numbers are
satisfying since the intention is to account for variation among students. The difference in
achievements would be very hard to detect in a test where the average score is very low
or very high. The fact that the variation also is quite large indicates that the set of tasks
includes questions with different degrees of difficulty.

12 The frequency refers to the number of students that achieved the different scores on “sum”.
13 Specialization in mathematics means that the student learned mathematics for three year in high
school.
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Figure 5-1. Distribution of the sum variable of the test.

One should be careful to conclude on differences between part-time and full-time
students based on this material, since the number of students in the part-time classes is

relatively low, as shown in Table 5-3.

Table 5-3. Mean score per group of students including standard deviation to indicate dispersion.

Mean Std Deviation Count
Sandefjord part-time 46,77 32,92 13
Sandefjord full-time 75,22 31,39 27
Lillestram part-time 54,71 25,95 21
Oslo B full-time 77,10 29,51 105
Oslo C full-time 81,32 29,42 117
Group Total 75,61 30,78 283

The bar chart in Figure 5-2 shows that the part-time students had lower scores than full -
time students, but the variation is larger among the part-time students as indicated by the
95% confidence interval for the errors.
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Figure 5-2. Mean scores of each group including confidence interval (95%) for the mean.

It is possible that the larger variation in score among the part-time students may be
traced back to the large variation in the school and professional background in these
groups.

5.3 SCORES PER ITEM

A table of descriptive statistics for mean and standard deviation is provided for each
item. The tables contain statistics for each task belonging to the item, as well as statistics
for the item. The results can be commented from two perspectives, either from the
student perspective or from the task perspective. From a student perspective, the obvious
interpretation is to see whether they scored well or badly as a group, and whether there
were large differences in performance between the students. From a task perspective, the
results can indicate whether the task is suitable for this type of analysis. Here the
standard deviation plays a more important role than the mean since the results in
structural equation model origins from variation and covariation, rather than location.
The comments in this chapter address both perspectives.

75



5.3.1 Graphic procedures
Overall the students scored 6.31 out of 9 points (70.1%) on average, which seems quite
satisfying, but the questions are relatively simple and straightforward (Table 5-4).

Table 5-4. Results for tasks measuring item x1.

N Minimum Maximum Mean Std. Deviation
Task 1 283 0 4 3,37 1,304
Task 2 283 0 5 2,95 2,337
Item x1 283 0 9 6,31 2,882
Valid N 283

In the first task students were asked to sketch a linear function. This is not expected to
cause much problem. The second task is about the graph of a rational function, and the
variation in answers between the students is larger than in the first task. In the second task,
a typical error is to draw one curve by joining the two segments like in Figure 5-3.

Figure 5-3. Typical student error discarding the two different branches of the function.

One could argue that this kind of error is caused by lack of conceptual knowledge. A
student who is aware that the function is undefined for x=0, and therefore the graph
cannot intersect the y-axis, should detect such errors. However regardless of this, it is
reasonable to believe that a student with well developed skills on drawing graphs is more
likely to succeed in this task than a less skilled student. It is maybe a bit surprising that
the difference in achievements between tasks 1 and 2 did not differ more since drawing a
hyperbola is far more complicated than drawing a straight line.
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5.3.2  Algebraic procedures

Also for this item, the mean total score is quite high, 18.66 of 26 (71.8%). The first three
tasks gave far better average scores than task 23, which also had the largest standard
deviation when we adjust for the range of the scale (Table 5-5). In the first tasks, the
algorithms involved consist of just a few steps. In task 23, where the question is to write
down the expression for a linear function where two points are given, involves some
more steps. No obvious systematic errors seem to occur among the erroneous solutions.

Table 5-5. Results for tasks measuring item x2.

N Minimum Maximum Mean Std. Deviation
Task 2 283 0 6 5 1,702
Task 3 283 0 4 3,45 1,302
Task 4 283 0 12 8,60 3,828
Task 23 283 0 4 1,26 1,808
Item X2 283 0 26 18,66 6,370
Valid N 283

5.3.3 Relations between graphic and algebraic representations

Table 8-6 shows that apart from task 6, the mean score is less than 50% of the maximum
score for the other tasks. The reason for this can be that these types of questions are
somewhat different from the more traditional tasks the students are familiar with. In
addition the relatively low scores are due to the fact that conceptual knowledge
represents a more advanced type of knowledge.

Table 5-6. Results for tasks measuring item y1.

N Minimum Maximum Mean Std. Deviation
Task 6 283 0 4 3,37 1,427
Task 7 283 0 6 1,94 2,472
Task 8 283 0 4 1,62 1,952
Task 18 283 0 4 1,85 1,907
Item Y1 283 0 18 8,78 5,377
Valid N 283

In task 7 the students were asked to decide which of the given linear expressions the
cubic function is divisible with. The function was only represented by its graph. A closer
look at the answers detected that a typical error is related to sign. The function
intersected the x-axis at x=1, and is therefore divisible by x-1, while many students
answered that it is divisible by x+1. It seems that the students have a tendency to rely on
their intuition when they struggle to understand what is really going on. The other tasks
did not reveal systematic patterns in wrong answers.

Overall the item contains a balance between easy and more difficult questions as can
be seen from the results of tasks 4 and 6. In addition to the magnitude of the standard
deviations, this is an indication that the questions reveal variation among students’
achievements.
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5.3.4  Graphic interpretations

The last task (12) was considered slightly easier than the others, and it had the highest
scores (Table 5-7). The most surprising results came from tasks 10 and 11, where the
students were asked to sketch the graph of f(-x) and -f(x), respectively, given the graph of
f(x). It was expected that task 10 would cause more problems than task 11, as the symbol
f(-x) is maybe more unfamiliar to the students than -f(x). Despite this a priori assumption,
the scores on task 11 were considerably lower. The experience was in many ways the
same as in the pilot study that the students have some ideas of mirroring the graphs, but
often fail to get it correct.

Another comment on the results for this item is that the values for standard deviation,
adjusted for the range of the scale, were relatively high. If we focus on the task
perspective, the results support the suitability of such tasks in analysis where one looks
for variance between students’ achievements. Even if variation is detected, it is obvious
that students seem to have problems with the graphic interpretations. The total mean of
4.09 of 19 possible points (21.5%) leaves little doubt of this.

Table 5-7. Results for tasks measuring the item yo.

N Minimum Maximum Mean Std. Deviation
Task 9 283 0 5 1,13 2,069
Task 10 283 0 5 1,12 2,077
Task 11 283 0 5 ,57 1,586
Task 12 283 0 4 1,26 1,801
Item Y2 283 0 19 4,09 4,645
Valid N 283

5.3.5  Algebraic interpretations

Table 5-8 represents statistics of the tasks related to the degree of polynomial functions,
53.1% of the student answers being correct. The students who gave detailed explanation,
without exception, concluded with correct answers. The erroneous answers were mostly
single word answers. As expected, there was a tendency that the answers were correlated
(r=0,734). Some judgment had to be done, when the score was assigned to the answer.
One example is that instead of saying that a function is a polynomial function of degree
four in task 14, some students just said that it is a polynomial function. It is not a question
of remembering the right words. The idea is that meaning, such as meaning connected to
the degree of a function, is embedded in the words that name them.

Table 5-8. Results for tasks measuring item ys.

N Minimum Maximum Mean Std. Deviation
Task 14 283 0 4 2,17 1,958
Task 15 283 0 4 2,08 1,931
Item Y3 283 0 8 4,25 3,621
Valid N 283

78



5.3.6 Economic applications

The challenge in solving the problem in task 5, where the salary is a function of the total
cost related to an employee, can be divided into three parts. The problem is given as a
text, and most of the students tried to set up a mathematical model in terms of an
equation that describes the situation. The next challenge is to solve the equation, while
the third is to reflect on the answer. The following table represents the statistics.

Table 5-9. Results for tasks measuring item yu.

N Minimum | Maximum Mean Std. Deviation
Task 5 28 0 4 1,52 1,941
Task 13 28 0 9 5,28 3,446
Task 17 28 0 4 ,64 1,424
Task 19 28 0 8 2,42 3,586
Item Y4 28 0 25 9,86 6,975
Valid N 28

A look at the results revealed a systematic misunderstanding that can be associated with
the first and last of the steps in the problem solving process. Figure 5-4 shows a typical
example where the calculation is right, but the algorithm is wrong.
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Figure 5-4. An example of correct calculations with a wrong algorithm.

Thus, the equation has been defined but the equation does not reflect the problem
correctly. The model is specified wrong, and that a critical reflection on the result is either
missing or has led to wrong conclusions. The situation can be described by Figure 5-5. It
seems that mistakes can be illustrated by arrows crossing the horizontal line and
separating the problem of economics from the problem of mathematics. In other words, it
seems that the problems connected to economic applications are related to the
specification of a model, which in mathematical terms reflects the economic problem and
also the ability to reflect on the result. Referring to Polya’s model, the challenges relate to
stages 1, 2 and 4.
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Figure 5-5. Solution of an economic problem through mathematical modelling.

In task 13, many students had problems with the interpretation of the results, as the mean
score indicates. This has also to do with reflection, as reflection is not only associated
with the ability to detect errors, but with the students capabilities to give a textual
interpretation of the estimated answers.

Task 17 also gave lower score than expected. The problem involves several economic
terms; total cost, marginal cost, marginal income and profit. Most of the student who had
a correct answer had realized the fact that the profit reaches its maximum when the
marginal cost (K’'(x)) equals the marginal income and therefore that the answer is 90.

The answers to task 19 showed a lot of different strategies that reminded of trial and
error strategies. The information is provided textually, and a majority of the students are
struggling to specify a mathematical model by use of graphs or algebraic expressions. It
seems that the problem is to approach and solve the problem with mathematical tools, in
other words to apply functions. However, some students used this approach successfully.
In this regard such tasks are suitable for the purpose of this kind of analysis.

5.3.7 Derivation

Questions a and b from task 16 were both correct answered by more than 90% of the
students, while question d caused problems for many. One might argue that these tasks
reflect skills rather than understanding, but a closer look at the results from the different
parts of task 16 shows that the students had most difficulties with questions d and e
which involves few procedural steps (see tables below). Maybe it is possible that one of
the reasons that students have problem with derivation of logarithmic and exponential
functions, despite the relatively simple algorithms required, is that they have not grasped
the idea of these types of functions.
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Table 5-10. Results for tasks measuring the item ys.

N Minimum Maximum Mean Std. Deviation
Task 13 283 0 3 2,37 1,179
Task 16 283 0 20 12,80 4,821
item Y5 283 0 23 15,18 5,305
Valid N 283

Table 5-11. Specification of the results for task 16.

N Minimum Maximum Mean Std. Deviation
Task 16 a 283 0 4 3,82 ,822
Task 16 b 283 0 4 3,67 1,050
Task 16 ¢ 283 0 4 2,24 1,626
Task 16 d 283 0 4 1,37 1,872
Task 16 e 283 0 4 1,70 1,976
Valid N 283

5.3.8  Graphic knowledge of the derivative of a function

Two questions related to task 20 are: What is an appropriate solution strategy and how
can one verify the suggested solution? It is impossible to decide whether errors can be
assigned to the lack of an appropriate solution strategy, or insufficient knowledge of the
properties of the derivative. Yet it may be reasonable to believe that the latter is the
dominating cause of error.

As seen in Table 5-12, task 21 caused a lot of problems, especially the second part of
question 21, which is only correctly answered by 10% of the students. Three of Polya’s
stages are present in the tasks measuring item ys. Question 20 addresses, as already
discussed, the second and the fourth stage. In task 21 one might suspect that a great
number of the students have halted already at the first stage and understood the
problem.

Despite the low mean score on item ys, the relatively high standard deviation
indicates that the tasks distinguish between students” achievements.
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Table 5-12. Results for tasks measuring the item ye.

N Minimum Maximum Mean Std. Deviation
Task 20 283 0 16 7,10 5,783
Task 21 283 0 8 1,38 2,489
Item Y6 283 0 24 8,47 7,271
Valid N ) 283

5.4 MODEL PARADIGM

The analysis of the model is performed with two objectives. One objective refers to the
structural part of the initially hypothesised model, hereafter referred to as the original
model, and is related to research question 2 concerning how different types of knowledge
are related to each other. The second objective is a discussion on the quality of the
measurement model. Does the operationalization of the measures reflect the meaning we
want them to represent, and is the accuracy of the measurement instrument sufficient?
These questions are addressed by analysing results from the main test as well as from the
post test. The analysis of the original and competing models were estimated in LISREL by
use of Maximum Likelihood estimators and the covariance matrix. The results and
comments are based on this analysis, but the main statistics for the analysis when other
estimators were used is also included. Results are also shown when the covariance matrix
is replaced with the correlation matrix. The initially hypothesised model is based on the
assumption that procedural knowledge is a mnecessary condition for conceptual
knowledge of function. A separate analysis is performed on the model to decide if this
causal direction is supported, or whether the data indicate that the model should be
adjusted by a reverse of bidirectional link as indicated in Figure 3-5.

Structural equation modelling, as applied here, follows the paradigm of hypothesis
testing, but a short explanation of how it is implemented is given first. A more detailed
overview of the theoretical background for the model is given in Appendix B.

The observations from the main test are basically a matrix of correlations or
covariances between item scores for all pairs of items. For simplicity it is referred to
covariance matrix in the following, even if the same applies for correlation matrixes. The
notation, often referred to as the LISREL notation, from Joreskog (K. G. Joreskog, 1973,
1977), is used. The idea is to create a model, represented by a set of parameters, 6, that
predict the observed covariance matrix, S, in the best possible way. We have the
following definitions:

> is the population covariance matrix

0 is a vector that contains the parameters in the model

>(0) is the covariance matrix as a function of 64

6 is the vector that contains the estimation of the parameters
S(8) is the estimated covariance matrix

S is the observed covariance matrix

4 A correct t model with the correct parameters, would reproduce the covariance matrix exactly
(Bollen, 1989).
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Since the idea is to identify a model that reproduces the population covariance matrix in
a best possible manner, our hypothesis is therefore:

Ho: 3(0)=3
Hi: 3(0)=>

A fit-function F evaluates how well the observed covariances (S) fit the estimated
covariance matrix (3(8)), and a test statistic is derived from this function as described
later in this chapter. If this statistic is small, Ho is likely to be true and the model fits the
data well, while a large value supports the alternative hypothesis Hi. This is a slightly
different orientation than what usually is the case with the testing of hypothesis, as
keeping Ho gives support for our model. The idea is, in other words, to create a model
that predicts the data, here being the inter-item variance/covariance matrix as good as
possible.

Item scores on all 283 students from the main test were put in a spreadsheet and
processed in PRELIS (K. G. Joreskog & Sorbom, 1988), a module in LISREL for processing
raw data. The most important output from PRELIS is the variance/covariance, or
alternatively the correlation matrix, between the items. The correlation matrix has the
advantage that the factor loadings can be compared with respect to their size, since they
are scale independent. This means that the highest loading has more impact on the factor
(latent variables) than the lower. On the other hand, if interpretations of the factor
loadings are desirable, the covariance matrix estimates are preferred (Hair, Anderson,
Tatham, & Black, 1998, p. 603). In that case the estimated parameters must be interpreted
with respect to the items’ scale of measurement.

Table 5-13 and Table 5-14 present the covariance and correlation matrixes,
respectively.

Table 5-13. The covariance matrix. The diagonal displays the variance of the scores for each item,
while each of the other elements gives the covariance between two different items.

X1 X2 Y1 Y2 Y3 Ya Ys Ye
X1 8.31
X2 8.25 40.58
Y1 5.97 20.85 28.91
Y2 3.35 11.51 11.30 21.58
Y3 3.27 12.34 10.17 7.46 13.11
Ya 6.50 25.15 21.35 14.38 12.47 48.65
Ys 4.52 17.39 12.58 7.35 8.10 19.89 28.15
Y6 5.87 20.83 17.71 13.84 11.77 23.26 15.10 52.87
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Table 5-14. The correlation matrix.

X1 X2 Y1 Y2 Y3 Ya Ys Ye
X1 1
X2 0.449 1
Y1 0.385 0.609 1
Y2 0.250 0.389 0.452 1
Y3 0.314 0.535 0.523 0.444 1
Ya 0.323 0.566 0.569 0.444 0.494 1
Ys 0.295 0.514 0.441 0.298 0.422 0.537 1
Ye 0.280 0.450 0.453 0.410 0.447 0.459 0.391 1

The table shows that each item is perfectly correlated with itself. Hence, all diagonal
elements are one. Each of the other elements gives the Pearson correlation between the
scores on two different items. Not surprisingly, all estimated correlations are positive,
which is expected since the high performers among the students are expected to score
better on all types of questions. The question is whether the entire model, with possible
adjustments, will be able to reproduce a correlation matrix that fits closely to the
observed matrix above.

There are several fit measures available in LISREL and it is necessary to distinguish
between the theoretical and the empirical fit. The theoretical fit can be described as the
degree of isomorphism between a theoretical model and a true model, while the
empirical fit evaluates how well the observed covariances (S) fits the model generated
covariance matrix 2( 8 ). The goodness of the model is discussed primarily by using one
of the most accepted empirical fit measures applying a test based on the Chi-square
statistics. A large value for Chi-square indicates a bad fit whereas a small value for Chi-
square indicates that the model fits the data well. The other goodness of fit statistics,
which is used for the analysis, is also discussed in this chapter. If F denotes a fit function,
the fit indexes (Chi-square, RMSEA, NFI) are derived from Min F(S, 2(6)) (Olsson,
Troye, & Howell, 1999). Brown & Cudeck (1993) claim that rather than to ask whether the
fit is correct, it is sensible to assess the degree of the lack of fit. If the sample size is large,
it is likely that the hypothesis will be rejected, even if the model approximates the
covariance matrix reasonably well. Still, our goal is to have a well-specified model that
fits the data as well as possible. The minimum of the fit function will depend not only on
how well the model is specified, but also on the estimation method.

5.5 MODEL IDENTIFICATION

This chapter will discuss the different estimators to be applied in this study and their
choice.

A model needs to have a positive number of degrees of freedom to make possible the
generalization of the results. This is called an over-identified model. In this study we
have hypothesised an over-identified model with 17 degrees of freedom for the original
model and 18 degrees of freedom when adjustments were made to the model. An over-
identified model with positive degrees of freedom is required so that we are able to
estimate the parameters. LISREL performs a test to check for under-identification and did
not report any problems concerning identification, neither for the original nor the
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adjusted model. The conclusion is that the input matrix provides enough information to
estimate all the parameters requested in the model.

LISREL offers several methods for the estimation of parameters. Maximum likelihood
(ML), generalized least squares (GLS), unweighted least squares (ULS) and weighted
least squares (WLS) are some of the most frequently used estimators'®>. The assumptions
for the different estimators differ, and it is important to identify the most appropriate
method for the data that was collected in the test. The performance, in terms of fit, is
affected by sample size, specification error and kurtosis (Olsson et al., 1999). The
estimation based on maximum likelihood estimators was used in this analysis, but the
parameter estimates when other estimators are applied is also presented.

Why was ML preferred in this case? The ML estimators are asymptotically unbiased
and therefore hold in large samples. Olsson, Troye & Howell (1999) conclude that ML
tends in general not only to be more stable, but it also demonstrates higher accuracy both
in terms of empirical and theoretical fit compared to GLS and WLS. GLS allows small
samples, but it requires that the model should be well specified. A mis-specified model
might well give misleading conclusions. An important characteristic of the ML, GLS and
WLS estimators is that they are invariant and free with respect to scale. In this study the
different items have different scales in the sense that they have different ranges in scores.
As an example x1 is scored on a scale from 0 to 9, while x2 is score from 0 to 26 (Table 5-1).
Being invariant means that it is invariant to change measurement units to one or more of
the variables, while freeness means that the estimators are invariant to linear
transformations of the scales. This allows the use of correlation matrix instead of the
covariance matrix. WLS requires large data, and has the property that it seems to give
better fit when the kurtosis is high, i.e. the more peaked the data are. However, the
goodness of fit seems to be at the cost of inaccurate parameter estimates. The ULS fit
function is relatively easy to understand, but a disadvantage is that it is neither invariant
nor free with respect to scale. Altogether ML seems to be the most appropriate estimation
method for this study, estimates will also be calculated with GLS, ULS and WLS. If the
estimates are close when different estimators are applied, it will count as support for the
model and the estimates.

The fit functions for the different methods that are applied in this study are (Bollen,
1989, pp. 334,425):

Maximum likelihood fit function:
Fu =10g| £(8) | +r {SZ(8)*} -log| S| (p + q) (5.1)

where p is the number of endogenous variables and q is the number of exogenous
variables.

Generalized least squares fit function:

Fupe = (%)tr({l - z(e)s-l}z) (5.2)

Unweighted least squares fit function:

Fpe = (%) tr|(s-=(0))'] (5.3)

15 In statistical terminology a method for estimation of parameters is called an estimator.
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Weighted least squares fit function'®
Fus = [s-0(8)] W [s-0(0)] (5.4)

Fit measures can be estimated independent of the selected estimator.

5.5.1 The initially hypothesised model

Figure 5-6 gives the output path diagram with the estimated parameters and the most
commonly used fit statisticc when maximum likelihood estimators were applied. The
three latent variables are named “proc” (€:) for procedural knowledge of functions,
“conc” (m1) for conceptual knowledge of functions and “apply” (n2) for the ability to
apply functions.

6.06—mel  x1

10.35—m=  y2

Chi-Square=18.48, df=17, P-value=0.35913, RMSEA=0.018

Figure 5-6. The LISREL output of the complete model estimated with Maximum Likelihood
estimator.

In Figure 5-6, altogether 19 estimates of parameters are given. As seen from the path
diagrams, the parameters are estimated, and can be investigated one by one in addition
to examining the entire model. A first look at the diagram clearly indicates that the model
fits the data reasonably well with a p-value of approximately 0.36, which is well above

16 5 is a vector of (1/2)(p+q)(p+q+1) elements by placing the non-duplicated elements of S in a vector,
and o(0) is the corresponding vector of (0). W is (1/2)(p+q)(p+q+1)x(1/2)(p+q)(p+q+1) positive
definite weight matrix (Bollen, 1989).
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0.05. If the model holds, then the model-generated matrix will be equal to the true matrix.
The hypothesis tested by the Chi square test is:

Ho: 3(0)=3
Hi: 3(0)=>

In our tests the resulting p-value is 0.36 and Ho cannot be rejected. As Ho supports the
model, this result is in favour of our a priori assumptions. A closer look at the structural
regression equations in Figure 5-7 indicates that most of the relationships are as expected,
but reveals a weakness with the model in the sense that one relationship is questionable,
being the relationship between procedural knowledge of functions and the ability to
apply functions.

Structural Equations

conc = 0.88*proc, Errorvar.= 0.22 , R2 = 0.78

(0.080) (0.095)
11.04 2.33
apply = 0.81*conc + 0.14*proc, Errorvar.= 0.12 , R2 = 0.88
(0.24) (0.22) (0.067)
3.43 0.62 1.78

Figure 5-7. The latent variable model displaying the dependencies between procedural knowledge
of functions (proc), conceptual knowledge of functions (conc) and the ability to apply functions
(apply) as estimated regression equations in the competing model.

The correspondence between procedural knowledge of functions and conceptual
knowledge of functions as well as the relation between conceptual knowledge of
functions and the ability to apply functions seems strong. This is in favour of the
assumptions underlying the model, even if it does not serve as a proof for causality. In
the first equation in the latent variable model, procedural knowledge of functions is
significant at any reasonable level with t = 11.04. The same is true for conceptual
knowledge of functions as an exploratory variable for the ability to apply function, as can
be seen in the second equation. The total effect of procedural knowledge of function on
the ability to apply functions can be decomposed:

Total effect = direct effect + indirect effect =0.14 + 0.81*0.88 = 0.14 + 0.71

The t-value for procedural knowledge of functions, as an independent explanatory
variable in the second regression equation, is not significant with t = 0.62. This could
suggest that procedural knowledge of function is redundant, and could be left out as an
explanatory variable for the ability to apply functions. In that case we would have a
competing model were the arrow suggesting a direct effect between procedural
knowledge of functions and the ability to apply functions is left out. This result indicated
that an adjustment to the model should be considered. It is a requirement that an
adjustment of the model should not result in a significantly weaker model fit. A test to
compare models where one model is a special case of another was applied (Fornell &
Larcker, 1981). For such a test to be meaningful the models must be nested and the
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selected model should have a structure that enables us to study the research questions.
An analysis of a comparison between the competing model and the original model is
required.

5.5.2 The competing model

The adjusted model, hereafter named the competing model, still contains the same factors
measuring the three different types of knowledge, but the direct link between procedural
knowledge of functions and the ability to apply functions is removed.

Figures 5-8 and 5-9 show the latent variable structure in the two models. The models
are said to be nested meaning that the competing model with fewer estimated
relationships is nested within the original model. This means that the direct relationship
between procedural knowledge of functions and the ability to apply functions is fixed to
zero in the competing model.

Original model

Conceptual
knowledge of
functions

Procedural
knowledge of
functions

The ability to

apply
functions

Figure 5-8. Latent variable model as primarily hypothesised.

Competing model

Conceptual
knowledge of
functions

Procedural
knowledge of
functions

The ability to

apply
functions

Figure 5-9. Latent variable model for the competing model.

An assumption for comparing models by a Chi-square test is that the models being
compared are nested. Nested models have the same number of items and latent variables,
but only differ in the number of parameters to be estimated (Hair et al., 1998, p. 591). In
this case, these conditions are satisfied. In this study the originally hypothesised model is
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said to be less parsimonious than the competing model. A chi square estimate for the less
parsimonious model is nearly always lower than for the more parsimonious model
(Bollen, 1989, p. 270). Here, the difference between the models, being the difference in chi
square, is tested for significance with one degree of freedom being the difference in the
number of parameters to be estimated (Hair et al., 1998). However, it is important that the
preferred model has a structure that complies with the research questions. Research
questions 1 and 2 are unaffected by the change suggested in the competing model, but
research question 3 will be approached in a different manner. The third research question
is:

How does the ability to apply functions relate to procedural and conceptual
knowledge of functions?

If the direct link between procedural and conceptual knowledge of functions is weak,
or even absent, the role of conceptual knowledge seems even more critical.

6.05 —= x1

14.43

Chi-Square=18.97, df=18, P-value=0.39378, RMSEA=0.014

Figure 5-10. Estimation from LISREL of the competing model.

Figure 5-10 shows the path diagram for the competing model. Procedural knowledge of
functions does not seem to contribute to the ability to apply functions in other ways than
through conceptual knowledge. The path diagram with the estimated parameters shows
the value of RMSEA equal to 0.014 and a p-value of approximately 0.39. In the same way
as in the original model, this model shows a significant relation between procedural and
conceptual knowledge as well as one between conceptual knowledge and the ability to
apply functions. The difference in Chi-square between the two models is low (Table 5-15).

89
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Table 5-15. Chi-square estimates of the original and the competing model.

Chi-square degrees of freedom
Competing model 18.97 18
Original model 18.48 17
Change 0.49 1

According to Fornell and Larker (1981), the less parsimonious model (the original model)
should only be supported if the Chi square is significantly better when adjusted for the
change in degrees of freedom. The estimated Chi-square for the competing model is 18.97
with 18 degrees of freedom while the Chi-square is 18.48 with 17 degrees of freedom for
the original model. The change in Chi square (0.49) is lower than the critical value for a
chi square test with one degree of freedom (3.84 at 5% level), and consequently the
competing model is preferred. Small differences in chi square measures do not provide
enough information to allow choosing between models, but the more parsimonious
model should in general be supported. According to Bagozzi and Yi (1988), small
changes in chi square are merely due to capitalization of chance and the restrictions are
supported. The output from LISREL also provides other statistics for the comparison of
models that support the competing model".

One should be careful in changing the hypothesized model since the assumption on
which we base our competing model is no longer made a priori, but is rather based on
results from the estimation of the first model. Thus one might argue that our competing
model is based on a conditional assumption, violating a basic principle in inferential
statistics. On the other hand, one cannot be sure that the first model is the best, and some
room for alternatives should be allowed. The items and the measurement models are
identical in the two models. The only difference is that one relation is left out in the
competing model, meaning that the only difference is related to the latent variables.

5.6 EVALUATION OF THE MODEL

Sometimes the estimated model might provide offending estimates in terms of negative
error variances or standardized coefficients larger than one. The first requirement is to
investigate the estimates in this respect. Figure 5-11 gives the estimates related to the
measurement model. As seen from this part of the LISREL output, no negative error
variances are reported. For each item, except for items y1 and ys, where the parameters
were fixed, a standard error (in parenthesis) and t-value is reported. Problems with very
large standard errors, which would give large t-values, do not seem to occur. In fact the
smallest t-value is 8.62, which is significant at any reasonable level.

The output for the structural model in Figure 9-6 below does not reveal any problems
with negative error variance or large standard errors.

17 ECVI, AIC and CAIC belong to this category (K. Joreskog & Sérbom, 1993).The smallest values
indicates the best fit. For the original model the values are respectively 0.20, 56.48 and 144.74. For the
competing model the values are 0.19, 54.97 and 138.59
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LISREL Estimates (Maximum Likelihood)
Structural Equations

conc = 0.90*proc, Errorvar.= 0.20 , Ry = 0.80

(0.080) (0.085)
11.22 2.34
apply = 0.95*conc, Errorvar.= 0.10 , Ry = 0.90
(0.079) (0.062)
11.93 1.63

Figure 5-11. The latent variable model displaying the dependencies between procedural knowledge
of functions (proc), conceptual knowledge of functions (conc) and the ability to apply functions
(apply) as estimated regression equations in the competing model.

The estimates for the regression parameters have increased slightly when compared with
the estimates for the original model. Procedural knowledge of functions is still a clearly
significant explanatory variable for conceptual knowledge of functions with t = 11.22.
Also, conceptual knowledge of functions obviously explains the ability to apply functions
with t=11.93.

LISREL Estimates (Maximum Likelihood)
Measurement Equations

y1l = 4.14*conc, Errorvar.= 11.78, R2 = 0.59

(1.29)
9.10
y2 = 2.67*conc, Errorvar.= 14.43, R2 = 0.33
(0.29) (1.32)
9.30 10.96
y3 = 2.52*conc, Errorvar.= 6.77 , R2 = 0.48
(0.22) (0.67)
11.38 10.12
y4 = 5.42*apply, Errorvar.= 19.32, R2 = 0.60
(2.37)
8.14
y5 = 3.47*apply, Errorvar.= 16.11, R2 = 0.43
(0.33) (1.58)
10.48 10.20
y6 = 4.52*apply, Errorvar.= 32.41, R2 = 0.39
(0.45) (3.09)
9.94 10.48
x1 = 1.50*proc, Errorvar.= 6.05, R2 = 0.27
(0.17) (0.55)
8.62 10.98
x2 = 5.49*proc, Errorvar.= 10.40, R2 = 0.74
(0.39) (2.95)
13.91 3.53

Figure 5-12. The measurement model displaying how each item is explained by the factors (proc),
(conc) and (apply).
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5.7 NORMALITY

Structural equation models are to some extent sensitive to the distribution characteristics
of the variables with respect to normality. The models assume absence of strong
skewness and kurtosis!® (Hair et al., 1998, p. 106). In addition to univariate normality for
each item, the model also assumes multivariate normality (Bollen, 1989, p. 418). Statistics
for skewness and kurtosis, to test for univariate normality, are provided in Table 5-16.
Curran et al. (1996) considers the item scores to be moderately non-normal if the absolute
value of skewness is in the range from 2.0 to 3.0 and similarly if the kurtosis is in the
range from 7.0 to 21.0.

Table 5-16. Test of univariate normality for continuous variables.

Variable Skewness Skewness Skewness Kurtosis Kurtosis Kurtosis
Z-score p-value Z-score p-value
X1 -0.572 -3.752 0.000 -0.911 -5.913 0.000
X2 -1.073 -6.286 0.000 0.682 1.995 0.046
Y1 0.184 1.280 0.201 -1.002 -7.299 0.000
Y2 1.117 6.478 0.000 0.746 2.127 0.033
Y3 -0.113 -0.786 0.432 -1.800 40.306 0.000
Y4 0.282 1.943 0.052 -0.814 -4.763 0.000
Y5 -0.554 -3.648 0.000 0.319 1.122 0.262
Y6 0.299 2.052 0.040 -1.019 -7.594 0.000

Several variables have significant skewness and kurtosis and consequently the tests for
multivariate normality are rejected as shown in Table 5-17. It might be that the estimation
is influenced by non-normality. However, violation of normality does not affect the
consistency of the maximum likelihood estimates of 8, but excessive kurtosis can cause
inaccuracy in the Chi-square items.

Table 5-17. Test of multivariate normality for continuous variables.

Skewness Kurtosis Skewness and Kurtosis
Value z-score p-value Value z-score p-value Chi Square p-value
5.853 7.483 0.000 77476 -1.133 0.257 57.271 0.000

When non-normality threatens the maximum likelihood estimators, one possible
correction is to employ an alternative estimator. Weighted Least Squares (WLS) is one
such estimator that allows for non-normality (Bollen, 1989, p. 245). The weighted least
squares estimates gave Chi-square = 20.60 with p-value=0.30 (Table 5-18). Keeping in
mind that the p-value should exceed 0.05, we can conclude that the model still holds.

18 With a normal distribution skewness and kurtosis should be equal to zero. Negative skewness
indicates skewness towards the right and vice versa. A peaked distribution gives positive kurtosis.
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5.8 ALTERNATIVE ESTIMATION METHODS

Even if Maximum Likelihood is the preferred estimation method, estimates of the
parameters by means of some of the other most common estimators are also provided. As
the main results in Table 5-18 show, the variation in estimates and fit measures is
relatively small. None of the estimates would change any of the primary conclusions. All
models have RMSEA < 0.05, non-significant p-values (p > 0.05) for the Chi-square tests.
The factor loadings and regression coefficients also seem non-sensitive to the estimation
method. Analysis is also performed on the correlation matrix and it indicates that the
main results are independent of the matrix type. Overall, the estimates did not seem to
vary much between the estimators or the type of input matrix. All estimations indicate
that the model fits the data reasonably well. As mentioned earlier, these results are
satisfying as they support the robustness of the model.

Table 5-18. The estimated values using Maximum Likelihood (ML), Unweighted Least Squares
(ULS), Weighted Least Squares (WLS) and Generalized Least Squares (GLS) applying
covariances and correlations.

Covariance Matrix Correlation Matrix

ML uLs WLS*® ML uLs GLS*°
Chi-Square 18.97 18.90 20.60 18.97 18.90 21.00
p-value 0.39 0.40 0.30 0.39 0.40 0.28
RMSEA 0.014 0.013 0.023 0.014 0.013 0.024
Y11 0.90 0.89 0.91 0.90 0.89 0.91
Bo1 0.95 0.97 0.95 0.95 0.95 0.94
A 1.50 1.50 1.51 0.52 0.52 0.52
A2 5.49 5.51 5.31 0.86 0.86 0.86
A3 4.14 4.11 4.11 0.77 0.77 0.77
ha 2.67 2.70 2.57 0.58 0.58 0.58
As 2.52 2.53 2.63 0.70 0.70 0.69
e 5.42 5.35 5.50 0.78 0.77 0.78
Ay 3.47 3.47 3.43 0.65 0.64 0.66
Ag 4.52 4.48 4.56 0.62 0.63 0.62

5.9 THE MEASUREMENT MODEL

Even if the fit measures give an acceptable overall fit, the measurement part needs to be
investigated separately. Whereas the measurement model is related to fit measures and
measures for reliability, the magnitude of the regression parameters in the latent variable
model is important for the research questions 2 and 3.

What we try to do in the measurement model is to measure concepts such as
procedural knowledge of functions. It is important to have a measure that corresponds to
the meaning associated with a concept and that the measurement of the latent variables is
sound. Reliability is the consistency of the measurement (Bollen, 1989, p. 206), while
validity expresses whether we measure what we intend to measure.

19 WLS utilizes the asymptotic covariance matrix and was not run on correlations.
20 GLS was only run on correlation matrix.
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y =541
0.77

y 5. 67
0.73 —= x1

y =0, 52
0.26 —= x2 y =540

y =557

y =0, 61

Figure 5-13. The complete model estimated in LISREL with the correlation matrix as input using
maximum Likelihood estimators.

If we look at the standardized solutions?! in Figure 5-13, we can see how each item loads
on each latent variable. The factor loadings are all within the range from 0.52 to 0.86,
which means that the impacts of the different items are relatively evenly distributed.
However, algebraic procedures (xz) have a larger impact on procedural knowledge than
graphic procedures (x1), with factor loadings equal to respectively 0.86 and 0.52. We can
also see that relations between graphic and algebraic representations (yi) has a stronger
loading on conceptual knowledge of functions than graphic interpretations (y2) and
algebraic interpretations (ys). In the same way economic applications (ys) has the strongest
loading on the ability to apply functions when compared to derivation (ys) and graphic
knowledge of the derivative of a function (ys). The error term, which is displayed next to each
item, is the proportion of variance that is unexplained?.

Reliability is in general a question on how well a variable is measured, or to which
degree the measure of the variable is error free (Blalock, 1982). Reliability is estimated for
each item, and also for each latent variable. For an item, the standardized factor loading
serves as the reliability-measure®:

2t The standardized solution gives the estimates from the correlation matrix. The factor loadings are
standardized within the range from -1 to 1.

2 Error term=1-A2,

2 Standardized error=1-reliability=1-(standardized loading)? (Hair et al., 1998).
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_ 52
pi=A (5.5)
Table 5.19 shows the factor loadings in the model.

Table 5-19. Factor loadings from the estimated model.

)\.1 )\.2 )\.3 )\.4 )\.5 )\6 )\7 }\'8

0.52 0.86 0.77 0.58 0.70 0.78 0.65 0.62

The item reliabilities should exceed 0.50 which means that the standardized factor
loading should exceed approximately 0.70. Table 5-19 shows that some factor loadings
are below 0.70, but the results are reasonable. The reliability measure for the graphic
procedures is lowest. It is impossible to determine the reasons for this, but it might partly
be explained by the fact that the results are hard to score. In general, students have
problems with drawing graphs, and giving a score on a partly correct graph must rely on
judgment.

Reliability measures for each latent variable are not provided by LISREL, but they can
easily be calculated. Since each item is supposed to load on the common factor, the item
scores need to be consistent in the sense that they need to be inter-correlated to some
degree. When only two items load on a latent variable, such as procedural knowledge of
functions, the Pearson correlation between the items gives an indication on reliability. A
very low correlation is not consistent with the fact that the items indicate the same
concept (latent variable). On the other hand, a correlation close to 1 could mean that the
items are in fact equal measures and that one of them could be left out.

Procedural knowledge of function was measured by graphic procedures (x1) and
algebraic procedures (x2) with an estimated correlation of r = 0.4492.

The three items that are used to measure conceptual knowledge of functions are
correlated with each other in the range form 0.44 to 0.52.

Table 5-20. Correlations between items that measure conceptual knowledge of functions.

Y1 Y2 Y3
Y1 1
Y2 0.4523 1
Y3 0.5226 0.4437 1

The underlying assumption in the original model is that the observed variables, for
example graphic interpretations (y2) and algebraic interpretations (ys), both correspond to the
meaning of conceptual knowledge of functions. They correlate to some degree, but no
correlations are larger than 0.52, as the three items do not measure exactly the same
aspect of knowledge. All three inter-correlations are in the range 0.44 and 0.52,
suggesting that the internal consistency is satisfying for this concept.

The same argumentation holds for the internal consistency of the items measuring the
ability to apply functions as shown in Table 5-21. The correlation between derivation (ys)
and graphic knowledge of the derivative of a function (ys) is lower than that of the others.
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Table 5-21. Correlations between items that measure the ability to apply functions.

Ya Ys Ye
Y4 1
Ys 0.5374 1
Ve 0.4587 0.3914 1

Even if both items reflect the ability to apply functions in relation to the derivative, one
can say that they are very distinct in nature in the sense that grasping the meaning of a
graph is something quite different than working with algebraic expressions.
Nevertheless, both facets relates to application of functions.

One of the most common used measures for reliability in social sciences is Cronbach’s

alpha (Cronbach, 1951):

Q=L(1_L)
k-1 k+2yr

g

# (5.6)

where k is the number of items loading on the latent variable and ry is the correlation
between item i and item j. Hair et al. (1998, p. 612) suggests construct? reliability
expressed by the standardized loadings and measurement errors:

(4%

R (SAY + 3 Var(z)

(5.7)

Measures for internal consistency are calculated for each item. Estimates for Cronbach’s
alpha?® and construct reliability (CR) are presented in Table 5-22. These are both
measures of internal consistency, based on the average inter-item correlation.

Table 5-22. Inter item correlations in terms of Cronbach’s alpha and construct reliability (CR) for
the latent variables.

Procedural knowledge

Conceptual knowledge

Ability to apply

of functions of functions functions
Cronbach’s alpha 0.62 0.73 0.72
CR 0.66 0.74 0.73

Although there is no exact rule for acceptable values, a rule of thumb says that
Cronbach’s alpha and CR should be larger than 0.7, but not exceed 0.9. All the measures
in Table 5-22 are within acceptable range, even if the internal consistency of procedural
knowledge of functions is slightly lower than 0.7. Since only two items measure
procedural knowledge of functions, the values for Cronbach’s alpha are reasonable.
Reliability of measures refers to the accuracy of the measurement instruments. When
we try to measure conceptual knowledge with a set of tasks as the measurement
instrument, it is obvious that errors in measurements are unavoidable and that we do not
get an exact score of a student’s level of knowledge. What we can expect is to attach some

2 The term construct is often used for the latent variable concept .
% In the SPSS output Cronbach’s alpha is referred to as Standardized item alpha.
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idea of this level with some uncertainty. Therefore the factor derived from the response
to example items yi, y2 and ys contains one proportion which is the true level of
knowledge and another proportion being the measurement error:

Variance in measure = Variance in true score + Variance in error

In general the reliability () expresses the underlying true score as a proportion of

what we measure:

B Var(T)
~ Var(T) + Var(e) (5.8)

where the underlying true score is 7 score and ¢ is the error of measurement.

According to Fornell and Larker (1981), CR in formula 5.7 does not measure the
amount of variance that is captured by the construct in relation to the amount of variance
due to measurement error. Instead they propose a more conservative measure, the
average variance extracted ( p,,. ), calculated as:

P ).
“e TS+ S Var(e) 59)

The table below shows the estimated values for the average variance extracted.

Table 5-23. Estimates of average variance extracted.

Procedural knowledge Conceptual knowledge Ability to apply
of functions of functions functions
Variance extracted 0.51 0.56 0.47

If p,,. >0.50 then the variance captured by the construct is larger than the variance due

to measurement error and indicates that the reliability of the construct is adequate, while
the reliability is more questionable when the value falls below 0.50. The estimate of
average variance extracted for procedural knowledge of function is just within the
recommended range, while the measure for the ability to apply functions is slightly
below. Keeping in mind that this is a conservative measure, the conclusion is that the
reliabilities seem reasonably satisfying. The degree of inter-item correlation in this regard
is sometimes referred to as convergent validity. It is expected that items that measure
different facets of the same concept, should to some extent be correlated. Another
question is to which degree the measurements of different concepts diverge from each
other. The items that measure procedural knowledge of functions should to some degree
diverge from the items that measure conceptual knowledge of functions. The hypothesis
is that there is a relationship between procedural and conceptual knowledge of functions,
and therefore some degree of inter-correlation between the items that measure the
concepts is expected. The question is rather whether the degree of correlation is
reasonable. The item xi that measures procedural knowledge of functions is correlated
with r=0.280 with ys that measures the ability to apply functions. Even if they are
correlated, this correlation is smaller than the correlation between xi1and x2. As a rule of
one could say that the correlations between items measuring the same concept should be
bigger than the correlation between items measuring different items. As Table 5-14
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shows, there are numbers that might challenge the conclusions, but with some
exceptions, the correlations between the items that load on the different measures are in
general lower than the measures of inter-correlations per item. The correlations between
items that load on procedural knowledge of functions were correlated with the items that
load on conceptual knowledge of functions and are 0.41 on average. Items for the ability
to apply functions had an average correlation with the items that measure procedural
knowledge of functions and conceptual knowledge of function are respectively 0.40 and
0.44. Hence the items discriminate to some extent between the concepts, although not
very strongly.

In summary, the reliability measures seem to be acceptable and different reliability
scores were reasonably satisfactory. It is not possible to establish the cause for variation
in reliability estimates by just looking at the tasks behind the items, but one can reflect on
possible reasons by inspecting the nature of the questions in relation to the estimates. It
might be that tasks that are difficult to evaluate, in terms of giving a score on the
students’ performance, weaken the reliability. An inspection of the reliability measures of
x1 and xz indicates that the set of tasks used to measure a student’s ability to perform
algebraic procedures (x2) is more accurate than the measure of a student’s ability to
perform graphic procedures (xi). One of the reasons for this might be found in the
evaluation of the test responses from the students. The answers to some of the algebraic
tasks can, more or less, be evaluated as right or wrong, while the evaluation of the quality
of a graph will rely more on judgement. One of the graphic tasks was to draw a straight
line, given the algebraic expression of a linear function. Apart from those who had it
correct or completely wrong, many students got only the slope or only the intercept
correct. In addition, the level of accuracy varied a lot between the students. A look at the
estimated reliability for yi, y2 and ys that have been used to measure conceptual
knowledge of functions shows that the value for y2’s reliability is somewhat lower than
the others. Item y2 measured students” ability to work with graphic interpretations where
the students were asked to draw graphs based only on graphic representation of other
functions. Again, the grading of the results relies on judgement, which might be a reason
for the lack of accuracy. The estimated reliability of ys, measuring students’ abilities on
problems related to economic applications, was higher than for ys and ys that were both
related to applying the concept of function to the derivative. This is the only item with
applications concerning subjects outside mathematics, but the answers were quite easy to
evaluate.

This study is basically confirmative in its design as opposed to an exploratory
approach. Consequently the construction of the tasks in the test relies on the
characteristics of each measure. Many labels are used to describe different types of
validity, but content validity refers to whether these characteristics are met. Content
validity is concerned with whether all aspects of a concept are covered, which is a
challenging problem in this study, especially when it comes to conceptual knowledge of
functions. We might have a perception of what we mean when we talk about conceptual
or maybe deeper understanding. It is possible that mathematicians” way of thinking
about deeper understanding is reasonably consistent in the sense that they have a
common imagination of what deeper understanding means. Even if such a consistency
exists, there is still a challenge to agree on the set of criteria that would cover all aspects
of such a concept. As an illustration one can easily imagine that different persons would
give different descriptions of what they mean by the concept environment, even if they
have a common understanding of it. Content validity is hard to prove and will be subject
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to judgment. The items that load on the same factor should reflect the meaning assigned
to that particular concept and distinguish from the other latent variables (Geffen, 2003)2.
In this study, the discussion of content validity will focus on the criteria for each concept.
According to Bollen (1989, p. 183), the researcher must define the concept in a manner
that covers all important aspects of the concept, and the judgment on content validity
must rely on the researcher. The discussion in chapter 2 is concerned with whether the
criteria for each measurement are adequate, while the discussion in chapter 4 is intended
to explain how the tasks have the properties reflecting these criteria. Even if the tasks in
this research are developed with the intention of reflecting the concepts in a way that
seems good according to judgment, this can hardly be said to consist strong evidence for
validity.

Another facet of validity, criteria validity, is to check how the operationalization
performs against some other criteria that are supposed to be predicted by the measures.
As an example, if the measure of the ability to apply functions is good, one would expect
that students with high scores on this measure also perform well when they are exposed
to other economic problems where mathematics plays a part. Therefore, the validity of
the test was investigated by collecting a new sample of data on a new group of students
using the same test as in the main test. In this post test, which is presented in chapter 5.13,
the students were identified by a student identification number to make it possible to
compare their test score with how they performed in other exams at an individual level.

5.10 PROCEDURAL-CONCEPTUAL RELATION

Before the model is evaluated further the hypothesized assumption that the causal
direction goes from procedural knowledge of functions to conceptual knowledge of
functions should be evaluated. The scores z(i = 1,2,3) were computed for each student

according to equations (4.16) and (4.17). For each student, scores on procedural
knowledge of functions and conceptual knowledge of functions were estimated.
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Figure 5-14. Index scores on procedural knowledge (Score P) and conceptual knowledge (Score C)
of students from the main test (n=283).

26 These two aspects of validity are called convergent validity and discriminant validity (Byrne, 1998).
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Figure 5-14 shows that many students score high on procedural knowledge of functions
and low on conceptual knowledge of functions, while practically none of them score high
on conceptual knowledge when procedural knowledge is low. The result clearly support
the genetic view (Haapasalo & Kadijevich, 2000) that procedural knowledge is a
necessary but not sufficient condition for conceptual knowledge, at least for these
students in this context when it comes to knowledge of functions. Some students whose
scores are at the diagonal in Figure 5-14 also fit the simultaneous activation view. There is
no trace of the inactivation view or the dynamic activation view in the data. The
conclusion is that the hypothesized direction from procedural knowledge of functions to
conceptual knowledge of functions is supported and will be maintained. Consequently,
the further evaluation, analysis and interpretations are based on the competing model.
Comments on both models are included to indicate that the answers to the research
question are not seriously affected by the choice between the two models.

5.11 OVERALL MODEL FIT

If the concepts are measured in a reasonable manner and the structure seems good, then
the estimation of the total model should be able to reproduce the input matrix as
described previously. How well does the observed data fit with the model generated
data? This chapter refers to the analysis where the maximum likelihood estimates were
estimated on the covariance matrix. Many fit measures are reported in Goodness Fit
statistics in the LISREL output as shown in Figure 5-15.

If F is the fit function, Fmin serves as a measure for S - £(8) and several statistics are
available. One of the most frequently reported is the minimum fit function?” Chi-square
(x?) statistics. Here:

X2= (1'1'1) Fmin (510)
with the degrees of freedom:
df = (1/2)(p+q)(p+q-1)-t (5.11)

where t is the number of parameters to be estimated. With n=283 respondents in the
study, the minimum fit function Chi-square is:

2= (n-1) Fmin =(283-1)0.0659 =18.57 (p=0.42) (5.12)
which is well inside the acceptable range? for this measure for the overall goodness of fit.

Since we do not want to reject the hypothesis, Ho: 2=3(0), we want the %2 estimate to be
small, corresponding to the reported p-value to be large, at least p>0.05.

2 The minimum fit function chi square deviates slightly from normal theory weighted lest squares,
which was applied for model comparison, but the choice of Chi-square estimate does not have
influence on any of the conclusions.

28 The measure indicates good fit when p<0.05.
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Goodness of Fit Statistics

Degrees of Freedom = 18
Minimum Fit Function Chi-Square = 18.57 (P = 0.42)
Normal Theory Weighted Least Squares Chi-Square = 18.97 (P = 0.39)
Estimated Non-centrality Parameter (NCP) = 0.97
90 Percent Confidence Interval for NCP = (0.0 ; 15.67)

Minimum Fit Function Value = 0.066
Population Discrepancy Function Value (FO) = 0.0034
90 Percent Confidence Interval for FO = (0.0 ; 0.056)
Root Mean Square Error of Approximation (RMSEA) = 0.014
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.056)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.91

Expected Cross-Validation Index (ECVI) = 0.19
90 Percent Confidence Interval for ECVI = (0.19 ; 0.25)
ECVI for Saturated Model = 0.26
ECVI for Independence Model = 5.56

Chi-Square for Independence Model with 28 Degrees of Freedom = 1551.77
Independence AIC = 1567.77
Model AIC = 54.97
Saturated AIC = 72.00
Independence CAIC = 1604.93
Model CAIC = 138.59
Saturated CAIC = 239.24

Normed Fit Index (NFI) = 0.99
Non-Normed Fit Index (NNFI) = 1.00
Parsimony Normed Fit Index (PNFI) = 0.64
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.98

Critical N (CN) = 529.68

Root Mean Square Residual (RMR) = 0.73
Standardized RMR = 0.025

Goodness of Fit Index (GFI) = 0.98
Adjusted Goodness of Fit Index (AGFI) = 0.97
Parsimony Goodness of Fit Index (PGFI) = 0.49

Figure 5-15. Goodness of fit statistics for the complete model estimated in LISREL with the
covariance matrix as input using maximum Likelihood estimators.
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With large samples, it is quite common to find a large 2 relative to degrees of freedom,
indicating a need to modify the model in order to fit the data (K. Joreskog & Sorbom,
1993). In general, if the sample size is large, it can be expected that models that
approximate the data closely will be rejected (Browne & Cudeck, 1993). It is obvious in
equation (5.10) that %2 increase with n. Equation (5.11) makes it clear that the degrees of
freedom will decrease as the number of parameters (t) increases, thereby making it more
difficult to reject Ho, i.e. more likely to claim that the fit is good. Of course, introducing
parameters in the model just to improve the goodness of fit should be avoided.

Another fit measure that according to Steiger (1990, p. 177) is a “natural measure of
badness-of-fit of a covariance structure model” is the noncentrality parameter (NCP),
denoted as A, reported by LISREL>:

NCP=A = Max(0,% — df) (5.13)

where a small value indicates a good fit. A 90% confidence interval for A is also given to
estimate precision. This gives an estimate for the Non Centrality Parameter, NCP:

NCP = Max(0, 18.97 — 18) = 0.97 (5.14)

There are no accepted values for threshold values, but NCP is used for the comparison of
models. The value is slightly lower than for the original model (NCP=1.48), which
indicates that removing the link between procedural knowledge of functions and the
ability to apply functions gives a moderately better fit.

To account for the problem that models that hold approximately in the population
will be rejected in large samples, Brown and Cudec (1993) proposed the population
discrepancy function (PDF) (McDonald, 1989). PDF is a fit measure that takes into
account the error of approximation in the population, and is defined as:

PDF - Max(me - i,o)
n-1 (5.15)
The Population Discrepancy Function (PDF) is estimated to:
PDF = Max (0.0673 - (18/282),0) = 0.0034
( (18/282) ) (5.16)

The corresponding estimate for the original model is 0.0053, which, again, justifies the
modification to the model. A problem with PDF is that it decreases as parameters are
added to the model, thus indicating a better fit. One of the most commonly used
goodness of fit measures, where this problem is in an adjusted form, is the Root Mean
Square Error of Approximation (RMSEA), first proposed by Steiger and Lind (1980), and

RMSEA - |FPE (5.17)
dr

defined as:

2 The minimum fit Chi-square is used.
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The estimate for RMSEA is:

RMSEA = PDF _ 00034 =0.014
df 18 (5.18)

RMSEA is an indication on “How well would the model, with unknown, but optimally

chosen parameter values, fit the population covariance matrix if it were available?”
(Browne & Cudeck, 1993, pp. 137-138). Values lower than 0.05 indicate good fit, while
values higher than 0.10 indicate poor fit. RMSEA was estimated as 0.018 for the original
model, favouring the adjustments. LISREL reports a 90% confidence interval for RMSEA,
giving the researcher an indication of how precise the measure is. LISREL also reports a
test value for the goodness of close fit, testing whether RMSEA is lower than 0.05.
Joreskog and Sérbom (1996) have suggested that the reported p-value should be larger
than 0.05. The output reports a p-value equal to 0.91, which is very convincing.

Another class of fit indices, with values normally between 0 and 1, and measures how
much better the model fits when compared to a baseline model. The latter is often the so-
called independence model, i.e. a model in which the correlations between all the
variables are zero. One of these indices is the Normed Fit Index, NFI (Bentler & Bonett,
1980). If F is the fit function and Fi is the fit function for the independence model, then

NFI =1 - P
Firmin (5.19)

A value larger than 0.90 indicates acceptable fit to the data (Byrne, 1998).

The LISREL output reports Normed Fit index NFI = 0.99. The value is in the range
from -1 to 1 and a common recommendation is that the value should be bigger than 0.90.
The corresponding value for the original model is 0.98.

Many estimation methods and fit measures, in addition to those mentioned here,
have been developed, and several fit measures and statistics are reported by LISREL. The
measures reported above point to the direction of support for the model, and the
synthesis of all these estimates is a strengthened conclusion.

5.12 SUMMARY OF ANALYSIS OF THE MAIN MODEL

To summarize this chapter, the statistical results are satisfactory, in the sense that the
estimated parameters and measures for fit and reliability are within the acceptable range,
and kurtosis is not likely to disturb the conclusions. Alternative estimation methods gave
only marginal changes to the estimates, which supports the model. The estimates
favoured the adjustment made to the model. We have seen that the estimated parameters
and fit measures did not seem to be very sensitive to neither the estimation method nor
the type of matrix, which in general gives support for the robustness of the model.

The latent variable model estimation proved that conceptual knowledge of functions
depends on procedural knowledge of functions. The ability to apply functions depends
significantly on conceptual knowledge of functions. When intermediated by conceptual
knowledge, procedural knowledge clearly affects the ability to apply functions. In other
words, procedural knowledge plays an important role for conceptual knowledge, which,
in turn is a necessary condition for the ability to apply functions, while procedural
knowledge of functions alone seems to be insufficient as a platform for application.
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5.13 POST TEST

The average total score on the post test is lower than the average score from the students
in the main test with a mean score of 45.9 compared to 75.6 in the main test. The post test
class had higher percentage of students that did not pass the multiple-choice exam in
mathematics. The same tendency could be seen in the exam in business economics.
Despite the low average scores, there is a certain variation in scores within the class with
a standard deviation of 22.9, and it is therefore possible to distinguish between students.
The discussion of validity concerns the battery of questions and the way they are
measured rather than the subjects exposed to them. It is the variance between the
students” performances that provides us with information in this regard.
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Figure 5-16. Distribution of total scores from the post test.

In addition, the factor loadings from the final model were used to compute three index
scores, one for each latent variable. The summary statistics of the index score for the three
measurements are shown in Table 5-24.
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Table 5-24. Statistics for location and dispersion of index scores.

Index scores from post test

N Minimum |Maximum |Mean |Std.Dev.
Index s§0re on procedural knowledge 57 1.04 24.44 12.84 |5.82
of functions
Index s§ore on conceptual knowledge 57 0.00 20.06 .93 5.30
of functions
Inde>f score on the ability to apply 57 0.00 31.73 12.75 |9.05
functions

Since the scale of the scores is different, it does not make any sense to compare the mean
scores.The important observation in Table 5-24 is that the standard deviation indicates a
clear variation between the students, which enables us to distinguish between them. The

question is how these scores compare with the outcome in the exams. The following tasks

from the math test were used to indicate procedural performance in mathematics:

Problem 1

Compute the value of (x3 -2y? )2 when x - -1 and y = 2. The answer is:

A

B
C
D
E

27

-27

49

81

I prefer not to answer the question

Problem 2

Perform the polynomial division:

A

m g QO w

1
x-3

X-3+

x 43
X-3

x*+3+

X+3
I prefer not to answer the question

Problem 3

(x* =6x +10): (x - 3) The answer is:

A straight line passes through the points (x,,y,) = (1,4) and (x,,y,) = (4,10).

The equation for this line is given by:

A
B
C
D

es}

y=-x-1
y=-2x-2
Yy =2x+2
y=-x+4

I prefer not to answer the question
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All these tasks are skill oriented in the sense that it should be possible for a student who
masters the algorithms involved to achieve the correct answer. Answering questions in
multiple choice exams can sometimes be approached by testing the solutions. In problem
1, the negative answer should be easy to eliminate, since the algebraic expression is
squared. Despite that, it is reasonable to believe that students do the computation with
the three alternatives left to choose from. A similar approach is possible in problem 2, by
for example finding the numerator in the remainder first, but there are still two
alternatives to choose between. In problem 3, it should be easy to verify that the two
points that are given fit into the line. Altogether, the solution in all three cases only
requires that an algorithm must be used. Exam performance in procedural tasks was
defined as the number of correct answers on a scale from 0 to 3. The table below
compares exam performance with the index scores.

Table 5-25. Mean scores on exam performance in procedural tasks by index scores.

Index scores compared to exam performance in procedural tasks

Index score on Index score on
procedural conceptual Index score on
knowledge of knowledge the ability to apply
functions of functions functions
Mean Mean Mean

Exam performance in 0(2) |71 3.1 0.0

procedural tasks. 1(20)|10.2 5.9 10.6

The number of students 2(25)|13.7 8.9 13.5

In parenthesis. 3(10)|17.2 10.5 17.6

Low scores on the indexes correspond to low scores on the exam performances. This is
not surprising since the high performers among the students score higher on all scales.
An interesting observation is that the mean index score on procedural knowledge
predicts the score on the exam in a linear pattern, as the numbers in the first column
increase by 3.1, 3.5 and 3.5 respectively from one category to the next. One should be
careful to draw certain conclusions on the basis of a relatively small sample, but the
pattern is that the index score on procedural knowledge of functions predicts the
performances in procedural tasks to some degree. The two other index scores, and
especially the score on the ability to apply functions, shows a slightly less regular pattern.
Estimates of Pearson’s correlation coefficients gave a slightly higher estimate for the
association between exam performance in procedural tasks and the index score of procedural
knowledge of functions (r=0.47) than with the two other index scores (r = 0.36 for both).
The following tasks from the math test were used to indicate conceptual performance.

Problem 4

Look at the function f(x) = x> + 2x + 4, D, = R . The following is true:
A The function has only positive values
B The function has both positive and negative values
C The function has only negative values
D None of the answers above are correct
E Iprefer not to answer the question
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Problem 5

Look at the function f(x) = x> + 2x + 4, D, = R . The following is true:
A The function has its maximum value for x = -1
B The function has its maximum value for x = -2
C The function has its minimum value for x = -1
D The function has its minimum value for x = -2
E Iprefer not to answer the question

Problem 6

Which of the following is true?

A The sum of two linear functions (of first degree) is a quadratic function
(of second degree)

B The sum of two linear functions (of first degree) is a cubic function (of
third degree)

C The product of two linear functions (of first degree) is a linear function
(of first degree)

D The product of two linear functions (of first degree) is a quadratic
function (of second degree)

E Iprefer not to answer the question

All problems require that the students select an appropriate solution strategy based on
their understanding of the question. A mathematician would most likely have an image
of the graph of the function in mind related to problems 4 and 5, but it is also possible to
apply an algebraic approach to these problems. Several solution strategies are applicable,
but they require that pieces of knowledge are combined appropriately. In problem 6, the
question and all the answers are presented by text that must be interpreted in a
mathematical context. Exam performance in conceptual tasks was defined as the number
of correct answers on a scale from 0 to 3. The table below compares exam performance
with the index scores.

Table 5-26. Mean scores on exam performance in conceptual tasks by index scores.

Index scores compared to exam performance in conceptual tasks

Index score on Index score on
procedural conceptual Index score on
knowledge of knowledge the ability to apply
functions of functions functions
Mean Mean Mean
Exam performance in 0 (5) |12.6 3.7 5.8
conceptual tasks. 1(17)|9.5 6.9 11.7
The number of students
. . 2(17)]14.1 7.6 13.5
in parenthesis.
3(18)|14.9 10.4 15.0

107




Again, a low score on the indexes corresponds to a low score on the performances on the
exam and the index score on conceptual knowledge predicts the score on the exam in a
more regular linear pattern than the other two indexes. Also, the estimates of Pearson’s
correlation coefficients gave a slightly higher estimate for the association between exam
performance in conceptual tasks and the index score conceptual knowledge of functions
(r=0.36) than with the two other index scores (r = 0.30 and r = 0.36 respectively).

The marks from the exam in business economics were used to indicate performance in
business economics. The marks are scaled according to the ECTS system where A is the
best. The mark F means failure.

Table 5-27. Marks on exam performance in business economics by index scores.

Index scores compared to exam performance in business economics

Index score on Index score on
procedural conceptual Index score on
knowledge of knowledge of the ability to apply
functions functions functions
Mean Mean Mean
Exam performance in A(1l) |12.4 17.7 31.7
business economics. B(3) |22.6 16.5 222
The number of students
in parenthesis. C(7) |13.1 7.5 14.4
D (17)(13.3 9.2 14.4
E (11)[13.4 6.0 12.3
F (18) [10.4 6.1 8.2

One can see that the index score on the ability to apply functions to some degree seems to
predict the exam performance in business economics slightly better than the others. One
can also see that the index score on procedural knowledge of functions was between 10.4
and 13.4 for all student categories except for the category that achieved mark B, while the
index score on conceptual knowledge of functions only separated the As and Bs from the
others.

Since the marks are at ordinal level, Spearman’s correlation coefficients were
estimated to indicate the degree of association between exam performance in business
economics and the three index scores. The correlation against the index score on the
ability to apply functions is highest (r = 0.40) than the two others (r = 0.32 and r = 0.35
respectively).

Research questions 2 and 3 are about relationships, and the results from the post test
were investigated according to the findings of this study by a set of linear regression
equations and a test for mediation effects (Sobel, 1982). The index scores were applied for
this purpose, and the following variables were defined:

Vi=Index score on procedural knowledge of functions

V2= Index score on conceptual knowledge of functions
Vs = Index score on the ability to apply functions
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The index score on conceptual knowledge of functions (V2) increased in a reasonably
linear pattern with the index score on procedural knowledge of functions (Vi) as seen
from Figure 5-17. The pattern does support the genetic view and the simultaneous
activation view, but it is slightly distinguished from the pattern in Figure 5.14, as a few
students seem to score high on conceptual knowledge of functions and low on
procedural knowledge of functions.
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Figure 5-17. Relationship between Vi and V..

Equation (5.20) shows that Vi is a significant explanatory variable for V2, which
corresponds to the conclusion on research question 2: conceptual knowledge of functions
depends on procedural knowledge of functions.

V, =2.53+0.42-V, (5.20)
(p=0.0003)
t=3.86

Research question number 3, addressing how the ability to apply functions depends on
the two other types of knowledge, was also investigated. First, the index score on
conceptual knowledge of functions (Vz2) was used as an independent variable with the
index score on the ability to apply functions (Vs) as dependent. Figure 5.18 shows a linear
pattern between these variables and equation (5.21) shows that V2 has a significant effect
at any reasonable level (p<0.0001) when V: is the only independent variable.
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Figure 5-18. Relationship between V: and Vs.

V, =4.31+1.06-V, (5.21)
(p<0.0001)
t=5.92

Again, this result is not surprising, but it does not fully cover the conclusions on research
question 3 since effects from procedural knowledge of functions are not included. Since
we have a set of structural equations where V2 is a function of Vi (equation (5.20)), one
should be cautious to interpret the regression parameter in equation (5.21). Equations
(5.20) and (5.21) are a set of simultaneous equations. Therefore, the effect from V2 on Vs
was also estimated by a two-stage least square approach (Studenmund, 2001) with Vs as
the dependent variable with the predicted values for V: from equation (5.20) as
independent.

V, =-1.11+1.75-V, (5.22)
(p=0.0002)
t=3.98

When the two-stage least squares procedure is applied, the effect from the index score on
conceptual knowledge of functions is still clearly significant as seen in equation (5.22).

The partial plot of the index score on procedural knowledge of functions (V1) against
the index score of the ability to apply functions (Vs) is reasonably linear as seen in Figure
5.19.
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Figure 5-19. Relationship between Vi and Vs.

The regression equation with V1 as the only explanatory variable is:

V3=3.30+0.74-V1 (5.23)
(p=0.0002)
t=3.98

However, the relationship between Vi and Vs may be fully or partly mediated by V2. One
conclusion from the main study is that procedural knowledge of functions seems to have
an effect on the ability to apply functions mediated by conceptual knowledge of
functions. Therefore, it is interesting to see if the same holds when the index scores are
applied. According to Preacher and Leonardelli (2006), four conditions must be present
for V2 to be a mediator:

Vi must have a significant effect on V2

Vi must have a significant effect on Vs when V2 is omitted

V2 must have a significant unique effect on Vs

The effect of V1 on Vs shrinks upon the addition of V2 to the model

= W N =

Conditions 1, 2 and 3 are satisfied according to the linear equations discussed so far. A
linear regression equation with Vs as the dependent variable with Vi and V: as
independent is estimated.

V, =1.08 +0.37-V, + 0.88-V, (5.24)
(p=0.0468) (p<0.0001)
t=2.03 t=4.46

Equations (5.2)3 and (5.24) show that the effect of V1 on Vs has decreased when V: is

included. Hence condition 4 seems to be satisfied. According to Preacher and Leonardelli
(2006), these criteria can only be used to judge informally whether mediation is occurring.
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Instead, a more formal test suggested by Sobel (1982) is applied to test for mediation.
A two-tailed z-test of the null hypothesis that the mediated effect equals zero against the
alternative that mediation exists was used (Preacher & Leonardelli, 2006).

7o—3b (5.25)

2 2 2 2
Jb*-s?+a s,

The Sobel test z-value is estimated by equation (5.25) where a = 0.4209 and s. = 0.1090 are
the regression coefficient and standard error of equation (5.20) to the parameter Vi, while
b = 0.8796 and sv = 0.1972 are the regression coefficient and standard error of the
regression coefficient to V2 in equation (5.24). The estimated z-value is z = 2.92 with p =
0.0035 and the mediating effect from V: is clearly significant. One could claim that the
estimates for b are unreliable due to a violation of the classical assumption in regression
analysis that all explanatory variables should be uncorrelated with the error term.
Substituting b with the corresponding parameter estimates and standard error from two-
stage least square approach in equation (5.22) gave a z-value of 2.77 (b = 1.7486 and s» =
0.4391), which is still significant at any reasonable level (p=0.0056).

The conclusion from Sobel’s test shows that the effect from Vi on Vs is clearly
mediated by V2. This is in accordance with the earlier conclusions on research question 3,
that there is an indirect effect from procedural knowledge of functions on the ability to
apply functions through conceptual knowledge of functions. However, the test does not
say anything about the absence of a direct effect from procedural knowledge of functions
on the ability to apply functions, but it is the presence of a significant mediating effect
that is the most important conclusion.

5.14 INTERVIEW

Emma, Anna and Martin were interviewed to form a quasi peer group, all with
background at upper secondary schools in Norway.

When asking Emma about her view of mathematics, she said that she did not think
that mathematics would be important in her professional career. She said she had
actually never liked mathematics, but she felt motivated when she managed to solve
problems. Her primary motivation was to complete the course, meaning, to pass the
exams. She found it hard to describe what she meant by understanding mathematics.
When posing the above-mentioned question about equations, Emma answered:

— Rules.

When asked to think about what the equation means or why it is there, Emma
replied:

—No, I do not. We're supposed to find x.

Anna described her reason for learning as something that is needed to pass the exam.
She said that she found it hard to relate mathematics to practical problems, even though
she realizes that mathematics is related to economics. When asking what she meant by
learning mathematics, she struggled to answer, so the question was modified to what she
meant by understanding for example equations. Anna answered:

—To solve equations.

When asking if she thought mathematics could be used to represent something or be
a model for something in the real world, she said that she could not answer.
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Martin thinks mathematics is fun and he is fascinated by all the applications of
mathematics. He mentioned examples from physics, economics and other areas where
mathematics can be used to study many phenomena. When asked what does it mean to
understand something mathematically, he answered:

— When you can use it. When you can see a problem, that is: here is a problem, how
can I solve it? Then maybe you find out that differentiation can contribute to solve the
problem.

To assess how the interviewees focus their concentration in a learning situation, all
three were asked to comment on how they recognize themselves in the four points listed

below:
1  How problems are solved
2 Why is this important?
3 How can you relate this to other knowledge, as for example other subjects?
4  Remember rules

Emma’s answer was:

— It is the first and the last. Definitely not number three. I am not there, yet.

To follow up her comment on not being “there yet”, she was asked if she thought it
would be easier if relationships to other subjects were addressed before learning rules.
She said she would prefer learning mathematics first before looking for relationships to
economics, for example:

— Business economics is more advanced. You go much deeper into things. It might be
all right to use your brain a little bit, at first.

When repeatedly asked if she would have mathematics at first and then economics, or
vice versa she replied:

— Mathematics first, then economics.

Anna’s immediate response to how she recognized herself in the four points
mentioned above was:

—Yes, I would say the first one.

She mentioned the exams as the reason for why she thinks it is important to learn
mathematics. She made only few remarks when asked about relationships between
mathematics and other subjects:

— It depends on how deep you go into relationships. If you learn about relationships
first, you must take only surface properties. Then you begin to calculate and then you
maybe understand more at a later point in time. It depends on how complex it is.

She does not concentrate on remembering rules, because the exam is an open book
exam, but said:

-Except such simple rules you must know to remember how you shall do it.

Martin was also asked how he focused his attention by giving the four points. He
gave a reflection on all four:

— How a problem is solved is where you want to end. The reason why it is important
has more to do with motivation. If I cannot explain it, in one way or another, why it is
important, then I don’t bother. Then I don’t manage to understand it because you just sit
there wondering: What do I need that for? Relationships help to remember things like
when you get a deeper understanding of it. Rules and formulas have actually come by
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themselves for my part. So there has never been speaking of sitting down and learning

formulas by rote learning. It might be because the teacher we had at the upper secondary

school emphasized to show calculations. You should show the formulas that you use.

That way, I have repeated the formulas I had at the upper secondary school many times.

Table 5-28. Summary of beliefs among peer group.

Name Beliefs Questions Answers and quotes
Emma Procedural focus How “It is the first and the last. Definitely not
Why number three. I'm not there yet.”
Relationships Prefer to learn mathematics first before
Rules looking at relationships to economics
Procedural view What is “To solve equations”
learning “We're supposed to find x”
mathematics?
Strategic Motivation for To pass the exam.
motivation learning Does not think it is relevant for her future
profession
Anna Procedural focus How "I would say the first one, to the most
Why extent”
Relationships “You must know to remember how you
Rules shall do it”
Struggles to find relationships
Does not focus on remembering rules
Procedural view What is “To solve equations”
learning Wants to learn mathematics before
mathematics? applying it in economics
Strategic Motivation for To pass the exam.
motivation learning Finds it hard to relate mathematics to
practical problems.
Realizes that mathematics is related to
economics
Martin Procedural and How How a problem I solved is where you want
Conceptual focus Why to end Why is important

Relationships
Rules

Relationships help to remember things
Rules and formulas have actually come by
itself

Conceptual view

What is
learning
mathematics?

“When you can use it. When you can see a
problem, that is: here is a problem, how
can I solve it?”

Motivated by
application and
strategic
motivation

Motivation for
learning

Fascinated by applications of mathematics
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One might get the impression that Emma was not consistent, or found the questions
difficult to answer. Like Emma, Anna gave the impression as someone with focus on
learning procedures. Anna admits that relationships might be important, because if she
does not see the relationships, then she tends to become frustrated. This is related to
Martin’s argument that the reason for something to be important is motivation and he
believes that seeing relationships help to remember things.

Table 5.28 summarizes some of the beliefs among the peer group. Emma’s and Anna’s
beliefs about mathematics seemed to be in contrast with Martin’s ones. They both
struggled to find the words to explain what it means to understand something
mathematically, but gave quite similar answers. Their motivation was to be able to pass
the exam. This is in coherence with what Biggs (1993) calls the ‘strategic approach to
learning’. He argues for the existence of strategic approach to learning, in addition to the
‘deep approach’ and the ‘surface approach’. Strategic approach to learning refers to an
intention to achieve the best grades possible by adopting the assessment demands. These
three approaches to learning do not exclude each other. It is rather the combination of
them that determines the student’s approaches to learning (Entwistle 1988).

Using Bigg’s terminology, Emma and Anna seem to have a combination of a strategic
and surface approach to learning. Martin also mentioned that he was motivated by
assessment, but with a substantial element of deep approach to learning.

All three students were asked how they solved tasks in the main test and how they
described their solution process. The tasks used in the interview are shown in Table 5-29.

When Emma was asked to solve tasks that required procedural knowledge in the
main test, she struggled even at the easiest problems. In task 3, she started out by writing
- x — 3=0, but ran into problems when she got -x=3. She seemed to search for rules like
“can x be minus” or whether it is allowed to switch signs. When she was asked about the
two first questions in task 4, she had great problems with basic calculations such as eight
multiplied by eight and 64-48, when she applied the formula for finding the zero points.
She had no idea of how to do to draw the graph of f(x).

Despite serious problems with procedural tasks, she immediately gave a correct
answer to one of the conceptual tasks, task 6:

—Isn't it just f(x) = 4?

Even if Emma managed to solve task 6, she said that she focused on remembering
procedures. When I asked her why, she replied:

—Yes, today I do that because I think it is so difficult.

Anna had no problems with calculating function values in task 4. She hesitated for a
moment before she suggested the solution to task 6. She answered:

— I think it is four.

I asked her if she thought that task 4 was easier than number 6:

- Yes, actually. It is really easy. If I am allowed to put in numbers, then I am happy.

Task 12 was about adding two functions represented by their graphs. Her immediate
strategy was a procedural approach to solve the problem. She found the algebraic
expression for each of the two functions, added them and then sketched the graph, which
she did right. Then she was asked about task 11. I asked her what —(x) looks like. After
some hesitation, she said:

—Isn’t it just the opposite?

When asked what she meant by the opposite, she answered:

— I thought like this (drawing the graph in the third quadrant), not like this (drawing the
graph correct).
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Table 5-29. A task for stimulated recall used in interview.

Task 3 Given f(x) = - x — 3. For which value of x is f(x) = 0 ?
Task 4 In this exercise we look at the function  f(x)=2x®* -8x +6, Df=R
Calculate f(x) when x = -1 and when x = 4
When is f(x)=0 ? When is f(x)< 0 ?
Task 6 The graph of f(x) is shown. *] ke
Write down the expression for
f(X) 4.5
3.5
10 =] =1 4 2 :‘AJ 2 4 =1 =] 10
Task 8 A function of third degree has \ hE He
the form f(x)=ax’+ bx*+cx+d. \ ®3
b 3
The graph of f(x) is sketched. Y *
Find d. & o
3 3 1 o P 25 3
N\ o1 yd x N\
\ j v \
™ 44
N //8— \,“‘
3
g3 b
Task 10 | The graph of f(x) is shown. ] L'VE
Sketch the graph of 2] /_,,_,/-"'
f(-x). You don't need to put 4__/,/—/""/
more numbers on the axis. A S
rough sketch is enough. 1 08 06 04 02 O 02 04 08B 08 1
14 *
24
34
Task 11 | The graph of f(x) is shown. 53 Live
Sketch the graph of 69 -
-f(x). You don’t need to put 49 prd
more numbers on the axis. A 2-‘\\7/,/-“"’
rough sketch is enough. 5 z T 0 5 1 z 3
29 X
-4
64
g4
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Task 12 | The graphs of two functions
are show. Sketch the graph of
the sum of the two functions.

You don’t need to put more <
numbers on the axis. A rough 11
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The next question was about task 10. Anna’s immediate comment was:

—f(-x)? I feel like calculating it.

After a short while she sketched it right.

Martin had no problems with answering the procedurally tasks such as task 4 and
had no problem with the algebraic expressions. He also answered task 8 correctly
without hesitation.

When he was asked about task 11, he was uncertain when asked about —f(x):

— Around the x-axis, isn’t it? In similar way? It goes.., either like this or like this or it
is? Yes it is. Either that or around the x-axis, I do not manage to imagine how it can be
turned around the x-axis.

Then he drew the graph correct, but was still uncertain if it was right. When I asked
him about task 10, his immediate response was:

—Isn’t that the graph of e* ?

After assuming that he sketched the graph of ™.

Table 5-30 gives a summary of the interviewees’ responses to the stimulated recall
tasks with respect to procedural and conceptual knowledge. Emma, who was struggling
most, said she looked for procedures, but uncovered serious problems with simple
algebra. The only task she solved without hesitation was the problem in task 6. Anna’s
responses to tasks 4 and her comment to task 10 that “I feel like calculating it” remind of
a procedural oriented learner. However, she managed to solve task 10 on her own, which
requires conceptual knowledge. Anna and Emma both seemed to look for procedures,
but their performances pointed in a somewhat different direction.

Martin appears to be a student with algebraic skills, as he gives an impression of
looking for relationships and applications. Despite this, he still struggled with some of
the procedural tasks and, as with task 10, he looked for an algebraic way out of the
problem. He even was aware that his teacher form upper secondary school had
influenced his focus on formulas. Despite seeing himself as a learner looking for
applications and relationships, he appeared to struggle with conceptual tasks where
graphic representations are involved.
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Table 5-30. Another task for stimulated recall used in interview.

relationship between
representations

Procedural Conceptual
Name knowledge knowledge Examples of thinking by stimulated recall
Emma Struggled with Task 3: Modifying - x - 3=0 to -x=3, but
basic algebraic being unable to continue
procedures Task 4: problems with basic calculations like
eight multiplied by eight
Struggled with Problem with Task 4: Unable to draw the graph of
graphic relationship of f(x)=2x*-8x+6
procedures representations
Recognized Task 6: Found f(x) = 4 from graph
relationship between
representations
Anna Succeeded with Task4: Calculated function values for
simple algebraic f(x)=2x*-8x+6when x=-1 and x =4
procedures with some small hesitations
Recognized Task 6: Found f(x) = 4 from graph
relationship between
representations
Succeeded with Recognized Task 12: Sketched the sum of two linear
simple algebraic | relationship between functions represented graphically via
procedures representations algebraic procedures
Solved tasks applying | Tasks 10 and 11: Sketched -f(x) and f(-x)
non-procedural right, after hesitating a while
strategy
Martin Succeeded with Task4: Calculated function values for
simple algebraic f(x)=2x*-8x+6when x=-1 and x =4
procedures without any problems
Recognized Task 8: Found d in f(x)=ax’+ bx’+cx+d

from graph without hesitation

Problems with
nonprocedural
solution strategy.
Struggled to judge on
the outcome

Tasks 10 and 11: Sketched -f(x) and f(-x)
right, after hesitating a while. Was uncertain
whether the answer was correct. Used
procedural approach on f(-x).

The next part of the interviews was about the students’ experiences from upper

secondary school.
Emma’s first comment when she was asked if she could describe a typical

mathematics lesson at the upper secondary school was:

—Yes, we actually worked on our own.

She confirmed that they were working with exercises, but when she was asked about
the teacher, she said:
— Yeah, maybe he explained a bit, but if we didn’t follow, it was in a way impossible.
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She described a typical lesson where the teacher explained an example at the
blackboard, and the students were asked to do similar examples afterwards. The teacher
did not follow up the pupils individually and never controlled their homework. She
described the learning environment as completely chaotic. The following statement is
Emma’s description of the situation:

— I remember him doing things at the blackboard for about five minutes, and that was
it. It was like completely unserious. There were three math classes in the same room. It
was not good. And everyone in my year had math at the same time of the day. At that
school there were only group rooms and large assembly halls, so we just sat where we
wanted to and joked and stuff.

Emma told that each class had about 30 students and that there were three classes
having math at the same time. With 90 pupils spread around, she described the situation
as chaotic and that many pupils, including her, often skipped the classes in mathematics.

Anna’s experiences at the upper secondary school were in many regards similar. She
described the learning environment at the upper secondary school as barely motivating
and unserious. When she was asked about the teaching in mathematics, she said:

— It was ordinary teaching at the blackboard. He went through something at the
blackboard, and then we should try, completely normal.

When asked about homework, her answer was:

—Yes, it was homework, but I never did it.

She was asked if it was followed up or controlled.

— No, never that I can remember.

She could not remember that her teacher related mathematics to other subjects, but
now she started to see relationships between mathematics and economics.

Martin was asked about his experiences in the maths class at the upper secondary
school. To the question on how a typical math lesson was and what the teacher did, he
replied:

— It was much the teacher standing at the blackboard and showing mathematics.
There was relatively little interaction with the class actually.

He said that the teacher did not follow up or speak to each student individually and
that he did little to differentiate teaching between the mathematically skilled and those
who struggled. In the beginning of the interview, Martin told that he was motivated by
the applications of mathematics and mentioned the relationship between mathematics
and physics. Martin had the same teacher in mathematics and physics at the upper
secondary school. I asked him about how his teacher emphasized relationships between
mathematics and physics:

— It was taught a lot of routines, it was. There is a link between math and physics, but
part of the problem was that even if you were required to have math to have physics, the
teaching schedules were not planned parallel, so when you came to the point where you
needed derivation in physics, you hadn’t necessarily learned it in mathematics.... There
was no direct link that was easy to follow.

He described the teacher as someone who was very focused on teaching routines and
remembering formulas and said:

— Why things are important was never actually a question.
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He said that they had the calculator for that purpose, and he could not remember that
they ever drew graphs manually. He repeatedly said that they didn’t have to, since they
had the calculator to do that. Martin was asked what kind of challenges the teacher gave
to the cleverer students. He said:

— That was mainly me, and it was mainly just to continue to do the exercises from the
book.

He was asked if the teacher followed up afterwards.

— Not very much. ...

All three reported similar stories regarding a typical mathematics lesson at the upper
secondary school, where the teachers demonstrated procedures at the blackboard and the
students were given similar problems. Other activities were absent. All of them also told
that there was almost no follow up of homework and very little effort from the teachers
to differentiate the teaching. Especially two of the students who both struggled with
mathematics, reported that the learning environment was very chaotic, and they did not
feel that the teaching process was taken seriously.
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6 Conclusions

The statistical analyses indicate that the tasks provide a satisfactory measurement tool for
the concepts with respect to validity and reliability. The analysis confirmed a strong
relationship between procedural and conceptual knowledge of functions and supports
the view that procedural knowledge of functions is a necessary, but not sufficient
condition for conceptual knowledge of functions. The estimation of the model revealed
no significant direct effect from procedural knowledge of functions on the ability to apply
functions, but when intermediated with conceptual knowledge of functions, the effect
was significant. In other words, procedural knowledge alone seems to be insufficient to
be able to apply functions.

The analysis concludes in favour of the genetic view and the simultaneous activation
view for the study populations regarding knowledge of functions. As pointed out by
Haapasalo and Kadijevich (2000), the distinction between procedural and conceptual
knowledge is personal, context and content dependent and the results should be
evaluated from this perspective. As shown by the analysis, the results vary between
individuals and remind us of the fact that there exist personal dependencies. It is natural
to reflect on possible factors that caused the outcome for this group of students. Relevant
factors could be the students’” beliefs of mathematics and their educational background.
Other factors might be their learning approach and the teaching approach from their
former teachers in mathematics. Factors like the use of assessments and use of calculators
may also have contributed to the outcome. Whether the outcome of the study can be
generalised to mathematical concepts outside functions is hard to prove. In any case, the
concept of functions is central to mathematics in post-compulsory education and the
conclusions are important, even if they are restricted to the concept of functions.

The outcomes of the study should also be judged in relation to possible pedagogical
implications. Since there is evidence for the genetic view and the simultaneous activation
view for the study group, one might say that the outcome is in favour of the
developmental approach (Haapasalo & Kadijevich, 2000). The developmental approach is
a reflection of the genetic view and the simulation activation view in the sense that
procedural knowledge enables conceptual knowledge. Both views regard procedural
knowledge as a necessary condition for conceptual knowledge. The question to ask is
how we can plan instruction that enables the transition from procedural to conceptual
knowledge.

The first part of this chapter is a discussion of the answers to the research questions
based on the statistical analysis. Secondly, factors among the students that might have
influenced the outcome are discussed also on basis of the interviews. The final discussion
concerns the pedagogical implications in light of the findings.
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6.1 CONCLUSIONS FROM THE STATISTICAL MODEL

This chapter comments on the main conclusions on the research questions on the basis of
the statistical analysis. It is difficult, and not to be expected, to draw absolutely certain
conclusions based on this analysis. However, the conclusions are supported by the
collected data and provide significant results on how the different knowledge types and
the ability to apply functions are related.

The research questions are:
1 How can procedural and conceptual knowledge of functions be measured?
2 How do procedural and conceptual knowledge of functions relate to each other?
3  How does the ability to apply functions relate to procedural and conceptual
knowledge of functions?

The first question refers to the measurement part of the model, while the two last
questions are discussed in light of the latent variable model.

6.1.1 The measurement model

It is important to be aware of the fact that we do not seek for a measure for something
that exists in a positivist way. Instead we approach it by developing a test instrument
based on judgments and see if the estimated model conforms to these judgments. There is
of course no one true way of measuring such phenomena, but it needs to be discussed
whether the selected approach seems good or bad. The relevant question here is whether
the set of tasks that were developed provide a sound measure for procedural and
conceptual knowledge of functions and the ability to apply functions. There seems to be a
common agreement on the most typical characteristics of procedural and conceptual
knowledge that should be judged when validity is considered. Validity is a complex
phenomenon, but in this study the important thing is whether the questions measure
what they intend to measure. In order to achieve the best possible content validity, each
task was developed to meet the criteria for procedural and conceptual knowledge of
functions as well as the ability to apply functions. Since content validity is impossible to
measure, the data itself does not give much additional proof for content validity, except
for the criteria related validity discussed in the conclusions from the post test. Since the
discussion on research question number one is closely related to the task performances,
some of the statistical results are given here together with the comments.

6.1.1.1  Research question 1: How can procedural and conceptual knowledge
of functions be measured?

Procedural knowledge of functions is divided into two task categories, graphic procedures
and algebraic procedures. One can easily agree that these are the two representation forms
that are most common in a traditional mathematical context, and the students performed
well with 70.1% and 71.7% correct on the two items on average. The descriptive analysis
reveals that the tasks expected to be difficult had low scores and that those expected to be
easier scored higher.

If we look at the questions on graphic procedures, the first question measuring those
on a linear function was expected to be easy. The mean score was 3.37 of 4 (84.3%). The
second question in this item was similar, but the function was a rational function that was
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expected to be more difficult than the first one. This was confirmed by the data as the
mean score was 2.95 of 5 (59.0%), even though the difference was expected to be larger.
The standard deviation was 2.88 on a scale on the range from 0 to 9, which is 32% of the
range. This tells us that the tasks were suitable to detect differences between students, a
property that is obviously important for a measurement tool. An estimate on Cronbach’s
alpha at 0.62 (Table 5-22) must also be said to be satisfactory, considering that there are
only two items. Indicating a reasonable reliability, this means that it is meaningful to
separate between the achievements on graphic and algebraic procedures. The scores
differ enough to say that they do measure different properties, but they correlate enough
to assume that they measure different aspects of the same phenomenon, in this case
procedural knowledge of functions.

With only two representation forms included, all aspects are not covered in the test.
One could maybe claim that the test should include tasks to measure students’
procedural knowledge of functions when represented by texts or tables. However, when
text or tables are used as a part of a mathematical process, it is often in a context where
one translates the text into a graphic or algebraic expression. Also, it is often used to
explain properties of a function rather than carrying out operations. In both cases, this
has more to do with conceptual knowledge than procedural knowledge.

From Figure 5-13 one can see that the factor loading on graphic procedures is A1=0.52
which is lower than A2=0.86 loading on algebraic procedures®. This means that the way
this measurement model is set up, algebraic procedures seems to be more strongly
related to procedural knowledge of functions than graphic procedures. Of course this
balance between the impact of algebraic and graphic representations is dependent on the
set of tasks used in the measurement model.

Conceptual knowledge was measured with three items: relations between algebraic
and graphic representations, graphic interpretations, and algebraic interpretations. As
opposed to the tasks given in the previous item, these types of questions are less familiar
to the students. This is easily seen in the lower scores of these items. The mean scores on
the three items are 48.8%, 21.5% and 53.1% respectively.

Again, when we look at the item measuring the relations between algebraic and
graphic representations, it is clear that the tasks expected to be easy have the highest
percentage correct score. On task 6, where the question was related to a constant
function, the mean score was 3.37 out of 4 (84.3%), while the other tasks scored around
40%. For the purpose of detecting variations, this is satisfactory.

Scores in graphic interpretations were very low, 4.09 out of 19 points (21.5%). This was
not unexpected, as the questions were constructed in a way that did not reveal any
details about procedures. Even so, the tasks did vary in degree of difficulty from 11.4%
mean score on task 11 to 31.5% on task 12. Despite the low level of scores, it is possible to
detect variation between the students based on the results.

The average score on algebraic interpretations was 53.1% of maximum score. The
tasks are quite similar and there was a tendency that those who got one of them right,
also got the other one right. This is not a weakness in the sense that they belong to the
same item and are used to measure the same aspect of conceptual knowledge of
functions.

Again, the different items cover different aspects. The first item has to do with
transformation between representation forms, while the other two reach to some extent

3 The loading referred to are from the model which was estimated by the correlation matrix.
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the level of reification (Sfard, 1991). When the tasks were developed, covering different
aspects of the same concept was intended and they do distinguish between graphic and
algebraic problems. What the data tells us is that this balance seems to have been
achieved to a reasonable extent. An estimated value of Cronbach’s alpha equal to 0.74
(Table 5-22) suggests that the internal consistency is satisfactory.

The factor loading are As=0.77 (relations between graphic and algebraic
representations), A+=0.58 (graphic interpretations) and As=0.70 (algebraic interpretations).
The difference is relatively small, although graphic interpretations seem to have a slightly
lower loading. Again, since these types of questions are less common, it seems reasonable
that their impact is somewhat weaker.

The post test indicated that the measures for operation and conceptual knowledge of
functions to some extent predicted the outcome of problems in mathematics that was
supposed to rely on the two types of knowledge. This predictive ability of the measures
serves as supportive evidence for the validity of the measures.

The ability to apply functions is a concept that is less commonly referred to in
mathematics education. There does not seem to be a consensus on what the meaning of
this concept should be, as is the case with procedural and conceptual knowledge. In
summary, one can say that the ability to apply functions in the framework of this study is
that one is able to apply functions in problems involving derivation and in some
economics tasks. The items that measure the ability to apply functions contain problems
on economic applications, derivation and graphic knowledge of derivation. All items
seem to contain tasks of different difficulty. In the item that measured economic
applications, task 13 had a mean score of 5.28 out of 9 (58.7%). The questions in this task
are very commonly given to students in economics, and the relatively high score was
expected. On the other hand, task 17 proved to cause a lot of trouble, also as one would
anticipate with a mean score of only 0.64 out of 4 (16.0%). Here the problem seems to be
that the students were given a lot of information and had to select which parts of the
information were needed and also to combine the pieces of information to solve the
problem. The item on derivation also confirmed the same tendency, with a score of as
much as 3.82 out of 4 (95.5%) on task 16 a while 16 d scored 1.37 out of 4 (34.3%). Also the
last item, measuring graphic knowledge of the derivative of a function, gave similar
results with 7.10 out of 16 (44.4%) on task 20 and 1.38 out of 8 (17.3%) on task 21. In
summary, the data confirmed my expectations regarding variation in difficulty.

The factor loadings were Ae=0.78 (economic applications), A7=0.65 (derivation) and
As=0.62 (graphic knowledge of the derivative of a function). The impact of economic
applications is marginally higher than the two others, but if we take into consideration
that the two other items both concern derivation, this is only reasonable. Cronbach’s
alpha was estimated to be 0.72, which indicates a reasonable internal consistency between
the items.

The post test indicated that the measure was a reasonable predictor for the students’
achievements at their exam in business economics. This indicates that the measure of the
ability to apply functions is a sound measure, at least when the ability to apply functions
is restricted to applications within economics.
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6.1.2  The structural model

The originally hypothesised model was adjusted, as the direct relationship between
procedural knowledge of functions and the ability to apply functions seemed weak and
was removed. The research question affected by the adjustment of the model is research
question 3. However, none of the conclusions related to the final model contradicts the
estimations of the originally hypothesised model. Given that the model is well defined
and that the data meet the required conditions, the answers to research questions 2 and 3
can be illustrated by the estimated latent variable model (Figure 6-1).

Conceptual
knowledge of
functions

Procedural
knowledge of
functions

The ability to
apply functions

Figure 6-1. The estimated relationships between the three latent variables.

Keeping in mind that the effects are standardised similar to correlations, one can see that
the effects are strong. Thus they confirm the necessity of both procedural and conceptual
knowledge.

6.12.1  Research question 2: How do procedural and conceptual knowledge of
functions relate to each other?

The relationship between conceptual knowledge of functions and procedural knowledge

of functions is, as expected, very strong. It was hypothesised that procedural knowledge

of functions is a necessary condition for conceptual knowledge of functions. This does not

mean that conceptual development will take place simultaneously, but that this direction

dominates when we talk about conceptual development for one mathematical concept in

accordance with the theory of (Sfard, 2001).

In chapter 4 we formulated the hypothesis:

Ho2:  yn=0
Hiz:  yu>0

The regression parameter y11=0.90 (p<0.01) is strongly significant at any reasonable level
and leaves no doubt that the relationship is strong and that Ho2 must be rejected. Even if
one might suspect that the more mathematically oriented students are more oriented
towards definitions and properties than others who focus on the memorisation of
procedures, this proves that students with good skills are those who have developed
better conceptual knowledge.
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If we accept the measurement model and the assumption that the suggested causal
direction is in accordance with the genetic view (Kadijevich & Haapasalo, 2001), the
conclusion is very clear on this research question. In other words, when we talk about
students’ conception of functions, we can assume that they need procedural knowledge
to develop conceptual knowledge.

6.1.2.2  Research question 3: How does the ability to apply functions relate to
procedural and conceptual knowledge of functions?

Several topics are addressed in this research question. One is whether conceptual

knowledge is a necessary condition to be able to apply functions, a question which is

clearly confirmed by the analysis. In chapter 4 we formulated:

Hos2: P2i=0
Hiz2: p21>0

The regression parameter 321 =0.95 (p<0.01) is clearly significant and Hos2 is rejected.
Even if this part of the result is what one would expect, it is worth noting that the
tendency is very strong. Again the causal direction is not proved, but the direction is a
likely one. Even if examples from practice can shed light on the meaning of a concept and
assist in gaining deeper mathematical understanding, it is probably natural to think that
one must have conceptualized a mathematical concept to a certain extent to be able to
apply it. Under any circumstances, the analysis clearly suggests that there is a very strong
relationship between conceptual knowledge of functions and the ability to apply
functions.

Another sub-problem in this research question is whether procedural knowledge is a
necessary condition to be able to apply functions, a question that is easier to discuss if we
decompose it in two questions. If we look at the direct relationship between procedural
knowledge of functions and the ability to apply functions, the hypotheses are:

Hos1: y21=0
His1: y21>0

The analysis of the original model does not give support to conclude that this
relationship is significant. The estimated regression parameter yz= 0.14 (t=0.62) is far
from significant and Hos1 cannot be rejected. As discussed in chapter 5, this relationship
could be removed from the model. This does not mean that such a relationship does not
exist, but in the analysis this link seems to be weak. In other words, it seems that
procedural knowledge of function alone is insufficient for being able to apply functions.
The other question is what was referred to as the indirect effect from procedural
knowledge of functions on the ability to apply functions. In other words, procedural
knowledge of functions has an indirect effect on the ability to apply functions, estimated
as yn- (21=0.90-0.95=0.855 showing a clear effect. The interpretation of this is that
procedural knowledge of functions has an effect on the ability to apply functions, but that
is intermediated by conceptual knowledge of functions. One could say that the original
model and the final model both point to the same direction, but it is a finding in itself that
the direct link from procedural knowledge of functions to the ability to apply functions
did not prove significant.
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To summarise the analysis of the main test, procedural knowledge of functions is
important, but first of all as a means to developing conceptual knowledge of functions.
Conceptual knowledge of functions is in turn a condition for the ability to apply
functions. The direct relationship between procedural knowledge of function and the
ability to apply functions seems weak. Maybe the single most interesting part of
conclusion is the importance of conceptual knowledge.

6.1.3 Conclusions from the post test

The results indicate a correspondence between performances and measures in the way
that each measure, estimated as index scores, seems to be associated with the kind of
performance they are supposed to predict. Each type of performance seems to have a
slightly stronger association with the presumably associated index score than the others,
indicating that the test discriminates the measures. It should be noted that this indication
is weak and does not serve as a proof for discriminant validity. The analysis of the post
test, as far as research question 1 is concerned, says that the three measures, procedural
knowledge of functions, conceptual knowledge of functions and the ability to apply
functions, seem to predict related performances, while the indication of discriminant
validity is weaker. The post test data also support the structural relationships that were
found in the analysis of the main model supporting the genetic view and the
simultaneous activation view, although not as clearly as the main test indicated. The
sample size of the post test was too small for a meaningful estimation of the structural
equation model, but the alternative approach applied to a new dataset supports previous
conclusions.

6.2 REFLECTIONS ON THE OUTCOME

It is important to notice the distinction between the conclusions from the statistical
analysis and the present discussion, which is meant as a reflection on the possible factors
that might have influenced the outcome. The results support the genetic view and
indicate that many students have developed procedural skills, but lack conceptual
knowledge. Many students seem to be procedurally-bounded (Jérvelda & Haapasalo,
2005) and mainly focus on procedures. What are the possible reasons for this
procedurally bounded style? Several factors may play a part, such as teacher’s level of
mathematical knowledge, teachers’ understanding on how to teach for conceptual
knowledge, students’ educational background or students’” beliefs. Since many students
are strategically oriented and motivated by exams, the content of assessments is likely to
be an important factor. Finally, some thoughts related to the role of computer
environments and calculators are discussed.

6.2.1  Reflections from the interviews

The interviews provide information for the discussion of these issues based some
students” description of their beliefs and educational experiences. Students’” beliefs about
mathematics are likely to influence their thoughts and actions as learners (Pehkonen &
Safuanov, 1996). A student’s belief is understood as the student’s subjective knowledge
and emotions about mathematics which is shaped by his or her experiences (Pehkonen &
Pietild, 2003), so it is reasonable to assume that beliefs in this regard are personal. To gain

127



insight in students’ experiences, a semi structured interview was applied to investigate
students’ beliefs in the nature of mathematical knowledge as well as their experiences as
learners. Given the complexity of beliefs about mathematics and education, the interview
is suitable to reveal thoughts not addressed in the quantitative part the study. The first
part of the questions addresses beliefs about what it means to understand mathematics
while the second part is related to the learning situation. The teaching approach applied
at school is a factor that is likely to have influenced the student’s beliefs about what it is
to understand mathematics and as well as the student’s approach to learning. Emma,
Anna and Martin contributed with three different stories.

It is hard to see how the learning environment that Emma and Anna had experienced
could be a platform for discussion and activities stimulating conceptual knowledge. The
only activity they described was that of the teacher who demonstrated procedures and
asked the students to replicate them on similar tasks. It seems difficult to learn and teach
procedural knowledge in such environments, and almost impossible to accomplish
learning activities that promote conceptual knowledge if the teacher has no clear strategy
on how to promote links between procedural and conceptual knowledge.

Emma is a person who really struggles with mathematics with a purely procedural
orientation. One of her remarks raises an interesting question. Her reason for focusing on
remembering procedures was that she thinks mathematics is difficult. If a person with
low mathematical knowledge in general may find a procedural approach as the only
possible strategy, the same reasoning probably holds for teachers too. Teachers with low
conceptual knowledge are unable to devise a plan to teach for deeper understanding and
restrict themselves to do demonstrations of routines. This is in accordance with the
findings from (Ma, 1999) that suggests that teachers in the US who intended to teach for
understanding failed to do so because they did not possess deeper understanding
themselves. Another aspect of Emma’s story was the unsatisfactory learning
environment. Too many students gathered in one room on a Friday afternoon does not
encourage discussion and individual follow up.

Like Emma, Anna described herself as a student who concentrated on how to solve
problems and gave similar history from upper secondary school. The teacher
demonstrated solutions at the blackboard and did not follow up the pupils in class or
their homework. On a couple of occasions, when given conceptual problems, she
expressed that she was happy if she could do calculations. The reason for her belief could
be that she found conceptual problems difficult. Another interpretation is that the
conceptual task had triggered her consciousness and made a foundation for procedural
action in accordance with the educational approach (Haapasalo & Kadijevich, 2000).

The initial part of the interview with Martin gives the impression that he is a
conceptually oriented student in the sense that he was very motivated by relationships
between mathematics on one side and other subject like physics and economics on the
other. He considers himself to be a learner who focuses on rules and how problems are
solved and also why they are important, as well as relational issues. However, he had
more problems with the conceptually oriented exercises than procedural tasks. One
possible explanation could be that his teacher from upper secondary school was mainly
demonstrating how to solve problems, rather than stimulating reflections to prepare for
deeper understanding. As an example, Martin told that was no synchronization between
the mathematics courses and the physics courses, even with the same teacher. Another
reflection is that Martin gave the impression of being a conceptually oriented learner in
the beginning of the interview, but appeared to be procedurally oriented when he was
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working with the exercises. Putting this in the perspective of the findings of the statistical
analysis it might be that students like Martin with a high level of procedural knowledge
and motivation to apply mathematics might run into problems if the intermediating
factor, namely conceptual knowledge is weak.

All three students reported to have procedurally oriented teachers at the upper
secondary school, and despite variation, they seemed to have a better grasp on the
procedural tasks. It is not surprising that they were struggling with the procedural tasks,
but it might be that they are unaware of the importance of a deeper approach if they want
to be able to apply mathematics. Their experiences from their teachers at the upper
secondary school coincide with the report from TIMSS (2007), stating that the academic
mathematical training of Norwegian mathematics teachers’ at 8" grade is low. Few
teachers participate in education courses relevant to their profession as teachers of
mathematics. If the lack of deeper mathematical understanding among teacher hinders
conceptual teaching, pupil’'s beliefs and learning style development is likely to be
affected. To large extent, Norwegian pupils characterize the teaching of mathematics to
be working individually with tasks.

This strive towards procedural strategies might be an obstacle for trying to change the
focus towards relationship and properties. Schoenfeld (1982) argues that the result of
believing that there is always a rule to follow may cause students not even to attempt to
solve problems where they have no method. Pehkonen and Safuanov (1996) argue that
pupils’ beliefs work as a filter that affects their mathematical thoughts and actions. Beliefs
are under constant development, influenced by experiences and other persons
(Furinghetti & Pehkonen, 2002). Anna told that she had to see the relationships between
economics and mathematics now that she had started to work with it. In Anna’s case
actions had influenced her belief and maybe changed her motivation toward working
with relationships.

In summary, all three students were procedurally oriented and none of them seemed
to perform better on the procedural than the conceptual tasks. Their stories from the
school do not give any indication of teachers that were teaching for understanding.
Despite similarities between the three stories, the interviews are a reminder that the
students’” knowledge profiles in terms of procedural and conceptual knowledge are
individual. The interviews are not aimed to be proofs for the statistical analysis, but they
did not contradict the outcome of the analysis, as the conceptual knowledge did not seem
to surpass the procedural knowledge for any of the students that were interviewed.

6.2.2  Approaches to learning and influence from teachers and assessments
Approaches to learning and influence from teachers and assessments are factors that
influence the learning process. These are discussed together as they are related to each
other. For example, the students’” approaches to learning are influenced by their teachers
and their expectations to exams.

It is not surprising that many students are procedurally oriented or procedurally
bounded, but a discussion on possible causes should include some reflections on their
learning approach. Together with a colleague, the author conducted a test on the
preferred approach to learning among students who studied a first year course in
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mathematics (Lauritzen & Dysvik, 2005). Altogether 47 students 3! were tested by the self-
report questionnaire Approaches and Study Skills Inventory for Students (ASSIST) (Tait,
Entwistle, & McKune, 1998). The questionnaire is designed to test students with respect
to their learning approach. We told the students to answer the questionnaire in relation to
a mathematical learning context. Two scores were calculated for each student, one on
surface approach and another on deep approach. All the questions were formulated as
statements, and the students were asked to which degree they agreed with the statement
on a five point ordinal scale. The score 5 meant that student agreed with the statement,
and 1 meant that the student disagreed. Three items “Seeking meaning”, “Relating ideas”
and “Use of evidence”, were used to measure the deep approach to learning. Each item
was given a score defined as the mean of four answers, and the concept “Surface
approach to learning” was measured as the sum of scores from the three items. These
were treated as interval scale variables. Similarly, the items “Lack of purpose”,
“Unrelated memorising” and “Syllabus-boundness” were used to measure the concept
“Surface approach to learning”. The two scores are plotted against each other in Figure 6-
2, and show a significant negative correlation (r=-0.45, p<0.01) between the two.

Students approaches to learning

Test including n=47 students
Pearsons' correlation r=-0,45 (p=0,001)
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Figure 6-2. The scatter diagram indicating negative correlation between students’ approaches to
learning.

31 The data collected to measure students preferred approaches to learning were taken from another
group of students at Norwegian school of management BI.
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The six students with the highest scores on deep approach to learning have a low score
on the surface approach to learning (less than 7). Similarly, it seems like the high scorers
on the surface approach to learning tend to have lower scores on the deep approach to
learning. Despite the relatively small number of students (n=47), the negative correlation
was significant at any reasonable level. The interpretation is that there seems to be a
tendency among students to prefer one approach to the other. One should be cautious to
draw conclusions on the causes for their preference of the learning approach, but a few
possibilities should be commented on.

One is, as already mentioned, influenced by one’s teachers. To be able to teach for
understanding, the teacher must have expertise in conceptual knowledge (Ma, 1999), and
to be familiar with the duality of the two knowledge types. The number of courses taken
in mathematics and the level of the courses is an important factor for teachers’ growth in
conceptual knowledge, in particular for teachers with high procedural skills (Zerpa,
Kajander, & Van Barneveld, 2009). Even if teachers at lower levels in Norway have had
many years of education in general, and the picture is different for teachers at the upper
secondary school, few have specialization in mathematics (TIMSS, 2007). Neither the
interviews nor the test in this research addresses the level of teachers’ mathematical
knowledge, but a reasonable assumption is that lack of mathematical knowledge
prevents teachers to benefit from their knowledge about mathematics education.

When the results were compared to performances on conceptual and procedural tasks
at their final exam, the students with a deep approach to learning performed better in
both procedural and conceptual tasks. The analysis in this dissertation does not test for
similar relationships between learning approaches and knowledge type, but it seems
obvious that in order to gain conceptual knowledge one has to look for it. An interesting
reflection is that some students, like Martin who was interviewed seem to have a deep
approach to learning, but have developed procedural skills more than conceptual
knowledge. In this study, data was collected from a group of students that one might
expect to focus on their final exam. It is obvious that many students think of what kind of
problems they will meet when their learning outcome is to be evaluated. If exams
measure procedural skills, no one should be surprised by the students’ focus on skills in
the learning situation. In that case, a strategic approach for a student could be to direct
his or her attention towards memorization of procedural steps when preparing for an
exam. A strategic approach refers to an intention to succeed and the motive to achieve the
best grades possibly, by organizing one’s time and learning environment. This kind of
approach fosters an intention to achieve the best grades possible by adopting the
assessment demands, driven by the motive to achieve success (Diseth, 2002). One could
say that if assessments test skills, the strategic approach for a student would be to focus
on memorization and rote learning. If the intention is to teach for understanding, then
assessments must reflect this intention and meet the requirements for content validity.
The test in this study provides examples of tasks that indicate in what way procedural
knowledge can be assessed. Again, it is the conceptual learning goals that are challenging
to assess, but the development of tasks that address relationships, as some of the tasks in
this study, has proved successful. Such tasks can also be applied when teaching for other
mathematical concepts than function. For example, Ehmke, Pesonen, and Haapasalo
(2011) developed interactive online tasks used to identify students’ level of procedural
and conceptual knowledge of binary operations. The test consisted of tasks characterized
as recognition tasks, identification tasks and production tasks that used different
representations of binary operation problems.
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6.2.3  Calculators and computer environments

How does the use of calculators and computers influence the understanding of
mathematical concepts? This question concerns a wide area of research within
mathematics education, which is not the main focus of this study. The present discussion
is just meant to address a few aspects that are relevant to the analysis of this study and is
not intended to cover the entire domain of computer environments.

There is no doubt that a lot of calculations in a modern society are left to computers
and calculators. The calculation of prices and discounts are well known examples. The
mental activities required to perform these operations manually are to some extent
redundant. It seems obvious that the use of electronic equipment to perform such
operations is increasing. As such, one might claim that being familiar with computer
environments and calculators is a goal in itself, since it plays an important role in our
everyday life. This is something quite different from applying calculators to learn
mathematics. If we think of a calculator as a pedagogical tool, other aspects should be
considered. The curriculum for upper secondary education ("Curriculum for Upper
Secondary Education; Specialized Subjects in General and Business Studies:
Mathematics", 2000), says:

“It is difficult to say to what extent further developments will influence the need for
calculation skills, and there is much debate about this, but there is no doubt that some basic
skills will always be needed to formulate and adapt mathematical problems for computer
processing.”

The last part of the sentence from the curriculum relates to the first two steps in Polya’s
(1945) model on problem solving, understanding the problem and conceiving a plan for
its solution. It is the third step, carry out the solution, which is often performed by
computer processing. The fourth step, reflecting on the solution, cannot obviously be left
to a computer or a calculator alone. If calculations are left to a calculator, is it possible that
this will prevent students from developing sufficient procedural knowledge? The
rationale for this question is based on the assumption that working through the
procedures manually is often no longer needed. Many of the tasks used in this study to
measure procedural knowledge, can be solved by using a calculator. One example is Task
2(2) seeking to measure graphic procedures (x1):

Task 2
The function g(x) is given by g(x) = x +i
X

Sketch the graph of g(x)

Figure 6-3. Task on graphic procedures.

The student will have to enter the algebraic expression, and the calculator can easily
draw the graph. In this case, the calculation of function values will take a fraction of a
second and the student will not have to perform the calculations manually. The details in
algorithms are taken care of by the calculator. Tall (1994) talks about external, analogue
and specific insight to the algorithms involved. External insight occurs when the user
knows how to use the calculator, but is unknown to how the algorithm works. Specific
insight, on the other, hand is when the user is fully aware of the algorithms. Analogue
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insight is something in-between, meaning that the user has some idea of the algorithms.
One should of course be careful to conclude that the students are less trained in
performing algorithms, but one should be aware that at least some of the procedures only
require that the student have external insight in how the calculator works.

Broman (1996) claims that over 90% of mathematics time is commonly used on step 3
in Polya’s model (carrying out the solution), a stage that is associated with procedural
knowledge. Even if it is hard to quantify such time-consumption exactly, it seems
obvious that for example sketching the graph in task 2 takes a lot more time when
performed manually. This suggests that time is saved when a calculator is applied, and
therefore more time can be spent on the other parts of the problem solving process.

Even if calculators and computer environments can produce an answer in algorithmic
way when we feed them with the correct input, it is still too easy to say that their
relevance in the process of learning mathematics is limited to performance of procedures.
How can use of calculators and computer environments influence on development of
knowledge? Maybe a more important question is how can computers establish links
between procedural and conceptual knowledge? The MODEM environment
implemented by Haapasalo (Kadijevich & Haapasalo, 2001) is an example of a computer
environment that enables procedural knowledge development by utilizing conceptual
knowledge through representational transformations. The MODEM environment is
based on the educational approach assuming that conceptual knowledge enables
procedural knowledge. Since this study supports the view that procedural knowledge of
functions is a necessary condition for conceptual knowledge of functions, development of
conceptual knowledge will presumably suffer if calculators prohibit the development of
procedural knowledge. However, the picture is probably more complex than this. Cates
(2002) conducted a study to investigate whether students conceptual knowledge of
functions were influenced by the use of a computer based laboratory. The experimental
group (n=29) that took part in computer-based activities was compared to a control group
(n=27) that did not take part in such activities. Cates found out that the laboratory group
had significant better achievements in modelling real world phenomena with functions,
interpreting functions, translating between different representational forms and in
reifying functions. The two first results refer to the ability to apply functions, while the
last two address the conceptual knowledge of functions. This is an interesting result,
since it can be interpreted to mean that conceptual knowledge and the ability to apply a
concept benefit from the use of technology, but it does not conclude how it influenced
procedural knowledge.

Reflections about relationships are criteria of conceptual knowledge where computers
or calculators might have an impact. Graphic calculators allow students to explore the
relationship between an algebraic expression of a function and its graph. Tall and
Winkelmann (1988) say that this external insight provides knowledge to check whether
the results are sensible. In the example in task 2, the graph would approach the vertical
line x=0 asymptotically, which corresponds with the fact that g(x) is undefined for x=0. In
other situations, calculators are less suited as tools to think about results. If we look at the
tasks that were used to measure conceptual knowledge of functions, the process of
solving some of them would not benefit from the use of a graphic calculator. Task 10 was
used to measure graphic interpretations (y2):
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Task 10
The graph of f(x) is shown below. Sketch the graph of f(-x). You don’t need to put more
numbers on the axis. A rough sketch is enough.
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Figure 6-4. Task on graphic interpretations.

Since the students were not given an algebraic expression they would have problems to
produce the graph on the calculators display. However, this example does not justify the
claim that calculators do not play a part in development of conceptual knowledge. Rather
it illustrates that in some situations where conceptual knowledge is required, calculators
will not help to solve the problem.

Some of the tasks used to measure the ability to apply functions are not as purely
procedural or conceptual, as is the case in tasks 2 and 13. Again, referring to Polya’s
(1945) stages in problem solving. I will use task 13 as an example on how calculator might
play a role. Task 13 was used to measure economic applications (ya):

Task 13
The cost of producing x units of a product is given by
K(x) = -0,1x>+6x+200 when x is in the interval [0,20].

Calculate the marginal cost K'(x).

Estimate the marginal cost for x=10. What is the interpretation of this number?

Estimate the marginal cost for x=15. What is the interpretation of this number in relation
to the answer you got in the previous question?

Figure 6-5. Task on economic applications.

Understanding the problem might be easier if one started to draw the graph of K(x) on
the calculator. If the syntax is correct, the calculator will show the correct graph. Many
students tend to draw graphs incorrectly, even for simple functions, when they do it by
hand. One of the characteristics for conceptual knowledge is the ability to construct links
between different representation forms, and this study clearly indicates that the students
have problems with the interpretation of graphs. It might be that some students interpret
the graph as something external to the function (Vinner & Dreyfus, 1989), and they do
not realize how the graph expresses relations between the variables. Assuming that a
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student has overcome these problems, the graph provided by the calculator is easier to
produce and more reliable than the one produced by hand. Conceiving a plan for the
solution is about selecting the appropriate algorithm, given that the problem is fairly well
understood. It is more difficult to see how a calculator could contribute to the solution in
this case. Since the student is explicitly asked to calculate the marginal cost K'(x), the
problem of selecting a procedure is practically absent. A calculator cannot compute K’'(x)
unless it is symbolic, but it can calculate the requested marginal costs effectively. When it
comes to reflection on the result the original graph of K(x) may be beneficial, even if
reading the slopes from K(x) may be difficult. Altogether, the calculator may have an
impact on the different stages of solving problems like the one in task 13, primarily
because it provides accurate and reliable graphic representations.

Even relationships between tabulated variables can be represented graphically. In this
way, calculators can be used to experience relationships between representation forms. It
is therefore reasonable to assume that computers and calculators might have an impact
on the cognitive processes that lead to both procedural and conceptual knowledge of
mathematical concepts.

The development from procedural to conceptual knowledge where procedures are
routinized and encapsulated describes the development of conceptual knowledge as
what Piaget (Tall, 1994) refers to as vertical growth. Vertical growth is different from
horizontal growth, in which conceptual development takes place by focus on different
representations. Computers may, according to Tall, play an important role in horizontal
development in the sense that calculators or computers allow the student to reflect on the
results immediately. In this way they allow the learner to reflect on different
representations simultaneously. The point is that the students will be able to see how a
change in one of the representations immediately causes changes to another. Tall
underscores that mental objects learned this way may have different structures in
comparison to others learned in a more traditional way. Teaching and learning
mathematics horizontally by the use of computers will require that the students know
how the program is used, more than specific knowledge on the built in procedures. In
this study, I have argued for a cause of direction from procedural to conceptual
knowledge of functions, but the claim that detailed knowledge about the internal
routines in the calculator is redundant for horizontal development to take place, clearly
challenges this view. On the other hand, uncertainty about this causal direction will not
affect the main conclusions in this study.

6.3 QUESTIONS ADDRESSED BY THE STUDY

To improve teaching, we have to study how students learn, and apply this knowledge in
our teaching. It is not a trivial task to change ones teaching strategy even if new
knowledge on students’ conceptual development is attained. Assuming that both
procedural and conceptual knowledge are important for the student, the challenge for
many teachers is probably related to the second of these. It seems reasonable to claim that
traditional teaching emphasizes the mastery of skills, perhaps at the cost of conceptual
development. A teaching approach aiming directly at conceptual knowledge by giving
definitions and talking about properties without focus on procedures would contradict
the view that procedural knowledge is a requirement for conceptual knowledge. On the
other hand, focusing entirely on procedures without drawing the attention towards
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relational issues or properties is unlikely to be a successful strategy to teach for
conceptual knowledge, as the results from this study indicate in the case of functions. It is
difficult to conceive a plan for education without having a picture of the state of students’
knowledge and an idea of what brought them there.

Students in economics are mainly interested in learning economics and many of its
phenomena are explained mathematically. This research proves that a certain level of
conceptual knowledge is required to be able to apply mathematics and that procedural
knowledge alone is insufficient. Many seem to have a lack of conceptual knowledge and
hence they will struggle to achieve the goal of understanding economics, the
intermediating factor is the problem. Another conclusion is that the students in the study
can be categorised with respect to procedural-conceptual links by comparing their
performances on performances on procedural and conceptual tasks. This research shows
that students have different profiles related to procedural and conceptual knowledge.
Almost none of the students in this study with low procedural knowledge scored high on
conceptual knowledge. However, many students scored high on procedural knowledge,
but low on conceptual knowledge.
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Figure 6-6. Categories of procedural (P) and conceptual (C) knowledge among students.

The students in this study can be divided in three categories based on their performances
as illustrated in Figure 6-6. Many students seem to end up in categories C1 and C2. This
raises two questions: what caused the cases C1 and C2 and how could we plan for
education to promote development from C1 and C2 to C3? Possible causes related to the
first question are discussed by mentioning some factors. The present study does not
provide any evidence of the level of consciousness among teachers about what
procedural and conceptual knowledge really is. Neither does it say anything about the
teachers’” mathematical knowledge. Nevertheless, it can be beneficial to characterise
students” educational background to better understand how pedagogical approaches can
be improved. When Jarvelda and Haapasalo (2005) classify three types of learners, the
conceptually oriented learner, the procedurally oriented learner and the procedurally bounded
learner, the idea is that instruction can be tailored to meet the needs of different learners.
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The conceptually oriented learner tries to learn principles first, then procedures, while the
procedurally oriented learner seems to use procedures before bringing in principles. The
last category, the procedurally bounded learner is focused on procedures without
development towards conceptual learning. The data in this study clearly suggest that
many of the students are procedurally oriented or even procedurally bounded.

How can we plan a new kind of pedagogical approach that promotes conceptual
learning for those in category C1? One alternative could be to emphasize transformations
between different representations. The study (Pesonen, Haapasalo, & Lehtola, 2002)
presents software that teachers can utilize to connect algebraic and graphic
representation to promote conceptual learning of functions. The second question is how
we could promote learning activities for students in C2 to benefit from the procedural
knowledge that they already gained. If conceptual development emerges through a back
and forth process between procedural and conceptual activities, then the learning
activities should be planned so that one could benefit from such an iterative process.

The statistical analysis looks at procedural and conceptual knowledge of functions at
an aggregate level for a group of students. Since there is substantial variation between
individuals, teaching strategies should ideally be targeted towards individuals. With
large groups of students it is not realistic to develop educational programs at an
individual level, while differentiation at group level is more feasible. Different learning
activities could be administered for students in the different categories as indicated in
Figure 6-6. This differentiation idea depends on a diagnostic tool to measure students’
procedural and conceptual knowledge. A tool based on a confirmatory factor analysis,
like the one in this dissertation, has shown to be a possible approach to develop
measurement instruments for this purpose.

6.4 FINAL REMARKS

In this study, a statistical model with the intention of measuring the concepts that make
up procedural knowledge of functions, conceptual knowledge of functions and the ability
to apply functions was developed. A structural modeling technique was used to develop
a measurement instrument that seems to be valid and reliable. I claim that structural
equation modelling is an appropriate way to study mathematical concept building, as the
concepts we are studying are often vague and difficult to analyse by more traditional
modelling techniques. The path diagram serves as a communicative tool for talking about
aspects of knowledge. This study shows that it is possible to develop valid and reliable
tasks to measure procedural and conceptual knowledge of a mathematical concept.

Realizing that conceptual knowledge is a main goal of mathematics education should
not allow us to overlook the role of procedural skills to achieve this goal. Instead of
saying that we should not focus on “how” but “why”, it would maybe be better to say
that we should not only focus on “how”, but on “how and why”. The discussion on
possible impact of factors that are not embedded in the model, such as teaching practices
and the use of assessments and calculators, may provide a foundation for the hypotheses
of further studies.

This study was restricted to the knowledge of functions and to some economic
applications. It is tempting to transfer the conclusions to other mathematical concepts and
other domains of applications, but such connections are not proven by the present study.
The data in the present study was collected from students at a business school and the
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conclusions from the analysis must therefore be interpreted mainly with this population
in mind.

The majority of research within mathematics education is based on studying children
rather than adult students. A lot of conditions may differ between children and students
in their twenties. Students take lectures in large classes, making it difficult for the teacher
to interact with them on an individual level during a class. The risk for misconceptions to
pass without being corrected is probably greater. To what extent can theories regarding
conceptual development be transferred to college and university students? Older
students’ enhanced capacity to reflect on their own activities might make them more
flexible in their approach to a mathematical problem. It might be that social factors,
learning strategies, learning environment, misconceptions, assessments, cognitive
aspects, anxiety and other things are factors that may have a different impact on students
than among younger children. Robert and Schwarzenberger (1991) conclude that it is
hard to find features that are specific to students, but that it rather is a question of
quantity. Piaget (1977) looked at the development of mathematical understanding
through what he called reflective abstraction. Even if Piaget studied younger children’s
construction of knowledge, Dubinsky (1991) claims that the same ideas can be extended
to a general theory which is applicable for students at a higher level.

Understanding a mathematical concept involves the ability to see relations for
example between graphic and algebraic representation of a mathematical concept. Maybe
the same is true for understanding conceptualization, namely to see the relations between
the types of understanding in addition to understand them separately. The duality
between procedural and conceptual knowledge is approached from two perspectives in
this dissertation. The problem is discussed at a conceptual level by looking at relations to
previous research, at the nature and properties of knowledge types. In the final
conclusions, relationships to other aspect such as students’ beliefs are discussed. The
other perspective is a statistical analysis of a large sample that can be associated with a
procedural approach. If we do understand the relation between those approaches, and
not only focus on one of them, we might understand the duality in mathematical
knowledge better.
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Appendix A

THE TEST GIVEN IN THE STUDY

Task 1.

Task 2.

Task 3.

Task 4.

Task 5.

Task 6.

Sketch the graph of h(x) =2x -1

1
The function g(x) is given by g(x) = X + ;

Calculate the value for g(x) when x=-5, x=-2,x =-1, x=1,x=2and x=5

Sketch the graph of g(x)

Given f(x) = - x — 3. For which value of x is f(x) =0 ?

In this task we look at the function f(x) =2x?>-8x+6, Df=R

Calculate f(x) when x =-1 and when x =4
When is f(x)=0?
When is f(x) <0?

The cost for a company to employ a person is the salary in addition
to other costs (taxes) estimated to be 40% of the employee’s salary.
A company’s total cost for an employee is 500.000. What is the salary?

The graph of f(x) is shown below. Write down the expression for f(x).

5 Live
4.51
4
3.51
T T T T T q- T T T T 1
m 8 6 -4 2 o 2 4 6 g 10
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Task 7. The graph of a function is shown below. Which of the following expression

can the function be divided by:

(x+1)  (x+2) (x+3) (x+d) (x+5) (x-1) (x2) (x3) (x4) (x-5)?

801 Live

T B0
J

VAN ]

/ a0y

f .50

/ o

Task 8. A function of third degree has the form f(x)=ax®+ bx2+ cx + d.
The graph of f(x) is sketched below. Find d.

81 Live

\ .

Task 9. Below you see the graphs of f(x) and g(x). Sketch the graph of the function
f(x) — g(x). You don’t need to put more numbers on the axis. A rough sketch

is enough.
g
17 /i\re f
0.8]
069
0.4
029
u 2 o4 08 o0& 1 12 14
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Task 10. The graph of f(x) is shown below. Sketch the graph of f(-x). You don’t need to
put more numbers on the axis. A rough sketch is enough.

4 08 06 04 02U
X

02 04 06 08 1

Task 11. The graph of f(x) is shown below. Sketch the graph of -f(x). You don’t need to
put more numbers on the axis. A rough sketch is enough.

Live

Task 12. The graphs of two functions are shown below. Sketch the graph of the sum of
the two functions. You don’t need to put more numbers on the axis. A rough

sketch is enough.

P Live
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Task 13.

Task 14.

Task 15.

Task 16.

Task 17.

148

The cost of producing x units of a product is given by K(x) = -0,1x2+ 6x + 200
when x is in the interval [0,20]. Calculate the marginal cost K’'(x).

Estimate the marginal cost for x=10. What is the interpretation of this number?
Estimate the marginal cost for x=15. What is the interpretation of this number
in relation to the answer you got in the previous question?

Suppose f(x) is a function of third degree and that g(x) is a linear function.
What kind of function is h(x) = f(x)-g(x) ?

Suppose f(x) is a function of third degree and that g(x) is a function of second
degree and that f(x) can be divided by g(x). What kind of function is

jO) = £(x)/g(x) ?

Calculate the derivative:

x2-2x
2) (09 =4x+2  b) g =3 —6x+4 ) h(x)= -
d) m(x) =In(3x) e) n(x) = e>*> where a and b are constants

The graphs of two functions are shown below. The linear function is a cost
function giving the total cost by producing x units of a product and is given by
K(x) = 600 + 90x. The other graph shows the total income by selling x units of
the product. How much is the marginal income when the profit is at its
maximum?

10000 Live

8000 -

6000

4000

2000




Task 18. Use the graph below to decide when f(x) > 2. You only need to write the

answer.

Task 19. A company has a linear cost function. The cost of producing 15 units is 605 and

the cost of producing 31 units is 877. What is the cost of producing 8 units?

Task 20.

The graph of a function f(x) and its derivative is shown in the same

coordinate system. Decide whether A or B is the derivative.

a)

0.4

0.31

0.21

Live

Live
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d)

A 104 Live

59
81
-10-

Task 21. The graph of the function h(x) is shown below. Fill in a schema for the sign of
h’(x). When is h’(x) largest?

101 Live
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Task 22. Let the function f(x) be given by f(x) = x2 + 2x. Suppose g(x) is given by the
graph below. What is the expression for h(x) = f(x)-g(x)?

Live
/)‘
y

Task 23. g(x) is a linear function. Write down the expression for g(x) when g(2)=0

and g(0)=4.
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Appendix B

Structural equation modelling (SEM)

STRUCTURAL EQUATION MODELING IN GENERAL

Concepts are linked to observable variables that are normally measured by questionnaire
items. In Figure B-1 item1, item2 and item3 are observable, measurable variables measured
by scores on tasks, while the latent variable represents the concept:

item 1

> item 2

Latent
variable

Figure B-2. The measurement model for a construct represented by a latent variable.

The direction of the arrows suggests a causal relationship, i.e. the latent variables are
assumed to have an effect on the item scores. Research question 1 is illustrated in path
diagrams like the one in Figure B-1. All latent variables are measured in a similar manner
and this represents the measurement part of a model that can also be described by a set of
equations.

The structural part of the model concerns relations between several latent variables
connected through linear regression equations where latent variables serve as dependent
and independent variables in the regression.

> latent

var 4

Figure B-2. The latent variable model represented as a path diagram.
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Each arrow points from a latent variable being the independent variable to a dependent
variable in a linear regression. In the example described in Figure B-2, the latent variables
var 1 and var 2 are denoted as exogenous as their causes lies outside the model, while the
variables var 3 and var 4 are endogenous variables, as they are determined by variables
within the model (Bollen, 1989, p. 12). Research questions 2 and 3 are represented by a
path diagram with latent variables. The ability to apply functions and conceptual
knowledge of functions are treated as endogenous, while procedural knowledge of
functions is seen as exogenous.

An advantage with structural equation modelling is that it allows us to study both the
measurement model (factor analysis model) and the latent variable model (regression
equation models) within the frame of one single model. The model emphasizes
covariances or correlations between the observed indicators rather than individual cases.
Instead of minimizing the functions of observed and predicted individual values, as in
traditional regression analysis, we minimize the difference between the sample
covariances (or correlations) and the covariances (or correlations) predicted by the model.

As an example, assume that we have hypothesized a model as shown in Figure B-3.
The items are represented by rectangles and the factors by ellipses. Assume further that
item a and item b have an observed correlation. In a similar manner, correlations are
observed for all pairs of items. Hence we observe a matrix of correlations. The model
would result in a 9x9 correlation matrix with 36 observed correlations®.

item a \

item b

N
A

Figure B-3. The complete structural equation model consisting of the measurement model and the
latent variable model.

Factor loadings and regression parameters are estimated for each arrow in the model,
and are used to compute the correlation between itern a and item b as it would be
according to the estimated model. The same is done for all pairs of items, and a model
estimated matrix of all correlations is computed. In this study all three research questions
are analyzed simultaneously in one structural equation model that will be illustrated in a
path diagram similar to the model in Figure B-3.

This means that a matrix with observed covariances between the items is compared to
the covariances predicted by the model. Small differences between the observed
correlations and the model-estimated correlations indicates good fit, i.e. the estimated

32 Each correlation occurs in pairs and the elements on the diagonal are all equal to 1.
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model fits the data well. Otherwise, if there are large discrepancies between the observed
and the model generated covariance matrixes, the model is not good.

Several methods for estimation of parameters and model fit are discussed in
connection with the estimation. It could be criticized that the observed correlations are
used to estimate parameters and thereafter used to determine the goodness of fit. This is
the same phenomenon that we find in linear regression analysis, where the observed data
are used to estimate the regression parameters, and then to calculate fit in terms of the R-
square. However, the fit measures estimated this way seems to be accepted.

Structural equation modelling (SEM) consists of several components and includes
several statistical techniques. A number of statistical analysis methods and program
packages are available. The analysis in this dissertation is developed by use of the
software package LISREL (linear structural relations) (Joreskog & Sérbom, 1993, Joreskog,
1970) that makes it possible to study relationships between latent variables using
regression techniques in combination with factor analysis to indirectly measure the latent
variables via observable variables.

FACTOR ANALYSIS

Factor analysis is a set of methods, often used in social and behavioural sciences, used to
group together several variables that are related as one common factor. The factor
analysis emphasizes the relation of latent factors to observed variables (Spearman, 1904).
In the measurement model, the observed variables, also called items, are regarded as the
effects of the latent variables (Bollen, 1989, p. 7). For example, let’s suppose we want to
study customer satisfaction related to a grocery store. One approach would be to let the
customers answer yes or no to the question of whether they consider themselves as
satisfied or not, but this procedure would not cover the different aspects of what is
understood by customer satisfaction. It would only put the answers in two different
categories, “satisfied” or “not satisfied”. Instead, we could specify customer satisfaction
as satisfaction with service, price level, availability and product quality, and try to
measure each of them on an interval scale. If these four aspects reflect what we mean by
customer satisfaction, we would expect people who answer yes on customer satisfaction
to give a high score on the four items and vice versa. In the terminology of factor
analysis, the four items are being represented by four observable variables, regarded as
effects of the common factor, customer satisfaction. In this way customer satisfaction is
not measured directly, but indirectly through the items. In the same way, it would be
incorrect to use a dichotomous variable to measure conceptual knowledge of functions.
The distinction between exploratory factor analysis (EFA) and confirmatory factor
analysis (CFA) is important for this study. Exploratory factor analysis is used to detect a
factor structure, given a set of variables, while confirmatory factor analysis is used to test
whether a set of data supports a given factor structure. The items in this study are
grouped together based on an assumption of an underlying factor structure. Therefore
the aim is to study whether the data supports this a priori factor structure, and
consequently confirmatory factor analysis was the approach here.

If we look at one single factor, the analysis estimates one factor loading (\i) for each
item. It is possible for an item to load on several factors, but that is not the case in the
present study. In this way, the confirmatory factor analysis model focuses on the linear
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relationship between factors and their measured variables. For example, the dependence
of the variable xi on the factor & (xi) as illustrated in Figure B-4.

W

Figure B-4. Each item (xi) loads on the factor (§) with a factor loading (Ai).

The relationship between xi and & can also be represented by an equation shown in
equation B.1 below.
xi =ME + 81 (B.1)

where 8i is the random disturbance term. Hence, the intention of the confirmatory factor
analysis is to estimate sound scores for all factor loadings in the model.

LATENT VARIABLE MODEL

The concepts in structural equation models are represented by latent variables. The
analysis does not determine causal relations between the latent variables, but determines
to what extent they are related to each other.

A latent variable can be more or less directly measurable. A concept like depression is
obviously not directly measurable, while variables such as working experience may be
measurable. In other words, whether a variable is directly measurable or not may vary in
degree, but analytically they are treated the same (Bollen, 1989, p. 11).

The latent variable model, describes the linear relations between the latent variables
in terms of linear regression equations. Given a set of latent variables, several
combinations of relations are possible, and the suggested model is often best illustrated
using a path diagram with arrows and ellipses. The ellipses represent latent variables,
and the arrows represent influences between the variables. Let A, B, and C be three latent
variables. Figure B-5 suggests two different models connecting the three variables:

o K

Model 1 Model 2

Figure B-5. The same set of factors may be used in different model structures.
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In model 1, A and B are exogenous and C endogenous, while A is exogenous with B and
C as endogenous in model 2. A further look at model 2 suggests that the effect A has on C
in model 2 can be separated in two types, a direct and an indirect effect. A has a direct
effect on C and an indirect effect on C through an intermediating variable, B. The total
effect from A on C is the sum of the direct and indirect effect.

Each linear equation is defined by means of parameters. In general, the number of
parameters to be estimated cannot exceed the number of variables, so even if models can
be defined with bi-directional arrows, model 2 would be under-identified. Model 2, as it
is shown in Figure B-5, is just-identified, while model 1 is over-identified with three
variables and two parameters.
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