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Eye Movements During Code Review

Andrew Begel
Microsoft Research
Redmond, WA, USA

andrew.begel@microsoft.com

ABSTRACT
Programmers read through their source code for many rea-
sons: comprehension, investigation, even curiosity. During
code review, programmers read over other people’s code, a
process vitally important to ensuring that poor quality code
does not get committed into their product’s code reposi-
tory. Code reviewing is a form of reading that consists of
skimming the text to identify beacons (e.g. patterns of bad
code) that trigger the reader to stop and communicate some
feedback to the code author. Research on code review has
indicated differing levels of understanding required to prop-
erly evaluate code quality, often affecting the time it takes
to finish a code review. We believe that it is possible to
identify different qualities of code review feedback based on
gaze data recorded by eye trackers of developers doing code
review. This proposal will sketch out how we plan to do it.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Code inspections and
walk-throughs

General Terms
Measurement, Human Factors

Keywords
Eye tracking, Code review

1. INTRODUCTION
Code review is a common part of the software development

process in which relevant software developers read code that
was created or edited by a colleague to comment on its suit-
ability for including it in a source code repository, and thus
in the final software product. Code reviews can be in-person
or electronic, but typically involve a developer skimming the
desired changes in the code and making comments about any
parts that she sees that should be changed and/or improved.
Rounds of iteration ensue, with a final result that the code
is approved for checkin, or scrapped.
Within a code review, the reviewer does not just blindly

look through the code, but often follows a set of guidelines.
Some organizations enshrine these guidelines in a checklist
to help reviewers remember what to look for in the code.
Some of these guidelines include bugs in the implementation,
common coding mistakes, an encouraged or acceptable cod-
ing style, a test of reasonableness of whether the code solves

the problem in an efficient manner, and a list of serious se-
curity or performance problems that have caused problems
for the team in the past. Often the reviewer will spot some-
thing that is not clearly wrong, but could affect the code’s
maintainability in the future (e.g. code that is too clever
and undocumented), and suggest changes to improve it.
Each item in the checklist requires a different level of code

understanding. A study of code review practices at Mi-
crosoft reported that finding bugs required much more com-
plete understanding of the program than merely improving
the code or the development process [1]. Since every pro-
grammer has a different amount of knowledge and under-
standing of code in their product, they will demonstrate a
different degree of skill in spotting and“fixing” the problems
in the code. [4].
A lab study of specification review found that English ma-

jors were actually much better at spotting ambiguities and
bugs in specs than computer science majors [3]. Computer
science majors likely presumed too much correctness on the
part of the spec author rather than relying on skepticism and
a careful reading of the spec. Reviewers also have trouble
when there is too much code to review and little guidance
from the code author as to what they should be looking
for [1]. Reviews in many open source projects were found to
be smaller, but more frequent, lessening the effects of session
fatigue on the reviewer, but perhaps reducing the reviewer’s
patience with particular code authors as the number of re-
views increases [5]. Uwano et al. measured the effectiveness
of code reviewers using eye tracking metrics and discovered
that subjects who scanned through the entire program were
more efficient at finding defects in that code [6].

2. OPERATIONALIZATION
We believe that eye tracking can be used to identify how

good reviewers are at identifying problems in their code.
In this section, we will list measurements that may help us
identify the behaviors.

• Coverage (Words read, time per word, area covered
by gaze): There is often a lot of code to review, and
much of it is boiler-plate text without interesting mean-
ing or importance. This would impact a reader’s word
coverage during the reviewing task. A bored reader
may skip more words than an attentive one. However,
we know that as they read, experienced readers skip
more words than inexperienced readers, so the skip
amount should be mediated by development experi-
ence and/or experience with the code [2].

3



• Reading Speed (Words per minute, places where
speed drops, word revisit rate, and correlation with
affect measures): Code review is a primarily a skim-
ming process where the reader moves through the code
quickly until triggered by something“interesting.” Pla-
ces where reading speed slows dramatically, or halts
entirely, could indicate places where the reader was
cognitively challenged or triggered by what was seen.
Then again, it could mean the reader investigated that
part of the program more carefully. Revisiting the
same text again and again may indicate lack of com-
prehension or confusion, which also may identify places
where code should be changed or improved. Some code
review tools record time stamps whenever the reader
comments on the code; these timestamps can be used
to index into the gaze data stream and look for reading
speed changes that could indicate an upcoming code
review comment is forthcoming.

• Structural Scanpath (Order in which reviewer reads
the files, classes, and methods): These metrics are not
guided entirely by theory but more from an empirical
curiosity about code review. In what order do review-
ers look through the code? How regular is this order
across files or across code reviews? What influences
it? Is there any effect related to development experi-
ence, fatigue (how many other reviewers were already
done today), familiarity with the review (many reviews
have several back and forth iterations before the code
is finally accepted), or personal familiarity with the
code author or social distance in the work hierarchy?
How often does this order violate linear scanning (i.e.
reading a file or diff from top to bottom)?

• Intraprocedural Scanpath (Order in which a method
is read): Code review appears to be a skimming pro-
cess which ends when the reader is triggered by a bea-
con to pay closer attention. When this beacon is spot-
ted, does the reader switch their reading order from
linear (like a book) to forward or reverse control flow
or forward or reverse data flow? How does this change
depend on (or help us indicate) the kind of beacon that
triggered the closer inspection? Does the beacon cause
the same kind of scanpath change over several points
in the same code review or across code reviews?

3. PROGRESS
This summer, Hana Vrzáková, a Ph.D. student at Univer-

sity of Eastern Finland working as a research intern with me
at Microsoft, and I conducted a study of Microsoft engineers
doing code reviews, and recorded them with several biomet-
ric sensors, including a Tobii EyeX eye tracker. We are cur-
rently analyzing our data and will investigate the measures
we list above to see if eye tracking can reveal useful insights
into how software engineers conduct code reviews.
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ABSTRACT
In this position paper, we argue that eye tracking can be used
to understand the underlying cognitive states of a program-
mer during remote technical interviews, specifically program-
ming interviews. We describe a mock-interview experiment
that applies eye tracking to identify these cognitive states,
and propose two computational interventions that support
an interviewer and a candidate. We posit that these inter-
ventions will increase the effectiveness of remote technical
interviews.

Keywords
eye tracking, technical interview, remote programming, in-
terventions, anxiety, attention

1. INTRODUCTION
A technical interview is a stage of a job interview where

recruiters ask candidates technical questions pertaining to a
specific field of work for a job position. For software develop-
ers, these technical interviews often include a programming
portion where the applicant is asked to work through a series
of programming scenarios. Technical interviews can be an
expensive process. Some companies have reported that they
will spend at least $100,000 per position to have current
employees recruit candidates, fly candidates out for inter-
views, and support these candidates as they go through the
onboarding process.1

One cost saving mechanism is to conduct interviews re-
motely, using commodity webcams [12] and a shared editing
environment, such as CoderPad2 (Fig. 1). However, remote
technical interviews have challenges of their own. Determin-
ing what is going on during a period of silence is difficult for
an interviewer and uncomfortable for a candidate. Candi-
dates must balance the time devoted to solving problems and
expressing their thought process. Interviewers may perceive
extended silence as negative or assume that a candidate is
stalling for time or that a candidate simply does not know
how to solve a problem. However, programming is a cog-
nitively demanding activity, and like other deep thinking
tasks [4], periods of silence are absolutely necessary.
In this position paper, we propose a model for compre-

hending the cognitive state and attention of a programmer
during a remote technical interview. The unique affordances
of this mode of interviewing can add to the misinterpreta-
tion of what is going on during the deep thinking silence.
1http://www.entrepreneur.com/article/242613
2http://coderpad.io

Figure 1: Online technical interview conducted us-
ing CoderPad. Vincent remotely interviews Belinda,
who is debugging a FizzBuzz implementation. Fig-
ure from https://CoderPad.io/.

Performing an analysis of the different cognitive states of
interview candidates can help define the challenges and ben-
efits of remote technical interviews and how it affects their
cognitive state and attention. As a result of this research, we
can use these models of attention to design better interview
procedures that minimize disruption to candidates while al-
lowing interviewers to assess a candidate’s thought process
and problem solving speed.

2. BACKGROUND

2.1 Nonverbal Cues and Think-Aloud
Hollandsworth et al. found that interviewers place a

high importance on nonverbal cues when making hiring de-
cisions [8]. Although the content of discussion is ranked
highest, nonverbal cues, such as composure and eye contact,
were highly ranked as well. In remote interviews, nonverbal
communication is limited when a candidate cannot be fully
seen behind a phone or a computer. Not only are these cues
important for assessing performance, but they help regulate
disruption to a candidate’s cognitive processes, including
sustained attention.
Borrowing from concurrent think-aloud protocols, where

eye tracking has been used, we can hypothesize that anal-
ogous techniques might apply to remote interviews. For
example, Guan et al. found that retrospective think-aloud
can provide information about a participant’s strategies to
solving a problem using eye movements [7]. One challenge
with retrospective think-aloud is that a candidate may be
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subject to forgetting if they are asked too late [11]. In the
aforementioned study, participant strategies were determined
by the “eye mind hypothesis”. Just and Carpenter’s eye-mind
hypothesis provides support that people are paying atten-
tion to what they are looking at [9]. As eye movements
are representative of what a candidate can be attending to,
we can review measures of these movements to determine
the cognitive load during sustained attention tasks such as
programming.

2.2 Sustained Attention in Programming
Cognitive load refers to the total information demand

placed on an individual [10]. Several studies have found
multiple ways to measure it. One technique, pupillometry,
measures changes in pupil diameter in response to changing
mental workloads. With task-evoked pupillary responses
such as mean pupil dilation, peak dilation, and latency to
the peak, the intensity of cognitive load can be monitored[2].
Large pupil dilation is associated with high cognitive load
and small pupil dilation is associated with low cognitive load.
It’s not ideal to interrupt a person when they have a high
cognitive load as they are attempting to make sense of a
lot of information. When this processing is deterred during
peak processing, it can break concentration and candidates
may not be able to resume processing where they stopped.
Determining the intensity of cognitive load can cue the ap-
propriate time to deter the attention of a candidate. It is
ideal to switch concentration during a low cognitive load
task.
Studies have shown there is a relationship between shifts

of attention and saccades [5]. Saccades are involuntary ac-
tions that occur during information processing; when the
information is being processed. With this information we
can get a better understanding of how sustained attention
shifts by saccades. In addition, studies have shown that anx-
ious people have difficulty with attentional control through
saccadic movement [13]. If saccades begin to stray from the
information being processed, we hypothesize that we have a
stray in sustained attention.
In addition, blink rates can demonstrate the interest in

a task. Chan et al. found that blink rates were highly
associated with disinhibition signs during sustained attention
tasks [3]. Graham et al. found that blinks become larger,
starting from a full open eye to completely close, and faster
when the reflex-eliciting stimulus is attended than when
attention is directed elsewhere [6]. In this context, blinks
can monitor a candidate’s sustained attention and aid in
understanding the underlying cognitive mechanisms of a
programming interview.

With these features of pupil movement we can determine
the sustained attention of individuals during programming
experiences and determine when the appropriate time to
deter their attention.

3. INTERVENTIONS
To assist in our investigation of remote technical inter-

views, we propose two interventions that if added to remote
programming tools, might reduce disruption to a candidate,
while allowing interviewers to have a better comprehension
of a candidate’s mental state.

Blackouts: A good interviewer might allow some time for a
candidate to reflect on a problem in isolation, without

worrying about the presence of a interviewer pressur-
ing a candidate. For example, an interviewer might
say, “now that I have explained the problem, I will put
the phone down and walk out for about 4 minutes to
allow you to digest the problem.” For coding activi-
ties, having your live state exposed to an interviewer
can cause constant anxiety about making mistakes in
front of others. This blackout intervention captures the
benefits of a “walk-out” during remote interviews by
only refreshing a candidate’s screen in predetermined
time intervals. Refreshing the screen allows an inter-
viewer to monitor the progress of a candidate’s code
while allowing a candidate to have moments to reflect.
During the blackout period a candidate can complete
short programming tasks in a time-boxed manner, with-
out the constant pressure of being scruitnized on every
character typed on the shared screen of an interviewer.

Remote Focus Lights: When driving in a car, passengers
are better able to sense when a driver is busy than
someone having a phone conversation with the driver.
In remote interviews, a candidate may be in a mental
state with high cognitive load but is not easily observ-
able by an interviewer. For example, when editing
a document, an interviewer may use typing as a cue
for when not to interrupt. However, if a candidate
is reflecting on a problem or reading code while deep
in thought, that information is not easily accessible
to an interviewer, but still reflects a high cognitive
load. The remote focus light intervention indicates
when a candidate is currently involved in a high mental
workload to indicate when not to interrupt ( — red
light) and when a candidate is accessible for questions
( — green light). The measurements of high and
low cogntivie load will be collected through pupillary
movements and reflected through the focus light visible
to an interviewer.

4. RESEARCH QUESTIONS
Through studying cognitive states, we can identify the

circumstances under which some interviews are more effective
than others. As a starting point for model building, we ask
three research questions:

RQ1 How is the performance of a candidate reflected in
their cognitive states during a technical interviews?
In order to confirm variations of how interviews vary
with introducing interventions, we must first confirm
how cognitive states are demonstrated in a standard
technical interview.

RQ2 Is a candidate able to sustain their attention to the pro-
gramming issue less when an interviewer has increased
view of their actions?
There is a limit on how much an interviewer can see
a candidate with the blackout feature. With this re-
search question we investigate how candidate-managed
visibility affects the candidates performance.

RQ3 How does an interviewer’s access to a candidates’s
cognitive state affect a candidate’s performance?
The focus light intervention will provide an interviewer
with knowledge of the varying cognitive states of a
candidate. With this research question we investigate
how this feature affects a candidate’s performance as
they are studied by an interviewer.
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5. PROPOSED STUDY
To understand the impact and effectiveness of our interven-

tions on the remote technical interview process, we propose
an experiment involving an interviewer and a candidate that
simulates a typical remote interview setting (Fig. 1). During
the experiment, we instrument an eye tracker to collect gaze
data on pupil dilation, saccadic movement, fixations, which
correlate with measures on attention and cognitive load.
We envision four experimental conditions:

C1 No interventions. A control condition in which no
interventions are present. This provides a baseline
that is representative of how remote interviews are
conducted today.

E2 Blackout-only. The candidate has access to the black-
out feature, but an interviewer has no interventions
available to them.

E3 Focus light-only. The interviewer has a remote in-
dicator of the focus light state of a candidate, but a
candidate has no interventions available to them.

E4 Both blackout and focus light. The candidate has
access to the blackout feature, and an interviewer has a
remote indicator of the focus light state of a candidate.

This experimental design allows us to measure the anxi-
ety of candidates with and without blackout capability, and,
through the focus light capability, measure the effect of ask-
ing questions to a candidate under high and low periods of
cognitive loads. We hypothesize that in all intervention con-
ditions, a candidate will have reduced anxiety and increased
sustained attention. A candidate will be more comfortable
knowing an interviewer has more knowledge of when to solicit
interview questions and power to control when an interviewer
can see their work. Furthermore, these conditions enable
us to assess the ability of a candidate and interviewer in
regulating their activities, both as independent interventions
and finally as a co-intervention.
In conducting this experiment, we may encounter chal-

lenges with recreating the intensity of an interview environ-
ment which may play a role in the success of candidates.
However, we can combat this challenge by having candidates
use their own personal computer as they would during stan-
dard remote technical interview; placing them in a familiar
setting. This would help recreate an atmosphere similar to
a real remote technical interview. This will also reduce the
costs of having to send a candidate an eye tracking device as
studies have shown ways to leverage the use of web cameras
to conduct eye tracking experiments[1].

6. CONCLUSION
Remote technical interviews allow candidates to be evalu-

ated at a lower cost to the company. But what else is lost
when removing the fully visible aspect of the interview pro-
cess? Furthermore, programming is a cognitive intensive task
that defies expectations of constant feedback that today’s
interview processes follow. This has left a gap in understand-
ing what goes on during the programming interview process
and how to properly assess programming skills of candidates
to succeed at these interviews. With the proposed study, we
will be begin to comprehend the cognitive state and sustained
attention of candidates during remote technical interviews
to refine the interview process.
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ABSTRACT
Learning to program is difficult for many novice program-
mers. This study will attempt to improve programming
comprehension by actively focusing the gaze of novice pro-
grammers to important parts of programming code. The
study will design a set of programming comprehension tasks
and include two dependent experiments. In the first exper-
iment important code segments, referred to as beacons, will
be identified by tracking eye gaze data of skilful program-
mers as they successfully solve the comprehension tasks.
The second experiment will involve novice programmers of
comparable programming ability, divided into three groups.
The first group will be asked to solve the tasks without any
beacons provided, the second group will be asked to solve
the tasks with the beacons visually highlighted and the third
group will be asked to solve the tasks with unimportant
code segments visually highlighted. It is hypothesized that
the group with the correct beacons highlighted will perform
better.

Keywords
Eye tracking, focused attention, programming comprehen-
sion

1. INTRODUCTION
It is well established that learning to program is difficult.

[1][2][3][4] . Focused attention is the ability to respond dis-
creetly to specific visual, auditory or tactile stimuli. The
goal of this study is to focus the attention of novice pro-
grammers while performing programming tasks to facilitate
improved comprehension. By visually highlighting critical
areas of code blocks a novice programmer will be able to
solve programming comprehension tasks that they would not
be able to solve ordinarily.
The Duncker Radiation problem, describes where a tumour
exists under the skin that cannot be attacked directly with
lasers as it will damage the healthy tissue around the tu-
mour. In a study at Cornell University ninety-five partici-
pants were asked how to nullify the tumour without dam-
aging the healthy tissue around it. Two experiments were
carried out as part of the study. In the first experiment, par-
ticipant’s eye gaze was tracked. They were given a diagram
of the problem, that clearly marked the tumour, the healthy
tissue and the skin, and participants were asked how they
would nullify the tumour. Thirty-three percent of partici-
pants successfully solved the problem. When the eye gaze
∗Senior / Corresponding Author

of each participant was analysed the skin was identified as
the critical area that the successful participants fixated on
most when nullifying the tumour. The second experiment
was divided into three further groups. The first group had
the same experimental setup as the first experiment, the sec-
ond group were given an animated diagram with the critical
area of the skin animated and the third group had a diagram
with a non-critical area animated. The first and third groups
had similar results to the first experiment with 63% unable
to solve the problem. The second group showed virtually
opposing performance with 67% of participants successfully
solving the problem [5].
The critical areas of code blocks for comprehension can be
referred to as beacons. Beacons are lines of code which can
be found to exist in code structures. These beacons point
out the function or operation of a given code block [6]. It has
been shown that beacons found by expert programmers were
not identified by novice programmers and that the novice
programmers made little or no distinction between differ-
ent segments of a given code block [7] . This study will
track the eye gaze of expert programmers to determine the
beacons they focus on and then these beacons will be high-
lighted to novice programmers in a subsequent experiment
to determine if this results in improved comprehension.

2. METHODOLOGY
The study will attempt to address the following question:

• By highlighting beacons in code blocks will novice pro-
grammers be able to solve programming comprehen-
sion tasks that they would not be able to solve without
beacon highlighting?

Both novice and expert programmers will be invited to par-
ticipate in the study. Two experiments will be set up. The
first experiment will involve both novice and expert pro-
grammers. The novice and expert programmers will be
asked to complete the same programming comprehension
tasks based on introductory programming material, includ-
ing nested loops, recursion, and sorting algorithms.
During the experiment a remote eye tracker will be used to
monitor eye movement data of the participants. The loca-
tions of fixations, duration of fixations and attention switch-
ing between critical areas will be recorded and analysed. The
data from the eyetracker will be used to identify beacons in
the code for successful solvers. The beacons identified will
be used for the second experiment.
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The second experiment will then only consist of novice pro-
grammers. They will be split into three groups where the
first group will complete the challenge like the programmers
from the first experiment. The second group will be pre-
sented with code segments in which the beacons are high-
lighted. The third group will take the same programming
comprehension task except incorrect beacons will be high-
lighted. Each group will have their response time and an-
swers tracked.
At the end of both experiments it is hoped that a number of
findings can be made. From the first experiment it is hoped
that expert and novice programmers will find different bea-
cons in the code and the expert programmers will be quicker
and more accurate in the comprehension task. In the second
experiments it is hoped that a number of results would be
verified as follows. The first and third groups will achieve
the same success rate as the novice programmers from ex-
periment one. The second group will achieve a much higher
success rate than both of the other groups.

3. CONCLUSIONS
The study will make two contributions to the computer

science education community. The first experiment could
provide additional evidence that expert and novice program-
mers do not identify the same beacons while performing
programming comprehension tasks [7]. The second exper-
iment could show that when provided with the correct bea-
cons novice programmers could more successfully complete
programming comprehension tasks, as was the case in the
Dunckers Radiation Problem [5] .

Providing the beacons to novice programmers would re-
duce the difficulty in learning how to code, and not only
focus them on individual code blocks but also provide focus
to the concepts they should learn as a whole.
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ABSTRACT
In this position paper we propose means of measuring pro-
gramming expertise on novice and expert programmers. Our
approach is to measure the cognitive load of programmers
while they assess Java/Python code in accordance with their
experience in programming. Our hypothesis is that expert
programmers encounter smaller pupillary dilation within pro-
gramming problem solving tasks. We aim to evaluate our
hypothesis using the EMIP Distributed Data Collection in
order to confirm or reject our approach.

Keywords
code comprehension, programming expertise, pupillometry

1. INTRODUCTION
Recently, neuroscientists used functional magnetic reso-

nance imaging (fMRI) to identify and measure intelligence,
but also to predict individuals’ cognitive behaviour during
tasks [4]. Considering the ethical implications, researchers
have tried numerous times to extract information from sub-
jects’ cognitive activity in order to classify them according
to their intelligence or expertise.
Programmers today work in several programming languages

and often develop expertise in a number of them. In the
industry, however, seniority is usually dependent on knowl-
edge in a specific domain (i.e. data structures, algorithms),
rather than a specific programming language. Therefore,
programming experience is not necessarily related to exper-
tise. A novice programmer might experience different chal-
lenges than an expert, while comprehending code [6].
In software engineering experience is an important param-

eter within programming comprehension. It is defined as
“the amount of acquired knowledge regarding the develop-
ment of programs, so that the ability to analyse and create
programs is improved” [11]. There has not been, however,
an agreed way of measuring programming experience.
Psychologists in the 60s found a correlation between cog-

nitive activity and pupillary dilation. There can be various
reasons on why our pupils can encounter dilation, and one
of them is our cognitive workload. Using pupillary response
we can therefore measure our cognitive activity.
In this position paper, we examine how programming ex-

pertise influences the programmer’s cognitive activity. We
are interested in identifying connections between expertise
in a specific technology (i.e. Java, Python) and physiological
measures. Several studies have measured cognitive activity
using physiological means such as pupillometry. We pro-

pose experimenting with novice and experts in Java/Python
programming to investigate how experience in a technology
differentiates within physiological measures.

2. RELATED WORK

2.1 Programming expertise
Independently of acquired knowledge, intelligence is a pa-

rameter used to measure one’s capacity in reasoning and
problem solving [4]. However, in domain-oriented tasks, the
amount of acquired knowledge is an important ability to
analyse and solve problems. Knowledge is a combination of
our long-term memory and our working memory. Within
cognitive load theory, working memory is described as the
number of elements we can hold while processing a task. A
large number of material elements may be a single element
for one with expertise in a particular task [12].

Sweller et al. derived three fundamental types of measur-
ing cognitive load: (1) subjective (individuals’ self-reporting),
(2) physiological (heart rate, brain activity, pupillary dila-
tion) and (3) task performance [12]. Within program com-
prehension, different means of measuring cognitive load or
programming experience have been utilised, mainly includ-
ing self reporting or subjective techniques, but also physio-
logical measures (fNIRS) [11, 13].

To the extent of our knowledge, there has not been a cor-
relation between cognitive effort and programming experi-
ence while using pupillary response, and several studies have
shown its precision as means of measurement. Whether we
should use such measures to identify individuals’ expertise
independently of their self reporting is posed as an open
question.

2.2 Pupillary dilation
Psychology. Beatty found that task-evolved pupillary

response is a good indicator of cognitive load and cognitive
activity [2]. It has been used in several disciplines, as pupil-
lary dilation is a very precise and non-invasive manner of
measuring cognitive activity and can be easily measured [9].
In terms of expertise, Ahern and Beatty showed a correlation
between intelligence and pupillary response; more intelligent
subjects showed smaller task-evolved pupillary dilation in
arithmetic problems [1].

Computer science. Klinger used pupillometry to assess
visual interfaces by the amount of cognitive load they re-
quire from a user [8]. Maier et al. investigated how particu-
lar UML diagram layouts affect cognitive load [10]. Within
programming tasks, Iqbal investigated how well pupil size
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correlates with mental workload [7]. Fritz et al. assessed
and predicted task difficulty on expert programmers [5].

3. METHOD
In this proposed exploratory study, we intend to mea-

sure programmers’ cognitive load and mental effort during
programming tasks, in order to identify and measure pro-
gramming expertise. We argue that measures such as self
reporting [11] might pose a potential threat to the validity of
measuring experience and attempt to correlate physiological
measures to programming expertise.
Previous studies in this workshop have experimented with

patterns of reading behaviour within novice and expert pro-
grammers. To investigate individual behaviour and detect
experts from novices, we apply pupillometry measures in
order to identify cognitive effort during programming tasks.

3.1 Research design
Hypothesis. Our hypothesis is that expert programmers

experience significantly less cognitive load within program-
ming tasks than novice programmers. In order to measure
cognitive activity we use pupillary response to various types
of task difficulty. We therefore form two research questions:
RQ1. Can we use pupilometry to identify/measure pro-

gramming expertise?
RQ2. Does programming expertise influence pupillary

dilation within programming tasks?

3.2 Distributed data
Using the Distributed Data Collection from the workshop,

we attempt to validate or reject our hypothesis within pro-
gram comprehension. The data includes gaze interactions
from novice and expert programmers while assessing code in
Java/Python. Our approach is to combine raw sensor data
such as fixation, pupil size and gaze interaction (dependent
variables) with demographics including age, gender, years of
experience and education (independent variables).

4. EXPECTED RESULTS
In programming (similarly to reading) processing of visual

information only occurs during eye fixations [3], where we
also expect to encounter pupillary dilation in terms of cog-
nitive processing. We attempt to assess the ability to read
and understand code, as it differentiates from the ability to
immediately recognise its flaws or various imperfections.
Researchers have tried to identify criteria that can be used

to measure experience on novice or expert programmers, but
to our knowledge no attempts were made to do so using
pupillary response. To address our research questions, we
experiment with pupil dilation in programming tasks and
propose the measurement of programming expertise by mea-
suring cognitive activity on novice and expert programmers.
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ABSTRACT
Students of programming can experience anxiety and other emo-
tions while they are learning, and writing code. Professionals might
get anxious while debugging. It could be helpful to record their
eye-movements while working at the computer screen, if it can in-
dicate where and when they experience more anxiety. This could
possibly show which parts of the subject matter they are less sure
about, and even whether they are getting dismayed at their lack
of progress. It might also be possible to reveal where and when
programmers experience a heavier cognitive load, as we suggest in
some initial ideas for further experiments.

Categories and Subject Descriptors
K.3.4 [Computer and Information Science Education]: Pro-
gramming

General Terms
Experimentation, Human Factors

Keywords
Code reading, eye-tracking, computing education

1. EMOTIONS OF PROGRAMMERS
It is possible that students of programming start with some mis-
conceptions about the nature of software engineering. They could
assume that code needs to be correct at the first attempt, for exam-
ple, and that bugs in their code is evidence of lack of aptitude. In
some earlier work, we explored such early attitudes [4].

Furthermore, it is not only novice programmers who are affected by
emotion. Professional programmers work under time constraints,
and their work is often critically important to other people. Added
to that, they have to learn new programming languages and soft-
ware methods, so that they are similar in some ways to novices. A
lot of time is also spent in finding and fixing bugs in programs, and
that is an open-ended and unpredictable task that can be frustrat-
ing. All these pressures mean that we should expect professional
programmers to experience a range of emotions, even if not exactly
the same as novices do.

2. EMOTION THROUGH THE EYES
In a small study on the effects of different mood music while watch-
ing video, we recorded viewers with an eye-tracker [5]. This was to
explore the possibilities of measuring emotion using eye-tracking.
The field of eye-tracking research was, and still is, broadly skepti-
cal of this possibility, but we had some minor success with it.

Different pieces of music were played in the background, over the
same video clip, in order to evoke different emotions or mood states
in the viewer. Any changes in the eye-movements could then be
attributed to the effects of the music and mood alone.

Table 1: Pupil dilation ranges for different mood music
emotion mean range
of music of pupil

(mm)
happy 1.205
sad 1.363
fear 1.454
anger 1.677
none 1.743

In Table 1 the average pupil ranges (from minimum to maximum
pupil dilations) are shown, for the different conditions of back-
ground music. The ranges are shown with increasing size, so that
the happy music induces the least variation in pupil dilation while
watching the video clip. The more negative emotions, of fear and
anger or aggression (for which the music was an up-tempo rock
music track), produced a wider variation in pupil dilation. Lastly,
the silent condition produced the widest variation of all.

These data suggest a connection between different emotion states
and the ways in which eye pupils can dilate and contract over time,
while watching a video clip. In other data from the experiment we
found that eye-movement patterns, saccades in particular, can also
vary across different emotion conditions. However, it is more chal-
lenging to infer a person’s emotional or cognitive thought processes
from saccades, and research is barely begun in this direction.

Other researchers in computer games have also found some evi-
dence that data from the eyes can indicate emotional arousal, in the
context of first-person or third-person perspective [3]. Outwith the
context of games, correlations have been found between pupil dila-
tion and affective processing [6, 8]. This is mediated by the connec-
tion between pupil dilation and autonomic activation [1]. Because
emotions usually cause some activity in the autonomic nervous sys-
tem, we may therefore detect emotion by measuring pupil dilation.

There is also potential for eye-tracking to be able to detect more
specifically cognitive processing. For example, pupils have re-
cently been found to dilate when the memory system is accessed,
both in recording new memories, but also on occasion when re-
calling past memories to consciousness [2]. Blink data can also be
useful, in helping to detect windows of effortful cognitive activity
or "thinking" [7].
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In all these techniques research is at an early stage; and they are
only able to detect presence of emotional arousal (or cognitive
load). It is much harder to understand more about the nature of
that mental activity, whether it be the specific type of emotion, or
what the viewer might be thinking about.

However, it is already a significant step forward to be able to use
pupil dilation to indicate affective arousal. It is also encouraging
that some of the work referred to was able to achieve results with
viewers watching complex images that had changing light levels,
such a dramatic video clips. This means that the observed effects on
pupil dilation are large enough and strong enough to show through,
even against changing light conditions, which of course would also
have a large effect on the pupils. That in turn means that the tech-
niques could be even more effective in a context such as computer
programming, where we can maintain more stable light levels.

These techniques could thus lead to insights into the programmer’s
mind if the experimental environment is controlled well enough.

3. POSSIBLE EXPERIMENTS
In order to use an eye-tracker on a programming task, and to tightly
control the computer screen environment, and to be able to collate
results across numbers of programmers, it would be sensible to start
with an IDE (integrated development environment) in a standard
setup. The menus and panels should all be the same for everybody,
and the code should also be the same. This includes any help win-
dows with supporting documentation.

Sections or snippets of the necessary program code should ideally
be small enough to fit into the windows or panels entirely, without
needing to scroll to see more. That would avoid distractions for the
programmer; and it would also be easier to analyse the data from
the eye-tracker.

Different tasks might be set to the participants, such as answering
a question about what a code snippet would do, or debugging it. If
some snippets involve a concept that the programmer is unfamiliar
with, then we could learn about the anxieties of novice program-
mers and any effects on their performance. Any bugs in the code
could be controlled for difficulty, and that would help us to under-
stand how programmers, including professionals, respond when the
task gets harder.

Measures in these experiments should certainly include pupil dila-
tion, but fixation patterns and even eye-blinks could be useful data.
As well as emotional arousal, then, we could correlate these data
with the actions of the programmer (e.g. fixing a bug), to try and
infer the type of emotion (e.g. joy). It might even be feasible to
localise time windows around when the cognitive effort reached a
peak, and so infer when the programmer realised the problem, and
what it was that suggested the solution.

However, it must be said that it is very difficult to make sense out
of what a person looks at from moment to moment. Do we look
away at a thing because it is of no significance; or because it is, but
we have understood and remembered the information we needed
from it? For the time being we suggest that experiments on global
mood reponses, unrelated to specific informational content that is

strongly differentiated across the scene, are appropriate at this stage
of the research field. Such experiments are like the ones proposed
above.
4. CONCLUSION
We propose that it might be feasible to measure some aspects of
emotional experience of programmers, by the use of eye-tracking
technology.

There are considerable difficulties, especially in coming to under-
stand the mental models needed, such as the micro-decisions made
by viewers when deciding what to look at next, and for how long.
This is not easy to determine, even in relatively simpler tasks like
normal text reading, where eye-tracking was first used with great
success.

However, some solid research results have been obtained with mea-
sures of pupil dilation, showing that it is possible to infer at least the
presence of emotion, or some types of cognitive activity. This kind
of measure could be useful in programming experiments. We have
suggested some possibilities for such experiments that could be
done to investigate emotion and cognitive activity such as problem-
solving in both novice and professional programmers.

The possibilities here are potentially very valuable, and we feel that
this research is therefore well worth pursuing.
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ABSTRACT
Cognitive load is concerned with the amount of mental ef-
fort imposed on working memory at an instant of time.
Changes in cognitive load cause very small dilations of the
pupils. The aim of this paper is to examine the role of cog-
nitive load while learning to program through the use of
remote eye tracking. Although numerous studies have been
carried out to evaluate cognitive load using this approach,
very few can be found that have focused on programming
comprehension especially with students learning to pro-
gram for the first time. This study will develop a suite of
programming tasks, designed to induce different levels of
cognitive load (low to high). The programming tasks will
be completed by novice programmers whilst a remote eye
tracking system monitors pupil dilation. It is hypothesised
that, once environmental factors (ambient light etc) have
been controlled, programming tasks designed to induce a
high level of cognitive load will result in dilations of the
pupils, whilst easier tasks will not result in such a change.

Keywords
Eye tracking, cognitive load, pupillometry, programming
comprehension

1. INTRODUCTION
Cognitive science is concerned with how processes of the
mind work including the mental processes behind learning,
memory and problem-solving [1]. Cognitive load is the to-
tal amount of mental activity (processing effort) imposed
on working memory at any given time.
Working memory is one of three types of memory that hu-
mans have. Long term memory holds a permanent and
large body of knowledge and skill. This would include
many everyday things that we take for granted such as
knowing how to walk or ride a bicycle, how to perform
mathematical operations like addition and subtraction,
and even recalling simple things such as where we live [1].
Sensory memory is a short term memory which acts as
a buffer for the stimuli received through the five senses.
However, of most importance to cognitive load is working
memory. Working memory provides an interface between
long term memory and the senses [1]. It is the section of
memory responsible for our creative and logical thinking
and allows us to solve problems including programming

∗Senior / Corresponding Author

comprehension. The goal of this study is to investigate the
implications of cognitive load on learning to program.

1.1 Measuring cognitive load
Cognitive load can be measured by performance on pri-
mary and secondary cognitive tasks with targeted ques-
tionnaires. For example, the NASA-TLX survey attempts
to gauge the participants perceived cognitive load [2].Phys-
iological measurements can also be used to determine cog-
nitive load with eye tracking showing considerable value as
an inexpensive and effective method of measurement. Of
particular importance is the relationship between pupil di-
lation and cognitive load. Changes in cognitive load cause
very small dilations of the pupils and in controlled set-
tings, high-precision pupil measurements can be used to
detect small differences in cognitive load at time scales
shorter than one second [3]. Studies have focused on four
main tasks to elicit cognitive load - object manipulation,
reading comprehension, mathematical reasoning and search-
ing [4]. These areas are quite similar to the types of tasks
a programmer must do, that is a programmer must set
up the program in a logical structure, read previous code
written and complete their program. The above four tasks
are all included in programming comprehension.

1.2 Programming comprehension and cogni-
tive load

It is well established that learning to program is difficult
for many students [5]. Research largely indicates that al-
though syntax can be problematic the most significant
problem is being able to break down a problem into its
component parts and express the component parts in pro-
gramming code [6] [7] . Programming, like problem solv-
ing, relies heavily on working memory, where only a few
items can be stored and even fewer can be processed and
thus this can lead to the high levels of overload. However,
very few studies have attempted to examine this. The
most closely related work in this area found was a study
that attempted to reduce cognitive load while learning to
program by breaking down the program into a concept
map to allow the programmer to visualise the code in a
more graphical manner. The method was found to reduce
cognitive load by administrating the NASA-TLX survey to
the student [6].

1.3 Task-evoked pupillary response
When someone performs a task such as recallinginforma-
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tion from memory, paying close attention or just thinking
hard their pupils tend to dilate slightly [8].After a few sec-
onds of completing the task, the persons pupils’ return
to their normal state [8] [9] [10]. This response is called
Task-Evoked pupillary response (TERP). This response
is involuntary and associated with a broad set of cogni-
tive functions [10] (doing mental arithmetic [11], sentence
comprehension [12] and letter matching [13]). As novice
programmers will do all of these cognitive functions while
programming, TERP would appear to be an appropriate
measure.

2. PROPOSED METHODOLOGY
This paper proposes to develop a model to describe the
relationship between cognitive load and programming com-
prehension.
The goal of this experiment is to answer the following re-
search question:

• How well does pupil size correlate with the mental
workload that programming imposes on a student?

As the focus of this study is on novice programmer’s key
topics within a first year third level introductory to pro-
gramming course will be used. Students undertaking their
first year of study in a computing degree (that involves
programming) will be invited to participate in the study.
A set of tasks will be prepared based on core concepts
from the first year course. The student will be asked to
determine the outcome of a given code snippet. Each code
snippet will contain only one core concept of programming
(if statements, while loops, for loops etc). An equal num-
ber of easy and difficult programming tasks will be cre-
ated. At the start of the experiment the participant will
be asked to fixate on a particular spot on the screen. This
will give a baseline reading for the participant. After the
participant has read and understands the instructions they
will be begin by completing practice trials. Then the par-
ticipant will begin the real trials. After completing the
trial, a NASA-TLX survey will be given in order for the
students to gauge their own perceived cognitive load.

2.1 Measurements
Along with the NASA-TLX survey, the participants pupil
data, on-screen activities and time completion will be
recorded. The percentage change in pupil size(PCPS) will
be computed for each instance. The average PCPS will
then be computed over the entire experiment. Inter-and
intra- participant eye gaze patterns will be examined and
evaluated.

3. CONCLUSIONS
The basis of this model is heavily grounded in research
conducted in cognitive workload in Human-Computer In-
teraction. This model however builds on that research and
attempts to build a relationship between cognitive load
and programming comprehensions. Novice programmers
are of particular interest in this study. If the level of un-
derstanding of core concepts in first year computer pro-
gramming can be increased then the level of continuing
students may increase.
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ABSTRACT
In this position paper I open the discussion about atten-
tion and covert attention during source code comprehension.
Covert attention plays a role in a selective process during vi-
sual perception, that involves central vision and extra-foveal
(parafoveal and periphery) areas. Microsaccades were taken
into account for the potential analysis as new elements. Fi-
nally I suggest some steps for future studies of covert atten-
tion during source code comprehension.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.4 [Social and behavioral sciences]: Psychology; D.2.8
[Software Engineering]: Metrics—complexity measures,
performance measures

General Terms
Theory

Keywords
Eye movements, eye-tracking, covert attention, source code
comprehension

1. INTRODUCTION
Differences between experts’ and novices’ behavior in a

professional domain are highly investigated [10]. Expert’s
task solving concepts are latent even to the expert himself.
Understanding the expert’s behavior can improve the edu-
cational and evaluative processes in a human resources field.
Typically, experts solve tasks faster and with less errors. It
is interesting to note that experts often could not tell us
exactly how they solve problems (for example in chess play-
ing [11]).

2. EYE-MOVEMENTS OF EXPERTS
AND NOVICES

There are several theories that explain the differences be-
tween experts and novices. Gegenfurtner with colleagues

deal with the theory of 1) long-term working memory, 2) the
information-reduction hypothesis and 3) the holistic model
of image perception [10]. The long-term working memory is
based on the idea that there is the limitation of the working
memory. And in this limited place humans store the mental
representations of the visual world [2, 22]. The information-
reduction hypothesis focuses on the learnt selectivity of in-
formation processing. Haider and Frensch claim that: ”peo-
ple learn, with practice, to distinguish between task-relevant
and task-redundant information and to limit their process-
ing to task-relevant information” [12]. Finally, the holistic
model of image perception focuses on the extension of the
visual span [13]. Experts, following this theory, draw the
initial holistic perception of the stimuli. They encode the
scene into hierarchical structural components. This process
should explore the information from the parafoveal areas [5].
The main points that characterize the expert’s behavior

are:

1. Experts’ fixations durations are shorter than novices’.

2. Experts make more fixations on task relevant areas and
solve the tasks with fewer fixations in general.

3. Experts have a wider perception span, longer saccades
and shorter time to first fixation to the task relevant
area.

These features of the expert’s behavior need more careful
explanations. For example, experts have a wider perception
span, but what objects from this span do they direct their
attention to and how do they select the main objects (rele-
vant for task)? There is still a gap in the understanding of
the expert’s behavior in the field of programming.
After the virtual laparoscopic study Law with colleagues

claim that eye movements are a possible factor for experts
performing better than novices [14]. There are several pos-
sible explanations for that claim, thus I was faced with the
following question: if a novice skips the learning process
phase, but at the same time uses the same eye movement
strategy as an expert, will he become an expert? In other
words, do eye movements play a vital role for experts per-
forming better than novices, or do they reflect expert’s prior
knowledge?
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3. WHAT HAPPENS
DURING FIXATIONS

In eye-tracking studies of source code reading fixations
are used for the attention identification (following eye-mind
metaphor [21]) [3]. To be more concrete, visual information
is taken in during the fixational pauses between saccades [4].
In these fixational pauses, gaze could scan several lines of
source code. The foveal area on the retina collects data from
2◦ of visual angle. If a subject sits 60 cm before the computer
screen, this angle corresponds to a 90 px circle in diameter.
There are a lot of source code objects obtained through this
foveal area and it is represented in the neurone system of
the human. A subject should select which object should be
involved in the encoding for source code comprehension, in
other words a subject should switch his attention from one
object to another during one fixation. We should take into
account the size of the foveal span and from this we can
conclude, that the area for the information processing will
be greater than if we use just the center of gaze fixation.
Following predictive coding theory that suggests genera-

tive models the brain might use for perception [9], humans
build a full picture of the stimuli on the basis of their expe-
rience. The next fixation point is used to verify this picture
with the reality, for that the next saccade is planned. The
saccade planning process involves information from the out-
of-foveal region (especially if the next fixation will be more
then 2◦ from the current).

Reading studies of natural languages showed that readers
are able to process parafoveal words [17]. During reading,
humans can obtain useful visual information from the area
(perceptional span) up to 14–15 letters to right of the fix-
ation [20, 1]. The perceptual span is characterized by size
and symmetry [18, 19]. Numerous studies show that the
parafoveal information processing ability is one of the char-
acteristics of the expert’s behavior in natural language text
reading [19, 15].
For the domain of programming, the perceptual span could

be both horizontal and vertical (given the vertical layout of
program code). That should increase the number of the
objects for processing in working memory. Following the
definition of the working memory, like ”attention to manage
short-term memory” [6], experts’ ability of effective manage-
ment of short-term objects prevents overloading of working
memory. Being able to read a larger portion of the screen
can reduce the load on working memory; perhaps this con-
tributes to the experts’ efficiency.
To summarize this paragraph, I suggest that the main

focus of the latent process analysis of the source code com-
prehension should be based on the attention evaluation, not
just on the places of the gaze fixations. For some research
questions it is enough to assume that these things are the
same, but not for all. New evidences that expert program-
mers use the extra-foveal information effectively (that was
not found for programming yet), provide benefits for eye-
movement modeling and for educational process.

4. ATTENTION EVALUATION
The visual perception studies show that visual attention

plays a central role in the control of saccades. Engbert and
Kliegl claim that ”a key finding in research about visual at-
tention is that the orientation of attention can differ from
the orientation of gaze position. In this case, the term of

covert attention is frequently used to indicate this separa-
tion, which is typically implemented in experimental condi-
tions of attentional cueing” [8].
The human eye does not fade during the fixation. Small

involuntary saccades, called microsaccades, take place on
par with drifts and tremor. The role of microsaccades in the
perception process is still in the center of research interest.
But from the latest trend in the studies the dominant point
of view can be deduced: microsaccades are not just noise,
they play an important role in visual information process-
ing [8, 7, 16]. And Engbert and Kliegl claim: ”... microsac-
cades can be used to map the orientation of visual attention
in psychophysical experiments” [8].
From the perspective of microsaccades analysis, the at-

tention maps of novices and experts should be different. I
suggest the potential benefits of such kind of analysis lie
in a deeper understanding of source code comprehension of
experts and novices. Further research in this field would
be very useful in the evaluation of: 1) differences in the
direction of microsaccades and comparing it with the direc-
tion of ”normal” saccades, 2) attention switching between
the semantic elements of source code, where microsaccades
are directed, 3) the influence of source code elements on the
probability and rate.
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ABSTRACT 
This paper describes a range of models that have been proposed 
for the readability of program code. We consider ways in which 
eye movements can be used to provide evidence for the validity 
of these models. It is proposed that gaze metrics based on fixation 
count and duration may correlate with readability scores. We also 
consider the prospects for developing a model based on gaze to 
measure readability. The usefulness to educators of measures of 
readability is discussed.  

Categories and Subject Descriptors 
K.3.4 [Computer and Information Science Education]: 
Computer science education, information systems education 

General Terms 
Experimentation, Human Factors. 

Keywords 
Eye tracking, code reading, readability, computing education 

1. INTRODUCTION 
Natural language text can be used to communicate information 
and ideas, with the intention that the reader should understand the 
content of the text as a result of reading it. Readability is a useful 
precursor to understanding, and depends on factors that include 
the vocabulary, syntax and presentation of the text. Text that is 
difficult to read is a barrier to understanding of the content. 
Measurement of text readability is useful in many situations, for 
example in specifying standards for the way official documents 
are written. The Flesch Reading Ease Score (FRES) is a widely 
used metric for readability. It is a simple measure, based on 
average word and sentence lengths, but despite of (or perhaps 
because of) its simplicity it has proven to be useful over many 
years. 

Program code is primarily written to provide instructions to the 
computer. However, it is also a means of communicating the 
nature of the computation involved to a human reader, for 
example to another programmer who has to maintain the code. 
The readability of the code can have an effect on how easy or 
difficult it is for a programmer to understand the function of the 
code. Just as it may be possible to write natural text to 
communicate the same idea in different ways, with different 
degrees of readability, it is often possible to write code that causes 
the same function to be performed by the computer in different 
ways, some more readable than others. A number of measures 
analogous to FRES have been proposed for software readability 
[3,5,13]. These will be described in the following section. 

Code examples used to teach programming are a special case 
where code readability is of particular importance [3]. Unlike 
code written to be part of a functioning computer system, the 
primary purpose of code examples is to promote understanding of 
programming concepts, constructs and techniques. Measures of 
readability may be of value in evaluating the quality of code 
examples so that educators can be confident that the concept 
being exemplified is not obscured by code that is difficult to read. 

Models of code readability are underpinned by empirical data on 
human perceptions of readability. We propose that eye-tracking 
potentially has a valuable role to play in validating these models  
and more generally in evaluating code readability. 

2. SOFTWARE READABILITY 
MEASURES 
Buse and Weimer [5] implemented a tool that assesses readability 
of programs with a model constructed using machine learning 
techniques based on ratings of readability of code snippets made 
by 120 human participants (we refer to this model as BW).   

Posnett et al. [13] propose a simpler model (we refer to this model 
as PHD) that calculates readability from code metrics (Halstead’s 
volume, lines and Entropy). They assert that this model actually 
outperforms the BW model. 

Börstler et al. [3] propose an even simpler model, very similar in 
concept to FRES, which they call the Software Readability Ease 
Score (SRES). Like FRES, this score is based on average word 
length (AWL – defined for software as the average length of 
lexemes) and average sentence length (ASL – words per 
statement or block) and is expressed as: 

SRES = AWL – 0.1ASL 

It should be noted that SRES does not take into account any 
factors related to the presentation of the code. Hargis [10] 
describes levels of readability in which there is a surface level of 
legibility (“things that affect the reader’s eyes”) upon which 
further levels build, up to learnability and doability (“things that 
affect the reader’s mind”). The authors of [3] argue that their 
measure considers the inherent factors of software readability, 
corresponding to the higher levels of readability. However, while 
most natural language text is intended to be read in sequential 
order, code carries important structural information, for example 
control flow and class/method definitions, and assimilation of that 
structure while reading is important for understanding. It is 
widely considered to be good practice for programmers to pay 
attention to presentation of code, for example indentation and 
white space, to make code readable. PHD is slightly more 
sensitive to presentation in that it includes the total number of 
lines in the measure, including white space, but does not make 
any meaningful use of the way structure is highlighted in the 
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code. Similarly, color coding is widely used in code editors but 
none of the measures described here consider its effect on 
readability. 

CLOZE tests, in which humans are asked to fill in missing 
elements from text with every nth word obscured,  have also been 
long used to measure text readability. Such tests have been 
proposed in relation to program code as a technique for assessing 
comprehension [8, 9], although not specifically for measuring 
code readability. 

3. VALIDATING READABILTY 
MEASURES 
How do we know that the models described in section 2 actually 
measure readability of code in a meaningful way? The BW model 
is based on human perceptions of readability, rated on a five-point 
scale for each code snippet.  Some correlation is demonstrated 
between the model and software quality metrics. The PHD model 
is based on code metrics but is validated using the same empirical 
data as BW (the authors of [5] make this data generally available). 
Börstler et al. [3] compare SRES with the other readability 
models, with a range of measures of software quality and with a 
metric for the quality of object-oriented example programs for 
teaching as perceived by human experts. They note in doing so 
that there is empirical evidence for the success of certain software 
metrics in measuring maintainability and reliability. 

Eye-tracking offers the potential to provide, alongside the 
perceptions reported by humans, another source of evidence for 
readability with which to validate readability models and 
measures. If we can identify characteristics in gaze that are 
indicative of ease or difficulty of reading code then these could be 
correlated with the predictions of the models.  It is often possible 
to write the same program, function or method in many different 
ways, so it should be possible to construct pairs of code examples 
that are functionally equivalent but which are clearly 
differentiated by their measured readability using one or more of 
the models, perhaps similar to the “beauty-and-the-beast” 
example in [3]. We would then try to identify differences in the 
eye movements of participants while reading the code. What 
would we look for in that data? Gaze data contains a record of eye 
movements during the whole process of code reading and 
comprehension. The comprehension process involves factors such 
as strategy, focus and reading order and these are all reflected in 
the data. We need to consider  metrics that we believe to be 
influenced specifically by readability. Fixation duration may be a 
useful indicator. Rello et al. [15] note that shorter fixations are 
associated with better readability while longer fixations can 
indicate that processing loads are greater, and hence used fixation 
duration across the whole text as measure to quantify readability 
in a study on number presentation in text. The number of 
regressions can also be an indicator of reading difficulty [14]. 

The BW model captures a range of token features, such as 
identifier length, number of identifiers, number of key words, and 
so on, and evaluates the predicting power of these for readability. 
For example, there is a strong negative correlation with number of 
identifiers, and, perhaps surprisingly, a very weak correlation 
with identifier length. Isolating the effect on eye movements of 
varying individual token features may give further insight into the 
effect of these and validate, or not, their reported predictive 
powers. Sharif et al. [16] have studied the effect of identifier style 
(camel-case and underscore) on accuracy, time, and visual effort 

and have used a range of measures based on fixation counts and 
durations. These techniques could potentially be adapted to 
measure the effects of other token features in code. 
 
As noted in section 2 we are not convinced of the validity of the 
exclusion of presentation factors from the models. Eye 
movements may help to determine the effect of, for example, 
indentation, space and color. Techniques for the presentation of 
code are generally intended to highlight the structure of code or 
the purpose of tokens, and may be expected to make it easier, for 
example, to focus on important features or read in purposeful 
order. Eye movements which are believed to be indicative of 
particular comprehension strategies may be more clearly apparent 
when the code is presented in a way that supports those strategies. 
 

4. MODELING READABILITY WITH 
GAZE 
A further use of eye-tracking would be to adopt a similar 
approach to the BW model, but to use gaze metrics rather than 
code features as classifiers. This could be useful particularly if it 
proves difficult to demonstrate correlation between gaze and 
code-metrics based models of readability. 
 
The question is: can we predict the readability of code from gaze 
data obtained from participants reading that code? In the past eye 
gazing data has been used to predict cognitive states [1]. We want 
to produce a classifier which given eye tracking data of a person 
looking at code will predict the readability of the code. To this 
end we envisage applying statistical and/or machine learning 
classification techniques. A range of statistical learning 
techniques, decision trees and forests and possibly deep learning 
can be applied.  
 
A classifier is a statistical or machine learning technique that 
allocates a sample to a category on the basis of an observed set of 
attributes or features [12]. In this case we aim to produce a 
classifier that outputs a numerical value for readability of the code 
based on the gaze data. We generate the classifier from a large 
sample of training data. Each element of training data is gaze data 
from a participant looking at code together with a measure of the 
readability of that code. The latter could, for example, be the BW 
data on perceived readability or an equivalent data set. Given that 
this process would involve a substantial number of participants 
for gaze data gathering then these participants could be asked also 
to rate readability. 
 
It is difficult for classification algorithms to work directly with 
raw eye gaze data. Therefore in a preliminary step we propose to 
extract from the sample data a set of attributes that describe gaze 
behaviour. Examples of such features are fixation, fixation 
duration, distance between fixations or saccades [1]. We expect 
there to be 20 – 30 features of gaze behaviour that may be 
relevant. Any individual feature may or may not be directly 
related to readability, e.g. maximum gaze duration may indicate 
difficulties reading the code or it may simply be due to general 
interest in the implementation or because the participant has lost 
interest in the code and is still looking at the code while thinking 
about another matter. We then use standard statistical or machine 
learning algorithms to produce a classifier.  
 
Once we have produced a set of training data consisting of 

20



attributes with classification a classification algorithm will 
generate a predictor, i.e. an algorithm that automatically classifies 
gaze data to predict readability. If the output of the classifier is a 
sufficient match to the true readability we have shown that it is 
possible to predict readability from gaze data. 
 
Another possibility for generating a readability score is deep 
learning [11]. The advantage is that deep learning works in a 
semi-supervised way and can extract new features. The 
disadvantage is that deep learning requires a relatively large set of 
training data [7] and at this point it is not clear whether deep 
learning can be applied given the likely sample size of the data or 
whether a sufficiently large sample can be generated. Decision 
trees and decision forest techniques can also be applied as 
classifiers that work with smaller data sets [4]. 
 
One issue to consider when using gaze data to as classifiers, 
rather than code features, is that this data is not intrinsic to the 
code. Gaze data is a product of human interaction with the code, 
and may differ according to the expertise of the participants. 
Differences have been observed between the eye movements of 
novices and experts, reflecting the development of new reading 
strategies as expertise is gained [6]. Another approach would be 
to use the above techniques to develop a gaze “reading-ease” 
metric. This  could be used to distinguish experts form novices, as 
experts should probably show more features indicating easy 
reading. 
 

5. READABILITY IN CODE EXAMPLES 
Our primary interest as educators is in ensuring that the code 
examples we give to students do not hinder understanding the 
concepts they are intended to illustrate. Further, we may wish to 
present code examples in specific ways to highlight concepts that 
we wish learners to pay attention to, for example by using color 
coding that is different from the usual coding that the editor in an 
IDE applies to all code, or by annotating code. We are also 
generally freer than teams developing products are to consider 
readability as a factor in the choice of programming language we 
use to teach concepts and techniques. 

If we are able to relate gaze to readability of code this could be 
useful for educator in various ways. We can potentially gain new 
insights into what makes code readable, particularly for novices, 
and use these, or guidelines based on them, in the creation of code 
examples. Measures analogous to FRES could be used in a similar 
way, with recommendations being made for the readability level 
of code presented to learners at different stages of their 
development.  Code that exemplifies complex constructs or 
algorithms is likely to be less readable than simple examples, just 
as it may be difficult to express complex ideas in very simple 
natural language. However, measures of readability, perhaps 
taking into account the formatting of code, such as colour coding, 
spacing and naming, may help to ensure that we present examples 
in as readable a form as possible given the complexity of what is 
to be exemplified. It would also be interesting to measure the 
readability of code that is commonly presented to learners through 
examples in textbooks, in a similar way to a previous study of the 
overall quality of these examples [2]. 
 
There may be scope to embed the measurement of readability into 
learning and development tools. If we can relate difficulty that a 
learner is having understanding a section of code to their gaze 

behaviour this would be a very useful tool for IDEs or assisted 
learning management systems because it offers the opportunity to 
automatically detect when a student is experiencing difficulties 
with a particular section of code. This would be individualized 
measurement of readability, making use of the characteristics that 
are generally indicative of difficulty of reading to determine 
whether the individual is experiencing that section of code as 
difficult to read. The system may then have options to change 
some aspect of the code or its presentation to guide the reader 
towards understanding.  
 

6. CONCLUSION 
Readability is an important part of code comprehension and eye-
tracking has a role to play in understanding what makes code 
readable, through validation of proposed code-based models or as 
a tool in its own right for evaluating readability. There are, of 
course, significant challenges in determining cognitive processes 
in code reading from gaze data, and separating out indicators of 
readability as a component of these processes will not be easy to 
do.  

7. REFERENCES 
[1] Bednarik R, Eivazi S, Vrzakova H. 2013. A Computational 

Approach for Prediction of Problem-Solving Behavior Using 
Support Vector Machines and Eye-Tracking Data. Eye Gaze 
in Intelligent User Interfaces Gaze-based Analyses, Models 
and Applications. 111-134.  

[2] Börstler, J.,Nordström, M. and Paterson, J.H. 2011. On the 
Quality of Examples in Introductory Java Textbooks. Trans. 
Comput. Educ. 11, 1, Article 3. 

[3] Börstler, J., Caspersen, M. E., & Nordström, M. 2015. 
Beauty and the Beast: on the readability of object-oriented 
example programs. Software Quality Journal, 1-16. 

[4] Breiman, L. Random forests. 2001. Machine Learning, 45:5–
32. 

[5] Buse, R. P., & Weimer, W. R. 2010. Learning a metric for 
code readability.Software Engineering, IEEE Transactions 
on, 36(4), 546-558. 

[6] Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, 
J. H., Schulte, C., Sharif, B. & Tamm, S. 2015. Eye 
Movements in Code Reading: Relaxing the Linear Order, In 
Proceedings of the 23rd IEEE International Conference on 
Program Comprehension. IEEE. 

[7] Deep Learning. 2015. Datasets [Online].  Available at: 
http://deeplearning.net/datasets/ [Accessed: 13th October 
2015]. 

[8] Garner, S. 2005. The CLOZE procedure and the learning of 
programming. Proceedings of International Conference on 
Learning, Granada, Spain, 5-13. 

[9] Hall III, W. E., & Zweben, S. H. 1986. The cloze procedure 
and software comprehensibility measurement. Software 
Engineering, IEEE Transactions on, (5), 608-623. 

[10] Hargis, G. 2000. Readability and computer 
documentation. ACM Journal of Computer Documentation 
(JCD), 24(3), 122-131. 

[11] Li Deng and Dong Yu. 2014. Deep Learning: Methods and 
Applications. Found. Trends Signal Process. 7, 3–4 (June 
2014), 197-387. 

21



[12] Machine Learning, Neural and Statistical Classification 
Edited by D. Michie, D.J. Spiegelhalter and C.C. Taylor. 
Ellis Horwood Limited, 1994.  

[13] Posnett, D., Hindle, A., & Devanbu, P. 2011. A simpler 
model of software readability. In Proceedings of the 8th 
working conference on mining software repositories (pp. 73-
82). ACM. 

[14] Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. 2006. 
Eye movements as reflections of comprehension processes in 
reading. Scientific Studies of Reading, 10(3), 241-255 

[15] Rello, L., Bautista, S., Baeza-Yates, R., Gervás, P., Hervás, 
R., & Saggion, H. 2013. One half or 50%? An eye-tracking 
study of number representation readability. Human-
Computer Interaction–INTERACT 2013, 229-245. 

[16] Sharif, B, & Maletic, J. 2010. An eye tracking study on 
camelcase and under_score identifier styles. In Proceedings 
of the 2010 IEEE 18th International Conference on Program 
Comprehension (ICPC '10). IEEE Computer Society, 
Washington, DC, USA, 196-205. 

 

22



What are programmers looking for?

Vera Solomonova
St. Petersburg State Polytechnic University

Department of Engineering Graphics and Design
195251, Polytechnicheskaya,

St.Petersburg, Russia
vera_solomonova@mail.ru

Pavel A. Orlov
1) University of Eastern Finland

School of Computing
P.O. Box 111, FI-80101,

Joensuu, FINLAND
2) St. Petersburg State Polytechnic University

Department of Engineering Graphics and Design
195251, Polytechnicheskaya,

St.Petersburg, Russia
paul.a.orlov@gmail.com

ABSTRACT
Source code comprehension usually classifies as a reading
process. This classification is based on the fact, that source
code includes words from the English language. But to eval-
uate and understand the comprehension process it is not
enough to use methods and frameworks from reading studies
in the natural-language field. Here we discuss the potential
of using a different metaphor for source code reading – visual
searching. Finally, we suggest the explication of basic terms
from the visual searching domain for source code reading,
like target, target’s path and distractors.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Reading, searching

Keywords
Visual strategies, searching, task solving, source code com-
prehension

1. SEARCHING STRATEGY VS. READING
PATTERNS.

Programmers during their usual work, spend a lot of time
to read source code and to search troubleshooting and solu-
tions. As it may seem at first glance, the work with source
code has a lot of similarity with reading texts in a natural
language. Source code as a plain text uses the same char-
acters, the same words and letters. Both of these texts are
read in general from left to right top down. It is not usual
for programming experts, but the source code can be really
read line by line like a work of art [1]. But is the reading
process really going on like this? Do programmers actually
read the source code?
Busjahn with colleagues show that the source code can

be studied following natural-language text frameworks, but
not without their review. For example, they claim: ”...[source

code] element frequency is not a relevant factor in the vari-
ability of first fixation duration and first dwell time during
code reading...” [2].

What does actually happen when the programmer reads
the source code? We want to offer the correspondence with
the visual research process, consider the problem of source
code comprehension from this point of view. In most cases,
a programmer, before he starts to read, already has a ques-
tion (problem) associated with the code. For example, a
programmer does not read the entire array line by line,
but searches pieces of the relevant visual information, like
a scanner, not like a reader. This idea corresponds to the
information-reduction hypothesis, that suggests that experts
(in a various domains) select the main pieces of information
to process, they do not process all information from the vi-
sual stimuli [4, 3]. This selective behavior is difficult to fit
with natural-language reading.

If we assume, that a programmer’s goal is to find the
answer by source code comprehension, then a source code
should contain some targets (that are significant for the de-
cision making) and distractors (that noise for searching).
It is a challenging task to find direct and strong correspon-
dence targets and distractors from the visual searching field.
In other words, a programmer does not look for the concrete
character or symbol in a source code.

Let us bring the possible structure of the source code com-
prehension from the visual searching perspective:

1. Target(s) – one or several places in a source code, that
play a key role for task solving.

2. Target’s path – the visual path to the target.

3. Distractors (noise) – source code elements, all build-in
syntactic constructions (like: if, else, for, while, (), {},
etc.).

Following this structure, a programmer should find the
target along a target’s path, skipping distractors. This metaphor
corresponds more to the passage of a maze, than natural-
language reading.

2. ILLUSTRATIVE EXAMPLES.
Let us consider examples for the hypothesis described

above. For example, we have a code fragment (Figure 1).
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What are the target, target’s path and distractors (noise)
here? According to our hypothesis, if there is a ”target”,
there must be a question. Suppose that the question is this:
what will be the output of this source code? The answer is
obvious, expressions like: ”0 + 0 = 0”. For this example,
the concept of target, target’s path and distractors (noise),
in our opinion, can be interpreted as follows:

Figure 1: Code fragment (JavaScript).

Target: We assume that this is the sixth line. The line
writes the output to the console.

Target’s path: the path is likely to pass through the vari-
able declaration, the terms of the loop, the loop body.

Distractors (noise): in this case - the function words func-
tion, for, console.log, and {}, ().

Now let’s consider this: we have two pieces of code that
are functionally identical (see Figures 2 and 3). The first
piece of code is written in JavaScript, the second in Python.
These examples illustrate our understanding of noise. It
is easy to notice that the second code fragment has much
fewer lines, but it does not make it less readable. From this
observation we can indeed conclude that most of the arrays
of source code can contain so-called noise.

Figure 2: Code fragment (JavaScript).

Figure 3: Code fragment (Python).

The above examples are not yet a proof for our point of
view, but allow to consider analogies between reading source
code and visual search. Only a series of experiments can
bring clarity to the issue.
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ABSTRACT
Source code comprehension is a fundamental task of software
development. However, source code is not just a free-flowing
text, but a structured document which may be difficult to
comprehend. We are interested in understanding how novice
programmers look at source code in relation to its structure,
how they comprehend it, and how to use this information in
order to improve the learning process. We study how pro-
grammers (university students) read source code in different
types of programming tasks, and use eye tracking to reveal
comprehension strategies in a classroom equipped with such
devices during regular classes.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Experimentation, Human Factors, Measurement

Keywords
Program comprehension, Programming education, Code read-
ing, Eye tracking, Debugging

1. INTRODUCTION
Eye tracking technology provides interesting insights into

human cognitive processes in certain tasks. Text-based and
reading tasks are an ideal subject for study, and program
comprehension is a special type of reading task [1, 2, 3]. Pro-
gram comprehension in education in particular offers oppor-
tunities to not only study how humans think when perform-
ing a task of program comprehension, but also to improve
the overall learning process through improving learning ma-
terial based on eye tracking data.
In this paper we discuss a method to study the effect of

different types of tasks on source code comprehension strate-
gies. For that we use the eye tracking devices Tobii X2-60
combined with our online learning system Peoplia [5] used
by undergraduate students in programming courses. Aim of
our study is to evaluate how students gaze at source code
for different programming tasks and their variations.

2. RELATED WORK
The importance of source code comprehension, as a fun-

damental task of software development [3], has motivated re-
searchers to study developers interacting with code, whether

with interviews [3], transcribing activity, collecting interac-
tion data, or mostly eye tracking [1, 4, 7]. Source code
reading strategies affect developers’ success rate of under-
standing tasks [1] or debugging [7]. Eye tracking technol-
ogy is used for recording eye movements [2], or for, e.g.,
pupil size [4], and then for describing actual comprehen-
sion strategies. Different models that conceptualize program
comprehension combine the source code’s external represen-
tation, developer’s cognitive structure and assimiliation pro-
cess. These models were also studied from a computer sci-
ence education perspective [6]. We aim to study students
with different levels of programming experience.

3. TYPES OF PROGRAMMING TASKS
In our work we focus on studying how novice program-

mers, e.g., students, comprehend source code during pro-
gramming tasks of different types. We attempt to identify
relations between types of those tasks, developers’ experi-
ence, and their results. We distinguish between these types
of programming tasks and their respective subtypes:

• Static code reading – students comprehend a source
code fragment (no editing) to answer questions about:

– Output – given the program’s code and input,
identify the respective output.

– Input – given the program’s code and expected
output, identify its correct input.

– Bug – identify a bug in the given program code.

• Programming tasks – students implement a program
in a single source code file, during which we focus on:

– Dynamic code reading – students read code, scroll
within the file, and change its contents.

– Task description reviewing – students repeatedly
check the task description; they focus back and
forth between code and task description.

• Combination of development with static code reading
– unfinished source code is displayed and disabled for
editing until their first edit in order to:

– Fix a bug – the code contains one or more bugs.

– Complete solution – the code is an incomplete or
buggy solution to a non-trivial problem.

• Code reading for debugging – students encounter dif-
ferent errors to fix during programming tasks:
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– Compile-time error – given the compiler output,
students locate the cause of the problem in the
source code.

– Output error – program’s output is not as ex-
pected, students search for the problem.

– Run-time error – stepping through the code to
locate a bug, e.g., null reference exception.

In our setting, students complete these tasks as exercises
in university programming courses. While programming tasks
are often used in programming education, static code reading
and question answering tasks are more suitable for novice
programmers who are not yet able to write their programs
from scratch. As the course progresses, we introduce more
complicated programming task types.

4. COMPREHENSION STRATEGIES
Different types of static code reading tasks involve differ-

ent comprehension strategies. When identifying output, stu-
dents may follow control flow from the beginning of the code.
Identifying input is, however, different, as it requires the stu-
dents to understand control flow, then retrace back [2], and
follow data flow. We aim to give students different inputs,
and let them identify the correct one for the output to see
how they comprehend source code.
In programming classes, students new to programming

often fail to interpret compiler errors (some because of lan-
guage barrier of English as a second language). Rather than
using suggestions given by the compiler, they switch back
to code and look for problems. We expect to find different
comprehension strategies after reading compiler output.
Additionally, we are interested how students read task de-

scriptions. Some read the description only at the beginning
of the task, others (who may be struggling with the problem)
check back often during their work. In order to determine
student’s experience level, we also track students’ success
rate in previous exercises during the course.
To sum up, we are interested in answering these research

questions:

• How do students’ source code comprehension strategies
vary for different instances (e.g. outputs) of the same
exercise, e.g., of the input identification task type?

• Does students’ success rate correlate with the way how
they review the problem description?

• How do students read and understand compiler errors?

In order to study the variation in comprehension strate-
gies using eye tracking, we aim to analyze the particular
type of how a programmer follows the flow in code: data
flow vs. control flow vs. only following program’s surface
features. We also expect the quantitative aspects of reading
(e.g. tokens per minute, regressions) to contribute less to
detection of the type of flow the programmer uses and more
to the ability level of the programmer. When studying the
first research question, we expect systematic approaches of
assimilation process [6], i.e., the bottom-up and top-down
models, to appear the most.

5. EXPERIMENTS SETUP
We aim to evaluate the comprehension strategies within

undergraduate programming courses during regular classes

in our classroom laboratory equipped with eye tracking tech-
nology. In programming courses at our faculty, students
use our online learning system Peoplia [5] to work on exer-
cises of programming task type in C language, as well as of
static code reading type in pseudo-code or C language. The
system encompasses programming exercises viewing, source
code editing, compiling, testing, and submitting answers for
evaluation. Currently, we work on extending the system
with eye tracking to record student’s gaze on source code,
problem’s description, compiler output, etc.
As we aim to conduct experiments during regular classes,

we expect students (experiment subjects) to be of different
levels of expertise. We are not able to randomize assignment
of students into classes, but they mostly work independently
of each other.

6. CONCLUSIONS
Opening possibilities of using eye tracking devices in re-

cent years attract our attention to study source code reading
and comprehension strategies in programming education.
As opposed to other works in this field, we set up exper-
iments to take place during regular programming classes.
Based on the hierarchy of task types, we proposed three re-
search questions to study code comprehension strategies for
different tasks, or for minor variations of the same task.
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