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In electrical impedance tomography (EIT), the 
conductivity and permittivity distributions of 
a target are reconstructed based on voltage 

measurements, known current injections, and 
knowledge of the target geometry. Due to the ill-

posedness of this reconstruction problem, the 
determination of a meaningful solution depends 
heavily on the prior information related to the 
target. In this thesis, prior models based on the 

total variation (TV) functional are used to improve 
the quality of the conductivity and permittivity 
reconstructions. The findings presented in this 

thesis demonstrate the feasibility of the proposed 
prior models for reconstructing the conductivity and 

permittivity in the presence of noise.
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ABSTRACT

In electrical impedance tomography (EIT), the admittivity distribution (complex
conductivity) is reconstructed based on the boundary measurements of current
and voltage. This reconstruction problem is ill-posed and nonlinear. This means
that the solutions are highly intolerant towards both measurement noise and
modeling errors. Therefore, in order to attain meaningful solutions, tailored re-
construction methods have to be implemented.

In the Bayesian framework, the EIT inverse problem is formulated as a statis-
tical inference problem. This problem is based on the statistical considerations
of the a priori information about the admittivity and the noise statistics of the
measurements. In the statistical approach, the prior information can be, for ex-
ample, sharp internal boundaries in the admittivity distribution, caused by the
interfaces between different materials. In this work, we introduce prior models
for removing high oscillations in the admittivity distribution, whilst preserving
such internal boundaries. These priors are investigated in three studies.

The first study proposes a fully 3D EIT reconstruction approach for reassem-
bling piecewise regular conductivities using the TV functional. In addition, a
simple approach for a systematic selection of the prior parameter in the TV func-
tional, based on a Bayesian interpretation of the TV model, is presented. In this
investigation, the reconstructions are computed employing simulated and real
EIT measurements. The results demonstrate the robustness of the proposed pa-
rameter selection strategy and verify that the use of the TV prior yields sharp
reconstructions in 3D EIT.

The second study investigated the use of isotropic and anisotropic total vari-
ation (TV) regularization in EIT. In this work, the experiments were designed to
demonstrate the role of the choice, between the two versions of the TV functional,
has upon the properties of EIT reconstructions. The reconstruction schemes uti-
lize laboratory EIT measurements. The results verify that the use of the isotropic
form of TV leads to feasible EIT reconstructions, whereas use of the anisotropic
form leads to distortions by aligning the boundaries of the inclusions to the co–
ordinate axes.

In the last and third study, two joint prior models (TV augmented with the
cross-gradient functional and joint TV) were investigated in the context of the im-
age reconstruction problem in EIT. The prior models in this study considered the
mutual spatial similarities of the conductivity and permittivity, whilst promoting,
in both estimates. The reconstructions in this study are computed employing sim-
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ulated EIT measurements. The results indicate that the quality of the estimates
improve significantly in the areas where common spatial similarities are shared.

Overall, the cumulative findings presented in this thesis suggest that edge-
preserving and noise-robust reconstructions are achievable by using the recon-
struction methods employed. Moreover, the prior models studied in this thesis
provide tools to relate spatial characteristics between two parameters (conductiv-
ity and permittivity). Hence, the extrapolation of these methods to other tomo-
graphic modalities, where two or more parameters are sought, is possible.

Universal Decimal Classification: 519.226, 537.311.6, 621.3.011.2,
621.317.33
INSPEC Theraurus: tomography; electric impedance imaging; image reconstruction; in-
verse problems; nonlinear systems; electrical conductivity; permittivity; Bayes methods
Yleinen suomalainen asiasanasto: inversio-ongelmat; bayesilainen menetelmä; tomo-
grafia; impedanssitomografia; sähkönjohtavuus
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1 Introduction

Electrical impedance tomography (EIT) is an imaging modality in which the ad-
mittivity (complex conductivity) of an object is estimated as a spatially distributed
parameter. In EIT, electric currents are injected into the targeted body using a set
of electrodes attached to its boundary and the resulting electrode voltages are
recorded. Based on these measurements, an estimate for the admittivity distribu-
tion is computed. This reconstructed admittivity distribution can be then used to
derive an image of the target. Extensive literature has been published previously
on the applications of EIT in a variety of scientific fields such as process moni-
toring [1], biomedical imaging [2–5], geology [6], and non-destructive testing [7].
In most of the cases, however, only the real part of the admittivity (conductiv-
ity) is estimated, commonly using the amplitude data of the measurements. This
technique is often referred to as electrical resistance tomography (ERT) [8].

The admittivity estimation using EIT data is a severely ill-posed and nonlinear
inverse problem which makes the solution highly sensitive to both measurement
noise and modeling errors. Thus, given the ill-posed nature of the problem, regu-
larization (deterministic framework) or prior information (statistical framework)
has to be used to obtain feasible estimates.

Within the Bayesian framework, the regularization is based on the statistical
considerations of the a priori information about the admittivity as well as the noise
statistics of the measurements. The objective in the Bayesian approach is to con-
duct a statistical inference about the sought admittivity, based on all the available
knowledge of the measurements and the prior information known about the ad-
mittivity distribution. Hence, the solution to the inverse problem in EIT image
reconstruction is the posterior probability distribution, which is the conditional
distribution of the unknown admittivity, given the EIT measurement data. For
further examples employing the statistical approach, see [9, 10].

In Bayesian based analysis, the formulation of prior probability distributions
plays an important role in the estimation process. A prior probability distribution
is a distribution that would express a priori information about the sought param-
eter, before any measurement is taken. The main difficulty in constructing prior
distributions depends upon which type of a priori information is considered. Ex-
amples for a priori information could be a certain range of values in which the
sought parameter only has a physical interpretation or representation, that in a
certain basis, is sparse. Sparsity can be understood as a representation of a vari-
able that has a small number of non-zero elements in a suitable basis. Hence, it
is a useful feature which can impact directly the efficiency of the computational
methods employed, by reducing its complexity.

Several studies have shown that regularization methods employing `1-norm
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promote sparsity [11–13]. Particularly in the image reconstruction problem in EIT,
it has been shown in [14, 15] that representing the in homogeneities in a conduc-
tivity distribution with a sparse basis provides sharper reconstructions. Similarly,
regularization methods employing the total variation (TV) functional allows for
the reconstruction of sharp interfaces in the solutions. TV regularization was
originally deployed to solve the image denoising problem [11]. Since then, it
has been applied to reconstruct piecewise regular images in many tomography
modalities, such as electrical capacitance tomography [16–19], positron emission
tomography [20], diffuse optical tomography [21,22] and computerized tomogra-
phy [23–25].

In EIT, TV regularization has been utilized in several previous studies. For
example, the reconstruction method for 2D EIT, using a differentiable approxima-
tion of TV funcitonal, was studied in [13]. In [26], the Markov chain Monte Carlo
method was used to estimate the mean of the posterior probability density for 2D
EIT, using a TV prior model for the conductivity. Some methods allow the use
of the exact (non-differentiable) TV functional. For example, in [27], an optimiza-
tion algorithm for TV regularized EIT based on the primal dual interior point
framework was introduced. A similar approach was applied for difference imag-
ing in [28]. Finally, 3D EIT reconstruction methods have been proposed in [29]
and [30].

Generalizations of the TV functional have been proposed to handle vector-
valued images [31–33]. Vector-valued images, can be thought as a group of scalar
images which may carry structural similarities between each other. The results in
these studies have indicated that exploiting structural similarity between image
components, in a joint reconstruction scheme, can yield better and sharper struc-
tures in the reconstructed images, than using regularization functionals for each
image component independently.

In the context of the EIT image reconstruction problem, current approaches
have focused on estimating conductivity and permittivity independently. How-
ever, in many practical situations one can expect solutions with spatial similarities
in the sense that the solutions have the same alignment of boundaries and are at
the same location. For example, if the conductivity has a jump at a material in-
terface, it is reasonable to expect a jump at the same location in the permittivity.
Hence, the prior densities which relate spatial similarities between the conduc-
tivity and permittivity would be advantageous in a reconstruction scheme for
recovering sharper structures utilizing both parameters.

The main goal of this thesis is to study prior models which promote well-
defined edges in the conductivity and permittivity distributions using EIT data.
This work consists of three publications in which the studies are presented with
details. The aim and content of each study were:

1. To demonstrate the applicability of the TV regularization approach in a 3D
EIT set up. In addition, a parameter selection strategy for the TV prior,
based on the a priori information of materials in the target and their con-
ductivity ranges, was introduced. The proposed approach for selecting the
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scaling parameter in the prior model, in a reconstruction scheme employ-
ing the TV functional, is evaluated both with simulated and experimental
measurements. (I)

2. To study the effect of two widely used forms of TV regularization (isotropic
and anisotropic TV) in EIT. This effect is investigated based on a set of
simulations as well as laboratory experiments in a 2D setting. (II)

3. To investigate the feasibility of using a joint reconstruction of the conduc-
tivity and permittivity distribution in EIT image reconstruction problem
employing two prior models based on generalization of the TV functional.
Here, the two prior models are based on the a priori knowledge that the
conductivity and permittivity are likely to show similar structures. The ap-
proach is tested with simulated EIT measurements in a 2D setting. (III)

The content of this thesis is as follows. A brief review of the EIT forward
model is given in Chapter 2. In this chapter, the image reconstruction problem
of EIT is also concisely explained. Chapter 3 describes briefly a family of prior
models based on Gibbs probability distributions for Bayesian inversion, which
relies on lp norms. In this chapter, two prior models, based on the TV functional,
namely: TV with cross gradient constraints (TVCG) and joint total variation (JTV)
are introduced. In Chapter 4, the review of the results of the three publications is
given. A summary and conclusions of this thesis are given in Chapter 5.
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2 Electrical Impedance Tomography

In this chapter, a short introduction to the admittivity estimation problem in EIT
is given. In Section 2.1, the forward model and a numerical implementation of the
model are explained. Section 2.2 contains a brief review of the inversion methods
utilized in EIT. The absolute imaging is discussed in Section 2.2.2 and difference
imaging in Section 2.2.3. For more extensive reviews of EIT reconstruction meth-
ods, see [34–38].

2.1 FORWARD MODEL AND NOTATION

EIT is a diffusive imaging modality in which the forward problem consists of com-
puting the electrode voltages when the admittivity, currents and contact impedances
are given. A schematic representation of an EIT experiment is shown in Figure
2.1. In the estimation of the admittivity in EIT, a mathematical model that predicts
the measurements, given the admittivity, is needed. The complete electrode model
(CEM) [39] is the best available measurement model for EIT measurements. The
CEM is of the form

∇ ·
(

γ(ω)∇u
)

= 0, x in Ω, (2.1)

u + z(`) γ(ω)
∂u
∂~n

= U(`), x ∈ e(`), ` = 1, 2, . . . , L (2.2)

γ(ω)
∂u
∂~n

= 0, x ∈ ∂Ω \ ∪L
`=1e(`) (2.3)

∫

e(`)
γ(ω)

∂u
∂~n

dS = I(`), ` = 1, 2, . . . , L (2.4)

where the angular frequency is ω = 2π f and f is the frequency of the injected
current. The target domain is denoted by Ω ⊂ Rn, where n = 2, 3. The boundary
of Ω is ∂Ω. The admittivity distribution is given as γ = σ(x; ω) + iωε(x; ω),
where σ(x; ω) is the conductivity and ε(x; ω) is the permittivity. The potential
in Ω is denoted by u = u(x), and L is the number of electrodes e(`). Moreover,
I(`) and U(`) are the electric current and potential on e(`), respectively. z(`) is the
contact impedance corresponding to the `th electrode e(`). Furthermore, we set

L

∑
`=1

I(`) = 0 and
L

∑
`=1

U(`) = 0, (2.5)

where the first condition is the conservation of charges and the second condi-
tion is a choice for the ground potential level that ensures the uniqueness of

5



. . .
V

V

V

γ(x)

Figure 2.1: EIT measurement diagram corresponding to one current injections.

the solution [40, 41]. Lastly, the electrode potential vector is defined as U =

(U(1), ..., U(L))> with U ∈ CL.

2.1.1 Finite element approximation of the forward problem

In this study, the solution of the CEM is approximated by employing the finite
element method (FEM). The approach described in [41] is modified accordingly to
add the permittivity term (imaginary part of the admittivity) into the modeling.
In the finite element (FE) implementation of the CEM, the admittivity γ(x; ω) is
approximated by

σ(x; ω) ≈
N1

∑
i=1

σd,i(ω)φi(x), and ε(x; ω) ≈
N1

∑
i=1

εd,i(ω)φi(x). (2.6)

The functions φi are piecewise linear basis functions for the conductivity and the
permittivity. N1 is the number of first-order nodes in FEM representation. The
corresponding finite dimensional representation of the conductivity and permit-
tivity are denoted respectively by σd(ω) =

(
σd,1(ω), . . . , σd,N1(ω)

)> ∈ RN1 and

εd(ω) =
(
εd,1(ω), . . . , εd,N1(ω)

)> ∈ RN1 . The potential u is approximated as

u(x; ω) ≈
N2

∑
i=1

ci(ω)ψi(x), ci(ω) ∈ C (2.7)

where ψi are basis functions for the electric potential and are chosen to be second-
order (piecewise) polynomials. N2 is the number of second-order nodes in FEM
representation.
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2.1.2 Conventional noise model

Typically, the measurement noise is modeled in EIT as Gaussian and additive
which is mutually independent with the unknown admittivity. Using this noise
model, the additive observation model for voltage data, at the given angular fre-
quency ω, can be written as

U = H
(

σd(ω), εd(ω)
)
+ e, e ∼ N (e∗, Γe), (2.8)

where the data vector
U = (re(U), im(U))>

consists of the real and imaginary parts of the measured electrode potentials,
H
(
σd(ω), εd(ω)

)
is a mapping resulting from the FE approximation of the CEM,

and e is Gaussian distributed noise with covariance matrix Γe and mean e∗.

2.2 INVERSE PROBLEM IN EIT

As it has been discussed in previous sections, the forward problem in EIT is to
compute the electrode potentials when the admittivity, injected currents, and the
contact impedances are known. Conversely, the inverse problem is to reconstruct
the admittivity distribution based on noisy electrode potential differences.

In this thesis, the admittivity is assumed to be time invariant during the acqui-
sition of the set of measurements. For the non-stationary reconstruction problem
in EIT, see for example [42–44].

2.2.1 EIT as a statistical estimation problem

In Bayesian formalism, the reconstruction problem of EIT is treated as a statistical
inference problem. Here, both voltage measurements and the discretized admit-
tivity distribution are modeled as random variables. The information about the
unknown variables is then modeled as a joint probability density called the prior
density. This density contains all the information available about the unknown
variables prior to the measurements.

The solution to the statistical inverse problem is the posterior distribution. The
posterior density is given by the Bayes’ formula and can be written as

π(σd, εd|U) =
π(U|σd, εd)π(σd, εd)

π(U)
(2.9)

where π(U|σd, εd) is the likelihood density, π(σd, εd) the prior density and π(U)
is normalization constant. The normalization constant can often be neglected and
Equation (2.9) simplifies to the form

π(σd, εd|U) ∝ π(U|σd, εd)π(σd, εd). (2.10)
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The likelihood density π(U|σd, εd) is a conditional probability density of the
measurements given the parameters σd and εd. In this work, the parameters σd
and εd and the noise e are assumed to be independent. Using the observation
model (2.8), the likelihood density is obtained as

π(U|σd, εd) = πe

(
U − H

(
σd(ω), εd(ω)

))
(2.11)

where πe is the probability density of the additive noise e. Hence, the likelihood
density can be written as

π(U|σd, εd) =
(det Γe)

−1/2

2πn/2 exp
(
−1

2

(
U − H

(
σd(ω), εd(ω)

)
− e∗

)>
·

Γe
−1
(

U − H
(

σd(ω), εd(ω)
)
− e∗

)
, (2.12)

where det Γe denotes the determinant of the measurement noise covariance ma-
trix Γe. In this work, the expectation of the noise is e∗ = 0.

The prior distribution π(σd, εd) represents the knowledge of the unknowns
based on prior information. Here, we consider a family of densities which can be
written in the form

π(σd, εd) = π+(σd, εd) exp
(
−F(σd, εd)

)
(2.13)

where the functional F is defined in the following chapter. The prior contains
the positivity constraint π+(σd, εd). This constraint is to restrict the values of the
conductivities and permittivities to a certain range of values. For instance, the
conductivities and permittivities cannot be negative. Given the likelihood and
prior models as above, the posterior can be written as

π(σd, εd|U) ∝ π+(σd, εd) exp

(
−1

2

(
U − H

(
σd(ω), εd(ω)

))>

Γe
−1
(

U − H
(

σd(ω), εd(ω)
))
− F(σd, εd)

)
. (2.14)

To make an inference and visualize the solution, point estimates can be computed
from the posterior density π(σd, εd|U). The most common point estimates are the
conditional mean (CM) and the maximum a posteriori (MAP). The CM estimate is
the expectation of the posterior distribution and it typically requires the use of
computation time intensive Markov chain Monte Carlo (MCMC) methods (see
e.g. [26]). In this thesis, the MAP estimate

(σd, εd)MAP = arg max
σd , εd

{
π(σd, εd|U)

}
(2.15)

8



is employed. Given the previous assumptions, the computation of the MAP esti-
mate coincides with the solution of the following constrained minimization prob-
lem

(σd, εd)MAP = arg min
σd,i>0
εd,i>0

{
F (σd, εd; U)

}
. (2.16)

where the functional F is written as

F (σd, εd; U) =

(
− 1

2

(
U − H

(
σd(ω), εd(ω)

))>
Γe
−1

(
U − H

(
σd(ω), εd(ω)

))
+ F(σd, εd)

)

=

∥∥∥∥∥Le

(
U − H

(
σd(ω), εd(ω)

))∥∥∥∥∥

2

+ F(σd, εd), (2.17)

where Le is the Cholesky factor of the inverse covariance matrix, i.e. Γe
−1 = L>e Le.

Barrier Methods for Constrained Optimization

In order to handle the positivity constraint of the conductivity and permittivity,
we reformulate the problem (2.16) as a sequence of unconstrained problems uti-
lizing a barrier function [45]. In barrier methods, the constraints are incorporated
into the objective function in a process called dualizing the constraints. In this case,
the objective function is augmented with a barrier function. The barrier function
will favor points in the interior of the feasible region S over those near the bound-
ary of S. In other words, as a feasible point approaches one of the boundaries
inside the feasible region, the barrier function approaches to infinity.

Let be b : S ⊂ Rn → R a barrier function with the following properties:

(a) b ∈ C(S) where S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , n} and gi(x) is a twice-
continuously differentiable function in Rn.

(b) if {xi} is any finite sequence of points in S converging to x such that gi(x) =
0 for at least one i then limk→∞ b(xk) = ∞.

Two common examples of barrier functions are

b(x) = −
N1

∑
i=1

log
(

gi(x)
)

and (2.18)

b(x) = −
N1

∑
i=1

1
gi(x)

. (2.19)

9



By selecting the equation (2.18), the unconstrained problem is written as

(σd, εd)
(k)
MAP = arg min

σd , εd

{
F (k)(σd, εd; U)

}
, (2.20)

where the functional F (k) is replaced by

F (k)(σd, εd; U) =

∥∥∥∥∥Le

(
U − H

(
σd(ω), εd(ω)

))∥∥∥∥∥

2

+ F(σd, εd)

−µ(k)
N1

∑
i=1

(
log(σd ,i) + log(εd ,i)

)
. (2.21)

When the sequence of the parameters
{

µ(k)
}

k∈N
is selected such that

0 < µ(k+1) ≤ µ(k) and µ(k) → 0 as k→ ∞, (2.22)

the solution (σd, εd)
(k)
MAP converges to the solution of the constrained problem as

k→ ∞. For a general view on the barrier methods see [?, 45]

2.2.2 Absolute imaging

Absolute imaging refers to a method in which the admittivity is reconstructed
using a single set of voltage measurements. Most of the approaches state the
reconstruction problem in absolute imaging as an optimization problem such as
(2.20). Typically, the search for the minimizer is conducted using gradient based
methods. The most common algorithm employed for finding the minimizer of
(2.20) is the Gauss-Newton (GN) method for nonlinear least-squares problems [47,
48].

The GN method can be derived from Newton’s original method for function
optimization via an approximation. The formula for Newton’s method for mini-

mizing a functional F of parameters θ =

[
σd
εd

]
is

θ(i+1) = θ(i) − κ δ
(i)
θ (2.23)

where κ is the step size in the search direction which in turn is given by

δ
(i)
θ =

(
(J(i))>Γ−1

e J(i) +
∂2F
∂θ2

(
θ(i)
)
+

∂2b
∂θ2

(
θ(i)
))−1

·
(
(J(i))>Γ−1

e

(
U − H

(
θ(i)
))
− ∂F

∂θ

(
θ(i)
)
− ∂b

∂θ

(
θ(i)
))

(2.24)

where ∂2F
∂θ2 = diag

(
∂2F
∂σ2

d
, ∂2F

∂ε2
d

)
and ∂F

∂θ =
(

∂F
∂σd

, ∂F
∂εd

)>
are the block diagonal

Hessian matrix and the gradient of the functional F, respectively. The term J(i) is

10



the Jacobian matrix of the forward mapping θ(i) 7→ H
(

θ(i)
)

written in the form

of a block matrix, such that J(i) = (Jσd , Jεd), where the block matrices are

Jσd =
∂H(σd, εd; w)

∂σd

∣∣∣∣
σ
(i)
d ,ε(i)d

Jεd =
∂H(σd, εd; w)

∂εd

∣∣∣∣
σ
(i)
d ,ε(i)d

.

The computation of the Jacobian blocks Jσd and Jεd are presented in [49]. The
Hessian matrix and the gradient of the barrier function are given by ∂2b

∂θ2 and ∂b
∂θ ,

respectively. Lastly, the GN method can be equipped with a line search, as exem-
plified in [47]. For more details on the applied GN method and other optimization
methods in EIT, refer to, for an example, [49].

2.2.3 Difference imaging

In difference imaging [4, 8, 36, 50–56], the goal is to reconstruct the change in the
conductivity and permittivity between EIT measurements at two time instants.
Namely,

∆σd = σ
(2)
d − σ

(1)
d , (2.25)

∆εd = ε
(2)
d − ε

(1)
d . (2.26)

Using Equation (2.8), the observation models for two time instants become

U(σ
(1)
d , ε

(1)
d ) = H

(
σ
(1)
d , ε

(1)
d

)
+ e1, (2.27)

U(σ
(2)
d , ε

(2)
d ) = H

(
σ
(2)
d , ε

(2)
d

)
+ e2, (2.28)

where ei ∼ N (e∗, Γi) for i = {1, 2}.
Usually, the image reconstruction employing difference imaging is achieved

by subtracting the two measurements and conducting a global linearization of
the nonlinear forward problem. In other words, the observation models (2.27) are
approximated by the first order Taylor approximations as

Ui ≈ H
(

σ
(0)
d , ε

(0)
d

)
+ Jσd

(
σ
(i)
d − σ

(0)
d

)
+ Jεd

(
ε
(i)
d − ε

(0)
d

)
+ . . . (2.29)

where the Jacobian blocks Jσd = ∂H
∂σd

and Jεd = ∂H
∂εd

are evaluated on the lineariza-

tion point
(

σ
(0)
d , ε

(0)
d

)
. By employing these linearizations as well as U1 and U2,

the resulting observation model is given by

∆U = Jσd ∆σd + Jεd ∆εd + ∆e (2.30)

where ∆U = U2 −U1 and ∆e = e2 − e1.

11



Given the observation model (2.30), the corresponding minimization problem
is

(∆̂σd, ∆̂εd) = arg min
∆σd , ∆εd

{∥∥∥L∆e(∆U − Jσd ∆σd − Jεd ∆εd)
∥∥∥

2

+F(δσd, ∆εd)

}
. (2.31)

where the matrix L∆e is the Cholesky factor of the inverse covariance matrix Γ−1
∆e

and the covariance matrix for the difference imaging approach is Γ∆e = Γe1 + Γe2 .
An advantage in the difference image reconstruction scheme is that the com-

putational time is reduced. It also has reasonably good tolerance against model-
ing errors. In spite of the advantages, this approach is limited in that it is only
capable of handling small deviations from the initial conductivity and permittiv-
ity [57].
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3 Edge-promoting priors in EIT

This chapter consists of a review of three edge-promoting prior models, namely
the total variation (TV) prior model, the total variation augmented with cross gra-
dient functional, and the joint total variation. In this thesis, the construction of
such priors are considered for the parameter f = [a1, . . . , an]> as the finite dimen-
sional approximation of a function f ∞. For example, f ∞ can be approximated
with a piecewise linear representation on a triangular mesh [41]

f ∞(x) ≈
m

∑
i=1

ai φi(x) (3.1)

where φi(x) are linear first order basis functions of the triangle elements, or with a
piecewise constant discretization on a lattice of regular square pixels Ω ⊂ ⋃m

i=1 Gi
which leads to an approximation

f ∞(x) ≈
m

∑
i=1

ai χGi (x) (3.2)

with n pixels within or partially intersecting Ω and where χGi (x) is the character-
istic function taking the value of 1 when x in Gi and zero otherwise.

3.1 `
q
p PRIORS

In this work, priors belonging to a certain type of exponential prior, based on `p
norms, are considered. A typical construction of these priors is given by

πprior( f ) ∝ exp
(
−λ‖D( f )‖q

p

)
= exp


−λ

(
n

∑
i=1
|Di( f )|p

)q/p

 (3.3)

where Di ∈ Rn is the i-th column of a linear mapping D. Typically, D can be
thought of as the discrete approximation of the differential operator.

The properties of `q
p priors are determined by the scalar parameters λ, p, and

q. To illustrate such properties, level sets and radial profiles of priors correspond-
ing to different choices of λ, p, and q are shown in Figure 3.1. As it can been
seen from the figure, the shape of the level-sets is defined by p. The radial pro-
file of πprior( f ) (i.e. the 1D distribution conditioned along a certain direction)
is determined by q. The prior parameter λ controls the scale of πprior( f ). Fur-
thermore, the properties of these priors will define the posterior density function.
An example on how the shape of the posterior is determined employing `1

1 (or

13



(a) (b)

Figure 3.1: (a) Level sets of different (unnormalized) `
q
p priors for the values

{1/6, 2/6, . . . , 1}. Yellow lines: p = q = 1, λ = 2. Green lines: p = q = 2, λ = 2.
Blue lines: p = 2, q = 1, λ = 2. (b) Radial profiles conditioned along the black
line (x = y) in (a).

simply `1) and `2
2 priors is illustrated in Figure 3.2. In this example, when com-

paring the MAP estimate, we can observe in Figure(3.2)-(a) that due to the shape
of the `1 prior, the MAP estimate (blue star) lies on the horizontal coordinate axis,
which means that the component in vertical direction is zero. In the case of `2

2
(Gaussian prior), Figure(3.2)-(b), the MAP estimate lies on the first quadrant of
the coordinate system.

In Bayesian inference, prior distributions based on the `1-norm of the parame-
ters are of considerable interest. The reason behind this relies on the properties of
such priors since they promote parameter fields with less regularity than Gaus-
sian priors (e.g., discontinuities and blockiness).

Examples of `1-type priors include the total variation (TV) prior [11], TV based
priors [58], and wavelet-based Besov B1

11 priors [59, 60].

3.1.1 Gaussian case

A Gaussian prior can be obtained by the selecting the `2 norm

πprior( f ) ∝ exp
(
−λ‖L f ‖2

2

)
= exp

(
−1

2
f>
(

2λL>L
)

f
)

∝ exp
(
−1

2
f>Γ−1 f

)
. (3.4)

where Γ = (2λL>L)−1 is the covariance matrix and L is a symmetric and positive
definite regularization matrix. Gaussian priors are important in Bayesian model-
ing. Using Gaussians for both likelihood and prior distribution can facilitate the
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(a) (b)

Figure 3.2: Illustration of posterior with a: (a) `1 prior, and (b) Gaussian prior.
Level sets of the likelihood (green), the prior (yellow) and the resulting posterior
(blue). The markers indicate the corresponding maxima.

computation of the posterior density considerably, resulting in a posterior which
is also a Gaussian distribution. Hence, the mean and covariance can be computed
explicitly. Moreover, the computation of the posterior is easier when the forward
model is linear.

Additionally, Gaussian prior densities can be used to approximate non-Gaussian
prior densities when the observation of the variables is based on a sufficiently
large number of mutually independent random events. For example, physical
quantities that are expected to be the sum of many independent processes (such
as measurement errors) often have distributions that are nearly normal. For an
illustrative review of Gaussian priors, see [61].

3.1.2 Total variation prior

Originally introduced in image processing by Rudin, Osher and Fatemi in [11], the
total variation (TV) regularizer reduces effectively the large spatial variations in a
reconstructed image, whilst preserving sharp discontinuities (edges). Total varia-
tion regularization has been successfully applied to different imaging modalities
where the exact reconstruction of feature edges is of superior importance. As for
the case of EIT, TV regularization has been demonstrated as a very well suited reg-
ularization method for conductivities with piecewise regular sharp, well-defined
edges [13, 15, 27–30, 61–63].

In a continuous formulation, the total variation of a function is defined by

TV( f ∞, Ω) := sup
{∫

Ω
f ∞∇ · g dx | g ∈ C1

c (Ω, Rn) , |g|L∞(Ω) ≤ 1
}

(3.5)
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where f ∞ ∈ L1(Ω) and C1
c (Ω, Rn) is the test function space consisting of contin-

uously differentiable vector-valued functions with compact support contained in
Ω. The supremum norm is denoted by | · |L∞(Ω). Restricting to the Sobolev space
W(1,1) which is the function space such that the (weak) derivatives are in L1 [64],
the TV( f ∞, Ω) becomes

TV( f ∞, Ω) =
∫

Ω
|∇ f ∞(x)|dx f ∞ ∈W(1,1), (3.6)

Typically, | · | denotes the Euclidean norm, which leads to isotropic TV functional

TV( f ∞, Ω) =
∫

Ω

√√√√ n

∑
i=1

(
∂ f ∞(x)

∂xi

)2

dx (3.7)

If | · | represents the `1-norm in Rn, then the anisotropic TV functional is obtained,
i.e.

TV( f ∞, Ω) =
∫

Ω

n

∑
i=1

∣∣∣∣
∂ f ∞(x)

∂xi

∣∣∣∣ dx. (3.8)

Employing either the isotropic or the anisotropic version of TV functionals has
been demonstrated to yield sharp reconstructions. However, care has to be taken
depending upon the prior information about the edge directions. In general, the
isotropic TV functional would be a preferable choice if the edge direction is not
available. On the contrary, the anisotropic TV functional can be a more suitable
choice for the regularization, if the information exists. In Publication II, these
differences are discussed.

For computational purposes, however, a discretized version of the TV func-
tional has to be considered. In such a case, Equation (3.6), using the Euclidean
norm, can be written as

TV( f ) =
m

∑
i=1

αi

√√√√
n

∑
j=1

(
Dj f

)2
i , (3.9)

where the discrete differential operator corresponding to jth-coordinate direction
is denoted by Dj and αi is the regularization parameter. A differentiable version
of Equation (3.9) can be obtained by adding a smoothing parameter β > 0 such
as

TVβ( f ) =
m

∑
i=1

αi

√√√√
n

∑
j=1

(
Dj f

)2
i + β, (3.10)

On such an assumption, classical gradient based optimization methods can be
applied to obtain the solution of the minimization problem. Hence, the isotropic
formulation of the smoothed TV prior is given by

πprior( f ) ∝ exp
(
−

m

∑
i=1

αi

√√√√
n

∑
j=1

(
Dj f

)2
i + β

)
. (3.11)
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Similarly to (3.10), the anisotropic TV functional is given by

aTVβ( f ) =
m

∑
i=1

n

∑
j=1

αi

((
Dj f

)2
i + β

) 1
2 . (3.12)

Hence, the smoothed TV prior employing the anisotropic form is defined as

πprior( f ) ∝ exp
(
−

m

∑
i=1

n

∑
j=1

αi

((
Dj f

)2
i + β

) 1
2
)

. (3.13)

3.1.3 Extension of the TV functional to vector-valued parameters

Prior models based on the total variation functional can be extended to vector
valued parameters in various ways. One option is to define the total variation
regularization for these type of parameters by a component summation [65].

Formally, given a vector valued image f ∞ ∈ S such that S = { f ∞ : Rn → Rn},
the multi-dimensional TV functional is defined by

TVs( f ∞, Ω) := sup

{
K

∑
k=1

∫

Ω
f ∞
k ∇ · gk dx | gk ∈ C1

c (Ω, Rn × · · · ×Rn) ,

|gk|L∞(Ω) ≤ 1

}
, (3.14)

which leads to

TVs( f ∞) =
K

∑
k=1

∫

Ω
|∇ f ∞

k (x)|dx. (3.15)

Depending on the norm used in Equation (3.15), the anisotropic (`1-norm) or
isotropic (Euclidean norm) formulation of the TV functional can be obtained.

Equation (3.15) may be the simplest way to define multidimensional TV. How-
ever, any information between components is neglected with this definition. This
could lead to spatial and intensity shifts, as well as structure and scale changes,
in different locations and orientation. One way to relate the components to each
other is to consider certain features that vector valued functions may posses.
These features can be spatial and intensity shifts, as well as structure and scale
changes.

3.1.4 TV prior model augmented with cross gradient functional

The cross-gradient functional has been developed to relate similar spatial struc-
tures between the solutions of two models with different physical properties [66].
In this approach, two continuously differentiable functions g(x) and h(x) are
considered locally structurally similar if the contour curves are parallel at each
location x. The structural similarity can be determined by measuring the simi-
larity of the gradient orientation, i.e. g(x) and h(x) are structurally similar if the
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gradients of the functions are parallel. Hence, ∇g(x) and ∇h(x) are parallel at
each point when

|〈∇g(x),∇h(x)〉|2 = ‖∇g(x)‖2‖∇h(x)‖2. (3.16)

Therefore, the similarity of the orientation of the gradients of a two-valued-vector
image can be measured by

R(g, h) =
∫

Ω
‖∇g(x)‖2‖∇h(x)‖2 − |〈∇g(x),∇h(x)〉|2dx. (3.17)

Consequently, for a two-channel vector valued image

f ∈ { f1, f2 | fk ∈ R2, for k = 1, 2},

Equation (3.17) simplifies to

TVCG( f1, f2) =
∫

Ω
‖∇ f1‖2‖∇ f2‖2 − |〈∇ f1,∇ f2〉|2dx

=
∫

Ω
‖∇ f1‖2‖∇ f2‖2 sin2(ϑ)dx

=
∫

Ω
‖∇ f1 ×∇ f2‖2dx, (3.18)

where ϑ = ϑ(x) is the angle between ∇ f1(x) and ∇ f2(x) in the plane containing
them. Hence, (3.18) can be written in the discrete form as

TVCG( f1, f2) =
m

∑
i=1
‖(D f1 ×D f2)i‖2

=
m

∑
i=1

(
(Dx f1)i(Dy f2)i − (Dy f1)i(Dx f2)i

)2. (3.19)

Henceforth, the functional consisting of the TV functional for f1 and f2 and aug-
mented with the cross-gradient functional is given as

F( f1, f2) = TVβ( f1) + TVβ( f2) + λ CG( f1, f2), (3.20)

where λ is a prior parameter which controls the degree of similarity between
both components. Here, TVβ can be defined either as the isotropic or anisotropic
formulation of the TV functional.

3.1.5 Joint total variation prior

Another generalization of the TV regularization to vector valued parameters has
been proposed in [31]. In this approach, the total variation of a vector valued pa-
rameter is defined as the Euclidean norm of the vector of (scalar) total variations
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of the components. Given a vector valued image f ∞ ∈ S, the multi-dimensional
TV norm is written as

TVK( f ∞) =
∫

Ω

√√√√ K

∑
k=1

(
|∇ f ∞

k (x)|
)2

dx, Ω ⊆ {Rn × · · · ×Rn}. (3.21)

The above formulation of the multi-dimensional TV norm promotes sparsity
on the gradient of each component of the image, while preserving rotationally
invariant property in the spatial space.

In this thesis, a simplified version of Equation (3.21) is introduced. Here, a
two-dimensional TV norm for a vector valued image with two components is
considered. The TV-norm in this case is written as

TV2( f ∞) =
∫

Ω

√(
|∇ f ∞

1 (x)|
)2

+

(
|∇ f ∞

2 (x)|
)2

dx, (3.22)

where Ω ⊆ {R2 ×R2}. Hence, the above equation may be written in the discrete
form

TV2,β( f ) =
m

∑
i=1

√√√√ 2

∑
k=1

(
(Dx fk)

2
i + (Dy fk)

2
i
)
+ β (3.23)

where β is added as a smoothing parameter to assure differentiability of the func-
tional.

In the following, the functional (3.23) is refered as the smoothed joint total
variation (JTV) of two channels. In accordance to the notation in [67], equation
(3.23) is written as

TV2,β( f ) = JTVβ( f ). (3.24)

Further examples of other generalizations of the TV functional to vector valued
images, which consider the inter-channel information, include the ones proposed
by Sapiro and Ringach [32], and Kimmel, et al. [33].

3.2 POINT ESTIMATES OF THE TV POSTERIOR DISTRIBUTION
IN EIT

The most popular point estimates encountered in the literature of statistical in-
verse problems are the Maximum A Posteriori probability (MAP) estimate and the
Conditional Mean estimate. The MAP estimate is the (highest) mode of the pos-
terior density and the CM estimate is the mean of the posterior density. In EIT
inverse problem, such estimators can be written as

(σd, εd)CM =
∫

R2n
(σd, εd)π(σd, εd|U)dΩ. (3.25)

and
(σd, εd)MAP = arg max

σd , εd
{π(σd, εd|U)} (3.26)
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where

π(σd, εd|U) = π+(σd, εd) exp
(
−1

2
‖Le (U−H(σd, εd)) ‖2 − F(σd, εd)

)
.

Here, the search for the conditional mean is an integration problem. In such
case, the use of numerical quadrature methods would be unfeasible due to the
large dimension of the parameter space in which the solution is defined. One
way to compute the integral is to apply Monte Carlo (MC) integration. The MC
integration consists of generating a representative ensemble of samples arrayed
according to the distribution π(σd, εd|U). To implement MC integration, we need
to be able to produce such samples which requires the EIT forward problem to
be evaluated several times. Hence, the computation time for determining the
samples would be unpractical for higher dimensions.

In contrast, the computation of the MAP estimate leads typically to an opti-
mization problem such as the weighted regularized least square (LS) problem:

(σd, εd)MAP = arg min
{

1
2
‖Le (U−H(σd, εd)) ‖2

+F(σd, εd) + b(σd, εd)

}
, (3.27)

where the matrix Le is the Cholesky factor of the inverse of the noise covariance
matrix, Γe

−1, F(σd, εd) is the regularization functional, and b(σd, εd) is the barrier
function taking care of the positivity constraint.

This section describes the TV-type functionals F(σd, εd) that were used in the
computations of the MAP estimates in the EIT image reconstruction problem.

TV functional

We considered the isotropic total variation functional (3.10), which can be defined
for the piecewise linear approximations (2.6) by

TVβ(σd) =
N2

∑
i=1

√
(Dx σd)

2
i + (Dy σd)

2
i + β (3.28)

TVβ(εd) =
N2

∑
i=1

√
(Dx εd)

2
i + (Dy εd)

2
i + β. (3.29)

N2 is the number of elements in the mesh, Dx and Dy are the discrete differen-
tial operators corresponding to the x- and y-coordinate directions, in each of the
mesh, and β > 0 is a parameter to ensures the differentiability of the TV func-
tional. Hence, employing the functionals (3.28) and (3.29), the TV regularization
functional becomes

F(σd, εd) = αTVβ(σd) + $TVβ(εd), (3.30)
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where α, $ > 0 are the regularization parameters.
In Publication I, a systematic approach is introduced for the selection of the

prior parameter in the TV functional. In such case, the prior parameter controls
the weight of the prior model in the posterior estimates. Further examples for
selecting α and $ include, the classical L-curve method [68], the Morozov discrep-
ancy principle [69] or the modern learning based bi-level optimization approaches
reported in [70, 71].

TV functional augmented with a cross-gradient functional

Using (3.20), the regularization functional consisting of the TV functional for σd
and εd, augmented with the cross-gradient functional for promoting structural
similarity of the unknown images becomes

F(σd, εd) = αTVβ(σd) + $TVβ(εd) + λ TVCG(σd, εd), (3.31)

where λ is a regularization parameter for the cross-gradient functional.

Joint total variation functional

The discrete approximation of the joint total variation function (3.23) for the pa-
rameter vectors σd and εd, is written as

JTVβ(σd, εd) =
N2

∑
i=1

√
(Dx σd)

2
i + (Dy σd)

2
i + (Dx εd)

2
i + (Dy εd)

2
i + β, (3.32)

where N2 denotes the number of elements in the FEM approximation. Hence, the
regularization functional for the JTV regularization becomes

F(σd, εd) = γ JTVβ(σd, εd), (3.33)

where γ is the regularization parameter.
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4 Review of results

In this chapter, a brief review of the results found in Publications I-III will be
given.

4.1 PUBLICATION I: EXPERIMENTAL EVALUATION OF 3D ELEC-
TRICAL IMPEDANCE TOMOGRAPHY WITH TOTAL VARIA-
TION PRIOR

In this publication, a fully 3D EIT reconstruction approach for an absolute re-
construction, using the isotropic TV regularization (3.10), was developed. In this
study, we concentrated on using methods that aided the reconstruction of only
the real part of the admittivity (conductivity). The contributions of this study
were two-folded: (i) it introduced a simple approach for the systematic selection
of the prior parameter in the TV functional based on the a priori information of
materials in the target, and their conductivity ranges, and (ii) it demonstrated, nu-
merically, that absolute imaging, employing the TV prior in 3D EIT in a Bayesian
framework with the systematic selection of the prior parameter, produces feasible
reconstructions.

In this study, both synthetic EIT and laboratory EIT measurements were used
in the numerical experiments. The synthetic EIT measurements were generated
using the FE solver of the forward model. Details of the FE method employed
in this study can be found in the original publication (I). The laboratory EIT
measurements were carried out with the KIT4 measurement system developed at
the Department of Applied Physics, University of Eastern Finland [72].

The results in this study demonstrated that employing a TV functional, with
the proposed parameter selection, yields very robust 3D reconstructions of piece-
wise regular conductivities with sharp boundaries.

4.1.1 Methods

Measurement configuration

The numerical simulations and the real experiments were conducted using a
cylindrical tank with a radius of 12.75 cm and a height of 20.4 cm. Sixty four
equally spaced stainless steel electrodes were attached to the inner surface of the
tank. The tank was filled with a saline solution, and plastic objects with different
shapes were placed in it to form inhomogeneities to the conductivity distribution.
The size of the electrodes was 4 cm × 4 cm. In this study, the current injection
protocol used 16 injecting electrodes which is the number of the current injection
channels limited by the hardware of our EIT system, see [72]. The currents were
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injected between 60 different electrode pairs (1-5, 1-9, 1-13, . . . , 1-64; 9-1, 9-5, 9-
13. . . , 9-64; 52-1, 52-5, 52-9,. . . , 52-64; 60-1, 60-5, 60-9, . . . , 60-64). The frequency
of the current was 1 kHz and the amplitude was 1 mA. The voltages were mea-
sured against a ground electrode, which was always one of the current injection
electrodes. The voltages between adjacent electrodes were calculated from these
measurements. One measurement frame consisted of 3840 voltage readings.

In the case of the simulated voltages, gaussian noise was added. The noise
consisted of two Gaussian components: one with a standard deviation of 1% of
the level of each measurement, and one with 0.02% of the difference between the
maximum and minimum values of voltage measurements.

Selection of the prior parameter

In the parameter selection strategy of the TV prior (3.11) proposed in Publication
I, the conductivity σ was approximated in a piecewise linear basis, and the finite
dimensional representation of the conductivity is given by σd = [a1, . . . , aN1 ]

>,
where aj > 0 are the conductivity values in the nodes of the FE mesh. With this
choice, the gradient of the piecewise linear approximation of σd is constant in
each element Ωi of the FE mesh, and the 2-norm of the gradient in Ωi is of the
form

gi =
√
(Dx σd)

2
i + (Dy σd)

2
i + (Dz σd)

2
i . (4.1)

In the proposed approach, we assumed that the marginal (prior) probability den-
sity of gi was given as

π(gi) = π+(gi) ci exp (−αigi) (4.2)

where π+ is the positivity constraint function and ci, αi ∈ R are parameters yet to
be defined.

In order to set the TV prior parameters so that their (orders of) magnitudes
roughly correspond to the expected conductivity ranges of the conductivity, we
approximated that the gradient norms gi, i = 1, . . . , N2 are mutually independent.
Hence, the approximation for the prior density of g can be written as π(g) ≈
∏i π(gi), and further by using (4.2)

π(g) ≈ ∏
i

π+(gi) ci exp (−αigi) (4.3)

≈ C π+(g) exp

(
−∑

i
αigi

)
, (4.4)

where the constant is C = ∏i ci. Then, the prior density of σd is approximated as

π(σd) ∝ π+(σd)π+(g) exp

(
−∑

i
αigi

)
. (4.5)

For further details on the derivation of equation (4.5), we refer to appendix A1 of
Publication I.
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The selection of the parameters αi in the TV functional (3.10) is based upon
prior information regarding the range of conductivities within the object to be
imaged. For this purpose, it is required that

P[gi ≥ 0] =
∫ ∞

0
π(gi)dgi =

∫ ∞

0
ci exp (−αigi) dgi = 1 (4.6)

where P[·] denotes the probability. Solving ci from Equation (4.6) yields ci = αi.
Given gmax,i, the estimate for maximum of the gradient norm gi, the confidence
interval (0, gmax,i) for the gradient norms gi with confidence coefficient p% is
computed as

P[0 ≤ gi ≤ gmax,i] =
∫ gmax,i

0
αi exp (−αigi) dgi =

p
100

, (4.7)

from which the parameter αi can be obtained by

αi = −
ln
(
1− p

100
)

gmax,i
. (4.8)

In this approach, the choice gmax,i depends on the discretization of the conduc-
tivity distribution σ. In the case the conductivity is approximated in a piecewise
linear basis utilizing a tetrahedral FE mesh, gmax,i that can be approximated by

gmax,i =
σmax − σmin

di
(4.9)

where σmin and σmax, respectively, are the expected minimum and maximum
conductivity within the object Ω, and di is the mean edge length in the mesh
element Ωi. Further, if the FE mesh is approximately uniform, one can choose
di = d for all i, where d is the mean edge length over the entire FE mesh. In such
a case, Equations (4.8 and 4.9) are written as

αsys = −
ln
(
1− p

100
)

gmax
where gmax =

σmax − σmin

d
. (4.10)

4.1.2 Results

Numerical experiments using simulated data

To study the proposed parameter selection strategy, we computed relative L2-
errors (RE) and errors using the bounded variation norm (BV-norm) of the recon-
structed conductivity distributions for different values of the TV prior parameter
α. The range of values employed for α was 10−3 to 103. The relative L2-errors
between the true conductivity and the reconstruction were computed as

RE =
‖Pσtrue − σMAP‖2

‖Pσtrue‖2
, (4.11)
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where P is a matrix that interpolates the nodal conductivity in a dense FE mesh
into a nodal conductivity in a coarse FE mesh. Both FEs employed first order basis
functions. For computing the errors using the BV-norm, we defined the BV-norm
as

‖u‖BV = ‖u‖1 + TVβ(u), (4.12)

where TVβ is the smoothed isotropic TV functional (3.10). Hence, the errors using
the BV-norm were computed using

εBV = ‖Pσtrue − σMAP‖BV . (4.13)

The errors were calculated for reconstructions corresponding to three realizations
of the simulated EIT measurements.

The simulated test cases were focused in evaluating the performance of the
proposed parameter choice of the 3D TV prior. For that purpose, we considered
three realizations of noise and computed relative L2-errors (4.11) and errors using
the BV-Norm (4.15).

The relative errors of reconstructed conductivity distributions, corresponding
to a range of values of α, are plotted in Figure 4.1 using the logarithmic scale.
In this figure, three values of α are highlighted: the systematically selected prior
parameter αsys = 0.742, α1

opt = 0.091 and α2,3
opt = 0.069 which are the values of α,

corresponding to the minimum in the relative reconstruction error (4.11), for each
realization of the noise.

The errors using the BV-Norm are shown in Figure 4.2. In this figure, four
values of α are highlighted. The systematically selected prior parameter αsys =

0.742, α1,3
opt = 0.160, and α2

opt = 0.121, which correspond to the minimum in the
reconstruction error using (4.15) for each of the three realizations of the data.

From figures 4.1 and 4.2, one can see that the systematic parameter αsys is
closer to the optimal value αopt, when the reconstruction error is measured using
the BV-norm, instead of the relative L2-error. In Figure 4.1 (the relative L2-error),
the mean of the distance |αsys − αopt| is 0.666 and in Figure 4.2 (the BV-norm) the
mean distance is 0.595.

The reconstructions using αsys and αopt are shown in Figure 4.3. In both of the
estimates, the conductivity of the inclusion and background are also close to the
true values. Moreover, the reconstructed inclusion is in the correct location and
resembles, in shape, the true simulated target.

Real measurement data

To evaluate the TV prior in a 3D EIT setting, laboratory experiments using real
experimental measurement data were carried out. The experiments comprised of
six test cases. Each test case used plastic objects with different shapes to create
inhomogeneities in the resulting conductivity distributions.

In one of the test cases (Figure 4.4), feasible estimates for the locations, shapes
and sizes of the plastic inclusions were obtained. In this case, conductivity esti-
mates of the (non-conductive) plastic inclusions were close to zero. Visible small
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Figure 4.1: The relative errors (4.11) for a range of regularization parameter
values α. The relative errors are shown for three different realizations of the mea-
surement noise. The values giving the smallest relative error for each realization
of noise are denoted by αi

opt where the superscript i refers to the realization. The
systematically selected parameter is denoted by αsys.

artifacts near the boundary of the tank can be seen in the reconstructions. For
example, in the horizontal cross-section of the reconstructions, the artifacts were
located near the position of the electrodes. These types of artifacts arise due to
modeling errors such as (small) inaccuracies in the electrode locations and dis-
cretization accuracies in the FE model.

4.1.3 Conclusions

Our findings in Publication I demonstrated the feasibility of the TV prior in 3D
EIT, using experimental measurement data from target conductivities that can
not be handled by either 2D or 2.5D models. Moreover, the results in figures (4.4)
described in this section, together with results displayed in Figure 5, 6, and 7 in
Publication I, show that the use of the 3D TV prior improves the quality of 3D
EIT reconstructions compared to the reconstructions using a standard Gaussian
smoothness prior. Furthermore, results in Figure 4.1 and 4.2 support that the
proposed selection of the prior parameter provides similar reconstructions to the
optimal value despite of being based on approximations. This can be of significant
advantage in the practical applications since the method only requires approxi-
mate knowledge of the range of conductivities in the target for the computation
of the prior parameter, and such information is generally available.
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Figure 4.2: The errors (4.15) for a range of regularization parameter values α. The
systematically selected parameter is denoted by αsys The relative errors are shown
for three different realizations of the measurement noise. The values giving the
smallest relative error for each realization of noise are denoted by α1

opt, α2
opt and

α3
opt.
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Figure 4.3: These cross-sectional slices of EIT reconstructions corresponding to
the parameter values αsys and αopt (the BV-norm, the 1st realization).

4.2 PUBLICATION II: ISOTROPIC AND ANISOTROPIC TOTAL VARI-
ATION REGULARIZATION IN ELECTRICAL
IMPEDANCE TOMOGRAPHY

In Publication II, we investigated the effects of both isotropic (3.10) and anisotropic
(3.12) TV regularizations on EIT. A characteristic difference between these two
28
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0 0.05 0.1 0.15 0.2 0.25

Figure 4.4: The estimated conductivity distributions based on experiments: a
resistive triangular-shape-prism inclusion of 10.4 cm height and located 6 cm
from the bottom of the tank. A photograph of the measurement tank at the initial
state is shown in the first column. Indicative schematics of both the transverse
and longitudinal cross-sections are shown in the first row of the second column.
Transverse cross-sections are shown on the top row of the two right hand side
columns with the corresponding longitudinal cross-sections of the reconstructions
on the row directly below.

particular forms of the TV regularization is that the isotropic TV is rotationally
invariant, whereas the anisotropic TV is not. In EIT, the information on the fine
details of edges contained in the measurements is limited, and it opens the ques-
tion of how large an impact, the selection of the TV regularization variant, has
upon the reconstructed images. The results in this research article demonstrated
that the choice between isotropic and anisotropic TV regularization has a signifi-
cant impact on the properties of EIT reconstructions. In this work, the effect in the
EIT reconstructions of both forms of the TV regularizer was investigated based
on a set of real measurements.

4.2.1 Methods

Measurement configuration

The EIT measurements were carried out with the KIT4 measurement system. The
experiments were carried out using a cylindrical tank with a diameter of 28.0 cm
and a height of 7.0 cm. Sixteen equally spaced stainless steel electrodes (width
2.5 cm, height 7.0 cm) were attached to the inner surface of the tank. The currents
were injected such that electrode 1 was fixed as the sink electrode, and then ap-
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plying pairwise currents, sequentially, between the sink electrode and each of the
15 remaining electrodes. Corresponding to each current injection, the potentials
on all of the 15 remaining electrodes were measured against the sink electrode,
which itself, was connected to the common ground. The frequency of the current
was 1 kHz and the amplitude was 1 mA. With this measurement protocol, one
measurement frame consisted of 225 voltage readings (i.e., V ∈ R225).

The tank was filled with saline solution, and translationally symmetric plastic
objects, with different shapes, were placed in the tank, in order to form inhomo-
geneities in the conductivity distribution.

4.2.2 Results

An example of the results is shown in Figure 4.5. In this figure, the image on the
left shows a photograph of the true target, which included a triangular prism. The
reconstructions with the isotropic (3.10) and anisotropic (3.12) TV regularizations
are shown in the middle and the right of the figure, respectively. Here, α and β
were selected as α = αsys, β = 10−3. The conductivity in this case was represented
in a piecewise linear basis.

In both reconstructions, the inclusion has sharp edges and is located approx-
imately at the same position as the true object. The reconstruction employing
the isotropic form resembles the triangular shape of the inclusion, whereas in
the case of the anisotropic form, the shape deviates from the real shape. In this
reconstruction, the edges of the inclusion are aligned with the co-ordinate axes.

Figure 4.5: Results with piecewise linear discretization for the conductivity and
systematically selected α. Left: photograph of the target; middle: reconstruction
based on the isotropic TV prior; right: reconstruction based on the anisotropic TV
prior.

In Figure 4.6, the results demonstrate the robustness of the reconstructions
employing the isotropic TV regularization, with respect to the choice of α and
β. This figure comprises reconstructions of the conductivity with choices of α
varying from 10−1αsys to 10αsys and β varying from 10−3 to 10−1. As it can be
seen from Figure 4.6, a triangular shaped inclusion can be recovered with vari-
ous choices of α and β. In these reconstructions, the sharpness of the boundaries
decreases as the value of β goes higher. Moreover, the reconstructions feature sev-
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eral artifacts with the smallest value of α, as can be expected in under-regularized
solutions.

The reconstructions with the anisotropic TV functional in Figure 4.7 are in
good correspondence with the above results. The reconstructions employing the
anisotropic TV are satisfactory when the choices of α ranged between 10−1αsys to
102αsys and β between 10−4 to 10−1. The rest of the computed reconstructions pre-
sented artifacts. Most importantly, all these images exhibited a blocky inclusion
which resembles the shape of a triangle.

4.2.3 Conclusions

In this publication, a study of the performance of isotropic and anisotropic TV
regularizations on EIT was conducted. To study the dependence of the solutions
on the regularization parameter α, and the smoothing parameter β, reconstruc-
tions were derived using real measurements. Our findings were consistent and
showed that, in feasible ranges of the parameters α and β, reasonable reconstruc-
tions are achievable. In the case of reconstructions utilizing the anisotropic TV
form, however, the inclusion boundaries tend to align along the co-ordinate axes.
This geometric distortion caused by the anisotropic TV regularization, is a well-
known phenomenon in other applications. The results in this study demonstrate
that in EIT, the magnitude of this geometric distortion is remarkably large.

4.3 PUBLICATION III: JOINT RECONSTRUCTION OF CONDUC-
TIVITY AND PERMITTIVITY IN EIT USING STRUCTURAL SIM-
ILARITY PRIORS

In Publication III, we studied two prior models, namely the TV functional aug-
mented with either a cross-gradient (CG) functional and a joint total variation
(JTV) functional. These priors promote the spatial similarities between two un-
known parameters. We utilized such priors for the joint estimation of the con-
ductivity and permittivity in a complex valued EIT problem. In order to assess
the quality of the conductivity and permittivity estimates, we computed three fi-
delity measures i) the L2 relative error, ii) the BV-norm error and iii) the structural
similarity index (SSIM), see [73]. The reconstructions utilizing the TVCG and JTV
priors were compared with the ones using an isotropic TV functional.

4.3.1 Methods

Fidelity measures

The performance of the proposed regularization methods for the joint reconstruc-
tion of the conductivity and permittivity was evaluated with three fidelity mea-
sures. Firstly, relative L2 – errors between the true target distributions and their
reconstructions were computed. The relative error for conductivity was calculated
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Figure 4.6: Results based on the isotropic TV prior and piecewise linear dis-
cretization for the conductivity. The table shows the EIT reconstructions corre-
sponding to twenty combinations of α and β. Parameter α increases from top to
bottom (values shown on far left), and β increases from left to right (values shown
on top of the respective columns).

as

RE(σd) =
‖Pσtrue − σd‖2

‖Pσtrue‖2
· 100(%). (4.14)

where P is a matrix which interpolates the nodal conductivity in M1st
0 into a

nodal conductivity in M1st
1 . The relative error of the permittivity RE(εd) was
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Figure 4.7: Results based on the anisotropic TV prior and piecewise linear dis-
cretization for the conductivity. The table shows the EIT reconstructions corre-
sponding to twenty combinations of α and β. Parameter α increases from top to
bottom (values shown on the far left), and β increases from left to right (values
shown on top of the respective columns).

calculated similarly.
The second fidelity measure was the bounded variation norm (BV-norm) of

the error, defined for the conductivity as

BVE(σd) = log
(
‖Pσtrue − σd‖1 + TVβ(Pσtrue − σd)

)
. (4.15)

The BVE(εd) was calculated similarly.
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The third fidelity measure considered in this study was the structural simi-
larity (SSIM) index, which is a measurement that has been developed for quanti-
fying the perceptual similarity of two images [73]. The SSIM index is a decimal
value between 0 and 1, where the value 1 is only reachable in the case when two
images are identical. For further details on the SSIM index, see [73]. The fol-
lowing SSIM indexes were computed: (i) SSIM(σtrue, σd), (ii) SSIM(εtrue, εd), (iii)
SSIM(∇σtrue,∇σd), (iv) SSIM(∇εtrue,∇εd) and (v) SSIM(σd, εd).

Reconstruction methods and regularization parameters

The following reconstructions were considered in the results section:

(TV) The solution of (3.27) with the total variation regularization (3.30).
The regularization parameters (α, $) were selected by finding the
combination of values which minimizes RE((σd, εd)

>).

(TV+CG) The solution of (3.27) with the total variation augmented with cross-
gradient regularization (3.31). The values of (α, $) were fixed to the
same as those used for the TV regularization. The value of λ in
(3.20) was selected by a one-dimensional search, finding a value that
leads to the structurally most similar estimates of the conductivity
and permittivity, with respect the true target distributions, where
the value of λ maximizes SSIM(θtrue, θ̂) where θtrue = (σtrue, εtrue)>

and θ̂ = (σd, εd)
>.

(JTV) The solution of (3.27) with the joint total variation regularization
(3.33). The regularization parameter γ was selected by finding a
value which minimizes RE((σd, εd)

>).

Simulation of the measurement data

Two computational domains were considered in the simulation of the measure-
ments: an idealized cross-section of a human thorax and a circular domain with
radius r = 12.75 cm. The measurement setup consisted of 16 equally spaced
electrodes. Currents were selected such that one electrode was fixed as the sink
electrode to each one of the 15 remaining electrodes. The same process was re-
peated using electrodes {1, 5, 9, 13 } as the sink, leading to a total of 60 pairwise
current injections and 900 voltage measurements. The frequency of the injected
currents was set to 100 Hz and the amplitude was set to 1 mA. Then, EIT mea-
surements were generated using the FE solver used in the forward model. For
further details regarding the simulation of the measurement data, see the original
publication.
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4.3.2 Results

2D simulation of circular domain

The target conductivity and permittivity, together with their gradients, are shown
in the top row of Figure 4.8. TV reconstructions are shown in row 2. The recon-
structions with the TV+CG funcitonal and the JTV functional are shown in the
third and fourth rows, respectively.

As can be seen from the figure, both of the structural similarity priors (the
TV+CG and JTV) improved the estimates over the ones using the TV functional,
in the case where σ and ε were structurally similar. The fidelity measures are
given in Table 4.1.

Comparisons between TV and TV+CG estimates revealed that TV+CG per-
formed better in terms of the SSIM, which measures the structural similarity of
the reconstruction and the true unknown. The estimates σd and εd also had more
uniform quality, in terms of fidelity values. Some of the relative and BVN er-
rors for the TV+CG were slightly larger than those for TV; this feature can be
attributed to the poorer contrast of the inclusion in the TV+CG reconstructions,
and in the case of the BV-Norm measure to the small smoothing of the estimates
caused by the cross-gradient term.

Based on all the fidelity measures against the true target distributions, the JTV
functional produces the most accurate estimates compared to the true targets,
with respect all of the fidelity measures. However, based on visual interpreta-
tion, the TV+CG has higher structural similarity between the estimates σ̂d and
ε̂d) than the ones obtained with JTV. This interpretation is also reflected in the
structural similarity index SSIM(σ̂d, ε̂d). In this case, the value of SSIM(σ̂d, ε̂d),
when TV+CG prior was employed, was bigger than the structural similarity value
obtained with JTV.

Table 4.1: The fidelity measures for the circular mesh case in Figure 4.8.

Circular Mesh
TV TV + CG JTV

RE(σ̂d) 10.843 % 19.264 % 8.661 %
RE(ε̂d) 15.782 % 31.082 % 14.401 %

SSIM(σ̂d, σtrue) 0.914 0.846 0.927
SSIM(ε̂d, εtrue) 0.917 0.845 0.915
SSIM(σ̂d, ε̂d) 0.598 0.614 0.611

BV − Norm(σ̂d) 4.675 5.037 4.572
BV − Norm(ε̂d) 4.410 4.841 4.395

2D simulation of imaging the thorax

In Figure 4.9, the target conductivity and permittivity of an idealized 2D human
thorax phantom, together with respective reconstructions, are shown. The values
for the conductivity and permittivity in the different regions of the true target
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Figure 4.8: Reconstructions from simulated EIT data of 2D circular model.
Columns 1 and 3 show conductivity σ and permittivity ε. Columns 2 and 4 show
the gradients |∇σ| and |∇ε|, respectively.

distributions are listed in Table 4.2. Reconstructions employing the TV functional,
the TV+CG reconstructions, and the JTV reconstructions are shown in rows 2,3
and 4, respectively. The fidelity measures are given in Table 4.3.

The JTV and the TV+CG again display a clear improvement over the TV func-
tional. The estimates with both the JTV and the TV+CG are quite similar to each
other, but with some of the fidelity measures favoring one method over the other,
and vice versa.

Table 4.2: Admittivity values for the simulated thorax phantom with heart and
lungs [74]. These values represent a rough average of conductivity and permit-
tivity in fat tissue in chest, heart and lungs.

Admittivity
Lungs 0.50 + i ω 0.20 S/m
Heart 1.10 + i ω 0.60 S/m

Background 0.80 + i ω 0.40 S/m
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Figure 4.9: Reconstructions from simulated EIT data of 2D thorax model.
Columns 1 and 3 show conductivity σ and permittivity ε. Columns 2 and 4 show
the gradients |∇σ| and |∇ε|, respectively.

Table 4.3: The fidelity measures for the 2D thorax mesh case in Figure 4.9.

Anatomical Mesh
TV TV + CG JTV

RE(σ̂d) 39.83 % 38.95 % 36.45 %
RE(ε̂d) 43.24 % 45.62 % 40.62 %

SSIM(σ̂d, σtrue) 0.7758 0.7845 0.8065
SSIM(ε̂d, εtrue) 0.7852 0.7866 0.7987
SSIM(σ̂d, ε̂d) 0.6986 0.7029 0.6959

BV − Norm(σ̂d) 6.9843 6.9551 6.9071
BV − Norm(ε̂d) 6.7204 6.7209 6.6707

4.3.3 Conclusions

In this study, two joint reconstructing methods, of the conductivity and permit-
tivity distributions based on complex valued EIT data, were proposed. The two
methods consisted of: (i) augmenting conventional total variation (TV) functional
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with a cross-gradient functional for promoting structural similarities between the
conductivity and permittivity distribution and (ii) the joint total variation (JTV)
functional. The approaches were tested using simulated EIT data and compared
to reconstructions using the TV functional. Both of the approaches were found to
improve the estimates in terms of structural similarity between the estimates and
the true target distributions. The JTV regularization approach gave the best re-
sults in terms of fidelity measures, and turned out to be a highly feasible regular-
ization method for use in the joint reconstruction of conductivity and permittivity,
in cases when the unknowns can be expected to be structurally similar.

In summary, the results demonstrated that using the structural information
in the reconstruction methods could lead to sharper images with less artifacts
and more accurate representations of internal boundaries, than the conventional
methods such as the TV regularization.

38



5 Summary and conclusions

Recently, there have been new developments in the use of the TV functional.
Some have extended the applicabilities the TV functional to vector-valued images,
whilst others improve the contrast, ameliorate the stair–casing effect, or preserve
other fine scale image features, such as textures. The TV functional penalizes
highly oscillating patterns in the reconstructed image, noise in particular, while
preserving sharp transitions such as edges. This feature has been advantageous
for the development of reconstruction methods in EIT.

In this work, the main emphasis was to study prior models based on sparsity–
promoting TV functionals in EIT. In general, the underlying principle of these
functionals is that an admittivity parameter, with excessive and possible spurious
"details", has a corresponding high total variation. According to this principle,
minimizing the total variation of such a parameter, subject to it being a close
match to the original admittivity, removes unwanted details, while promoting
sharp variations in the recovered parameter. The use of these priors improves the
reliability of the reconstructions of piecewise regular admittivity distributions.
The performance of the reconstruction schemes employing the proposed priors
were evaluated using both simulated and experimental data. The effects of the
proposed priors on EIT reconstructions were investigated in three studies.

In Publication I, we developed a fully 3D EIT approach for reconstructing
piecewise regular conductivities with TV regularization. In this study, a system-
atic selection of the prior parameter in the TV functional was also introduced.
This choice was based on a priori information of the range of conductivity values
of the target. It was demonstrated that the proposed choice yields parameter val-
ues which lead to reconstructions that are similar to the ones using an optimal
value of the prior parameter. Additionally, the feasibility of the TV prior in 3D
EIT was studied and evaluated using experimental measurement data. Our find-
ings demonstrated that the proposed parameter selection strategy yields sharp
reconstructions in 3D EIT.

In Publication II, we investigated the performance of isotropic and anisotropic
TV regularization in EIT. For this purpose, the two TV regularization schemes
were compared based on a set of experiments made in the laboratory. The depen-
dence of the solutions on the regularization parameter α, smoothing parameter
β and discretization of the conductivity was studied in these experiments. Re-
sults verified that in the feasible ranges of parameters α and β, the use of the
isotropic form of TV lead to feasible EIT reconstructions. Whereas the anisotropic
form caused distortions by aligning the boundaries of the inclusions to the co–
ordinates axes in the entire range of the tested parameters.

In Publication III, two joint prior models were investigated in the context of
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the image reconstruction problem in EIT. These priors were based on general-
izations of the TV functional. Their main characteristic was to promote mutual
spatial similarities between the conductivity and permittivity. The performance
of reconstruction schemes employing these priors was tested with simulated EIT
data. The reconstructions were compared with the ones employing a TV prior for
the conductivity and permittivity. The numerical results indicated that exploiting
the mutual structural information improved significantly the quality of the recon-
structions in the areas where common spatial similarities were shared. Further,
the numerical results show that including the mutual structural information of
the conductivity and permittivity in the reconstructions schemes leads to sharper
reconstructions, with less artifacts, and more accurate representation of internal
boundaries.

To conclude, the joint prior models such as the ones presented in this study
provide appropriate tools to link the conductivity and permittivity distribution in
the reconstruction scheme. Thus, the applicability of our approach may include
other tomography modalities which handle coupled vector-valued images.
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In electrical impedance tomography (EIT), the 
conductivity and permittivity distributions of 
a target are reconstructed based on voltage 

measurements, known current injections, and 
knowledge of the target geometry. Due to the ill-

posedness of this reconstruction problem, the 
determination of a meaningful solution depends 
heavily on the prior information related to the 
target. In this thesis, prior models based on the 

total variation (TV) functional are used to improve 
the quality of the conductivity and permittivity 
reconstructions. The findings presented in this 

thesis demonstrate the feasibility of the proposed 
prior models for reconstructing the conductivity and 

permittivity in the presence of noise.
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