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Abstract. Iron deposition in the brain is a prominent feature of Alzheimer’s disease (AD). Recently, peripheral iron measures
have also been shown to be associated with AD status. However, it is not known whether these associations are causal: do
elevated or depleted iron levels throughout life have an effect on AD risk? We evaluate the effects of peripheral iron on AD risk
using a genetic profile score approach by testing whether variants affecting iron, transferrin, or ferritin levels selected from
GWAS meta-analysis of approximately 24,000 individuals are also associated with AD risk in an independent case-control
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cohort (n∼10,000). Conversely, we test whether AD risk variants from a GWAS meta-analysis of approximately 54,000
account for any variance in iron measures (n∼9,000). We do not identify a genetic relationship, suggesting that peripheral
iron is not causal in the initiation of AD pathology.
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INTRODUCTION28

Iron is the most abundant metal in the brain, where29

it is vital for neurotransmitter synthesis, myelination30

of neurons, and energy generation by mitochondria31

[1]. However excess iron contributes to the genera-32

tion of reactive oxygen species, and consequent tissue33

damage [2]. Dysfunctional brain iron homeostasis is34

believed to play an important role in Alzheimer’s35

disease (AD) [3]. Iron accumulation is seen in the36

AD postmortem brain [4] and iron content corre-37

lates with disease duration and Mini-Mental State38

Examination (MMSE) score [5, 6]. Individuals with39

mild cognitive impairment (MCI) with high risk of40

AD, showed higher cortical iron in vivo using MRI41

(measured using quantitative susceptibility mapping42

techniques), which spatially co-localized with A�43

plaques and correlated with higher plaque load [7].44

In addition, transferrin (an iron transport protein)45

and ferritin (an intracellular iron storage protein) are46

both elevated in AD brain tissue in neurodegenera-47

tive regions [8]. Ferritin levels in cerebrospinal fluid48

(CSF) negatively correlated with cognitive perfor-49

mance and predicted conversion from MCI to AD50

[9]. Ferritin levels were also associated with CSF51

apolipoprotein E levels and were elevated by the AD52

risk allele, APOE ε4, suggesting that ferritin may53

reflect the mechanism by which APOE ε4 is a risk54

factor for AD.55

Iron trafficking across the blood-brain barrier is56

tightly regulated and early studies suggested that57

the brain is protected from systemic fluctuations in58

iron, with a lack of correlation between liver and59

brain iron concentrations postmortem [10, 11]. Ani-60

mal studies went on to challenge this view, showing61

that excess dietary iron increased brain iron levels in62

specific brain regions [12]. Quantitative MRI studies63

measuring the proton transverse relaxation rate (R2)64

now allow iron concentrations to be assessed in the65

brain in vivo. One such study in cognitively normal66

elderly men found that iron levels in basal ganglia67

structures were correlated with serum iron mea-68

sures [13]. In an investigation in the large Australian69

Imaging Biomarker and Lifestyle (AIBL) cohort of70

healthy controls, MCI and AD patients had disturbed 71

brain iron metabolism reflected in the periphery by a 72

decrease in plasma iron and hemoglobin [14], which 73

was due to a deficiency of iron-loading onto trans- 74

ferrin [15]. Several mechanisms have been suggested 75

to cause dysregulation of iron transport across the 76

blood-brain barrier in AD including the involve- 77

ment of amyloid-� protein precursor fragments and 78

chronic inflammation [11]. A deficit in brain iron 79

trafficking, which is essential for heme formation, 80

neurotransmitter synthesis, and myelination of axons, 81

could contribute to the pathophysiology of AD. But 82

results are inconsistent, with two meta-analyses hav- 83

ing differing conclusions on whether differences 84

in circulating iron levels can be detected between 85

AD cases and controls, and reporting heterogeneity 86

between studies [16, 17]. 87

It is clear that iron dysregulation has a role in AD, 88

and that to a limited extent plasma iron might reflect 89

changes in brain iron levels, but there has been little 90

investigation of whether peripheral iron levels over 91

the long-term affect risk of AD. Apart from the lack of 92

suitable and adequately powered prospective studies, 93

a limitation of observational studies is the inability 94

to distinguish between causal associations and those 95

due to confounding and reverse causation. A sys- 96

tematic review found that, in a limited number of 97

trials, testing whether depletion or supplementation 98

of iron changed a person’s risk of AD provided no 99

conclusive evidence, and that additional studies are 100

necessary [18]. 101

Drug development and randomized clinical trials 102

are expensive and take many years to reach fruition, 103

especially for a slowly progressive disease where 104

treatment needs to start early in the disease course. An 105

alternative approach, which overcomes the problem 106

of reverse causation, is Mendelian Randomization 107

(MR). Here the genetic variants affecting the puta- 108

tive causal variable are used as instrumental variables 109

to test for an effect on disease risk. A demonstra- 110

tion that genetic polymorphisms known to modify 111

the phenotype level also modify disease risk provides 112

indirect evidence of a causal association between phe- 113

notype and disease. MR analysis has the following 114
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assumptions: firstly, the genetic variant used is only115

associated with the risk factor of interest; secondly,116

it is independent of all confounding variables; and,117

finally, there is no causal pathway leading from the118

genetic variant to the disease except through the risk119

factor of interest. For highly polygenic traits, a large120

number of genetic polymorphisms can be combined121

to explain a larger proportion of the variance of the122

trait. The large numbers of variants included means123

that some are likely to violate the assumptions for124

a MR analysis. But a lack of association between125

appropriate SNPs and the outcome, given a dataset126

large enough to give reasonable power suggests that127

there is no causal relationship. A shared genetic basis128

indicates either, pleiotropy where a variant affects129

multiple traits independently, or a causal relationship130

between the two correlated traits; with the require-131

ment that any potential confounders must be taken132

into account. If a shared genetic basis is found, then133

a quantitative MR approach would then be required134

to compare direct and mediated paths between vari-135

ants affecting the postulated causal variables and the136

outcome. This method has been widely used, both137

confirming and refuting suggested causal relation-138

ships based on epidemiological findings [19]. For139

example, this approach has had significant success140

in clarifying relationships between lipid levels and141

ischemic heart disease [20]. In addition, a recent study142

compared 42 traits or diseases with available large143

genome-wide association studies (GWAS) where,144

among other findings, the authors found evidence145

that an increased body mass index causally increases146

triglyceride levels [21].147

MR was recently used to test for an effect148

of serum iron on Parkinson’s disease (PD) risk,149

using three genetic variants influencing iron levels150

(HFE rs1800562, HFE rs1799945, and TMPRSS6151

rs855791) [22]. The combined MR estimate showed152

a statistically significant protective effect of increased153

serum iron in PD, suggesting that over the course154

of a life time, alteration in tissue iron homeostasis155

reflected by a decrease in serum iron levels is on the156

causalpathway in thepathogenesisofPD.Twelve iron157

associated SNPs identified though GWAS were also158

used to investigate the role of iron in atherosclerosis,159

and identified a potential causal role in women [23].160

Single genetic variants that influence serum iron161

levels have not been shown to have a large effect on162

AD risk. The transferrin genetic variant C2 has been163

investigated and shown to have a small but signifi-164

cant association (OR = 1.11, 95% CI 1.05 to 1.17, in a165

meta-analysis of 19 studies [24]). Several studies pre-166

viously reported an increased frequency of the HFE 167

H63D (rs1799945) mutation in AD patients [25], but 168

these findings have not been replicated in the largest 169

AD GWAS meta-analysis [26]. There is evidence of 170

interaction effects, which would not be apparent in 171

GWAS meta-analyses, involving H63D and APOE 172

ε4 alleles where the combination appears to affect 173

age of onset and, to a lesser extent, risk [27–29]. 174

Since several genes are well characterized for their 175

impact on peripheral iron variation, we sought to 176

determine their combined causal effect on AD risk. 177

We test the effect of a large number of genetic variants 178

affecting the iron-related measures of serum iron con- 179

centration, transferrin (the major iron transporter), 180

ferritin (which reflects iron storage in bone mar- 181

row), and transferrin saturation (ratio between serum 182

iron and total iron binding capacity) on AD risk, 183

in combination using a genetic profile score (GPS) 184

approach. Variants are selected from an iron GWAS 185

meta-analysis discovery cohort [30] (n = 23,986) and 186

tested in large independent target AD case-control 187

datasets (n = 9,251). In addition, we test for the con- 188

verse scenario, whether those at a high genetic risk 189

for AD have higher peripheral iron levels through- 190

out life, using SNPs identified by the AD GWAS 191

meta-analysis discovery cohort [26] (from the Inter- 192

national Genomics of Alzheimer’s Project, IGAP 193

n = 54,162) in an independent population-based tar- 194

get sample with available iron measures (n = 8,893). 195

Previously an AD polygenic score analysis has shown 196

that disease prediction accuracy is greatest including 197

SNPs with p value <0.5. Including the full polygenic 198

score significantly improved prediction over use of 199

APOE alone where including both APOE and PRS 200

gave AUC = 78.2% [31]. Examples of the AD PRS 201

based on the IGAP discovery analysis demonstrating 202

genetic overlap with other traits include neuroimag- 203

ing measures of subcortical brain volumes, plasma 204

C-reactive protein, and lipids [32, 33]. Finally, to 205

confirm our findings using an alternative method, we 206

used SNP effect concordance analysis (SECA) with 207

only the discovery datasets, to examine whether SNPs 208

found to be associated with the serum iron measures 209

are enriched within associated SNPs with AD risk, 210

and vice versa. 211

MATERIAL AND METHODS 212

Subjects 213

The AD case-control cohort comprises the datasets 214

shown in Table 1. All individuals were of European 215
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Table 1
Alzheimer’s disease case-control cohort data sets. The AD cohorts which contributed data to the assessment of the effect of iron genetic
profile scores to risk of AD. The APOE ε4 frequency is shown for the individuals where APOE genotype data was available, with the sample

size in brackets. AD, Alzheimer’s disease; CN, controls

Cohorts N AD cases N Controls Mean Age (range, SD) % Female APOE ε4 Frequency

Genetic and Environmental Risk for
Alzheimer’s disease (GERAD1) [43]

2,361 942 79.0 64.6 AD = 0.33 (n = 2,183)
(60–108, 7.7) CN = 0.13 (n = 906)

Innovative Medicines in Europe
(AddNeuroMed) [44]

223 280 77.5 59.8 AD = 0.33 (n = 217)
(60–98, 6.9) CN = 0.15 (n = 143)

Kings Health Partners- Dementia Case
Register (KPH-DCR) [45]

64 85 79.5 59.7 AD = 0.38 (n = 52)
(61–93, 6.8) CN = 0.14 (n = 65)

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [46]

165 205 76.3 44.9 AD = 0.42 (n = 165)
(60–91, 6.0) CN = 0.14 (n = 204)

Wellcome Trust Case Control Consortium
1958 British Birth Cohort (WTCCC2) [47]

0 4,926 54 49.7 CN = 0.16 (n = 4,862)
(all 54)

descent and all AD case-control cohort individu-216

als were age ≥60 years. Controls were screened217

for dementia using either MMSE or ADAS-cog and218

were determined to be free from characteristic AD219

plaques at neuropathological examination or had a220

Braak score ≤2.5. Individuals with AD met criteria221

for either probable (NINCDS-ADRDA, DSM-IV) or222

definite (CERAD) AD. Individuals classed as MCI223

were excluded. The WTCCC2 1958 BC samples are224

population samples aged 54 years at collection and225

are included as unscreened controls in this analysis.226

The population-based sample set comprises (a)227

adult twins, their spouses, and first degree rela-228

tives who volunteered for studies on risk factors229

or biomarkers for physical or psychiatric con-230

ditions (n = 8,380); (b) people with self-reported231

endometriosis and unaffected relatives (n = 830) [34,232

35]. The mean age is 47 years (ranged 15–92233

years) with 62% female. Biochemical markers of234

iron status were measured using standard clini-235

cal methods on Roche/Hitachi 917 or Modular P236

analyzers [30]. Serum iron was measured by col-237

orimetry with Ferrozine reagent, serum transferrin238

by immunoturbidimetry, and ferritin by latex parti-239

cle immunoturbidimetry. Transferrin saturation was240

calculated from the iron and transferrin results. The241

values for ferritin were log transformed to produce a242

normal distribution.243

Genetic profile scores244

GPS for serum iron, transferrin, transferrin sat-245

uration, and ferritin (log) were calculated in target246

AD case-control cohorts, using stage 1 summary data247

from the discovery sample of a GWAS meta-analysis248

combining 11 population-based studies of biochem-249

ical markers of iron status, with a sample size of 250

23,986 [30] using the method previously described 251

([36] and Supplementary Methods). In brief, link- 252

age disequilibrium-based clumping was used to select 253

SNPs in the discovery data, providing the most sig- 254

nificantly associated SNP available in the target data 255

set. The total score is calculated by the number of 256

risk alleles weighted by the standardized per-allele 257

effects for p value thresholds of 1 × 10–6, 1 × 10–4, 258

1 × 10–3, 0.01, 0.05, 0.1, 0.5, and 1 (all SNPs) 259

(Supplementary Table 1). 260

The AD GPS was generated in the target 261

population-based cohort using summary data from 262

the AD GWAS meta-analysis from the IGAP discov- 263

ery sample consisting of 17,008 AD cases and 37,154 264

controls [26]. GPS were calculated as described 265

above, with the number of risk alleles weighted by 266

the effect on AD risk (log odds ratio). All APOE 267

associated signal was removed and APOE genotype 268

assessed separately. 269

APOE genotype 270

In the AD cohorts, a subset of samples have 271

available APOE genotypes (Table 1) inferred from 272

rs429358 and rs7412 SNPs genotyped using Taq- 273

Man SNP genotyping assays. In the Australian 274

dataset, APOE genotype was estimated from imputed 275

rs429358 and rs7412 SNP genotypes (Supplementary 276

Methods). 277

GPS association analysis 278

In the AD cohort data sets, we tested for an 279

association between iron, transferrin, transferrin sat- 280

uration, and ferritin GPS at each p value threshold 281



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

M.K. Lupton et al. / Effect of Circulating Iron Levels on AD Risk 5

with AD case-control status using logistic regression282

(performed in STATA v11) controlling for age, sex,283

and four ancestry principal components. Results for284

each dataset were combined in a meta-analysis allow-285

ing a test for between study heterogeneity (STATA286

METAN specifying a random effects model). Finally,287

all datasets were combined in a mega analysis also288

controlling for study. In addition, we separately289

assessed the effect of the three iron level influenc-290

ing variants that have previously been shown to291

associate with PD risk [22]. We tested for an associa-292

tion with the following SNPs: HFE rs1800562, HFE293

rs1799945, and TMPRSS6 rs855791 using logistic294

regression under an additive model and then com-295

bined the three variants in a GPS. To investigate any296

potential interaction effect of APOE ε4 genotype, we297

also repeated these analyses controlling for APOE ε4298

carrier status and also in APOE ε4 positive and APOE299

ε4 negative groups.300

In the population-based dataset, we tested for an301

association of AD GPS and number of APOE ε4 alle-302

les with peripheral iron measures (iron, transferrin,303

transferrin saturation, and ferritin) using Genome-304

wide Efficient Mixed Model Association algorithm305

(GEMMA) software [37]. The sample contains306

related individuals including monozygotic and dizy-307

gotic twin pairs, and other first degree relatives. We308

used linear mixed model regression using the likeli-309

hood ratio test, including sex, age, and four ancestry310

principal components as covariates and controlling311

for family structure using a genetic relatedness matrix312

estimated from genome-wide genotypes.313

SNP effect concordance analysis314

We carried out SECA analysis of large scale GWAS315

meta-analysis summary statistics to examine the316

genetic overlap between AD and each iron measure317

using the default approach [38]. SECA allows a larger318

sample size to be examined without the need for indi-319

vidual level genotype data. The GWAS meta-analysis320

results for AD (meta-analysis n = 74,046) [26] and321

iron measures (iron, transferrin, transferrin satura-322

tion, and ferritin; meta-analysis n = 23,986) [30] were323

used to test for an excess of SNPs associated in the AD324

and iron phenotype data sets, and whether the SNP325

effect directions are concordant. SNP effects across326

the two GWAS summary results were aligned (AD327

and iron) to the same effect allele and independent328

SNPs were extracted via LD clumping identifying a329

subset of independent SNPs with the most significant330

p-values in the AD dataset. Restricting to SNPs asso-331

ciated with p1 ≤ 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 332

0.7, 0.8, 0.9, and 1.0 in the AD dataset, exact binomial 333

statistical tests determine whether there is an excess 334

of SNPs associated in both datasets for the subset of 335

SNPs associated with p2 ≤ 0.01, 0.05, 0.1, 0.2, 0.3, 336

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 in the iron dataset. 337

Fisher’s exact test is then used to determine whether 338

there is an excess of SNPs where the effect directions 339

are concordant across the datasets for each p value 340

subset. 341

Due to the larger sample size the AD GWAS sum- 342

mary statistics were initially used as dataset 1, and 343

each of the iron measures as dataset 2, providing 344

the greatest possible power. Because the analysis 345

is restricted to those SNPs which are most highly 346

associated in dataset 1, we also repeated the analysis 347

with the iron GWAS summary statistics as dataset 1 348

(in case of a scenario where SNPs strongly affect- 349

ing iron phenotypes had an effect on AD risk, but 350

SNPs strongly affecting AD risk did not affect iron 351

phenotypes). 352

RESULTS 353

GPS analysis 354

The discovery GWAS meta-analysis datasets used 355

in the study contain large sample sizes (in total 54,162 356

for AD and 23,986 for serum iron status) and show 357

both AD and serum iron measures to have a strong 358

polygenic components [27, 31]. For serum iron mea- 359

sures using replication cohorts, the lead SNPs at the 360

11 significant loci explained 3.4, 7.2, 6.7, and 0.9% 361

of the phenotypic variance for iron, transferrin, sat- 362

uration, and (log-transformed) ferritin, respectively 363

[30]. There is large deviation from the expected dis- 364

tribution of association test statistics compared to 365

observed values, with association signals observed far 366

below the level of genome-wide significance (Fig. 1). 367

Therefore, using SNPs below genome-wide signifi- 368

cance will increase power to detect an association. 369

Association analysis conducted in each AD dis- 370

ease case-control data set identified no effect of any 371

serum iron status GPS (serum iron, transferrin, fer- 372

ritin, and transferrin saturation) on AD risk, and the 373

meta-analysis identified no significant between study 374

heterogeneity (Supplementary Figure 1). When com- 375

bined in a mega analysis no effect of any serum 376

iron status GPS (serum iron, transferrin, ferritin, 377

and transferrin saturation) on AD risk was identi- 378

fied with a sample size of 6,381 controls and 2,870 379
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Fig. 1. Q-Q plots of the association p-values from the discovery GWAS meta-analyses. Including the GWAS meta-analysis of biochemical
markers of iron status [30] and the International Genomics of Alzheimer’s Project [26]. SNPs in the APOE region (within 500 kb either side
of APOE locus) are excluded from the AD plot. The red line is the line of equivalence, observed = expected.

AD cases (Table 3). Controlling for APOE genotype380

did not significantly affect the results, and no signif-381

icant association was identified in separate APOE ε4382

carrier and non-carrier groups (data not shown). Pre-383

viously three iron level influencing genetic variants384

(HFE rs1800562, HFE rs1799945, and TMPRSS6385

rs855791) have been shown to be associated with PD386

risk [22]. There was no association of these SNPs with387

AD status in our dataset and no interaction identified388

with APOE ε4 status (Supplementary Table 2). In389

addition, the GPS constructed from these three SNPs390

did not have an effect on AD risk (Supplementary391

Table 2).392

Table 2
Serum iron measures in the Australian data set

Serum measure N Mean Range SD

Iron (�mol/L) 8,751 19.54 0.10–50.50 6.74
Transferrin Saturation (%) 8,800 28.71 0.12–95.3 10.80
Transferrin (g/L) 8,891 2.82 1.40–5.19 0.44
Ferritin (log10) (�g/L) 8,892 2.00 0.00–3.26 0.50

There was no association of AD GPS or APOE ε4 393

with any peripheral iron measure (Table 4). 394

SNP effect concordance analysis 395

In agreement with the GPS analysis, we did not 396

identify any significant pleiotropy between datasets 397
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Table 3
The association of serum iron measure genetic profile score
(GPS) at different p value thresholds with AD risk. The associ-
ation analysis was carried out using logistic regression controlling
for sex, age, four ancestry principal components, and study. �,

standardized Beta

GPS Association with AD risk (n = 9,251)

� SE p

Iron p ≤ 1 0.04 0.03 0.278
p ≤ 0.5 0.03 0.03 0.365
p ≤ 0.1 0.01 0.03 0.868
p ≤ 0.05 0.02 0.03 0.638
p ≤ 0.01 –0.01 0.03 0.695
p ≤ 0.001 –0.01 0.03 0.839
p ≤ 0.0001 0.02 0.03 0.624
p ≤ 0.000001 0.02 0.33 0.632

Transferrin p ≤ 1 0.03 0.03 0.291
Saturation p ≤ 0.5 0.03 0.03 0.330

p ≤ 0.1 0.03 0.03 0.381
p ≤ 0.05 0.02 0.03 0.584
p ≤ 0.01 0.02 0.03 0.510
p ≤ 0.001 0.02 0.03 0.590
p ≤ 0.0001 0.02 0.03 0.628
p ≤ 0.000001 0.03 0.03 0.408

Transferrin p ≤ 1 0.00 0.03 0.933
p ≤ 0.5 0.00 0.03 0.950
p ≤ 0.1 0.02 0.03 0.589
p ≤ 0.05 0.01 0.03 0.797
p ≤ 0.01 –0.02 0.03 0.517
p ≤ 0.001 –0.03 0.03 0.299
p ≤ 0.0001 –0.03 0.03 0.404
p ≤ 0.000001 –0.02 0.03 0.467

Ferritin p ≤ 1 0.02 0.03 0.577
p ≤ 0.5 0.03 0.04 0.465
p ≤ 0.1 0.03 0.04 0.465
p ≤ 0.05 0.05 0.04 0.196
p ≤ 0.01 0.03 0.03 0.347
p ≤ 0.001 0.03 0.03 0.355
p ≤ 0.0001 0.03 0.03 0.377
p ≤ 0.000001 0.04 0.03 0.170

or concordant effects using SECA. We tested for398

an excess of SNPs associated with AD also associ-399

ating with iron phenotypes. Using a binomial test,400

we compared the AD dataset with each of the iron401

phenotype datasets in turn examining 144 SNP sub-402

sets (testing twelve p value threshold combinations).403

No SNP sets were found to have nominally signifi-404

cant pleiotropy (Fig. 2). Using Fisher’s test, we also405

tested for an excess of SNPs where the effect direc-406

tions (BETA) are concordant between SNP subsets in407

each dataset. Again, we identified no significant con-408

cordance (Supplementary Figure 2). Additionally, no409

significant pleiotropy or concordant effects were seen410

when switching the primary dataset, i.e., testing for an411

excess of SNPs associated with each iron phenotype412

also associating with AD.413

Table 4
The association of AD GPS at different p value thresholds (exclud-
ing APOE) and number of APOE ε4 alleles with iron phenotypes.
The association analysis was carried out using linear mixed models
implemented in GEMMA (genome-wide efficient mixed-model
association) [37] using the likelihood ratio test. Family rela-
tionships were controlled for using a genetic relatedness matrix
estimated from genotypes. Sex, age, and four ancestry principal
components were also included as covariates. �, standardized Beta

Serum Iron AD GPS N � SE p
Measure

Iron p ≤ 1 8,751 0.02 0.01 0.153
p ≤ 0.5 8,751 0.02 0.01 0.148
p ≤ 0.1 8,751 0.01 0.01 0.349
p ≤ 0.05 8,751 0.01 0.01 0.594
p ≤ 0.01 8,751 0.00 0.01 0.747
p ≤ 0.001 8,751 0.01 0.01 0.405
p ≤ 0.0001 8,751 0.01 0.01 0.615
p ≤ 0.000001 8,751 0.02 0.01 0.119
APOE ε4 8,494 0.00 0.01 0.843

Transferrin p ≤ 1 8,800 371.45 224.20 0.097
Saturation p ≤ 0.5 8,800 201.12 136.43 0.140

p ≤ 0.1 8,800 46.40 54.11 0.391
p ≤ 0.05 8,800 13.37 38.99 0.732
p ≤ 0.01 8,800 2.82 18.46 0.878
p ≤ 0.001 8,800 0.76 6.58 0.908
p ≤ 0.0001 8,800 0.25 2.15 0.908
p ≤ 0.000001 8,800 3.19 1.27 0.012
APOE ε4 8,531 0.02 0.02 0.477

Transferrin p ≤ 1 8,891 –218.75 225.19 0.331
p ≤ 0.5 8,891 –78.29 137.03 0.568
p ≤ 0.1 8,891 9.86 54.36 0.856
p ≤ 0.05 8,891 23.12 39.16 0.555
p ≤ 0.01 8,891 5.87 18.52 0.751
p ≤ 0.001 8,891 16.29 6.58 0.013
p ≤ 0.0001 8,891 4.97 2.15 0.021
p ≤ 0.000001 8,891 –1.77 1.28 0.166
APOE ε4 8,619 –0.02 0.02 0.466

Ferritin p ≤ 1 8,892 156.22 192.51 0.417
p ≤ 0.5 8,892 81.98 117.14 0.484
p ≤ 0.1 8,892 35.61 46.42 0.442
p ≤ 0.05 8,892 7.49 33.47 0.822
p ≤ 0.01 8,892 11.05 15.85 0.485
p ≤ 0.001 8,892 2.53 5.64 0.654
p ≤ 0.0001 8,892 –0.64 1.84 0.728
p ≤ 0.000001 8,892 0.85 1.09 0.435
APOE ε4 8,621 0.01 0.02 0.486

DISCUSSION 414

It is becoming increasingly clear from investiga- 415

tions of iron homeostasis and recent advances in 416

iron imaging methods that iron dysregulation is an 417

important feature of AD, and therefore lowering of 418

iron content in the brain is a potential therapeutic tar- 419

get [39]. But there is limited understanding of the 420

importance of peripheral iron levels in AD risk, and 421

whether prolonged increased or decreased iron levels 422

may be a risk factor for AD. We investigated whether 423

there is a shared genetic basis between AD and 424
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Fig. 2. Genetic overlap between dataset 1 (AD) and dataset 2 (Serum iron). In the SECA analysis, exact binomial statistical tests are performed
to determine whether there is an excess of SNPs associated in both datasets for 144 SNP subsets from 12 × 12 p-value threshold combinations.
A binomial test ‘heatmap’ plot is generated to graphically summarize the proportion of SNP subsets with an excess [observed(obs)≥expected
(exp)] or deficit (obs<exp) number of associated SNPs, and empirical p-values (adjusted for testing all 144 subsets) are calculated via
permutation.

peripheral iron levels using a PRS approach. We iden-425

tified no effect of genetic variants affecting peripheral426

iron biomarkers (including iron, transferrin, transfer-427

rin saturation, and ferritin) on AD risk. Nor did we428

find increased serum iron levels in those who are at429

increased genetic risk of developing AD, including430

both APOE ε4 carriers and those with a higher load of431

other common risk variants. In addition, in an inves-432

tigation of the genetic overlap between AD and each433

iron measure, we do not find any significant overlap434

of genetic loci from the results of large-scale GWAS435

meta-analysis studies.436

Taken together, our results suggest that the causes437

of variation in brain iron that might contribute to AD438

are distinct from those causing variations in circulat-439

ing iron (serum iron) or in iron stores in bone marrow440

or other organs (serum ferritin). Iron retention is441

complex in different organs, and our current data on442

peripheral iron measurement cannot exclude causa-443

tion by other genes that affect iron levels in the brain444

that are not reflected by serum values. In addition,445

the peripheral iron measurements used are stan-446

dard clinical pathology measures. Non-standard and447

possibly more direct measures (such as transferrin 448

saturation using size exclusion chromatography- 449

inductively coupled plasma-mass spectrometry) have 450

been shown to be more sensitive to differences in the 451

blood between AD patients and controls [15]. 452

It is also possible that, even if iron is not a primary 453

cause of increase in AD risk, it accumulates after the 454

initiation of cell damage by other mechanisms, and 455

exacerbates it. Evidence for this comes from recent 456

work showing that once A� forms aggregates they 457

induce iron accumulation [40]. Iron-related therapies 458

could still be relevant for patients who are in the early 459

stages of AD. 460

Iron accumulation in tissues is a feature of many 461

diseases, and may prove to be causal for some. 462

Our current results for AD are in contrast to pre- 463

vious evidence of a causal association of increased 464

peripheral iron measures with a decreased risk of PD 465

[22]. The authors hypothesized that low peripheral 466

iron may decrease neuronal iron storage though a 467

reduction in ferritin, resulting in free iron accumu- 468

lation in the brain. To investigate whether a similar 469

effect exists for AD, we tested a larger number 470
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of iron-affecting variants against the most recent471

GWAS meta-analysis on AD risk. These explain a472

larger proportion of the variance and therefore we473

would expect them to have more power to detect any474

effect.475

However, our analysis has limitations that need to476

be considered. Firstly, the multi-SNP GPS includes477

a large number of genetic variants of unknown effect478

or multiple effects; therefore we cannot rule out that479

as well as affecting iron levels, some also affect AD480

risk though other pathways and could potentially do481

so in opposite directions. To attempt to address this482

issue, we also tested for an effect of three genetic483

variants (in HFE and TMPRSS6) known to have a484

direct role in peripheral iron levels and previously485

shown to have an effect on PD risk [22], where we486

also did not find an effect. In addition, we cannot rule487

out the possibility that other genomic variations, such488

as epigenetic dysregulation, affect iron levels which489

are then causal for AD.490

Secondly, as in other complex diseases and phe-491

notypes, discovered genetic variants only represent492

a small proportion of the variance in both iron lev-493

els and AD risk. This study utilizes summary data494

from the two largest GWAS meta-analysis discov-495

ery cohorts for both AD and biochemical markers496

of iron status (total sample sizes of 54,162 and497

23,986, respectively [26, 30]) to compute compre-498

hensive GPS. In addition, the GPS were applied to499

large samples with individual level genotype and phe-500

notype data (For AD cases-control: 2,813 AD cases,501

and 6,438 controls (of which 4,926 are unscreened502

for AD, aged 54), and ≥8,751 for iron measures).503

Even so, we cannot rule out a small effect that is not504

detectable with this sample size.505

Thirdly, effects on iron in relevant brain areas506

may differ from effects on circulating iron or iron507

in other organs. Previous studies identified an associ-508

ation between iron accumulation in the basal ganglia509

of elderly men and peripheral iron measures [13].510

However, only 9% of the variance of CSF ferritin511

can be explained by plasma ferritin [9], highlight-512

ing the separation between these compartments. It is513

also possible that there are genetic loci more relevant514

to iron-homeostasis in elderly people, as the sample515

used to construct the iron phenotypes GPS have a516

mean age of 47.517

Our results suggest that there is not a causal con-518

nection between lifetime peripheral iron measures519

and increased risk of AD. We did not replicate the520

previous finding of an effect of HFE SNPs on risk of521

AD and an epistatic interaction for risk with APOE ε4522

genotype, but we cannot yet rule out an association 523

of HFE SNPs with AD age of onset or phenotypic 524

interactions [25, 27, 28]. 525

It has been suggested that public recommendations 526

for AD risk reduction should caution the use of iron 527

supplementation for those whom it is not required 528

[18, 41, 42]. Dietary patterns such as a Mediterranean 529

diet and reduced red meat consumption that asso- 530

ciate with lower AD risk do tend to have a low iron 531

intake, but also have other unrelated health benefits 532

for example high intake of vegetables and low satu- 533

rated fat. Consistent with our genetic findings, there 534

is no clear evidence that dietary intervention affecting 535

iron intake alters the risk of AD [18]. More work is 536

needed to assess the effect of iron on the progression 537

(as opposed to the initiation) and age of onset of AD. 538

In conclusion, although iron deposition is an 539

important feature of AD brain tissues, these results 540

suggest that there is not a significant causal relation- 541

ship between lifetime peripheral iron levels and AD. 542
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SUPPLEMENTARY METHODS 

 

GWAS Data and Imputation Methods 

 All AD cohorts were genotyped on the Illumina 610-Quad or Illumina 666W-Quad chip. All 

GWAS data were imputed to the 1000G phase 1 integrated reference panel (April 2012 National 

Center for Biotechnology Information [NCBI] build 37). As genotype data was used from 

multiple sources stringent quality control filters were applied. GWAS data quality control, 

merging and imputation steps have been described in detail previously [1]. 

 The population-based sample set was genotyped on several different genome wide platforms 

(Illumina Human317K, HumanCNV370v1, HumanCNV370-Quadv3, Human610-Quadv1). 

Sample QC included omitting ethnic outliers, duplicate samples, and samples with unresolved 

sex, identity, or pedigree issues (if not correctable after investigation). Mendelian error 

genotypes per marker were removed across families. Exclusion criteria for markers were 

MAF<1%, call rate <0.99, p HWE<10-6, mean GenCall score <0.7. Approximately 281,000 

markers are observed in all genotyping projects. Imputation of approximately 12,000,000 SNPs 

was carried out using the 1000 Genomes reference panel (August 4, 2010 release with European 

haplotypes) using minimac. After imputation 7,262,077 markers passed QC (R2≥0.3). 

In the Australian dataset APOE genotype was estimated from imputed rs429358 and rs7412 SNP 

genotypes, which are not perfectly imputed (R2 values are 0.68 and 0.63, respectively). We 

found the concordance between the imputed and genotyped APOE ε4 was 93%. This was 

calculated by comparing genotyped and imputed APOE (from the Queensland Twin Imaging 

(QTIM) cohort, which had available directly genotyped APOE and was included in the same 

imputation dataset) in a sample size of 3879 [2]. 
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Genetic Profile Scores 

 SNPs with MAF≤0.02, genotyping rate≤0.99 and HWP<1x10-6 in the target sample were 

excluded. Linkage disequilibrium (LD)-based clumping was carried out on all SNPs in the 

discovery data, providing the most significantly associated SNP available in the target data set, in 

each region of LD (using PLINK clumping command with a pairwise r2 threshold of 0.2 and a 

physical distance threshold of 300 kb). SNPs were checked for flip strands between the 

discovery and target sample. The total score is calculated by the number of risk alleles weighted 

by the standardized per-allele effects, beta using PLINK score function. The risk score was 

calculated for p value thresholds of 1x10-6, 1x10-4, 1x10-3, 0.01, 0.05, 0.1, 0.5, and 1 (all SNPs). 

The iron GPS were calculated separately in three imputed AD case-control datasets (as described 

in detailed imputation methods [1]; set 1 consists of GERAD1 and WTCCC2, set 2 of ADNI and 

part of AddNeuroMed, and set 3 the remaining Addneuromed and KPH-DCR). SNPs within 

500kb either side of the APOE locus were excluded from the GPS to ensure all APOE associated 

signal was removed. The APOE effect is not well represented within a GRS owing to the ε4 

allele being a diplotype acting under a co-dominant genetic model, and with a much larger effect 

size than the other common AD risk variants [3]. 
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Alzheimer’s Disease 

p value threshold Australian  

p≤1 833,350 

p≤0.5 483,466 

p≤0.1 127,186 

p≤0.05 69,634 

p≤0.01 17,566 

p≤0.001 2,108 

p≤0.0001 514 

p≤0.000001 42 

Iron 

p value threshold GERAD1-WTCCC AddNeuroMed_1 AddNeuroMed2-DCR ADNI 

p≤1 252,456 244,606 253,672 240,836 

p≤0.5 179,022 172,554 178,822 170,344 

p≤0.1 53,802 51,316 53,124 50,772 

p≤0.05 30,488 28,972 29,954 28,656 

p≤0.01 7,990 7,576 7,854 7,504 

p≤0.001 1,222 1,172 1,218 1,158 

p≤0.0001 276 264 284 256 

p≤0.000001 92 88 98 82 

Transferrin Saturation 

p value threshold GERAD1- WTCCC AddNeuroMed_1 AddNeuroMed2-DCR ADNI 

p≤1 253590 240732 240918 236990 

p≤0.5 179912 170458 170380 168114 

p≤0.1 54280 51132 51100 50692 

p≤0.05 30986 28980 28996 28742 

p≤0.01 8190 7670 7664 7594 

p≤0.001 1302 1214 1202 1214 

p≤0.0001 352 338 324 330 

p≤0.000001 164 158 148 148 

Transferrin 

p value threshold GERAD1- WTCCC AddNeuroMed_1 AddNeuroMed2-DCR ADNI 

p≤1 254286 242506 242854 238678 

p≤0.5 182046 173622 174096 171426 

p≤0.1 57478 54324 54370 53534 

p≤0.05 33606 31760 31766 31414 

p≤0.01 9236 8732 8754 8654 

p≤0.001 1620 1534 1536 1530 

p≤0.0001 420 400 398 388 

p≤0.000001 162 148 158 150 

Ferritin 

p value threshold GERAD1- WTCCC AddNeuroMed_1 AddNeuroMed2-DCR ADNI 

p≤1 242692 232648 232986 228938 

p≤0.5 173016 165518 165664 163236 
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p≤0.1 53188 50292 50072 49560 

p≤0.05 30394 28840 28736 28380 

p≤0.01 8140 7702 7690 7622 

p≤0.001 1204 1138 1138 1126 

p≤0.0001 212 198 202 198 

p≤0.000001 38 40 36 38 

Supplementary Table 1. Number of SNPs included in each genetic profile score for each 

imputation dataset.  
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Variant All 

(n=9,251) 

APOE ε4 +ve 

(n=3,676) 

APOE ε4 –ve 

(n=5,575) 

β SE p β SE P β SE p 

HFE rs1799945 

(H63D) 

-0.009 0.062 0.885 -

0.950 

0.095 0.320 0.023 0.090 0.803 

HFE 

rs1800562(C282Y) 

0.098 0.090 0.279 0.105 0.138 0.444 0.081 0.133 0.540 

TMPRSS6 rs855791 -0.048 0.046 0.295 -

0.003 

0.069 0.962 -

0.093 

0.067 0.164 

Three SNP GPS  -0.002 0.032 0.960 -

0.001 

0.049 0.900 -

0.019 

0.048 0.691 

 

Supplementary Table 2. The association of iron influencing mutations with AD risk. Analysis 

was carried out using logistic regression controlling for sex, age, four ancestry principal 

components, and study. Genotypes were tested under an additive model with the risk allele being 

that associated with increased iron levels. The genetic profile score (GRS) is generated from the 

three genotypes. Standardized Betas (β) are shown. 
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Supplementary Figure 1. The meta-analysis used effect size estimates and standard errors with 

a random effects model. ES represents the effect size which is the combined β value. I2 is a 

measure of between study heterogeneity. Results shown for p≤0.5 threshold only, but no 

significant association or heterogeneity between datasets was observed at any p value threshold. 

Group 1 is GERAD1 together with WTCCC21958 British Birth Cohort, Group 2 is 

AddNeuroMed (second batch) with DCR, Group 3 is AddNeuroMed (first batch), and Group 4 is 

ADNI.  
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Supplementary Figure 2. SNP effect direction between dataset 1 (AD) and dataset 2 (Serum 

iron). In the SECA analysis, Fisher’s exact statistical tests are performed to determine whether 

there is an excess of SNPs where the effect directions (BETA) are concordant across dataset1 

and dataset2 for 144 SNP subsets from 12x12 p-value threshold combinations. A Fisher’s test 

‘heatmap’ plot is generated to graphically summarize the proportion of SNP subsets with 

concordant (Fisher’s test odds ratio, ORFT≥1) and discordant (ORFT<1) SNP effects, and an 

empirical p-value (pFTsig-permuted) is calculated via permutation for the observed number of 

subsets (nFTsig) with nominally significant concordance (ORFT≥1and pFT≤0.05).  
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