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Abstract

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor which senses
oxidative and electrophile stress. When activated, Nrf2 accumulates in the nucleus, where it
induces the expression of cytoprotective target genes. Many diseases are associated with
oxidative stress and Nrf2 is therefore a potential therapeutic target. However, Nrf2 has been
shown to regulate processes other than redox response and could potentially have disease-
promoting effects. Accumulating evidence suggests that constitutively active Nrf2 has a
pivotal role in cancer as it induces pro-survival genes that promote chemoresistance and
cancer cell proliferation. Therefore Nrf2 is a novel oncogenic transcription factor, but the
prevalence on Nrf2 dysregulation and functions in cancer have not been fully characterized.
We analyzed microarray data of over 900 cancer cell lines in Cancer Cell Line Encyclopedia
(CCLE) and created an Nrf2 signature model based on our previous microarray data to
identify cancers with overactive Nrf2 status. Four novel cancer types and a total of 77 cancer
cell lines were discovered by two individual tools to have overactive Nrf2 status with > 95 %
probability  or  FDR  of  0.01.  Furthermore,  we  investigated  glioma  clinical  samples  in  The
Cancer Genome Atlas (TCGA) and found characteristic Nrf2 signature in 60 (ca. 10 %)
glioblastoma multiforme samples (FDR 0.05). Metabolic changes, such as the Warburg effect
have a crucial role in cancer. Nrf2 has been reported to upregulate pentose phosphate pathway
in cancer to produce NADPH and molecular building blocks to support cancer cell
proliferation and survival. In addition Nrf2 affects the lipid accumulation and synthesis in
atherosclerosis and metabolic syndrome mouse models. However, all Nrf2 regulated
metabolic pathways have not been identified and little is known about Nrf2-mediated
metabolism and its role in disease. We did pathway analysis to our endothelial cell Nrf2
expression data to identify Nrf2 regulated metabolic pathways using human metabolic
pathway reconstruction (Recon1). Many previously reported metabolic pathways were
enriched, including the pentose phosphate pathway and fatty acid metabolism pathways.
Interestingly, cholesterol homeostasis-related pathways, cholesterol metabolism, steroid
metabolism and lysosomal transport pathways were also enriched. Cholesterol homeostasis
has a significant role in many diseases, including cancer and atherosclerosis; therefore these
pathways were further investigated. Many cholesterol pathway genes were downregulated by
Nrf2 during the primary response based on our microarray and confirmed by next generation
sequencing methods that assayed both primary transcription and mature transcript levels
(RNA- and GRO-seq data). However, during secondary response with Nrf2 overexpression
data, many cholesterol pathway genes were upregulated. No direct Nrf2 targeted regulatory
elements were found, suggesting that Nrf2 regulates cholesterol homeostasis indirectly. In
these computational analyses, publicly available data was integrated with our own data to do
unbiased hypothesis tests to understand Nrf2 role in disease. The results motivate several
initial conclusions to be investigated further.



Acknowledgements

This study was done in the A.I Virtanen institute, department of Biotechnology and Molecular

Medicine, University of Eastern Finland in the autumn 2012 - spring 2013. I would like to

acknowledge Cardiovascular signaling group leader Anna-Liisa Levonen (MD. PhD) for

giving me the possibility to work in her cutting-edge multidisciplinary group. Many thanks

also for her valuable comments and efforts in supervising me.

I want to thank my main supervisor Merja Heinäniemi (PhD) for all the work she has done for

me, not only for supervising this master´s thesis but also for orienting me towards future work

as  a  scientist.  She  has  always  been  supportive  and  good at  motivating  me.  She  was  able  to

teach me bioinformatics and got me interested in the field of computational biology. I want to

thank also the rest of the cardiovascular signaling group members for their help and

friendliness.

I am grateful for Professor Matti Nykter from Institute of biomedical technology, University

of Tampere for his valuable comments on this master´s thesis.

I want to thank also my friend Sean Sapcariu from the Luxembourg center of system biology

for providing help with the English grammar.

Last but not the least I want to thank my family and my fiancé Jasmin for their love and

support.

Kuopio, July 2013



Abbreviations

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

TF Transcription Factor

ROS Reactive Oxygen Species

ARE Antioxidant Response Element

CCLE Broad Novartis Cancer Cell Line Encyclopedia

TCGA the Cancer Genome Atlas

GO gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

GSVA Gene Set Variation Analysis

GSEA Gene Set Enrichment Analysis

FDR False Discovery Rate

OA-NO2  nitro-oleic acid

OA oleic acid

siRNA small interfering RNA

adCMV Adenocytomegalovirus

adNRF2 Adenoviral overexpression of NRF2

siNrf2 Knockdown of Nrf2 using siRNA

siCTRL siRNA Knockdown Control

MCMC Markov chain Monte Carlo algorithm

HUVEC Human umbilical vein endothelial cell

qPCR quantitative real time polymerase chain reaction

ChIP-seq  chromatin immunoprecipitation sequencing

GRO-seq   global run on sequencing

RNA-seq RNA sequencing

H3K4me1 Histone-3 Lysine-4 mono-methylation

H3K27ac Histone-3 Lysine-27 acetylation

IGV Integrative Genomics Viewer



SVD Singular value decomposition

PPP pentose phosphate pathway

genes:

GST glutathione S-transferase

NQO1 NAD(P)H:quinone oxidoreductase 1

GCLM glutamate-cysteine ligase

HMOX1 heme oxygenase-1
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1 INTRODUCTION

Advances in high-throughput biological technology have made it possible to produce high

amounts of protein, gene expression or metabolite concentration measurements. First it was

thought that biological function could be inferred from these measurements directly.

However, many biological and technical pitfalls in high-throughput data analysis have been

discovered, which can result in false biological interpretations of the measurement data1.

Gene sets were introduced, because it was difficult to understand biological functions based

on differential expression of a single gene1. Genes of a gene set share a common function that

is derived from the previous knowledge; genes can, for example, belong to the same

biological pathway. Originally the approach was developed to address the differences

between  samples  representing  two  distinct  phenotypes.  A  gene  set  was  associated  with  the

phenotype if the gene set contained more differentially expressed genes than could be

expected by chance. However, this approach has limitations, as only two phenotypes can be

compared. In some cases it is important to classify data based on expression levels in a variety

of phenotypes (for example to identify tumor samples expressing a cancer promoting

pathway).

Enrichment analysis capabilities have been extended to cover unclear phenotypes as well, and

absolute gene set expression levels can be quantified in a high number of samples2. However,

the increase in the amount and complexity of data has introduced new challenges in data

normalization and integration. Public sources such as the Cancer Genome Atlas (TCGA) have

been developed to standardize the biological sample collection, measurement and analysis

pipeline to make the data reliable and reproducible.

Single gene level analyses have evolved to gene set (pathway) level analysis. Pathway level

analysis has also been extended to a systems biology approach, where the structure of the

gene regulatory network (interactions between the genes) is considered. Top-down systems

biology uses high amounts of data, previous knowledge and computational models to

understand the biological system3. Enrichment analysis is useful in top-down studies, because

the enriched pathways can be further extended to gene regulatory network analyses.

In this master´s thesis, enrichment analyses were used to study transcription factor Nrf2,

which is the master regulator of the antioxidant response pathway. Public data was integrated



with our own gene expression data, and computational biology models were used to predict

Nrf2 hyperactivity in cancer as well as to discover Nrf2 regulated metabolic pathways. This

master´s thesis is divided into two main parts: a literature review and an experimental part. In

the literature review, top-down systems biology and public databases are briefly introduced.

The main part of the literature review provides an overview of the available enrichment

analysis methods that are used in gene expression analysis. In the last part of the literature

review, Nrf2 biology and its role in cancer and in metabolism are introduced. The

experimental  part  of  the  thesis  presents  the  hypotheses,  results  and  discussion  of  our

enrichment analysis. Descriptions of the enrichment tool algorithms used in the analysis are

provided in the materials and methods section.



2 REVIEW OF LITERATURE

2.1 Biology of gene expression in eukaryotes

Deoxyribonucleic acid (DNA) is a long double stranded helical molecule that contains the

genetic information of the cell. This information is encoded into DNA using four types of

nucleotides that differ in their side chain bases: adenine (A), guanine (G), cytosine (C) and

thymine (T). These nucleotides are paired between the complementary sense and antisense

strands: A is paired to T and G is paired to C. Double stranded DNA is wrapped around the

histone proteins in the nucleus to form dense chromatin. Chromatin contains tens of thousands

of genes in eukaryotes. A gene is a sequence of DNA that contains enough information to

produce a functional unit, typically proteins, but many encode also small nuclear- (snoRNA),

transfer- (tRNA), ribosomal- (rRNA) and microRNAs (miRNA). During transcription a gene

is converted to messenger ribonucleic acid (mRNA) using RNA polymerases. Transcribed

mRNA is complementary to DNA, so genetic information is preserved in the mRNA.

Multiple genes can be transcribed simultaneously and these genes form the transcriptome of

the cell. The protein-coding mRNA transcripts are processed by post-transcriptional

modifications to produce the mature coding mRNA: both a 5´cap and 3´poly-A tail is added

to stabilize and direct mRNA and non-coding introns are removed from the transcript during

splicing to combine gene coding exons. Exons can be combined in different order by

alternative splicing. Processed mRNA is transported from the nucleus to the cytoplasm and

eventually to ribosomes, where mRNA is translated to proteins. During translation proteins

are synthesized according to the mRNA genetic code. Proteins consist of 20 types of amino

acids, each of which is bound to specific transfer RNA (tRNA). These tRNAs recognize a

specific three nucleotide long codon in the mRNA and are thereby able to bring amino acids

corresponding to the mRNA code to ribosomes which bind them together via peptide-bond

forming amino acid chains. These polypeptides are further folded and modified to functional

proteins. Proteins represent the main functional molecules of cells and are commonly

categorized according to their functions, as for example enzymes, receptors, structural

proteins, signaling proteins and transcription factors (TF).

Cells can alter gene expression by numerous mechanisms, including: Changing the DNA and

chromatin structure and density, regulation of transcription, post-transcriptional regulation,



and regulation of translation. TFs are key components in transcriptional regulation. They are

proteins  that  bind  to  regulatory  regions  of  the  target  genes,  such  as  enhancer  sites  or

promoters. TFs regulate gene expression by promoting or preventing accumulation of

transcriptional machinery consisting of RNA polymerase and general TFs to the site or by

changing chromatin structure via epigenetic changes (Figure 1.). TF binding sites are short

regions of DNA with specific sequences that make the protein-DNA molecular interaction

possible. Densely packed chromatin can limit TF binding and prevent transcription. Some TFs

are able to interact with proteins that regulate chromatin density through epigenetic changes,

such as acetylation or methylation of the histone proteins4.

Figure 1. Overview of gene structure and regulation of gene expression. The gene shown
contains exons (thicker lines) and introns (thinner lines) that form the primary transcript. The non-
coding introns are removed during splicing, to form gene-coding mRNA that can be translated into a
protein. Gene expression can be regulated from the gene regulatory regions. These regions commonly
have epigenetic markers, such as Histone-3 Lysine-4 mono-methylation (H3K4me1) and Histone-3
Lysine-27 acetylation (H3K27ac) that mark open chromatin for TF binding where specific DNA
sequences recognized by different TFs (motifs) can be found. In the figure, the H3K4me1 marker
peaks reveal active regulatory regions of the HMOX1 gene. TFs with a motif specific (complementary)
DNA binding domain can attach to this regulatory site and alter HMOX1 expression levels.



2.2 Top-down systems biology

2.2.1 Introduction to systems biology

Biological systems, such as a living cell, have commonly been studied in steady-state

conditions, mainly to understand the role of biological sequences; DNA, proteins and their

interactions. Molecular biology methods have made discoveries of fundamental biological

systems possible.  However,  now it  is  possible  to  investigate  deeper  into  biological  systems,

because technology has advanced to produce genome-wide high-throughput data. This data

can be used to study the dynamics of the biological processes and complex interactions

between the biological molecules.

Genome-wide methods produce vast amounts of information about molecular concentrations,

such as mRNA, protein or metabolite levels, which created new challenges for computational

biology to analyze and to interpret the data. Mathematical models and computational

simulation techniques have been introduced to solve these problems and they have proven to

be useful in biological research3. In addition, public availability of data expands research even

further beyond the limits of molecular biology.

Systems biology aims to understand the functions of a living organism by observing

molecular interactions and their mechanistic dynamics3. The focus can be on a whole living

organism, sub-part or a functional pathway, but the main idea is to explain how the higher-

level functions in these systems arise from the lower-level molecular interactions and

molecular dynamics. Top-down systems biology starts the analysis from the integration of

large genome-wide data sets, providing an unbiased overview of what can be observed from

the data3. During data integration, molecular concentrations are correlated with molecular

pathway activities to formulate hypotheses concerning regulatory relationships between the

molecules3.  This  regulatory  network  can  be  used  to  understand  how  the  system  works  and

further developed to predict how the system is regulated under different conditions.



2.2.2 Public data availability

The amount of public data has expanded as techniques in molecular biology have developed.

Expression data is available for multiple cell lines, data types and experimental conditions;

this data can be used to discover new hypotheses, compare analysis results, integrate data, or

predict outcome based on predefined experimental conditions and hypotheses.

Many large-scale projects collect data for public use: the most relevant ones for this thesis are

briefly  introduced  here.  The  Encyclopedia  of  DNA  Elements  (ENCODE)  project  aims  to

locate and identify functional elements in the human genome by using genome-wide high-

throughput methods5. It contains publicly available data on multiple cell lines to identify TF

binding sites, regulatory elements and chromatin status markers5. The Gene Expression

Omnibus (GEO) database contains functional genomics data, such as microarray and

sequence-based data6 published in biological journals by multiple individual research groups.

Cancer Cell Line Encyclopedia (CCLE) is specialized in providing public data on different

cancer cell line samples including expression data, mutation data, pharmacological profiles

and DNA copy number data7. The Cancer Genome Atlas (TCGA) collects homogenous

specimens on different cancer types from patient tumors. The project focuses on mapping the

genetic mutations to different cancer types to understand the genetic basis of cancer. TCGA

provides high amounts of cancer specific expression data, mutation data, DNA copy number

data and miRNA profile data.

Public data provides more input for computational analysis, enabling more powerful statistical

analyses. Public resources, such as TCGA and CCLE, can provide biological test cases to

perform predictions based on models that capture previous knowledge or experimental

observations. These concepts and public data sources are used in the experimental part of this

thesis to perform enrichment analyses, providing a good example of how public data and

enrichment analysis benefit a top-down analysis of Nrf2-mediated gene regulation.



2.3 Gene set enrichment methods

While the fundamentals of different enrichment analysis techniques are similar, they tend to

focus  on  the  different  specialties  in  biology.  In  my  thesis,  I  will  focus  on  the  use  of

enrichment analysis on gene expression profiles.

In transcriptomics the gene expression levels can be measured for each gene using

microarrays or sequencing-based method (RNA-seq). Comparison of gene expression levels

between  phenotypes,  such  as  drug  treated  samples  and  control  samples,  can  be  used  to

associate changes in the gene expression with the phenotype. However, it has been recognized

that making conclusions based on the expression level of a highly differentially expressed

gene  or  the  top  list  of  genes  (with  some  cutoff  threshold)  can  result  in  false  biological

interpretations due to oversimplification or failure to detect relevant differential expression8–

10: There are problems with the reproducibility of the analysis due to the requirement to define

a cutoff threshold; many genes with moderate but meaningful changes in the expression levels

could be lost by setting a cutoff value that is too strict.

Gene expression analysis evolved from single genes to gene sets, whereby modest changes in

the set of functionally related genes are considered to explain changes in the phenotype more

accurately than the list of differentially expressed genes10,11.  A gene set  is  a group of genes

that share a function according to a priori defined knowledge8. Many databases have been

created to provide biologically annotated gene sets, including MSigDB V3.0 11, which

provides gene sets with GO (gene ontology) categories and GeneSigDB12, which provides

literature-derived curated gene sets. Some databases also provide additional information about

the gene set, such as compartmentalization and molecular interactions. Examples of these

databases are KEGG (Kyoto Encyclopedia of Genes and Genomes)13 pathways and

Reactome14.

A commonly used method for analyzing over-presentation of gene sets in expression data is

Gene Set Enrichment Analysis (GSEA)8, which is widely used because it is easily accessible

(R, matlab and java graphical user interphase) and does not require programming skills. It

provides graphs that are ready to be published and therefore it is a good compromise for

common user. Other popular tools are the Database for Annotation, Visualization and

Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA), both of which are

intuitive to use but are restricted to specific pathway sources, such as KEGG, GO and IPA’s



own pathway curations. The enrichment method used in DAVID is a hypergeometric test,

while in IPA either a hypergeometric test or a method similar to GSEA is used.

Gene sets can also be called gene expression signatures. In this thesis, the term gene set is

used  to  refer  to  a  list  of  related  genes  with  a  common  function.  When  using  the  term

signature, a group of genes that can distinguish phenotypes based on expression values is

meant.

There are two types of questions that are commonly answered using enrichment analysis

tools:

Q1: Which gene sets are enriched in a list of differentially expressed genes? (Class discovery)

Q2: Which samples indicate that a gene expression signature is active in them? (Class

prediction)

Question 1 is commonly answered by unsupervised enrichment methods (Figure 2.).

Unsupervised methods are used to find hidden structures without the evaluation of correct or

incorrect solutions. Question 1 is therefore ideal for class discovery, to formulate novel

hypotheses in the data. This concept can also be called a pathway analysis as gene sets often

contain pathway reconstructions. Samples are typically assigned to pre-defined phenotypes,

which are compared to each other to evaluate the enrichment relative to the other phenotype.

Amounts of samples and comparable phenotypes are typically limited.

Question 2 can be answered using supervised learning methods and some unsupervised

methods (Figure 2). Learning with evaluation of correct or incorrect solutions is used to train

a model to predict classes. The general framework is to identify the genes that are important

for  the  classification  and  then  use  this  information  to  predict  the  class  in  other  samples.

Multiple  samples  with  different  phenotypes  can  be  used,  but  there  must  be  pre-defined

information to create an informative (class-distinguishing) gene expression signature; for

example, a signature to indicate samples where a given pathway is active or inactive.



Figure 2. Overview of enrichment method classification. The enrichment method
is chosen according to the question to be answered (Q1/Q2). In unsupervised methods, the statistics
are chosen based on the null hypothesis and significance is estimated based on parametric or non-
parametric methods. Non-parametric methods estimate the significance using an empirical null
distribution. Unsupervised methods provide a P-value, or a false discovery rate (FDR) as a measure of
significance. Significance is determined by rejecting the null hypothesis at some P-value/FDR cutoff
value, typically less than 0.05. In supervised methods many algorithms, such as Bayesian regression,
can be used to predict class in the samples. The measure of significance can be the probability of the
result, but also other measures of significance are available.

2.4 Unsupervised enrichment methods

Unsupervised gene set enrichment methods are divided between competitive and self-

contained methods. Unsupervised methods are typically used in the Q1 type of questions, but

a few methods are developed to answer the Q2 type of questions. Distinguishing between

competitive and self-contained methods can be done according to the selected null hypothesis

for statistics15:

Competitive null hypothesis: genes in the gene set can be differentially expressed at most as

often as the genes in the background set

Self-contained null hypothesis: genes in the gene set are not differentially expressed

Gene enrichment methods can also use local and global statistics for the enrichment

calculation, typically depending on the null hypothesis. Parametric tests estimate the



significance by assuming analytic distributions of the test data, such as a normal distribution,

whereas non-parametric test estimates significance empirically by permuting gene or sample

labels of the test data to create a null distribution (Figure 3.).

Figure 3. Schematic overview of performing enrichment analysis in Q1

type analysis.



2.4.1 Competitive methods with sample or gene set randomization

Competitive methods test the enrichment of differentially expressed genes in a gene set

relative to the background set. A simple example of a competitive method is the

hypergeometric test, which is commonly used in testing for over-presentation (Figure 4.) and

will be used also in the experimental part of this thesis.

Figure 4. Schematic description of competitive null hypothesis using hypergeometric test.
Genes measured are separated into a list of interesting genes and a background list of genes by some
cutoff. Interesting genes can be for example the differentially expressed genes obtained from a t-test
between samples and the cut-off used is a certain P-value. If a gene set contains more interesting genes
than could be expected by random draw from all genes, genes in that gene set are overpresented. Over
representation rejects the null hypothesis, if P-value of over representation is below significance cutoff
(for example 0.05).

Another method used in the experimental part is GSEA that uses competitive testing and gene

or  sample  randomization.  In  the  GSEA,  expression  levels  are  converted  to  signal-to-noise

ratios and genes are ranked based on the best distinction between the two phenotypes. The

phenotypes can be for example treated and untreated samples. Differential expression of a

gene set is determined by correlating genes in the ranked list with the phenotype: If multiple

genes of the gene set are found from the top or bottom of the ranked gene list, correlation of

the gene set with phenotype is high and vice versa. This level of correlation is the GSEA

enrichment score, which is calculated by using weighted Kolmogorov-Smirnov statistics

(Figure 5). The algorithm goes through a list of ranked and correlated genes and increases a



running-sum statistic when gene is included in the gene set and decreases it when it is not.

The magnitude of the running-sum is weighted so that genes with a high correlation with the

phenotype (up-down in the ranked list) get higher increase in running-sums. Statistical

significance  of  the  enrichment  score  is  assessed  by  simulating  a  null  distribution  for  the

enrichment score. This is achieved by shuffling the phenotype labels or the gene set

compositions, calculating the differential expression of the genes and ranking them and then

calculating enrichment scores for permutated case. Typically 1000 permutations are done to

obtain the null distribution of enrichment scores. The permutation of sample labels preserves

the complex correlation structures in the ranked gene list and is thought to provide

biologically meaningful significance assessment10,16. An empirical P-value is calculated

relative to the null distribution: the P-value is defined as the fraction of shuffles in simulations

that are needed to produce the actual enrichment score. Also correction for multiple testing

can be done in GSEA, by normalizing the enrichment score and then comparing the tails  of

the observed and the null distribution of the normalized enrichment scores.8

The basics behind GSEA are important, as vast majority of the enrichment methods available

implement the GSEA algorithm and about half of them simulate the empirical P-value by

permuting samples as in the original GSEA17.  Variants  of  GSEA  include  tools  such  as

SAFE18, GSA19, ASSESS20 which have been compared in multiple articles using simulated

and experimental data 10,19,21. GSEA variants differ mainly in their method for calculating the

enrichment score. Instead of the weighted Kolmogorov-Smirnov test, many methods use a

mean  test,  a  median  test,  a  Wilcoxon  rank  sum  test  or  a  maxmean  test.  They  also  have

differences in how the significance is estimated and how the multiple hypothesis correction is

done.



Figure 5. Schematic description of the weighted Kolmogorov-Smirnov random walk
statistics. All genes are ranked based on differential expression: high difference gets a high rank and
no difference gets a low rank. Random walk is done to each gene and if the gene is in the gene set,
running sum is increased and if not, it is decreased. High rank genes in the gene set are weighted to
increase the running sum more than the low rank genes. If the maximum difference from zero of the
running sum is unusually high (rejects null hypothesis), gene set is enriched. Unusually high running
sum means that permutation of sample labels results in a random rank lists, which gets as high or
higher running sums than observed at most as often as the significance cutoff states.

Comparisons of gene enrichment analysis tools have revealed that different methods have

often poor overlap, especially when results between the competitive and self-contained

methods are compared17. In addition simpler methods and self-contained methods often

outperformed GSEA type methods in simulated data and in experimental data GSEA and the

variants seemed to be better. There are multiple suggestions and all the tools seem to

outperform others in their own benchmark testing. Possible reason for contradictory

enrichment tool suggestions is that gene enrichment tools are often benchmarked using

simulated data sets21. The benefit of simulated data is that numbers of true positives and true

negatives can be controlled, whereas experimental data sets are biologically complex and

lacks standards and therefore it is challenging to know which method performs the best.

However, simulated data sets might model biological complexity poorly and lack fundamental

interactions. Therefore also experimental data should be used when testing the tools21.



2.4.2 Self-contained methods with sample randomization

In contrast to competitive methods, self-contained methods, such as Globaltest22, PLAGE23,

ANCOVA24 do not need comparison of the gene set to the background set. Expression levels

of genes in a gene set are associated with the phenotype directly by using global statistical

tests instead of calculating the gene-level enrichments25. The self-contained null hypothesis is

statistically more sensitive than the competitive null hypothesis, as the background set is not

considered and the null hypothesis is therefore more restricted15,17. If a gene list for example

contains many differentially expressed genes, in the competitive null hypothesis enrichment

score is reduced, as the background set is likely to contain differentially expressed genes.

Controversially, if the gene set contains only a few differentially expressed genes, the self-

contained null hypothesis might be over-sensitive in associating the gene set with the

phenotype10,26,27. An additional reason for the higher sensitivity is that self-contained analysis

can be done to a specific gene set, without the need of multiple corrections for many other

gene sets25.

The Globaltest method is based on empirical Bayesian generalized linear model, which uses

linear and logistic regression to predict if phenotype (1 or 0) or clinical status is dependent on

measured gene expression22. Global test is motivated by assumption that a gene set can be

used to distinguish phenotypes and that changes in expression patterns should change also the

phenotype. Therefore null hypothesis in this method is that none of the genes in the gene set

are correlated with the phenotype 1. To reject the null hypothesis, genes in the gene set do not

need to have similar expression patterns, but many of the genes needs to be correlated with

the phenotype 1. Differential expression between two phenotypes is modeled using random

effect logistic regression22. Generalized linear model can be used to predict the phenotype or

clinical outcome by estimating regression parameters from the training data and then to

compute the correlation with the phenotype. The model parameters becomes non-estimable

when there are far less samples than genes in the gene set, because there are too few degrees

of freedom22. In Global test regression is possible by assuming that the regression coefficients

for each genes in the gene set follow same distribution with mean of zero and an unknown

variance22. ANCOVA is very similar to Global test, but it test whether gene sets with similar

phenotypes or clinical outcomes have similar expression patterns28.  Therefore  roles  of

expression levels and phenotypes are exchanged relative to Global test. Both methods use

expression values directly for predictions; therefore normalization of the samples needs to be



robust26. Self-contained methods have been compared and their results were comparable after

proper standardization26.

To address the problem in analyzing enrichment for large gene sets from experiments with

small number of samples, singular value decomposition (SVD) was introduced to reduce

dimensions when using linear regression in PLAGE23. Expression levels are first standardized

to Z-scores over the samples, which indicate how many standard deviations the expression

level  is  above  or  below  the  sample  mean.  Then  genes  in  the  gene  sets  are  converted  to

eigenvectors (“metagenes”) using SVD and the first eigenvector (with the highest eigenvalue)

is used to define the whole gene set activity level in the sample23. SVD is commonly used in

enrichment analysis tools and details about the method are provided in the experimental part

of the thesis.

Self-contained methods are not limited to address Q1 type hypothesis. Gene Set Variation

Analysis (GSVA29) is a non-parametric and unsupervised enrichment method that uses similar

statistical methods to GSEA, but GSVA is tuned from gene-level statistics to utilize global

gene set-level statistics to calculate relative enrichment score of gene set activity across

multiple samples. It will be used in the experimental part of this thesis for a Q2 type analysis.

GSVA  is  not  suitable  for  Q1  type  class  discovery  analysis  with  small  sample  sizes  and

experiments where two phenotypes are compared; other unsupervised methods are more

suitable for that. However, GSVA enrichment analysis is can be used for quantifying

enrichment in large public datasets such as TCGA to predict pathway activity in heterogenic

phenotypes.

2.4.3 Parametric methods

The non-parametric methods impose a high computational cost when significance is estimated

by permutation. Simple parametric Z-score and X2 test calculations were introduced as a

powerful enrichment analysis methods30. The use of analytic distribution, such as the normal

distribution reduce the computation time and makes it possible to infer very low P-values,

which would require extreme amounts of permutations for the background simulation.

However, when simulated and analytic backgrounds were compared, it was clear in many



cases that the analytic background is inferior in accuracy21. These methods were also

criticized of ignoring the gene-gene correlations and the correctness of the analytic

assumptions in the calculation of the significance have been questioned31.  PAGE  is  one

example of a recent parametric method that uses averaging of the local gene-level statistics

and comparing it to standard normal distribution to estimate significance32.

2.5 Supervised learning enrichment methods

Complexity of experimental designs has increased due to the reduced costs in the genome-

wide expression analysis. Phenotypes cannot always be classified into a few categories, if

RNA has been extracted from clinical samples or from undefined disease data. Complexity of

the phenotypic categories and the large sample sizes limits usability of the Q1 type class

discovery analysis, but the Q2 type phenotype prediction can be done to classify samples. The

Q2 type questions are typically answered using supervised machine learning methods that are

not as common as unsupervised methods, but increasingly interesting as sample databases

such as TCGA are becoming general. Supervised methods have been applied for example to

predict clinical outcome based on expression profiles33, to detect secondary activation of

endogenous signaling pathways34 and to predict TF activation signatures in specific cancer

types35.

Basic methodology behind the supervised machine learning is to first create a phenotype

classifier from a training data set. The phenotype classifier is then used in a test data set to test

how  probable  it  is  that  the  test  set  has  same  phenotype  as  the  positive  training  samples36.

These methods are supervised, because they create a gene set from pre-defined experimental

conditions where phenotypes can be strictly controlled, such as cases where a pathway is

active in one phenotype and inactive in another or measurements of known pathway response

to a defined stimulus. The prior knowledge must be correct to train the model; otherwise the

learning method will classify data based on false information36. As the expression level

changes are known in pre-defined experiments for phenotypes, expression can be directly

measured in the other samples2. This enables quantitative prediction of the gene set activity in



the samples. The most widely used learning algorithms are based on Bayesian models, linear

regression, logistic regression, naive Bayes models and support vector machines37,38.

A typical problem in supervised learning methods is the over fitting of the data, which means

that the algorithm predicts well in the training set, but badly in the test set16. The over fitting

occurs when the model is too complex, for example has too many parameters relative to the

number of samples. In a gene expression data this occurs commonly: the number of samples

is much smaller than the number of genes. When the algorithm is trained using the training

data, it can “memorize” the gene expression levels. When the model is then used in the test

set,  it  cannot  find  similar  expression  levels  as  in  the  training  data,  which  results  in  poor

predictive power. Over fitting can be prevented by reducing the complexity and

dimensionality of the model and by cross-validating the model using a test set36. Dimensions

can be reduced using SVD and by setting a smaller set of genes to be collected by the training

set2. Also additional procedures can be done, including regularization, pruning and model

training with noise36. The supervised machine-learning tool SIGNATURE is used in Q2 type

enrichment analysis in the experimental part of this thesis. The method uses Bayesian probit

regression model, SVD and Markov Chain Monte Carlo (MCMC) algorithm and more details

about these methods are provided in the materials and methods part of the thesis.

2.6 Introduction to Nrf2 biology

2.6.1 Keap1-Nrf2 stress response pathway

Living organisms are exposed to chemicals that are not produced by the organism itself.

These xenobiotics can be found in drugs, pollutants and food, some of which can be

hazardous for the organism. Organism can also produce harmful substances such as ROS

(reactive oxygen species) as a side product of metabolic reactions. Detoxification is

considered to consist of phase I, II and III metabolic processes. In the phase I reaction,

functional and polar groups are added to the xenobiotics, commonly by the family of

cytochrome P-450 enzymes. Some of these compounds are cytotoxic and carcinogenic,

causing DNA damage and protein modifications. Therefore these electrophilic xenobiotics



and ROS are inducing the phase II response, which further inactivates the electrophilic

metabolites. In the phase III the membrane transporters of the multidrug resistance protein

family excrete the inactive metabolites outside of the cell.39,40

In the mammalian body, liver is the main organ to detoxify drugs and pollutants, but the

antioxidant response against oxidative and electrophilic stresses with the phases II and III

enzymes is crucial for the cellular health and in the prevention of tissue injury in all cell types.

The stress response pathway is activated by inducing the expression of the phase II

cytoprotective genes that are involved in the glutathione synthesis, neutralization of reactive

oxygen species (ROS) and xenobiotic metabolism39,41. The stress response specific TFs bind

to the regulatory regions of these cytoprotective target genes, which promote the general

transcriptional machinery assembly on the site and starting of the target gene transcription.

The binding sites of the oxidative and electrophilic stress response specific TFs are called

AREs (antioxidant response element) and they have been found in the regulatory regions of

the phase II cytoprotective genes, such as glutathione S-transferase (GST), NAD(P)H:quinone

oxidoreductase 1 (NQO1), glutamate-cysteine ligase (GCLM), and heme oxygenase-1

(HMOX1)42.

One of the master TFs of the phase II genes and redox response is the nuclear factor

(erythroid-derived 2)-like 2 (Nrf2) (Figure 6.). It forms a heterodimer with small Maf proteins

when it is in the nucleus and bind to ARE elements43.  Nrf2  belongs  to  the  CNC  (cap  ‘n’

collar) family of b-Zip TFs, which contain a highly conserved basic leusine zipper structure.

Other family members include p45, NF-E2, Nrf1 and Nrf3.41 During  the  basal  state  Kelch

like-ECH-associated protein 1 (Keap1) binds Nrf2 in the cytosol and promotes the

ubiquitination of Nrf2, causing proteosomal degradation44. As Nrf2 activity is regulated by

degradation and new Nrf2 is de novo synthesized, Nrf2 response to the oxidative and

electrophilic stress is fast and sensitive. Electrophilic agents disrupt Keap1 interaction with

Nrf2 by modifying cysteine thiols, which prevents proteosomal degradation of Nrf2. Nrf2 can

also be activated by proteins that prevent Keap1 from binding to Nrf242.

Multiple diseases have increased oxidative stress levels, including atherosclerosis, metabolic

syndrome, type II diabetes and cancer. Nrf2 is therefore a potential therapeutic target for

multiple diseases to reduce oxidative stress levels. Many potent Nrf2 inducers have been

introduced, such as sulforaphane, nitro-oleic acid (OA-NO2)45, oltipraz and CDDO-IM46.

Sulforaphane and OA-NO2 are commonly used compounds to activate Nrf2 in experiments.



Figure 6. Nrf2 basal and induced conditions. During electrophilic stress Nrf2 enters the
nucleus and forms a heterodimer with small Maf proteins. The Maf-Nrf2 heterodimer binds to the
antioxidant response element (ARE) to upregulate the phase II cytoprotective target genes, such as
NQO1, HMOX1, GCL and GST. In basal conditions, Nrf2 forms a complex with Kelch like-ECH-
associated protein 1 (Keap1) in the cytosol, which is ubiqitinated and proteasomally degraded.
Activating agents and stressors disrupts the Nrf2-Keap1 complex, as Keap1 cysteine thiols are
modified. Illustration modified from ref7.

Nrf2 has been shown to regulate a substantial number of genes. Microarray analysis revealed

thousands of putative targets from Nrf2 deficient (Nrf2 null) mouse data, based on expression

level changes51. To detect direct targets (regulatory regions of genes bound by Nrf2)

experimentally, the method of chromatin immunoprecipitation (ChIP) was developed. In ChIP

proteins are covalently fixed to DNA and chromatin is fragmented. An antibody against the

protein of interest (here Nrf2) is used to precipitate the protein-DNA complexes from the

lysate  and  proteins  are  removed  from  the  DNA  to  quantify  the  DNA  levels,  which  can  be

interpreted as the amount of protein binding in the region. Over 600 targets were identified in

mouse embryonic fibroblast from Nrf2 ChIP-sequencing data analysis47 and  over  200  Nrf2

targets with ARE homologous sequences were identified in the human lymphoblast ChIP-seq

analysis, suggesting that Nrf2 has vast amount of direct targets48. In addition a ChIP-seq



analysis has been done for the mouse hepatoma and embryonic fibroblast to study the Nrf2-

Maf heterodimer targets49. Therefore Nrf2 is likely to have high number of direct targets and

even more indirect targets.  Nrf2 target composition might depend on the cell type, basal vs.

induced conditions, activator concentrations and duration of the activation. However,

knowledge about these events is very limited and therefore it might be too optimistic to

assume that Nrf2 could be used to prevent and treat diseases. Many individual Nrf2 targets

have been identified mainly using expression data and ChIP-seq, but only a few studies have

been done to study Nrf2 regulated pathways and Nrf2 interactions50. Systems biology might

be able to elucidate the role of Nrf2 regulatory network and its dysfunction in different

diseases.

2.6.2 Nrf2 in cancer

Cancer cells have altered cellular metabolism to produce more ATP, increase biosynthesis

and, in order to maintain their proliferative phenotype, to regulate appropriate cellular ROS

(reactive oxygen species) levels. The Warburg effect is a well-characterized metabolic

phenotype in cancer to produce ATP through an inefficient aerobic glycolysis even in the

normal oxygen level environments. The gain of this metabolic shift is that the activation of

glycolysis leads to the activation of the pentose phosphate pathway (PPP) and other metabolic

pathways that produce molecular building blocks needed in the synthesis of proteins, lipids

and nucleotides important for cell proliferation51 (Figure 7.). Furthermore it is becoming clear

that cancer cells not only need increased amounts of metabolites to proliferate, but also a tight

maintenance of the ROS balance52. High amounts of ROS are produced by rapid protein

translation and proliferation rates typical for cancer cells. As ROS damages DNA and

proteins, it can induce apoptosis and senescence. On the other hand, cancer cells are thought

to tolerate increased ROS levels, as ROS induced mutagenesis and proliferative stimulus can

be beneficial for the cancer development52 (Figure 8). Activated PPP produces NADPH that is

an important reducing agent for enzymes that have a crucial role in the anabolic reactions and

in ROS neutralization52. Therefore ROS sensing pathways in cancer cells may provide a

growth advantage by maintaining sufficient expression of antioxidant enzymes to prevent

ROS from accumulating at hazardous levels52.



Figure 7. A simplified diagram of aerobic glycolysis (Warburg effect) and its
link to the pentose phosphate pathway (PPP). In cancer metabolic fluxes through PPP
and glycolysis have increased due to the cell proliferation stimulating signaling and possible lack of
metabolic pathway controlling enzymes. Growth factor stimulus and resulting tyrosine kinase
signaling prevents glyceraldehydes-3-P from entering the TCA cycle and its flux is directed to the
glycolysis51. Late stages of glycolysis are directed to produce intermediates that are needed for amino
acid synthesis. Accumulation of Glucose-6-P activates the PPP, which produces NADPH and results
in intermediates for nucleotide synthesis53. NADPH is essential cofactor that provides the reducing
power for glutathione and thioredoxin to neutralize ROS and also other enzymatic reactions needed in
macromolecular biosynthesis52.

Figure 8. Maintenance of ROS levels in normal and cancer cell. ROS can
support cell proliferation and survival pathways by inducing post translational modifications in
tyrosine kinases and phosphatases52,54. Antioxidants prevent mutations and apoptosis by decreasing the
ROS levels. In cancer cells metabolism and proliferation produce ROS, but adaptations and beneficial
effects of ROS (proliferative stimulus, survival signals and mutagenesis), makes cancer cells more
tolerant to increased ROS levels52,55. However, deadly amounts of ROS are neutralized by antioxidants
and PPP production of cofactor NADPH53.



Nrf2 is a key regulator of the antioxidant response and it has been reported that Nrf2 is

constitutively activated by various distinct mechanisms, including mutations, epigenetic

changes and disruptor proteins in many cancer types (Figure 8.). Also Nrf2 and Keap1

imbalance caused by NF-kB induction of Nrf2 expression has been shown to cause

constitutive Nrf2 activity in acute myeloid leukemia56. Constitutively activated Nrf2 increases

chemoresistance in cancer cells by inducing the detoxifying phase II enzymes57,58. Moreover,

Nrf2 influences cell proliferation by directing glucose and glutamine to anabolic pathways

and promoting the PPP activation59.  The  combined  effect  of  the  resistance  to  drugs,  pro-

survival signals and influences in the cancer proliferation gives an advantage to cancer types

with constitutive Nrf2 status. Unsurprisingly cancers with high Nrf2 levels have a poor

prognosis59. There is a need for Nrf2 specific inhibitors, but developing such a drug has been

challenging due to the similarity of Nrf2 with other bZip family members60.

This is contradictory to the vast amount of evidence that Nrf2 can suppress carcinogenesis

that motivated the development of numerous Nrf2 activator drugs61,62. Lack of Nrf2 activity

was reported to increase carcinogenesis in Nrf2 knockout mice and increased Nrf2 activity

decrease carcinogenesis61.  This  paradox  of  the  dual  role  of  Nrf2  in  cancer  is  not  fully

understood, but one suggestion is that increased ROS is important in the early development of

tumors and therefore activation of Nrf2 prevents tumorigenesis61. During further development

of cancer, adaptations and mutations creates a new steady state for ROS levels: ROS levels

are increased, and constitutive activation of Nrf2 regulated antioxidant systems prevents the

ROS from accumulating at high levels52,61. Nrf2 might also have an effect on cancer

metabolism or in promoting metastasis formation61. Increased Nrf2 activity could also be a

response to other oncogenic changes in tumors or the role of Nrf2 might be highly cancer type

or even subtype specific.

From a systems biology point of view, the Nrf2 regulatory network might have many steady

states, which could explain the controversial roles. In normal conditions, Nrf2 regulatory

network is activated only a short period at a time and mainly direct Nrf2 targets with ideal

ARE binding sites are induced. If Nrf2 is constitutively activated, also weaker ARE elements

can be bound by Nrf2, as more Nrf2 is accumulating to the nucleus. In addition, indirect Nrf2

targets will get regulated. Therefore, the Nrf2 regulatory network will expand and could

obtain new steady states with cancer promoting effects. In addition, many Nrf2 regulatory

network steady states might have a role in supporting normal cell proliferation and

differentiation.



Activation or inhibition of Nrf2 has a high potential in the cancer treatment and more

information about Nrf2 activity in cancer must be obtained to choose best suitable treatments

for patients. In this project Nrf2 overactive cancers are predicted in CCLE and TCGA data

sets using supervised and unsupervised machine learning enrichment analyses.

ref60

Figure 8. Constitutive activation of Nrf2 in cancer. A. Mutations in Keap1 or Nrf2 are common
in cancers and these mutations disrupt the Keap1-Nrf2 complex therefore causing constitutive Nrf2
activation in non-small cell lung cancers57. B. Keap1 promoter regions are hypermethylated in lung
and prostate cancers, which reduces Keap1 expression levels and therefore increases Nrf2 nuclear
translocation63. C. Decreased activity of fumarate hydratase causes the accumulation of fumarate, and
subsequently succination of Keap1 cysteines. Reduced levels of functional Keap1 increases Nrf2
translocation in the nucleus. This mechanism has been reported in papillary renal carcinoma64. D.
Increased amounts of disruptor proteins such as p21 and p62 in cancer can also disturb Nrf2-Keap1
interaction by competitive binding to Nrf2 or Keap165.



2.6.3 Nrf2 in metabolism

The  main  role  of  Nrf2  is  the  activation  of  the  redox  response  pathway,  but  Nrf2  has  been

shown to regulate other metabolic pathways as well. Nrf2 directs glucose and glutamine to

anabolic pathways and promotes the PPP activation, as noted before. However, there may be

other pathways relevant in the context of disease, which further analysis of metabolic gene

expression could reveal. Nrf2 deficient (Nrf2 null) mice fed with high fat diets have been used

to investigate the effect of Nrf2 in metabolism by our group and others. Nrf2 null mice have

decreased levels of antioxidant genes, but also altered lipid metabolism. Specifically, Nrf2

was shown to inhibit lipid accumulation and lipid synthesis in mouse liver66,67. Proteomics

analysis confirmed that Nrf2 regulates the synthesis and metabolism of fatty acids and other

lipids in the liver, which affects the cellular lipid disposition68. As Nrf2 has been shown to be

involved in lipid metabolism, Nrf2 has been investigated in mouse adipose tissue and shown

to inhibit its development, supporting an important role in the maintenance of glucose and

lipid homeostasis69. On the contrary, adipogenesis stimulatory roles have also been reported70.

Based on Nrf2 ChIP-sequencing in human lymphoblast data, Nrf2 was proposed to regulate

adipogenesis via regulating RXRa expression48. In mouse 3T3L1 cells, Nrf2 activation

inhibited adipogenesis by downregulating RXRa48. Interestingly, RXRa has also been reported

to inhibit ARE-driven gene expression by directly binding to Nrf271. Therefore Nrf2-RXRa

may form a regulatory loop in lipid metabolic reactions. Also, one key heterodimeric partner

TF of RXR in adipocytes, PPARg, has been suggested to interact with Nrf250, which could

explain the complex role of Nrf2 in the regulation of metabolism in various cell types.

As described above, most of the studies focusing on metabolic effects have used Nrf2 null

mice on a high fat diet or cancer cells. As Nrf2 has been shown to be involved in numerous

pathways, many levels of metabolic pathways could be affected in the Nrf2 deficient mice.

The mice might also have adapted to regulate oxidative stress by compensatory pathways,

which could affect metabolic processes. In cancer cells, the Nrf2 regulatory network might be

different from nonmalignant cells due to the high constitutive expression of Nrf2, as well as

other genomic alterations. More studies must also be conducted in human primary cells to

understand Nrf2 role in metabolism during basal, induced and constitutively active states.

Metabolic reactions are well defined and therefore it is possible to model the metabolic fluxes

using systems biology, which might reveal disease promoting metabolic changes. In this



project, Nrf2 regulated pathways are identified from datasets collected from primary human

umbilical vein endothelial cells (HUVECs) using enrichment analysis tools.

3 AIMS OF THE STUDY

The general idea of this thesis and related future work is to discover diseases in which Nrf2

can play a central role, and how Nrf2 is involved in the pathogenesis of those diseases. The

effect of Nrf2 in disease can depend on cell or tissue type. However, Nrf2-dependent

protection is crucial in all cell types and therefore the pathway should be ubiquitous. Our

hypothesis is that Nrf2 signature can be identified from Nrf2-activated samples and in cancer

cells overexpressing Nrf2. Our second hypothesis is that Nrf2 regulates metabolic pathways.

The  two  aims  that  are  investigated  in  the  experimental  part  of  this  thesis  to  verify  these

hypotheses are:

Aim1: Prediction of constitutively active Nrf2 in cancers using an Nrf2 signature

Aim2: Identification of Nrf2-regulated metabolic pathways in normal human

endothelial cells by pathway analysis

In the first aim, the computational model used aims to capture from the data a subset of

expression profiles typical of the constitutive activation of Nrf2 (hypothesized to occur in

cancer) using overexpression and activation by OA-NO2 data in HUVECs. This regulatory

signature is subsequently tested in many different cancer types: if Nrf2 expression profiles are

similar to the Nrf2 activation signature, the particular cancer cell type is likely to

constitutively express Nrf2. In the second aim, perturbations of the Nrf2 regulatory network

are studied using many different conditions, as samples are collected from activation,

overexpression and knockdown experiments in HUVECs. Each of these experiments provides

evidence for Nrf2-dependency of gene expression. Combined enrichment analysis is used to

reveal Nrf2-dependency at the pathway level. Consequently, Nrf2-regulated pathways are

further explored to identify putative direct targets by examining next generation sequencing

data sets to reveal candidate regulatory regions and ARE motifs.



4 MATERIALS AND METHODS

4.1 Genome-wide gene expression data

Microarray data from Kansanen et al. 72 and Jyrkkänen et al. (unpublished data) were used in

these analyses (Table 1.). These represent studies were Nrf2 was activated transiently by

activating ligands (OA-NO2) or constitutively using adenoviral overexpression, or silenced

using siRNAs. Microarray samples were chosen according to the experimental design of the

enrichment analysis, described in the corresponding section. Data could be used to assess the

activating ligand effects: by comparing OA and OA-NO2 samples, ligand dependence could

be assessed as OA does not activate Nrf2. Also untreated samples could be compared to OA

to study its effect. As siRNA mediated knockdown of Nrf2 is not 100 % efficient, the siNrf2

samples may show Nrf2-dependent gene expression by OA-NO2 but at reduced levels.

Table 1. Definitions of the HUVEC samples used in the enrichment analyses

Platform type Experiment transfection/
transduction

timepoint timepoint
ligand

treatment

Microarray
*

Affymetrix
hgu133Plus2

Nrf2
Overexpression

adCMV
(ctrl)

36 h, 72 h - -

adNrf2 36 h, 72 h - -

Microarray
**

affymetrix
hgu133Plus2

Nrf2
knockdown

siCTRL 24 h 8h untreated,
OA-NO2,
OA

siNrf2 24 h 8h untreated,
OA-NO2,
OA

All microarray samples were triplicates. Oleic acid (OA) does not activate Nrf2, nitro-oleic acid (OA-
NO2) activates Nrf2, and methanol was control for OA-NO2.In adNrf2, Nrf2 is overexpressed by
adenoviral transduction. adCMV does not contain genes, but was used as a control for the transduction
effects. In siNrf2, Nrf2 is silenced by a specific siRNA.

*     Data from Jyrkkänen et al. unpublished

**   Data from Kansanen et al. 72



4.1.1 Microarray data analysis

Raw data files were normalized using GC-RMA. R 2.14 and Bioconductor were used for data

processing and quality control. Limma package was used for statistical analysis. Two-tailed t-

test was used to compare specific samples to respective control samples. The Benjamini-

Hochberg FDR method was used for adjusting P-values for multiple comparisons.

4.1.2 RNA and GRO-sequencing visualization tracks

HUVECs were treated with OA-NO2 or solvent (metOH). The time point for GRO-seq was

2h and 12h and for RNA-seq 8h - data from Kansanen and Kaikkonen et al. unpublished.

RNA-seq measures the mature transcript levels for coding RNAs mainly in the cytosol.

Mature transcripts are processed and transported to the cytosol and therefore 8h after the OA-

NO2 activation the mature transcripts can be measured. GRO-seq measures the primary

transcript levels in the nucleus. Therefore primary transcripts are measured after 2h and 12h to

detect changes in the primary transcript expression and seeing the return to basal state. GRO-

seq  data can also reveal short non-coding enhancer RNA (eRNA) sites that can be used in

detecting active enhancer sites73.   eRNAs  are  transcribed  using  DNA  as  a  template  on

enhancer regions. Their function is not fully characterized.

RNA- and GRO-seq data libraries were created and Illumina Genome-analyser II was used for

the sequencing. The data was analyzed according to Wang et. al73.  Briefly,  base calling was

done to identify reads and reads were mapped to reference sequence (hg19) using the Bowtie

tool. Read counts were normalized to the total number of mapped reads for each sample and

counts per genomic position were quantified to produce a signal track across each

chromosome. RNA, GRO, ChIP, FAIRE and DNAse sequencing data are used in this

Master’s Thesis for visualization of activity of gene regulatory regions. More information

about the methods can be found in 73–76, respectively.



4.1.3 CCLE and TCGA data sets

917 human cancer cell lines included in Broad Novartis Cancer Cell Line Encyclopedia

(CCLE, GEO ID: GSE36133, http://www.ncbi.nlm.nih.gov/gds) were analyzed to identify

cancer cell lines with increased Nrf2 activity. Raw data files were normalized using GC-RMA

in R.

The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga) data for 604 glioma

patient samples were used to identify glioma samples with overactive Nrf2. Data downloaded

was already processed to level 3 data, which means that data has been normalized and that it

is ready to use.

4.2 Nrf2 signature prediction in CCLE

4.2.1 SIGNATURE analysis

An accurate indicator of Nrf2 activity had to be developed to predict Nrf2 activity in CCLE

samples. Nrf2 activation creates a characteristic signature in the genes that are directly or

indirectly regulated by Nrf2. SIGNATURE software available in genepattern

(https://genepattern.genome.duke.edu)2 and its module “createsignature” was used to create

the Nrf2 signature model by using microarray data from our previous studies (Table 1).

Signature is used to distinguish two biological states from each other by a supervised machine

learning algorithm, so two training sets was created from the microarray experiments: samples

were Nrf2 pathway is active and where it is inactive. Active training set contained triplicates

of adNrf2 overexpression data (36h, 72h) and siCTRL data with OA-NO2 treatment for 8 h,

which activates Nrf2. Inactive training set contained triplicates of adCMV samples and

siCTRL data with no treatment and OA treatment, which has no effect on Nrf2 activity (Table

1.). Pathway had to be active or inactive in all representative samples; therefore Nrf2

knockdown samples were not used in the training sets, as knockdown is rarely 100 % and off

target effects are common.

http://www.ncbi.nlm.nih.gov/gds
https://tcga-data.nci.nih.gov/tcga
https://genepattern.genome.duke.edu/


Probability of active Nrf2 signature was computed in each CCLE cell lines (test set). The

training sets and two metagenes were used to create the Nrf2 signature model, which was set

to contain a total of 100 genes. These parameters simplify the supervised learning model and

are used in SVD dimension reduction to prevent overfitting of the data.  Quantile and Shift-

Scale normalization was also applied to the microarray data to successfully integrate training

data with the CCLE data. 1000 runs were used for burn-in and 5000 samples were collected

for the model. Markov Chain Monte Carlo (MCMC) algorithm used in SIGNATURE uses

burn-in period to discard initial runs that might not be stationary before collecting specified

number of samples, because the Markov Chain is not stabilized in the early runs. Other

parameters were set to default.

4.2.2 Definition of the Bayesian probit regression model in SIGNATURE

A Bayesian model specifies a prior probability for some event and updates the model when

relevant evidence is given to provide new posterior probability for the event. Bayesian probit

regression model is a statistical method that is suitable for high dimensional gene expression

data. In supervised machine learning the probit model estimates the likelihood of the sample

to be in one of the binary categories, such as Nrf2 active and Nrf2 inactive categories. There

are many steps to infer this information. Posterior probability is conditional on the evidence

obtained, such as gene expression profile of the sample. The idea is to first learn about the

training data by inferring the regression parameters in each training sample. As learning about

the data is done in predefined binary conditions, the regression parameters are constrained and

easier to infer. Bayesian context and SVD provides additional constraints to help learning

about the data. After genes in the training set are fitted to binary conditions, Markov Chain

Monte  Carlo  (MCMC)  with  Gibbs  sampling  algorithm  is  used  to  simulate  the  posterior

distribution of the test set regression parameters from exact posterior distribution of the

regression parameters in the training set. Each sampling step simulates draws that are

approximately  from  a  posterior  distribution  and  these  draws  can  be  used  to  compute  the

likelihood  of  sample  to  belong  to  either  of  the  binary  groups  and  also  their  95  %  credible

intervals. These probabilities can be interpreted as the probability of an active signature

pathway in the corresponding sample. Bayesian probit regression model, SVD and standard



iterative MCMC has been used similarly as in SIGNATURE, for more information about the

algorithms refer to references34,77–79.

Bayesian probit regression model:

P(Y = 1| ) ( )

Bayesian probit regression model can be used to predict the posterior probability of a random
event using prior probabilities. Posterior probability is conditional on the evidence obtained.
Therefore regression parameters  must be estimated from the evidence data prior probabilities to
train the model to compute the posterior probabilities.

Training set contains expression values for n samples and p genes in a matrix X. Sample i in X is
then a vector of expression values (X1,i…Xp,i). It is assumed that the samples can be divided into
binary classes, such as signature on/off. This is a vector (Y1…Yn), where Yi = 1 if i:th sample
belongs to class 1 and if not sample belongs to class 0.  The entire set of p genes is included as the
predictor variables for the sample class. There is a regression parameter for each gene,  =

1… p).

Cumulative distribution function in probit regression model is a sigmoidal function with values
ranging from 0 to 1. It describes the probability that random variable that is normally distributed
will be found at a value less than or equal to value . Therefore higher values for X`  results in
a higher posterior probability for P(Yi=1).

Bayesian fitting of a standard binary probit regression model is done for the samples in the
training set:

(1)

Y Binary class predictor value

( = | ) Is the posterior probability that sample i belongs
to class 1, when parameters  are given as evidence

 cumulative distribution function of normal distribution

Xi is vector of gene expression levels for i:th sample n

 vector of p unknown regression parameters



SVD reduction of dimensionality and estimating posterior probabilities

P(Y = 1| ) = (F´DA´ ) (F´ )

There are several thousand dimensions as n << p, which makes the estimation of the regression
parameters  unreliable. Therefore, a special projection is done and genes in the gene sets are
converted to eigenvectors (“metagenes”) using linear algebra factorization SVD and first
eigenvector with highest eigenvalue is used to define the whole gene set activity level in the
sample. Further  details about SVD are presented in references 33,34.

X=ADF (2)

X is included in the regression model P(Y = 1| ) = ( ):

(3)

Regressions on genes are reduced to regression on “metagenes” and estimation of regression
parameters  is less problematic. SVD produces a special projection where sample descriptors
are orthogonal to each other, which makes the computationally efficient use of standard MCMC
possible. MCMC is used in test set to compute approximation of the posterior probability using
draws from the exact posterior probability of .

A is p x k (orthonormal matrix)

D is k x k (diagonal matrix

F is n x k (orthonormal square matrix)

Where k is the number of eigenvector and eigenvalues
to include in the model (typically 1~5)

Y Binary class predictor value

( = | ) Is the posterior probability that sample
i belongs to class 1, when parameters  are given as
evidence

 cumulative density function of normal distribution

=DA´  are the regression parameters that have
been reduced using SVD



4.3 GSVA enrichment analysis in CCLE and TCGA datasets

GSVA29 implementation available as an R/Bioconductor package was used to confirm the

SIGNATURE result in CCLE data set and also to predict overactive Nrf2 signature in glioma

patient samples from a TCGA data set. A gene list was created in SIGNATURE as described

earlier, using Pearson correlation to obtain genes with best distinction between phenotypes.

The same genes were chosen for the GSVA analysis to be able to compare the tools directly.

However, only the upregulated genes of the signature model (80 %) were selected for the

analysis. This separation needed to be done, because genes with expression levels in both

directions would cancel the effect of each other during enrichment calculations following the

main GSVA algorithm.

Random gene sets were permutated 1000 times to obtain the empirical null distribution.

Genes in the gene set were randomly selected, so that each gene could be added to the gene

set only once. Each gene set contained 80 genes because the same amount of genes was

originally included in the Nrf2 signature upregulated genes. The gene sets where then

analyzed in GSVA to derive the enrichment scores for each TCGA or CCLE samples.  A P-

value could simply be calculated by counting the number of higher than observed scores in

permutations and divided that number by the number of permutations.

R code:

# simulating empirical null distribution

eFDR=function(i){length(which(simulated_ES[,i]>observed_ES[1,i]))/length(simulated_ES
[,1])}

m=unlist(lapply(1:length(observed_ES[1,]), eFDR))

# normal distribution

normald=function(i){pnorm(observed_ES[1,i],mean=mean(observed_ES),sd=sd(as.numeric(obs
erved_ES)), lower.tail=F)}

m=unlist(lapply(1:length(observed_ES[1,]), normald))



4.3.1 Description of the algorithms in GSVA

Both SIGNATURE and GSVA tools are developed to predict classes in Q2 type questions.

However, GSVA is very different from SIGNATURE, as it is an unsupervised method and

uses a competitive test. GSVA transforms the gene by sample matrix to gene set by sample

matrix, without using prior knowledge about the phenotypes. GSVA can be used in large data

sets to compute the degree of coordinately up/downregulated gene sets within a sample.

Therefore if many Nrf2 signature genes are highly expressed in the sample, Nrf2 is likely to

be active.

Description of GSVA enrichment score calculation

Matrix X contains expression values for j samples and i genes. GSVA estimates a cumulative
distribution function for each gene expression profile Xi = (Xi1…Xin) by using a Gaussian kernel.
This sets expression profiles to a similar scale to be able to determine if gene i expression levels
are highly or lowly expressed in sample j compared to population distribution of all samples (4).
Therefore each gene gets values ranging from 0 to 1 based on population distribution (row-wise
operation). Cumulative distribution function can also be estimated for RNA-seq data, using a
discrete Poisson kernel29.

Gaussian kernel function:

(4)

 ref29

Sample-wise operation is done to expression level statistics F (Xij) (denoted now as Zij). Zij is
converted to ranks Z(i)j and normalized symmetrically around zero (5). The purpose of this step is
to up-weight the two tails of the ranked distribution to weight the high or low rank genes during
enrichment score calculation.

(5)

(Xij) is the expression level statistics for gene i
in the sample population distribution

i genes, j samples

 is gene expression profile for gene i

= /4 is the resolution of the kernel
estimation for gene i

 is sample standard deviation of the i-th gene

is the ranked and normalized expression
level statistics for the sample

( ) is rank of gene expression level statistics
for each sample

p is number of genes in the dataset

rij = |p/2 Zij|



Weighted Kolmogorov-Smirnov (KS) random walk statistics are commonly used for enrichment
score computation8,18,20. During the enrichment score computation, the sample l gene expression
level statistics  are converted to the Weighted KS random walk statistics (6). These operations
describe the fraction (or a distribution) of high or low ranked genes in a gene set in the
corresponding sample.

(6) ref29

KS statistics can be turned into GSVA scores (enrichment statistics) by two methods: similar to
GSEA by the maximum deviation from zero method or using the GSVA normalized enrichment
statistics (figure S1). Purpose of this step is to evaluate, whether the sample is negatively or
positively correlated with the gene set. The enrichment statistics also produce distribution of
scores that can be used to compare gene set enrichment in the sample relative to all samples and
to determine the significance cutoff for the results.

Maximum deviation of the random walk from zero for the j-th sample and k-th gene set:

 (7) ref29

Or GSVA score (default):

(8) ref29

 score, maximum deviation from
zero method

( ) is enrichment score

/  are largest positive and
negative random walk deviations
from zero for sample j and gene set
k

( ) is enrichment score

 is ranked and normalized expression
level statistics

  is a parameter describing the random
walk weight of the tail

k is the k-th gene set

I(g(i) k) is the indicator function (i
gene belong to gene set k)

k|  is the number of genes in k-th gene
set

p is number of genes in the dataset

l is number of samples in the dataset



4.4 Stouffer´s method and Hypergeometric test for metabolic pathway analysis

Nrf2 regulated metabolic pathways were identified by performing hypergeometric tests on the

human metabolic reconstruction (Recon1)80 metabolic pathways. First, to obtain lists of

differentially expressed genes, sample-wise T-tests were done to microarray data. Microarray

samples that were compared were: siNrf2 -siCTRL untreated, siNrf2-siCTRL OA, siNrf2-

siCTRL OA-NO2, siNrf2-siNrf2 OA-NO2 - OA, siCTRL-siCTRL OA-NO2 - OA, adNrf2-

adCMV  36h,  adNrf2-adCMV  72h  (Table  1).  Each  of  these  experiments  tests  the  null

hypothesis that gene expression is not dependent on Nrf2-perturbation (alternative hypothesis

being that Nrf2-dependence is observed). P-values obtained from T-tests were adjusted for

multiple testing and subsequently combined using Stouffers´s method. P-values were

combined, because it is desirable to neglect the direction of differential expression to identify

pathways  with  both  up-  and  downregulated  genes,  as  Nrf2  perturbations  (such  as  Nrf2

knockdown and Nrf2 overexpression) will have different effects on gene expression levels.

Genes that were significantly differentially expressed, but not consistently expressed in

different perturbations, were discarded (for example: gene is upregulated during Nrf2

activation but downregulated during overexpression). The Stouffer´s test function was

included in the R/Bioconductor MADAM package. P-value of 0.05 was chosen as a cutoff to

define the list of interesting genes for a hypergeometric test.

Stouffer’s method

=        (9)

Z is Z-score

 is   1(1 pi), where  is the cumulative
density function of normal distribution

 is P-value for the i:th hypothesis test



Hypergeometric test was also done to all samples individually to test for overrepresentation of

pathway terms. In addition, tests were done to separate lists of upregulated and downregulated

genes from individual samples to determine if there is a pattern in the enriched pathways

based on the experimental conditions, such as knockdown and overexpression and ligand

effects on the pathways. Metabolic pathways were obtained from Recon180, which contains a

total of 9812 genes. Hypergeometric test was done to all Recon1 pathways containing

differentially expressed genes. Gene set minimum size was set to 4 (unique gene symbols,

contains alternative transcripts).

A is the number of successes

B is the number of successes in the
population

C is the size of the population

D is the number of draws

Hypergeometric test:

Pval(X = A) =        (10)

Example of Hypergeometric test for cholesterol metabolism pathway enrichment:

R code:

A=length(grep("Glutathione Metabolism", Total.met.genes$pathway, fixed=T)) # 14

B=length(grep("Glutathione Metabolism", All.met.genes$pathway, fixed=T)) # 29

C=length(All.met.genes$pathway) # 5119

D=length(Total.met.genes$pathway) # 1193

phyper(A-1, B, C-B, D, lower.tail=F) # 0.002768845



4.5 GSEA for metabolic pathway analysis

GSEA is commonly used for enrichment analysis. Java based GSEA-P program from

http://www.broadinstitute.org/gsea/downloads.jsp was used for the enrichment analysis.

Significance was estimated using 1000 permutations of the sample labels.

GSEA requires distinguishable phenotype for the analysis. In addition, it requires more than 7

samples per phenotype if sample permutation is done instead of gene set permutation. The

same samples that were used in SIGNATURE analysis were used for the analysis: siCTRL

untreated,  siCTRL OA, adCMV 36h, adCMV 72h for phenotype 0 and adNrf2 36h, adNrf2

72h, siCTRL OA-NO2 for phenotype 1 (Table 1.). Phenotype 1 was compared to phenotype

0, specified by the custom class file. Custom gene sets were created from Recon1 metabolic

pathways. Gene set minimum size was set to 4, as many of the Recon1 gene sets are smaller

than the default parameter 15. All the other parameters were set to default.

For more information about running GSEA and input file generation refer to:

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page

http://www.broadinstitute.org/gsea/downloads.jsp
http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page


5 RESULTS

5.1 Nrf2 hyperactive cell lines in CCLE
Cancer cell lines with constitutive Nrf2 were identified using the SIGNATURE software:

Characteristic Nrf2 signature was created in predefined training sets where Nrf2 redox

pathway is on/off. Nrf2 signature was used to classify cancer cell lines based on Nrf2 activity

using  CCLE  dataset.  Furthermore  SIGNATURE  results  were  confirmed  using  GSVA.  In

GSVA samples are not classified based on predefined categories, and it provides relative

enrichment between the samples.

From a total of 917 human cancer cell lines in CCLE, 98 (ca. 11%) had over 95 % probability

in SIGNATURE results to have constitutive Nrf2 activity (Table 2). 77 (ca. 80 %) of the cell

lines predicted by SIGNATURE were also discovered by GSVA (eFDR 0.01) (Figure 8.).

Lung cancers had frequently overactive Nrf2 status based on both analysis methods (Table 1).

This could be expected as it has been previously reported that mutations in Keap1 is common

in non-small cell lung cancer cell line A-549, which was among the top cell lines with

overactive Nrf2. These mutations disrupt the Keap1-Nrf2 complex ubiquitination process and

therefore cause constitutive Nrf2 activation57.

GSVA  was  able  to  detect  139  cell  lines  with  overactive  Nrf2  that  did  not  pass  the  95  %

threshold in the SIGNATURE analysis (Table 2.). These cell lines could mostly be included

in the same cancer type categories as with SIGNATURE, excluding 33 cell lines that formed

5 new categories. Most interesting new category in GSVA results was malignant melanoma

(25 cell  lines),  which was predicted to have constitutive Nrf2 activity in 43 % of the CCLE

melanoma cell lines. The percentage of overactive Nrf2 cell lines from cell lines representing

the same cancer type was highest for oesophagus carcinoma, kidney carcinoma and glioma

(Table 2.).

There were five novel cancer types with overactive Nrf2 status: urinary tract carcinoma,

glioma, mesothelioma, melanoma, and thyroid carcinoma (Table 1). Most interesting of these

cell lines were gliomas (hyperactive in 10 cell lines, 21% of gliomas), as none of the glioma

cell lines has previously been reported to have constitutive Nrf2 activity. GSVA predicted

even more glioma cell lines with constitutive Nrf2 activity (28 cell lines, 60% of gliomas),

including the ones already found by the SIGNATURE.



Table 2. Counts and percentages of cancer types in CCLE with overactive Nrf2
Cell type counts predicted to have overactive Nrf2 status according to SIGNATURE
(probability > 95 %) and GSVA (FDR 0.01) in the CCLE data set. Cancer categories in
bold include cancer cell lines that have not been previously characterized to have
overactive Nrf2. In addition 43 % of melanoma samples had overactive Nrf2 status
according to GSVA.

Cancer site Cancer Type Total count in 98

& 216 Nrf2

overactive CCLE

cell lines

Percentage in the

same cancer types

in CCLE (%)

SIGNA

TURE

GSVA  SIGNA

TURE

GSVA

lung carcinoma 42 47 25.5 28.5

oesophagus carcinoma 11 11 44 44

central_nervous_system glioma 10 28 21.3 59.6

liver carcinoma 7 9 26.9 34.6

kidney carcinoma 5 13 25 65

breast carcinoma 5 18 8.9 32.1

upper_aerodigestive_tract carcinoma 4 11 13.8 37.9

ovary carcinoma 3 9 6.8 20.5

stomach carcinoma 2 4 5.9 11.8

pleura mesothelioma 2 5 22.2 55.6

large_intestine carcinoma 2 5 3.6 9.1

urinary_tract carcinoma 1 4 4.5 18.2

thyroid carcinoma 1 5 9.1 45.5

pancreas carcinoma 1 3 2.3 7

bone giant_cell_tumour 1 10 4 40

biliary_tract carcinoma 1 1 14.3 14.3



A.          B.

Figure 8. A. Scatter plot of correlation between GSVA and SIGNATURE scores. Ranked
SIGNATURE probabilities for Nrf2 overactive cell lines are plotted on the Y-axis and corresponding
ranked GSVA enrichment scores are plotted on the X-axis. Blue dots are CCLE cell lines with >95 %
probability based on the SIGNATURE analysis and red dots represent samples with GSVA scores P-
values <0.01. Purple dots are the overlapping CCLE cell lines high ranked by both of the two tools. B.
Venn diagram of SIGNATURE and GSVA ranks, showing numbers of overlapping cell lines between
tools on > 95 % and <0.01 P-value cutoffs.

5.2 Hyperactive Nrf2 glioma samples in TCGA

As many of the novel Nrf2 expressing cancer cell lines were gliomas, GSVA was done also

for  glioma  patient  samples  collected  in  TCGA.  SIGNATURE  was  not  used  for  analyzing

TCGA data, because of technical reasons (SIGNATURE can´t be directly used with Agilent

microarray and RNA-seq platforms).

From a total of 604 glioblastoma multiforme samples, 60 (ca. 10 %) were predicted to have an

Nrf2 overactive status (FDR 0.05) (Figure 9). Compared to the fraction of positive glioma cell

lines, GSVA predicted a higher percentage of cell lines with overactive Nrf2 than observed in



patient samples. Nevertheless, overactive Nrf2 signature was confirmed also in a 10 %

proportion of clinical patient samples.

Figure 9. Prediction of Nrf2 overactivity in CCLE and TGCA data using the SIGNATURE and
GSVA tools. A, A heatmap was created from the Nrf2 signature scores; warm colors (red and yellow)
signify high expression and cool colors (shades of blue), low expression. The signature model training
sets consist of 12 microarray samples with inactive and 10 samples with active Nrf2 status, which
correspond to the columns of the heatmap in respective order. The expression profile of 80
upregulated and 20 downregulated genes relative to inactive samples are shown in rows. B, Cancer
cell lines available from the CCLE dataset are shown ranked based on the probability of an active Nrf2
target gene signature. The plot shows individual samples on the X-axis and the probabilities and their
confidence intervals on the Y-axis. Inactive training sets are marked as blue dots and active training
sets as red dots. From the total of 917 samples, 98 (ca. 11%) had active Nrf2 signature with over 95 %
probability. C, An independent analysis using GSVA was done to verify the SIGNATURE tool result.
Cell lines where sorted as in the SIGNATURE plot and the corresponding GSVA scores are shown as
a heatmap, where red corresponds to a higher score and blue represents lower score. From the total of
917 samples, 216 (ca. 24%) had active Nrf2 signature with FDR 0.01. D, GSVA analysis for the Nrf2
signature was done in glioma clinical samples in TCGA. GSVA scores were sorted from low to high
and plotted in heatmap. From the total of 604 samples, 60 (ca. 10%) had Nrf2 active signature with
FDR 0.05.



5.3 Metabolic pathway analysis

Nrf2 activity has a role in cancer metabolism as Nrf2 has been reported to regulate PPP in

addition to the antioxidant response pathway. In normal cells, Nrf2 has been shown to

regulate lipid metabolism in the liver and in adipocytes. Metabolic changes are common in

cancer and hyperactive Nrf2 could promote metabolic reprogramming via changes in steady

states. Moreover, other Nrf2 relevant diseases could be affected by Nrf2 regulated metabolic

pathways. The first step of the pathway analysis was to identify the pathways that are

enriched during Nrf2 pathway activation. The second step was to evaluate the reliability of the

results and determine which pathways are consistently regulated by Nrf2 in different

perturbations of Nrf2 status (activation, knockdown, and overexpression) to detect pathways

that are primarily Nrf2 regulated. In the third step we tried to elucidate whether the

consistently regulated and top pathways could be directly regulated by Nrf2. Recon1

metabolic pathway reconstruction was used to create the gene sets and to visualize selected

metabolic network.

5.3.1  Identifying the metabolic pathways with Nrf2 dependent regulation

In  the  first  step  GSEA  analysis  was  performed  to  the  same  samples  used  in  the  signature

creation (Nrf2 ligand activation, overexpression and respective controls, Table 1.) to provide

two clear phenotypes for the analysis and enough samples for both phenotypes to do sample

permutation for significance assessment. ROS detoxification was not included in the

significant pathways according to the GSEA analysis (Table 3.).  However, glutathione

metabolism got high enrichment scores as the pathway contains many known target genes of

Nrf2,  such  as  glutamate-cysteine  ligases  (GCLC  and  GCLM)57. Also heme degradation

pathway contains  known target  of  Nrf2,  HMOX1.  Other  enriched  pathways  were  related  to

transport, amino acid metabolism and lipid metabolism. We wanted to enrich metabolic

pathways that were Nrf2 regulated and for GSEA analysis we were able to use only a limited

amount  of  data.  Therefore  a  second  pathway  analysis  was  done  to  extend  the  analysis  to  a

wider range of Nrf2 perturbations by combining P-values from many different tests.



Multiple metabolic pathways were enriched using the hypergeometric test for genes with

combined P-value less than 0.01 (Figure 10). Nrf2 related cytoprotective pathways were

enriched, including ROS detoxification, and glutathione metabolism. The ROS detoxification

has higher P-value than many other pathways that are not directly related to Nrf2 activation.

Many fatty and amino acid metabolism related anabolic pathways were enriched. In addition,

the previously reported Nrf2 regulated PPP was enriched. There was a good correlation with

the  GSEA  tool,  as  7/11  pathways  were  also  found  in  Hypergeometric  test:  lysosomal

transport, glutathione metabolism, glutamate metabolism, aminosugar metabolism, tyrosine

metabolism, ascorbate and aldarate metabolism, and steroid metabolism. Interestingly also

extracellular transport and cholesterol metabolism pathways were enriched.

Table 3. GSEA analysis results for significant metabolic pathways. Enriched pathways from GSEA
using the significance cutoff for FDR Q-value 0.25 as suggested by the user guide.

Name Size Es Nom P-

Val

Fdr Q-

Val

Rank At

Max

Transport, Lysosomal 24 0.635 0.002 0.069 2820

Glutathione Metabolism
13 0.593 0.024 0.115 868

Aminosugar Metabolism
23 0.529 0.041 0.25 1365

Glutamate Metabolism
14 0.643 0.031 0.242 3034

Tyrosine Metabolism
40 0.49 0.06 0.244 262

Heme Degradation
4 0.82 0.051 0.206 563

Glycine, Serine, And Threonine Metabolism 23 0.506 0.045 0.236 2131

Fatty Acid Activation 8 0.656 0.103 0.224 3081

Glycerophospholipid Metabolism 60 0.409 0.073 0.201 1907

Ascorbate And Aldarate Metabolism 13 0.467 0.093 0.236 1607

Steroid Metabolism 31 0.477 0.037 0.24 518

In the second step pathways that were enriched in combined P-values and Hypergeometric

test and GSEA were further analyzed to select interesting pathways for Recon1 network



analysis.  Hypergeometric  test  was  performed  also  for  individual  comparisons  and  up-  or

downregulated genes (Figure 10.). If the pathway that was enriched in combined P-value test

is not enriched in any individual tests, result might not be reliable, because extremely low P-

values for a gene in a single Nrf2 perturbation could make the combined P-value for the gene

significant. In addition there are many perturbations and if multiple genes will get significant

P-value based on a single test, the pathway will get enriched. These individual tests could be

used together with GSEA and Hypergeometric test results to evaluate consistency of the

enriched pathways in different perturbations and to get an idea whether the pathway is up- or

downregulated in each perturbation. In addition the individual tests could be used to evaluate

whether  the  pathways  are  likely  to  be  regulated  by  Nrf2  or  if  they  are  enriched  due  to

expression changes caused by off-target effects, ligand effects, overactivated with viruses or

potentially be regulated by another TF (such as only secondary response in overexpression).

ROS detoxification is consistent in the individual comparisons: The pathway is enriched in

overexpression tests and also in upregulated genes in Nrf2 activator and overexpression tests.

(Figure 10). PPP is enriched in upregulated genes during overexpression and downregulated

when Nrf2 is reduced by siRNA. Lysosomal transport is enriched in upregulated genes with

ligand activation and overexpression, suggesting a direct regulation. Ascorbate and aldarate

metabolism and blood group biosynthesis pathways are enriched in many individual tests and

upregulated genes. On the other hand pathways such as cholesterol and steroid metabolism

and few other pathways are enriched only in overexpression tests. There are also many

pathways, including fatty acid oxidation and methionine metabolism that are not enriched in

any individual tests. These pathways could be enriched because of combining P-values:

Numerous different genes might be significantly differentially expressed in one test, but not in

the other test and therefore combining the P-values provides more significantly differentially

expressed genes for the enrichment analysis.

After inspecting different analysis results, Transport Lysosomal, Glutamate metabolism,

Ascorbate and Aldarate Metabolism pathways were selected for further analysis as a

potentially directly Nrf2 regulated pathways. Cholesterol Metabolism and steroid metabolism

pathways were studied as potential indirectly regulated pathways.



Figure 10. Metabolic pathway analysis results for combined P-value (FDR
0.01) and enrichment in different test cases. Red bars reveal pathways that had
Hypergeometric test P-value less than 0.05. Pathways are ranked based on Hypergeometric test P-
value scores and the test was done to genes with combined P-value, less than 0.01. P-values were
combined from many different tests using the Stouffers method. Tests: siNrf2 -siCTRL untreated (1),
siNrf2-siCTRL OA (2), siNrf2-siCTRL OA-NO2 (3), siNrf2-siNrf2 OA-NO2 - OA (4), siCTRL-
siCTRL OA-NO2 - OA (5), adNrf2-adCMV 36h (6), adNrf2-adCMV 72h (7) (Table 1).
Hypergeometric test was performed also for each test individually: Test A contains enrichment scores
for each individual test. For tests B and C genes in individual tests were further divided into
upregulated and downregulated genes respectively.



5.3.2 Data integration and network visualization on selected metabolic pathways

Glutathione pathway is enriched in GSEA (Table3.) and in Hypergeometric tests and is

predicted to be upregulated by Nrf2 (Figure 10.). Glutathione pathway gene expression levels

and Nrf2 dependence was verified using public and our own data. During Nrf2 activation and

overexpression GCLM is upregulated and Nrf2 knockdown (not complete) decrease the

expression (Figure 11.). However, adenoviral overexpression decreases the basal expression

in control samples (compared to siRNA samples), likely due to viral transduction. Glutathione

pathway gene GCLM is also Nrf2 regulated based on our RNA- GRO-seq data (Figure 11).

Also GCLC was directly regulated by Nrf2 (Nrf2 Chip-seq) and contained ARE motif in the

gene regulatory region (Figure 11.). Both of these genes were highly ranked in the list of most

significant genes with combined P-values. Therefore GCLM shows consistency in various

data: These results can be used as a benchmark results for studying other potential Nrf2

regulated pathways and genes.

In the third step, similar approaches as for GCLM identification was used in selected

pathways to detect directly Nrf2 regulated pathways and to study potential indirectly

regulated pathways. Enrichment analyses, barplots on gene expression values and RNA,

GRO-seq were used to discover consistently Nrf2 regulated pathways and to study pathway

gene regulation. Barplots are available for significant genes (combined P-value 0.01) for

Transport Lysosomal, Glutamate metabolism, Ascorbate and Aldarate Metabolism,

Cholesterol Metabolism and steroid metabolism pathways (Figure S3, Gene name

abbreviations Table S1).



Figure 11. Induction of GCLM by Nrf2. A. Bar plot of GCLM expression values in our microarray
data. OA-NO2 upregulates Nrf2 and OA has no effect. siNrf2 decreases the expression of GCLM and
adNrf2 increases the expression. Basal expression is decreased in adenoviral overexpression B.
H3K27ac and H3K4me1 data from ENCODE reveals active regulatory sites for GCLM in Human
umbilical vein endothelial cells (HUVEC). H3K4me3 marker reveals active transcription start sites.
Nrf2 ChIP-seq data available in GEO can reveal sites where Nrf2 is bound. In lymphoblast ChIP-seq
data Nrf2 has been activated using sulforaphane (sfn) and is compared to basal control samples (Nrf2
ChIP-seq vs.Ctrl ChIP-seq). In addition, lymphoblast Nrf2 data was used in MEME-ChIP81 tool to
predict Nrf2 binding sites using De novo detection of Nrf2 binding motifs. GCLM  is upregulated in
our GRO-seq and RNA-sequencing data, which can be detected by comparing Nrf2 activated nitroOA
samples in different time points to control samples (GRO metOH vs. GRO nitroOA and RNA metOH
vs. RNA nitroOA). When these different data tracks are visualized in Integrative Genomics Viewer
(IGV), Nrf2 binding site homologous motif can be found in the GCLM active enhancer site.
Furthermore, Nrf2 abundance in the enhancer is increased, as ChIP-seq peaks are larger in activated
state than in basal state. In addition Nrf2 activation is shown to upregulate GCLM, which can be
explained by an increase in Nrf2 abundance in GCLM regulatory site. FAIRE and DNAse-seq can
provide additional proof for active regulatory sites and TF occupancy on the chromatin.



Lysosomal pathway genes were consistently Nrf2 regulated by activation with OA-NO2 and

overexpression, but knockdown did not affect the expression levels, suggesting an indirect

effect (Figure S3). Also Nrf2 ARE elements and ChIP-seq peaks were not found in the gene

regulatory regions. Glutamate metabolism pathway contained evidence on direct Nrf2

regulation for GSR (Figure S2), which is also in top of combined P-value list (Table S5). No

other direct targets were identified from visualization tracks for glutamate pathway. Steroid

metabolism pathway gene AKR1C1 was highly induced during Nrf2 overexpression and

activation by OA-NO2. AKR1C1 contained  potential  ARE  element  in  the  gene  regulatory

region (Figure S2). ChIP-seq peaks were not found, as the gene is not expressed in

lymphoblast according to the epigenetic markers. There are eRNA signals showing the

increased enhancer activity during activation. Similarly, also ascorbate and aldarate

metabolism pathway where highly induced by activation and overexpression, but knockdown

effects were low or caused inconsistent regulation compared to control. In addition genes did

not contain regulatory elements for Nrf2. ALDH2 and ALDH3A2 got high combined P-values

and the genes where involved in many different pathways (Table S5). As a summary, gene

expression levels where verified to be consistent with enrichment analysis results. Potential

direct targets were identified for glutamate and steroid metabolism pathways, but we were not

able to exclude possibility of indirect regulation for other selected pathways.

Cholesterol pathway contains in total of 28 genes and their alternative transcripts. Statistically

significant genes after in our list of combined P-values (P<0.01) included MSMO1, SOAT1,

SQLE, TM7SF2, FDPS, DHCR24, DHCR7, and LSS. To better understand the regulatory

effect Nrf2 has on the cholesterol pathway a metabolic network was created using Recon1

reactions and metabolites (Figure 12). Full list of metabolite and gene names and Recon1

reactions can be found in Table S2-S4. Pathway contains the metabolites, enzymes and their

expression levels and metabolic reactions that are mainly related to cholesterol synthesis and

processing. Interestingly reactions and enzymes in ER (reaction[r]) are downregulated during

OA-NO2 activation; including the rate limiting enzymes DHCR24 and DHCR7 (Figure 12).

Highly similar results were obtained also with RNA/GRO-seq data, when OA-NO2 activated

samples were compared to metOH samples (Figure S4). The downregulation could be

detected in the primary transcript expression after 2h of Nrf2 activation, suggesting a fast TF

(possibly Nrf2) mediated regulation. However, ChIP-seq peaks and promising ARE sites were

not found in the gene regulatory regions and therefore we could not exclude indirect

regulation. Also Nrf2 overexpression results were not consistent with redox response



activation with OA-NO2, as many genes where upregulated by overexpression. Additional

proof of indirect regulation was that siNrf2 effect was not clear in most cases, only FDPS was

upregulated when Nrf2 was silenced, but other genes were downregulated or unchanged by

siNrf2 when compared to siCtrl.





Figure 12. Visualization of the cholesterol pathway and gene expression levels. Cholesterol
metabolism network was visualized based on Recon180 metabolic network. Yellow rectangular nodes
represent metabolites and orange diamond nodes represent reactions. Metabolite[r][m][c][e], r –
endoplasmic reticulum, m – mitochondria, c – cytosol, e - extracellular. Enzymes are annotated with
the reaction nodes and if the same enzyme catalyzes many reactions, also reaction names are added.
Red edges represents cholesterol synthesis pathway and black edges additional cholesterol synthesis
related pathways. Thick arrows indicate the start and end of cholesterol synthesis pathway.
Adjustments needed to be made for the original network: ACAT2, CYP4F8 and GGPS1related
pathways were removed as they were not connected to the main cholesterol synthesis pathway. Also
reaction P450SCC1m was removed as no enzymes were annotated with the reaction. Genes with no
expression values are marked as grey filled boxes with gene symbols inside. HMGCS2, IDI2, CYP4F8
did not have H3K4me3 active TSS markers and are therefore unlikely to be expressed in HUVECs.
Expression levels are visualized as heatmaps for enzymes of the pathway in different Nrf2
experiments. Heatmaps I and II are relative to each other and they can be used to evaluate ligand
dependence. Untreated and OA treated samples are controls for OA-NO2 activated samples. As Nrf2
knockdown is not complete, also siNrf2 OA-NO2 samples can be compared to OA and untreated
samples. Heatmap I and II can be compared to evaluate the effect of Nrf2 knockdown. Heatmap III
can be used to evaluate the effect of Nrf2 overexpression (adCMV vs. adNRF2). The full list of
metabolite and gene names and Recon1 reactions can be found in Table S2-S4.



6 DISCUSSION

Four novel cancer types, urinary tract carcinoma, glioma, mesothelioma, and thyroid

carcinoma and a total of 77 cancer cell lines were discovered by two individual tools

SIGNATURE and GSVA to have overactive Nrf2 status with > 95 % probability or empirical

FDR of 0.01. Furthermore, characteristic Nrf2 overexpression signature was found in 60 (ca.

10  %)  glioblastoma multiforme samples  (FDR 0.05)  in  The  Cancer  Genome Atlas  (TCGA)

clinical samples. Cancers with overactive Nrf2 have poor prognosis and therefore it is

important to identify cell lines with Nrf2 hyperactivity to develop cancer type selective

treatments targeting Nrf2 pathway. Nrf2 inhibitors could be used to treat cancers with Nrf2

hyperactivity and to increase the effectiveness of conventional treatments.

Nrf2 is a novel oncogenic TF and based on our prediction it is frequently overactive in

multiple cancers. Environmental factors have a major role in cancer onset. Environmental

burden, such as cigarette smoke, UV-light or xenobiotics typically increase Nrf2 expression to

protect the cell from damage. Hence Nrf2 should have preventive effects in cancers during

early events of cancer development. Interestingly, it appears that the Nrf2 response becomes

chronically activated during cancer adaptations and mutations during later phases of cancer

development. Suggested benefits of constitutive Nrf2 include proliferative stimulus and

control of ROS levels from accumulating at apoptosis inducing levels61.  As Nrf2 has effects

in many pathways, also other oncogenic functions of Nrf2 are likely to be discovered. Nrf2

can potentially alter cancer metabolism and be involved in the formation of metastases. It is

likely that constitutive activation of Nrf2 is achieved by various cancer type specific

mechanisms that have not been found.

Higher-grade gliomas are extremely malignant tumors and they have poor prognosis. In

addition gliomas respond poorly to conventional treatments such as chemotherapy and

radiation treatments. Nrf2 could have a substantial role in glioma chemoresistance and

malignancy and should therefore be investigated further to verify the Nrf2 activity and the

mechanism of how Nrf2 is constantly active to provide better treatments. Nrf2 status in

predicted constitutive cell lines can be validated using lentiviral ARE-luciferase reporter

constructs82. Also negative control glioma cell lines could be selected from cell lines

predicted  not  to  have  overactive  Nrf2  and  also  A549  is  a  good  positive  control  for  Nrf2

activity, as it has high expression of Nrf2. After Nrf2 activity has been validated, multiple



experiments can be done to understand the mechanism of Nrf2 activity. Also drug sensitivity

assays can be done to assess the effect of Nrf2 on chemoresistance capabilities. In addition

lentiviral ARE-thymidine kinase cancer suicide gene therapy can be utilized, if Nrf2 is

confirmed to be constitutively active in gliomas82: Increased Nrf2 activity produces high

amounts of thymidine kinase in the cancer cell. When a pro-drug ganciclovir will be

introduced to the cells, thymidine kinase activity phosphorylates the drug, which induces

apoptosis of the cancer cells via signaling cascade and also the nearby cells due to bystander

effect82. This method could be applied in vitro to cell cultures and also in vivo to glioma

mouse models.

In our results Nrf2 was overactive in many gliomas in CCLE, but not as abundant in TCGA

data. One technical reason could be that Nrf2 activity is increased in most glioma samples,

and as GSVA provides information about relative expression within samples (see equation 4)

a large portion of TCGA samples will get lower score, even if their activity would be

increased compared to all cancer samples. A biological reason could be that in CCLE cell

lines gliomas are not histologically graded as specifically as in TCGA. Hence CCLE is likely

to contain glioma cell lines from various grades. By predicting Nrf2 activity also in lower

grade gliomas, it would be possible to study if there is a pattern in Nrf2 activity in different

glioma grades. If Nrf2 overactivity is more abundant in higher-grade gliomas, Nrf2 might

have a role in the extreme malignancy of higher-grade gliomas. On the other hand if Nrf2

overactivity is more prevalent in lower-grade gliomas, Nrf2 might have a role in glioma

transformation  to  higher-grade.  Both  preventing  and  promoting  effects  are  possible,  as

reduced ROS levels can decrease mutagenesis and also to prevent apoptosis. The

SIGNATURE and GSVA results agreed to a large extent but differed in the CCLE melanoma

predictions, as it did not pass the SIGNATURE significance threshold but was abundant in

the GSVA results. To explore the relevance of these predictions in patient data, TCGA data

for melanoma could be used similarly as in gliomas to test if melanomas with overactive Nrf2

could be found in a large portion of patient samples.

TCGA samples with predicted Nrf2 overactivity could be collected for specific cancers such

as  gliomas  and  also  to  many  different  cancer  types.  TCGA  data  could  be  used  in

computational analysis to elucidate the mechanism and effect of Nrf2 hyperactivity.

Explanations for Nrf2 hyperactivity could be related to Keap1-Nrf2 balance: altered gene-

copy numbers, mutations, epigenetic changes in the gene regulatory regions, or differential



expression of miRNAs. Such experimental data is available in TCGA and therefore it is a

powerful resource for additional analysis.

Supervised learning methods used in Q2 type data classification require informative training

sets that can be used to classify the test set data. Our training sets were created based on genes

that can best distinct two phenotypes, instead of selecting genes that have highest expression

differences between the phenotypes or predefined gene annotations to redox pathway.

Therefore Nrf2 signature should be an effective Nrf2 status classifier containing gene-gene

correlation structures. In addition the training sets were created using expression data from

primary HUVEC cells, which has advantages compared to the use of immortalized cell

cultures and cancer cell lines. Cancer is descended from normal cells and therefore results

obtained from normal primary cells can be applied to a wide spectrum of cancers, instead of

using cancer specific model. HUVEC cell-line pathways are also close to physiological states

and therefore resemble Nrf2 activity accurately. The downside of using HUVECs is the tissue

specific expression.

GSVA does not offer statistical evaluation of the enrichment score due to the differences

between different scoring methods that can be selected. For any of the methods, significance

can be estimated by computing an empirical null distribution (such as results obtained using

equation 7, Figure S1). On the other hand asymptotic assumption of distribution can be made

if the scores are approximately normally distributed (equation 8, Figure S1). Results were

compared when normalized enrichment score (following the main GSVA algorithm, equation

8.) significance was estimated using Gaussian distribution assumption and using empirical

null distribution in cases where enrichment was calculated using equation 7 and 8 (Figure S1).

Results obtained from equation 7 and empirical null distribution found in total of 220 cell

lines significant (overlap with the SIGNATURE 80/98) in CCLE and using equation 8 and

empirical null distribution found 216 cell lines significant (overlap with the SIGNATURE

77/98) at eFDR 0.01. Asymptotic normal distribution classified 61 cell lines significant

(overlap  with  the  SIGNATURE  36/98).  We  chose  equation  8  results  with  significance

estimated using empirical null distribution, as it had high overlap with the significant

SIGNATURE results.

Correlation between SIGNATURE and GSVA was good when the cell lines with overactive

Nrf2 were statistically significant. However, there was variation in the number of significant

results (216 and 98) and the correlation was poor between the tools in the cell lines that were



not significant, which is likely resulting from the methodological differences between the

tools. One clear difference is that SIGNATURE used genes that were upregulated and

downregulated in the scoring and GSVA was performed using only the upregulated genes

(80%) of the same Nrf2 signature gene list. This choice was made, as up- or downregulated

genes would block the effect of each other during enrichment score calculation. Hence GSVA

estimation of enrichment lacks some predictive information that SIGNATURE has. One

additional reason could be that GSVA is more sensitive or prone to false positive results,

because it tests for competitive null hypothesis as FDR was estimated in GSVA by permuting

genes randomly in the gene set. As described in the introduction, genes in the test gene set are

more highly correlated compared to random gene sets used to generate the empirical null

distribution, P-values will be lower for test gene set, resulting in an increased rate of false

positive  results.  FDR  was  set  to  a  strict  cutoff  of  0.01  in  GSVA  to  reduce  false  positive

results. A better estimate of the null distribution in GSVA would have been obtained by

random permutation of the samples (used in SIGNATURE) and therefore generating random

signatures. However, as SIGNATURE results were used as a benchmark result, it was not

essential to obtain the most accurate null distribution and cutoff value.

Nrf2 was identified to be overactivated in many cancers. Therefore additional enrichment

analyses were done to understand, which effect Nrf2 could have in the cells at a pathway

level. The focus was in metabolic pathways, as metabolic reprogramming is often observed in

cancers to support proliferation. Constitutively active Nrf2 could cause metabolic

reprogramming, as it has been shown to activate PPP pathway and fatty acid metabolism

pathway.  This  analysis  is  a  Q1  type  question  (class  discovery)  to  identify  Nrf2  regulated

pathways and two methods were compared, Hypergeometric test and GSEA.

In order to do metabolic pathway analysis (and create Nrf2 signature) and identify direct Nrf2

targets, experiments needed to be selected specifically for each analysis, as there are

downsides in each experiments. In microarray and RNA-seq data, ligand activation of Nrf2

with OA-NO2 is not specific and therefore activation of other TFs or signaling pathways is

possible. In addition many RNAs are degraded after 8h time point and many primary effects

can be lost in RNA expression data. GRO-sequencing can provide information about primary

TF mediated gene regulation, as it can be done in early time points when RNA is not

degraded. However, also other TFs can be activated with OA-NO2. Overexpression of Nrf2

does  not  activate  other  TFs,  but  secondary  effects  are  common  due  to  long  time  points.

siRNA knockdown of Nrf2 should alter basal and ligand activation and therefore provide



proof of direct Nrf2 regulation. However, siRNAs can have off-target effects. ChIP-seq can

be used to associate altered gene expression with increased abundance of TF in the regulatory

region. However, antibodies not only enrich specific TFs, but also precipitate impurities and

add noise to data. There are many downsides in each experiment and therefore it is important

to integrate different data to reason which effect is consistently observed and which are

caused by off-target, secondary effects, other TFs, or impurities. Therefore data can be used

more efficiently to identify the direct, indirect and off-target effects.

Our results support the previous findings as the PPP and many lipid metabolism pathways

were enriched in Hypergeometric test and lipid metabolism related pathway was enriched in

GSEA. The PPP was upregulated during overexpression of Nrf2 and downregulated during

Nrf2 knockdown (Table 10). Therefore constitutive activation of Nrf2 is likely to cause the

PPP activation, which could support the cancer cell proliferation and protection against

oxidative stress. Surprisingly, ROS detoxification pathway was not among top enriched

pathways in Hypergeometric tests and was missing in GSEA results.  Pathway describing

gene sets are often constructed by annotating genes to pathways based on literature proof.

Many of the key redox pathway genes were not included in the ROS detoxification pathway,

but instead assigned to other metabolic processes in the Recon1 annotations. The ROS

pathway contained superoxide dismutases that are important enzymes to neutralize ROS, but

inadequate alone to describe ROS detoxification pathway. Glutathione metabolism

(containing many known Nrf2 target genes, such as GCLM, GCLC) was enriched in

Hypergeometric test and in GSEA and therefore seems to be a better indicator of Nrf2 activity

in Recon1.

Our metabolic pathway analysis suggests that many metabolic pathways could be Nrf2

regulated. Many pathways can be directly Nrf2 regulated, because the pathways contain

enzymes directly involved in detoxification, such as glutamate and glutathione metabolism

pathway. However, Nrf2 could regulate also other redox response independent pathways. In

our enrichment analysis many amino- and fatty acid and steroid metabolism related pathways

were enriched and Nrf2 might affect the transport pathways of the cell. Interestingly

cholesterol pathway, lysosomal transport and steroid metabolism pathways are all linked in

maintaining cholesterol homeostasis in the cell. In normal conditions cells take in cholesterol

packed in low-density lipoprotein (LDL) by endocytosis or synthesize it and use it as a

structural component of the cell lipid membranes, and in some tissues cholesterol is a

precursor to synthesize steroid hormones. Cholesterol homeostasis is maintained by de novo



synthesis of cholesterol, LDL uptake, cholesterol esterification and reverse cholesterol

transport83.

An imbalance between cholesterol influx and efflux is a well-characterized property in

atherosclerotic lesion: Elevated cholesterol levels cause accumulation of cholesterol and other

lipids to large arteries, which progressively forms fibrous lesions that contain a complex

mixture of cells such as macrophage foam cells and smooth muscles cells, oxidized lipids and

collagen. Macrophages ingest cholesterol containing oxidized LDL and become foam cells,

which is a hallmark of atherosclerotic lesions84. Rupture of these lesions and formation of a

thrombus causes the clinical complications, such as myocardial infarction and stroke84. Foam

cells are formed because scavenger receptors collect more cholesterol but cholesterol efflux is

low causing systemic cholesterol imbalance84. The absence of macrophage Nrf2 has been

shown to promote early atherogenesis and therefore Nrf2 activity could have a substantial role

in macrophage cholesterol homeostasis85.  Also  endothelial  cell  dysfunction  is  one  of  the

initial  stages  of  atherosclerosis  and  therefore  our  analysis  result  fits  in  this  context  well.

However, cholesterol does not accumulate in the endothelial cells, as they can shut down

cholesterol synthesis and increase cholesterol efflux from the cell83. Endothelial cholesterol is

transported to lysosomes, however cholesterol is not hydrolyzed, but sent to other lipid

membranes, mainly to the plasma membrane, but also to Golgi, mitochondria and

endoplasmic reticulum and therefore membranes can be storage particles for the cholesterol86.

In the membranes, cholesterol has many crucial functions, such as regulation of membrane

fluidity and formation of lipid rafts that have an important role in signal transduction87. For

example activation of pro-survival mTOR pathway is dependent on cholesterol trafficking in

endothelial cells87. In addition sterol accumulation in endothelial cells has been shown to

reduce eNOS production, which synthesize nitric oxide that can increase vasodilatation via

relaxation of smooth muscle cells83.  The  lack  of  NO  is  a  prominent  feature  of  endothelial

dysfunction.

Cholesterol homeostasis and trafficking can also have a high significance in cancer.

Interestingly Nrf2 hyperactivity in cancer and the activation of mTOR pathway was linked,

suggested mechanism included increased expression of RagD, which is an activator of

mTOR,  but  was  not  a  direct  target  of  Nrf288. One possible reason is that Nrf2 overactivity

upregulates cholesterol pathway causing increased cholesterol trafficking, lipid raft formation

and increased signaling, which could activate the mTOR pathway. Similarly Nrf2 could have



an  effect  also  on  activating  other  signaling  pathways  that  can  promote  survival  and

proliferation via upregulation of cholesterol pathway.

Direct targets of Nrf2 could not be found in cholesterol pathway, suggesting an indirect

regulation. It is much more challenging to characterize how Nrf2 regulates cholesterol

pathway, as direct Nrf2 targets could not be detected. Interestingly cholesterol pathway was

consistently downregulated during early time points (OA-NO2 activation), but upregulated in

late time points with overexpressed Nrf2. Nrf2 activator ligands are not specific and therefore

activation of other TFs or signaling pathways is probable reason for a quick response to OA-

NO2 treatment. It is also possible that Nrf2 mediates cholesterol gene regulation via protein-

protein interactions, which are not well characterized for Nrf2. There are many different

factors that could have a role in this system, including cholesterol pathway and LDL-receptor

mediator SREBP-283 and  SREBP-2  inhibitors  INSIG1  and  INSIG2.  As  noted  in  the

introduction, also Nrf2-RXRa may form a regulatory loop in lipid metabolic reactions and

imbalance in this system might have an effect especially in the secondary response during

Nrf2 overactivation. LXR is a partner of RXRa and is thought to mediate cholesterol efflux83.

Downregulation of RXRa via constitutively active Nrf2 could prevent cholesterol efflux and

therefore increase cholesterol trafficking, lipid raft formation and signaling. These changes

could have high impact on cellular functions and promote diseases, such as atherosclerosis

and cancer.

Cholesterol enzymes in the ER were downregulated during OA-NO2 activation (Figure 12.).

Before cholesterol synthesis pathway is entering the ER, FDPS converts Dimethylallyl

diphosphate (dmpp[x]) or Geranyl diphosphate (grdp[x]) to Farnesyl-diphosphate (frdp[r],

Figure 12). Interestingly FDPS was consistently downregulated by Nrf2 in all experiments

and also the Nrf2 knockdown upregulated FDPS. However, direct binding sites were not

identified. FDPS forms a branch from FPP to isoprenoids (Farnesyl, Dolichol, Ubiquinone)

pathways89. FPP also serves as a substrate for protein farnesylation and geranylgeranylation89.

These metabolites can participate in multiple cellular processes including cell growth,

differentiation, and vesicle trafficking and have central role in many cancers (such as prostate

cancer90) and are likely to be involved in atherosclerosis89. Prenylation of mutated RAS is

needed in many cancers to transform tumor malignant and many inhibitors have been

developed with good in vitro results but lack of clinical success91. KRAS has been shown to

elevate the basal Nrf2 levels in oncogene primary murine cells92. Therefore Nrf2 mediated



cholesterol pathway regulation might have a link to prenylation of key disease promoting

proteins.

The metabolic pathway analysis revealed several common caveats encountered in selecting a

proper enrichment method. For the hypergeometric test a cutoff for P-values has to be

selected. There is no general way of choosing the cutoff and some pathways with low but

meaningful expression differences might be lost, as multiple testing corrections might be too

conservative. To address this, we used the approach to combine evidence from multiple

experiments by combining P-values from comparisons where the same null hypothesis was

tested.  In  total  of  472  genes  with  combined  P-values  were  significant  and  many  metabolic

pathways were enriched. Many known Nrf2 target genes were highly ranked and got low P-

value, suggesting that the combined P-value method was successfully combining proof from

multiple Nrf2 perturbations (Table S4). According to Hypergeometric test, many metabolic

pathways were enriched. Although straightforward to use, the hypergeometric test assumes

gene independence, which is not true in biology. Metabolic pathways are likely to have a high

number of correlations between the genes and the pathways. In addition hypergeometric test

does  not  weight  highly  ranked  genes  and  therefore  many pathways  with  direct  Nrf2  targets

with high P-values can have low enrichment scores.

GSEA takes the gene-gene correlation structures into account when sample permutation is

used  for  significance  assessment  and  also  weights  the  high  ranked  genes.  GSEA  or  similar

methods have been recommended for the Q1 type enrichment analysis by many method

comparing articles and frameworks for using GSEA type methods has been published10,17,93.

In our analysis GSEA seemed to lack sensitivity and few metabolic pathways were estimated

significant. Similarly GSEA has been criticized to be overly complicated, heavy and

insensitive30. GSEA user guide recommend high FDR threshold of 0.25 as the most suitable,

which suggests a lack of sensitivity. GSEA is also outperformed in many articles and other

methods have been suggested instead of GSEA93. GSEA can have low power because GSEA

and some of its variants are really hybrids of the competitive and self-contained methods and

they do not really test the competitive null hypothesis, because a gene vs. background gene

model is used in the weighted Kolmogorov-Smirnov test, but shuffling of samples is used for

the significance estimation15.  In  addition  Small  sample  sizes  and  lack  of  replicates  limit  the

use of the GSEA significance estimation and it was challenging to construct two phenotypes

from  our  data  with  enough  samples  (N=3  in  most  experimental  conditions).  Gene

randomization parameter was added to the tool to overcome the small sample size problem,



but gene randomization loses the gene-gene correlation structures and therefore increases the

detection of false positive gene sets10,16 and in this respect does not constitute an improvement

over the hypergeometric test.

When interpreting the biological significance of the enrichment score it should consider that

GSEA can  have  two types  of  results  that  are  not  distinguishable:  gene  sets  with  few highly

differentially expressed genes or many genes with small changes in expression10. The

weighted running sum increases the enrichment score for high ranked genes, which could

underline why GSEA detected the HMOX1 containing heme degradation pathway enriched

(total number of unique genes 4), as the pathway contained only three other genes that were

not differentially expressed and therefore not associated with either phenotypes. HMOX1 is a

known target of Nrf2 and it is highly induced during Nrf2 activation, which increases the

pathway  enrichment  score.  Another  major  problem  is  that  GSEA  is  not  powerful  to  detect

gene sets that have genes positively and negatively associated with the phenotype94, so the

pathways with both up- and downregulated genes will get decreased scores. GSEA failed to

detect cholesterol pathway, likely due to this effect, as Nrf2 activation by OA-NO2 and

overexpression affected the gene expression levels inconsistently. This behavior and lack of

sensitivity of GSEA might also be favorable for some users,  as it  can reduce the amount of

false positive results and indirectly regulated pathways therefore making the result

interpretation more straightforward.

An alternative approach on metabolic pathway analysis would be to include network structure

of Recon1 metabolic pathways in the model and to set up constraints based on this

information to gain better understanding of the metabolic (and other) consequences of Nrf2

overactivity. As a follow-up computational work, systems biology models, such as CBM95,96,

could be used to infer metabolic activities from expression levels to understand the effects of

altered expression levels in context of the other active metabolic reactions. This might be

useful in understanding the effect of Nrf2 for the pathway dynamics of and could lead to the

identification of new disease promoting steady states of the metabolic network. Many

microarray experiments on Nrf2 perturbations are publicly available and these experiments

could be collected for additional information about Nrf2 regulated pathways to provide

additional proof for CBM. One clear problem will then be the integration of the data. The data

should be comparable so data normalization procedures are important. Even after successful

normalization the data might not be comparable, especially when the data is produced by

different platforms or technologies or (depending on the model assumptions) when data is



from different cells or experimental designs97.  Therefore  data  only  from  HUVECs  and  the

Affymetrix platform should be used as additional data. Data reliability and reproducibility

presents a problem, because data is obtained from other laboratories97. These problems in data

integration has been recognized and therefore databases, such as ENCODE and TCGA have

started to standardize sample collection and data analysis and validate available data to make

it more reliable and reproducible. Other challenges are that mathematical modeling is

relatively new tool in biology; so all pitfalls have not been mapped. The amount of data is

huge, it is possible to find biologically irrelevant correlations using mathematical models and

therefore make false conclusions. Therefore the model must be designed well to provide

biologically relevant data for reliable results.

For building a systems biology model of Nrf2-dependent gene regulation, methods from the

top down systems biology field could be used to create accurate lists of the Nrf2 regulatory

network components, using data integration and combining P-values of many genome-wide

experiments, in particular by utilizing the power of several next generation sequencing

methods to capture the different steps of gene regulation. This list would ideally be divided

into direct and indirect targets, that could initially be based on time points of activation and

motif analysis tools, as direct targets get typically regulated faster and contain ARE

homologous elements. This distinction would be relevant for the model because their

activation can be associated directly with Nrf2 activation without considering the presence of

additional factors. In constitutive Nrf2 activation regulatory network steady state has changed,

which changes the structure of the regulatory network. Measurements of mRNA levels (using

RNA-seq and microarray data) over a time series could be used to as means to distinguish

indirect targets that are expected to appear only in later time points and in combination with

GRO-seq data that provides information about ongoing transcription, the early events of

transcription could be confirmed without the need to correct for different mRNA stabilities.

GRO-seq can also be used in discovering and quantifying enhancer sites that are activated in

an Nrf2-dependent manner based on eRNA expression. Initially,  DNAse or FAIRE-seq data

could be used in discovering the enhancer locations. DNAse-seq on Nrf2 activation samples

would reveal additional information about Nrf2 binding sites, because increased Nrf2 binding

would provide higher signal compared to control. Deep-sequencing could provide enough

information about the specific binding site and motif predictions in these sites could be used

to detect putative Nrf2 binding sites and also other TFs that are regulated by activation of the

Electrophile Response. Combination of GRO-seq and DNAse-seq therefore represents an



efficient means to identify the enhancers responsible for observed expression changes, first by

screening which enhancers are activated from GRO-seq and then checking if DNAse-seq

signal is increased in the region and if the region contains ARE elements or binding sites for

other TFs.

In summary, the need of sensitivity, choice of null hypothesis, amount of samples and the

questions to be answered guide the enrichment tool selection. Also user friendly tools that are

easily accessible are important features for selecting the enrichment tool. Especially

supervised learning methods have not been available for common users, because there has not

been software available. Nowadays also supervised learning methods, such as the

SIGNATURE tool are available for common users and they can be used to answer

increasingly popular Q2 type questions, where GSEA type methods are not appropriate. When

choosing an enrichment method, those using gene randomization should be avoided in

general, as they ignore the gene-gene correlation structure15. However, as encountered here,

sample randomization is not always possible due to complex phenotypes (for analysis across

all cancer cell lines) or the lack of replicates (N>7 is not typical for most common

experimental setups). To address this issue, methods that allow gene-gene correlations to be

estimated have been proposed98,99. Competitive methods with gene randomization produce

easily interpretable and sensitive P-values, so solutions for gene-gene correlation problem has

been developed in CAMERA99. Alternatively, analytical background distributions can be used

when data is confirmed to correspond to the assumed distribution (as in GSVA). Also it could

be informative to include multiple independent enrichment tools to prevent method dependent

biases and to compare overlap between the predictions17. Next generation sequencing is

increasingly popular and therefore many methods need to be updated to make the enrichment

analysis possible. Typical procedure is to convert count data to log2-count-per-million values

(limma, voom() function) or RPKM values (edgeR) and use tools such as GSVA, ROAST and

CAMERA. In addition to tool development, the pathway databases should be improved to

provide more accurate pathway constructions with cell line specific pathway information for

different conditions. Pathway genes are not always annotated correctly and in disease pathway

annotations about role of the pathway might be highly context dependent. Benchmark data

sets derived from biological data could be constructed to support testing of the enrichment

methods.



7 CONCLUSION

Genome-wide HUVEC datasets from perturbations that affect Nrf2 activity were used

together  with  public  data  (CCLE,  TCGA,  Recon1)  in  different  contexts:  first  to  address

whether Nrf2 is active in cancers and subsequently to investigate how Nrf2 may affect

metabolic pathways. These questions were answered by using enrichment tools to obtain an

unbiased overview of what should be investigated further. The results suggest that a

constitutive Nrf2 signature can be found in multiple cancers. There were also four novel cell

lines discovered by two independent enrichment tools. Several conclusions from this study

should be further investigated. The novel cancer cell lines, especially the ones that were

detected by two computational analyses, are good candidates to validate further using

experimental methods.

The metabolic pathway analyses predicted that Nrf2 regulates many fatty and amino acid

metabolism pathways, as well as the pentose phosphate pathway. Interestingly, cholesterol,

lysosomal transport and steroid metabolism pathways were all enriched; as these pathways are

highly connected in cholesterol homeostasis, they could play a significant role in many

diseases, including atherosclerosis and cancer. The link of Nrf2 to the cholesterol pathway has

not been previously reported. We were not able to exclude indirect regulation and therefore

further studies must be conducted to understand the role of Nrf2 in cholesterol homeostasis.

Nrf2 is known to have a central role in maintaining the cell homeostasis via the stress

response pathway. However, Nrf2 might also have a crucial role in pathogenesis of cancer

and other diseases as it has numerous target genes and it is involved in many disease-

promoting pathways. This study aids in characterizing Nrf2 activity in cancers and provides

insight in how Nrf2 activity can regulate the cellular functions. This information is needed to

develop cancer selective inhibitors targeting Nrf2 pathway and to understand Nrf2 function in

disease.
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9 SUPPLEMENTARY TABLES AND FIGURES

A. B.

C. D.

Figure S1. Distribution of Enrichment Scores (ES). A. Histogram of ES when ES is
computed using difference between largest positive and negative deviations. B. Histogram of ES when
ES is simulated by permuting gene labels (difference between largest positive and negative
deviations). C. Histogram of ES when ES is computed using maximum deviation from zero method.
B. Histogram of ES when ES is simulated by permuting gene labels (maximum deviation from zero).



Figure S2. Potential direct targets of Nrf2



Table S1. Gene abbreviations for Glutamate metabolism, Steroid

Metabolism, Transport, Lysosomal, Ascorbate and Aldarate Metabolism

genes

GSR Homo sapiens glutathione reductase (GSR), transcript variant 1, mRNA

AKR1C1 Homo sapiens aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1;

20-alpha (3-alpha)-hydroxysteroid dehydrogenase) (AKR1C1), mRNA

ATP6V1B

2

Homo sapiens ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2

(ATP6V1B2), mRNA

GLRX Homo sapiens glutaredoxin (thioltransferase) (GLRX), transcript variant 3, mRNA

ATP6V1D Homo sapiens ATPase, H+ transporting, lysosomal 34kDa, V1 subunit D (ATP6V1D),

mRNA

SULT1E1 Homo sapiens sulfotransferase family 1E, estrogen-preferring, member 1 (SULT1E1),

mRNA

ATP6V1H Homo sapiens ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H

(ATP6V1H), transcript variant 1, mRNA

ATP6V0B Homo sapiens ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b (ATP6V0B),

transcript variant 2, mRNA

ATP6V1C

1

Homo sapiens ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1 (ATP6V1C1),

mRNA

GLS Homo sapiens glutaminase (GLS), nuclear gene encoding mitochondrial protein,

transcript variant 1, mRNA

ATP6V1E

1

Homo sapiens ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1 (ATP6V1E1),

transcript variant 2, mRNA

ATP6V0D

1

Homo sapiens ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 (ATP6V0D1),

mRNA

GPT2 Homo sapiens glutamic pyruvate transaminase (alanine aminotransferase) 2 (GPT2),

transcript variant 2, mRNA

SLC29A3 Homo sapiens solute carrier family 29 (nucleoside transporters), member 3 (SLC29A3),

transcript variant 2, mRNA

Table S2. Recon1 cholesterol pathway metabolite abbreviations



metabolite ID metabolite name

44mzym[r] 4,4-dimethylzymosterol

4mzym_int1[r] 4-Methylzymosterol intermediate 1

4mzym_int2[r] 4-Methylzymosterol intermediate 2

5dpmev[x] (R)-5-Diphosphomevalonate

5pmev[x] (R)-5-Phosphomevalonate

7dhchsterol[r] 7-Dehydrocholesterol

R1coa_hs[c] R group 1 Coenzyme A homo

sapiens

R2coa_hs[c] R group 2 Coenzyme A homo

sapiens

Ssq23epx[r] (S)-Squalene-2,3-epoxide

aacoa[c] Acetoacetyl-CoA

aacoa[m] Acetoacetyl-CoA

acac[m] Acetoacetate

acac[x] Acetoacetate

accoa[c] Acetyl-CoA

accoa[m] Acetyl-CoA

accoa[x] Acetyl-CoA

chlstol[r] Cholesta-7,24-dien-3beta-ol

chsterol[c] Cholesterol

chsterol[r] Cholesterol

coa[c] Coenzyme A

coa[m] Coenzyme A

coa[x] Coenzyme A

ddsmsterol[r] 7-Dehydrodesmosterol

dmpp[x] Dimethylallyl diphosphate

dsmsterol[r] Desmosterol

for[r] Formate

frdp[r] Farnesyl diphosphate

frdp[x] Farnesyl diphosphate

grdp[x] Geranyl diphosphate

hmgcoa[c] Hydroxymethylglutaryl-CoA

hmgcoa[m] Hydroxymethylglutaryl-CoA

hmgcoa[x] Hydroxymethylglutaryl-CoA



ipdp[x] Isopentenyl diphosphate

lanost[r] Lanosterol

lthstrl[r] 5alpha-Cholest-7-en-3beta-ol

mev-R[x] (R)-Mevalonate

ppi[r] Diphosphate

ppi[x] Diphosphate

sql[r] Squalene

xolest_hs[c] cholesterol ester

zym_int2[r] zymosterol intermediate 2

zymst[r] zymosterol

zymstnl[r] Zymostenol



Table S3. Recon1 cholesterol pathway reactions

Reaction
ID

Reaction Reaction
ID

Reaction Pathway

116 ACACT1 1452 GRTTx Cholesterol Metabolism
403 C14STRr 1524 HMGCOARx Cholesterol Metabolism
426 C3STDH1Pr 1525 HMGCOASi Cholesterol Metabolism
427 C3STDH1r 1526 HMGCOASim Cholesterol Metabolism
428 C3STKR2r 1529 HMGLm Cholesterol Metabolism
429 C4STMO1r 1530 HMGLx Cholesterol Metabolism
430 C4STMO2Pr 1587 IPDDIx Cholesterol Metabolism
431 C4STMO2r 1642 LNS14DMr Cholesterol Metabolism
635 DHCR241r 1643 LNSTLSr Cholesterol Metabolism
636 DHCR242r 1656 LSTO1r Cholesterol Metabolism
637 DHCR243r 1657 LSTO2r Cholesterol Metabolism
638 DHCR71r 1710 MEVK1x Cholesterol Metabolism
639 DHCR72r 2038 PMEVKx Cholesterol Metabolism
661 DMATTx 2237 SOAT11 Cholesterol Metabolism
774 DPMVDx 2238 SOAT12 Cholesterol Metabolism
800 EBP1r 2259 SQLEr Cholesterol Metabolism
801 EBP2r 2260 SQLSr Cholesterol Metabolism



Table S4. Cholesterol pathway gene abreviations

TM7SF2 Transmembrane 7 superfamily member 2
NSDHL NAD(P) dependent steroid dehydrogenase-like
HSD17B4 Hydroxysteroid (17-beta) dehydrogenase 4
MSMO1 Methylsterol monooxygenase 1
DHCR24 24-dehydrocholesterol reductase
DHCR7 7-dehydrocholesterol reductase
GGPS1 Geranylgeranyl diphosphate synthase 1
FDPS Farnesyl diphosphate synthase (farnesyl pyrophosphate synthetase,

dimethylallyltranstransferase, geranyltranstransferase)
MVD Mevalonate (diphospho) decarboxylase
EBP Emopamil binding protein
HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase
HMGCS1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)
HMGCS2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)
HMGCL 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase

(hydroxymethylglutaricaciduria)
HMGCLL1 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase-like 1
IDI1 Isopentenyl-diphosphate delta isomerase 1
IDI2 Isopentenyl-diphosphate delta isomerase 2
CYP4F8 Cytochrome P450, family 4, subfamily F, polypeptide 8
CYP51A1 Cytochrome P450, family 51, subfamily A, polypeptide 1
LSS Lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)
SC5DL Sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, S. cerevisiae)-like
MVK Mevalonate kinase (mevalonic aciduria)
PMVK Phosphomevalonate kinase
SOAT1 Sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1
SQLE Squalene epoxidase
FDFT1 Farnesyl-diphosphate farnesyltransferase 1



Table S5. 100 most significant genes (combined P-value) in Recon1. Table
contains combined P-values (Stouffer´s method). Many top ranked genes in the list are
verified direct targets of Nrf2. Some genes are involved in many pathways (marked with
*number in Table S5).

symbols name comb.pv
al

pathway

GLA Homo sapiens galactosidase, alpha (GLA), mRNA 0 Sphingolipid Metabolism
GSR Homo sapiens glutathione reductase (GSR),

transcript variant 1, mRNA
0

Glutamate metabolism
PHYH Homo sapiens phytanoyl-CoA 2-hydroxylase

(PHYH), transcript variant 2, mRNA
0 Fatty acid oxidation,

peroxisome
TXNRD1 Homo sapiens thioredoxin reductase 1 (TXNRD1),

transcript variant 5, mRNA
0

*1
AKR1C1 Homo sapiens aldo-keto reductase family 1, member

C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-
alpha)-hydroxysteroid dehydrogenase) (AKR1C1),
mRNA

0

Steroid Metabolism
GCNT2 Homo sapiens glucosaminyl (N-acetyl) transferase 2,

I-branching enzyme (I blood group) (GCNT2),
transcript variant 2, mRNA

0

Blood Group Biosynthesis
CBR1 Homo sapiens carbonyl reductase 1 (CBR1), mRNA 0 Eicosanoid Metabolism
GCLM Homo sapiens glutamate-cysteine ligase, modifier

subunit (GCLM), mRNA
0

Glutathione Metabolism
HMOX1 Homo sapiens heme oxygenase (decycling) 1

(HMOX1), mRNA
0

Heme Degradation
ME1 Homo sapiens malic enzyme 1, NADP(+)-

dependent, cytosolic (ME1), mRNA
0

Pyruvate Metabolism
SLC7A11 Homo sapiens solute carrier family 7 (anionic amino

acid transporter light chain, xc- system), member 11
(SLC7A11), mRNA

0

Transport, Extracellular
GCLC Homo sapiens glutamate-cysteine ligase, catalytic

subunit (GCLC), transcript variant 2, mRNA
5.6e-16

Glutathione Metabolism
SLCO2A1 Homo sapiens solute carrier organic anion

transporter family, member 2A1 (SLCO2A1),
mRNA

4.1e-15

Transport, Extracellular
PLOD2 Homo sapiens procollagen-lysine, 2-oxoglutarate 5-

dioxygenase 2 (PLOD2), transcript variant 2, mRNA
1.1e-14

Lysine Metabolism
ELOVL4 Homo sapiens ELOVL fatty acid elongase 4

(ELOVL4), mRNA
1.3e-14

Fatty acid elongation
TALDO1 Homo sapiens transaldolase 1 (TALDO1), mRNA 1.9e-14 Pentose Phosphate

Pathway
UGDH Homo sapiens UDP-glucose 6-dehydrogenase

(UGDH), transcript variant 2, mRNA
2,00E-14 Starch and Sucrose

Metabolism
SLC3A2 Homo sapiens solute carrier family 3 (activators of

dibasic and neutral amino acid transport), member 2
(SLC3A2), transcript variant 2, mRNA

4.2e-14

*2
SLC27A3 Homo sapiens solute carrier family 27 (fatty acid

transporter), member 3 (SLC27A3), mRNA
1.6e-13

Transport, Extracellular
RDH11 Homo sapiens retinol dehydrogenase 11 (all-trans/9-

cis/11-cis) (RDH11), transcript variant 2, mRNA
2,00E-13

Vitamin A Metabolism
GGCT Homo sapiens gamma-glutamylcyclotransferase

(GGCT), transcript variant 2, mRNA
2.5e-13

Glutathione Metabolism
GNE Homo sapiens glucosamine (UDP-N-acetyl)-2-

epimerase/N-acetylmannosamine kinase (GNE),
transcript variant 1, mRNA

3.5e-13

Aminosugar Metabolism
SLC19A2 Homo sapiens solute carrier family 19 (thiamine 7.3e-13 Transport, Extracellular



transporter), member 2 (SLC19A2), mRNA
CHSY3 Homo sapiens chondroitin sulfate synthase 3

(CHSY3), mRNA
3.3e-12 Chondroitin / heparan

sulfate biosynthesis
INPP4B Homo sapiens inositol polyphosphate-4-phosphatase,

type II, 105kDa (INPP4B), transcript variant 2,
mRNA

3.9e-12
Inositol Phosphate
Metabolism

ST3GAL6 Homo sapiens ST3 beta-galactoside alpha-2,3-
sialyltransferase 6 (ST3GAL6), transcript variant 1,
mRNA

4,00E-12

Blood Group Biosynthesis
AADAC Homo sapiens arylacetamide deacetylase (AADAC),

mRNA
4.5e-12

Alkaloid biosynthesis II
PIK3C2B Homo sapiens phosphatidylinositol-4-phosphate 3-

kinase, catalytic subunit type 2 beta (PIK3C2B),
mRNA

3.3e-11
Inositol Phosphate
Metabolism

CSGALNACT
1

Homo sapiens chondroitin sulfate N-
acetylgalactosaminyltransferase 1 (CSGALNACT1),
transcript variant 2, mRNA

4.2e-11
Chondroitin / heparan
sulfate biosynthesis

IDS Homo sapiens iduronate 2-sulfatase (IDS), transcript
variant 1, mRNA

4.4e-11
*3

HS3ST1 Homo sapiens heparan sulfate (glucosamine) 3-O-
sulfotransferase 1 (HS3ST1), mRNA

1.1e-10 Chondroitin / heparan
sulfate biosynthesis

LIPG Homo sapiens lipase, endothelial (LIPG), mRNA 1.7e-10 Triacylglycerol Synthesis
CTH Homo sapiens cystathionase (cystathionine gamma-

lyase) (CTH), transcript variant 3, mRNA
1.8e-10

*4
TUSC3 Homo sapiens tumor suppressor candidate 3

(TUSC3), transcript variant 1, mRNA
2.8e-10

Oxidative Phosphorylation
SLC33A1 Homo sapiens solute carrier family 33 (acetyl-CoA

transporter), member 1 (SLC33A1), transcript
variant 1, mRNA

3.5e-10

*5
UXS1 Homo sapiens UDP-glucuronate decarboxylase 1

(UXS1), transcript variant 1, mRNA
5.9e-10 Nucleotide Sugar

Metabolism
ALDH3A2 Homo sapiens aldehyde dehydrogenase 3 family,

member A2 (ALDH3A2), transcript variant 2,
mRNA

9.3e-10

*6
AK4 Homo sapiens adenylate kinase 4 (AK4), nuclear

gene encoding mitochondrial protein, transcript
variant 1, mRNA

1,00E-09

Nucleotides
RRM2 Homo sapiens ribonucleotide reductase M2 (RRM2),

transcript variant 2, mRNA
1.2e-09

Nucleotides
GFPT1 Homo sapiens glutamine--fructose-6-phosphate

transaminase 1 (GFPT1), transcript variant 1, mRNA
1.2e-09

Aminosugar Metabolism
GCNT1 Homo sapiens glucosaminyl (N-acetyl) transferase 1,

core 2 (GCNT1), transcript variant 3, mRNA
1.3e-09

O-Glycan Biosynthesis
BHMT2 Homo sapiens betaine--homocysteine S-

methyltransferase 2 (BHMT2), transcript variant 2,
mRNA

1.3e-09
Glycine, Serine, and
Threonine Metabolism

SAT1 Homo sapiens spermidine/spermine N1-
acetyltransferase 1 (SAT1), transcript variant 1,
mRNA

1.9e-09
Arginine and Proline
Metabolism

PLA2G12A Homo sapiens phospholipase A2, group XIIA
(PLA2G12A), mRNA

3.1e-09 Glycerophospholipid
Metabolism

RDH10 Homo sapiens retinol dehydrogenase 10 (all-trans)
(RDH10), mRNA

4.8e-09
Vitamin A Metabolism

ALAS1 Homo sapiens aminolevulinate, delta-, synthase 1
(ALAS1), nuclear gene encoding mitochondrial
protein, transcript variant 1, mRNA

5.3e-09
Glycine, Serine, and
Threonine Metabolism

SULT1A1 Homo sapiens sulfotransferase family, cytosolic, 1A,
phenol-preferring, member 1 (SULT1A1), transcript

8.9e-09
*7



variant 1, mRNA
GK Homo sapiens glycerol kinase (GK), transcript

variant 2, mRNA
1,00E-08 Glycerophospholipid

Metabolism
FADS1 Homo sapiens fatty acid desaturase 1 (FADS1),

mRNA
1,00E-08

Fatty acid elongation
PAPSS2 Homo sapiens 3-phosphoadenosine 5-phosphosulfate

synthase 2 (PAPSS2), transcript variant 2, mRNA
1,00E-08

*8
MTHFD2L Homo sapiens methylenetetrahydrofolate

dehydrogenase (NADP+ dependent) 2-like
(MTHFD2L), mRNA

1.4e-08

Folate Metabolism
CHST14 Homo sapiens carbohydrate (N-acetylgalactosamine

4-0) sulfotransferase 14 (CHST14), mRNA
1.5e-08 Chondroitin / heparan

sulfate biosynthesis
ADSS Homo sapiens adenylosuccinate synthase (ADSS),

mRNA
1.9e-08

Nucleotides
ALDH6A1 Homo sapiens aldehyde dehydrogenase 6 family,

member A1 (ALDH6A1), nuclear gene encoding
mitochondrial protein, mRNA

2.9e-08

*9
P4HA2 Homo sapiens prolyl 4-hydroxylase, alpha

polypeptide II (P4HA2), transcript variant 2, mRNA
3,00E-08 Arginine and Proline

Metabolism
ATP6V1B2 Homo sapiens ATPase, H+ transporting, lysosomal

56/58kDa, V1 subunit B2 (ATP6V1B2), mRNA
3.6e-08

Transport, Lysosomal
ATP1B1 Homo sapiens ATPase, Na+/K+ transporting, beta 1

polypeptide (ATP1B1), mRNA
4,00E-08

Transport, Extracellular
CYB5D1 Homo sapiens cytochrome b5 domain containing 1

(CYB5D1), mRNA
4.2e-08

Pyruvate Metabolism
ASNS Homo sapiens asparagine synthetase (glutamine-

hydrolyzing) (ASNS), transcript variant 4, mRNA
4.8e-08 Alanine and Aspartate

Metabolism
G6PD Homo sapiens glucose-6-phosphate dehydrogenase

(G6PD), transcript variant 1, mRNA
5.2e-08 Pentose Phosphate

Pathway
SLC22A4 Homo sapiens solute carrier family 22 (organic

cation/ergothioneine transporter), member 4
(SLC22A4), mRNA

6.2e-08

Transport, Extracellular
ALDH2 Homo sapiens aldehyde dehydrogenase 2 family

(mitochondrial) (ALDH2), nuclear gene encoding
mitochondrial protein, transcript variant 1, mRNA

7,00E-08

*10
GLRX Homo sapiens glutaredoxin (thioltransferase)

(GLRX), transcript variant 3, mRNA
7.7e-08 Ascorbate and Aldarate

Metabolism
DGKH Homo sapiens diacylglycerol kinase, eta (DGKH),

transcript variant 3, mRNA
1.4e-07 Glycerophospholipid

Metabolism
ETNK1 Homo sapiens ethanolamine kinase 1 (ETNK1),

transcript variant 1, mRNA
1.8e-07 Glycerophospholipid

Metabolism
HK2 Homo sapiens hexokinase 2 (HK2), mRNA 2.5e-07 *11
RFK Homo sapiens riboflavin kinase (RFK), mRNA 2.5e-07 Riboflavin Metabolism
KYNU Homo sapiens kynureninase (KYNU), transcript

variant 3, mRNA
2.7e-07

Tryptophan metabolism
PLD1 Homo sapiens phospholipase D1,

phosphatidylcholine-specific (PLD1), transcript
variant 2, mRNA

4.3e-07
Glycerophospholipid
Metabolism

GALK2 Homo sapiens galactokinase 2 (GALK2), transcript
variant 2, mRNA

5.2e-07
Galactose metabolism

TYMS Homo sapiens thymidylate synthetase (TYMS),
mRNA

5.3e-07
Nucleotides

PGD Homo sapiens phosphogluconate dehydrogenase
(PGD), mRNA

6.5e-07 Pentose Phosphate
Pathway

ADK Homo sapiens adenosine kinase (ADK), transcript
variant 4, mRNA

1,00E-06
Nucleotides

SLC7A5 Homo sapiens solute carrier family 7 (amino acid 1.1e-06 Transport, Extracellular



transporter light chain, L system), member 5
(SLC7A5), mRNA

ENO2 Homo sapiens enolase 2 (gamma, neuronal) (ENO2),
mRNA

1.2e-06 Glycolysis/Gluconeogenes
is

GBE1 Homo sapiens glucan (1,4-alpha-), branching
enzyme 1 (GBE1), mRNA

1.2e-06 Starch and Sucrose
Metabolism

IP6K2 Homo sapiens inositol hexakisphosphate kinase 2
(IP6K2), transcript variant 2, mRNA

1.2e-06 Inositol Phosphate
Metabolism

MAN1C1 Homo sapiens mannosidase, alpha, class 1C,
member 1 (MAN1C1), mRNA

1.2e-06
N-Glycan Biosynthesis

GPX3 Homo sapiens glutathione peroxidase 3 (plasma)
(GPX3), mRNA

1.2e-06
Glutathione Metabolism

ATP6V1D Homo sapiens ATPase, H+ transporting, lysosomal
34kDa, V1 subunit D (ATP6V1D), mRNA

1.3e-06
Transport, Lysosomal

UCK2 Homo sapiens uridine-cytidine kinase 2 (UCK2),
mRNA

1.4e-06
*12

PIGW Homo sapiens phosphatidylinositol glycan anchor
biosynthesis, class W (PIGW), mRNA

1.4e-06 Glycosylphosphatidylinosi
tol (GPI)-anchor
biosynthesis

PPAP2B Homo sapiens phosphatidic acid phosphatase type
2B (PPAP2B), mRNA

1.5e-06
Triacylglycerol Synthesis

SOD1 Homo sapiens superoxide dismutase 1, soluble
(SOD1), mRNA

1.9e-06
ROS Detoxification

MAOA Homo sapiens monoamine oxidase A (MAOA),
nuclear gene encoding mitochondrial protein,
transcript variant 1, mRNA

2.1e-06

*13
ETFDH Homo sapiens electron-transferring-flavoprotein

dehydrogenase (ETFDH), nuclear gene encoding
mitochondrial protein, mRNA

2.1e-06

Fatty acid oxidation
ST3GAL5 Homo sapiens ST3 beta-galactoside alpha-2,3-

sialyltransferase 5 (ST3GAL5), transcript variant 2,
mRNA

2.8e-06

Sphingolipid Metabolism
CHSY1 Homo sapiens chondroitin sulfate synthase 1

(CHSY1), mRNA
3.2e-06 Chondroitin / heparan

sulfate biosynthesis
SUOX Homo sapiens sulfite oxidase (SUOX), nuclear gene

encoding mitochondrial protein, transcript variant 1,
mRNA

4.1e-06

Cysteine Metabolism
MGAT4A Homo sapiens mannosyl (alpha-1,3-)-glycoprotein

beta-1,4-N-acetylglucosaminyltransferase, isozyme
A (MGAT4A), transcript variant 1, mRNA

4.3e-06

N-Glycan Biosynthesis
SLC26A11 Homo sapiens solute carrier family 26, member 11

(SLC26A11), transcript variant 1, mRNA
4.6e-06

Transport, Extracellular
PYGL Homo sapiens phosphorylase, glycogen, liver

(PYGL), transcript variant 2, mRNA
5.1e-06 Starch and Sucrose

Metabolism
PPAT Homo sapiens phosphoribosyl pyrophosphate

amidotransferase (PPAT), mRNA
5.2e-06

IMP Biosynthesis
MSMO1 Homo sapiens methylsterol monooxygenase 1

(MSMO1), transcript variant 2, mRNA
5.6e-06

Cholesterol Metabolism
AKR1B1 Homo sapiens aldo-keto reductase family 1, member

B1 (aldose reductase) (AKR1B1), mRNA
5.6e-06

*14
SLC26A2 Homo sapiens solute carrier family 26 (sulfate

transporter), member 2 (SLC26A2), mRNA
5.8e-06

Transport, Extracellular
AGPAT5 Homo sapiens 1-acylglycerol-3-phosphate O-

acyltransferase 5 (lysophosphatidic acid
acyltransferase, epsilon) (AGPAT5), mRNA

7,00E-06

Triacylglycerol Synthesis
CMAS Homo sapiens cytidine monophosphate N-

acetylneuraminic acid synthetase (CMAS), mRNA
9,00E-06

Aminosugar Metabolism
SLC12A6 Homo sapiens solute carrier family 12 9.2e-06 Transport, Extracellular



(potassium/chloride transporters), member 6
(SLC12A6), transcript variant 3, mRNA

Table S5, *.

*1 *2 *3
TXNRD1 SLC3A2 IDS
Nucleotides Transport, Extracellular Heparan sulfate degradation
Miscellaneous Starch and Sucrose Metabolism Chondroitin sulfate degradation

*4 *5 *6
CTH SLC33A1 ALDH3A2
Cysteine Metabolism Transport, Extracellular Tryptophan metabolism
Selenoamino acid metabolism Transport, Endoplasmic

Reticular
Fatty Acid Metabolism

Sphingolipid Metabolism Glycolysis/Gluconeogenesis
beta-Alanine metabolism
Glyoxylate and Dicarboxylate Metabolism
Ascorbate and Aldarate Metabolism
Histidine Metabolism
Pyruvate Metabolism
Arginine and Proline Metabolism
Limonene and pinene degradation

*7 *8 *9
SULT1A1 PAPSS2 ALDH6A1
CYP Metabolism Selenoamino acid metabolism Glyoxylate and Dicarboxylate Metabolism
Tyrosine metabolism Nucleotides Pyruvate Metabolism
Steroid Metabolism Valine, Leucine, and Isoleucine

Metabolism
Propanoate Metabolism

*10 *11 *12
ALDH2 HK2 UCK2
Tryptophan metabolism Glycolysis/Gluconeogenesis Nucleotides
Glycolysis/Gluconeogenesis Aminosugar Metabolism Pyrimidine Biosynthesis
beta-Alanine metabolism Fructose and Mannose Metabolism
Glyoxylate and Dicarboxylate Metabolism
Ascorbate and Aldarate Metabolism
Histidine Metabolism
Pyruvate Metabolism
Arginine and Proline Metabolism
Limonene and pinene degradation

*13 *14
MAOA AKR1B1



Tryptophan metabolism Glycine, Serine, and Threonine Metabolism*
Tyrosine metabolism Pyruvate Metabolism
Arginine and Proline
Metabolism

Pentose and Glucuronate Interconversions

Phenylalanine metabolism Galactose metabolism
Fructose and Mannose Metabolism

Figure S4 Barplots on significant genes (combined P-value <0.01) in

Transport Lysosomal, Glutamate metabolism, Ascorbate and Aldarate

Metabolism, Cholesterol Metabolism and steroid metabolism pathways
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Figure S5 visualization tracks for cholesterol metabolism pathway RNA-

and GRO-seq data and ENCODE chromatin markers.
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