
 

 

 

Analysis of tissue specific regulatory 

targets of co-factor Pgc-1α using 

bioinformatics methods 
__________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Krista Kokki 

Master’s thesis 

Master of Science program in Biosciences, major in Bioscience 

University of Finland, Faculty of Science and Forestry 

University of Eastern Finland 

October 2015 



UNIVERSITY OF EASTERN FINLAND, Faculty of Health Sciences 

Master of Science Program in Biosciences 

KRISTA KOKKI: Analysis of tissue specific regulatory targets of Pgc-1α using 

bioinformatics methods 

Master’s thesis, 103 pages 

Instructors: Merja Heinäniemi (Docent), Petri Pölönen (M.Sc) 

October 2015 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Key words: Pgc-1α, enrichment analysis, cardiac hypertrophy, circadian rhythm 

 

Abstract 

 

Background. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha (Pgc-1α) 

is coactivator heavily involved in cellular metabolism and energy homeostasis. It has been 

linked to hypertrophy in muscle tissues and identified as a putative target for treatment, but it 

remains unclear if it could be used for this purpose. The effect of overexpression of Pgc-1α 

across tissues is not known either, nor is its resemblance to physiological and pathological 

hypertrophy. 

Aims. The goal of the study was to investigate if Pgc-1α overexpression would be beneficial in 

treating cardiac hypertrophy by applying bioinformatics methods on genome-wide RNA 

expression profiles. The effect of Pgc-1α overexpression between heart and skeletal muscle was 

investigated in the respective tissues, and resemblance to physiological and pathological 

hypertrophy was studied. 

Methods. RNA-seq Pgc-1α overexpression dataset from mice was studied in comparison to 

publicly available RNA-seq and microarray experiments. The data was computationally 

processed, and results were analyzed by using variety of bioinformatics methods, such as gene 

set enrichment. 

Results. Gene set enrichment and pathway analysis revealed metabolic differences between 

Pgc-1α overexpression in heart and skeletal muscle. As expected, statistical analysis revealed 

Pgc-1α overexpression to resemble physiological rather than pathological cardiac hypertrophy. 

Surprisingly, Pgc-1α overexpression was also found to cause downregulation of the circadian 

clock genes. 

Conclusions. The effect Pgc-1α overexpression was found to differ between heart and skeletal 

muscle, and it was found to resemble physiological rather than pathological cardiac 

hypertrophy. However, it seems that uncontrolled Pgc-1α overexpression disrupts circadian 

rhythm and thus affects its possibility as treatment target. Despite this, Pgc-1α may be a possible 

target in treating cardiac hypertrophy, but the success may lay in greatly controlling the 

overexpression, thus making clinical window likely to be very narrow. Nonetheless, further 

studies concerning the effects of Pgc-1α overexpression in circadian rhythm are necessary 

before approving or discarding its possibility as treatment target.  
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1 INTRODUCTION 

 

High-throughput experiments, such as next-generation sequencing, have generated large 

amounts of genome-wide expression data. These are collected in public databases, available to 

everyone. The challenge no longer lies in generating the data but interpreting the results in 

biologically meaningful way. At first, it was thought that biological mechanisms could be 

detected from the genes showing the largest differences. This, however, proved to have 

technical and biological limitations, resulting in false biological interpretations at its worst1–3. 

Gene sets were introduced to overcome the challenges that focusing to a few genes brought up. 

Gene sets are group of genes sharing the same function, defined based on prior knowledge, such 

as biological pathway. The approach was developed to discover differences between two 

distinct phenotypes, such as wild type versus tumor sample. Roughly, if gene set is associated 

with phenotype, enriched in other words, it contains more differentially expressed genes 

(DEGs) that could be expected by chance alone. Enrichment analysis have also been extended 

to classification based on expression levels (such as identification of tumor samples) and even 

to gene regulatory network analyses3. 

In this master’s thesis, gene set enrichment analysis was used to study the overexpression of 

coactivator Pgc-1α, master regulator of energy metabolism. Our own gene expression data was 

compared to publicly available genome-wide datasets by using computational methods to 

discover and compare the regulated pathways between different tissues and disease states. 

This master’s thesis is divided into two main parts: literature review and experimental part. In 

literature review, biology of Pgc-1α and its role in heart, in ground and hypertrophy states along 

with function in muscle tissue and importance in regulation of the circadian rhythm is 

introduced. The main part of the literature review focuses on gene set enrichment analyses. 

Genome-wide expression data is also introduced. The experimental part consists of presentation 

of the aims, results and discussion of conclusions. Descriptions of the algorithms used in 

analysis of gene expression data and gene set enrichment used in this thesis are depicted in 

materials and methods section. 

 

  



2 REVIEW OF LITERATURE 

 

2.1 Introduction to physiological role of Pgc-1α 

 

2.1.1 Normal state 

 

Pgc-1α, peroxisome proliferator-activated receptor gamma co-activator-1 alpha, is a co-

activator involved in variety of regulatory functions in cellular metabolism and energy 

homeostasis. Due to its nature as co-activator, Pgc-1α regulates gene expression through 

protein-protein interactions with transcription factors (TFs) that possess deoxyribonucleic acid 

(DNA) binding domains rather directly binding to DNA. A single co-activator is capable of 

interacting with variety of TFs and thus regulating the expression of numerous genes and 

biological processes. It has also been suggested that co-activators can be post-translationally 

modulated by intracellular pathways and targeted by ubiquitination4. 

Pgc-1α is preferentially expressed in tissues with high oxidative capacity, such as heart, skeletal 

muscle and brown adipose tissue but high expression has also been detected in brain and kidney. 

In these tissues, Pgc-1α has critical role in the regulation of mitochondrial biogenesis and 

energy metabolism5. 

Moreover, Pgc-1α is one of the main regulators of nuclear respiratory factor-1 (Nrf-1) and -2 

(Nrf-2) and has been shown to increase and co-activate these TFs and their target genes5,6. Nrfs 

have been widely studied due to their role in mitochondrial biogenesis. By regulating the 

expression of mitochondrial transcription factor A (Tfam), coordinator between mitochondrial 

and nuclear activation during mitochondrial biogenesis, they are responsible for transcription 

and replication of mitochondrial genes6,7. The expression of nuclear respiratory chain subunits 

and other proteins required for mitochondrial functions are also controlled by Nrfs5. 

Nrfs are the key interaction partners of Pgc-1α but the prominent effect of Pgc-1α on biological 

processes can’t be explained by these interactions alone. Pgc-1α has been linked to variety of 

other biological energy metabolism processes within and outside mitochondria. These include 

mitochondrial fatty acid oxidation and oxidative phosphorylation inside the mitochondria and 

gluconeogenesis, cellular respiration and electron transport chain outside the mitochondrion4,5,8. 



Pgc-1α has also been shown to widely co-operate with nuclear receptor family members, such 

as glucocorticoid receptor and peroxisome proliferator-activated receptors (Ppar) α and -γ. 

However, it has also been suggested that these interactions are species-specific. According to a 

study which examined interactions of transcriptionally regulated proteins, there’s no interaction 

between Pgc-1α and Ppar-α and -γ in mouse, whereas in human, these interactions occur9. 

 

 

2.1.2 Skeletal muscle - Pgc-1α in exercise 

 

Physical exercise and training have been linked with lower mortality and reduced prevalence 

of metabolic diseases. Physical inactivity, accompanied with low whole-aerobic capacity, 

muscle mitochondrial content and oxidative activity have been associated with development of 

metabolic disorders. Hence the improvement of skeletal muscle function, especially its 

oxidative metabolism, is considered as a possible intervention point in treatment and prevention 

of metabolic diseases10. 

It is also known that increased contractile activity, such as endurance exercise training, 

promotes fibre-type transformation in skeletal muscle. One of the key players in this 

transformation is Pgc-1α. Exercise training induces the upregulation of muscle Pgc-1α levels 

which improves not only muscle fibre-type switching (from high speed glycolytic towards high 

endurance oxidative fibres) through calcium cascade but also mitochondrial biogenesis, fatty 

acid oxidation and variety of other important pathways. The overexpression of Pgc-1α in 

skeletal muscle has also been demonstrated to increase glucose uptake, causing prevention of 

depletion of glycogen and thus improving performance. Moreover, skeletal muscle specific 

Pgc-1α knockout mice have been shown to have abnormal glucose homeostasis10–12. 

 

 

  



2.1.3 Heart physiology and exercise - hypertrophy and Pgc-1α 

 

Heart is an organ with excessive energy requirements. These needs are met by high-capacity 

mitochondrial system, accounting for over 90 % of energy production for cardiac muscle13. One 

of the main regulators of this mitochondrial biogenesis is Pgc-1α, cofactor highly expressed in 

the heart. 

Decrease of Pgc-1α has been linked with conversion of fatty acid oxidation to glycolytic 

metabolism which causes cardiac hypertrophy, thickening of the heart muscle13. However, there 

are two types of hypertrophy: physiological and pathological. Physiological hypertrophy is a 

natural state of a heart which takes place when there’s physiological increase in demand of the 

heart. This may happen during training or pregnancy, for example. On the other hand, 

pathological hypertrophy is severe state associated with loss of cardiomyocytes and heart 

failure14. 

Whereas decrease in Pgc-1α expression has been linked with conversion from fatty acid 

oxidation to glycolytic metabolism, overexpression of the cofactor has been associated with 

elevated levels of mitochondrial biogenesis, fatty acid beta-oxidation8 and electron transport 

chain15, for example. Improvement of mitochondrial function in cardiac diseases such as 

hypertrophy may be reached through Pgc-1α overexpression, marking it as potential treatment 

target8. 

However, massive overexpression of Pgc-1α has been linked with dilated cardiomyopathy, 

disease in which heart muscle doesn’t contract normally, resulting in inefficient blood 

pumping8. Therefore, therapeutic overexpression of Pgc-1α should be moderate and approached 

with caution. 

 

 

2.2 Role in the regulation of the circadian rhythm 

 

Circadian rhythm is a biological process controlled by circadian clock, which responds to self-

sustained day/night cycle of the organism’s environment, naturally ~24 hour rhythm. In 

addition to the light, nutrient availability is the most important entrainment cue. This light-dark 



cycle, which most living things, including animals, plants and most microbes possess, 

drastically affects bodily functions, such as behavior, metabolism and body temperature16–21. 

The disruptions of the system have been linked to variety of diseases, including obesity, 

diabetes, certain cancers and mental problems, such as depression and schizophrenia16,19. Pgc-

1α, key regulator of cellular metabolism, has been identified as the key link between changes 

in metabolism and circadian clock. 

At the molecular level, the circadian clock represents a complex gene regulatory network 

composed of positive and negative feedback loops (Figure 1.). The major purpose of the 

circadian clock is to produce rhythms in behavior and physiology. This can be achieved through 

rhythmic expression of genes encoding regulators and enzymes of various metabolic pathways 

which must have different phases across the organism depending of the tissue. Therefore, the 

so-called “master clock” suprachiasmatic nucleus (SCN), synchronizes the “peripheral clock”, 

system present virtually in all tissues16,17. According to the current orchestra model, each 

peripheral clock plays its own “instrument” but central clock guides the “melody”, in this case 

physiological output rhythms. Thus, each peripheral clock adapts to its own internal and 

external stimuli, such as feeding cues from liver and kidney, but light-dark cues are sensed by 

central clock22. Competing model is known as master-slave model and suggests that peripheral 

clocks are synchronized by SCN and not affected by external or internal stimuli. However, 

recent studies support the former hypothesis rather than the latter22. It is also justifiable in 

biological sense; the major purpose of the circadian clock is, after all, to produce rhythms in 

behavior and physiology. This can be achieved through rhythmic expression of genes encoding 

regulators and enzymes of various metabolic pathways. These output pathways must have 

different phases across the organism depending of the tissue and thus, a single circadian 

transcription factor with inflexible activity phase would do a poor job22. 

Despite the extensive research of circadian clock, not all of its components are yet known. 

Currently, two genes lie at the core of the regulation: Clock (Circadian locomoter output cycles 

protein kaput) and Bmal1 (also known as Arntl; aryl hydrocarbon receptor nuclear translocator-

like protein 1). They encode TFs that activate the transcription of co-repressors belonging to 

the Period (Per1, Per2, Per3) and Cryptochrome (Cry1, Cry2) gene families, which in turn 

represses Clock/Bmal1 activity, thus causing inhibition of their own expression18–20. This forms 

the first feedback loop. Another feedback loop, formed by family members of ROR (retinoid 

orphan receptor) and Rev-erb (nuclear receptor subfamily 1) controls the expression of Bmal1 

and Clock through feedback loop23. Both REV-ERBα (also known as NR1D2; nuclear receptor 



subfamily 1, group D, member 2) and RORa (RAR related orphan receptor A) directly affect 

the circadian clock by regulating Bmal1. This promotion of Bmal1 is the approach used by Pgc-

1α18–20. Due to these two feedback loops, the clockwork can regulate the expression of target 

genes through two widely different phases. In addition, the accumulation of some proteins 

requires time, delaying the phase of some circadian output regulators, further driving rhythmic 

transcription23. Interestingly, it has been suggested that effects of Pgc-1α, at least on Per and 

Cry, are tissue specific21. 

 

 

Figure 1. Schematic picture of the mouse circadian pathway from KEGG. According to 

pathway database Kyoto Encyclopedia of Genes and Genomes (KEGG), the pathway is entirely 

conserved with human.  

 

 



2.3 Genome-wide gene expression data 

 

The development of the high-throughput experiments during the last decade has enabled the 

possibility to inspect the whole genome at once, instead of looking only one or two genes. 

Variety of genome-wide methods have been implemented, allowing the expression changes to 

be measured on many levels; for example, microarray and RNA-sequencing (ribonucleic acid) 

measure mature RNA (mRNA) levels whereas chromatin immunoprecipitation followed by 

deep sequencing (ChIP-seq) measures protein-DNA interaction. 

Due to these genome-wide methods, biology has become a rather data-rich field1. This large 

amount of data is collected in public archives, granting worldwide access to everyone2. 

Therefore the challenge no longer lies in generating the data but in analyzing it. Computational 

methods have become necessary in handling, processing and analyzing the data, leading to 

implementation of numerous tools3 – for example, TopHat is able to align the RNA-sequencing 

(RNA-seq) reads24 and Integrative Genomics Viewer25 can be used to visualize genomic 

datasets. 

High-throughput genome-wide experimentation has also led to the characterization of most 

components of organisms and therefore the focus has shifted from molecules to networks. In 

other words, it is of interest to understand how these molecules work with each other as a part 

of a whole organism instead of studying the components one by one1. One way to understand 

these biological networks better is pathway analysis which often derives from gene set 

enrichment analysis. These results can be further visualized in, for example, Cytoscape26. 

 

 

2.4 Microarrays 

 

Microarrays are one of the most popular high-throughput methods and like other genome-wide 

methods, they allow the investigation of thousands of genes at a time. Microarrays have been 

successfully used for detecting gene expression, single nucleotide polymorphisms (SNPs), 

alternative RNA splicing and so on27. 



There are mainly two types of DNA arrays. The first type, preferred in clinical research, uses 

small single-stranded oligonucleotides whereas the second uses complementary DNA (cDNA) 

to measure the level of mRNA27. With microarray, it is also possible to measure exon-level 

expression. These exon arrays differ from traditional microarrays in terms of design of control 

probes for background correction and in number and placement of the oligonucleotide probes. 

Due to these more evenly distributed probes and their higher coverage, it has been estimated 

that these exon arrays are able to provide more accurate measurements of gene expression than 

traditional microarrays28,29. 

The general microarray experiment process is shown in Figure 2. The first step of the generic 

microarray experiment is to collect mRNA molecules present in the cell at time point of interest. 

To determine which genes are expressed in the cell and which are not, mRNA molecules are 

labeled with reverse transcriptase which generates complementary cDNA to mRNA. During 

this process, either extracted mRNA or cDNA is dyed with fluorescence. Depending of the 

experimental design, researcher may use more than one dye in the experiment. In comparison 

studies, for example, control samples can be dyed with green and treated samples with red.  

After dyeing labeled cDNAs are placed onto microarray slide and hybridized by incubating. 

Next, the array is washed to remove non-specific hybridization. After this, the light generated 

by fluorescent dye/dyes is detected by scanner and digital image is generated. A very bright 

fluorescent area corresponds to high amount of mRNA which in turn corresponds to more 

labeled cDNAs. Genes that are less active produce less mRNA, corresponding to less cDNA 

which shows as dimmer fluorescent area. In short, the brighter the area, the higher the gene 

expression. Finally, the digital image is transformed to numerical reading for each spot and 

processed by integration of intensities and subtraction of the background noise. The final value 

is then proportional to the concentration of the target sequence of the sample. At last, these 

values need to be computationally analyzed to gain the results27. 

 

 



 

Figure 2. Representation of a general microarray experiments. Arrows represent process and 

pictures or text represent the product. Left figure represents two-dye experiment and the right 

figure one-dye experiment. Figure taken from reference 27. 

 

Although microarrays are effective and widely used method, they suffer for quite a few 

shortcomings, such as low sensitivity for genes expressed in high and low levels30 and 

specificity due to non-specific hybridization31. Signals of greater intensity (bright spots), in 

other words genes with high expression, saturate due to large dynamic range of gene 

expression32, whereas genes with low expression are often lost in corrections for the 

background33. However, one of the biggest issues of microarrays lies in probe design. In 

general, each probe represents gene or transcript of interest. These probes differ in their 

hybridization properties and arrays are limited to interrogating only those genes for which 

probes are designed34. Each probe is part of a probe set, a collection of probes to interrogate 

target sequence, such as gene or group of highly similar genes. Differently designed probe sets 

result in different results, naturally35. 



The probe design is where the traditional 3’ and exon arrays differ. In exon arrays, up to four 

probes are selected for the exonic region whereas traditional 3’ expression arrays only target 

the end of mRNA sequence. The biggest difference lies in this; whereas traditional 3’ arrays 

are designed to detect only the gene expression level, the exon array is able to detect the 

expression of each exon (Figure 3.). In both, the background is determined with separate probes 

to which none of the gene transcripts binds29. 

 

 

Figure 3. Probe design of exon arrays. a) Exon-intron structure of a gene. Black boxes 

represent exons. Gray boxes represent introns. Introns are not drawn to scale. b) Probe design 

of exon arrays. Four probes target each putative exon. c) Probe design of 3' expression arrays. 

Probes target the 3' end of the mRNA sequence. Figure taken from reference 29. 

 

The expression changes in genes regulated at the post-translational level cannot be detected 

with arrays36 either because measuring mRNA simply doesn’t reveal the post-transcriptional 

expression changes. Therefore, it is crucial to understand what can and cannot be measured 

with method of choice in order to design effective experiment. 

 

 

 

 



2.5 RNA-seq 

 

RNA-sequencing is a genome-wide high-throughput method which approaches to avoid 

weaknesses of microarrays. In comparison to microarrays, RNA-seq has advantages, such as 

very low background signal, large range of expression levels over the detection of transcripts 

and high accuracy of expression levels. Most importantly, RNA-seq doesn’t require probe 

design like microarrays and is therefore devoid of its issues1. 

In practice, the first step is the same in both microarray and RNA-seq; the collection of mRNA. 

After the collection, RNAs, total or fragmented, are converted into cDNA library. Sequencing 

adaptors are added to cDNA fragments and short sequences (30-400 bp, depending of the used 

technology) are obtained via high-throughput sequencing technology. Sequences can be 

obtained from one end (single-end sequencing) or both ends (pair-end sequencing). The 

resulting reads are traditionally aligned to reference genome or reference transcripts and 

classified as three types: exonic reads, junction reads and poly(A) end –reads. With these, 

expression profile is generated for each transcript30. A typical RNA-seq experiment is depicted 

in Figure 4. 



 

Figure 4. A typical RNA-seq experiment. Briefly, mRNA is converted into cDNA library with 

adaptors (blue) and adaptors are added to the reads. The short reads are aligned with the 

reference genome or transcriptome and classified as junction, exonic or poly(A) end reads. 

These are used to create base-resolution expression profile. Figure taken from reference 9. 

 

While RNA-seq is superior to many methods, it isn’t devoid of issues. Even if RNA-seq has 

lower technical variation, high level of reproducibility for both technical and biological 

replicates and smaller requirement for the amount of RNA samples, RNA-seq data has GC bias, 

it can suffer from mapping ambiguity for paralogous sequences and higher statistical power is 

needed to detect changes at higher counts30,37. There are also informatics challenges for 

complex and large transcriptomes due to numerous sequence read matches in multiple locations 



of the genome30. Therefore the challenge lies in developing computational methods that can 

take care of these problems and are still simple enough to use. The biggest problem of RNA-

seq is, however, abundance of ribosomal RNA (rRNA). RRNA is the most abundant RNA type, 

constituting 70-80 % of RNA in most species. Unless researcher is interested in rRNA, these 

must be removed from total RNA before sequencing to assure sufficient coverage of mRNA. 

Variety of methods have been implemented to overcome this challenge, such as enrichment of 

poly-A RNA transcripts38–41. Unlike RNA-seq, microarray is devoid of this problem due to pre-

designed probes. 

Nevertheless, both microarray and RNA-seq are robust, extensively used techniques and while 

they haven’t commonly been integrated, it has been reported that they complement each other 

in transcriptome profiling and even in finding target genes of a transcription factor41. 

 

 

2.6 Gene set enrichment methods 

 

Genome-wide expression analysis, such as microarray or RNA-seq, has become widely 

employed in research. A successful experiment results in long lists of differentially expressed 

genes. These DEGs are genes from collection of samples belonging to one or two classes, for 

example drug treated samples versus control samples. With statistical method of choice, for 

there are variety of them available, these individual genes have been extracted. Today, the 

challenge lies in interpreting these results and gaining insight of biological mechanisms 

beneath. 

One common approach is to focus on top and bottom genes of the list but this approach has its 

issues. By making conclusions solely based on expression levels of the genes showing the 

largest difference, the obtained results suffer greatly from poorly reproducible results and great 

information loss of associated genes due to strict cut-off and weak connection with the 

phenotype3,42,43. 

To overcome these issues shift from single genes to gene sets took place. Usage of gene sets 

makes it possible to gather also weak expression changes due to large set of genes showing 

significant pattern43. Gene sets, groups of genes sharing same function, are defined based on 

prior knowledge and constructed without reference to the data3. The gene sets needed in 



analysis are usually obtained from databases such as Kyoto Encyclopedia for Genes and 

Genomes (KEGG)44 and Biocarta45. 

A variety of methods exists to analyze statistical over-representations of genes in gene sets. 

Naturally, the result varies depending of the chosen method. One of the most common is Gene 

Set Enrichment Analysis (GSEA)3 which can be incorporated with programs such as 

R/Bioconductor and Java but also has a graphical user interface which doesn’t require any 

programming skills. Other easy and commonly used analyzing tools include Graphiteweb46 and 

Database for Annotation, Visualization and Integrated Discovery (DAVID)47. These two are 

public web servers for analysis and visualization of pathways. However, this kind of public and 

easy to use tools have limitations – for example, DAVID limits the maximum numbers of genes 

in a list and uses its own test (variation of hypergeometric test). In comparison, in Graphiteweb 

the analysis method can be chosen but there are only two pathway databases and three species 

of which to choose from. 

In general, there are two types of enrichment analysis: class prediction and class discovery. The 

two answer to different type of questions. 

Unsupervised class discovery searches for unknown biologically relevant taxonomy identified 

by set of co-expressed genes, for example. Question to which this type of analysis can be, for 

example: “Which gene sets are enriched in a list of differentially expressed genes?” 

In supervised class prediction, the idea is fundamentally different. Class prediction methods 

aim to build up a model that can be used for classification and prediction of sample classes. 

This can be achieved through supervised learning, by usage of training data, for example. 

Therefore, research question could be: “In which samples is pathway X active?” 

However, despite the fundamental difference between these two learning methods, the basic 

idea of the analysis’ workflow is the same (Figure 5.). 

 

 

Figure 5. Overview of gene enrichment method pipeline. The learning method is chosen based 

on the research question. After choosing the learning method, statistical method is chosen based 

on null hypothesis and significance is estimated with method of choice. Finally, significance 

value is calculated. 



2.6.1 Pathway/gene set databases 

 

Gene sets are groups of genes sharing the function. One example of a gene set is a pathway, 

which can be described as a set of biochemical reactions that are linked: one product is reactant 

or result of a subsequent reaction. In pathway database, this information is stored to describe 

biochemical reactions. The description is often of metabolic pathways, but may also be 

something else48. Examples of the databases include KEGG44, Reactome49 and Wikipathways50. 

There are variety of ways to build up a gene set. For example, in The Molecular Signatures 

Database (MSig)3, a collection of annotated gene sets, the gene sets are divided into eight major 

collections. These collections include curated and motif gene sets, oncogenic and immunologic 

signatures, for example. Curated gene sets are collections from various online pathway 

databases and publications whereas motif gene sets contain genes that share conserved cis-

regulatory motif across certain species. Oncogenic signatures represent signatures of cellular 

pathways whose function has been impaired in cancer, generated mainly from microarray data 

from National Center for Biotechnology Information whereas immunologic signatures 

represent cell states and disruptions within the immune system, generated by manual curation 

from the published immunology studies. 

When running analysis’ using gene sets from databases it is important to understand that even 

if the databases seemingly have the same pathway, the results may differ. This is mainly due to 

different annotations which derive from differences in the references to which the pathways are 

based on. Some pathways may also lack crucial information, such as citations and connections 

between the genes. Therefore, it is essential to not blindly trust the data and critically think the 

biological sensibility of the result. 

 

 

2.6.2 Unsupervised learning methods 

 

Unsupervised class discovery may be separated into two classes: competitive and self-contained 

methods. The biggest difference between the two is how the null hypothesis, which affects the 

choice of statistics, is formulated at the beginning of an experiment. 



Competitive null hypothesis may be: “H0. The genes in the gene set of interest are at most as 

often differentially expressed as the genes in the background gene set.” 

Whereas in the self-contained null hypothesis may be: “H0. No genes in the gene set are 

differentially expressed.”51 

Depending of the null hypothesis and the method of choice, local and/or global statistics are 

used for statistical calculations of the enrichment (Figure 6.). 

 

 

Figure 6. Schematic overview of unsupervised enrichment analysis, focus on statistics. In 

unsupervised methods, competitive or self-contained method is chosen based on null 

hypothesis. In competitive methods, local (gene-specific) statistics are first calculated and then 

converted so that global statistics (gene-set) can be calculated. In self-contained methods, global 

statistics are calculated without calculating local statistics first. For each statistic, variety of 

methods are available. After calculating global statistics, significance is estimated and 

eventually, significance value is calculated for each gene-set. 

 



After statistical calculations, significance of the result is calculated. There are non-parametric 

and parametric methods for significance calculation. In non-parametric methods, significance 

value is calculated via permutation or rotation (Figure 7.). 

 

 

Figure 7. Schematic overview of unsupervised enrichment analysis, focus on significance 

calculation. In unsupervised methods, significance can be calculated with either non-

parametric or parametric methods. Parametric methods assume that gene sets follow predefined 

distribution whereas non-parametric methods make no prior assumptions of the gene-set 

distribution. This null distribution is generated from permuting either gene-sets (row-wise 

randomization) or samples (column-wise randomization) or by rotation. Eventually 

significance value, traditionally P-value, for each gene-set is generated. Based on the 

significance value, the null hypothesis can be rejected at cutoff value, typically less than 0.05. 

  



2.6.2.1 Competitive methods 

 

Competitive test compares the differential expression of a gene set to its background set. 

Competitive tests are more popular than self-contained and there are many available, most 

common examples being hypergeometric test and GSEA3. 

Hypergeometric test tests statistical significance of successes of random draws (Figure 8.). In 

gene set enrichment, the question is as competitive null hypothesis. 

 

 

Figure 8. Schematic description of hypergeometric test. Measured genes are separated into 

two groups, interesting genes and background genes, by chosen cutoff. If the gene set (drawn 

set) contains more interesting genes than what would be expected from by random draw from 

all of the genes (background), genes of the gene set are overrepresented and thus gene set is 

enriched and null hypothesis is rejected. 

 

Other commonly used competitive gene set enrichment method is GSEA which uses its own 

algorithm. GSEA converts the expression levels into signal-to-noise ratio which is used to rank 

the genes based on the best distinction between two phenotypes. These phenotypes may be, for 

example, treated and untreated samples. The ranked list tells how different the two phenotypes 

are: If the genes of the gene set are found multiple times from the ranked list, top or bottom, the 



correlation with the phenotype is high. This is the enrichment score computed by GSEA, 

calculated by using a weighted Kolmogorov-Smirnov-like (KS) statistic. The algorithm 

calculates the score by going through the ranked list, increasing running-sum statistic when a 

gene in gene set is encountered and decreasing statistic when encountering genes that are not 

in gene set. The statistical significance is estimated by first creating null distribution. The null 

distribution is generated from permuting the phenotype labels and re-computing the enrichment 

scores. Typically, 1000 permutations are computed and recorded to obtain the null distribution 

of enrichment scores. The permutation of class labels is thought to preserve gene-gene 

correlations and provide biologically reasonable results. The empirical, nominal P-value is 

calculated relative to the null distribution. It is also possible to correct for multiple hypothesis 

testing by normalizing the enrichment score for each gene set and comparing the tails of the 

observed and null distributions of the normalized enrichment score3. 

Traditionally, GSEA is sample randomization, which means samples aka phenotypes are 

permuted. Other way to randomize is gene sampling. In the former, the phenotype is taken as 

the sampling unit when calculating P-value whereas in the latter, gene is the sampling unit51. 

Gene sampling methods are more popular than sample randomization ones, mostly due to small 

minimum sample requirement in practice. Gene sampling methods allow fairly small sample 

sizes, whereas subject sampling needs a high number of samples to perform properly. With 

gene sampling, however, one loses the correlations between the genes upon randomization51. 

This is unfortunate because in biological networks, only a handful of genes work alone. 

Therefore, it is recommended to use subject sampling when possible. 

As mentioned before, GSEA is one of the most popular gene set enrichment methods, but there 

are other similar ones. These include Gene Set Analysis (GSA)52, Significance Analysis of 

Function and Enrichment (SAFE)53 and Gene Set Variation Analysis (GSVA)54. 

For example, instead of KS statistics, in GSA and SAFE, user can choose the settings among 

the alternatives. In both, different combinations of local (gene-specific) and global (gene-set) 

are provided. For GSA, the default test statistics in R/Bioconductor package are mean and gene 

randomization, whereas for SAFE, t-test and Wilcoxon rank sum test are set as default. GSA 

was used in experimental part of this thesis. 

More complex example of gene set enrichment is GSVA, gene set variation analysis. GSVA is 

a non-parametric and unsupervised analysis. It starts by evaluating whether gene is highly or 

lowly expressed by using non-parametric kernel estimation. In microarray data, Gaussian kernel 



is used, whereas in case of RNA-seq data, discrete Poisson kernel is used. Then, expression 

level statistics are condensed into gene sets and sample-wise enrichment scores are calculated 

in order to up-weight the two tails of rank distribution. The enrichment score similar to GSEA’s; 

it is calculated by using KS statistic. Finally, KS statistics are turned to GSVA scores by using 

either the classical maximum deviation method or normalized enrichment statistic. The choice 

of the last statistic depends of what is wanted: if the gene sets are explicitly separated into “up” 

or “down”, the normalized GSVA should be used. Sometimes, however, pathways have genes 

that act strongly in both directions and under these circumstances, usage of maximum deviation 

is advised54.  

The comparison between different methods is, however, difficult. In competitive methods, it 

seems that their results have poor overlap, especially when compared with self-contained 

methods55. 

Furthermore, it is technically impossible to say which method is the best due to the lack of a 

gold standard. Some have tested variety of tools by with simulated datasets, and that’s when 

mean test outperformed GSEA’s KS, for example56. However, GSEA seems to outperform 

other tools when experimental datasets are used. Naturally, experimental dataset is more 

biologically relevant than simulated, but with the former results are harder to interpret. This is 

the case because there is no gold standard – it can be almost impossible to tell which gene sets 

are true positives and which true negatives. On the other hand, simulated datasets cannot 

substitute for experimental ones due to complexity of biological systems. It can also be argued 

that rejecting false positives is more important than detecting low true positives. Therefore, 

both simulated and experimental data should be used when testing the tools57. 

 

 

2.6.2.2 Self-contained methods 

 

A self-contained method does not compare the gene set to the background. Unlike competitive 

methods, self-contained methods don’t use any information of the genes outside the gene set. 

A self-contained test has more power than competitive one, which is due to the hypothesis being 

more restrictive. In some cases, however, the test may be too powerful: in case of many DEGs, 

it may call almost all gene sets as significant even if they were not. A self-contained test also 

doesn’t treat gene set differently from a single gene, which is something competitive test takes 



into account. Even if the gene set has only one or few genes, self-contained test will call the 

gene significant if the P-value is just below the defined cut-off value. Moreover, the self-

contained test looks all of the genes on the chip. It tests the global hypothesis, meaning that the 

test could be used, for example, for quality check of the data or as prediction interpretation51. 

Unlike competitive methods, self-contained methods are comparable and similar in 

performance of size and power when properly standardized58.  

Examples of self-contained methods include Globaltest59, Analysis of covariance (ANCOVA)58 

and Pathway Level Analysis for Gene Expression (PLAGE)60. In addition, variety of other 

statistical methods, such as KS test, Fisher’s test and tail strength can be modified to perform 

self-contained gene set analysis61. 

Globaltest is based on the idea of having close connection between finding DEGs and predicting 

clinical outcome. In other words, it tests if clinical status or phenotype (set as 0 and 1) is 

dependent of gene set. Should the gene expression patterns differ for clinical outcomes, group 

of genes, gene sets in other words, can be used to predict the outcome. This makes the null 

hypothesis so that none of the genes are correlated with the phenotype 1. To reject the null 

hypothesis, the genes in the gene set don’t need to have similar expression patterns, only many 

of the genes need to be correlated with the clinical outcome (phenotype 1). 

Mathematically Globaltest is modified generalized linear model which includes linear 

regression and logistic regression. By estimating regression parameters from the training data, 

general linear model can be used to predict the phenotype or clinical outcome and eventually 

compute the correlation with the phenotype. Despite Globaltest being a good self-contained 

method, it doesn’t come without limitations. Possibly the greatest drawbacks occurs if the 

sample size is small and there are lot of genes in the gene set – the total number of permutations 

won’t be large enough to attain low significance levels59. 

ANCOVA is very similar to Globaltest, but instead of testing if phenotype is dependent of gene 

expression, it tests if the gene sets with similar phenotypes have similar expression patterns. In 

other words, the roles of phenotypes and genes are exchanged in regression models58. Other 

examples of self-contained methods are Rotation gene set testing (ROAST)62 and PLAGE. Both 

ROAST and PLAGE are able to perform even if the number of samples is relatively low. In 

ROAST, this ability is based on usage of rotation (multivariate regression) instead of 

permutation and t-statistics. ROAST’s rotation, a Monte Carlo technology for multivariate 

regression, resembles fractional permutation. Due to this, it doesn’t depend on sample size and 



thus there is no limit to the number of rotations. Traditionally, 10 000 rotations are used62. In 

permutation on the other hand, a number of randomly picked genes (number based on the 

number of genes in the gene set and in the background gene set) are used to calculate enrichment 

score. Traditionally this is repeated at least 1000 times, and the gained values are used as a 

background for calculating P-values. 

In PLAGE, gene expression levels are first standardized to z-scores. Then, gene sets are 

converted to eigenfactors, “metagenes”, by using singular value decomposition. The first 

eigenvector with the highest eigenvalue, “metagene”, in the sample is used to define the activity 

level in the sample60.  

 

 

2.6.2.3 Parametric vs. non-parametric tests 

 

In competitive and self-contained methods, statistical significance can be calculated with 

parametric or non-parametric methods. Non-parametric methods make no prior assumptions of 

the distribution of the data whereas in parametric methods, assumption of the distribution is 

made. The genes in the gene set are expected to follow this, for example normal or bimodal, 

distribution. In order to have meaningful results, it is crucial that the data follows the presumed 

distribution. 

Non-parametric tests are, in general, hard to compute and thus, time-consuming. Simple 

parametric methods, such as χ2 and z-score, have been implemented in order to overcome this 

challenge. In this case, significance (P-value) can be computed analytically, which makes the 

computational calculations robust63. However, analytical background has been concluded to be 

less accurate than simulated one. Moreover, parametric methods ignore the gene-gene 

correlations, which affects the estimation of the significance of gene set enrichment. It has even 

been suggested that methods like this such be avoided64. 

Examples of parametric methods include Parametric Analysis of Gene set Enrichment 

(PAGE)65 and its variant, Generally Applicable Gene set Enrichment (GAGE)66. PAGE uses 

fold change between sample groups to calculate z-score and statistical significance65. GAGE, 

on the other hand, is a variant of PAGE and uses two-sample t-test instead of z-score with 

assumption that genes come from different distribution66. 



2.6.3 Supervised vs. unsupervised learning methods 

 

The idea between unsupervised and supervised learning methods is fundamentally different. 

Whereas unsupervised learning searches for unknown biological relevances, supervised 

learning aims to predict sample classes. 

Unsupervised methods are unbiased and allow identification of complex datasets without any 

prior assumptions. Supervised learning methods, on the other hand, aim is often to build a 

classifier or a predictor from training data. In supervised methods, samples are labeled to belong 

to a class whereas in unsupervised method, the differences are looked into without labeling. 

Naturally, distinction between different sample groups, such as treated and untreated, is often 

of interest, but this is achieved without labeling. Supervised method could be used, for example, 

to predict if Pgc-1α is over-expressed in the gene set or not. The same way, it could be used to 

predict whether hypertrophy is physiological or pathological. 

As mentioned, supervised methods need prior information about which samples or genes are 

grouped together. In terms of prediction of hypertrophy, this would mean variety of samples of 

both states with knowledge of corresponding hypertrophy states. These samples are used as a 

training set to build a classifier and therefore it is important to have “correct” classification for 

at least some of the samples. Due to this, the accuracy of supervised learning method depends 

heavily on the quality of the training set. Once the classifier has been built, it must be tested 

with independent test set, such as datasets with known physiological and pathological 

hypertrophy samples to estimate classification error and later to predict classes in other 

samples67,68. Overview of the method is shown in Figure 9. 



 

Figure 9. Schematic overview of supervised training method. With learning algorithm, 

training set with “correct” classification is used to build a classifier. Independent test set is used 

to test the classifier. Once classifier has been trained, it can be used to predict classes in other 

sets. 

 

Supervised learning methods have applications in variety of bioinformatics fields. For example 

in genomics they are used in prediction of splice sites along with identification of motifs and 

protein coding regions. 

Other fields of application include proteomics (prediction of function and secondary structure 

proteins), systems biology (inference of gene networks and metabolic pathways), microarrays 

(pre-processing, analysis), evolution studies (phylogenetic trees construction) and primer 

design69. 

The typical problem in supervised classification is overfitting of the data. This occurs when the 

model is too complex and has, for example, too many parameters compared to the sample size. 

In this case the model fits the training data, from which it has been developed, well. It is, 

however, unable to fit to the test set, resulting in poor predictive power. This problem is 



common in gene expression data which traditionally suffers from small sample sizes relative to 

number of genes. With too many parameters, the model ends up trying to find gene expression 

levels instead of wanted patterns. This problem can be avoided with dimensionality reduction 

and cross-validation with test set67,70. 

Whereas unsupervised methods are good starting point of the analysis, supervised methods aim 

to answer more specific questions (“Are there enriched pathways in my hypertrophy dataset?” 

vs. “Is the state of hypertrophy in this sample physiological or pathological?”). Generating the 

classifier also is more demanding and time-consuming than basic gene set enrichment analysis, 

but on the other hand, it is capable of answering to specific question of interest. Naturally, 

generation of a working classifier also requires more data than unsupervised gene set 

enrichment. In the end, both supervised and unsupervised methods have their pros and cons, 

and in order to achieve meaningful results, the choice of the method should always be based on 

the research question and hypothesis. 

 

 

3 AIMS OF THE STUDY  

 

There are three main questions this thesis aims to answer to: 

1) Is the effect of Pgc-1α overexpression on gene expression the same in cardiomyocytes and 

skeletal muscle? 

2) Does Pgc-1α overexpression resemble more physiological than pathological hypertrophy 

based on gene set enrichment analysis?  

3) Could Pgc-1α overexpression be used in treating cardiac hypertrophy? 

3.1) What is the effect on key pathways that are regulated in disease? 

3.2) Are there side effect causing pathways? 

The first aim arises from previous studies. It has been indicated that overexpression of Pgc-1α 

has similar effect in both heart and skeletal muscle12,71. Moreover, it has been indicated that the 

targets of Pgc-1α are the same in both tissues5,7,11. According to our hypothesis, this is not the 

case. 



The second and third aim, latter of which is the core of this thesis, are heavily linked together. 

Should Pgc-1α overexpression resemble pathological rather than physiological hypertrophy and 

therefore drive for pathological state of cardiomyocyte, it would be dangerous and potentially 

lethal for the organism. In this case, Pgc-1α overexpression should not be used in treating 

cardiac hypertrophy. Our hypothesis is that the state caused by Pgc-1α overexpression 

resembles more physiological than pathological hypertrophy and in that sense, it could be used 

as a potential treatment.  

Upon analyzing the pathways affected by Pgc-1α overexpression, circadian rhythm arose 

unexpectedly. This significant effect piqued our interest because, as explained in the literature 

review, circadian rhythm is essential to health and body functions, so heavy disruption of this 

system could make Pgc-1α overexpression a poor treatment. Thus more datasets were included 

and further studies were concluded. 

 

 

4 MATERIALS AND METHODS 

  

4.1 Datasets 

 

4.1.1 Pgc-1α overexpression dataset (Tavi et al.) 

 

Data from four genome-wide experiments were used in this project (Table 1.). The dataset of 

most interest was the RNA-seq data from Tavi et al. (unpublished) in which the impact of Pgc-

1α overexpression on cardiomyocytes was studied. C57HBL/&JolaHsd mice carried MCK-

PGC-1α mutation. For RNA-seq, hearts were collected from 16-week-old mice. RNA libraries 

were prepared according to dUTP protocol, generating paired and single end data. 

The dataset from Tavi et al. was computationally compared to three different datasets in order 

to gain answers to the research questions of this project. 

 



Table 1. Table of datasets used in this thesis. The “name” of the dataset, main contributor of 

the article and its accession number along with the database the data was extracted from are 

presented in the table. The used technique, number of replicates and tissue where the samples 

were extracted from are also displayed. All experiments were performed with mice. 

Name Accession Contributor Technique 

   RNA-seq Microarray Other 

Pgc-1α 

overexpression 

unpublished Tavi et al. x   

Skeletal 

muscle 

GSE40439 

(GEO) 

Pérez-

Schindler et 

al.72 

 x  

Exercise ERA037989 

(DNAnexus) 

Song et al.73 x   

Circadian 1 GSE43073 

(GEO) 

Young et al.74  x  

Circadian 2  Wu et al.75   x 

 

4.1.2 Skeletal muscle dataset (Pérez-Schindler et al.) 

 

One of the datasets used in this thesis analysis’ was skeletal muscle dataset from Pérez-

Schindler et al72. In the original study, comparison between nuclear receptor corepressor 1 

(NCoR1) muscle specific knockout mice were compared with Pgc-1α overexpression mice. 

NCoR1IoxP/IoxP specific mice had been generated like in previous study76, and to create NCoR1 

MKO mice, they were crossed with HSA-Cre transgenic animals. Pgc-1α muscle-specific 

transgenic (mTg) mice were generated like in previous studies77. The mice performed exercise 

by running treadmill for two days with variety of inclines and time. RNA was isolated from 

multiple organs, and microarray was performed with GeneChip Gene 1.0 ST Array System 

(Affymetrix) by using the RNA isolated from gastrocnemius. 



In this thesis, the Pgc-1α overexpression data from Pérez-Schindler et al. was analyzed and 

compared to Pasi et al. Pgc-1α overexpression data in order to see whether and how the effect 

of Pgc-1α overexpression varies between cardiomyocyte and skeletal muscle. 

 

4.1.3 Exercise dataset (Song et al.) 

 

In order to find out whether Pgc-1α resembles more physiological or pathological cardiac 

hypertrophy, Pgc-1α overexpression dataset was compared with microarray exercise data from 

Song et al73. Song et al. studied physiological and pathological hypertrophy by using RNA-seq. 

C57BL/6J mice were purchased and used in the study. Cardiac hypertrophy was induced to 

pathological mice group and its control group with intraperitoneal injection, as described in 

another study78. Physiological mice group swam for 4 weeks as described in their previous 

study79. cDNA libraries were prepared according to instructions from sample preparation kit 

(Illumina, San Diego, CA).  

 

4.1.4 Circadian rhythm datasets (Young et al. + Wu et al.) 

 

To gain better understanding of the effect of Pgc-1α overexpression in circadian rhythm, the 

data from Tavi et al. was compared to circadian rhythm dataset from Young et al74. This is 

referred as circadian dataset 1. Young et al. studied the effect on Bmal1 on circadian rhythm. 

As mentioned in the literature review, Bmal1 is one of the core clock components and known 

target of Pgc-1α. Bmal1 knockout mice, from C57B1/6J and wild-types from FVB/N 

background, were enforced into strict 12-hour light/12-hour dark cycle (Zeitgeber time 0). 

Microarray analysis were performed with Ref-8 BeadChips and the BeadStation System 

(Illumina, Inc., San Diego, CA) to ventricular tissue collected for every three hours for 24 hour 

period. The data was computationally analyzed and compared with the data from Tavi et al. 

The results from circadian rhythm dataset from Wu et al75 were also compared to Pgc-1α 

overexpression in order to identify the timepoint most affected by overexpression. The mutant 

mice (PER2s662G, PER2s662D, Pgc1α transgenic and overtime) were from C57BL/6J background, 

and were enforced to 12-hour light/12-hour dark cycle. Gastrocnemius and heart muscles were 

collected every 4 hours for 24 hours. 



Wu et al. identified seven circadian clock genes affected by Pgc-1α overexpression. The mice 

strain used in the study was the same as in experiment from Tavi et al. Due to this, experiment 

results from Wu et al. were of interest, despite the study being real-time qPCR with statistical 

analysis of ANOVA and Student t-test. This is referred as circadian dataset 2. 

 

 

4.2. Computational pre-processing of RNA-seq and microarray in 

differential expression analysis 

 

Computational part of both RNA-seq and microarray analysis starts after gaining millions of 

shorts reads from sequencing or after gaining the raw probe-level expression data from the array 

image. Different tools are used in pre-processing of RNA-seq and microarray, but the end 

results are the same. In order to gain differentially expressed genes or more accurately, 

transcripts from the statistical analysis, expression levels of the genes need to be calculated. 

The basic overview of both RNA-seq and microarray pipelines is depicted in Figure 10. 

 



Figure 10. Schematic overview of RNA-seq and Affymetrix microarray analysis pipelines. In 

both, the raw data is first transformed to expression levels with respective quality control, both 

technical and biological, and is followed by statistical analysis, leading to identification of 

differentially expressed transcripts. 

 

With RNA-seq data, the first step is to check the quality of the raw data by using FASTQC80, a 

quality control tool for high-throughput data. FASTQC provides visual output of the quality 

which can be used to determine whether the reads require trimming or not. The low quality base 

reads should be filtered away by trimming because they may cause otherwise mappable 

sequence to fail aligning to the reference genome. The optional trimming can be executed with 

tools such as FASTX81. Despite the popularity of RNA-seq and read trimming, there are no 

specific guidelines for how strict trimming should be performed and thus, it is up to the 

researcher to determine the requirements. 



After optional trimming, RNA-seq reads are aligned to the reference genome. In other words, 

unique location where a short read is identical to the reference is found. One of the most used 

programs is TopHat82, which aligns reads to the genome and discovers transcript splice sites. 

TopHat uses program called Bowtie83 for alignment and breaks up the reads Bowtie is unable 

to align to smaller pieces since often these pieces, when mapped separately, can be aligned to 

the genome. TopHat also estimates the junction splice sites, allowing the discovery of 

alternative splicing sites. The aligned reads can tell many things about the sample: mismatches, 

insertions and deletions can be used to identify polymorphisms whereas reads that align outside 

annotated genes may be evidence of new protein-coding genes and non-coding RNAs. 

After discovering transcript splice sites, Cufflinks84 can be used to map this against the 

reference genome to find transcripts. Cufflinks assembles individual transcripts that have been 

aligned to the genome and quantifies expression levels of each full-length transcript. 

Another tool used for quantification of the reads is HOMER85, which has two alternative 

programs to quantify the RNA reads in the genome. They count the reads in regions and produce 

gene expression matrix. There are also variety of options available in the tool. One can, for 

example, count exons instead of genes. After calculating the expression matrix, quality control 

of sample levels can be performed for both technical and biological variation. Neither TopHat 

nor Homer, however, produce differential expression matrix, and thus such statistics must be 

calculated with other programs. 

Two RNA-seq datasets were used in this thesis: the Pgc-1α expression and exercise datasets. 

Pgc-1α overexpression dataset had been analyzed before the start of this thesis. The quality of 

the raw reads from both datasets was confirmed using FASQC and NGSQC Toolkit software86. 

Bases with poor quality scores were trimmed with FASTX toolkit; both datasets were required 

to have minimum of 96 % (exercise dataset) or 97 % (Pgc-1α overexpression) of all bases in 

one read to have minimum quality score of 10. The reads also had to be at least 25 of length. 

The Tophat software (version 2.0.9) was used for alignment, allowing up to 3 mismatches, 1 

valid alignments and with minimum filtering score of 2. 

Similarly to RNA-seq, the arrays can also be quality controlled and outliers may be removed. 

Pre-processing of microarray experiment starts from background correction, which is 

performed to reduce the background noise caused by laser reflection on the surface. The 

background correction isn’t compulsory, and sometimes background detection hasn’t been 

executed for one reason or the other, but it is highly recommended. These corrected values are 



normalized to improve the sensitivity to detect genes. Finally, data is summarized. The 

summarization combines preprocessed probes and computes expression value for each probe 

set on the array. Again, quality controls of sample levels may be performed before the statistical 

analysis. 

In this thesis, there were two microarray datasets, circadian dataset 1 and skeletal muscle 

dataset. The former experiment had been performed with Illumina microarray chip, and was 

processed with R/Bioconductor and the latter research used Affymetrix chips and the data was 

thus processed with Affymetrix power tools. 

In circadian dataset 1, there were no control probes, so background couldn’t be detected. 

The skeletal muscle dataset had been processed before the start of this thesis. For the Affymetrix 

chip, the quality of the probes was tested with R/Bioconductor after the full quantile 

normalization with Affymetrix power tools. The dabg quantification was performed before 

statistical analysis with edgeR package on R/Bioconductor. All the R/Bioconductor packages 

used in this thesis are in table 2. 

  



Table 2. The R/Bioconductor packages used in this thesis with short description. 

R. package Description 

AnnotationDbi Annotation of data packages 

biomaRt Retrieval of large amounts of data from 

databases 

edgeR Differential expression and statistical 

analysis of RNA-seq 

gplots Programming tools for plotting data 

hom.Hs.inp.db Homology information for human 

hom.Mm.inp.db Homology information for mouse 

limma Data analysis, linear models and differential 

expression for microarray data 

lumi Illumina microarray data analysis 

lumiMouseAll.db Illumina Mouse expression annotation data 

lumiMouseIDMapping Mapping information between Illumina IDs 

Mouse chips, nuIDs and RefseqIDs for 

Illumina Mouse chips 

org.Hs.eg.db Genome-wide annotation for human 

org.Mm.eg.db Genome-wide annotation for mouse 

piano Gene set analysis using various statistical 

methods 

RColorBrewer Color schemes for graphics 

snow Parallel computations 

snowfall Easier development of parallel R programs 

(based on snow) 

VennDiagram High-resolution Venn and Euler plots with 

extensive customization of the plot 

 

 

 

  



4.3 Statistical analysis of RNA-seq and microarray in differential expression 

analysis 

 

4.3.1 Statistical analysis of RNA-seq 

 

Often the interest in biological questions lies in comparing two or more groups and thus 

differentially expressed transcripts/genes are what researcher is interested in. Unfortunately, 

programs such as HOMER don’t produce these results, and therefore it is necessary to use other 

tools. 

In RNA-seq, it is possible to filter out the genes that are not expressed in the samples. The 

filtering can be executed in multiple ways, one of which is rpkm (reads per kilobase per million) 

value. Genes can also be filtered based on how low is the maximal count in the count matrix. If 

the rpkm value and/or max count is low, it can be argumented that the gene is not expressed 

and should be filtered out. 

In both RNA-seq and microarray, before the detection of DEGs the data is normalized. The 

normalization enables comparisons between and within samples, and is essential for differential 

expression analysis. After normalization, read counts are converted to log-counts per millions. 

Then, differential expression can be calculated. 

RNA-seq data gives discrete measurement for each gene (counts) and thus doesn’t follow 

normal distribution. In the RNA-seq, the Poisson distribution forms the general bases in 

modeling the count data. Poisson distribution captures the technical variability, but biological 

variability less effectively because Poisson distribution expects all genes to have the same 

variance. In reality, some genes may fluctuate more or less than the others. This makes the 

Poisson-based biological analyses prone to high false positive rates37. One solution to this is to 

use negative binomial distribution, which is extension model to the Poisson. It takes the 

aforementioned biological variability - greater observed variation than the mean - into account 

by using gamma distribution. Negative binomial model is also known as gamma-Poisson 

model. This negative binomial approach is implemented in R/Bioconductor package edgeR, 

and was used in this thesis. 

The last approach, also used in this thesis, is to convert raw RNA-seq counts straight into log-

counts per million with associated precision weights. After this, the RNA-seq data can be 



analyzed as microarray data87. This approach is implemented in R/Bioconductor package 

limma. 

Of RNA-seq datasets, the Pgc-1α overexpression dataset had been processed before the start of 

this thesis with R/Bioconductor with package edgeR. Transcripts with rpkm > 1 in at least three 

samples and with at least 50 read within the quantified region in any sample were used in 

statistical analysis. 

In the exercise dataset used in this thesis, statistics were calculated with packages edgeR and 

limma. Limma was used instead of only edgeR because it is designed for complex experiments 

and variety of experimental conditions. Thus, it was of interest to test and implement the 

package. 

With exercise dataset, transcripts expressed at the level of rpkm > 1 in at least one of the sample 

groups with at least 10 of the reads within the quantified region were used for statistical analysis. 

The normalization was calculated with trimmed mean of M-values (TMM), the voom 

transformation from limma package was applied to the read counts and eBayes function from 

limma package was used to calculate statistics. Contrast matrix was used as design matrix for 

differential expression calculation in order to make pairwise comparisons between the groups. 

Transcripts with adjusted p-value < 0.05 were defined as differentially expressed. 

In order to use GSA as gene enrichment method, statistical analysis for the Pgc-1α 

overexpression dataset was performed using limma with same parameters as for the exercise 

dataset. It was crucial to redo the statistical analysis with limma for the gene enrichment 

analysis because with the chosen settings for GSA, t-statistics were required. T-statistics can 

only be calculated from data following normal distribution, and as explained above, edgeR’s 

function exactTest expects data to follow negative binomial distribution. 

 

 

4.3.2 Statistical analysis of microarray 

 

Despite their similarity, RNA-seq and microarray are methodologically different. This shows 

in differential expression calculations. Whereas RNA-seq data gives discrete measurement for 

each gene (counts), microarray intensities have a continuous distribution (color intensity). In 

other words, microarray results follow normal distribution whereas the case with RNA-seq isn’t 

as straightforward. 



In microarray analysis, the expression values are transformed to log-scores to make the fold-

change values symmetric. Data is then normalized to minimize technical bias of the data. Lastly, 

linear model (for each gene) is fitted to the data and fold changes and standard errors are 

calculated. 

The two traditional 3’ microarray datasets, one Affymetrix and one Illumina microarray, used 

in this thesis were analyzed with R/Bioconductor. In Illumina microarray, the data was 

transformed to log-scores and normalized with robust spline normalization (rsn) with 

R/Bioconductor package lumi. For Affymetrix microarray, the normalization was performed 

with robust multi-array average (rma), which consists of background detection, quantile 

normalization and summarization. For both datasets, the differential expression statistics were 

calculated by fitting the least squares linear model and using Bayes statistics for differential 

expression calculation with R/Bioconductor limma package. 

 

 

4.4 Computational gene enrichment analysis 

 

In order to understand the biological and metabolic changes caused by Pgc-1α overexpression, 

gene enrichment analyses were performed. Most of the pathway databases use canonical 

pathways for human and therefore mouse gene Refseq IDs were converted into human gene 

symbols before the analysis. This conversion was achieved with function inpIDMapper from 

R/Bioconductor package AnnotationDbi. The pathways used in the analysis included all 

pathways from Biocarta52, KEGG54, Pathway Commons88, Gene Ontology (GO)89, 

Wikipathways50, MSig3 and Reactome49 databases, downloaded from their respective 

databases. 

After testing a variety of gene set enrichment methods, it was decided to use R/Bioconductor 

package piano and its function runGSA. RunGSA was chosen because programmer can control 

variety of parameters and it’s relatively easy to use. GSEA was chosen as test for statistical 

enrichment for its popularity and good performance. The chosen method for gene significance 

assessment was gene sampling due to high number of genes and low number of samples. In 

order to gain directional p-values, t-statistics were used in calculating enrichment score with 

false discovery rate (FDR) adjusting method and 1000 permutations. 



4.4.1 Description of algorithms in GSA 

 

GSA52 is a competitive gene set enrichment analysis, so it can be used to answer the following 

question: “Are there enriched pathways in my dataset?” This creates the corresponding null 

hypothesis: “H0. The genes in the gene set of interest are at most as often differentially 

expressed as the genes in the background gene set.” If the null hypothesis is rejected, there are 

enriched gene sets (pathways) in the dataset. 

GSA uses P-values, t-values or F-values, depending of the enrichment method of choice. When 

using algorithm of GSEA, method of choice in this thesis, t-values are the only option in GSA. 

In most of the cases, the t-statistic has already been calculated beforehand in order to find 

differentially expressed genes. This is also the case in this thesis: by the time enrichment 

analysis was performed, the statistics for the datasets, including t-statistics, had already been 

calculated with R/Bioconductor (Table 3). The list of genes in the gene set, pathway, had also 

been extracted from the database(s) (Table 4). The following tables don’t represent results of 

this thesis and are extremely simplified. In practice, lists of DEGs and gene sets are far larger 

than the ones shown here. For the sake of an example, however, they are kept small. 

 

Table 3. Output from statistics. The imaginary table of output from statistical analysis for gene 

set enrichment with gene symbols and their respective t-statistics. 

Gene symbol t-statistic 

HIF1A -6.03 

FBXL3 -3.85 

CRY2 -5.59 

CRY1 -5.09 

HCCS 0.69 

DBP -4.80 

PER2 -6.20 

CLOCK -8.80 

PPARA 2.30 

 

 



Table 4. Table of the genes in the pathway. The imaginary list of the genes in the pathway of 

interest. Pathways and their respective genes can be extracted from pathway databases such as 

KEGG and Biocarta. 

Custom pathway gene IDs 

PPARA HIF1A 

CSNK1E PER2 

FBXL3 CLOCK 

CRY1 NAMP 

CRY2  

 

 

First, enrichment score is calculated for the dataset. In GSA, there are variety of enrichment 

statistic choices available, but as mentioned, GSEA3,90 is the one used in this thesis. Therefore, 

it’s the one presented here.  

GSEA starts by sorting the genes based on their values in descending order (Table 5.). 

 

Table 5. Sorted table of statistical output. The genes along with their statistical values are 

sorted from highest to the lowest. 

Gene symbol t-statistic 

PPARA 2.30 

HCCS 0.69 

FBXL3 -3.85 

DBP -4.80 

CRY1 -5.09 

CRY2 -5.59 

HIF1A -6.03 

PER2 -6.20 

CLOCK -8.80 

 

 



Next, the enrichment score is calculated with weighted KS statistic, which can be formalized 

as: 

 

𝑃ℎ𝑖𝑡(𝑆, 𝑖) = ∑
|𝑟𝑗|

𝑃

𝑁𝑅𝑔𝑖∈𝑆
𝑗≤𝑖

, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑅 = ∑ |𝑟𝑗|
𝑃

𝑔𝑗∈𝑆

 

𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) = ∑
1

(𝑁 − 𝑁𝐻)
𝑔𝑖∈𝑆
𝑗≤𝑖

 

with Phit denoting score of the gene that is on the ranked list and in the gene set. 

S denotes gene set and i denotes index of the gene in the ranked list. 

rj denotes value of the gene of the ranked list and NR is the sum of values of the genes that are 

in the ranked list and in the gene set. 

Pmiss denotes score of the gene that is on the ranked list but not in the gene set. N denotes the 

number of genes in ranked list, and NH denotes number of genes from the ranked list that are 

in the gene set as well.  

 

Originally, GSEA uses P-values instead of t-statistics to calculate directional gene set 

enrichment scores. However, in order to calculate directional gene set enrichment scores with 

combination of GSA and GSEA, t-statistics must be used. Therefore absolute values are used 

in calculation of the enrichment statistic. 

 

7 genes of ranked list of the example belong in the gene set, so sum of absolute values of the 

genes (NR) is calculated as follows: 

NR = 2.3 + |-3.85| + |-5.09| + |-5.59| + |-6.03| + |-6.20| + |-8.80| = 37.86 

 

The enrichment score is calculated by walking down the ranked list, and when gene that belongs 

to the gene set (pathway) is encountered, the score is increased.  

 

The first gene of the ranked list is PPARA, and that is also in the gene set (pathway). The 

absolute value of the gene is divided by sum of absolute values of the genes. The first step of 

the random walk, running sum, calculated. 

Phit(S,i) = 2.3 / 37.86 = 0.0608 



 

On the contrary, if gene that does not belong to the gene set is encountered, the score is 

decreased.  

 

The second gene of the ranked list is HCCS, which is not in the gene set. Thus, the score for 

missing genes, Pmiss, is calculated by dividing 1 with the number of genes of the ranked list that 

are not in the gene set (HCCS, DPB). The calculated score is then decreased from the running 

sum. 

Pmiss(S,i) = 1 / (9-7) = 0.5 

0.06075013 - 0.5 = -0.4392 

 

The next gene of the ranked list, FBXL3, is in the gene set, thus its Phit value is calculated and 

added to the enrichment score. The fourth gene of the ranked list, DBP, isn’t in the gene set and 

thus Pmiss value is subtracted from the current score. This is continued until the end of the ranked 

list (Table 6). 

 

Table 6. Weighted running sums. Running sums after each step of the calculation, 

corresponding to the gene at hand. 

Gene symbol Running sum 

PPARA 0.0608 

HCCS -0.4392 

FBXL3 -0.3376 

DBP -0.8376 

CRY1 -0.7031 

CRY2 -0.5555 

HIF1A -0.3962 

PER2 -0.2324 

CLOCK 5.5511E-17 

 



The enrichment score is the maximum deviation from the random walk statistic, corresponding 

to weighted Kolmogorov-Smirnov statistic. In the case of example data, as seen from table 6, 

the value is: ES = -0.8376. The schematic overview of the KS statistic is represented in Figure 

11. 

 

 

Figure 11. The schematic overview of Kolmogorov-Smirnov statistic. The algorithm calculates 

score by walking through the ranked list, increasing running-sum statistic if the encountered 

gene belongs to the gene set and decreasing if not. The genes with higher rank are weighted to 

increase the running sum more than low rank genes. The maximum deviation is used as 

enrichment score. If the maximum deviation is unusually high, gene set is often enriched.  

 

After calculating the enrichment score, GSEA’s algorithm starts permuting values. In terms of 

this example and thesis, gene permutation is used. If there were enough samples, sample 

permutation would also be an option. 



GSEA randomly takes the number of the genes that are both in the ranked list and in the gene 

set from the ranked list for permutation. 

In this example case, there are total of 9 genes in our ranked list. 7 of these are in the gene set. 

So, seven genes from the list of ranked genes (total of 9) are taken to the permutation. For 

example, in the first round, the genes can be HCCS, CRY2, FBXL3, DBP, PPARA, HIF1A. And 

on the next round, 7/9 genes are again randomly picked. For example, the genes can, in this 

time, be: DBP, HCCS, PER2, CRY1, PPARA, FBXL3, CLOCK. 

Next, enrichment score is calculated for the randomly picked genes like before but without 

ranking them first. In this light, the ES for the first is 1.0, for second 0.5273 and so on. For the 

sake of example, the values for 5 permutations are shown in table 7. It is important to note that 

5 is extremely low permutation number. Traditionally 1000 permutations are used and GSA 

function in R requires minimum of 100 permutations. 

 

Table 7. The enrichment scores of permuted values. 

Permutation values 

1.0000 

0.5273 

-0.5000 

0.7172 

0.5000 

 

The permutation values are used as a background to calculate statistical significance (P-value). 

They are compared to the enrichment score. This differs slightly depending of the direction of 

the ES. If ES is negative, negative values are used whereas if it’s positive, positive values are 

used. The number of permutations equal to or below/above ES from the dataset are divided by 

the number of all negative/positive permutations.  

As calculated before (Table 6.) the ES score of the dataset is -0.8376. There is only one negative 

permutation value, -0.5. This value isn’t lower than ES score. Thus: 0 / 1= 0.00. 

For the sake of an example, let’s pretend that the ES from the dataset was 0.6. If the ES is 

positive, the number of permutation values above or equal to it are divided by the number of all 



positive permutations. In our example, we have 4 positive permutations values, two of which 

are higher than 0.6. 

In this case, the calculation would be as follows:  2 / 4 = 0.50. 

 

Finally, the P-values can be adjusted with the method of choice. In the case of this thesis, the 

chosen adjusting method was false discovery rate, FDR91. 

 

𝑃𝑖(
𝑁

𝑖
) ≤ 𝑞  

with Pi denoting adjusted P-value. 

N denotes the number of P-values whereas i is assigned rank (ordinal number) of P-value. 

q denotes the indicated threshold of FDR. 

 

To calculate FDR, one must have more than one gene set. For the sake of example, let’s pretend 

that we had three gene sets instead of one, P-values being the following: “Custom Pathway”: 

0.00 ; “Pathway 2”: 0.50 ; “Pathway 3”: 0.30. 

FDR is calculated by ranking the P-values in decreasing order. The smallest gets rank 1, second 

2 and largest rank N. Then, each P-value is multiplied by N and divided by its assigned rank to 

gain adjusted P-values. 

In our example, the decreasing order is: Custom Pathway, Pathway 3 and Pathway 2. Their 

adjusted P-values are: 

Custom Pathway: 0.00*3 / 1= 0.00 ;  Pathway 3: 0.3*3 / 2 = 0.45 ; Pathway 2: 0.5*3 / 3 = 0.5. 

Finally, the cut-off is set to define which gene sets are enriched and which not. Usually, this 

cut-off is FDR < 0.05. In this example, Pathway 3 and Pathway 2 are above the threshold (0.45 

> 0.05 ; 0.5 > 0.05) whereas Custom Pathway is below the threshold (0.00 < 0.05). If the 

adjusted P-value is below the threshold, gene set is defined as enriched and null hypothesis 

(“H0. The genes in the gene set of interest are at most as often differentially expressed as the 

genes in the background gene set.”) is rejected. In this case, Custom Pathway is significantly 

enriched in the dataset whereas two others are not. The ES of Custom Pathway was -0.8376, 

sign denoting the direction of regulation; in this case, the Custom Pathway is negatively 

regulated. 



5 RESULTS 

 

5.1 Pgc-1α overexpression in heart   

 

The main results of this thesis focus on the RNA-seq of Pgc-1α overexpression in heart (Tavi 

et al., unpublished) and its comparison to physiological/pathological hypertrophy states. 

Different comparisons were performed to determine the possibility of Pgc-1α overexpression 

as a treatment target for cardiac hypertrophy. Moreover, the comparison to skeletal muscle 

dataset was also performed in order to elucidate possible tissue-specific effects in the function 

of Pgc-1α. 

Towards this end, the Pgc-1α overexpression dataset was processed and analyzed as outlined 

next. First the RNA-seq reads were trimmed, aligned and processed as explained in the 

Materials and Methods -section, resulting in millions of reads used in the analysis. Next, quality 

control was performed. One of the three replicates of the dataset clustered poorly in comparison 

with the other two, implying possibility of an outlier (Figure S1A.). However, with minimum 

number of replicates (N = 3), it is impossible to be certain. Removing the possible outlier 

would’ve also reduced the number of replicates to two, resulting in drastic diminution of the 

statistical analyses. Therefore all three replicates were retained and the statistical analysis 

resulted in 618 differentially expressed, unique gene symbols (adj. P-val. < 0.05). 

In order to discover significantly enriched pathways and identify their directionality under Pgc-

1α overexpression in heart, GSA’s gene set enrichment analysis with GSEA’s algorithm was 

performed (see Methods). In the analysis, pathways with adjusted P-value < 0.05 were defined 

as significant. 

A total of 75 pathways were significantly enriched, 62 of which were up- and 14 downregulated. 

(Table S1., Table 8.) These upregulated pathways include glycolysis, beta oxidation and 

electron transport chain whereas further significant, interesting downregulated pathways 

include muscle contraction, PPAR, phosphatidylinositol 3-kinase (PI3K) and calcium signaling 

(Table 8.). Unexpectedly, two significantly downregulated pathways were involved in circadian 

rhythm. 

 



Table 8. Downregulated, enriched pathways of Pgc-1α overexpression in heart. Enriched, 

downregulated pathways of Pgc-1α overexpression in heart with their respective adjusted P-

values. The pathways of most interest are colored. 

Pathway Adj. P-value 

Akt pathway (BIOCARTA) 0.0118 

EGFR interacts with phospholipase C-gamma (PWC) 0.0176 

Diurnally regulated genes with circadian orthologs 

(WIKIPW) 

0.0176 

Signaling by EGFR (PWC) 0.0221 

Ppara pathway (BIOCARTA) 0.0248 

Adipogenesis (WIKIPW) 0.0285 

PI3K events in ErbB4 signaling (REACTOME) 0.0304 

PI3K AKT activation (REACTOME) 0.0308 

PI3K events in Erbb2 signaling (REACTOME) 0.0325 

Striated muscle contraction (WIKIPW) 0.0364 

Bmal1 Clock Npas2 activates circadian expression 

(REACTOME) 

0.0385 

Ca-dependent events (PWC) 0.0419 

Raccycd pathway (BIOCARTA) 0.0428 

CaM pathway (PWC) 0.0471 

 

 

In order to further study the effect of Pgc-1α overexpression in heart, ten pathways of interest 

were chosen based on the known biology (Table S2.). Different pathway databases have 

different genes associated per pathway, so in order to optimally reflect the biology, pathways 

were custom curated across pathway databases (Table S3.). The percentage of significantly 

regulated genes among detected genes was summarized for each pathway (Figure 12.). 

Many of the pre-defined curated pathways contain genes that were both up- and down-

regulated, although most of the genes didn’t appear to be regulated. Of these predetermined 

pathways, the circadian rhythm had the highest percentage of regulated genes (22.6 %) and 

down-regulated genes (21.0 %).  

 



 

Figure 12. The extent of differential expression in pathways affected by Pgc-1α 

overexpression in heart. Selected pathways curated from KEGG, Wikipathways, GO, Biocarta, 

Pathway Commons, MSig and Reactome databases (Table S3.) are shown as barplots. In each 

plot, the proportion of differentially expressed up- (in red) and downregulated (in blue) genes 

is compared to non-regulated genes (in black). 

 

Heatmaps of differentially expressed genes were produced for each curated pathway. In the 

curated circadian rhythm pathway, there were 10 DEGs, 9 of which were downregulated, 

further implying downregulation of the pathway (Fig. 13). This, along with gene set enrichment 

results, piqued our interest and led to further investigation of the pathway. For other pathways, 

however, it was difficult to make reliable assumption in terms of regulation due to uniformly 

distributed genes in both up- and downregulation. 

 



 

Figure 13. Expression levels of differentially expressed genes in Pgc-1α overexpression in 

curated circadian rhythm pathway. Hierarchical clustering of scaled expression levels of the 

differentially expressed genes (adj. P-val. < 0.05) in Pgc-1α overexpression in the heart in the 

curated circadian rhythm pathway shown as heatmap. Rows correspond to genes and columns 

to samples whereas red and blue colors indicate the up- and down-regulation during Pgc-1α 

overexpression in heart. 

 

Due to the extensive downregulation of the circadian rhythm and the significant enrichment 

results, the circadian rhythm pathway with the smallest adjusted P-value (“Diurnally regulated 

genes with circadian orthologs” (WIKIPW)) was studied further. The identified pathway was 

from human but comparison to orthologous pathway in mouse revealed them to be highly 

conserved. Some genes are always lost in conversions, especially so in between organisms and 

therefore the orthologous pathway from mouse was selected for further analysis. 

In order to study the pathway in Pathvisio92, open-source biological pathway analysis software, 

Refseq IDs were converted to ensembl gene IDs with R/Bioconductor’s package biomaRt. The 

expression and significance of the genes in the Pgc-1α overexpression dataset in the pathway 



of interest were studied. As seen from the Figure 14., many genes of the pathway are affected 

by overexpression of Pgc-1α. Majority of the significant DEGs are downregulated. 

Interestingly, these include core clock components, such as Per1, Per2 and Arntl. 

 

 

 

Figure 14. Circadian rhythm pathway affected by Pgc-1α overexpression. Genes expressed 

in the Pgc-1α overexpression dataset are colored. Blue and red correspond to low and high 

expression levels whereas green and white indicate the significance of the gene in the dataset. 

Grey indicates that the gene was not expressed in the dataset. 

 

 

5.2 Pgc-1α overexpression in cardiomyocyte vs. in skeletal muscle 

 

In order to investigate the tissue-specific effects of Pgc-1α overexpression between 

cardiomyocyte and skeletal muscle, the publicly available microarray dataset from Pérez-

Schidler et al. was downloaded, processed and analyzed with aforementioned settings. Before 



the statistical analysis, quality of the data was confirmed to be satisfactory (Figure S1B.). 

Finally, the statistical analysis yielded 6318 differentially expressed genes (adj. P-val. <0.05). 

Next, gene set enrichment analysis was performed for skeletal muscle dataset. Again, threshold 

for significance was set at adj. P-val. <0.05. The result revealed 69 significantly upregulated 

pathways (Table S4.). 

Computational comparison of the results from tissues showed that 51 of the significantly 

upregulated pathways were same in both tissues whereas 18 were unique to skeletal muscle and 

11 to heart (Figure 14.). The shared pathways included those of glycolysis, beta-oxidation, 

electron transport chain and citric acid cycle. Surprisingly, many of the upregulated, significant 

pathways unique to skeletal muscle were involved with beta-oxidation. Other interesting, 

significant and unique pathways to skeletal muscle included electron transport chain, citric acid 

cycle and Ppar signaling (Table 9.). Closer inspection revealed the pathway in the heart 

(“Respiratory electron transport (Reactome)”) as a subset of the pathway enriched in the 

skeletal muscle (“Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and 

heat production by uncoupling proteins (Reactome)”). 

 

Figure 14. Venn diagram of gene enrichment results. The significantly enriched, upregulated 

pathways of Pgc-1α overexpression in heart and skeletal muscle represented as proportional 

Venn diagram.  



Table 9. Upregulated, significantly enriched pathways of Pgc-1α overexpression in skeletal 

muscle. Table of upregulated, significantly (adj. P- val. < 0.05) enriched pathways unique to 

skeletal muscle dataset in comparison to heart with their respective adjusted P-values. The 

pathways of most interest are colored. 

Pathway Adj. P-value 

Metabolism of lipids and lipoproteins (PWC) 0.0000 

Mitochondrial fatty acid beta-oxidation (PWC) 0.0000 

Mitochondrial fatty acid beta-oxidation of unsaturated fatty acids (PWC) 0.0000 

Glucose metabolism (PWC) 0.0000 

Activated AMPK stimulates fatty-acid oxidation in muscle (PWC) 0.0000 

Integration of energy metabolism (PWC) 0.0000 

Diabetes pathways (PWC) 0.0000 

Huntingtons disease (KEGG) 0.0001 

Mitochondrial fatty acid beta-oxidation of saturated fatty acids (PWC) 0.0001 

Beta oxidation of palmitoyl-CoA to myristoyl-CoA (PWC) 0.0001 

Import of palmitoyl-CoA into the mitochondrial matrix (PWC) 0.0001 

Alzheimers disease (KEGG) 0.0001 

Respiratory electron transport atp synthesis by chemiosmotic coupling and 

heat production by uncoupling proteins  (REACTOME) 

0.0028 

Valine leucine and isoleucine degradation (KEGG) 0.0101 

Metabolism of amino acids and derivatives (REACTOME) 0.0256 

TCA Cycle (WIKIPW) 0.0411 

Metabolism of lipids and lipoproteins (REACTOME) 0.0461 

Ppara activates gene expression (REACTOME) 0.0487 

 

 

The distribution of DEGs across curated pathways (Table S3.) was also investigated similar as 

for cardiomyocyte data. Interestingly, there were considerably more regulated genes in skeletal 

muscle than in the heart. Unlike in the heart, glycolysis, beta-oxidation, electron transport chain 

and citric acid cycle pathways were remarkably positively regulated (> 50 %). Growth and 

PI3K signaling seem to be downregulated in skeletal muscle whereas the direction of genes in 

calcium and PPAR signaling seem uniformly distributed (Figure 15.). 



 

Figure 15. The extent of differential expression in pathways affected by Pgc-1α 

overexpression in skeletal muscle. Selected pathways curated from KEGG, Wikipathways, 

GO, Biocarta, Pathway Commons and Reactome databases (Table S3.) are shown as barplots. 

In each plot, the proportion of differentially expressed up- (in red) and downregulated (in blue) 

genes is compared to non-regulated genes (in black). 

 

To summarize, in comparison to cardiomyocyte, there are shared and uniquely upregulated 

pathways concerning fatty acid beta-oxidation, citric acid cycle and gluconeogenesis in skeletal 

muscle. In addition, distribution of DEGs in the curated pathways in skeletal muscle is higher 

than in the heart. These findings imply that those pathways are upregulated to greater extent in 

skeletal muscle in comparison to cardiomyocyte. 

Interestingly, apart from upregulation of Ppar signaling in skeletal muscle, none of the 

downregulated pathways in heart (muscle contraction, circadian rhythm, PI3K and calcium 

signaling) are significantly enriched in skeletal muscle. Based on the distribution of DEGs in 

curated pathways, however, circadian rhythm and PI3K signaling would be downregulated in 

skeletal muscle. 



Nevertheless, these findings support the hypothesis that Pgc-1α overexpression has similar but 

also tissue-specific effects between cardiomyocyte and skeletal muscle. 

 

 

5.3 Pgc-1α overexpression in heart vs. physiological and pathological 

hypertrophy 

 

Overexpression of Pgc-1α has been linked with cardiac hypertrophy and even hypothesized as 

potential treatment target for the disease8. 

However, there is a drastic difference between physiological and pathological cardiac 

hypertrophy. Whereas physiological cardiac hypertrophy is a natural state that occurs during 

exercise and pregnancy, the pathological state is associated with heart failure. Thus it is critical 

to investigate the resemblance of Pgc-1α overexpression to both states in order to ascertain its 

possibility as a treatment target. To achieve this, publicly available microarray hypertrophy data 

of both states (Song et al.73), was downloaded, processed and analyzed. Before statistical 

analysis, the quality of the data was confirmed to be acceptable. (Figure S1C.) 

First, gene set enrichment analysis was performed for the hypertrophy dataset. Like before, adj. 

P-val. < 0.05 was defined as significant. Results revealed pathological and physiological 

hypertrophy to have 408 and 105 significantly enriched pathways, respectively. Majority of 

these were upregulated (265 and 92, respectively). These significantly upregulated pathways 

are presented on Supplementary tables S5. and S6. 

Comparison to upregulated, significantly enriched pathways in Pgc-1α overexpression in heart 

showed that only two pathways were shared with pathological hypertrophy whereas 38 were 

the same as in physiological state (Figure 16.). Interestingly, these shared upregulated pathways 

with physiological cardiomyopathy included those of electron transport chain, citric acid cycle, 

beta-oxidation and glycolysis. One downregulated pathway was the same in Pgc-1α 

overexpression and physiological hypertrophy (“Diurnally regulated genes with circadian 

orthologs (WIKIPW)”) whereas none were shared with pathological state. 



 

Figure 16. Venn diagram of gene enrichment results. The upregulated, significantly enriched 

pathways (adj. P-val. < 0.05) of Pgc-1α overexpression in cardiomyocyte, pathological and 

physiological cardiomyopathy are represented as Venn diagram. 

 

To further compare Pgc-1α overexpression with hypertrophy states in the heart tissue, the 

differentially expressed genes (adj. P-val. <0.05) were compared. State of pathological 

hypertrophy, however, resulted in very high number of DEGs (4381) whereas physiological 

state only to 148. 

There is vast difference between the number of differentially expressed genes in physiological 

and pathological hypertrophy states (4381 vs. 148). This extremely high number of DEGs in 

pathological cardiomyopathy is reasonable though, because pathological cardiomyopathy is a 

severe state that results in death. It causes drastic gene expression alteration which leads to 

stress and apoptosis, for example. 

One way to examine Pgc-1α overexpression and hypertrophy states would simply be to compare 

the number of DEGs shared between the Pgc-1α overexpression and the two hypertrophy states. 

Yet in this case, it would not be purposeful. Due to extreme differences in the number of 

regulated genes (4381 vs. 148), Pgc-1α would have more genes shared with pathological state 

by chance alone, hence producing result that may not be biologically meaningful. 



To take this great variety in the number of DEGs into account, hypergeometric test was 

performed. Differentially expressed genes of Pgc-1α overexpression were compared to the ones 

of physiological or pathological cardiomyopathy while using all of the expressed genes shared 

between the experiments (10395) as background. 40 and 262 of the genes were shared between 

Pgc-1α overexpression and physiological/pathological hypertrophy, respectively (Figure 17.). 

The same was tested by taking the directionality of the genes into account, but all four 

possibilities were significant (Figure S2.). 

Hypergeometric test revealed the differentially expressed genes of Pgc-1α overexpression to be 

significantly enriched in the state of pathological hypertrophy (P-val. = 4.0389-07) but even 

more so in physiological hypertrophy (P-val. = 0.00). This, along with gene set enrichment 

results, concludes that Pgc-1α overexpression resembles physiological rather than pathological 

hypertrophy. 

 

 

Figure 17. Hypergeometric distribution of Pgc-1α overexpression and 

physiological/pathological cardiomyopathy. The differentially expressed genes (adj. P-val. 

<0.05) of Pgc-1α overexpression were compared with DEGs of physiological and pathological 

cardiomyopathy in comparison to expressed genes across both experiments. 

 

 



5.4 Pgc-1α overexpression vs. circadian rhythm 

 

In the very beginning of the analysis of Pgc-1α overexpression results, the circadian rhythm 

unexpectedly arose as one of the most influenced pathways. As mentioned before, disruptions 

in circadian rhythm cause severe metabolic and physiological effects on organism, thus likely 

affecting the possibility of Pgc-1α as treatment target for hypertrophy. Due to this it was decided 

to compare Pgc-1α overexpression with two publicly available circadian rhythm datasets, one 

performed with microarray (Young et al.74) and one with qPCR (Wu et al.75). 

The microarray circadian dataset 1 was downloaded, processed and analyzed as explained 

before. Like before, the quality control was performed and confirmed to be satisfactory (Figure 

S1D.).  

Circadian microarray and Pgc-1α overexpression datasets were compared with gene set 

enrichment and hypergeometric test whereas the reported expression of circadian clock genes 

affected by Pgc-1α from study by Wu et al.75 was compared to corresponding Pgc-1α 

overexpression results. 

One of the ideas was to try to identify the timepoint most affected by Pgc-1α overexpression. 

However, since the aim to compare these wasn’t originally in the aims but added after intriguing 

results, it posed challenges. The biggest of these was the design: Pgc-1α overexpression dataset 

wasn’t time-series data and the timepoint in which the samples were collected was unknown. 

Nevertheless, first approach was to perform gene set enrichment analysis for microarray 

circadian dataset. Unfortunately, only two of eight timepoints had enriched pathways. 

Second approach was to apply hypergeometric test to determine the enrichment of genes 

affected by Pgc-1α overexpression in the circadian rhythm dataset per timepoint. Interestingly, 

the result revealed it to be significant in every single time point (P-val < 0.1E-8). According to 

this, genes regulated by Pgc-1α are detected through the day. This effect further suggests the 

importance of Pgc-1α in regulation of the circadian rhythm. 

Third method was to calculate the percentage of DEGs (adj. P-val. < 0.05) shared between the 

datasets per timepoint. The highest percentage, 17.25 %, is at time point Zt 6. However, five of 

the timepoints have percentage of 15-18 (Table 10.). 

 



Table 10. The percentage of differentially expressed genes shared between Pgc-1α 

overexpression and circadian rhythm per time point. 

Timepoint Percentage 

Zt 0 10.0349 

Zt 3 17.1913 

Zt 6 17.2507 

Zt 9 10.1947 

Zt 12 14.1243 

Zt 15 16.3347 

Zt 18 17.1004 

Zt 21 17.2414 

 

Wu et al. studied the effect of Pgc-1α overexpression in mice in cardiomyocyte by following 

the circadian rhythm of selected genes with qPCR, successfully identifying seven circadian 

clock genes affected by this condition. The conditions of the experiment, including the 

background and tissue were the same as in the study of Tavi et al. and thus it was of interest to 

compare the results (Figure 18.). 

Based on the directionality between the seven circadian clock genes (Figure 18.), it may be that 

timepoint most affected by Pgc-1α overexpression is somewhere between Zt 3 and Zt 8. 

However, due to small number of replicates and design of the study, it is impossible have 

certainty in the conclusion. Nevertheless, the results further show the importance of Pgc-1α on 

the regulation of the circadian clock. 



 

Figure 18. Expression of circadian clock genes under Pgc-1α overexpression. A) Wu et al. 

identified the disrupted circadian clock genes under Pgc-1α overexpression. The relative 

mRNA profiles are shown as mean +/- SEM for time points. Figure taken from reference 75. 

B) Log fold changes of disrupted circadian clock genes of replicates of Pgc-1α overexpression 

dataset. 



6 DISCUSSION 

 

Pgc-1α overexpression dataset was successfully compared to three publicly available genome-

wide datasets, allowing the confirmation or rejection of the hypotheses. Enriched pathways 

were identified for Pgc-1α overexpression from cardiomyocyte and skeletal muscle datasets, 

along with physiological and pathological hypertrophy dataset. The tissue-specific effects of 

Pgc-1α overexpression between heart and skeletal muscle were discovered and similarity to 

physiological/pathological hypertrophy was confirmed. The unexpected, severe effect of Pgc-

1α overexpression to circadian rhythm was identified. Unfortunately, the Pgc-1α dataset was 

not time-series data and the comparison to circadian rhythm datasets was not taken into account 

while planning the experiment. Due to this, the identification of the most affected timepoint in 

circadian rhythm by Pgc-1α overexpression was not confirmed. The results, however, further 

support the importance of Pgc-1α in regulation of the circadian rhythm. 

The characteristics of the genome-wide datasets were studied before the analyses with several 

methods. Among these, one of the most important sample distance visualizations was MDS. 

MDS first calculates (dis)similarity matrix among observations, in this case samples, and plots 

samples in two-dimensional space. The resulting graph allows visual observation of the 

similarity between the samples. If the samples with same treatment cluster together, the quality 

of the data is good. Apart from the dataset of Pgc-1α overexpression in cardiomyocyte, the 

quality of the datasets was satisfactory (Figure S1). Sample number 1 of Pgc-1α overexpression 

in the dataset of Tavi et al. didn’t cluster well with the others, implying possibility of an outlier. 

However, due to small number of samples (N = 3), certainty couldn’t be reached and all three 

were kept in the analysis. Naturally, this lowered the quality and certainty of the performed 

analysis’ but they still serve as a good template for future studies. 

In this thesis, two kinds of genome-wide datasets were used: RNA-seq and microarray. As 

discussed in the literature review, both have their pros and cons, but they complement each 

other41. Therefore, after proper data processing, comparison between the results should pose 

trustworthy results. 

All datasets used in this thesis were performed in mice. The strains across experiments differ, 

but according to the literature the difference between them is relatively low, especially in 

muscle tissue93. However, most of these differences occur in BL6 strain, breed used in datasets 



from Tavi et al. and Wu et al. Fortunately, the biggest variability occurs in genes coding for 

structural proteins, determined by low expression93. 

Gene set enrichment methods can be used to explore the biological differences between 

phenotypes and datasets. The identification of these pre-constructed gene sets, or pathways, 

enable the detection of weak but consistent expression changes across a set of genes, resulting 

in better reproducibility and lower information loss in comparison to conclusions solely based 

on expression levels of individually analyzed genes3,42,43. There are variety of methods 

available, the choice depending of the research question and null hypothesis. The method of 

choice in this thesis was unsupervised, competitive, non-parametric GSA with GSEA as the 

statistical enrichment method. The method of choice can always be argued since the best 

performing method differs from study to study. GSEA isn’t the perfect approach and it has been 

outperformed with simulated datasets but it has surpassed others with the use of experimental 

datasets57. It is also a widely accessed method and therefore is our enrichment method of choice. 

The algorithm of the combination of GSA and GSEA is discussed in materials and methods 

section. The biggest drawback of gene set enrichment settings of this thesis is, however, the use 

of gene randomization. As explained on the literature review, in gene randomization, gene is 

the sampling unit for permutation. In this type of randomization, gene-gene correlations are 

lost. Therefore, it is preferred to use sample randomization51. However, sometimes it is 

impossible to use sample randomization instead of gene sampling. This is due to overly 

complex phenotypes (such as analysis across all cell lines) or, more often, lack of replicates51 

(N > 7 for GSEA94). On the other hand, gene sampling methods have been suggested to be too 

powerful, declaring set as false positive based on only a few differentially expressed genes55. 

The threshold of significance is also subject of argumentation. Too high threshold may result 

in false negatives whereas too lenient one winds up with false positives. Again, there is no 

common guideline but generally used threshold is adj. P-val. < 0.05, and that is also the one 

used in this thesis. 

Gene set enrichment analysis was performed for all high-throughput datasets. In overexpression 

of Pgc-1α in heart and muscle, 75 significantly enriched pathways were identified. The 

differences and similarities between these hasn’t been widely studied but increased Pgc-1α 

expression has been linked with increase in mitochondrial biogenesis in both mouse heart and 

skeletal muscle7,11,71. The pathways linked to mitochondrial biogenesis include respiratory 

chain and fatty acid oxidation, for example95,96. The gene set enrichment and the distribution of 

differentially expressed genes across curated pathways in heart revealed circadian rhythm to be 



downregulated under Pgc-1α overexpression. This finding stirred our interest and lead to further 

studies. Interestingly, while the same effect was implicated in skeletal muscle by distribution 

of DEGs, it was not among the enriched gene sets. This implies that the effect of Pgc-1α on 

circadian rhythm may be tissue specific. 

While interpreting the results of gene set enrichment results, it should be also taken into 

consideration that the original construction of the pathways in the databases may be unreliable. 

This was also the case in three seemingly enriched pathways. Originally, gene set enrichment 

revealed heart tissue to have significant downregulation of circadian rhythm, muscle 

contraction, calcium and PPARα signaling pathways. Further inspection of expressed genes in 

muscle contraction and PPAR signaling pathways showed them to be false positives. Detailed 

discussion is presented below. 

Traditionally, overexpression of Pgc-1α has been linked with induced PPAR signaling. Pgc-1α 

binds to and co-activates PPARα, thus inducing fatty acid oxidation97–99. However, Pgc-1α is 

able to induce beta-oxidation through other ways as well. While upregulation of PPAR pathway 

in skeletal muscle partially explains the heightened expression of fatty acid oxidation, 

downregulation of Pparα pathway (BIOCARTA) makes no sense in heart while upregulation 

of fatty acid oxidation is clearly enriched. The expressed genes of the pathway were further 

studied by heatmap (Figure S2). According to the heatmap, Pgc-1α may have an effect on the 

regulation of the pathway, but with only three samples it is rather feeble and thus the 

interpretation is challenging. The effect of many DEGs in the activation of Pparα pathway are 

also unknown and therefore it is difficult to have certainty whether they affect the 

activation/inactivation of the pathway. Still, this could be further studied by manually 

constructing list of Pparα targets and testing the enrichment of these genes in the Pgc-1α 

overexpression dataset. By knowing the state of the pathway (active/inactive), the effect of 

other genes would also be more thoroughly understood. 

Interestingly, muscle contraction and calcium signaling, both significantly downregulated in 

heart under Pgc-1α overexpression, are heavily linked. In exercise, muscle fiber type changes 

towards more oxidative type which has greater endurance capacity instead of glycolytic. This 

corresponds to the oxidative effects of Pgc-1α100,101. Gene set enrichment revealed muscle 

contraction pathway (“Striated muscle contraction (WIKIPW)”) to be significant in the heart. 

Sometimes, skeletal muscles are referred as striated muscles but in reality, this is not the case. 

Both cardiac and skeletal muscles have striations and can be referred as striated muscles, 



although they differ in histology and physiology, making distinction crucial102,103. Due to this, 

the pathway was inspected more closely. Closer inspection revealed that the pathway indeed 

takes both skeletal and cardiac striated muscles into account. However, the pathway itself 

lacked connected lines and citations, implying unreliability. The DEGs of the Pgc-1α 

overexpression dataset in the pathway were also studied, revealing there to be only a few. Based 

on these discoveries, it is unlikely that the pathway is truly enriched in cardiac muscle. Muscle 

contraction pathway wasn’t significantly enriched in the skeletal muscle either although 

literature implies otherwise104. 

Calcium signaling has been linked with muscle contraction and Pgc-1α. In endurance exercise, 

basal level of Pgc-1α is increased and only small amounts of calcium are released. In strength 

exercise on the other hand, calcium levels are elevated100,101. Upregulation of these CaMK 

(calcium/calmodulin-dependent protein kinase)-signaling pathways are known to stimulate 

MEF2 (myocyte enhancer factor 2) activity, which in turn induces Pgc-1α105–108, driving 

towards more oxidative fibre-types and greater endurance capacity100,101. The role of calcium 

signaling in hypertrophy isn’t, however, clear. While other studies have shown decrease in 

calcium activity, others have shown activation or no change at all7. Interestingly, according to 

our results of gene set enrichment, under overexpression of Pgc-1α calcium signaling is 

downregulated in heart but unchanged in skeletal muscle. 

The effect of Pgc-1α in growth signaling was also studied. There were no significant pathways 

of growth signaling in neither heart nor in skeletal muscle. However, the downregulation was 

implicated in skeletal muscle by the distribution of DEGs. Literature also supports this 

implication. Fatty acid oxidation, which is clearly upregulated in both heart and skeletal muscle, 

is known to promote SIRT1 (NAD-dependent protein deacetylase sirtuin-1) activity which, at 

least in skeletal muscle, decreases growth109,110. Upregulation of SIRT1 has also been linked 

with inhibition of PI3K111 which, according to the results, is significantly downregulated in 

heart. Its downregulation is also implicated in skeletal muscle by the distribution of DEGs. 

In cardiac muscle, upregulation of Pgc-1α has also been linked with downregulation of PI3K 

and Akt signaling112, which is also the case according to our gene set enrichment results. 

Interestingly, in hearts, the downregulation of these two is also associated with insulin 

resistance113. In skeletal muscle, reduction of PI3K signaling, also implicated in our results, has 

been suggested to play a role in skeletal muscle114. These findings imply that overexpression of 

Pgc-1α influences insulin resistance, at least in cardiac muscle. 



Second enrichment method used in this study was unsupervised, competitive hypergeometric 

test. Straightforward hypergeometric test assumes gene independence, which in general is not 

true in biological systems. It also suffers for not weighting highly ranked genes, and therefore 

may produce too pessimistic outcomes, resulting in false negatives64. Here, hypergeometric test 

was used to test the significance of enrichment of DEGs upon Pgc-1α overexpression in 

physiological and pathological hypertrophy, revealing significant enrichment in both states, 

even if more so in the physiological (Figure 17.). As mentioned, hypergeometric test doesn’t 

take the directionality of the genes into account. This was taken into consideration by testing 

separately for up- and downregulated genes. The result mimicked the former one: Pgc-1α 

overexpression was significant in up- and downregulated genes in both physiological and 

pathological hypertrophy (Figure S2.). This bias may be due to the fact that hypergeometric test 

completely ignores the relations of the genes. 

According to the gene set enrichment however, state of Pgc-1α overexpression is drastically 

different of pathological hypertrophy but greatly resembles physiological hypertrophy. This 

also makes sense biologically: according to the literature, downregulation of Pgc-1α has been 

linked with pathological cardiac hypertrophy. Literature also implies that downregulated 

muscle contraction has been linked with pathological hypertrophy whereas in physiological 

state, muscle contraction is either upregulated or unchanged104,115. The results of this thesis 

support this: in Pgc-1α overexpression and physiological hypertrophy, there are no significant 

changes in muscle contraction whereas in pathological state it is significantly downregulated 

(“Cardiac muscle contraction (KEGG)”). 

The results of Ppar signaling also support this assumption: in pathological hypertrophy, Ppar 

signaling is reported to be downregulated98. As mentioned before, according to our results, 

under Pgc-1α overexpression Ppar signaling remains mainly unchanged in the heart. 

Moreover, pathological cardiac hypertrophy is accompanied with downregulation of fatty acid 

oxidation whereas in physiological state, fatty acid oxidation is reported to be upregulated98,116. 

This is also the case in our results: only pathological state has reduced fatty acid oxidation. 

These results confirm that Pgc-1α overexpression resembles physiological rather than 

pathological cardiomyopathy and in that sense, it may be used as a treatment target. Naturally, 

disruptions of circadian rhythm and insulin resistance reduce this compatibility. 

However, according to the result of gene set enrichment and regulation of the differentially 

expressed genes among curated pathways, overexpression of Pgc-1α causes downregulation of 



circadian rhythm pathway. As mentioned in the literature review, disruptions of circadian 

rhythm cause changes in bodily functions and have been linked to variety of diseases, including 

obesity and mental illnesses. Two circadian rhythm related pathways were also significantly 

enriched in the gene set enrichment results. One of these pathways (“Diurnally regulated 

pathways with circadian orthologs (WIKIPW)” was further studied. According to the results, 

Bmal1 is significantly upregulated under the overexpression of Pgc-1α whereas other core 

components of the circadian clock, apart from Clock, are downregulated. This event is also 

supported by the literature: Pgc-1α upregulates Bmal1 by activating RORs and while 

transcription of Bmal1 is highest, Pgc-1α protein peaks117. According to the visualization of 

significantly enriched circadian rhythm pathway (“Diurnally regulated genes with circadian 

orthologs (WIKIPW)”), the overexpression of Pgc-1α significantly affects Bmal1, Per1 and 

Per2. It also seems to affect Cry1 and Cry2, all of which belong to the core clock. This 

highlights the importance of Pgc-1α and suggests the possibility that Pgc-1α may also belong 

to the core clock components. Therefore, it would be of an interest to study this intriguing effect 

further. 

In order to study this unexpected disruption of circadian rhythm even further, the dataset of 

Pgc-1α overexpression in heart was compared with circadian rhythm datasets. While our results 

support the conclusion that Pgc-1α overexpression causes disruptions in circadian rhythm by 

causing downregulation of the pathway, identification of time point was not reliable; neither 

gene set enrichment nor hypergeometric test or manual comparison revealed reliable results. 

The low number of replicates with possible outlier affected the comparison and ignorance of 

timepoint in which the samples were collected provided extra challenges. The biggest problem, 

however, was the design of the experiment. In order to properly study the effect the dynamics 

of circadian regulation the experiment should be re-designed as a time-series with higher 

number of samples and replicates. 

In addition to previously mentioned methods, the effect of Pgc-1α overexpression to circadian 

rhythm could also be studied computationally. This would be especially effective because 

circadian rhythm is one of the most complicated pathways due to its hefty size and heavy 

regulation of autonomous transcription-translation feedback loops. Based on pathway databases 

and literature, a model of circadian rhythm pathway could be built. Then this model could be 

disturbed and the effect of disruption, such as Pgc-1α overexpression, could be studied first by 

modeling simulations and then confirming it experimentally. The computational model studies 

aim to uncover general principles of circadian clock and provide more abstract interpretations 



in the systems view. However, the models are often simplified, making them mathematically 

tractable and require no extraneous details. The system generates predicted outcomes provided 

by training data and due to this, thus in theoretical point of view, whole system can treated as 

mechanistic “black box” as long as it generates the predictions. This synthetic approach has 

been used to mimic circadian clock and investigate rhythmic outcomes of generated by 

topological schemes, for example118. 

Luckily, the circadian clock has been studied as modeled for centuries and thus there already 

are models to use. Therefore, the first step would be looking into the existing models and 

choosing one for adaptation in order to investigate more specific questions, such as the effect 

of Pgc-1α overexpression. Example of a potential model could be from Regorio et al119. Their 

model includes the core clock genes and the two main feedback loops, and has been tested by 

comparing results from mutation data from knockout mice and verified with human 

osteocarcinoma cells. Naturally, this is something to take into account while testing and 

building up the model: circadian rhythm is known to have tissue-dependent effects. This 

knowledge motivates the collection and research of variety of tissues in order to study tissue 

specific effects of circadian rhythm. We have shown that overexpression of Pgc-1α are, at least 

partially, tissue specific. After successfully conducting the modeling of the effects of Pgc-1α in 

cardiomyocytes, it would be interesting to test the tissue specificity with skeletal muscle dataset, 

as well. 

The design of the model of Regorio et al. is based on ordinary differential equations (ODEs) 

which is one of the two widely used methods in computational modeling for system biology. 

Descriptions with ODE system may take detailed knowledge, such as concentrations of the 

substrates, individual protein-protein functions and gene regulatory mechanisms into account. 

Based on these, dynamics of the mRNA concentrations of the system can be presented. 

Challenge in this is the lack of information – not much is known about kinetic constants and 

often functions of many proteins and their interactions are uncertain. Time-resolved 

concentration data is also challenging to measure120, and it is what would be required to study 

the effect of Pgc-1α overexpression. 

It can also be argued that ODEs assumptions of continuous and deterministic concentration are 

not valid when it comes to gene expression. On single cell level, the abundance of molecules is 

often low. Moreover, the abundance of mRNA molecules is also often below detection limit, 

causing uncertainty whether process is actually present or not. Furthermore, in transcription, it 



takes time from initiation until termination. Therefore it is debatable whether the process can 

be regarded as continuous like it is described in ODE models. One way to overcome these 

challenges is stochastic stimulation which computes concentration for each molecule along 

time120. 

Another way to build up a network model would be to construct a Boolean network in which 

all the states are binary (Figure 19.). Boolean models are simpler than ODEs and therefore 

require less time and effort, but they suffer from one major limitation: in Boolean model, genes 

are either active or inactive. Biologically, this is rarely the case. Therefore, for modeling 

circadian rhythm and the effect Pgc-1α on it, ODE model would be better. Although, as 

mentioned before, it requires more time and effort, both with the modeling and gathering the 

data in the laboratory. 

 

Figure 19. Boolean gene regulatory network.  

Rules: 

a(t+1) = a(t)  b(t+1) = not c(t) and d(t) 

c(t+1) = a(t) and b(t) d(t+1) = not c(t) 

In Boolean regulatory network, all states are binary. Statements are defined by using operators 

“and”, “or” or “not” and their combinations. In modeling of gene regulation networks, genes 

are the elements of the network. They have two states, expressed (assigned value 1) or not 

expressed (assigned value 0). Gene can either activate, dissuade or not affect another gene 

based on the rules of the network. The network drives the system towards a steady state which 

is constant and no changes of expression are happening. If, however, a gene is activated by 

external stimulation for example, it may drive towards an exit from this attractor and 

eventually to a new steady state by affecting expression of other genes which affect further 

genes and so on until steady state (either the original or a new one) is reached120. In this 

particular network, or b to be active, there should be d available whereas for c to be active, 

there should be both b and d available. This system, like any other, evolves towards steady 



states through attractors. Based on the rules, if initial state of a is 1 (switched on), at first a is 

active and other genes are switched off (1000). Then, d is activated because it is not repressed 

(1001). Next, d activates b (1101). After this a and b and a activate c, resulting in state where 

all genes are active (1111). Then c inhibits b and d (1010). Because b is not active, no c is 

produced and gene becomes inactive (1000). Thus: 1000 → 1001 → 1101 → 1111 → 1010 

→ 1000. On the other hand, if initial state of a is 0, d is active and activates b (0101). c isn’t 

activated because there is no a. 

 

After choosing the model, conduction of experiments can begin. Whereas the generalized 

mathematical models can provide directions and highlight the importances of networks, it is 

essential to experimentally validate these models and understand the precise molecular basis of 

regulation118,121. It is also crucial to choose the model to be adopted before conducting 

experiments because then the parameters needed for the modeling, such as degradation and 

inhibition rates, and its experimental work needed for adjustments are known. In the case of 

adapting the model for studying of the effect of Pgc-1α, the experimental analysis to identify 

and ensure its link to circadian rhythm through time-series experiment would be necessary. A 

potential link between the Pgc-1α and the circadian clock could be its effect through RORs, 

which leads to heightened Bmal1 expression. This is not only suggested in the literature117 but 

also in our results. 

After this, the model could be used to predict the effects of Pgc-1α overexpression, for example. 

Lastly, the model should be verified by conducting time-series experiment of Pgc-1α 

overexpression on circadian rhythm. If the model is able to predict the results from the 

experiment, it is validated and could be further used to predict other perturbations as well, such 

as reduced expression or knockout of Pgc-1α. 

An intriguing, more experimental way to test the effect and importance of Pgc-1α on circadian 

rhythm are so-called resonance experiments. Pgc-1α has been suggested to be a pheripheral 

oscillator122, player of the melody that SCN guides. These circadian oscillators have evolved to 

anticipate organism’s biological needs during the light-dark cycle, causing the period length 

(tau) to be in resonance with period of the light-dark cycle (T cycle). By creating several mutant 

organisms with different tau, let’s say 20, 24 and 30 h, their performance under the 

corresponding T cycle could be tested. For example, organism with 24 tau should perform better 

under T cycle of 24 h than 20 or 30 h. Likewise, organisms with 20 tau and 30 tau should 

outperform others under T cycle 20 and 30 h, respectively. If the resonance of tau with T cycles 

increases and decreases organism’s fitness and even survival, then cause is the interaction of 



the clock with environmental rhythms rather than the mutation of the gene or TF itself23. Studies 

like this have been conducted in cyanobacteria, but not yet in mammals23. According to our 

results, overexpression of Pgc-1α significantly affects many of the core clock genes and thus is 

likely to affect period lengths. By first identifying the period length change caused by 

overexpression Pgc-1α, its importance as an oscillator could be further studied by these 

resonance experiments. 

By understanding how Pgc-1α regulates expression of circadian rhythm and its components, 

the potential of Pgc-1α as treatment target could be concluded. Naturally, experiments like this 

would also benefit the circadian rhythm research (possibly even introduce a new core clock 

gene) and may even uncover treatment targets for circadian rhythm disorders. 

 

 

7 CONCLUSION 

 

Genome-wide RNA-seq and microarray datasets from different tissues were used to answer the 

three hypothesis in this thesis. The hypotheses were confirmed by using unsupervised gene set 

enrichment tools, hypergeometric test and curated pathway analysis. 

The pathways affected by Pgc-1α overexpression were identified and confirmed, with 

surprising result of downregulation of circadian rhythm. Interestingly, Pgc-1α overexpression 

seemed to cause insulin resistance in mice. However, further studies should be conducted to 

verify and further investigate this result. 

The tissue-dependent effect of Pgc-1α overexpression was confirmed with GSA’s gene set 

enrichment with GSEA’s algorithm. The biggest difference was the upregulation of PPAR 

signaling in skeletal muscle and higher upregulation of fatty acid oxidation in skeletal muscle. 

Furthermore, Pgc-1α overexpression was shown to resemble physiological rather than 

pathological hypertrophy, suggesting its safety as treatment target. The downregulation of 

circadian rhythm and possibility of abnormal insulin regulation, however, threatens this safety. 

While Pgc-1α overexpression clearly disrupts circadian rhythm, the severity of it remains 

unconfirmed. The association with insulin resistance also requires closer inspection. The 

success of targeting Pgc-1α, however, may lay in controlling the overexpression, and potentially 



the clinical window will therefore be very narrow. Nevertheless, further studies, both 

computational modeling and laboratory work are necessary to confirm this. 

In summary, the results obtained in this thesis allowed identification of the effects of Pgc-1α 

overexpression on gene expression in heart tissue, identified tissue-dependent effects in 

comparison with skeletal muscle and provided insight of its possibility as a treatment target for 

cardiac hypertrophy. This information is needed to further investigate the effects of Pgc-1α 

levels on tissue physiology. By providing clues on the key pathways for deeper investigation 

of Pgc-1α, this study works as a beneficial template for future studies. 
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Figure S1. Multidimensional scaling plots of genome-wide datasets. The samples of the 

datasets represented as MDS plot. In A, B and D dark grey corresponds to control samples 

whereas blue corresponds to overexpression/knockout in heart, skeletal muscle and circadian 

datasets. In C, blue and dark grey correspond to physiological hypertrophy and its control 

whereas red and black correspond to pathological hypertrophy and its control in hypertrophy 

dataset, respectively. 

 



 

Figure S2. Expression levels of expressed genes in Pgc-1α overexpression in significantly 

enriched PPARA pathway (BIOCARTA). Hierarchical clustering of scaled expression levels 

of expressed genes in Pgc-1α overexpression in the heart in significantly enriched (adj. P-val. 

<0.05), downregulated pathway. The enrichment analysis was performed as explained in the 

materials and methods section. Rows correspond to genes and columns to samples whereas red 

and blue colors indicate the up- and down-regulation during Pgc-1α overexpression in heart. 

 

  



Table S1. Upregulated, enriched pathways of Pgc-1α overexpression in heart. Enriched, 

upregulated pathways of Pgc-1a overexpression in heart with their respective adjusted P-values. 

Pathway Adj.P.value 

Class a1 rhodopsin like receptors (REACTOME) 0.0026 

Oxidative decarboxylation of alpha-ketoglutarate to succinyl CoA 

by alpha-ketoglutarate dehydrogenase (PWC) 

0.0041 

Citric acid cycle (TCA cycle) (PWC) 0.0041 

Pentose phosphate pathway (hexose monophosphate shunt) (PWC) 0.0041 

Insulin effects increased synthesis of Xylulose-5-Phosphate (PWC) 0.0041 

PP2A-mediated dephosphorylation of key metabolic factors (PWC) 0.0041 

Glucose + ATP => glucose-6-phosphate + ADP (PWC) 0.0046 

Gluconeogenesis (PWC) 0.0045 

Oxidative decarboxylation of alpha-ketoadipate to glutaryl CoA by 

alpha-ketoglutarate dehydrogenase (PWC) 

0.0046 

Fructose catabolism (PWC) 0.0047 

Electron Transport Chain (WIKIPW) 0.0048 

Glycolysis (PWC) 0.0048 

ChREBP activates metabolic gene expression (PWC) 0.0050 

Dihydroxyacetone phosphate is isomerized to form glyceraldehyde-

3-phosphate (PWC) 

0.0051 

Glucose 6-phosphate is isomerized to form fructose-6-phosphate 

(PWC) 

0.0051 

Respiratory electron transport (REACTOME) 0.0051 

Beta oxidation of butanoyl-CoA to acetyl-CoA (PWC) 0.0053 

Glucose Regulation of Insulin Secretion (PWC) 0.0055 

Glucose is carried across the plasma membrane by a glucose 

transport protein (GLUT) (PWC) 

0.0057 

Pyruvate metabolism (PWC) 0.0057 

Pyruvate metabolism and TCA cycle (PWC) 0.0057 

Oxidative phosphorylation (KEGG) 0.0061 

Oxidative decarboxylation of alpha-keto-beta-methylvalerate to 

alpha-methylbutyryl-CoA by branched-chain alpha-ketoacid 

dehydrogenase (PWC) 

0.0065 

Alanine and aspartate metabolism (WIKIPW) 0.0065 

Propionyl-CoA catabolism (PWC) 0.0071 

Isoleucine catabolism (PWC) 0.0071 

Regulation of Insulin Secretion (PWC) 0.0072 

Transcriptional activation of glucose metabolism genes by 

ChREBP:MLX (PWC) 

0.0077 

Phosphoenolpyruvate and ADP react to form pyruvate and ATP 

(PWC) 

0.0077 

1,3-bisphosphoglycerate and ADP react to form 3-phosphoglycerate 

and ATP (PWC) 

0.0077 

Alanine metabolism (PWC) 0.0077 

Oxidative decarboxylation of pyruvate to acetyl CoA by pyruvate 

dehydrogenase (PWC) 

0.0085 

Beta oxidation of hexanoyl-CoA to butanoyl-CoA (PWC) 0.0088 



Glyceraldehyde 3-phosphate, NAD+, and orthophosphate react to 

form 1,3-bisphosphoglycerate, NADH, and H+ (PWC) 

0.0106 

Regulation of pyruvate dehydrogenase complex (PDC) (PWC) 0.0121 

Electron transport chain (PWC) 0.0132 

Oxidative decarboxylation of alpha-ketoisovalerate to isobutyryl-

CoA by branched-chain alpha-ketoacid dehydrogenase (PWC) 

0.0141 

Lysine catabolism (PWC) 0.0152 

Regulation of beta-cell development (PWC) 0.0152 

GPCRs, class A rhodopsin-like (WIKIPW) 0.0156 

Oxidative phosphorylation (WIKIPW) 0.0156 

Metabolism of amino acids (PWC) 0.0157 

Parkinsons disease (KEGG) 0.0158 

Aspartate, asparagine, glutamate, and glutamine metabolism (PWC) 0.0161 

Beta oxidation of octanoyl-CoA to hexanoyl-CoA (PWC) 0.0182 

Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA (PWC) 0.0182 

Branched-chain amino acid catabolism (PWC) 0.0186 

Gpcr ligand binding (REACTOME) 0.0191 

Valine catabolism (PWC) 0.0212 

Peptide ligand binding receptors (REACTOME) 0.0229 

Glucose uptake (PWC) 0.0246 

Interferon alpha beta signaling (REACTOME) 0.0250 

Regulation of gene expression in beta cells (PWC) 0.0280 

Beta oxidation of myristoyl-CoA to lauroyl-CoA (PWC) 0.0281 

Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA (PWC) 0.0281 

Tca cycle and respiratory electron transport (REACTOME) 0.0334 

Butanoate metabolism (KEGG) 0.0334 

Metabolism of carbohydrates (PWC) 0.0350 

Sensory perception (GO) 0.0357 

Type II interferon signaling (IFNG) (WIKIPW) 0.0390 

Mitochondrial protein import (REACTOME) 0.0403 

Citrate cycle tca cycle (KEGG) 0.0454 

 

 

  



Table S2. The pathways chosen for curated pathway analysis. The literature based on which 

the curated pathways were chosen, with the respective pathway, tissue in which the study was 

conducted, name of the article and author. 

Curated pathway Article name Article author Tissue 

Growth signaling Mitochondrial biogenesis in cardiac 

pathophysiology 

Rimbaud et al. heart 

Mechanisms regulating skeletal 

muscle growth and atrophy 

Schiaffino et 

al. 

skeletal 

muscle 

Calcium signaling Mitochondrial biogenesis and turnover Diaz F. et al. skeletal 

muscle 

Role of PGC-1a in signaling skeletal 

muscle health and disease 

Kang et al. skeletal 

muscle 

Mitochondrial biogenesis in cardiac 

pathophysiology 

Rimbaud et al. heart 

Muscle contraction Mitochondrial biogenesis and turnover Diaz F. et al. skeletal 

muscle 

PGC-1a: a key regulator of energy 

metabolism 

Liang et al. skeletal 

muscle 

Mitochondrial biogenesis in cardiac 

pathophysiology 

Rimbaud et al. heart 

PI3K signaling Molecular Defects in Cardiovascular 

Disease 

Dhalla et al. heart 

Signaling pathways controlling 

skeletal muscle mass 

Egerman et al. skeletal 

muscle 

Glycolysis PGC-1 coactivators: inducible 

regulators of energy metabolism in 

health and disease 

Fink et al. heart 

Skeletal muscle PGC-1α controls 

whole-body lactate homeostasis 

through estrogen-related receptor α-

dependent activation of LDH B and 

repression of LDH A 

Summermatter 

et al. 

skeletal 

muscle 

PPAR signaling Role of PGC-1a in signaling skeletal 

muscle health and disease 

Kang et al. skeletal 

muscle 

The Coactivator PGC-1 Cooperates 

with Peroxisome Proliferator-

Activated Receptor α in 

Transcriptional Control of Nuclear 

Genes Encoding Mitochondrial Fatty 

Acid Oxidation Enzymes 

Vega et al. heart 

PGC-1 coactivators: inducible 

regulators of energy metabolism in 

health and disease 

Fink et al. heart 

Circadian rhythm Transcriptional coactivator PGC-1a 

integrates the mammalian clock and 

energy metabolism 

Liu et al. skeletal 

muscle 

Circadian rhythms, Wnt/beta-catenin 

pathway and PPAR alpha/gamma 

Lecarpentier heart 



profiles in diseases with primary or 

secondary cardiac dysfunction 

Fatty acid beta-

oxidation 

The Coactivator PGC-1 Cooperates 

with Peroxisome Proliferator-

Activated Receptor α in 

Transcriptional Control of Nuclear 

Genes Encoding Mitochondrial Fatty 

Acid Oxidation Enzymes 

Vega et al. heart 

PGC-1 coactivators: inducible 

regulators of energy metabolism in 

health and disease 

Fink et al. heart 

Regulation of skeletal muscle 

mitochondrial fatty acid metabolism in 

lean and obese individuals 

Holloway et 

al. 

skeletal 

muscle 

Electron transport 

chain 

PGC-1 coactivators: inducible 

regulators of energy metabolism in 

health and disease 

Fink et al. heart 

PGC-1 coactivators in cardiac 

development and disease 

Rowe et al. heart 

Regulation of skeletal muscle 

mitochondrial fatty acid metabolism in 

lean and obese individuals 

Holloway et 

al. 

skeletal 

muscle 

Citric acid cycle Metabolomic Analysis of the Skeletal 

Muscle of Mice Overexpressing PGC-

1α 

Hatazawa et 

al. 

skeletal 

muscle 

PGC-1 coactivators in cardiac 

development and disease 

Rowe et al. heart 

 

 

  



Table S3. Curated pathways of the pathway analysis with their respective databases. 

Growth signaling PI3K signaling Circadian rhythm 

Regulation of transforming 
growth factor beta receptor 
signaling pathway (GO) 

IL2 signaling events mediated 
by PI3K (PWC) 

Circadian rhythm mammal 
(KEGG) 

Regulation of growth (GO) Class I PI3K signaling events 
mediated by Akt (PWC) 

Circadian rhythm pathway 
(PWC) 

Negative regulation of growth 
(GO) 

Class I PI3K signaling events 
(PWC) 

Circadian rhythm (GO) 

Epidermal growth factor 
receptor signaling pathway (GO) 

Trk receptor signaling mediated 
by PI3K and PLC-gamma 
(PWC) 

Diurnally regulated genes with 
circadian orthologs (WIKIPW) 

Transforming growth factor beta 
receptor signaling pathway (GO) 

PIK3 events in ERBB4 signaling 
(REACTOME) 

Bmal1 Clock NPAS2 activates 
circadian expression 
(REACTOME) 

Developmental growth (GO) PIK3 events in ERBB2 signaling 
(REACTOME) 

RORA activates circadian 
expression (REACTOME) 

Regulation of cell growth (GO) Negative regulation of the PI3K 
AKT network (REACTOME) 

Circadian expression of 
expression by REV-ERBA 
(REACTOME) 

Cleavage of growing transcript 
in the termination region (PWC) 

PI3K AKT activation 
(REACTOME) 

Circadian clock (REACTOME) 

Signaling events activated by 
hepatocyte growth factor 
receptor (c-Met) (PWC) 

G beta gamma signaling 
through PI3Kgamma 
(REACTOME) 

 

Growth (GO) CD28 dependent PI3K AKT 
signaling (REACTOME) 

 

Signaling of hepatocyte growth 
factor receptor (WIKIPW) 

PI3K cascade (REACTOME)  

Growth hormone receptor 
signaling (REACTOME) 

  

Regulation of insulin like growth 
factor IGF activity by insulin like 
growth factor binding proteins 
IGFBPS (REACTOME) 

  

Cleavage of growing transcript 
in the termination region 
(REACTOME) 

  

Beta-oxidation Muscle contradiction  Citric acid cycle 

Fatty acid beta oxidation 
(WIKIPW) 

Cardiac muscle contraction 
(KEGG) 

Citrate cycle tca cycle (KEGG) 

Mitochondrial LC-fatty acid beta-
oxidation (WIKIPW) 

Muscle contraction (PWC) Citric acid cycle (TCA cycle) 
(PWC) 

Fatty acid beta oxidation (GO) Regulation of muscle 
contraction (GO) 

Pyruvate metabolism and TCA 
cycle (PWC) 

Beta-oxidation of very long 
chain fatty acids (PWC) 

Regulation of heart contraction 
(GO) 

TCA cycle (WIKIPW) 

Mitochondrial fatty acid beta-
oxidation of unsaturated fatty 
acids (PWC) 

Striated muscle contraction go 
0006941 (GO) 

Pyruate metabolism and citric 
acid TCA cycle (REACTOME) 

Mitochondrial fatty acid beta-
oxidation (PWC) 

Striated muscle contraction 
(REACTOME) 

TCA cycle and respiratory 
electron transport (REACTOME) 

Activated AMPK stimulates fatty 
acid oxidation in muscle 
(REACTOME) 

Muscle contraction 
(REACTOME) 

Citric acid cycle TCA cycle 
(REACTOME) 

Mitochondrial fatty acid beta 
oxidation (REACTOME) 

  



Ca signaling Electron transport chain Glycolysis 

Calcium signaling pathway 
(KEGG) 

Electron transport chain 
(WIKIPW) 

Glycolysis gluconeogenesis 
(KEGG) 

Calcium signaling in the 
CD4+TCR pathway (PWC) 

Electron transport go 0006118 
(GO) 

Glycolysis pathway 
(BIOCARTA) 

Calcium mediated signaling 
(GO) 

Electron transport chain (PWC) Glycolysis (PWC) 

Calcium ion transport (GO) TCA cycle and respiratory 
electron transport (REACTOME) 

Glycolysis and Gluconeogenesis 
(WIKIPW) 

Calcium independent cell cell 
adhesion (GO) 

Respiratory electron transport 
ATP synthesis by chemiosmotic 
coupling and hear production by 
uncoupling proteins 
(REACTOME) 

Glycolysis (REACTOME) 

Calcium regulation in the 
cardiac cell (WIKIPW) 

  

PPAR signaling    

Ppar signaling pathway (KEGG)   

PPARA activates gene 
expression (REACTOME) 

  

 

 

Table S4. Upregulated, enriched pathways of Pgc-1α overexpression in skeletal muscle. 

Enriched, upregulated pathways of Pgc-1α overexpression in skeletal muscle with their 

respective adjusted P-values. 

Pathway  Adj. P-value 

Oxidative decarboxylation of alpha-ketoadipate to glutaryl CoA 

by alpha-ketoglutarate dehydrogenase (PWC) 

0.0000 

Oxidative decarboxylation of alpha-ketoglutarate to succinyl 

CoA by alpha-ketoglutarate dehydrogenase (PWC) 

0.0000 

Valine catabolism (PWC) 0.0000 

Oxidative decarboxylation of alpha-ketoisovalerate to isobutyryl-

CoA by branched-chain alpha-ketoacid dehydrogenase (PWC) 

0.0000 

Transcriptional activation of glucose metabolism genes by 

ChREBP:MLX (PWC) 

0.0000 

Regulation of gene expression in beta cells (PWC) 0.0000 

Glycolysis (PWC) 0.0000 

Phosphoenolpyruvate and ADP react to form pyruvate and ATP 

(PWC) 

0.0000 

Glyceraldehyde 3-phosphate, NAD+, and orthophosphate react 

to form 1,3-bisphosphoglycerate, NADH, and H+ (PWC) 

0.0000 

1,3-bisphosphoglycerate and ADP react to form 3-

phosphoglycerate and ATP (PWC) 

0.0000 

Dihydroxyacetone phosphate is isomerized to form 

glyceraldehyde-3-phosphate (PWC) 

0.0000 

Glucose 6-phosphate is isomerized to form fructose-6-phosphate 

(PWC) 

0.0000 

Citric acid cycle (TCA cycle) (PWC) 0.0000 



Propionyl-CoA catabolism (PWC) 0.0000 

Regulation of insulin secretion (PWC) 0.0000 

Glucose regulation of insulin secretion (PWC) 0.0000 

Oxidative decarboxylation of pyruvate to acetyl CoA by 

pyruvate dehydrogenase (PWC) 

0.0000 

Electron transport chain (PWC) 0.0000 

Pentose phosphate pathway (hexose monophosphate shunt) 

(PWC) 

0.0000 

Metabolism of lipids and lipoproteins (PWC) 0.0000 

Mitochondrial fatty acid beta-Oxidation (PWC) 0.0000 

Mitochondrial fatty acid beta-oxidation of unsaturated fatty acids 

(PWC) 

0.0000 

Oxidative decarboxylation of alpha-keto-beta-methylvalerate to 

alpha-methylbutyryl-CoA by branched-chain alpha-ketoacid 

dehydrogenase (PWC) 

0.0000 

Gluconeogenesis (PWC) 0.0000 

Lysine catabolism (PWC) 0.0000 

Glucose metabolism (PWC) 0.0000 

Pyruvate metabolism (PWC) 0.0000 

Glucose uptake (PWC) 0.0000 

Glucose is carried across the plasma membrane by a glucose 

transport protein (GLUT) (PWC) 

0.0000 

Glucose + ATP => glucose-6-phosphate + ADP (PWC) 0.0000 

Isoleucine catabolism (PWC) 0.0000 

ChREBP activates metabolic gene expression (PWC) 0.0000 

Regulation of beta-cell development (PWC) 0.0000 

Regulation of pyruvate dehydrogenase complex (PDC) (PWC) 0.0000 

Pyruvate metabolism and TCA cycle (PWC) 0.0000 

Insulin effects increased synthesis of Xylulose-5-Phosphate 

(PWC) 

0.0000 

Activated AMPK stimulates fatty-acid oxidation in muscle 

(PWC) 

0.0000 

Fructose catabolism (PWC) 0.0000 

Branched-chain amino acid catabolism (PWC) 0.0000 

Alanine metabolism (PWC) 0.0000 

Integration of energy metabolism (PWC) 0.0000 

PP2A-mediated dephosphorylation of key metabolic factors 

(PWC) 

0.0000 

Diabetes pathways (PWC) 0.0000 

Metabolism of amino acids (PWC) 0.0000 

Tca cycle and respiratory electron transport (REACTOME) 0.0000 

Oxidative phosphorylation (KEGG) 9.9168e-05 

Huntingtons disease (KEGG) 0.0001 

Metabolism of carbohydrates (PWC) 0.0001 

mitochondrial fatty acid beta-oxidation of saturated fatty acids 

(PWC) 

0.0001 

Beta oxidation of palmitoyl-CoA to myristoyl-CoA (PWC) 0.0001 

Import of palmitoyl-CoA into the mitochondrial matrix (PWC) 0.0001 



Alzheimers disease (KEGG) 0.0001 

Aspartate, asparagine, glutamate, and glutamine metabolism 

(PWC) 

0.0001 

Beta oxidation of octanoyl-CoA to hexanoyl-CoA (PWC) 0.0002 

Beta oxidation of hexanoyl-CoA to butanoyl-CoA (PWC) 0.0002 

Beta oxidation of butanoyl-CoA to acetyl-CoA (PWC) 0.0002 

Beta oxidation of myristoyl-CoA to lauroyl-CoA (PWC) 0.0002 

Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA (PWC) 0.0002 

Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA (PWC) 0.0002 

Parkinsons disease (KEGG) 0.0002 

Electron transport chain (WIKIPW) 0.0002 

Oxidative phosphorylation (WIKIPW) 0.0009 

Respiratory electron transport atp synthesis by chemiosmotic 

coupling and heat production by uncoupling proteins  

(REACTOME) 

0.0028 

Valine leucine and isoleucine degradation (KEGG) 0.0101 

Metabolism of amino acids and derivatives (REACTOME) 0.0256 

Citrate cycle tca cycle (KEGG) 0.0411 

TCA Cycle (WIKIPW) 0.0411 

Metabolism of lipids and lipoproteins (REACTOME) 0.0461 

Ppara activates gene expression (REACTOME) 0.0487 

 

 

Table S5. Upregulated, enriched pathways of pathological hypertrophy. Enriched, 

upregulated pathways of pathological hypertrophy in skeletal muscle with their respective 

adjusted P-values. 

Pathway Adj. P-value 

Dna replication (KEGG) 0.0000 

Cell cycle (KEGG) 0.0000 

Focal adhesion (KEGG) 0.0000 

Ecm receptor interaction (KEGG) 0.0000 

Leukocyte transendothelial migration (KEGG) 0.0000 

Regulation of actin cytoskeleton (KEGG) 0.0000 

M Phase (PWC) 0.0000 

Mitotic Prometaphase (PWC) 0.0000 

M/G1 Transition (PWC)  0.0000 

Activation of the pre-replicative complex (PWC) 0.0000 

DNA strand elongation (PWC) 0.0000 

Unwinding of DNA (PWC) 0.0000 

G1/S Transition (PWC) 0.0000 

S Phase (PWC) 0.0000 

Synthesis of DNA (PWC) 0.0000 

Cell cycle, mitotic (PWC) 0.0000 



DNA replication pre-initiation (PWC) 0.0000 

Integrin cell surface interactions (PWC) 0.0000 

Hemostasis (PWC) 0.0000 

Formation of Platelet plug (PWC) 0.0000 

DNA Replication (PWC) 0.0000 

Aurora B signaling (PWC) 0.0000 

Signaling by Aurora kinases (PWC) 0.0000 

FOXM1 transcription factor network (PWC) 0.0000 

Cytokinesis (GO) 0.0000 

M phase (GO) 0.0000 

Regulation of mitosis (GO) 0.0000 

Cell cycle process (GO) 0.0000 

Mitotic cell cycle (GO) 0.0000 

Cell cycle phase (GO) 0.0000 

Cell division (GO) 0.0000 

Mitosis (GO) 0.0000 

M phase of mitotic cell cycle (GO) 0.0000 

Cell cycle (WIKIPW) 0.0000 

Focal Adhesion (WIKIPW) 0.0000 

Inflammatory response pathway (WIKIPW) 0.0000 

DNA replication (WIKIPW) 0.0000 

Activation of the pre replicative complex (REACTOME) 0.0000 

Cell cycle (REACTOME) 0.0000 

Extracellular matrix organization (REACTOME) 0.0000 

Collagen formation (REACTOME) 0.0000 

Chondroitin sulfate dermatan sulfate metabolism (REACTOME) 0.0000 

Glycosaminoglycan metabolism (REACTOME) 0.0000 

Mhc class ii antigen presentation (REACTOME) 0.0000 

Integrin cell surface interactions (REACTOME) 0.0000 

Cell cycle mitotic (REACTOME) 0.0000 

Axon guidance (REACTOME) 0.0000 

Synthesis of dna (REACTOME) 0.0000 

Mitotic g1 g1 s phases (REACTOME) 0.0000 

Mitotic m m g1 phases (REACTOME) 0.0000 

Kinesins (REACTOME) 0.0000 

Dna replication (REACTOME) 0.0000 

Activation of atr in response to replication stress (REACTOME) 0.0000 

Mitotic prometaphase (REACTOME) 0.0000 

G2 m checkpoints (REACTOME) 0.0000 

S phase (REACTOME) 0.0000 

Dna strand elongation (REACTOME) 0.0000 

Orc1 removal from chromatin (REACTOME) 0.0005 

Platelet Activation (PWC) 0.0006 

Unwinding of dna (REACTOME) 0.0006 

Prostaglandin Synthesis and Regulation (WIKIPW) 0.0006 

G1 to S cell cycle control (WIKIPW) 0.0006 



G1 s transition (REACTOME) 0.0006 

Mitotic cell cycle checkpoint (GO) 0.0006 

Mitotic sister chromatid segregation (GO) 0.0006 

Cell adhesion molecules cams (KEGG) 0.0006 

G2 pathway (BIOCARTA) 0.0006 

Immune system process (GO) 0.0007 

Sister chromatid segregation (GO) 0.0007 

Cell surface interactions at the vascular wall (PWC) 0.0007 

G1 Phase (PWC) 0.0007 

Cyclin D associated events in G1 (PWC) 0.0007 

G1 pathway (BIOCARTA) 0.0007 

Cell Cycle Checkpoints (PWC) 0.0009 

E2F transcriptional targets at G1/S (PWC) 0.0009 

E2F mediated regulation of DNA replication (PWC) 0.0009 

Cell cycle go 0007049 (GO) 0.0009 

Defense response (GO) 0.0010 

Response to elevated platelet cytosolic ca2  (REACTOME) 0.0013 

Integrin-mediated cell adhesion (WIKIPW) 0.0013 

Chromosome segregation (GO) 0.0013 

Signal transduction by l1 (REACTOME) 0.0013 

Cell proliferation go 0008283 (GO) 0.0013 

L1cam interactions (REACTOME) 0.0014 

Platelet activation signaling and aggregation (REACTOME) 0.0014 

Cell cycle checkpoints (REACTOME) 0.0015 

A tetrasaccharide linker sequence is required for gag synthesis 

(REACTOME) 

0.0015 

Semaphorin interactions (REACTOME) 0.0016 

Assembly of the pre replicative complex (REACTOME) 0.0018 

Generation of second messenger molecules (REACTOME) 0.0018 

M g1 transition (REACTOME) 0.0019 

Activation of ATR in response to replication stress (PWC) 0.0020 

Assembly of the pre-replicative complex (PWC) 0.0021 

Signaling in Immune system (PWC) 0.0021 

G2/M Checkpoints (PWC) 0.0023 

Switching of origins to a post-replicative state (PWC) 0.0023 

Orc1 removal from chromatin (PWC) 0.0023 

Regulation of DNA replication (PWC) 0.0023 

Mcm pathway (BIOCARTA) 0.0024 

G1 s specific transcription (REACTOME) 0.0027 

Cytoskeleton organization and biogenesis (GO) 0.0028 

Immunoregulatory interactions between a lymphoid and a non 

lymphoid cell (REACTOME) 

0.0031 

Developmental biology (REACTOME) 0.0032 

Hemostasis (REACTOME) 0.0033 

Ncam1 interactions (REACTOME) 0.0034 

Integrin alphaiib beta3 signaling (REACTOME) 0.0036 

Skeletal development (GO)  0.0037 



Telomere maintenance (REACTOME) 0.0037 

Removal of licensing factors from origins (PWC) 0.0038 

Granulocytes pathway (BIOCARTA) 0.0038 

E2f mediated regulation of dna replication (REACTOME) 0.0042 

amb2 Integrin signaling (PWC) 0.0043 

Chondroitin sulfate biosynthesis (REACTOME) 0.0043 

Lipoprotein metabolism (REACTOME) 0.0044 

Pyrimidine metabolism (PWC) 0.0049 

Cell migration (GO) 0.0049 

Eukaryotic Translation Elongation (PWC) 0.0050 

Cell matrix adhesion (GO) 0.0050 

Positive regulation of cell proliferation (GO) 0.0052 

Cell cell adhesion (GO) 0.0053 

T Cell Receptor Signaling Pathway (WIKIPW) 0.0054 

Lysosome (KEGG) 0.0054 

Leukocyte migration (GO) 0.0059 

Immune response (GO) 0.0059 

Alpha6Beta4Integrin (PWC) 0.0060 

Fc gamma r mediated phagocytosis (KEGG) 0.0060 

Ncam signaling for neurite out growth (REACTOME) 0.0060 

Glycosaminoglycan biosynthesis chondroitin sulfate (KEGG) 0.0061 

Cell cell communication (REACTOME) 0.0062 

P53 pathway (BIOCARTA) 0.0063 

Interferon alpha beta signaling (REACTOME) 0.0064 

Cell substrate adhesion (GO) 0.0064 

Immunoregulatory interactions between a Lymphoid and a non-

Lymphoid cell (PWC) 

0.0065 

Ucalpain pathway (BIOCARTA) 0.0066 

Chromosome condensation (GO) 0.0066 

Organ development (GO) 0.0066 

Heparan sulfate heparin hs gag metabolism (REACTOME) 0.0071 

Platelet activation triggers (PWC) 0.0073 

Cyclin a b1 associated events during g2 m transition (REACTOME) 0.0076 

IL4-mediated signaling events (PWC) 0.0077 

Other glycan degradation (KEGG) 0.0099 

Chromosome maintenance (REACTOME) 0.0101 

Extension of telomeres (REACTOME) 0.0105 

Signaling by robo receptor (REACTOME) 0.0107 

G0 and early g1 (REACTOME) 0.0108 

Organ morphogenesis (GO) 0.0109 

The role of nef in hiv1 replication and disease pathogenesis 

(REACTOME) 

0.0110 

Cellcycle pathway (BIOCARTA) 0.0110 

Srcrptp pathway (BIOCARTA) 0.0113 

Pathogenic escherichia coli infection (KEGG) 0.0114 

IL-5 Signaling Pathway (WIKIPW) 0.0120 

Peptide chain elongation (REACTOME) 0.0125 



Peptide chain elongation (PWC) 0.0133 

Immune system (REACTOME) 0.0134 

Lagging strand synthesis (REACTOME) 0.0152 

Lym pathway (BIOCARTA) 0.0156 

IL-3 Signaling Pathway (WIKIPW) 0.0157 

Signal regulatory protein sirp family interactions (REACTOME) 0.0158 

Natural killer cell mediated cytotoxicity (KEGG) 0.0158 

L13a-mediated translational silencing of Ceruloplasmin expression 

(PWC) 

0.0159 

Translation initiation complex formation (PWC) 0.0159 

3' -UTR-mediated translational regulation (PWC) 0.0159 

Translation (PWC) 0.0160 

Eukaryotic translation initiation (PWC) 0.0160 

Cap-dependent translation initiation (PWC) 0.0160 

Activation of the mRNA upon binding of the cap-binding complex 

and eIFs, and subsequent binding to 43S (PWC) 

0.0160 

Formation of a pool of free 40S subunits (PWC) 0.0160 

Pyrimidine salvage reactions (PWC) 0.0161 

Epidermis development (GO) 0.0162 

Cytokine cytokine receptor interaction (KEGG) 0.0166 

Peptidyl tyrosine modification (GO) 0.0170 

Alpha6-Beta4 integrin signaling pathway (WIKIPW) 0.0171 

Recycling pathway of l1 (REACTOME) 0.0171 

B cell receptor signaling pathway (WIKIPW) 0.0172 

Cell cycle checkpoint go 0000075 (GO) 0.0180 

Innate immune system (REACTOME) 0.0180 

Tissue development (GO) 0.0181 

Mitotic spindle organization and biogenesis (GO) 0.0183 

Spindle organization and biogenesis (GO) 0.0183 

Gpvi mediated activation cascade (REACTOME) 0.0183 

Cell surface interactions at the vascular wall (REACTOME) 0.0184 

P53 signaling pathway (KEGG) 0.0187 

Nkcells pathway (BIOCARTA) 0.0187 

Plateletapp pathway (BIOCARTA) 0.0187 

Leishmania infection (KEGG) 0.0188 

Tnfr1 pathway (BIOCARTA) 0.0192 

Leading strand synthesis (PWC) 0.0194 

Lagging strand synthesis (PWC) 0.0194 

VEGFR3 signaling in lymphatic endothelium (PWC) 0.0195 

Hematopoietic cell lineage (KEGG) 0.0196 

Leukocyte activation (GO) 0.0197 

G1 s transition of mitotic cell cycle (GO) 0.0199 

3 utr mediated translational regulation (REACTOME) 0.0206 

Inflammasomes (REACTOME) 0.0206 

Mpr pathway (BIOCARTA) 0.0206 

Formation of tubulin folding intermediates by cct tric (REACTOME) 0.0209 

Regulation of phosphorylation (GO) 0.0211 



Positive regulation of cell cycle (GO) 0.0215 

Microtubule cytoskeleton organization and biogenesis (GO) 0.0218 

Ranms pathway (BIOCARTA) 0.0225 

Cytoplasmic ribosomal proteins (WIKIPW) 0.0227 

Antigen processing and presentation (KEGG) 0.0229 

Ace2 pathway (BIOCARTA) 0.0232 

Type II interferon signaling (IFNG) (WIKIPW) 0.0234 

Monocyte pathway (BIOCARTA) 0.0236 

Tel pathway (BIOCARTA) 0.0237 

Pyrimidine biosynthesis (interconversion) (PWC) 0.0245 

Interphase of mitotic cell cycle (GO) 0.0255 

Interphase (GO) 0.0263 

Regulation of lymphocyte activation (GO) 0.0268 

Signaling by pdgf (REACTOME) 0.0274 

Multicellular organismal development (GO) 0.0275 

Reversible phosphorolysis of pyrimidine nucleosides (PWC) 0.0286 

Systemic lupus erythematosus (KEGG) 0.0289 

Regulation of actin cytoskeleton (WIKIPW) 0.0289 

Intrinsic pathway (BIOCARTA) 0.0319 

Cell activation (GO) 0.0322 

Degradation of the extracellular matrix (REACTOME) 0.0324 

Dc pathway (BIOCARTA) 0.0343 

Interferon signaling (REACTOME) 0.0346 

Peptidyl tyrosine phosphorylation (GO) 0.0348 

Reversible phosphorolysis of pyrimidine nucleosides by uridine 

phosphorylase 1 (PWC) 

0.0349 

Regulation of i kappab kinase nf kappab cascade (GO) 0.0349 

Lair pathway (BIOCARTA) 0.0351 

DNA replication initiation (PWC) 0.0351 

Hs gag biosynthesis (REACTOME) 0.0353 

Establishment of organelle localization (GO) 0.0354 

Hdl mediated lipid transport (REACTOME) 0.0354 

Platelet aggregation plug formation (REACTOME) 0.0366 

Adherens junction (KEGG) 0.0383 

Ectoderm development (GO) 0.0386 

Grb2 sos provides linkage to mapk signaling for intergrins  

(REACTOME) 

0.0393 

Myeloid leukocyte differentiation (GO) 0.0409 

Dna packaging (GO) 0.0410 

Positive regulation of lymphocyte activation (GO) 0.0410 

Nucleosome assembly (GO) 0.0411 

Actin filament based process (GO) 0.0412 

Regulation of cell proliferation (GO) 0.0414 

Cellular defense response (GO) 0.0415 

Senescence and autophagy (WIKIPW) 0.0416 

Telomere extension by telomerase (PWC) 0.0416 

Interferon gamma signaling (REACTOME) 0.0420 



Regulation of t cell activation (GO) 0.0423 

Sema3a plexin repulsion signaling by inhibiting integrin adhesion 

(REACTOME) 

0.0428 

Regulation of ifna signaling (REACTOME) 0.0430 

Repair synthesis for gap filling by dna pol in tc ner (REACTOME) 0.0433 

Tgf beta signaling pathway (KEGG) 0.0433 

Response to biotic stimulus (GO) 0.0434 

Eukaryotic translation termination (PWC) 0.0436 

System development (GO) 0.04376 

The role of Nef in HIV-1 replication and disease pathogenesis (PWC) 0.04641 

BARD1 signaling events (PWC) 0.04761 

Vasculature development (GO) 0.04782 

Endochondral ossification (WIKIPW) 0.04787 

Cell death signalling via nrage nrif and nade (REACTOME) 0.04808 

APC-Cdc20 mediated degradation of Nek2A (PWC) 0.04814 

Golgi associated vesicle biogenesis (REACTOME) 0.04871 

Regulation of peptidyl tyrosine phosphorylation (GO) 0.0488 

Deposition of new cenpa containing nucleosomes at the centromere 

(REACTOME) 

0.0491 

TGFBR (PWC) 0.0491 

Cs ds degradation (REACTOME) 0.0492 

The nlrp3 inflammasome (REACTOME) 0.0492 

Activation of the mrna upon binding of the cap binding complex and 

eifs and subsequent binding to 43s (REACTOME) 

0.0494 

Cell junction organization (REACTOME) 0.0495 

Adaptive immune system (REACTOME) 0.0500 

 

  



Table S6. Upregulated, enriched pathways of physiological hypertrophy. Enriched, 

upregulated pathways of physiological with their respective adjusted P-values. 

Pathway Adj. P-value 

Oxidative decarboxylation of alpha-ketoadipate to glutaryl CoA by 

alpha-ketoglutarate dehydrogenase (PWC) 

0.0000 

Oxidative decarboxylation of alpha-ketoglutarate to succinyl CoA 

by alpha-ketoglutarate dehydrogenase (PWC) 

0.0000 

Beta oxidation of octanoyl-CoA to hexanoyl-CoA (PWC) 0.0000 

Beta oxidation of hexanoyl-CoA to butanoyl-CoA (PWC) 0.0000 

Beta oxidation of butanoyl-CoA to acetyl-CoA (PWC) 0.0000 

Beta oxidation of myristoyl-CoA to lauroyl-CoA (PWC) 0.0000 

Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA (PWC) 0.0000 

Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA (PWC) 0.0000 

Valine catabolism (PWC) 0.0000 

Oxidative decarboxylation of alpha-ketoisovalerate to isobutyryl-

CoA by branched-chain alpha-ketoacid dehydrogenase (PWC) 

0.0000 

Transcriptional activation of glucose metabolism genes by 

ChREBP:MLX (PWC) 

0.0000 

Glycolysis (PWC) 0.0000 

Phosphoenolpyruvate and ADP react to form pyruvate and ATP 

(PWC) 

0.0000 

Glyceraldehyde 3-phosphate, NAD+, and orthophosphate react to 

form 1,3-bisphosphoglycerate, NADH, and H+ (PWC) 

0.0000 

1,3-bisphosphoglycerate and ADP react to form 3-phosphoglycerate 

and ATP (PWC) 

0.0000 

Dihydroxyacetone phosphate is isomerized to form glyceraldehyde-

3-phosphate (PWC) 

0.0000 

Glucose 6-phosphate is isomerized to form fructose-6-phosphate 

(PWC) 

0.0000 

tRNA aminoacylation (PWC) 0.0000 

Citric acid cycle (TCA cycle) (PWC) 0.0000 

Propionyl-CoA catabolism (PWC) 0.0000 

Glucose regulation of insulin secretion (PWC) 0.0000 

Oxidative decarboxylation of pyruvate to acetyl CoA by pyruvate 

dehydrogenase (PWC) 

0.0000 

Electron transport chain (PWC) 0.0000 

Pentose phosphate pathway (hexose monophosphate shunt) (PWC) 0.0000 

Mitochondrial fatty acid beta-oxidation (PWC) 0.0000 

Mitochondrial fatty acid beta-oxidation of unsaturated fatty acids 

(PWC) 

0.0000 

Oxidative decarboxylation of alpha-keto-beta-methylvalerate to 

alpha-methylbutyryl-CoA by branched-chain alpha-ketoacid 

dehydrogenase (PWC) 

0.0000 

Glucose metabolism (PWC) 0.0000 

Pyruvate metabolism (PWC) 0.0000 

Glucose uptake (PWC) 0.0000 



Glucose is carried across the plasma membrane by a glucose 

transport protein (GLUT) (PWC) 

0.0000 

Glucose + ATP => glucose-6-phosphate + ADP (PWC) 0.0000 

Isoleucine catabolism (PWC) 0.0000 

ChREBP activates metabolic gene expression (PWC) 0.0000 

Regulation of pyruvate dehydrogenase complex (PDC) (PWC) 0.0000 

Pyruvate metabolism and TCA cycle (PWC) 0.0000 

Insulin effects increased synthesis of Xylulose-5-Phosphate (PWC) 0.0000 

Fructose catabolism (PWC) 0.0000 

Branched-chain amino acid catabolism (PWC) 0.0000 

Alanine metabolism (PWC) 0.0000 

PP2A-mediated dephosphorylation of key metabolic factors (PWC) 0.0000 

Metabolism of carbohydrates (PWC) 0.0000 

Electron transport chain (WIKIPW) 0.0000 

Tca cycle and respiratory electron transport (REACTOME) 0.0000 

Gluconeogenesis (REACTOME) 0.0000 

Trna aminoacylation (REACTOME) 0.0000 

Respiratory electron transport (REACTOME) 0.0000 

Respiratory electron transport atp synthesis by chemiosmotic 

coupling and heat production by uncoupling proteins  

(REACTOME) 

0.0000 

Glucose metabolism (REACTOME) 0.0000 

Aminoacyl trna biosynthesis (KEGG) 0.0003 

Aspartate, asparagine, glutamate, and glutamine metabolism (PWC) 0.0003 

Glycolysis and gluconeogenesis (WIKIPW) 0.00036 

Regulation of insulin secretion (PWC) 0.00036 

Oxidative phosphorylation (KEGG) 0.00037 

Gluconeogenesis (PWC) 0.00037 

Mitochondrial fatty acid beta-oxidation of saturated fatty acids 

(PWC) 

0.00038 

Beta oxidation of palmitoyl-CoA to myristoyl-CoA (PWC) 0.00038 

Mitochondrial trna aminoacylation (REACTOME) 0.00169 

Citrate cycle tca cycle (KEGG) 0.00298 

Alanine and aspartate metabolism (WIKIPW) 0.00304 

Citric acid cycle tca cycle (REACTOME) 0.00305 

Cellular respiration (GO) 0.00404 

Lysine catabolism (PWC) 0.00485 

TCA Cycle (WIKIPW) 0.00493 

Alanine aspartate and glutamate metabolism (KEGG) 0.00502 

Parkinsons disease (KEGG) 0.00513 

Integration of energy metabolism (PWC) 0.00522 

Oxidative phosphorylation (WIKIPW) 0.00526 

Aerobic respiration (GO) 0.00534 

Activated AMPK stimulates fatty-acid oxidation in muscle (PWC) 0.00543 

Regulation of gene expression in beta cells (PWC) 0.00585 

Regulation of beta-cell development (PWC) 0.00594 

Mitochondrial tRNA aminoacylation (PWC) 0.00603 



Huntingtons disease (KEGG) 0.00613 

Mitochondrial protein import (REACTOME) 0.00674 

Import of palmitoyl-CoA into the mitochondrial matrix (PWC) 0.01004 

Pyruvate metabolism and citric acid tca cycle (REACTOME) 0.01311 

Regulation of heart contraction (GO) 0.01985 

Valine leucine and isoleucine biosynthesis (KEGG) 0.02247 

Energy derivation by oxidation of organic compounds (GO) 0.03252 

Propanoate metabolism (KEGG) 0.03284 

Amino acid catabolic process (GO) 0.03765 

Formation of ATP by chemiosmotic coupling (PWC) 0.03774 

Starch and sucrose metabolism (KEGG) 0.03784 

Diabetes pathways (PWC) 0.03802 

Neurotransmitter uptake and metabolism in glial cells (PWC) 0.03813 

Metabolism of amino acids (PWC) 0.03824 

Insulin-mediated glucose transport (PWC) 0.04124 

Cofactor catabolic process (GO) 0.04248 

Igf1mtor pathway (BIOCARTA) 0.04539 

Glycolysis gluconeogenesis (KEGG) 0.04813 

Amino acid synthesis and interconversion transamination 

(REACTOME) 

0.04978 

 

 



 

Figure S2. Hypergeometric distribution of Pgc-1α overexpression and physiological/ 

pathological hypertrophy. The differentially expressed genes (adj. P-val. <0.05) of Pgc-1α 

overexpression were compared with differentially expressed genes of physiological and 

pathological cardiomyopathy in comparison to expressed genes across both experiments, 

separated by up- and downregulation. The respective p-values were the following: a) 2.92^-07; 

b) 2.45^-07; c) 0.00; d) 0.00. 

 


