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The aim of the study was to assess factors leading to revision surgery and implant position of primary
orbital fracture reconstructions.

A retrospective cohort included patients who underwent orbital floor and/or medial wall fracture
reconstruction for recent trauma. Demographics, fracture type, surgery and implant-related variables,
and postoperative implant position were analyzed.

The overall revision surgery rate was 6.5% (15 of 232 surgeries). The rate was highest in combined
midfacial fractures with rim involvement (14.0%), lower in zygomatico-orbital fractures (8.7%), and
lowest in isolated blowout fractures (3.8%). Fracture type, orbital rim fixation and implant malposition
predicted revision. The best positioning was achieved with patient-specific milled titanium implants
(mtPSI) and resorbable materials, whereas the poorest with preformed three-dimensional titanium
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Combined midfacial fractures with rim involvement in particular have a high risk for orbital revision
surgery. Within the limitations of the present study, mtPSIs should be preferred in the reconstruction of

primary orbital fractures if possible.
© 2021 The Author(s). Published by Elsevier Ltd on behalf of European Association for Cranio-Maxillo-
Facial Surgery. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

1. Introduction

Common indications for surgical repair of isolated orbital frac-
tures are globe malposition (GMP) i.e., enophthalmia or hypo-
globus, severe restriction of ocular motility, large area of fracture,
orbital volume change, volume of herniated soft tissue and non-
resolving symptomatic diplopia (Alinasab et al., 2011; Ellis and
Tan, 2003; Bianchi et al., 2019; Jansen et al., 2020). Both orbital
fractures and reconstruction of the fractures can lead to long-term
sequelae such as diplopia, ocular motility impairment, deformity
due to GMP, hypoesthesia in the infraorbital nerve region, lid
malposition, disturbances in visual acuity, and even blindness
(Girotto et al., 1998; Chi et al., 2010; Brucoli et al., 2011; Zhang et al.,
2012; Boyette et al., 2015; Al-Moraissi et al., 2018; Schonegg et al.,
2018; Causbie et al., 2020).

Revision surgery after orbital reconstruction is common, with
revision rates ranging from 2% to 18%. However, these figures are
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mostly derived from studies with limited patient populations
(Scolozzi et al., 2009; Gordon et al., 2012; Cho and Davies, 2013;
Schlittler et al., 2018; Causbie et al., 2020). The most common cause
of orbital fracture revision surgery is radiologic implant malposi-
tion combined with a clinical symptom or finding (Schlittler et al.,
2018). Such symptoms can include, for example, globe malposition
(GMP), visual acuity disturbances, restricted ocular motility, or
diplopia (Schlittler et al., 2018). Complications may be at least
partially attributable to poor surgical techniques (Brucoli et al.,
2011; Boyette et al., 2015; Kim et al., 2017). In addition to factors
related to surgical technique, previous research evaluated the size
and type of fracture and the implant material as predictors for
surgical outcome (Whitehouse et al., 1994; Raskin et al., 1998;
Gosau et al., 2011; Avashia et al., 2012; Bruneau et al., 2016; Choi
et al., 2016; Snall et al., 2019). Implant materials commonly used
in orbital reconstruction are titanium, polymer of polylactide acid,
polyglycolic acid, or both (PLA, PGA, PLGA), bioactive glass, autol-
ogous bone, porous polyethylene, and polyetheretherketone
(Avashia et al., 2012). As such, different implants carry advantages
and limitations depending on the clinical situation, although no
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evidence exists indicating an obvious superiority of any material
(Avashia et al., 2012).

The aim of the study was to assess factors leading to revision
surgery and implant position of primary orbital fracture re-
constructions. The hypothesis was that different fracture types and
the reconstruction material used correlate with revision rates.

2. Materials and methods
2.1. Study design

Patient data from all orbital floor and/or medial wall fracture
reconstructions performed at the Department of Oral and Maxil-
lofacial Diseases, Helsinki University Hospital, from January 1, 2011
to October 30, 2019 were collected retrospectively.

2.2. Inclusion and exclusion criteria

The patients included underwent reconstruction of the orbital
floor, medial wall, or both due to recent trauma (<3 weeks). Pa-
tients without postoperative imaging were excluded.

2.3. Study variables

The outcome variable was
reconstruction.

The primary predictor variable, scoring of implant position, was
classified as good, acceptable, or poor. Additional predictor vari-
ables were reconstruction location (orbital floor, medial wall, or
combined floor and medial wall), material of primary reconstruc-
tion, screw fixation of orbital implant, orbital rim plate fixation, and
surgical approach (transconjunctival or skin approach).

Explanatory variables were fracture type (isolated blowout
fracture, i.e. orbital floor and/or medial wall fracture without frac-
ture of the orbital rim, zygomatico-orbital fracture, and other
midfacial fracture extending to orbit), indication for surgery (clas-
sified into two categories: volume change as the only indication
and clinical symptoms with or without volume change), recon-
struction difficulty (normal or difficult), and time from injury to
surgery.

revision surgery of orbital

2.4. Radiological evaluation

Two researchers with expertise in orbital fractures (M.N., ].S.)
reviewed the pre- and postoperative radiological scans using cor-
onal, axial, and sagittal plane images. CT images were viewed once
independently. Differing ratings between the researchers were
resolved by re-evaluating the imaging data together. The final
grading of implant position and reconstruction difficulty were set
according to the lower assessment.

Implant position was graded at three sites (anterior, middle, and
posterior part of the reconstruction) with a three-point scale ac-
cording to the classification by Ellis and Tan (2003). An overall score
of implant position based on the worst site-specific rating was
formed. Unless otherwise specified, scoring of implant position
refers to this overall score.

To assess the difficulty of reconstruction, Jaquiery's classification
of orbital defects was used. Category IV is defined as “defect of the
entire orbital floor and the medial wall, extending into the posterior
third with a missing bony ledge medial to the infraorbital fissure”.
In category V, the defect also extends to the orbital roof. Categories
I-Ill were considered as normal difficulty of reconstruction and
categories IV and V as a difficult reconstruction (Jaquiery et al.,
2007).
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2.5. Statistical analyses

Data were analyzed using GraphPad Prism, version 5.00
(GraphPad Inc.). The two-tailed Mann-Whitney test was applied to
assess the significance of differences in continuous variables.
Fisher's exact test was used to examine the association between
variables with nominal scales. P-values of less than 0.05 were
considered statistically significant.

2.6. Ethical approval

The internal review board of the Head and Neck Center, Helsinki
University Hospital (HUS/356/2017) approved the study protocol.

3. Results
3.1. Characteristics of population

A database search of all orbital reconstruction surgeries yielded
265 reconstructions. Of these, 18 were excluded for being late or
secondary reconstructions (all of these were over six weeks from
trauma), 10 for being tumor surgery, and five for lack of post-
operative scans. Of the remaining 232 orbital reconstruction sur-
geries on 230 patients, two patients received bilateral
reconstruction. All patients were imaged postoperatively to eval-
uate implant position: 229 patients with CT and one patient with
magnetic resonance imaging (MRI). Thus, a total of 230 patients
with 232 orbital fracture reconstructions with adequate medical
records were analyzed to determine the revision rate of orbital
reconstructions and to characterize predisposing factors.

Two-thirds (67.8%) of the patients were men (Table 1), and the
mean age was 47.6 (range 13—91) years. The most common injury
mechanism was assault (42.2%), followed by fall on level ground
(26.7%) and motor vehicle accident (9.5%). The mean follow-up
time was 153 days (range 0—862).

Orbital reconstruction materials used were manually bent tita-
nium mesh (Synthes/DePuySynthes, Stryker), preformed three-
dimensional titanium plate (Synthes/DePuySynthes, KLS Martin,
Stryker), patient-specific milled titanium implant (mtPSI) (Plan-
meca Ltd. (Karkkainen et al., 2018)), bioactive glass (BAGS53P4
BonAlive Biomaterials Ltd (Stoor et al., 2015)), and polymer of
polylactide acid or polyglycolic acid or both (PLA/PGA/PLGA,

Table 1
Descriptive statistics of 230 patients with 232 orbital fracture reconstructions.

All n (%) Nonrevision n (%)  Revision n (%)
Number of patients 230 215 15
Age (years)
Median 45.8 46.4 50.6
Mean + SD 470+ 179 47.6+183 48.6 + 193
Range 90.8—12.8 90.8—12.8 82.0-20.5
Sex
Male 156 (67.8) 143 (91.7) 13 (8.3)
Female 74 (32.2) 72 (97.2) 2(2.7)
Injury mechanism
Assault 98 (42.2) 91 (92.9) 7(7.1)
Fall on level ground 62 (26.7) 57 (91.9) 5(8.1)
Motor vehicle accident 22 (9.5) 20 (90.9) 2(9.1)
Sports 21 (9.1) 21 (100) 0
High energy fall 15 (6.5) 15 (100) 0
Bicycle 10 (4.3) 9 (90.0) 1(10.0)
Other 2(0.9) 2 (100) 0
Follow-up time (days)
Mean + SD 153 + 171 146 219 + 149
Range 0—862 0—-862 2—484
Median 98.0 90.0 195
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Table 2
Differences between explanatory variables and need for revision surgery after primary orbital fracture reconstruction.
All reconstructions n (%) Nonrevision n (%) Revision n (%) P value
Number of reconstructions 232 217 (93.5) 15(6.5)
Fracture type
Isolated blowout 159 (68.5) 153 (96.2) 6(3.8) .03
Floor 98 94 (95.9) 4(4.1)
Combined floor and medial 60 58 (96.7) 2(3.3)
Medial 1 1(100) 0
Zygomatico-orbital 23 (9.9) 21 (91.3) 2(8.7)
Combined midfacial fracture with rim involvement 50 (21.6) 43 (86.0) 7 (14.0)
Indication for surgery
Volume change as the only indication 118 (50.9) 110 (93.2) 8(6.8) 1.0
Clinical indication(s) for surgery 114 (49.1) 107 (93.9) 7 (6.1)
Several symptoms 30 30 2
Restricted eye movements 33 30 3
Double vision 37 35 2
Globe malposition 14 12 0
Reconstruction difficulty
Normal (Jaquiéry et al. I-III)? 217 (93.5) 205 (94.5) 12 (5.5) .06
Difficult (Jaquiéry et al. IV-V)? 15 (6.5) 12 (80.0) 3(20.0)
Time from injury to surgery + SD (days)
Mean + SD 6.8 +4.1 6.8 +4.1 6.1 +34 31
Range 0-21 0-21 1-13
Revision rate 15/232 (6.47)
Revision delay (days from primary surgery) + SD 35.8 + 68.0
Range 0-236
Median 6

@ Jaquiery C, Aeppli C, Cornelius P, Palmowsky A, Kunz C, Hammer B: Reconstruction of orbital wall defects: critical review of 72 patients. Int ] Oral Maxillofac Surg
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Synthes, Stryker). All manually bent titanium meshes were modi-
fied to their final shape intraoperatively.

3.2. Characteristics of injuries and initial reconstruction

Orbital volume change as the only indication for orbital recon-
struction was noted in more than half (50.9%) of the 232 re-
constructions, while one or more clinical indications were present
in the rest. The mean time from injury to initial reconstruction was
6.8 days (range 0—21 days) for all reconstructions. The mean time
from injury to surgery for different implant materials were as fol-
lows: 5.6 days (range 0—18 days) for manually bent titanium
meshes, 6.3 days (range 0—17 days) for preformed three-
dimensional titanium plates, 9.6 days (range 4—21 days) for
mtPSIs and 5.0 days (range 1—12 days) for resorbable materials.
Manually bent titanium mesh was the most commonly used
reconstruction material (43.5%), followed by preformed three-
dimensional titanium plate (26.7%), mtPSI (25.4%), bioactive glass
(3.0%), and PLA/PGA/PLGA resorbable sheet (1.3%). In 144 re-
constructions (62.1%), the surgical approach was transconjunctival
and in 88 transcutaneous (37.9%); six of the latter used an existing
laceration. Intraoperative CT or navigation technique was not used.

Overall, 15 patients needed revision surgery (6.5%). The mean
delay from initial surgery to revision was 35.8 days (range 0—236,
median 6). Indications for revision surgery were as follows:
radiologically unsatisfying implant placement without clinical
symptoms in six patients (all of these implants were protruding to
the maxillary sinus or ethmoids and were graded as poor), com-
bination of suboptimal position and clinical symptoms in seven
patients (restriction in ocular motility in three, several symptoms in
three, and double vision in one), and a clinical symptom with
radiologically ideal implant position in two patients (ocular
motility restriction). One patient underwent two revision proced-
ures. None of the revisions were caused by infection, retrobulbar
hematoma, or other immediately vision-threatening conditions. At
least 9 months from primary surgery to data collection was
completed in all patients.

3.3. Predisposing factors

Differences in fracture type were statistically significant be-
tween nonrevision and revision groups (P =.034) (Table 2). Revi-
sion surgeries were least frequent in isolated blowout fractures
(3.8%), more common in zygomatico-orbital fractures (8.7%), and
most frequent in combined midfacial fractures with rim involve-
ment (14.0%). The use of orbital rim fixation correlated significantly
with revision surgery (P =.043) (Table 3). Scoring of implant po-
sition was significantly related to subsequent revision (P < .0001).
Other variables remained nonsignificant for revision surgery.

Implant malposition was common; 21.6% of all reconstructions
received an acceptable score in at least one part of the recon-
struction, and a poor score was given to 5.6% (Fig. 1 and Fig. 2)
(Table 3). Thus, a total of 27.2% of reconstructions were less than
ideal. In the revision group, 60.0% of reconstructions were scored as
poor and 26.7% as acceptable, in contrast to 1.8% and 21.2%,
respectively, in the nonrevision group. The site-specific scores
(Fig. 3) show that the posterior site of reconstruction, i.e., the
posterior edge of the implant, was most often scored as acceptable
(15.1%) or poor (4.7%).

Differences between implant materials were significant in
scoring of implant position (Table 4) (P = .0011). The best posi-
tioning was achieved with mtPSIs and biomaterials, whereas
reconstruction with the preformed three-dimensional titanium
plate was most often suboptimal.

4. Discussion

Orbital reconstruction surgery is challenging, as reflected by the
relatively high revision rates (Scolozzi et al., 2009; Gordon et al.,
2012; Cho and Davies, 2013; Schlittler et al., 2018; Causbie et al.,
2020), and exposes the patient to significant sequelae (Girotto
et al.,, 1998; Boyette et al.,, 2015; Causbie et al., 2020). The study
aimed at assessing factors leading to revision surgery and implant
position of primary orbital fracture reconstructions. The hypothesis
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Table 3
Differences between predictor variables of nonrevision and revision groups after primary reconstruction of orbital fractures.
All reconstructions n (%) Nonrevision n (%) Revision n (%) P value

Number of reconstructions 232 217 15
Scoring of implant position
Good 169 (72.8) 167 (98.8) 2(12)
Acceptable 50 (21.6) 46 (92.0) 4 (8.0)
Poor 13 (5.6) 4(30.8) 9(69.2) <.0001
Reconstruction location
Floor 196 (84.5) 185 (94.4) 11 (5.6)
Combined floor and medial 35(15.1) 31(88.6) 4(11.4)
Medial 1(0.4) 1(100) 0 0.42
Material of primary reconstruction
Manually bent titanium mesh 101 (43.5) 96 (95.0) 5(5.0)
Preformed three-dimensional titanium plate 62 (26.7) 54 (87.1) 8(12.9)
Patient-spesific milled titanium implant 59 (25.4) 57 (96.6) 2(34)
Bioactive glass 7 (3.0) 7 (100) 0
Polylactide acid and/or polyglycolic acid polymer 3(1.3) 3(100) 0 0.18
Screw fixation of orbital implant
Yes 25 (10.8) 21 (84) 4(16.0)
No 207 (89.2) 196 (94.7) 11(5.3) 0.06
Orbital rim plate fixation
Yes 68 (29.3) 60 (88.2) 8(11.8)
No 164 (70.7) 157 (95.7) 7(43) 0.04
Surgical approach
Transconjunctival 144 (62.1) 137 (95.1) 7 (4.9)

With cantholysis or canthotomy 48 44 (91.7) 4 (8.3)
Skin incision 88 (37.9) 80 (90.9) 8(9.1) 0.27

Employment of existing laceration 6 6 (100) 0

was that fracture type and reconstruction material correlate with
revision rate.

Our hypothesis was partially confirmed; scoring of implant
position and fracture type were associated significantly with revi-
sion surgery, and the posterior part of the reconstruction was the
most common site of implant malposition. Also, revision correlated
with fracture complexity, i.e. fracture type and orbital rim fixation.
Even though the differences between reconstruction materials and
need for revision remained nonsignificant, statistical significance
was found between the materials used and implant position.
Among the materials most often used, mtPSIs (Fig. 4 and Fig. 5) and
biomaterials received the highest scoring of implant positioning,

Fig. 1. A coronal view of an orbital fracture reconstruction graded as poor both
medially and posteriorly. The difficulty of reconstruction was graded as difficult. The
patient presented with double vision and globe malposition postoperatively and
eventually underwent a successful revision surgery. A manually bent titanium mesh
was used in both reconstructions.

although the number of the latter were small. Perhaps a little sur-
prisingly, the poorest positioning was found with preformed three-
dimensional titanium plates (Table 4).

Revision rate for all orbital reconstructions was 6.5%, which is at
the lower end of the spectrum compared with the rates found in
the literature (2—18%) (Scolozzi et al., 2009; Gordon et al., 2012;
Cho and Davies, 2013; Schlittler et al., 2018; Causbie et al., 2020). It
should be noted that implant position was suboptimal (poor or
acceptable) in 86.7% of orbits in the revision group. Only two (1.2%)
of 169 radiologically ideal reconstructions required revision, which
was based exclusively on clinical symptoms. In contrast, 13 (20.6%)
of 63 suboptimal reconstructions had revision surgery, and seven of
these cases also had significant clinical symptoms. Thus, clinical
symptoms follow the radiological success of the reconstruction.
Implant malposition was common; more than one-fourth of all
reconstructions had a suboptimal score in at least one location. This
is lower than rates reported in the study by Schlittler et al., in 2018
(27.2% vs. 53.4%), perhaps reflecting the frequent use of mtPSIs in
the current study.

Fig. 2. The same reconstruction as in Fig. 1 from a sagittal view.
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Fig. 3. Scoring of implant position by site (all reconstructions, n = 232).

Table 4
Implant material versus scoring of implant position after orbital fracture reconstruction.
Material Good Scoring of implant position Poor P value
Acceptable
n (%) n (%) n (%)
Manually bent titanium mesh 101 78 (77.2) 17 (16.8) 6 (5.9) .001
Preformed three-dimensional titanium plate 62 31 (50.0) 25 (41.7) 6(9.7)
Patient-spesific milled titanium implant 59 50 (84.7) 8(13.6) 1(1.7)
Bioactive glass 7 7 (100) 0 0
Polylactide acid and/or polyglycolic acid polymer 3 3(100) 0 0

The preformed three-dimensional titanium plate had the
highest revision rate of 12.9%, while manually bent titanium mesh
had a revision rate of 5.0% and mtPSIs 3.4%. None of the ten frac-
tures reconstructed with resorbable implants required revision.
Wide fractures as well as fractures extending to both the orbital
floor and medial wall are difficult to reconstruct at the primary
stage with the resorbable implants used in this study, thus, the
most challenging fractures were reconstructed with titanium.
Although the differences were not statistically significant, the high
revision rate of the preformed three-dimensional titanium plate
raises concerns. It is designed to mimic the average anatomy, but it
is stiff and poorly malleable. As presented previously, recon-
structing large orbital defects with non-customized plates may lead
to incomplete fracture coverage (Schlittler et al., 2020). This lack of
adjustability may cause suboptimal fit and soft tissue entrap-
ment—possibly leading to more revision surgeries and other
complications.

Customized implants can be manually formed intraoperatively
or on a 3D template preoperatively, or preoperatively created with

a CAD/CAM process, as mtPSIs in this study. These results are in
concordance with a previous multicenter study showing that
customized implants in general provide more accurate restoration
of orbital volume than non-customized implants (Zimmerer et al.,
2016). The traditional manually bent titanium mesh is affordable
and versatile in use, enabling its application in emergent situations,
but the intraoperative shaping of these implants requires experi-
ence and skill of the surgeon in order to adequately replicate the
natural anatomy.

mtPSIs received a significantly better scoring of implant position
than the other two types of titanium implants (Table 4). Using these
implants in late reconstructions is common, but using them in
primary reconstructions presents challenges, especially treatment
delay (Schlittler et al., 2020). The protocol developed in our clinic
enables their use in primary reconstructions as well, without
delaying the treatment (Karkkdinen et al., 2018). In the current
study, the mean time from injury to surgery was 6.8 days for all
materials and 9.6 days for mtPSIs. During recent years our pre— and
postoperative protocols and techniques for orbital surgery have
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Fig. 4. An optimal orbital fracture reconstruction of an extensive fracture of the orbital
floor and medial wall, with clinical globe malposition. The difficulty of reconstruction
was graded as difficult. The fracture was reconstructed at two weeks from trauma with
a two-piece patient-specific milled titanium implant.

developed, and in the last few years of the study mtPSI use in more
complex fracture types had increased. It is also worth noting that of
the two mtPSIs needing a revision surgery both were placed within
the first year of the study (in 2011), likely reflecting the learning
curve and development of the technology. These implants can be
designed to engage fracture edges and anatomical landmarks and
are a good alternative for navigation use and intraoperative imag-
ing (Stoor et al., 2014).

As hypothesized, implant malposition was most common in the
posterior part of the reconstruction, with 15.1% given an acceptable
and 4.7% a poor score. The posterior site and its importance in
orbital reconstruction have been previously emphasized (Evans and
Webb, 2007; Harris, 2014; Purnell et al., 2018; Ahmad Nasir et al.,
2018). The posterior site is not usually directly visualized, particu-
larly in fractures with extensive soft tissue prolapse and edema. The
tapering shape of the orbit and the fragile medial wall complicate
soft tissue preparation, implant positioning, and identification of
anatomical structures such as infraorbital fissure and sinuses.
Exposing the fracture in the posterior area is challenging, especially
for inexperienced surgeons. Intraoperative CT and navigation can
be used for anatomical guidance with good results (Shaye et al.,
2015; Zimmerer et al., 2016; Zavattero et al., 2017; Tel et al., 2019;
Causbie et al., 2020). These technical solutions were not available in
surgeries of the present study.

Notably, screw fixation of the orbital implant was used in only
10.8% of surgeries, but is present in 26.7% of the reconstructions
requiring revision surgery. In our unit, the tradition has been to aim
for a passive fit of the implant without screw fixation and resort to
screw fixation only when this fails. As a result, screw fixation may
be favored in more difficult reconstructions. While the much lower
revision rate (5.3%) of reconstructions with unfixed implants might
be explained by less difficult surgeries, this data does support the
practice of not using screw fixation if clinically stable implant po-
sition is achieved. Fixation may appear necessary when facing ad-
versities in implant placement, when in fact the problem might be
soft tissue entrapment or poor fit. Screw fixation can be necessary
with complicated defects, but even then, it is crucial to first ensure
good implant placement and unrestricted ocular movement
afterward.

A fracture involving the orbital rim adds another degree of
freedom to the orbit. These results show that optimal reconstruc-
tion of the orbit is most difficult in complex midfacial fractures.
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Fig. 5. The same reconstruction as in Fig. 4 from a sagittal view.

These situations require particular attention and good preoperative
planning. A two-stage approach may be a good option in select
cases; for example, if it is appropriate to confirm the reduction of
the other midfacial fractures before orbital reconstruction, but
intraoperative imaging is not available. In some cases, soft tissue
swelling or acute eye injury may also delay orbital reconstruction.
Naturally, a second surgery will cause an additional soft tissue
trauma and require a second time under general anesthesia, which
is why priority should be given to high-quality single-stage surgery,
and especially its careful planning. A good option is to create virtual
reduction and a reduced physical 3D-model of the orbit. A titanium
plate can be prebent according to the model to achieve a good
approximation of a truly customized implant. Furthermore, devel-
opment of virtual methods enables more versatile options for
customized surgery and implants without intermediate steps.

Postoperative CT scan is part of our routine protocol. There have
been specific concerns of cataract formation due to CT scans
(Chodick et al., 2008), but recent studies have alleviated these
worries (Gaudreau et al., 2020). Despite visual control during the
surgery, implant malposition rates tend to be high and revision
surgeries fairly common. In our view, this and the possibility of
severe preventable complications going unnoticed justify the ra-
diation exposure.

The retrospective design and low number of revisions are the
main limitations of this study. The follow-up period varied; how-
ever, symptomatic patients are likely to seek treatment. Unfortu-
nately, orbital reconstruction experience of the surgeons or
intraoperative challenges could not be clarified, which would have
given more impact to the results. Also, the surgical approach, which
may influence the end-result (Mohamed et al., 2020), was not
described in detail. Diplopia was classified only as present or absent
and during the study period minor diplopia symptoms were not
categorically examined. In our current practice, all patients with
orbital fractures are routinely examined by an ophthalmologist. The
reliability of implant position evaluation would have been
enhanced by the involvement of more evaluators and even better
reliability may be achieved in the future with computer-assisted
technologies that have been implemented in measuring orbital
volumes (Gomes de Oliveira et al., 2019; Chepurnyi et al., 2020).
Additional studies are needed to assess the cost-effectiveness of
different implant materials, including analyses of revision rates and
clinical outcomes. The current study focused on revision rates and
implant position, but several other complications and disadvan-
tages may occur after orbital fracture surgery.
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5. Conclusion

Despite advances in materials, complex orbital fractures remain
challenging to reconstruct and suboptimal implant positioning is
common. Fortunately, severe vision-threatening postoperative
conditions leading to revision surgery are rare. Implant malposi-
tion, with or without clinical symptoms, was the main reason for
revision. Suboptimal implant positioning and need for revision
surgery can be reduced with careful surgical planning especially in
combined midfacial fractures. To attain optimal surgical outcomes
and sufficient experience for the surgeon, it would be beneficial to
centralize orbital fracture surgery to surgeons specialized in facial
fracture surgery. Within the limitations of the present study, mtPSIs
should be preferred in primary orbital fracture reconstructions if
possible.
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