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ABSTRACT

Hyaluronan is a ubiquitous non-sulfated glycosaminoglycan synthesized by the
hyaluronan synthase family enzymes (HAS1-3) in the plasma membrane. Hyaluronan is
made up of repeating units of disaccharides containing glucuronic acid (GlcUA) and N-
acetylglucosamine (GIcNAc) and is present in the pericellular and extracellular matrix of
cells. Synthesis and degradation of hyaluronan is important in inflammation, cancer and in
normal physiological processes like development and epithelial-to-mesenchymal transition.

This study showed that HAS3 traffic is an indispensable factor in the initiation and
maintenance of hyaluronan synthesis and that the plasma membrane level of the enzyme is
largely controlled by its endocytosis. Rab10 was identified as the first known protein to
enhance HAS3 endocytosis, in a clathrin-dependent pathway. Declining levels of UDP-
GIcUA and UDP-GIcNAc provoked HAS3 endocytosis, whereas excess UDP-GIcNAc and
sustained O-GlcNAc modification of HAS3 severely inhibited endocytosis and lysosomal
degradation of HAS3. HAS3 was continuously recycled between endosomes and the
plasma membrane, and the proportion of HAS3 residing in the plasma membrane
associated to the availability of UDP-sugars and the extent to which HAS3 is O-GlcNAc
modified. Excess UDP-sugars and sustained O-GlcNAcylation of HAS3 also increased the
release of HAS3 in extracellular vesicles, while the release was subdued with depletion of
UDP-sugars and O-GlcNAcylation. GFAT and GNPDA enzymes functioned in different
directions in the maintenance of UDP-GIcNAc content in basic keratinocyte culture
conditions, in which GNPDAs returned excess hexosamines back to fructose. In contrast,
depletion of UDP-GIcNACc turned the net catalysis by GNPDAs towards more hexosamines
and UDP-GIcNAc. Changes in UDP-sugars and hyaluronan synthesis affected basic cellular
functions such as proliferation, migration and adhesion to type I collagen. GFATI1
expression was increased in early in situ melanoma and declined in deep melanoma tissues,
correlating with hyaluronan content.

This thesis work delivers novel information about the traffic of HAS3, its secretion in
extracellular vesicles and molecular mechanisms in hyaluronan synthesis regulation.
Furthermore, the results suggest that changes in UDP-sugars and hyaluronan synthesis are
indicators for progression of malignancy and can perhaps be utilized as prognostic and
therapeutic targets.

National Library of Medicine Classification: QU 57, QU 83, QU 141
Medical Subject Headings: Hyaluronic Acid/biosynthesis; Glucuronosyltransferase; Protein Transport;
Uridine Diphosphate Sugars; Rab GTP-Binding Proteins; Neoplasms; Melanoma; Extracellular Vesicles
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TIIVISTELMA

Hyaluronaani on yleisena esiintyva sulfatoitumaton glykosaminoglykaani jota tuottavat
hyaluronaanisyntaasientsyymit (HAS1-3) solun ulkokalvolla. Hyaluronaani muodostuu
toistuvista disakkaridiyksikoistéd jotka sisaltavét glukuronihapon (GlcUA) ja N-asetyyli-
glukosamiinin (GlcNAc). Hyaluronaani sijoittuu solun ulkopinnalle ja soluvaliaineeseen ja
vaikuttaa vahvasti tulehduksessa, sydvidssd ja normaaleissa fysiologisissa tapahtumissa

kuten sikion kehityksessé ja epiteeli-mesenkyymitransitiossa.

Téama tutkimus osoittaa ettd HAS3:n kuljetus on tdrked tekija hyaluronaanisynteesissa ja
ettd timan entsyymin maarda solukalvolla sadtelee suureksi osaksi sen endosytoosi. Rab10
lisasi HAS3:n klatriinivalitteistd endosytoosia on ensimmadinen proteiini jonka tiedetdan
vaikuttavan HAS3:n kuljetukseen. HAS3:n endosytoosi vaheni UDP-GIcNAc:in ja UDP-
GlcUA:n puutteessa, kun UDP-GIcNAcin ylimdard ja HAS3:n O-GlcNAcylaatio
puolestaan estivat HAS3:n endosytoosia ja lysosomaalista hajotusta. HAS3:a kierratettiin
jatkuvasti solukalvon ja endosomirakkuloiden vélillda. UDP-sokerien saatavuus ja HAS3:n
O-GlcNAcylaatiotaso maaradsivat solukalvolla olevan HAS3:n pitoisuuden ja erittymisen

solunulkoisiin vesikkeleihin.

Keratinosyyteissdi GFAT ja GNPDA entsyymit katalysoivat samaa reaktiota vastakkaisiin
suuntiin, GNPDA palautti ylimaaran heksosamiinia takaisin fruktoosiksi. UDP-GIcNAc:in
vahentyminen kuitenkin kdansi nettokatalyysin pédinvastaiseksi, heksosamiinin suuntaan.
UDP-sokerien ja hyaluronaanisynteesin muutokset vaikuttivat solun jakautumiseen,
litkkkuvuuteen ja kiinnittymiseen tyyppi I kollageeniin. GFAT1:n ilmeneminen lisdantyi
varhaisessa in situ melanoomassa ja vaheni syvélle edenneessa melanoomassa korreloiden

hyaluronaanin pitoisuuden kanssa.

Tama viaitoskirjatyo antaa uutta tietoa HAS3:n liikkeistd, sen erittymisestd solunulkoisiin
rakkuloihin, sekd hyaluronaanisynteesin saatelyn molekulaarisista mekanismeista.
Tulokset viittaavat my0s siihen ettd muutokset UDP-sokereissa ja hyaluronaanin
synteesissd ja pitoisuudessa toimivat kasvaimissa pahanlaatuisuuden indikaattoreina, ja

ettd niistd voidaan kehittdad ennustetekijoita ja hoidon kohteita.

Luokitus: QU 57, QU 83, QU 141
Yleinen Suomalainen asiasanasto: hyaluronaani; biosynteesi; sydopéataudit; melanooma
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Just when the caterpillar thought the world was ending,
it turned into a butterfly!

(English proverb)
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1 Introduction

Hyaluronan (or hyaluronic acid or hyaluronate or “HA”) is a unique glycosaminoglycan in
the extracellular matrix and pericellular space, present in vertebrate tissues and in some
bacteria (Tammi et al, 2011). Hyaluronan is negatively charged and possesses a very simple
chemical structure with repeating disaccharide units of glucuronic acid (GlcUA) and N-
acetylglucosamine (GlcNAc). Hyaluronan is not known to be associated with a core protein
or lipid (Hubbard et al, 2012). Due to its anionic nature hyaluronan acts as a space-filler in
tissues and it binds to cell surface receptors like CD44, ICAM-1, HARE and LYVE-1.
Additionally, hyaluronan interacts with RHAMM, which is a soluble protein without a
membrane spanning domain but can be transported to the cell surface by stimuli. Via these
interactions, hyaluronan influences numerous cellular functions like proliferation,
migration, differentiation and invasion (DeAngelis, 2012, Jiang et al, 2011a, Tammi et al,
2011, Toole, 2004a, Weigel & DeAngelis, 2007a, Zhou et al, 2003). Although the effects of
hyaluronan through multiple cell surface receptors have been extensively studied,
contributions of hyaluronan synthases and associated molecules in the signaling network

are not so well known (Toole, 2004).

Vertebrate hyaluronan is synthesized by a family of hyaluronan synthases (HAS1-3) and
the synthesis takes place when the HAS enzyme is present in the plasma membrane (Rilla
et al, 2005) and extrudes the growing chain of the hyaluronan molecule directly into the
extracellular space (DeAngelis, 2012, Toole, 2004). Regulation of hyaluronan synthesis takes
place at different levels, starting from transcriptional regulation of HAS genes, post-
translational regulation of HAS proteins and their modifications, and, as shown recently, by
changes in the cytosolic levels of the precursor sugars, i.e. UDP-GIcUA and UDP-GlcNAc
(Jokela et al, 2008a, Jokela, 2011, Tammi et al, 2011). Several growth factors and cytokines
like TGF-B, EGF, PDGEF, IL-13, IFN-y, transcription factors like SP1, SP3, YY1, and other
signaling molecules like the cAMP activator forskolin and retinoic acid, are known to affect
and modify HAS gene expression and hyaluronan synthesis (Jiang et al, 2011, Jokela et al,
2011, Makkonen et al, 2009, Monslow et al, 2004, Saavalainen et al, 2005, Sironen et al, 2011,
Vigetti et al, 2011). However, post-translational regulation of HAS proteins is less studied.
The roles of post-translational modifications such as phosphorylation, ubiquitination and
O-GlcNAcylation on the activity of HASs, and their impact on hyaluronan synthesis have
been reported recently (Karousou et al, 2010, Vigetti et al, 2011, Vigetti et al, 2012).
Hyaluronan synthesis is also affected by any change in the cytosolic pools of UDP-GIcUA
and UDP-GlcNAc. Several compounds like 4MU, mannose and glucosamine change the
cytosolic levels of these UDP-sugars (Jokela et al, 2008, Jokela et al, 2013, Rilla et al, 2004,
Tammi et al, 2011) and consequently the synthesis of hyaluronan.



Synthesis and metabolism of hyaluronan have a major impact on different aspects of
malignancies, including even their multidrug resistance (Sironen et al, 2011). In most of the
cancers of epithelial origin, the amount of hyaluronan in cancer cells differs significantly
from normal cells. There is either a direct or inverse correlation of hyaluronan level with
the tumor grade and clinical prognosis of cancer patients. Increased hyaluronan levels
directly correlate with the tumor grade and poor prognosis in breast, gastric, ovary and
colon adenocarcinomas (Sironen et al, 2011, Tammi et al, 2008a). On the other hand, in
squamous cell carcinomas of the skin, mouth, larynx and lung, decreased hyaluronan levels
correlate with the tumor grade and poor prognosis (Tammi et al, 2008a), thereby showing
an inverse correlation. An explanation for this dichotomy may come from the recent paper
indicating that degradation of hyaluronan allows carcinogenesis, while signals induced by
intact, very high molecular mass hyaluronan shield against cancers (Tian et al, 2013).
Indeed, hyaluronan degradation products induce inflammation and growth factor
response, which can prime the tissues for cancer and promote its progression. Therefore,
chronically enhanced production and degradation of hyaluronan appears to be the

malefactor.

The present study aims at revealing the role of intracellular trafficking of HAS in
hyaluronan synthesis. It shows that hyaluronan synthase 3 (HAS3) traffic to and from the
plasma membrane regulates hyaluronan synthesis and the synthesis, in turn, acts as a
stimulus for the shedding of HAS3-containing extracellular vesicles. Rab10 is identified as
the first known protein regulator of HAS traffic. The study also shows that cellular levels of
UDP-GIcNAc and UDP-GIcUA modulate this traffic and thereby regulate hyaluronan
synthesis and shedding of HAS3 in extracellular vesicles. UDP-GIcNAc levels also dictate
the O-GlcNAc modification of HAS3, and consequently HAS3 traffic and shedding of
HAS3-dependent extracellular vesicles. Maintenance of cellular UDP-GIcNAc level is
feedback controlled by GFAT1 and GNPDA enzymes.



2 Review of the Literature

2.1 HYALURONAN AND HYALURONAN SYNTHASES

2.1.1 Hyaluronan - structure and properties

Hyaluronan was discovered in 1934 in the vitreous body of the bovine eye (Meyer &
Palmer, 1934) and its chemical formula was described 20 years later (Weissmann et al, 1954.
Hyaluronan is a unique non-sulfated glycosaminoglycan (GAG), made up of repeated
disaccharide units of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA): [-p(1,4)-
GIcUA-B(1,3)-GlcNAc-]n. Hyaluronan usually consists of 2,000-25,000 disaccharide units
with a relative molecular mass of 10°-10” Da, and extended length of 2-25 um (Toole, 2004).
Under physiological pH, hyaluronan is hydrophilic due to the fact that the carboxyl groups
on the GIcUA residues are negatively charged (Scott, 1989). However, twists in the
hyaluronan chain form hydrophobic patches, allowing interactions with other hyaluronan
chains, proteins, lipids and membranes (Scott et al, 1992). Unlike other glycosaminoglycans,
hyaluronan is not covalently linked to core proteins (Fraser et al, 1997). This particular fact,
along with the discovery that it is not sulfated, makes hyaluronan a different yet special
component of the extracellular matrix. The physicochemical properties of hyaluronan with
its ability to bind water molecules, formation of viscous gels and filtering effects on
molecular level makes hyaluronan a likely candidate in several medical applications in
physiological and pathological conditions (Jiang et al, 2011, Laurent & Fraser, 1992, Sironen
et al, 2011, Toole, 2004).

2.1.2 Hyaluronan synthases — discovery and structure

Hyaluronan synthase gene, termed as HasA was first discovered and cloned in group A
Streptococcus pyogenes (DeAngelis et al, 1993). Later HAS genes were studied in vertebrates
including human cells, bacteria and a virus (Weigel & DeAngelis, 2007). Hyaluronan
synthesis takes place in a selected group of bacteria like the Gram-positive streptococci (S.
pyogenes, S. equisimilis, S. uberis and S. zooepidemicus) and the Gram-negative Pasteurella
multocida (Tammi et al, 2011). About two decades ago, three highly conserved genes for
HAS isoforms (HAS1, HAS2 and HAS3) were published in several eukaryotes including
human (Itano & Kimata, 1996b, Shyjan et al, 1996, Watanabe & Yamaguchi, 1996), mouse
(Itano & Kimata, 1996a, Spicer et al, 1996, Spicer et al, 1997) and frog genomes (DeAngelis,
1996, Rosa et al, 1988, Spicer & McDonald, 1998, Vigetti et al, 2003). Human HASI-3 genes
are located in chromosomes 19, 8 and 16 respectively (Spicer & McDonald, 1998, Tammi et
al, 2011). Splice variants have been reported for individual HASs i.e. HAS1 variants are

reported in diseases such as Waldenstrom’s macroglobulinemia (Adamia et al, 2003),



multiple myeloma (Adamia et al, 2005) and bladder cancer (Golshani et al, 2007), and HAS3
has three variants (Gene-database, NCBI).

HAS protein isoforms in mammals share an identity of 55-71% at the amino acid level.
Among the three different HASs, HAS2 and HAS3 are most closely related (Spicer &
McDonald, 1998, Toole, 2004). Streptococcal HAS (spHAS) is the only HAS protein that is
biochemically purified and partially characterized with relation to its topology. To date, the
three-dimensional structure of mammalian HASs have not been resolved, and only
predictions are available that have been derived from biophysical data (Tammi et al, 2011,
Weigel et al, 1997, Weigel & DeAngelis, 2007). Mammalian HAS isoforms are integral
membrane proteins, predicted to possess 4-6 transmembrane and 1-2 membrane associated
domains, in addition to the cytoplasmic “catalytic” domain (Weigel et al, 1997, Weigel &
DeAngelis, 2007). The molecular weight of all HAS isoforms is ~63-65 kDa.

2.1.3 Function of hyaluronan synthases and their differences

In Xenopus, differential localization of HAS expression is observed during embryonic
development. HAST and HAS2 are homogenously expressed throughout the embryo but
HAS3 is localized to the inner ear and the cement gland (Camenisch et al, 2000, Tammi et al,
2011). Also, in mouse development, HAS2 expression is observed throughout all the stages
of the embryo and HASI disappears after the embryonic day 8.5 (Tien & Spicer, 2005).
HAS3, on the other hand, is only expressed at the later stages of embryonic development,
especially during the formation of sensory organs. HAS2 is the only highly expressed
isoform during heart valve development between the embryonic days 8.5-9.5. In fact, mice
with HAS2 knockout die from severe cardiovascular defects already in embryonic days 9.5-
10. However, mice with HASI and HAS3 knockout are born and continue to live with no
obvious structural changes or malfunctions (Bai et al, 2005, Camenisch et al, 2000,
Kobayashi et al, 2010, Tien & Spicer, 2005).

HAS isoforms differ in their affinity to the UDP-sugar substrates, with HAS1 showing the
lowest and HAS3 the highest affinity (Itano et al, 1999, Rilla et al, 2013a, Tammi et al, 2011).
Also, HAS isoforms are reported to differ in the size of the hyaluronan chains produced but
this appears to depend on the conditions of synthesis. In plasma membrane preparations of
COS1 cells transfected with HAS isoforms, HAS3 produced lower molecular weight
hyaluronan (1 x 10°-1 x 10° Da) compared to HAS1 and HAS2 (2 x 10°-2 x 10° Da) (Itano et
al, 1999). However, in CHO cell plasma membrane preparations with transfected HASs,
HAS2 produced high molecular weight hyaluronan (3.9 x 10° Da) compared to HAS1 and
HAS3 (0.12 x 10° Da and 0.12-1.0 x 10¢ Da respectively) (Brinck & Heldin, 1999). In intact
CHO cells, all isoforms of HAS produced high molecular weight hyaluronan (3.9 x 10° Da)
(Brinck & Heldin, 1999, Itano et al, 1999). In case of aortic smooth muscle cells, HAS1 and
HAS2 produced high molecular weight hyaluronan (2-10 x 10° Da), while HAS3 produced
low molecular weight hyaluronan (2 x 10° Da) (Wilkinson et al, 2006). The ambiguity



between different cell types and sample preparations (i.e. whole cells vs membrane
preparations) on HAS’s ability to produce high or low molecular weight hyaluronan
suggests that additional factors such as cellular environment, post-translational
modifications and trafficking of HASs are involved in the duration and extension of
hyaluronan synthesis. HAS2 is the most common and universally expressed HAS isoform
in mammalian cells while HAS3 is often over-expressed during inflammation and cancer

(Tammi et al, 2011). The reason behind this differential expression of HAS is still unclear.

2.2 BIOSYNTHESIS AND REGULATION OF HYALURONAN SYNTHESIS
2.2.1 Mechanism of hyaluronan biosynthesis

Hyaluronan is synthesized by a family of hyaluronan synthases, HAS1-3, in the plasma
membrane and simultaneously extruded into the extracellular space (Rilla et al, 2005, Toole,
2004). HASs utilize UDP-sugars i.e. UDP-GIcNAc and UDP-GIcUA as substrates and need
Mg?* or Mn* to synthesize hyaluronan (Weigel & DeAngelis, 2007). The mechanism of
hyaluronan synthesis does not require any primer to initiate polymerization (Weigel &
DeAngelis, 2007). Human and mouse HASs add the precursor sugars to the reducing end
of the growing hyaluronan chain (Prehm, 1983a, Prehm, 1983b, Prehm, 2006), whereas HAS
in Xenopus laevis utilizes the non-reducing end (Bodevin-Authelet et al, 2005) similar to the
activity of HAS in Pasteurella multocida (DeAngelis, 1999). HAS activity in cell homogenates
was first discovered in 1959 (Markovitz et al, 1959) and it was described only later (in 1984)
that unlike other GAGs, hyaluronan synthesis takes place in the inner face of the plasma
membrane and not in the Golgi apparatus (Prehm, 1984). Specialized microvillus-like
plasma membrane protrusions are particularly active in hyaluronan synthesis while the
detailed molecular machineries are still unclear. These hyaluronan-rich, microvillus-like
plasma membrane protrusions (Kultti et al, 2006, Rilla et al, 2008) have also been identified
in vivo in rat peritoneal cells (Koistinen et al, 2015). Hyaluronan may remain attached to
HASs while being synthesized. The pericellular hyaluronan coat acts as a scaffold to
maintain the plasma membrane protursions (Rilla et al, 2008). The export and translocation
of hyaluronan from inside of the cells to the extracellular space has been a debated issue.
The adenosine triphosphate-binding cassette (ABC) transporters such as MRP5 are
proposed to be involved in the export of hyaluronan in fibroblasts (Schulz et al, 2007).
However, in breast cancer cells the translocation of hyaluronan is not dependent on ABC
transporters (Thomas & Brown, 2010). In a recently published report, Streptococcus
equisimilis (Se) HAS reconstituted in proteoliposomes both synthesized and translocated
hyaluronan (Hubbard et al, 2012). In addition, purified SeHAS in liposomes showed the
presence of an intraprotein pore in HAS and translocation of hyaluronan via the activity of
HAS itself (Medina et al, 2012). More support for the HAS pore hypothesis comes from

reports that show homo- and heteromers among different HASs, since the complexes



would facilitate the formation of a pore for hyaluronan extrusion (Bart et al, 2015, Karousou
et al, 2010).

2.2.2 Transcriptional regulation of HAS

Hyaluronan synthesis and its regulation are important aspects of both physiological and
pathophysiological conditions including embryonic development, wound healing,
inflammation and cancer. Several endogenous factors and artificial compounds influence
hyaluronan synthesis. These regulators can act in one of the following levels: 1)
transcriptional and translational regulation of HAS, 2) post-translational regulation of HAS
activity and 3) availability of the hyaluronan precursor sugars, UDP-GIcNAc and UDP-
GIcUA. Some of these factors influencing hyaluronan synthesis are presented in Table 1

and in Fig. 1.

Table 1. Factors affecting hyaluronan synthesis. Modified from (Kultti, 2009b, Siiskonen,
2013c).

a) Factors increasing hyaluronan synthesis

! decreased, T increased, - not changed, NE not expressed, empty not studied

Agent Cell/tissue HA | HAS1 | HAS2 | HAS3 Reference
cyclic phosphatidic acid fibroblast 0 T (Maeda-Sano et
i i al, 2014)
lyso phosphatidic acid fibroblast 0 T (Maeda-Sano et
al, 2014)
P2Ylie(éJeDI:;?)lucose keratinocyte T 0 (Jokela et al,
P 2014)
Sonic hedgehog (Shh) mouse limb T (Liu et al, 2013)
. L . (Rauhala et al,
UVB irradiation keratinocyte 0 T T 2013)
Kaposi sarcoma- :
associated herpesvirus endothelium ' T (Dai et al, 2015)
. . . . (Rilla et al,
Glucosamine kidney epithelium | 1 ) ) 2013b)
full-length adiponectin fibroblast (0 NE 0 - (Akazawa et al,
2011)
. . ) (Yamane et al,
T T
adiponectin fibroblast 2011)
constitutively active PI3K mammary ’ (Misra et al,
transfection carcinoma cell 2005)
compound K keratinocyte 0 - T - (Kim et al, 2004)
(Tanaka et al,
dehydroepiandrosterone uterine fibroblast T 1997)




Agent Cell/tissue HA | HAS1 | HAS2 | HAS3 Reference
) (Heldin et al,
)
EGF fibroblast 1989)
. (Yamada et al,
T T T T
EGF fibroblast 2004)
(Pasonen-
EGF keratinocyte T - 0 0 Seppanen et al,
2003)
. (Saavalainen et
T T
EGF keratinocyte al, 2005)
(Yamada et al,
T T T T
EGF oral mucosal cell 2004)
(Erickson &
)
EGF neural crest cell Turley, 1987)
. (Honda et al,
T
EGF mesothelial cell 1991)
(Tirone et al,
EGF I Il T
G cumulus ce 1997)
lung
h t al
EGF adenocarcinoma T NE 0 0 (Chow et al,
cell 2010)
. . ) (Tanaka et al,
17B- | f I (0
B-estradio uterine fibroblast 1997)
. (Tellbach et al,
T
estrogen endometrium 2002)
. . . (Mani et al,
T
estrogen uterine epithelium 1992)
) (Heldin et al,
)
bFGF fibroblast 1989)
(Shimabukuro et
FGF2 dental pul T 0 0 -
ental pulp al, 2005b)
periodontal (Shimabukuro et
T T T -
FGF2 ligament al, 2005a)
) (Kuroda et al,
) T T T
FGF fibroblast 2001a)
) . ) (van Zeijl et al,
T T - T
forskolin orbital fibroblast 2010)
. human embryonic (Makkonen et al,
forskol T 0
orskoin kidney cell 2009)
(Tirone et al,
T
FSH cumulus cell 1997)
glucose mesangial cell T (Ren et al, 2009)
. . (Zoltan-Jones et
T
HGF epithelial cell al, 2003)
. (Sayo et al,
IFN- k 0 - NE T
\% eratinocyte 2002)
) (Sampson et al,
- T
IFN-y fibroblast 1992)
IGF fibroblast ? ? ? 1 (Kuroda et al,

2001b)




Agent Cell/tissue HA | HAS1 | HAS2 | HAS3 Reference
. (Honda et al,
T
IGF mesothelial 1991)
. (Sampson et al,
- T
IL-1 fibroblast 1992)
) (Yamada et al,
- 0 T T T
IL-1B fibroblast 5004)
] (Kaback &
- T T T T
IL-1B fibroblast Smith, 1999)
. ) (Uchiyama et al,
- T T T T
IL-1PB uterine fibroblast 2005)
. (Kawakami et al,
IL-1 0
B synoviocyte 1998)
. (Oguchi &
- T - - T
IL-1B synoviocyte Ishiguro, 2004)
. ) (van Zeijl et al,
IL-1 | fi | T T T T
B orbital fibroblast 2010)
umbilical vein (Vigetti et al,
IL-1B endothelial cell ' NE ' i 2010)
lung
IL-1B adenocarcinoma T NE 0 0 (Chow et al,
cell 2010)
] (Duncan &
IL- fi last 0
6 ibroblas Berman, 1991)
. (Karvinen et al,
1 - 1 0
KGF keratinocyte 2003b)
KGF keratinocyte 0 (Jameson et al,
y 2005)
leukemia inhibitory factor osteoblast T - 0 NE (Falconi & Aubin,
2007)
(Midura et al,
T
PTH osteoblast 1994)
] (Heldin et al,
PDGF f | 0
G ibroblast 1989)
. (Heldin et al,
T
PDGF mesothelial 1992)
. (Jacobson et al,
0 - 0 -
PDGF mesothelial 2000)
vascular (Suzuki et al,
0 T
PDGF endothelial cell 2003)
vascular smooth (Evanko et al,
PDGF muscle cell ' ' 2001)
trabecular (Usui et al,
T T
PDGF meshwork 2003)
PDGF fibroblast 0 T T - (Li et al, 2007a)
. (Hellman et al,
PDGF 0
G cardiomyocyte 2010)
) (Suzuki et al,
0
PMA fibroblast 1995)
smooth muscle (de la Motte et
poly I:C 0 al, 2003)

cell




Agent Cell/tissue HA | HAS1 | HAS2 | HAS3 Reference
. ' (Uchiyama et al,
T { { T
progesterone uterine fibroblast 2005)
. . ) (Guo et al,
T T T T
prostaglandin D2 orbital fibroblast 2010)
. . ) (Guo et al,
0
prostaglandin J2 orbital fibroblast 2010)
. . (Stuhlmeier,
T
prostaglandin E2 synoviocyte 2007)
L . . . (King & Tabiowo,
T
retinoic acid epidermis 1081)
L . . . (Tammi &
0
retinoic acid epidermis Tammi, 1986)
L . . (Saavalainen et
T T
retinoic acid keratinocyte al, 2005)
(Pasonen-
retinoic acid keratinocyte T - T T Seppanen et al,
2008)
retinyl retinoate epidermis T 0 (Kim et al, 2010)
testosterone rooster comb T (Jacobson, 1978)
) (Heldin et al,
- T
TGF-B fibroblast 1989)
) (Sugiyama et al,
TGF- fibroblast T 0 0
B ibroblas 1998)
. (Sugiyama et al,
TGF- k T T -
GF-B eratinocyte 1998)
vascular (Suzuki et al,
- - 0 -
TGF-B1 endothelial cell 2003)
lung
TGF-B1 adenocarcinoma - NE T - (Chow et al,
2010)
cell
trabecular (Usui et al,
- 1 _ T -
TGF-B meshwork 2003)
. (Oguchi et al,
TGF- t T 0 - -
B synoviocyte 2004)
. (Stuhlmeier et
- ? 0 - {
TGF-B synoviocyte al, 2004a)
. (Oguchi et al,
- T - - T
TNF-a synoviocyte 2004)
] (Sampson et al,
TNF- fi | T
a ibroblast 1992)
umbilical vein (Vigetti et al,
- T NE T -
TNF-a endothelial cell 2010)
umbilical vein (Vigetti et al,
- ) NE T -
TNF-B endothelial cell 2010)
tunicamvein smooth muscle ’ (Majors et al,
Y cell 2003)
. . smooth muscle (Lauer et al,
tunicamycin 0

cell

2009)




b) Factors decreasing hyaluronan synthesis

! decreased, ©

10

increased, - not changed, NE not expressed, empty not studied

Agent Cell/Tissue HA | HAS1 | HAS2 | HAS3 Reference
Pirfenidone fibroblast . . . . (Chung et al, 2014)
benzbromarone fibroblast { (Prehm et al, 2004)
5,7-dihydroxy-4- ancreatic cancer . (Morohashi et al,
methylcoumarin P 2006)
6,7-dihydroxy-4- ancreatic cancer . (Morohashi et al,
methylcoumarin P 2006)
dipyridamole fibroblast ) (Prehm et al, 2004)
astradiol vascular smooth . . ) ) (Freudenberger et al,
muscle cell 2011)
glucocorticoid epidermis ) (Agren et al, 1995)
glucocorticoid fibroblast { (Zhang et al, 2000)
- . (Stuhlmeier &
| t d t { - { 3
glucocorticoi synoviocyte Pollaschek, 2004b)
. . (Jacobson et al,
N3 - N3 -
hydrocortisone mesothelial cell 2000)
indomethacin fibroblast { (August et al, 1994)
indomethacin fibroblast { (Prehm et al, 2004)
mannose keratinocyte ) (Jokela et al, 2008a)
th I
MBCD smoo Celrlnusc € 1 (Sakr et al, 2008)
MBCD breast cancer cell ) NE { - (Kultti et al, 2010)
mefenamic acid fibroblast ) (August et al, 1994)
. (Nakamura et al,
- N3
4-MU fibroblast 1995)
4-MU fibroblast ) ) - (Kakizaki et al, 2004)
4-MU uterine fibroblast ) (Tanaka et al, 2007)
4-MU keratinocyte { (Rilla et al, 2004)
4-MU melanoma cell { (Kudo et al, 2004)
(Yoshihara et al,
4-MU | 1] {
melanoma ce 2005)
pancreatic cancer (Nakazawa et al,
- y
4-MU cell 2006)
breast cancer cell
- y NE 3 - i
4-MU MCE-7 (Kultti et al, 2009b)
breast cancer cell .
4-MU MDA-MB-361 { NE NE { (Kultti et al, 2009b)
4-MU melanoma cell { NE 1\ 1\ (Kultti et al, 2009b)
4-MU ovarian cancer cell | { NE NE 1\ (Kultti et al, 2009b)
4-MU SmOOtCheTUSC'e . 0 0 v | (Vigetti et al, 2009b)
4-MU fibroblast ) (Edward et al, 2010)
(Urakawa et al,
- N3 NE 3 -
4-MU breast cancer cell 2012)
progesterone uterine fibroblast \ (Tanaka et al, 1997)
S-decyl-glutathione fibroblast { (Prehm et al, 2004)
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Agent Cell/Tissue HA | HAS1 | HAS2 | HAS3 Reference
. (Kawakami et al,
TGF-B1 synoviocyte { 2 1998)
. (Jacobson et al,
TGF-B mesothelial cell i) { - 2000)
TGF-B keratinocyte 0 ) . . (Pasonen-Seppdnen
et al, 2003)
TGF-B keratinocyte ) - NE 2 (Sayo et al, 2002)
trequinsin fibroblast { (Prehm et al, 2004)
vesnarinone myofibroblast { (Ueki et al, 2000)
valspodar fibroblast { (Prehm et al, 2004)
verapamil fibroblast { (Prehm et al, 2004)
vitamin D osteoblast ) (Takeuchi et al,
1989)

HAS genes are often regulated simultaneously (Kultti et al, 2009a, Vigetti et al, 2009) and
transcriptional regulation of HAS genes often correlate with changes in the synthesis of
hyaluronan (Jacobson et al, 2000, Pienimaki et al, 2001, Yamada et al, 2004). Growth factors,
hormones, cytokines and artificially synthesized chemical compounds are known to alter
HAS transcriptional activity and thereby hyaluronan synthesis (Jacobson et al, 2000,
Karvinen et al, 2003b, Yamada et al, 2004, Zhang et al, 2000). The HAS isoforms respond
differently to external stimuli, based on the cell type and treatment conditions (Jacobson et
al, 2000). Growth factors are among the most studied effectors of hyaluronan synthesis. In
keratinocytes, growth factors like epidermal growth factor (EGF) and keratinocyte growth
factor (KGF) increase the mRNA levels of HAS2 and HAS3 in monolayer and organotypic
cultures (Karvinen et al, 2003b, Pasonen-Seppanen et al, 2003, Sayo et al, 2002).
Transforming growth factor  has differential effects on HAS expression, as it increases
HAS2 mRNA and protein levels in vascular endothelial cells (Suzuki et al, 2003) but
suppresses HAS3 and HAS2 mRNA expression, respectively, in synoviocytes and
keratinocytes (Pasonen-Seppanen et al, 2003, Stuhlmeier & Pollaschek, 2004a). In the case of
HASI1, growth factors and cytokines like TGF-f3 and interleukin (IL)-1p act as inducers of
HAS1T mRNA expression (Stuhlmeier & Pollaschek, 2004a, Stuhlmeier & Pollaschek, 2004b).
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
kB) mediates the IL-1p3-induced upregulation of HAST mRNA expression in synoviocytes
(Kao, 2006, Stuhlmeier & Pollaschek, 2005). IL-1{3, tumor necrosis factor (TNF)-a, and TGF-
[ induce upregulation of HAS2 mRNA expression in endothelial cells (Vigetti et al, 2010).
HAS?2 expression is also upregulated by TNF-a treatment in keratinocytes (Saavalainen et
al, 2007). In fibroblasts, HAS1 and HAS2 mRNA levels are increased by TGF- treatment
(Sugiyama et al, 1998). In keratinocytes, interferon (IFN)-y, IL-13 and IL-4 treatments
increase HAS3 mRNA expression (Ohtani et al, 2009, Sayo et al, 2002).
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Forskolin . Glucosamine Mannose

HAS2 Promoter

F6P == @) UDP-GIcNAC
Glucose == G6P

G1P ==p ’ UDP-GIcUA ‘1 HAS traffic?

4MU
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@) ubiguitination

® Phosphorylation

O-GlcNAc

Hyaluronan

Extracellular space

Figure 1. Post-transcriptional and post-translational regulation of hyaluronan synthases. (A) The
functional binding sites for transcriptional factors p50, p65, CREB, RAR, SP1, YY1 and STAT are
present in the promoter of human HAS2. And the signaling cascade events leading to the
binding of transcription factors are presented here. (B) Metabolites from glucose yield UDP-
activated precursor sugars for building hyaluronan. HAS resides predominantly in Golgi
apparatus but is active in synthesizing hyaluronan only when present in plasma membrane.
However, the molecular steps involved in HAS traffic to and from plasma membrane is still
unresolved. HAS utilizes UDP-GIcUA and UDP-GIcNAc precursor sugars to synthesize hyaluronan
and extrude the growing chain into the extracellular space. HASs can be post-translationally
modified with phosphorylation, ubiquitination and O-GIcNAcylation and the significance of these
modifications in regulating HAS activity and traffic is still not clearly understood (modified from
Tammi et al, 2011). Abbreviations are explained in page numbers 11-12.

HAS?2 transcription is also regulated by a variety of transcription factors such as specificity
protein (SP) 1 and 3, signal transducer and activator of transcription 3 (STAT3) and cyclic
adenosine monophosphate (cAMP) response element binding protein 1 (CREB1)
(Makkonen et al, 2009, Monslow et al, 2004, Saavalainen et al, 2005). HAS2 transcription is
also regulated by EGF and retinoic acid (RA) (Saavalainen et al, 2005) and platelet derived
growth factor-BB (PDGF-BB) (Jacobson et al, 2000). Hormones such as hydrocortisone and
other glucocorticoids have been shown to downregulate HAS2 mRNA expression and its
stability in dermal fibroblasts and osteoblasts (Jacobson et al, 2000, Zhang et al, 2000). HAS2



13

transcription is induced by adiponectin through an adenosine monophosphate kinase
pathway (Yamane et al, 2011). A natural RNA interfering anti-sense HAS2 (AS-HAS2)
transcript has been described, and shown to stabilize and/or reinforce HAS2 mRNA
expression depending on the cell type. For example, AS-HAS2 RNA is shown to inhibit
HAS2 mRNA expression in osteosarcoma cells while enhancing it in kidney epithelial and
aortic smooth muscle cells (Chao & Spicer, 2005, Michael et al, 2011, Vigetti et al, 2014). A
detailed summary of regulation of the hyaluronan synthesis by several factors is presented
in Fig. 1 and Table 1.

2.2.3 Regulation of HAS activity by trafficking and post-translational modifications

The enzymatic activity of HAS is associated with its plasma membrane localization, which
involves traffic from the Golgi to the plasma membrane (Rilla et al, 2005). Additionally,
several post-translational modifications of HAS are reported to influence its activity. There
are multiple potential phosphorylation sites in the cytoplasmic tail and intracellular
domains of HAS (example of sites: HAS2 — T110, 5323, Y326, T412 and Y546; HAS3 - T6,
Y329, Y333 and Y347) (www.phosphosite.org). Phosphorylation of HAS is expected to
regulate its enzymatic activity and hyaluronan synthesis (Anggiansah et al, 2003,
Bourguignon et al, 2007, Goentzel et al, 2006, Ohno et al, 2001, Vigetti et al, 2011). Recently,

other modifications of HAS such as ubiquitination and O-GlcNAcylation have emerged.

Ubiquitination exists in lysine 190 of HAS2 and a point mutation in this amino acid
inactivates HAS2. In the same study it has been shown that HAS2 can form homodimers
and also heterodimers with HAS3, and a failure to ubiquitinate the lysine 190 residue
results in a dominant negative effect on the activity of HAS2/HAS2 homomers (Karousou et
al, 2010). Serine 221 of HAS2 has been shown to be O-GIcNAc modified, and the
modification increases HAS2 half-life and enzyme activity by suppressing proteosomal
degradation (Vigetti et al, 2012). Thus, these studies suggest that post-translational
modifications of HAS enzymes may play significant roles in regulating the enzymatic
activity of HASs. A recent study on HAS oligomerization revealed that all HAS isoforms
have the tendency to form homo- and heteromers, and the interaction is suggested to be
present mainly in the N-terminal region, although the C-terminus also offers interaction
potential. When presented together, HASI1 tends to inhibit the synthesis of hyaluronan by
HAS2 and HAS3, which demonstrates the functional cooperation between the HASs as
oligomers (Bart et al, 2015). Since there are very few published reports on this issue,
studying post-translational modifications and trafficking of HAS, and their functional

effects on the enzymes is of utmost significance.

2.2.4 Biosynthesis of UDP-sugars

Glucose metabolism is involved in the production of precursors for all glycoconjugates.
Glycosaminoglycans (GAGs) like hyaluronan, containing an amino sugar (N-

acetylglucosamine or N-acetylgalactosamine) and uronic acids (glucuronic acid or iduronic
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acid) are particularly heavy consumers of the glucose-derived precursors (Afratis et al,
2012, Esko et al, 2009, Gandhi & Mancera, 2008) (Fig. 1) (II, Fig. 1). The synthesis of GAGs
involves two different pathways of glucose metabolism, i.e. hexosamine and glucuronic
acid biosynthesis. Hexosamine biosynthetic pathway (HBP) combines the metabolism of
glucose, amino acids, fatty acids and nucleotides to synthesize uridine diphosphate N-
acetylglucosamine (UDP-GIcNAc) that exists in equilibrium with N-acetylgalactosamine
(UDP-GalNAc) (Hanover et al, 2012). Glucuronic acid for glycoconjugate synthesis is
derived from glucose and UDP to make uridine diphosphate glucose (UDP-GIc), which is
then converted to UDP-GIcUA. In some cases, GIcUA is isomerized into iduronic acid
(IdoA) after incorporation into the polymer (Li, 2010). HBP accounts for 2-5% of total
glucose metabolism and is associated with the synthesis of glycolipids, proteoglycans,
glycosylphosphatidylinositol (GPI) anchors, extracellular proteins with N-and O-linked
oligosaccharides, and intracellular proteins with a single N-acetylglucosamine (O-
GlcNAcylation) (Fantus et al, 2006). UDP-GIcUA biosynthesis begins with the conversion of
glucose-6-P to glucose-1-P by phosphoglucomutase, and is followed by UDP-glucose
formation from glucose-1-P by UDP-glucose pyrophosphorylase. The last step, from UDP-
Glc to UDP-GIcUA, is considered the rate-limiting step in this pathway, catalyzed by UDP-
glucose dehydrogenase (UGDH) (Freeze & Elbein, 2008). In HBP, glutamine fructose-6-
phosphate amido transferase 1 and 2 (shortly, GFAT) and glucosamine-6-phosphate
deaminase 1 and 2 (shortly, GNPDA) are the enzymes involved in the formation of
glucosamine-6-P and this is considered the rate-limiting step of HBP (Marshall et al, 1991,
Varki et al, 2008). Glucosamine-6-P is next N-acetylated, followed by conversion to
GIcNAc-1-P and eventually UDP-GIcNAc by UDP-N-acetylglucosamine
pyrophosphorylase. (Varki et al, 2008). It has been postulated that the function of GNPDA
works in the reverse direction, from glucosamine-6-P to fructose-6-P. Degradation of
glycoconjugates in the lysosomes also provides GlcUA and GlcNAc for reuse by the cells.
Liver lysosomes for example can contribute up to 80% of GlcNAc from degradation of

glycoconjugated proteins (Aronson & Docherty, 1983, Varki et al, 2008).
2.2.5 Regulation of UDP-sugar pools

Since the synthesis of hyaluronan depends on its precursor sugars i.e. UDP- glucuronic acid
(UDP-GIcUA) and UDP-N-acetylglucosamine (UDP-GIcNAc), any change in the cytosolic
level of these substrates regulates hyaluronan synthesis. 4-methylumbelliferone (4MU), a
coumarin derivative, is a well-known suppressor of UDP-GIcUA content and thereby
hyaluronan synthesis, as reported in a variety of cell lines such as skin fibroblasts
(Nakamura et al, 1997, Nakamura et al, 1995), keratinocytes (Rilla et al, 2004), mesothelial
cells (Rilla et al, 2008) and melanoma cells (Kudo et al, 2004). The facile glucuronidation of
4MU leads to a rapid depletion of UDP-GIcUA sugar pool in the cells. 4MU also influences
the transcription of HAS2 and HAS3 genes (Kakizaki et al, 2004, Kultti et al, 2009b), perhaps

through ceramide signaling (Qin et al, 2016). Mannose, a C-2 epimer of glucose, reduces the
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cellular UDP-GIcNAc levels and thereby affects hyaluronan synthesis, as shown in cultured
keratinocytes (Jokela et al, 2008). Although our understanding of the mechanism of action
of mannose is incomplete, it has been suggested that mannose-6-phosphate targets the HBP
pathway (Jokela et al, 2008) but not by transcriptional regulation of GFAT1 and 2 (Jokela et
al, 2008). Instead, mannose is suggested to affect the enzymatic activity of glucosamine-6-
phosphate isomerase (GPI) and thereby reduce the pool of UDP-HexNAc (i.e. UDP-GIcNAc
and UDP-GalNAc) in Baby Hamster Kidney (BHK) fibroblasts (Cayli et al, 1999).
Glucosamine treatment increases UDP-GIcNAc content as it skips the rate-limiting step of
fructose-6-phosphate conversion to glucosamine-6-phosphate, and instead is directly
phosphorylated to glucosamine-6-phosphate. Glucosamine-mediated increase of UDP-
GlcNAc was first reported by Marshall and group in adipocytes (Marshall et al, 2005a,
Marshall et al, 2005b), and a similar increase in the UDP-GIcNAc synthesis was also
reported by GFAT overexpression in cultured mesangial cells and vascular smooth muscle
cells (Schleicher & Weigert, 2000). Ammonium chloride increases UDP-GIcNAc in BHK
fibroblasts and Chinese Hamster Ovary (CHO) cells (Ryll et al, 1994), which is probably
mediated by GNPDA (Cayli et al, 1999).

2.3 TURNOVER OF HYALURONAN

Catabolism of hyaluronan is equally important as synthesis in the maintenance of tissue
homeostasis, embryonic development, wound healing and regeneration (Stern & Jedrzejas,
2008). Hyaluronan is degraded by hyaluronidases (Hyals), which can be divided into
distinct groups based on their end products. According to Karl Meyer (Meyer & Palmer,
1934, Meyer et al, 1941), there are vertebrate endo-fB-N-acetylhexosaminidases that
hydrolyse the glycosidic bond, and bacterial endo-f3-N-acetylhexosaminidases that function
by B-elimination (Stern & Jedrzejas, 2006). Another hyaluronidase group consists of endo-{3-
glucuronidases, found in leeches and crustaceans. Their mechanism of action is still largely
unknown though they resemble the vertebrate version of Hyals (Karlstam et al, 1991, Yuki
& Fishman, 1963). In human genome, there are 6 HYAL genes located on two different
chromosomes; 1) HYAL1-3 are found in chromosome 3p21.3, 2) HYAL4, Hyaluronidase
pseudogene 1 (PHYALI) and Sperm adhesion molecule 1 (SPAMI) are located in
chromosome 7q31.3. In humans, HYAL1-3 are the most ubiquitous enzymes involved in
hyaluronan degradation (Csoka et al, 1999, Stern, 2005a, Stern & Jedrzejas, 2006). HYAL1,
an acid-active lysosomal enzyme, is the main hyaluronidase found in plasma and urine
(Csoka et al, 1999, Frost et al, 1997). HYAL2 is mainly found in somatic tissues and it is
located in the plasma membrane with a GPI anchor. HYAL?2 is also active in acidic pH and
degrades hyaluronan down to about 20 kDa in size (Lepperdinger et al, 1998, Stern, 2004).
The rate of hyaluronan degradation is tissue-specific, as the half-life of hyaluronan varies

from about 2.5-4.5 minutes in plasma (Fraser et al, 1981), to one day in the skin (Tammi et
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al, 1991), and to a whole three weeks in cartilage (Morales & Hascall, 1988). After HYAL2
degradation, the hyaluronan fragments are taken up by the cells into lysosomes for
complete degradation, probably by HYAL1 and two exoglycosidases, B-glucuronidase and
[B-N-acetylglucosaminidases (Stern, 2003). HYAL3 is widely distributed in human body,
although it is predominantly found in testis and bone marrow, suggesting that HYAL3 has
a role in stem cell regulation (Csoka et al, 1999, Csoka et al, 2001). Though there is a report
stating that HYAL3 knockout mouse showed no accumulation of hyaluronan, it is believed
to have an activating effect on HYAL1 (Hemming et al, 2008). Deficiency of HYAL1 leads to
a lysosomal storage disease called as mucopolysaccharidosis IX, with cutaneous swelling,
painful soft tissue masses, disproportionate stature etc. (Natowicz et al, 1996, Triggs-Raine
et al, 1999). Mice with HYAL1 knockout display osteoarthritis with accumulation of
hyaluronan in joints (Martin et al, 2008).

Recently, a new hyaluronidase-like enzyme, KIAA1199 was reported by Yoshida et al
(Yoshida et al, 2013). KIAA1199 was initially thought to be an inner-ear protein in Deiters
cells and fibrocytes, and associated to deafness (Abe et al, 2003). Yoshida et al (2013)
discovered that in human skin fibroblasts, KIAA1199 binds and catabolizes hyaluronan in
an endo-B-N-acetylglucosaminidase type manner. In synovial fibroblasts isolated from
osteoarthritis and rheumatoid arthritis patients, there is an increased expression of
KIAA1199 (Yoshida et al, 2013). Another study points out that KIAA1199 is induced by
human papillomavirus infection in cervical neoplastic lesions. KIAA1199 binds to and
promotes EGFR signaling and results in EMT in carcinogenesis (Shostak et al, 2014).
KIAA1199 expression is upregulated in colorectal and breast cancer (Evensen et al, 2013,
Tiwari et al, 2013, Xu et al, 2015b) and it binds to glycogen phosphorylase kinase-3 subunit
(PHKB) and promotes glycogen breakdown, which is essential for survival of cancer cells
(Terashima et al, 2014).

2.4 HYALADHERINS

Hyaluronan binds to many proteins, some of which are cell surface receptors and proteins
involved in signaling. The link module superfamily of hyaladherins include aggrecan,
neurocan, link proteins, LYVE-1, CD44, versican, brevican, neurocan, TSG-6, HARE and the
4 link proteins (Toole, 2004). Common to all these proteins is a 100 amino acids hyaluronan-
binding domain (Day & Prestwich, 2002). Other molecules able to bind hyaluronan include
Ial heavy chains, CDC37, hyaluronan binding protein (HABP), CD38, receptor for
hyaluronan-mediated motility (RHAMM), and layilin (Bono et al, 2001, Day & Prestwich,
2002). A minimum of 10 sugar units of hyaluronan chain (HA10) is required for its binding
to those members of the family with two link domains in tandem (Hascall & Heinegard,
1974a, Hascall & Heinegard, 1974b, Seyfried et al, 2005). However, hyaluronan
oligosaccharides of < 10 sugars i.e. HA6 and HAS suffice to displace high molecular weight



17

hyaluronan and act as antagonists for binding of hyaluronan to its receptors, or other
hyaladherins, such as CD44 (Knudson & Knudson, 1993, Lesley et al, 2000, Tammi et al,
1998, Teriete et al, 2004, Underhill & Toole, 1979).

2.5 BIOLOGICAL FUNCTIONS OF HYALURONAN

Initially hyaluronan was thought to be just a space-filler in tissues but decades of research
have revealed the importance of hyaluronan in the extracellular matrix for several
biological functions such as inflammation, cell proliferation, general homeostasis, wound
healing and tissue regeneration, to name but a few (Tammi et al, 2008, Tammi et al, 2011,
Toole, 2000, Toole, 2004) (Fig. 2). While hyaluronan is synthesized and secreted by the cells
into the surrounding medium, binding to cell surface receptors such as CD44 can also
retain some of it in the pericellular space (Fig. 2). This formation of pericellular hyaluronan
coat was first described in 1970’s (Clarris & Fraser, 1968), using a test called as “red blood
cell exclusion”, where a suspension of red blood cells allowed to settle on cell cultures are
excluded by the space-filling hyaluronan and other proteoglycans. The pericellular
hyaluronan coat thus influences the shape and space occupied by the cells in tissues. Apart
from endogenous hyaluronan coat produced by different types of cells such as dividing
vascular smooth muscle cells, chondrocytes and bone-marrow derived mesenchymal stem
cells (Heldin & Pertoft, 1993, Knudson & Knudson, 1993, Rilla et al, 2008), overexpression
of exogenously added hyaluronan synthases can also induce pericellular hyaluronan coats
(Itano et al, 1999, Kultti et al, 2006, Rilla et al, 2008, Siiskonen et al, 2013b).

2.5.1 Cell proliferation

Hyaluronan influences cell growth and proliferation, but depending on the cell type the
effect varies. Hyaluronan is involved in activating signaling events related to cell
proliferation, such as activation of mitogen-activated protein kinase (MAPK) cascade, in
particular ERK kinase, by interaction of CD44 and epidermal growth factor receptor
(EGFR), in addition to providing a favorable matrix to promote cell division (Brecht et al,
1986, Meran et al, 2011). In keratinocytes, hyaluronan accumulates in the cleavage furrow of
mitotic cells during cell division (Tammi et al, 1991). Accumulation of hyaluronan is
essential in cell proliferation and migration during the development of limbs (Li et al,
2007b). Hyaluronan is also required for the expansion of the cumulus cell-oocyte complex,
and extrusion of the oocyte (Salustri et al, 1989, Salustri et al, 1999). Growth factors such as
TGF-p and basic fibroblast growth factor (bFGF) induce hyaluronan synthesis to stimulate

cell proliferation in embryonic mesoderm (Toole et al, 1989).
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Figure 2. Functions of hyaluronan. Hyaluronan and its interaction with partner molecules like
growth factor receptors (GFR), CD44, RHAMM, HAS, toll-like receptors (TLR), HYAL2 and
multidrug resistance proteins (MDR), associated with several cellular functions and implications
are highlighted; EMT = epithelial-to-mesenchymal transition.

4MU and mannose decrease hyaluronan synthesis by reducing the cytosolic levels of UDP-
sugar substrates, and inhibit cell proliferation (Jokela et al, 2008, Rilla et al, 2004). On the
other hand, inhibition of hyaluronan synthesis is required for pre-cartilage condensation of
skeletal elements (Li et al, 2007b). Increased hyaluronan synthesis by secretion of growth
factors is considered an adaptation by melanoma cells to promote cell proliferation
(Willenberg et al, 2012a). However, contrary to the previous report, HAS3 overexpression
and increased hyaluronan synthesis slows proliferation of cultured melanoma cells (Takabe
et al, 2015).

2.5.2 Epithelial to mesenchymal transition

Hyaluronan plays a significant role in the epithelial-to-mesenchymal transition (EMT) of
cells during tissue development, wound healing and cancer progression (i.e. invasion and
metastasis). In a recent study on cardiac regeneration in a zebrafish model, expression of
RHAMM, HASs and hyaluronan play an essential role in epicardial cell EMT and
migration, and the whole signaling cascade involves FAK and Src kinases as downstream
effectors for RHAMM. Also, in a mouse model, hyaluronan and RHAMM are upregulated
during cardiac infarction. This suggests that hyaluronan is an important molecule in
cardiac repair, which involves EMT and cell migration (Missinato et al, 2015). TGF-{3 is one
of the stimulants for EMT cell morphogenesis and motility, as reported by several

investigators (Brockhausen et al, 2015, Chanmee et al, 2014, Sengupta et al, 2013), and
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hyaluronan is one of the downstream signaling molecules in EMT activation. When a
mouse mammary epithelial cell line (NMuMg) is induced with TGF-f3, expression of HAS2
is upregulated by the Smad/p38 mitogen-activated protein kinase pathway and eventually
results in hyaluronan synthesis. Suppression of HAS2 expression inhibits the TGF-
mediated EMT of the mammary epithelial cells (Porsch et al, 2013). Yet another study on
lung and breast cancer cell lines points out that TGF-B1-mediated induction of HAS1-3
expression and hyaluronan synthesis activates CD44-EGFR interaction and leads to
upregulation of the downstream effectors AKT and ERK, and finally to EMT (Li et al, 2015).
Interestingly, excessive hyaluronan production in mammary tumors of a HAS2 transgenic
mouse model upregulates TGF- expression and activates the transcription factors Snail
and Twist, finally leading to EMT (Chanmee et al, 2014). HAS2 overexpression in Madin-
Darby canine kidney and human mammary epithelial cells results in phenotypical changes
corresponding to EMT (Zoltan-Jones et al, 2003). Several other growth factors and cytokines
such as TNF-a and IL-1p are reported to stimulate hyaluronan-mediated induction of EMT
in cancer and normal epithelial cells (Chow et al, 2010, Takahashi et al, 2010). In colon
cancer cells, overexpression and suppression of CD44 increases and decreases EMT,
respectively (Cho et al, 2012).

2.5.3 Support of stemness

A stem cell niche is formed by the surrounding cellular and extracellular factors in the
microenvironment. The balance of these regulatory factors facilitate the ratio between cells
that undergo self-renewal and differentiation (Jha et al, 2011, Li & Xie, 2005). During
embryogenesis, hyaluronan mediates the EMT of progenitor cells to mesenchymal stem
cells (MSCs) for the development of various tissues and organs (Shukla et al, 2010, Solis et
al, 2012). Hyaluronan plays a vital role in the differentiation of human embryonic stem cells
(hESCs) into hematopoietic stem cell lineage (HSCs) by regulating the expression of several
marker genes. Using embryoid bodies from ESCs, grown as suspension, Schraufstatter et al
(Schraufstatter et al, 2010) show that hyaluronan deprivation by hyaluronidase treatment
results in a blockade of growth of CD45+ HSCs. Also, removal of hyaluronan in embryonic
bodies by 4MU results in decreased expression of the early and late mesodermal markers
BRY and BMP2, which leads to poor mesodermal differentiation (Schraufstatter et al, 2010).
HAS?2 acts as a significant source of hyaluronan during embryogenesis (Camenisch et al,
2000). CD44 and RHAMM interactions with hyaluronan establish cell migration and EMT
during embryonic development (Craig et al, 2010, Hatano et al, 2012, Matrosova et al, 2004).
Signaling cascade events due to CD44-hyaluronan interactions result in the activation of
MEKKI1 and ERK to promote cell proliferation, differentiation and EMT in embryonic stem
cells (ESCs) (Craig et al, 2010, Hatano et al, 2011, Kothapalli et al, 2008). When primary
human chondrocytes from osteoarthritis (OA) patients were cultured in a hyaluronan-rich
medium, the effects were surprising; increased mitochondrial DNA integrity, improved

ATP production, and better cell viability were observed (Grishko et al, 2009). This is one of
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the studies that emphasises the role of hyaluronan on stemness. In mouse adipose derived
stem cells, introduction of hyaluronan in culture medium drastically increases the growth
rate of the cells in early passages, and significantly reduces cellular senescence (Chen et al,
2007). Culturing ESCs on a hyaluronan—coated surface instead of feeder layers resulted in
the maintenance of pluripotency of the cells (Lutolf et al 2009). In support of this
contention, undifferentiated stem cells during embryogenesis possess higher hyaluronan
content than their differentiated counterparts (Toole, 1997). High molecular weight
hyaluronan stimulates differentiation and invasion of epicardial cells, which are key steps
in the formation of the coronary vasculature during embryonic development. To enable this
process, hyaluronan initiates the association of CD44 with MEKK1 and promotes MEKK1
phosphorylation, in addition to persuading ERK- and NFkB-dependent pathways (Craig et
al, 2010). Hyaluronan is also involved in enhanced proliferation, self-renewal and
differentiation of neural precursor astrocytes through enhanced expression of connexin-26,
-32, and -43 (Ahmed et al, 2009). In a 3D culture model of MSCs in a hyaluronan matrix, the
expression of several inflammatory chemokines such as CXCL-4, -13, chemokine receptor
CXCR5 and matrix metalloproteinases (MMPs) are changed (Lisignoli et al, 2006). This
study also demonstrates that hyaluronan could act as a signaling molecule to activate MSCs
in tissue regeneration, which involves active proliferation, self-renewal and differentiation
of the stem cells (Lisignoli et al, 2006).

2.5.4 Role of hyaluronan in inflammation

Hyaluronan, based on its molecular size i.e. high and low molecular weight, has distinct
functions in inflammation. High molecular weight hyaluronan is usually anti-inflammatory
(Delmage et al, 1986). On the other hand, low molecular weight oligosaccharides of
hyaluronan are pro-inflammatory (Rayahin et al, 2015, Stern et al, 2006). This size-
dependent effect of hyaluronan makes it an adaptable molecule in several contexts i.e.
tumor growth, gene expression, drug resistance, inflammation, angiogenesis etc. In a LPS
(lipopolysaccharide) — induced lung inflammation model studied in mice, high molecular
weight hyaluronan activates TLR4 in lung epithelial cells, which then inhibits nuclear
translocation of NF-«kB p65 and suppresses the secretion of inflammatory cytokines, thereby
preventing the recruitment of inflammatory cells (Xu et al, 2015a). Hyaluronan level is
amplified in inflammatory conditions such as skin and lung injury (Jiang et al, 2005, Tammi
et al, 2005), arthritis (Goldberg et al, 1991) and asthma (Cheng et al, 2011). Hyaluronan
forms cable-like structures during inflammatory conditions, which helps the attachment of
inflammatory cells such as monocytes and other leukocytes in the affected sites (de la Motte
et al, 2003, Jokela et al, 2015, Jokela et al, 2008). Hyaluronan can also influence inflammation
indirectly by promoting cell proliferation and migration (Jokela et al, 2008, Jokela et al,
2013). During skin injury, inflammatory T cells release cytokines that enhance the
expression of HAS2 and 3, and thereby increase hyaluronan synthesis by keratinocytes

(Jameson et al, 2005). During inflammation, hyaluronan is degraded by hyaluronidase
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HYAL2 or reactive oxygen species (ROS), resulting in fragmentation, which then acts as a
stimulant for the expression of inflammation related genes such as IL12, IL-13, TNFa and
matrix metalloproteinases (MMPs) (Do et al, 2004, Horton et al, 1998, Iacob & Knudson,
2006, Taylor et al, 2007, Termeer et al, 2002). TLR2 and TLR4 are reported to activate
hyaluronan-mediated inflammatory responses in lung injury (Jiang et al, 2005).
Interestingly, low molecular weight hyaluronan downregulates adenosine A2a receptor
(A2aR) in lung inflammation via a CD44-mediated signaling cascade and protein kinase C

signaling (Collins et al, 2011).
2.5.5 Hyaluronan in multidrug resistance

The family of multidrug resistance proteins such as MDRI1 (multidrug resistance
transporter 1), MRP2 (multidrug resistance protein 2), and ABC transporter proteins are
widely believed to mediate multidrug resistance (Guan et al, 2015, Moitra, 2015). It is
interesting to note that hyaluronan is one of the agonists in the activation of these drug
transporters (Misra et al, 2005, Ohashi et al, 2007). Several receptor tyrosine kinases (RTKSs)
like EGFR, IGIF1RB, c-MET, PDGFRf and their phosphorylation of tyrosine residues are
“activation” signals for ABC transporters (Shukla et al, 2012, Sun et al, 2012). Hyaluronan
and CD44 interactions are the first and foremost event in the activation of RTKs and
thereby ABC transporters (Chanmee et al, 2015). Hyaluronan-mediated activation of ErbB2
and the downstream signaling cascade involving the formation of CD44-phosphoinositide-
3-kinase-ezrin-chaperones-cdc37 complex and Akt/MAPK pathways have been assigned a
significant role in multi-drug resistance of cancer cells (Ghatak et al, 2005, Misra et al, 2003,
Misra et al, 2005). Increased expression of Emmprin, a cell surface receptor, which increases
hyaluronan production in cancer cells also promotes multi-drug resistance (Misra et al,
2003). In ovarian cancer patients, platinum-based chemotherapy increases serum
hyaluronan levels and correlates with drug resistance. Cultured ovarian cancer cells also
bestowed drug resistance and showed increased cell survival due to increased hyaluronan
synthesis and CD44 and ABCC2 expression on the cell surface (Ricciardelli et al, 2013).
Cultured human mesenchymal stem cells derived from placenta also showed drug
resistance to doxorubicin by hyaluronan-mediated CD44 signaling, which then activates the
PI3K/Akt pathway (Liu et al, 2009). Similarly, exogenously added hyaluronan increases
multidrug resistance in head and neck squamous cell carcinoma cells (Wang &
Bourguignon, 2006). Interestingly, low molecular weight hyaluronan oligosaccharides show

the opposite effect and inhibit the chemoresistance of cancer cells (Misra et al, 2003).
2.6 Hyaluronan in cancer

Otto Warburg was the first to describe that cancer cells undergo a metabolic switch in
which they, even in the presence of oxygen, favor energy production through glycolysis
instead of oxidative phosphorylation (Warburg et al, 1924). This is logical because cancer

cells divide rapidly and need a robust mode of energy production and a good supply of



22

building blocks provided by glycolysis intermediates. In cancer cells, glucose is readily
available through upregulation of various glucose transporters, and metabolic enzymes in
HBP are also activated (Gitenay et al, 2014), providing substrates for hyaluronan synthesis.
Indeed, hyaluronan contents in most tumors differ from the corresponding normal tissues
and depend on the specific tissue and the stage of tumor progression (Sironen et al, 2011).
Tumor cells originating from stratified epithelia tend to produce less hyaluronan with
advancing dedifferentiation of the tumor, while those originating from simple epithelia can
show increased hyaluronan (Tammi et al, 2008). Apart from malignant cells, hyaluronan
content in the surrounding stroma also has a significant role in carcinogenesis and
metastasis. Indeed, in tumors originating from simple epithelia the degree of the

peritumoral stromal hyaluronan increase determines the prognosis of the disease.

As an example of the interactions between tumor cells and stroma, and hyaluronan changes
in tumors, melanoma cells produce PDGF and induce hyaluronan synthesis in stromal
fibroblasts by increasing HAS2 expression (Pasonen-Seppanen et al, 2012, Willenberg et al,
2012b). Hyaluronan content in the tumor varies according to the stage of progression, i.e. it
increases from benign to localized melanoma tissues and then declines in more invasive
tumors and metastases (Karjalainen et al, 2000). Interestingly, CD44 and HAS1-3
expression levels follow a similar pattern to that of hyaluronan in different stages of
melanomas. On the other hand, hyaluronidase 2 (HYAL2) expression is increased in
invasive and metastatic melanoma lesions, suggesting an inverse relationship between
hyaluronan content and HYAL2 (Siiskonen et al, 2013a). The reduced expression of CD44
and hyaluronan thus correlate with poor patient survival (Karjalainen et al, 2000). A similar
trend in hyaluronan and CD44 stainings, i.e. increased and reduced levels in well-
differentiated and poorly differentiated tissues, respectively, is seen in many squamous cell
carcinomas, like those in skin, mouth, esophagus, larynx and lung (Hirvikoski et al, 1999,
Karvinen et al, 2003a, Kosunen et al, 2004, Pirinen et al, 1998, Wang et al, 1996).

In malignancies originating from simple epithelia, such as breast, colon and gastric cancers,
a high level of cell-associated hyaluronan content is often associated with poor prognosis
and tumor relapse (Auvinen et al, 2000, Kobel et al, 2004, Ropponen et al, 1998, Setala et al,
1999). In cancers of simple epithelia, stromal hyaluronan levels are also increased and are
often associated with more invasive stages with breast, lung, prostate, ovarian, bladder and
thyroid carcinomas as examples (Sironen et al, 2011, Tammi et al, 2008, Toole, 2004).
Expression of all HAS (HAS1-3) isoforms in the stromal cells of breast cancer correlates
with increased hyaluronan levels and also associates with poor survival rate of the patients
(Auvinen et al, 2014). In another study on breast cancer, increased HAS2 expression
correlates with triple-negativity of invasive ductal carcinomas (IDCs) and metaplastic
carcinomas of the breast (MCB) (Lien et al, 2014).

Overexpression of HAS? is associated with increased tumor growth in a rat model of colon

carcinoma (Jacobson et al, 2002). Increased HAS3 expression is observed in metastatic colon
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carcinoma cells, isolated from lymph nodes, and the cells also possess increased pericellular
hyaluronan. When HAS3 expression is inhibited with anti-sense oligonucleotides, the colon
cancer cells showed significantly reduced anchorage-independent growth (Bullard et al,
2003). Overexpression of HAS3 in pancreatic cancer cells induces loss of cell adhesion by
removal of E-cadherin in plasma membrane and this, in part, is due to accumulation of
hyaluronan, while the epithelial cell adhesion is restored following treatment with
polyethylene glycolylated (PEGylated) human recombinant hyaluronidase (PEGPH20)
(Kultti et al, 2014).

2.7 Rab GTPases and vesicular trafficking

Vesicular trafficking delivers proteins and any other molecules to the desired subcellular
destination, which is vital to continued functioning of the cellular machinery (Stenmark,
2009). A family of small GTPase proteins like Rabs and Arfs controls vesicular trafficking in
eukaryotic cells. The family of Rab GTPases, comprising more than 60 proteins, is the
largest among the small GTPases that belong to the Ras superfamily of monomeric G-

proteins (Schwartz et al, 2007).

During vesicular trafficking, Rab-GTPases control 5 key steps: 1) sorting — by activating a
cargo-associated sorting adaptor in the budding vesicle, 2) uncoating — by recruiting
specific PI3K or phosphatases the PI composition is altered to remove the coat proteins, 3)
motility — by recruiting adaptors for motor proteins or by directly binding to motor proteins
to facilitate the movement of vesicles on the cytoskeletal “tracks”, 4) tethering — by
recruiting rod-shaped tethering factors to initiate contact with acceptor membranes and 5)
fusion - by activating SNARE (soluble N-ethylmaleinide-sensitive factor (NSF) attachment
protein receptor) complexes to mediate vesicle fusion (Stenmark, 2009). The Rab GTPases
are master regulators of the intracellular traffic of proteins, lipids and sometimes a whole
organelle like Golgi and mitochondria (Hutagalung & Novick, 2011, Schwartz et al, 2008,
Stenmark, 2009). For example, during the sorting of mannose-6-phosphate receptors
(M6PRs) from late endosomes to trans-Golgi network, Rab9 recruits a sorting adaptor TIP47
to facilitate the proper distribution of M6PR into the recycling buds (Carroll et al, 2001).
Rab proteins are activated (“on” state) when bound to GTP and come back to resting “off”
state with the GDP bound state (Hutagalung & Novick, 2011). Guanine exchange factors
(GEFs) activate the GTP binding of Rabs and the reverse mechanism of inactivation is
mediated by GTPase-activating proteins (GAPs) by removing an inorganic phosphate (Pi)
(Boucrot et al, 2010, Schwartz et al, 2008).

Specific Rab proteins are associated with different itineraries of vesicular traffic and in
some cases their functions can be redundant. For example, Rab5 and Rab?7 are involved in
vesicular traffic of early and late endosomes, respectively (Kummel & Ungermann, 2014,
Mottola, 2014). However, Rab10 is involved with transportation of cargos from the trans-

golgi network to the plasma membrane, i.e. on a secretory vesicle, and also in recycling
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vesicles from early endosomes back to the plasma membrane (Babbey et al, 2006, Babbey et
al, 2010, Chen et al, 2012). Rab GTPases recruit specific effectors to a particular membrane
micro-domain and thereby specify membrane identity. For example, Rab5 recruits the
enzyme PI3K-C2gamma in initiating Akt2 endocytosis (Braccini et al, 2015). Crosstalk
between different Rabs is often observed during subsequent maturation of vesicles and this

mechanism has been named “Rab conversion” (Hutagalung & Novick, 2011).

There are several examples of Rab involvement in receptor signaling. Downstream of
EGFR, Rab5 activates its effectors — APPL1 and APPL2, which translocate to the nucleus
and control gene expression and cell proliferation via NuRD histone deacetylase complex
(Miaczynska et al, 2004). Several pathogens hijack Rab-dependent internalization pathways
to enter their host cells. In the case of Salmonella typhimurium, 18 different Rabs are reported
to be exploited by the pathogen in phagosomes during their maturation (Smith et al, 2007).
Helicobacter pylori secretes a toxin, hijacking Rab?7 in the phagosomes for the intracellular
survival of the bacterium (Terebiznik et al, 2006). Mycobacterium, on the other hand,

prevents recruitment of Rab7 and thereby inhibits phagosome maturation (Via et al, 1997).

Abnormalities in the expression of Rabs are often seen in cancer. Rab25, for example, is
overexpressed in breast and ovarian cancers and is correlated with poor survival (Cheng et
al, 2004). Loss of Rab21, which functions in endocytic trafficking of integrins, is seen in
several cancers and correlates with aneuploidy (Pellinen et al, 2008). Rab23 is frequently
overexpressed in sarcoma, breast, and colorectal cancer, and is downregulated in bladder
and kidney cancer (www.oncomine.org). In gastric cancer, Rab23 amplification is
associated with high invasion of the primary tumor cells and it is known that Rab23

attenuates sonic hedgehog signaling (Eggenschwiler et al, 2001, Hou et al, 2008).
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3 Aims of the Study

The aim of this thesis work was to address how HAS trafficking regulates hyaluronan
synthesis and to identify the factors controlling the plasma membrane presence of HAS. In
doing so, HAS3 was chosen to be a representative enzyme among the HAS family due to its
relative abundance in the plasma membrane, compared to the other HASs. Two issues were
considered most important: the proteins involved in the HAS trafficking machinery, and
the metabolism of the UDP-sugar substrates of HASs, including their significance in the

progression of cancer.
More specifically, the targets were:
1. HAS3 dynamics in the plasma membrane and its contribution to the initiation and

termination of hyaluronan synthesis.

2. Role of UDP-sugar metabolism in HAS3 traffic, hyaluronan synthesis, basic cellular

functions and progression of melanoma.
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4 Materials and Methods

4.1 MATERIALS

4.1.1 Cell lines

Table 2. Cell lines used in this thesis work. Standard culture conditions used for the cells are

presented in the original publications.

S.No Origin of the cells Name of Original Original reference
the cell publication in
line this thesis
1 Human breast MCF7 I (Soule et al, 1973)
adenocarcinoma
2 Human breast MCF7- I Dr. Genevieve Bart,
adenocarcinoma (with EGFP- University of Eastern
EGFP-HAS3 overexpression) HAS3 Finland
3 Human melanoma MV3 II (van Muijen et al, 1991)
4 Human melanoma (with MV3- II (Takabe et al, 2015); Dr.
EGFP-HAS3 overexpression) EGFP- Genevieve Bart,
HAS3 University of Eastern
Finland
5 Monkey kidney epithelium COSs1 II (Gluzman, 1981)
6 Human mesothelium LP-9 III Institute of Clinical
Medicine, University of
Eastern Finland
7 Human chondrosarcoma HCS 111 (Takigawa et al, 1989)
8 Human melanoma C8161 III (Welch et al, 1991)
9 Dog kidney epithelium MDCK III (Gaush et al, 1966)
10 Dog kidney epithelium (with MDCK- I, III (Rilla et al, 2012); Dr.
EGFP-HAS3 overexpression) EGFP- Aki Manninen, Biocenter
HAS3 Oulu,
11 Human epidermal HaCaT v (Boukamp et al, 1988)

keratinocytes

4.1.2 Human tissue specimens

Diagnostic tissue samples were obtained from Kuopio University Hospital. After the initial

biopsy, the tissues were fixed in 10% buffered formaldehyde, embedded in paraffin and

sectioned 5 pum thick for histological staining. The ethics committees of Kuopio University

Hospital and The Finnish National Supervisory Authority for Welfare and Health

(VALVIRA) have approved the study protocol. Other details are presented in the original

publication (II).
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4.1.3 Plasmids, Antibodies and other reagents

Detailed descriptions are presented in original articles.

4.2 METHODS

Table 3. Methods to study HAS3 traffic. Detailed protocols are in original publications.

Purpose Method Original Reference
Publication
To track HAS3 Photo-conversion with Dendra2 I,1I (Gurskaya et al,
vesicular movement fusion protein 2006)
between cellular
compartments
To study HAS3 Tracking photoconverted Dendra2- I, 11 Method optimized
endocytosis HAS3 from plasma membrane in original
(PM) to inside of cells publication I
To study HAS3 Analyzing EGFP-HAS3 signal in PM I Method optimized
residence in PM in original
publication I
To analyze HAS3 in Colocalization analysis of EGFP- I, 1I Method optimized
endosomes HAS3 with endosome markers, in original
EEA1, clathrin heavy chain, publications I, II
transferrin and alexafluor
hydrazide
To identify and track 1) Tracking cell surface II (Sun et al, 2014)
HAS3 recycling in PM biotinylated EGFP-HAS3 Method optimized
andf endocytosis and in original
r r ran .
S publction
vesicle dynamics on cell
surface
To evaluate HAS3 2D and 3D cultures, confocal, TEM II, III Method optimized
secretion in and SEM imaging and flow in original
extracellular vesicles cytometry analysis publication III
To study HAS3 Photoconversion of whole cells and II Method optimized
degradation in analysis of half-life of Dendra2- in original
lysosomes HAS3 publication II
To study Golgi-to-PM | Tracking photoconverted Dendra2- 1I Method optimized

traffic of HAS3

HAS3 from perinuclear region to
PM

in original
publication II
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Table 4. Methods to analyze hyaluronan and UDP-sugar content.

Purpose Method Original Reference
Publication
To study pericellular | Quantification of staining | I, III, IV (Rilla et al, 2008)

hyaluronan coat | with fluorescent HABC
formation probe
To study hyaluronan | Enzyme-linked sorbent | I, II, III, IV (Hiltunen et al,

secretion in  culture | assay for hyaluronan

medium

2002)

To measure UDP-sugar | Anion-exchange HPLC

content

II, IV

(Oikari et al, 2014,
Tomiya et al, 2001)

Table 5. Methods to study effect of hyaluronan synthesis on cell biological functions.

Purpose Method Original Reference
Publication
To study cell Cell counting, I, 1I, IV Vierodt 1852 (invented the method for

proliferation

DAPI staining

cell counting) & Louis-Charles
Malassez (invented hemocytometer)

To study cell Scratch wound II, II1 (Todara 1965)
migration assay
To study cell Colorimetric I, 1I Method optimized in original
adhesion to type I assay with MTT publication I
collagen dye
Table 6. Other standard methods used in this thesis work.
Purpose Method Original Reference
Publication
HAS3 1) Lentiviral transduction | I, II, and III | (Rilla et al, 2012)
overexpression of EGFP-HAS3, which is
inducible by doxycycline (Siiskonen et al, 2013)
2) Linearization of EGFP-
HAS3 followed b
stable, insertion an?jl (Takabe et al, 2015)
selection by neomycin
resistance
mRNA knockdown SiRNA transfection I, II, IV (Fire et al, 1998,
Hamilton & Baulcombe,
1999)
To analyze proteins | Western blot I, 11, 1V (Burnette, 1981, Renart
et al, 1979, Towbin et al,
1979)
To identify proteins | Sucrose gradient | I Method optimized in the
involved in HAS3 | ultracentrifugation and mass original publication (I)
traffic spectrometry
To identify | Dyes and antibodies in western | I, II, III Method  optimized in
subcellular blot, live cell imaging and corresponding original

organelles

immunofluorescence

publications (I-III)
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Purpose Method Original Reference

Publication
To inhibit or | 4MU, mannose, glucosamine, | II, IV (Rilla et al, 2004),
enhance synthesis | and siRNA (against GFAT1, (Jokela et al, 2008) and
of UDP-sugars and | GNPDA1 and 2, UGDH) optimized in  original
hyaluronan treatments publications II and IV
To identify O- | ThiametG and OGT siRNA to | II (Holt et al, 1987, Snow

GIcNACc
modification of
HAS3

increase and
0O-GIcNAc

respectively
decrease
modification;

Western blot using RL2 anti-O-
GIcNAc antibody

et al, 1987, Torres &
Hart, 1984, Vigetti et al,
2012¢, Yuzwa et al,
2008) and optimized in
original publication II
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5 Results

5.1 CONTROL OF HAS3 TRAFFIC BY RAB10
5.1.1 Rapid turnover of HAS3 in plasma membrane

The plasma membrane specific marker mRFP-Rpre was used as a marker to locate the
EGFP-HAS3 population present in the plasma membrane (I, Fig. 5A). The pericellular
hyaluronan coat, stained with the fluorescently labelled HABR probe, was used as a marker
for cell surface (I, Fig. 6A). Using photoconversion of Dendra2-HAS3 from green-to-red, the
traffic of HAS3 from the plasma membrane was analyzed in MCF7 cells. In control cells, the
traffic of Dendra2-HAS3 was so fast that there was already a large movement of “red”
HASS3 from surface to cell interior (I, Fig. 6A) at the 2 min time point. EGFP-HAS3 transport
vesicles were mostly positive for EEA1, an early endosome marker (I, Fig. 9A), suggesting
that endocytosis of HAS3 is rapid and very important in maintaining the plasma membrane

residence of the enzyme.
5.1.2 Rab10 silencing increases the plasma membrane residence of HAS3

Analysis of HAS3 transport vesicles by mass spectrometry in MDCK cells overexpressing
GFP-HASS3 led to identification of proteins related to vesicular traffic, the prominent one
being Rab10 (I, Table 2). Co-immunoprecipitation and colocalization assays in MCF7 cells
showed the association of Rab10 and HAS3 in transport vesicles (I, Fig. 1-2). In MCF7 cells
transiently transfected with EGFP-HAS3, Rab10i showed an increased plasma membrane
signal of HAS3 (I, Fig. 5A,B) without influence on the overall signal of EGFP-HAS3 in
whole cells (I, Fig. 5C).

In cells with Rab10i, the traffic of Dendra2-HAS3 from the cell surface was significantly
inhibited and most of the photoconverted “red” HAS3 stayed at the cell surface (I, Fig. 6A).
Kinetic analysis showed that, in control cells, within ~5 min almost 50% of the
photoconverted Dendra2-HAS3 was transported from the cell surface into the cell and at
the end of the experiment (16 min) there was only 30% of the original signal in the cell
surface, while following Rab10i about 73% of the signal was left in the cell surface (I, Fig.
6B).

5.1.3 Rab10 regulates clathrin-mediated early endocytosis of HAS3

The mass spectrometry results suggested that HAS3 vesicles contain clathrin heavy chain
(Table 2 in I) and so clathrin-mediated trafficking is a likely explanation for HAS3
transportation. In MCF7 cells, clathrin heavy chain was significantly colocalized to EGFP-

HAS3 with a Pearson’s correlation coefficient value (Rr) of 0.46, when compared to empty
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EGFP (mock) vector (Rr = 0.19) (I, Fig.7A,C), suggesting that HAS3 is associated with
clathrin and that its endocytosis is likely accounted by clathrin-coated vesicles. In support
of this finding, mRFP-HAS3 was partially colocalized with fluorescein-conjugated
transferrin (Rr = 0.24), a marker for clathrin-mediated vesicular trafficking. In contrast, no
colocalization was observed between EGFP-HAS3 and a fluid-phase endocytosis marker,
Alexafluor hydrazide 594 (Rr = 0.07) (I, Fig.7B,D), indicating that HAS3 follows clathrin-

mediated endocytosis.

The colocalization of mRFP-HAS3 with fluorescein-conjugated transferrin was significantly
reduced in cells with Rab10 knockdown (Rr = 0.13), compared to control and scrambled
siRNA treated cells (Rr = 0.24 and 0.21 respectively) (I, Fig. 8A,B). At the same time, total
transferrin uptake was not changed by Rab10 siRNA (I, Fig. 8C). Moreover, EGFP-HAS3
was colocalized with an early endosome marker, EEA1 (Early Endosomal Antigen 1) with
an Rr value of 0.37, while Rab10 knock down significantly reduced it (Rr = 0.21) (I, Fig.
9A,B). The results indicate that Rabl0 is important for the clathrin-mediated early
endocytosis of HAS3.

5.2 UDP-SUGAR AVAILABILITY CONTROLS HAS3 TRAFFIC AND
HYALURONAN SYNTHESIS

5.2.1 Manipulation of cellular UDP-sugar contents and O-GlcNAcylation of HAS3

Changes in the cellular levels of UDP-GIcUA and UDP-GIcNAc were analyzed in MV3 cells
stably overexpressing EGFP-HAS3 (i.e. MV3-EGFP-HAS3) following treatments by 4MU
(0.5 mM), mannose (20 mM), and glucosamine (0- 2 mM), and by siRNAs against the
enzymes GFAT1, GNPDA1 and 2, and UGDH. The effects of these treatments on cellular
UDP-sugars and hyaluronan synthesis are presented in (II, Fig. 2A-C, E-G) and

summarized in Table 7.

Western blotting of EGFP-HAS3, extracted and immunoprecipitated from MV3 cells, was
positive for O-GlcNAc modification (II, Fig. 2M,N) when probed with the RL2 anti-O-
GIcNAc antibody. The treatments used to modify O-GlcNAcylation of HAS3 did not
influence the UDP-sugar contents of the cells (II, Fig. 2D,H). However, altering the cellular
UDP-GIcNAc content of the cells affected the O-GlcNAc modification level (Table 7).

5.2.2 Endocytosis of HAS3 is regulated by UDP-sugars and O-GlcNAcylation

The perinuclear signal of Dendra2-HAS3 in MV3 cells was colocalized with the Golgi
marker Golgin 97 (II, Suppl. Fig. 1C). Using the green-to-red photoconversion in the
putative Golgi region, the traffic of Dendra2-HAS3 to the plasma membrane was analyzed
for a time period of 1 h (II, Suppl. Fig. 2A). Compared to control, all the treatments listed in
Table 7 showed a slower arrival of Dendra2-HAS3 in the plasma membrane (II, Suppl. Fig.
2C) — thus making the result difficult to interpret.
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Table 7. Treatments affecting UDP-sugars, O-GIcNAcylation of HAS3 and hyaluronan content in
MV3-EGFP-HAS3 cells

S.No. | Treatment | Concentration | UDP- UDP- O-GIcNAcylation | Hyaluronan
GIcUA | GIcNAc of HAS3

1 4MU 0.5 mM 1 ns ns l
2 UGDHi 40 nM l l - )
3 Mannose 20 mM i) W I H
4 Glucosamine 0.5-2 mM i " 1 "
5 GFAT1i 40 nM ns ! - !
6 GNPDAI 40 nM ns ! - !
7 ThiametG 20 uM ns ns 1 T
8 OGTi 40 nM ns ns 1 l

| Decrease; || < 0.5 fold; 1 Increase; 11 > 2 fold; ns - not significant; “-" no data

Endocytosis of photoconverted Dendra2-HAS3 from the plasma membrane was analyzed
in MV3 cells using deep mask red as a marker for the plasma membrane. Depletion of
UDP-sugars with 4MU or mannose increased the endocytosis of Dendra2-HAS3. In a
similar fashion, when GFAT1, GNPDA and UGDH were knocked down to deplete the
UDP-sugars, endocytosis of Dendra2-HAS3 was increased (II, Fig 3A, B). In contrast, a
surplus of UDP-GIcNAc (with 2 mM glucosamine) significantly reduced endocytosis of
Dendra2-HAS3, while 1 mM glucosamine did not differ from the controls, suggesting a
threshold level of UDP-GIcNAC that starts to significantly retard endocytosis.

ThiametG and knockdown of OGT decreased and increased, respectively, the endocytosis
of Dendra2-HAS3 (II, Fig 3A, B). Taken together, the results suggest that plasma membrane
residence of HAS3 is directly proportional to cellular UDP-sugar levels and O-
GlcNAcylation of HAS3.

Interestingly, when the hyaluronan chain attached to Dendra2-HAS3 was removed by
adding Streptomyces hyaluronidase in the culture medium, endocytosis of HAS3 was
enhanced (II, Fig 3A, B). Since CD44 is one of the principal receptor for hyaluronan and is
found in abundance on the surface of MV3 cells, the impact of CD44 on HAS3 endocytosis
was also studied. Results showed that knocking down CD44 with a siRNA did not affect
HAS3 endocytosis (I, Suppl. Fig. 3). This suggests that synthesis and elongation of
hyaluronan, but not its anchorage to CD44 receptor, determine the presence of HAS3 in

plasma membrane.
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5.2.3 Increased UDP-GIcNAc level and O-GlcNAcylation inhibit lysosomal degradation
of HAS3

Since the endocytosed HAS3 can be routed to degradation or recycling, it was important to
check its rate of degradation. Dendra2-HAS3 in MV3 cells was photoconverted in the entire
cell and the disappearance of the red signal was monitored over a time period of 5 h. Using
transmitted light, DIC images were also taken alongside to normalize the fluorescence and
control for possible errors in focusing. In control cells, the half-life of Dendra2-HAS3 was
around 3 h and at the end of the 5 h observation period only ~30% of the original signal
remained (II, Fig. 4A,B). When lysosomal degradation of proteins was blocked by
chloroquine (100 puM), the stability of Dendra2-HAS3 was increased, while blocking
proteasomal degradation by MG132 (2.5 uM) showed no effect (II, Fig. 4A,B), suggesting
that HAS3 is mainly degraded in the lysosomal pathway.

Glucosamine treatment slowed down the degradation of Dendra2-HAS3. Similarly,
treatment with ThiametG also significantly reduced the rate of Dendra2-HAS3 degradation
(I, Fig. 4A,B). However, other treatments did not influence the degradation rate of HAS3.
The results suggest that increased UDP-GIcNAc levels, perhaps through O-GlcNAcylation,
shielded HAS3 from lysosomal degradation.

5.2.4 HAS3 recycling in plasma membrane is regulated by UDP-sugars

The robust endocytosis of HAS3 that takes place in a matter of minutes, versus its slower
degradation rate in hours suggest that once endocytosed a major chunk of the protein could
be recycled back to the plasma membrane. When endocytosis was enhanced by depletion of
UDP-sugars, inhibition of O-GlcNAcylation, or treatment with hyaluronidase, EGFP-HAS3
accumulated in early endosomes (II, Fig. 5A). Early endosomes are therefore a likely source
for the possible recycling of HAS3. To confirm the idea of HAS3 recycling, the extracellular
part of EGFP-HAS3 was labelled with a DTT-cleavable, hydrophilic biotin (i.e. EZ™-link
Sulfo-NHS-SS-biotin; see methods in II). By studying the endocytosis of biotinylated EGFP-
HASS3 into the cytoplasm and its reappearance on the cell surface, recycling of EGFP-HAS3
was confirmed. Depletion of UDP-GIcUA (4MU) and UDP-GIcNAc (mannose) resulted in
more endocytosis and less recycling of EGFP-HAS3. A surplus of UDP-GlIcNAc by
glucosamine and increased O-GIcNAcylation by ThiametG led to more EGFP-HAS3
recycling to the plasma membrane (II, Fig. 5B). To monitor HAS3 recycling in more detail,
TIRF microscopy was utilized to capture the dynamics of EGFP-HAS3 vesicles 100-200 nm
under plasma membrane (i.e. TIRF zone). The appearance and disappearance of EGFP-
HASS3 vesicles in the TIRF zone was recorded for a time period of 2 min with 0.5 s time
intervals (II, Fig. 6) and for kinetic analysis the first 70 seconds recordings of the vesicle
turnout was used (II, Fig. 7). Depletion of UDP-GIcUA (4MU and UGDHi) and UDP-
GlcNAc (mannose, GFATi and GNPDAI) reduced the numbers of transient visits of the
EGFP-HAS3 positive vesicles in the TIRF zone (II, Fig. 6, 7E). Inhibition of O-GlcNAcylation
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also led to reduction of these vesicles, considered to reflect recycling of EGFP-HAS3. In
contrast, a surplus of UDP-GIcNAc by glucosamine, and increased O-GlcNAcylation by
ThiametG, increased the visits of EGFP-HAS3 positive vesicles. (II, Fig. 6, 7E). These results
demonstrate that endocytosis and recycling are important for maintaining HAS3 in the
plasma membrane, and that these are governed by the availability of UDP-sugars and O-
GlcNAcylation.

5.3 UDP-SUGAR CONTENTS AND HAS3 RELEASE IN EXTRACELLULAR
VESICLES

5.3.1 Release of hyaluronan-coated extracellular vesicles in the culture medium

Active hyaluronan production on the cell surface was accompanied by numerous long
plasma membrane protrusions, and release of vesicles positive for hyaluronan in the
culture medium (III, Fig. 1). In C8161 and MV3 cells with overexpression of EGFP-HAS3
and grown in an experimental 3D culture setup, the released vesicles carried HAS3 and
were trapped in the collagen matrix (III, Fig. 1I). When MDCK-GFP-HAS3 cells were grown
in the absence of glucose, both hyaluronan production and the release of HAS3-positive
extracellular vesicles were attenuated (III, Fig. 5). The results suggest that hyaluronan
synthesis stimulates the release of extracellular vesicles containing EGFP-HAS3 from the
plasma membrane. Most strikingly, some of the vesicles were shed directly from the tips of
the microvillus-like protrusions (II, Fig. 8A,B) — a signature organelle for hyaluronan
synthesis. The matrix of cells with depleted UDP-GIcUA (4MU, UGDHi) or UDP-GIcNAc
(mannose, GFATi, GNPDAIi) showed significantly less extracellular vesicles containing
EGFP-HAS3. On the other hand, increased UDP-GIcNAc content by glucosamine led to an
overflow of the EGFP-HAS3 positive extracellular vesicles. Changes in O-GlcNAcylation
caused changes in parallel to those of UDP-GIcNAc: increased O-GlcNAcylation by
ThiametG enhanced vesicle shedding while its inhibition by OGTi resulted in reduced
numbers of extracellular vesicles containing EGFP-HAS3 (II, Fig. 8A,B). The results suggest
that any disturbance in the metabolism of UDP-sugars can influence the release of HAS3-

positive extracellular vesicles.
5.3.2 Hyaluronan synthesis initiates secretion of HAS3-driven extracellular vesicles

In transmission electron microscopic analysis, the control MDCK-GFP cells showed
negligible numbers of vesicles in the extracellular matrix. In contrast, MDCK-GFP-HAS3
cells showed an abundance of vesicles, especially in the size range of 50-1000 nm (III, Fig.
6). Vesicles budding from the tips of plasma membrane protrusions and the surface of the
plasma membrane itself were noted (IIL, Fig. 6C,D). Scanning electron microscopic analysis
showed long plasma membrane protrusions with tiny vesicle buds on their tips (III, Fig.
7A-C). In the 3D culture model, MDCK-GFP-HAS3 cells grown as cysts showed both basal
and apical side release of vesicles, positive for GFP-HAS3, actin, hyaluronan, and CD44 (111,
Fig. 4B,D,F,H,]), Treating the GFP-HAS3 vesicles with HA6 oligomers did not result in the
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disappearance of the hyaluronan coat, suggesting that the hyaluronan is not bound to CD44
(I, Fig. 3D). The proportion of hyaluronan present in the purified GFP-HAS3-positive
vesicles was only ~0.5% of the total secreted hyaluronan (III, Fig. 3F). HAS3 overexpression
disturbed epithelial architecture and created an anomalous presence of cells in the lumen of
the cyst cultures (III, Fig. 4A,C,E,G,I).

When LP9 cells were treated overnight with 4MU, an inhibitor of hyaluronan synthesis, all
the plasma membrane protrusions and vesicle budding sites disappeared — correlating with
reduced hyaluronan secretion in the growth medium (I, Fig. 7E,G). However, when 4MU
was removed, the protrusions and vesicle budding sites reappeared alongside the recovery
of hyaluronan secretion (III, Fig. 7F,G). Thus, the results indicate that hyaluronan synthesis

is the activation factor for the release of HAS3-driven extracellular vesicles.

5.4 HEXOSAMINE BIOSYNTHESIS IN THE MAINTENANCE OF UDP-
GLCNAC CONTENT AND HYALURONAN SYNTHESIS

5.4.1 Silencing of GFAT and GNPDA enzymes in keratinocytes and melanoma cells

In this study, the role of GFAT and GNPDA enzymes in regulating cellular UDP-GIcNAc
and thereby hyaluronan synthesis was documented in the human HaCaT keratinocytes. In
HaCaT cells, the mRNA level of GFAT2 enzyme remained close to the detection limit in
standard culture conditions, while GFAT1, and GNPDA1 and 2 showed robust expression.
SiRNA-mediated silencing reduced the mRNA levels of GFAT1 and GNPDAI1 below 20%
of controls, and GNPDA2 to ~40% (IV, Fig. 2A,H K). Furthermore, there were significant
reductions in the protein levels (IV, Fig. 3A,B). Interestingly, silencing GNPDAT1 resulted in
an approximately ten-fold upregulation of GFAT2 mRNA level, also when combined with
GFAT1 siRNA, but not when combined with GNPDA2 siRNA (IV, Fig. 2D-F). Another
interesting cross-regulation was a slight increase of GFAT1 mRNA and protein levels that
was observed with GNPDA?2i (1V, Fig.2B-C, 3A-B).

In contrast to keratinocytes, siRNA-mediated silencing of GFAT1 and GNPDA1 and 2 in
MYV3 melanoma cells did not show any complex feedback cross-regulation in mRNA levels
of the enzymes (data not shown). The results suggest that the rate-limiting step of
hexosamine biosynthetic pathway is subject to complex regulation at multiple levels,
including feedback control of gene expression, in addition to post-translational regulation
of enzymes and availability of substrates. Furthermore, it is possible that the function and
gene expression of GFAT and GNPDA enzymes appears to vary depending on the cell type

i.e. normal or cancer phenotype.
5.4.2 Maintenance of UDP-GIcNAc and HAS2 expression by GFAT and GNPDA

In keratinocytes, GFAT1i resulted in a significant decline in UDP-GIcNAc and also UDP-
GalNAc (1V, Fig. 4A,B), because these two UDP-sugars exist in an equilibrium maintained
by UDP-galactose-4-epimerase (IV, Fig. 4C,D). When GFATIli was combined with
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knockdown of GNPDA1, GNPDAZ2 or both, the levels of UDP-GIcNAc and UDP-GalNAc
also declined, perhaps even more than with GFAT1i alone (IV, Fig. 4E,F). The data showed
that GFAT1 is a major determinant of cellular UDP-GIcNAc. While either GNPDA1 or 2i
applied alone had no effect, their combination resulted in an increasing trend in cellular
UDP-GIcNAc and UDP-GalNAc content (IV, Fig. 4A-B,E-F). The cellular levels of UDP-
Glucose and UDP-GIcUA were not affected by GFAT1i and/or GNPDAI (IV, Fig. 4G H).
The results suggest that when GFAT1 is suppressed, GNPDAs start to synthesize UDP-
GlcNAc, while they act in the opposite direction when GFAT1 is fully active.

However, in MV3 melanoma cells, both GFAT1i and GNPDA1 and 2i resulted in a
significant decrease in cellular UDP-GIcNAc (Table 7). Based on the above data, it seems
that the function of GNPDAs in maintaining cellular UDP-GIcNAc content is different in
keratinocytes and melanoma cells, while GFAT1 in both the cell types synthesizes UDP-
GlcNAc.

In keratinocytes, GFAT1i and GNPDAZ2i resulted in a significant upsurge of HAS2 mRNA
expression (IV, Fig. 7A,B). Additionally, the combination of GFAT1i with GNPDA1i or
GNPDAZ2i or both led to a similar increase in HAS2 expression. However, GNPDAIli
nullified the effect of the increased HAS2 expression by GNPDAZ2i (IV, Fig. 7C). The result
indicates that with a low supply of UDP-GIcNAc in the absence of GFAT or GNPDA
enzymes, increased HAS2 expression represents an attempt to maintain sufficient

hyaluronan synthesis.

5.5 INFLUENCE OF HAS3 TRAFFIC AND UDP-SUGARS ON HYALURONAN
SYNTHESIS

When Rab10 expression was silenced using siRNA-mediated knockdown in MCEF7 cells
overexpressing EGFP-HAS3 (i.e. MCF7-EGFP-HAS3 cells), hyaluronan was significantly
increased in the growth medium and pericellular coat (I, Fig. 4A, D-E). An opposite effect of
decreased hyaluronan secretion was observed when EGFP-Rab10 was overexpressed (I, Fig.
4B). Rab10i also increased hyaluronan secretion by endogenous, non-transfected HAS in
MCEF7 cells (I, Fig. 4C), indicating that Rab10 is an important component in the molecular

machinery involved in HAS3-dependent hyaluronan synthesis.

Depletion of UDP-sugars with 4MU and mannose significantly reduced hyaluronan
secretion in MV3-EGFP-HAS3 cells (I, Fig. 2I). On the other hand, increased UDP-GIcNAc
content following glucosamine treatment in MV3-EGFP-HAS3 cells produced a significant
and dose-dependent increase in hyaluronan secretion (II, Fig. 2J). Knocking down GFAT],
GNPDAs and UGDH resulted in a significant reduction of hyaluronan secretion in MV3-
EGFP-HAS3 cells (I, Fig. 2K). In HaCaT keratinocytes, while GFAT1i led to a significant
reduction of hyaluronan secretion (IV, Fig. 5A), GNPDAI1 and 2 siRNAs applied alone
tended to increase hyaluronan and their combination yielded a significant increase (IV, Fig.
5B-C). Application of GFATIi together with GNPDA1+2i decreased hyaluronan secretion
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(IV, Fig. 5C), in line with the data on UDP-GIcNAc synthesis. Pericellular hyaluronan,
another facet of hyaluronan synthesis, reproduced the results of secreted hyaluronan seen
with GFAT and GNPDA siRNAs (IV, Fig. 6A,C). These results indicate that changes in

UDP-sugar levels have a direct influence on hyaluronan synthesis.

Hyaluronan secretion in growth medium was increased and decreased, respectively, with
ThiametG and knockdown of OGT (II, Fig. 2L), implying that O-GlcNAcylation controls
HASS3 activity, even without changes in UDP-sugar levels. These results are summarized in
Table 7.

5.6 EFFECT OF HAS3 TRAFFIC AND UDP-SUGAR LEVELS ON CELL
PROLIFERATION, ADHESION AND MIGRATION

Hyaluronan has been reported to influence several basic cellular functions such as
proliferation, cell division and migration. Therefore, treatments that affect hyaluronan
synthesis were expected to cause these phenotypic changes. In MCF7-EGFP-HAS3 cells,
doxycycline induction of EGFP-HAS3 resulted in a dose-dependent decline of cell numbers
after a 48 h culture (I, Fig. 10A) but no significant change was observed in 24 h (data not
shown). Similarly, Rab10i, which increased hyaluronan, also decreased cell proliferation in
MCF7-EGFP-HAS3 and MCF7 parental cells (I, Fig. 10B). In MV3-EGFP-HAS3 cells,
treatment with 4MU, mannose and glucosamine displayed a significant reduction in
proliferation (II, Fig. 9A). GFATi and GNPDAIi showed a slight increase in proliferation.
Other treatments did not differ significantly from the control (II, Fig. 9A). The results
suggest that increased hyaluronan synthesis, beyond a baseline, inhibits cell proliferation in
these cell types and culture conditions. However, in keratinocytes, GFATi and GNPDAI did
not influence cell proliferation after a 48 h culture (IV, Fig. 8A,B). One likely explanation is
that, in keratinocytes, the magnitude of change in hyaluronan synthesis from the

endogenous level is not enough to impact proliferation in the short term.

The effect of pericellular hyaluronan coat formation on cell adhesion to type I collagen
matrix was studied in MCF7 and MV3 cells. Hyaluronidase-mediated removal of
pericellular hyaluronan resulted in an increase in cell adhesion only in MCF7-EGFP-HAS3
but not in MCF7 parental cells (I, Fig. 10D). In MCF7-EGFP-HAS3 cells, Rab10i led to
decreased cell adhesion to type I collagen but, when combined with hyaluronidase, the loss
of cell adhesion was partially rescued (I, Fig. 10D). Exogenously added hyaluronan did not
interfere with cell adhesion (I, Fig. 10F). Similarly, cell adhesion of MV3-EGFP-HAS3 cells
to type I collagen was studied with altered UDP-sugar metabolism and O-GIcNAc
signaling. With reduced cellular UDP-GIcUA (4MU, UGDHi), UDP-GIcNAc (GFAT],
GNPDAi) and O-GlcNAcylation (OGTi), cell adhesion was significantly increased.
However, with increased cellular UDP-GIcNAc (glucosamine) the cell adhesion was also
elevated (II, Fig. 9B), while, increased O-GlcNAcylation by ThiametG did not show any
difference from the control (I, Fig. 9B). The overall interpretation is that although cell
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adhesion is partially dependent on pericellular hyaluronan, other potential factors are

probably involved.

The effect of UDP-sugar content on cell migration was studied in MV3-EGFP-HAS3 cells.
Compared to control, 4MU slowed whereas mannose stimulated cell migration.
Glucosamine strongly inhibited the migration (II, Fig. 9C). In keratinocytes GFATi
stimulated and GNPDAI slightly inhibited cell migration (IV, Fig. 8C), while mannose did
not influence the migration at all. However, glucosamine significantly inhibited
keratinocyte cell migration (IV, Fig. 8D). When the respective levels of UDP-GIcNAc (IV,
Fig. 4E) and hyaluronan synthesis (IV, Fig. 5A,C) were compared in all these treatments, it
appears that UDP-GIcNAc and hyaluronan contents are inversely proportional to the rate

of keratinocyte migration.

5.7 UDP-SUGAR LEVELS ASSOCIATE WITH HYALURONAN CONTENT IN
MELANOMAGENESIS

To study the expression of GFAT1 and UGDH in different stages of melanoma, mRNA
levels of the enzymes were quantitated with real time PCR and compared in three different
cell lines — normal primary human epidermal melanocytes (HEMa), and two metastatic
melanoma cells i.e. MV3 and C8161. The mRNA expression of GFAT1 and UGDH declined
in MV3 and C8161, when compared to HEMa (II, Fig. 10A). Interestingly, hyaluronan
secretion in growth medium was also reduced in MV3 and C8161 when compared to HEMa
cells (II, Fig. 10B). There appeared to be a correlation between the decline of GFAT1 and
UGDH mRNA and hyaluronan content of the cells, reflecting increasing aggressiveness of
the melanoma cells. Using human tissue samples representing different stages of
melanomas, starting from benign nevus, dysplastic nevus, in sifu melanoma, <1 mm and >4
mm deep invasive melanomas, GFAT1 expression was scored by immunohistochemical
staining. In the tissues, GFAT1 staining was significantly increased in dysplastic nevus and
in situ melanoma, when compared to benign nevus, while the expression declined through
<1 mm to >4 mm deep melanoma tissues (II, Fig. 10C,E). The protein level of GFAT1 thus
closely correlated with hyaluronan content of the tissues (Fig. 10C-F). The results suggest
that biosynthesis of UDP-sugars and hyaluronan content correlate with each other and

possibly with the progression of melanoma in its different stages.
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6 Discussion and Conclusion

6.1 HAS endocytosis as a novel checkpoint for hyaluronan synthesis

While it is well-established that numerous factors influence hyaluronan synthesis through
modulation of HAS gene expression (TNFa, IL-1f and EGF etc.), less is known about the
role of post-translational regulation of HAS (Tammi et al, 2011). In this thesis work, it was
shown for the first time that the rate of HAS3 endocytosis can control its ability to
synthesize hyaluronan. Rab10 was shown to be the first protein known to regulate HAS3
endocytosis, and therefore influence hyaluronan synthesis (I) (Fig. 3). A similar case is seen
in another polysaccharide, chitin, in Drosophila, where the Rab protein Ypt32p regulates the
movement of chitin synthase towards the cell surface, and any change in the trafficking
affects chitin synthesis (Ortiz & Novick, 2006). Rab10 is one of the Rab GTPases, a family of
approximately 60 members acting as multi-functional regulators of intracellular vesicular
traffic such as recycling endocytosis, transfer of proteins and cargos from trans-golgi
network to plasma membrane, and exocytosis (Hutagalung & Novick, 2011, Schwartz et al,
2007). A recent study has shown that Rab10 is coupled to phospholipid biosynthesis and
regulates the formation and dynamics of ER tubules (English & Voeltz, 2013). In C. elegans
Rab10 has been found to enhance the formation of the recycling endosomes to plasma
membrane by regulating phosphatidylinositol-4,5-bisphosphate levels (Shi et al, 2012).
Interestingly, none of these studies have shown a role for Rab10 in retrograde transport
from the plasma membrane, or in maintaining the plasma membrane residence of proteins.

Therefore, the present work on HAS3 opens a new area of Rab10 functions.

Post-translational modifications of HAS, like di- or oligomerization, monoubiquitination,
O-GlcNAc modification, and phosphorylation (Bart et al, 2015, Karousou et al, 2010, Vigetti
et al, 2011, Vigetti et al, 2012) have been shown to play important roles in HAS activity and
hyaluronan synthesis. However, it is not clear whether these post-translational changes
actually affect HAS endocytosis at the cell surface, and therefore hyaluronan synthesis. The
importance of HAS di- or oligomerization is partially supported by the fact that all Golgi
glycosyltransferases form homo- and heteromers, and their functions and trafficking
between ER and Golgi are regulated by homo- and heteromerization (Hassinen et al, 2010).
Also, monoubiquitination, a known modifier of HAS2 protein, can regulate trafficking,
especially plasma membrane maintenance of proteins such as EGFR and H-Ras (Fallon et
al, 2006, Jura et al, 2006).
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Figure 3. HAS3 traffic and hyaluronan synthesis. HAS3 follows the usual ER-Golgi secretion
pathway and is activated in the plasma membrane to produce pericellular and extracellular
hyaluronan around microvillus-like plasma membrane protrusions. HAS3 is transported in
secretory vesicles (SV) from the Golgi to the plasma membrane but the intermediate machinery
involved in storage and sorting of the protein between the organelles is yet to be identified.
Rab10 regulates HAS3 endocytosis in an early step using clathrin-coated trafficking machinery.
If the attached hyaluronan chain is removed using hyaluronidase, HAS3 endocytosis is
triggered, implying that HAS3 turnover in the plasma membrane is associated with the
probability of initiation and continuation of hyaluronan synthesis. The level of cellular UDP-
sugars (UDP-GIcNAc and UDP-GIcUA) and O-GIcNAcylation, when declined, activates HAS3
endocytosis. In contrast, increased UDP-GIcNAc and O-GIcNAcylation results in inhibition of
HAS3 endocytosis. In a similar fashion, HAS3 recycling is enhanced and reduced, respectively,
with increased and decreased UDP-sugar levels and O-GIcNAcylation. Correspondingly, a surplus
of UDP-GIcNAc and O-GlIcNAcylation slows down lysosomal degradation of HAS3. Followed by a
stimulus of hyaluronan synthesis, HAS3 is released in extracellular vesicles (Evs) either from
the tip of microvilli-like protrusions or directly from the surface of the plasma membrane. HAS3
secretion in Evs is directly proportional to the availability of UDP-sugars and level of O-
GlcNAcylation. Abbreviations: EE - early endosomes; SE - sorting endosomes; RE - recycling
endosomes; LE - late endosomes.
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6.2 HASS3 traffic is regulated by the availability of substrate sugars

The data of Itano et al (Itano et al, 1999) on the Km values of HAS enzymes, and the
estimated cytosolic levels of UDP-sugars (Jokela et al, 2008) approximately match with the
hyaluronan synthase activity of HAS3. The present work shows that cellular levels of UDP-
GIcUA and UDP-GIcNAc also control HAS3 traffic, implying that the metabolic state of the
cells influences hyaluronan synthesis, and that this occurs through the transport of the
HAS3 enzyme (II). The most important finding with regards to trafficking was that both
UDP-GlcUA and UDP-GIcNAc controlled the plasma membrane levels of the enzyme.

HAS3 can also be O-GlcNAc modified, and the level of modification depends on UDP-
GlcNAc availability. While the level of HAS3 O-GlcNAcylation parallels the cellular
concentration of UDP-GIcNAc, O-GlcNAcylation influences HAS3 trafficking and activity
also without concomitant changes in UDP-GIcNAc supply, as shown by the experimental
suppression of OGT and O-GlcNAcase. These findings fit with the idea that O-
GlcNAcylation is a mechanism to amplify the concentration effects of this UDP-sugar
substrate on HAS3 activity. Indeed, there are previous examples showing that O-
GlcNAcylation can influence vesicular trafficking of cargo proteins (Cole & Hart, 1999,
Geng et al, 2012, Zhu et al, 2001), like other post-translational modifications such as
phosphorylation (Chamberlain et al, 2012, Ko et al, 2012), acetylation (Gao et al, 2010, Lee et
al, 2015) and SUMOylation (Chamberlain et al, 2012, Dai et al, 2011). It is difficult to tell
whether the UDP-GIcNAc effects on HAS3 trafficking and activity are mediated entirely by
O-GlcNAcylation. However, direct substrate effects on HAS3 trafficking and activity are
evident, as demonstrated by depletion of UDP-GIcUA, the other precursor.

That being said, UDP-GIcUA and UDP-GIcNAc slightly differ in their effects. While excess
UDP-GIcNAc protects HAS3 from lysosomal degradation, UDP-GIcUA seems to have no
influence (II) (Fig. 3). This may be due to UDP-GIcNAc-induced O-GlcNAcylation of HAS3
(II), a result similar to UDP-GIcNAc protection of HAS2 from proteasomal degradation
(Vigetti et al, 2012) through O-GIlcNAc modification of HAS2 on the serine amino acid in
position 221.

In aggregate, the experiments on the effects of UDP-sugars on multiple key points in HAS3
activity, including its endocytosis, shedding in microvesicles, lysosomal turnover, and also

HAS2 gene expression, indicate that these substrates exert a major influence on hyaluronan.
6.3 Hyaluronan chain guides HAS trafficking

A growing hyaluronan chain is tightly bound to the processive hyaluronan synthase
(Hubbard et al, 2012, Weigel & DeAngelis, 2007), and the maturation of full-length
hyaluronan with an average size of > 1 MDa takes up to 3-4 h in fibroblasts and in yeast
cells introduced with Xenopus HAS (Kitchen & Cysyk, 1995, Pummill et al, 1998).

Hyaluronidase-mediated removal of the growing hyaluronan chain induces HAS3
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endocytosis (II), thus supporting the claim that the hyaluronan chain under synthesis
impedes HAS3 endocytosis (Fig. 3). However, disturbing the interaction of hyaluronan
with its receptor, CD44, has no effect on HAS3 endocytosis (II) — suggesting that it is only
the growing hyaluronan chain, and not the one attached to its receptor(s), that is involved
in keeping HAS3 on the cell surface. The relatively long-standing bond between HAS3 and
the growing hyaluronan chain is important since it appears to initiate and support the

microvillous cell surface protrusions (Kultti et al, 2006, Rilla et al, 2008).

On the other hand, cellular availability of UDP-sugars can increase the likelihood of
initiation of the hyaluronan chain. The likelihood of chain initiation can also be increased
by reduction of the rate of HAS3 endocytosis, as demonstrated by the knockdown of Rab10
and high level of O-GlcNAc modification.

Recently published work by Weigel et al, (Weigel et al, 2015, Weigel, 2015) points out that in
the presence of ample amounts of UDP-GIcNAc relative to UDP-GIcUA, SeHAS is able to
synthesize chitin oligomers in the reducing-end of hyaluronan, where the synthesis begins.
The authors speculate that chitin oligomers could thus prime hyaluronan synthesis which
demonstrates the importance of UDP-GIcNAc in controlling HAS activity. The study also
supports the notion that there could be additional functions for the substrate sugars in the
injtiation and elongation of hyaluronan chain. It is not known whether this kind of chitin
priming can take place in vivo, or in vertebrate HASs, but this thesis work shows that a
surplus of UDP-GIcNAc sustains HAS3 in the plasma membrane which stimulates
hyaluronan synthesis (II).

Structural studies on bacterial cellulose synthase, another membrane-associated
glycosyltransferase, show that its transmembrane domains produce a “pore” that could
translocate the growing cellulose polymer into the extracellular space in a processive
manner (Bi et al, 2015). It was recently demonstrated that hyaluronan can also be
synthesized and translocated through the membrane by reconstituted Streptococcus
equisimilis SeHAS in proteoliposomes (Hubbard et al, 2012). It is not known if SeHAS acts as
monomers or oligomers in this model, but mammalian HASs can form both homo- and
heteromers in live cells (Bart et al, 2015, Karousou et al, 2010). Dimerization or
oligomerization could aid in pore formation and membrane translocation of the growing
hyaluronan chain. Whether hyaluronidase-mediated truncation of the attached hyaluronan
chain disrupts the oligomerization of HASs in the membrane, or just favors endocytosis of
HAS, is still unexplored. Yet another interesting puzzle to be solved is the relationship

between HAS oligomerization and traffic.
6.4 Dynamic recycling of HAS3 between endosomes and plasma membrane

The effects of UDP-sugars on HAS3 traffic between the Golgi to the plasma membrane

appeared less significant than their regulation of HAS3 plasma membrane residence. This



45

could be speculated to be due to HAS3 trafficking from Golgi to an intermediate “recycling
vesicles” compartment during the traffic towards the plasma membrane. This is apparently
the case with some other proteins, for example Interleukin 6 (IL6) and TNFa (Manderson et
al, 2007, Murray et al, 2005). In any case, continuous HAS3 recycling is seen between the
plasma membrane and endosomes, indicating that this is an important process for the

maintenance of HAS3 in the plasma membrane, and continued hyaluronan synthesis.

The recycling of HAS3 from endosomes to the plasma membrane is directly proportional to
the availability of UDP-sugars in the cytosol (II) (Fig. 3). Probably a related event is that
when the supply of substrate sugars declines, HAS3 accumulates in early endosomes (II).
Endosomal accumulation was also observed with inhibited O-GlcNAcylation and
hyaluronidase-mediated removal of the growing hyaluronan chain from the cell surface, as
discussed before. This further supports the above suggestion that recycling endosomes act
as an intermediate storage compartment during HAS3 traffic. Additionally, brefeldin-A
treatment, which disturbs the Golgi-to-plasma membrane traffic of proteins, inhibits
hyaluronan production, and this is accompanied by reduced HAS2 and HAS3 in
keratinocyte plasma membrane (Rilla et al, 2005). Although this could be due to subdued
Golgi-to-plasma membrane traffic of HAS, brefeldin A has an additional function of
disrupting the organization of microtubules and actin, so that any vesicular transportation
utilizing these cytoskeletal elements will be influenced, perhaps including recycling
endosomes as a step in the HAS trafficking itinerary. This partly undefined, yet important
route of HAS trafficking should be studied in more detail in the future to gain more insight

into the molecular mechanisms of HAS trafficking.
6.5 Release of HAS3 vesicles in extracellular space

There is a constant flux of HAS3 to the plasma membrane, but since the average half-life of
HASS3 in plasma membrane is ~5-6 min (I), not every HAS3 molecule reaching the plasma
membrane initiates hyaluronan synthesis. However, a part of the HAS3 can, and must, stay
longer to mature the growing hyaluronan chain. Except for the HAS3 molecules that begin
hyaluronan synthesis, others apparently just depart from the plasma membrane and are
destined for recycling to the plasma membrane or lysosomal degradation. In addition, the
HASS3 in the plasma membrane has the option to be secreted into the extracellular space in
vesicles budding from the plasma membrane (III) (Fig. 3). Examples of other proteins with
similar behavior include cell surface receptors like integrins (Fedele et al, 2015) and EGFR
(Adamczyk et al, 2011), matrix metalloproteinases (Hakulinen et al, 2008), cytokines
(Konadu et al, 2015), and secreted proteins like Wnt (Gross et al, 2012). CD44 and actin are
also released with HAS3 as fellow travelers in the extracellular vesicles, following a surge
of hyaluronan synthesis (III). Endocytosis and recycling can actually favor the release of

proteins into extracellular vesicles (Fang et al, 2007, Muntasell et al, 2007, Vidal et al, 1997).
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Taken together, a part of HAS3 is secreted out into the extracellular space via an unknown
mechanism. Also, the exact function of extracellular vesicles carrying HAS3 and
hyaluronan is not understood. It is possible that hyaluronan binds to its cell surface
receptors such as CD44 in the recipient cells and elicits a signal downstream of CD44 to
communicate a message from the donor cells. HAS3 present in the extracellular vesicles
could also carry HAS oligomers and hyaluronan from the donor to recipient cells and
trigger hyaluronan synthesis. In fact, hyaluronan present in the extracellular vesicles may
be one of the molecules responsible for docking the cargos onto the cell surface to deliver
the contents to specific “target” cells. One could speculate that the contents of extracellular
vesicles carrying hyaluronan are distinct from other vesicles of a similar nature. Clearly,

these issues should be studied carefully in the near future.

In this thesis work, UDP-sugars and O-GlcNAcylation were shown to have a major
influence on the shedding of HAS3-positive extracellular vesicles, the secretion of which
correlates with a high level of HAS3 in plasma membrane and a high rate of hyaluronan
synthesis (II, III) (Fig. 3). Surplus of UDP-GlcNAc and O-GlcNAcylation circumvents
lysosomal degradation of HAS3, which could be the likely reason for the increased
recycling of HAS3 to the plasma membrane and its subsequent vesicular release into the
extracellular space. Although it is difficult to quantify the ratio of HAS3 undergoing
endocytosis and shedding out of the cell, the meagre amount of HAS3 in the extracellular
vesicles is assumed not to significantly influence its total turnover rate. Moreover, the
accumulation of extracellular HAS3 takes a considerable amount of time i.e., 24-48 h (II, III),

compared to endocytosis, which happens in a matter of minutes (I, II).
6.6 Synthesis of UDP-sugars and control of UDP-GlcNAc concentration

A single enzyme (UGDH) is considered to control the synthesis pathway to UDP-GIcUA,
while the metabolism of UDP-GIcNAc (including UDP-GalNAc) is more complicated
because four different enzymes, i.e. GFAT1 and 2, and GNPDA1 and 2, can catalyze the
rate-limiting step in its synthesis pathway. UDP-GIcNAc is the end product of the
hexosamine biosynthesis, and GFAT1 is the most studied enzyme in this pathway, and is

also regarded as the principal enzyme governing the level of UDP-GIcNAc.

Both GFAT1 and 2 are subjected to regulation by phosphorylation, which is inhibitory in
the former and stimulatory in the latter (Eguchi et al, 2009, Graack et al, 2001, Hu et al,
2004). GNPDAs can switch their catalytic role from the conversion of fructose-6-phosphate
to glucosamine-6-phosphate to the reverse direction, depending on cell type, and the
concentrations of their substrates like ammonia and glucosamine-6-phosphate (Alvarez-
Anorve et al, 2011, Cayli et al, 1999). In this thesis work, knocking down GNPDA1+2 in
keratinocytes resulted in an enhancement of cellular UDP-GIcNAc content, implying that
keratinocyte GNPDAs catalyze the conversion of hexosamines (and UDP-GIcNAc) back to

fructose-6-phosphate (IV). However, the same GNPDA1+2 knock down in melanoma cells
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showed a drop in UDP-GIcNAc content, which means that melanoma GNPDAs act in
catalyzing fructose-6-phosphate in the direction of UDP-GIcNAc synthesis (II). This is an

interesting difference to note as it demonstrates the plasticity of GNPDAs in different cell

types (Fig. 4).
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Figure 4. Hexosamine biosynthetic pathway in keratinocytes and melanoma cells in basal
culture conditions. GFAT1 is the vital enzyme in catalysis of fructose-6-P to glucosamine-6-P
and works in the same direction in both cell types. In keratinocytes, GNPDA1 and 2 convert
glucosamine-6-P to fructose-6-P but in melanoma cells they work in reverse to convert
fructose-6-P to glucosamine-6-P. Finally, glucosamine-6-P is converted to UDP-GIcNAc, which
along with the other substrate, UDP-GIcUA, serve as building units of hyaluronan.

In keratinocytes, GFAT1 is the major enzyme catalyzing the formation of UDP-GIcNAc,
while GNPDAs act together with GFATSs in regulating the cellular UDP-GIcNAc content.
This fine regulation is probably necessary because a certain level of UDP-GIcNAc is
important for several functions — especially hyaluronan synthesis and O-GlcNAc signaling.
For example, increased UDP-GIcNAc content hinders cell migration, as seen with the
suppression of GNPDAs in keratinocytes (IV). Similarly increased UDP-GIcNAc content
with glucosamine supply inhibits cell migration in both keratinocytes and melanoma cells
(I, IV). On the other hand, decreased UDP-GIcNAc favors enhanced cell migration in
keratinocytes and melanoma cells, as seen with suppression of GFAT1 in the former (IV)

and mannose treatment in the latter (II).

Interestingly, there is also crosstalk between GFAT and GNPDA enzymes in transcriptional
level, as knockdown of GFAT1 leads to an increased GNPDA2 mRNA level, and



48

knockdown of GNPDAL results in a rise of GFAT2 mRNA. This again emphasizes the

importance of maintaining a proper UDP-GIcNAc content in the cells.
6.7 Hyaluronan synthesis and UDP-sugars in cancer

This thesis work shows that hyaluronan synthesis is closely correlated with HAS trafficking
and cellular content of UDP-sugars (i.e. UDP-GIcUA and UDP-GIcNAc), and that an
upregulation of hyaluronan synthesis leads to an outburst of extracellular vesicles carrying
part of the pericellular hyaluronan coat along with HASs, CD44 and actin in the cargo. In
recent years, the role of extracellular vesicles carrying messages in the form of RNAs,
proteins and signaling molecules, originating from different types of cancer cells has been
studied and discussed in detail (Le et al, 2014, Minciacchi et al, 2015, Nishida-Aoki &
Ochiya, 2015, Webber et al, 2015a, Webber et al, 2015b). However, the role of hyaluronan in
the extracellular vesicles derived from cancer cells is still largely unexplored (Rilla et al,
2013b, Rilla et al, 2014). This thesis work shows that shedding of hyaluronan coated
extracellular vesicles in cancer and normal cells are closely related to the synthesis rate of
hyaluronan, and that the same extracellular vesicles also carry HAS enzymes (Il, III). The
type of inter-cellular messages carried by these hyaluronan-coated extracellular vesicles is

an attractive topic to study in the near future.

Hyaluronan is involved in cell signaling, and cellular processes like migration,
development, and proliferation (Toole, 2004), which are important properties in the
progression of malignancies (Heldin et al, 2013, Jiang et al, 2011c, Schmaus et al, 2014, Stern,
2005b, Stern, 2008, Tammi et al, 2011a, Wu et al, 2015). In most of the cancers from epithelial
origin, the amount of hyaluronan in cancer cells differs significantly from normal cells and
correlates with the tumor grade and clinical prognosis of the patients (Sironen et al, 2011,
Tammi et al, 2011). Thus, any information on factors affecting hyaluronan synthesis in
cancer is important in solving the question why and how hyaluronan content changes in
different types of cancer. In this thesis work, modulation of hyaluronan synthesis by
manipulations of Rab10 and UDP-sugar concentrations showed profound effects on cell
adhesion to type I collagen (I, II), and cell migration and proliferation were also affected (1L,
IV). However, some of the chemicals used in this study to alter UDP-sugar metabolism can
have effects on cellular functions through mechanisms other than hyaluronan synthesis. For
example, 4MU and glucosamine are known to inhibit cell proliferation, migration and
invasion through signaling mechanisms beyond hyaluronan synthesis (Chou et al, 2015,
Qin et al, 2016). Nevertheless, the role of hyaluronan on several cellular functions has been
shown earlier by several independent investigations, and several approaches were used
also in this study to modulate hyaluronan. This thesis shows that any change in hyaluronan
synthesis and UDP-sugar metabolism influences cellular behavior with respect to its
proliferation, migration and adhesion, cell biological processes often correlated with

carcinogenesis.
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Rab10 knockdown in a kidney cell line caused a disturbance in the epithelial cell polarity,
resulting in a disorganized layer of cells in the formation of 3D tubular structures (Schuck
et al, 2007) that could predispose to malignant growth. Interestingly, HAS3 overexpression
in MDCK kidney epithelial cells with enhanced hyaluronan synthesis reproduced a similar
effect of a deranged epithelial layer (Rilla et al, 2012). Also, Rab10 knockdown in MCF7
breast cancer cells with HAS3 overexpression led to reduced adhesion and significant
reduction in cell proliferation (I). Data mining for differences in mRNA expression in cancer
cells and tissues pointed towards an upregulation in Rabl0 in cancers such as breast,
kidney, lung and lymphoma, and a downregulation in esophageal cancer and leukemia

(www.oncomine.org). The above mentioned observations suggest that Rab10’s control of

hyaluronan synthesis may be involved in cell adhesion to extracellular matrix proteins,
which is a key process in cell polarity and epithelial-to-mesenchymal transition in

carcinogenesis.

To date, there are very few reports available on UDP-sugar contents in cancers. However,
mRNA expression profiles for the enzymes related to the biosynthesis of UDP-sugars are
available in public databases like Oncomine™ Research Edition (www.oncomine.org). For
example, mRNA expressions of GFAT1 and UGDH are elevated in breast cancer; GNPDA1

and UGDH are declined in kidney cancer. Increased GFAT2 expression is seen in breast

cancer cells that are highly invasive (Simpson et al, 2012). Data on protein expression of
these enzymes in tumors are very limited and correlation of their expression with
hyaluronan content is not available so far. The present study on melanomas gives further
support to the above literature suggesting that the expression of enzymes in UDP-sugar
synthesis correlate with carcinogenesis, but studies on larger patient materials are needed
to confirm and define the associations. There is a possibility that UDP-sugar metabolism
contributes to the initiation and progression of melanoma and also to hyaluronan synthesis

and its deleterious effects in other malignant tumors.
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6.8 Conclusion and future directions

This thesis work has pointed out the regulation of hyaluronan synthesis by HAS3
endocytosis, which is in turn controlled by factors like Rab10-GTPase, UDP-sugar
metabolism and O-GlcNAcylation. Additionally, HAS3 is also secreted into the
extracellular space in vesicles, which is also regulated by UDP-sugar metabolism and O-
GlcNAcylation. Disturbances in hyaluronan synthesis, caused by interference of UDP-sugar
metabolism, Rab10 function, or O-GlcNAcylation, affect basic cellular functions such as
proliferation, migration and adhesion to type I collagen. However, the effect varies in a
complex manner depending on the cell type and magnitude of change in hyaluronan
synthesis. Cellular expression of GFAT1 and UGDH mRNAs gradually declines from
primary melanocytes to metastatic melanoma cells and correlates with the ability of the
cells to synthesize hyaluronan. In human tissue samples, GFAT1 protein expression is
increased in local (in situ) melanoma but then declines in advanced and invasive
melanomas, again correlating with hyaluronan content and making these enzymes as

candidate prognostic markers in melanoma and perhaps in other cancers.

In the future, molecular mechanisms of factors controlling HAS endocytosis should be
investigated in detail. The possible machineries assembled by Rab10 to control the fate of
HASS3 in the plasma membrane will be a crucial step to uncover how HAS dynamics in the
plasma membrane controls the initiation and termination of the hyaluronan chain.

Moreover, the role of Rab10 in HAS oligomerization is an interesting question to address.

Although this thesis work uncovers the importance of UDP-sugar substrates in the
regulation of hyaluronan synthesis by controlling HAS3 traffic, many new questions arise
concerning the molecular steps in further detail. One way for UDP-sugars to dictate the
traffic is O-GIcNAc modification of HAS in its serine/threonine residues but their exact
position in HAS sequence needs to be identified. A general difficulty in purification of HAS
proteins for the purpose of mass spectrometry analysis has turned out to be a major

roadblock for studying the post-translational modifications.

Other possible molecular “targets” of UDP-sugars in governing HAS traffic should be
studied, perhaps by utilizing high-throughput techniques. Another key issue to be
discussed, and conceivably investigated in the future, is to find the link between UDP-
sugar metabolism and carcinogenesis. Molecular targets of UDP-sugar metabolism in the
initial steps of carcinogenesis, such as changes in cell polarization, loss of cellular contact to
extracellular matrix, and commencement of epithelial-to-mesenchymal transition should be

revealed in more detail.
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ASHIK JAWAHAR DEEN

The thesis showed the regulation of hyaluronan
synthesis by HAS3 trafficking, which is in
turn controlled by factors like Rab10-GTPase,
UDP-sugar metabolism and O-GIcNAcylation.
Additionally, HAS3 is also secreted into the
extracellular space in vesicles, requlated by
UDP-sugar metabolism and O-GIcNAcylation.
Relationship between GFAT1 and GNPDA
enzymes in reqgulating UDP-GIcNAc synthesis is
also studied. In human tissue samples, GFAT1
protein expression correlates with hyaluronan
content during melanoma progression, making
these enzymes as candidate prognostic markers
in melanoma and perhaps in other cancers.
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