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Abstract 

Cardiovascular diseases (CVDs) continue to be a significant public health challenge. Vascular 

calcification (VC) is a major risk factor for the development and progression of CVDs. Smooth muscle 

cells (SMCs) transition into osteoblast-like cells and represent the primary contributor to the 

pathogenesis of calcification. Here we aimed to develop a reporter assay, to trace the activation of 

calcification events using five selected calcification markers (ALPL, RUNX2, ACAN, CHAD and COL2a1). 

Cultured human coronary smooth muscle cells (HCASMCs) were transduced with viral vector containing 

reporter construct driven by the above calcification marker gene promoters. Stable clones were selected 

using puromycin and calcification was induced with two calcifying media (inorganic phosphate (IP) and 

osteogenic medium (OM)) for seven (7) days. As a control we utilized media without calcification. 

Calcification nodules were generated and stained with calcein, dissociated with EDTA-collagenase assay 

into single cells and sorted by FACS. Images were generated from Incucyte Zoom. Data were analysed 

using Fiji/ImageJ and GraphPad (10.0.2). Calcification was successfully induced in all the stable lines, 

with IP treated cells showing early stronger calcification as compared to cells treated with OM. 

Furthermore, OM treated cells, demonstrated changes in the cell morphology and crystals rather than 

calcified nodules. There was no significant difference between the basal condition and IP treated cells, 

but there was a difference in OM-treated cells. FACS analysis demonstrated that ALPL and CHAD 

exhibited the highest reporter gene expression in response to OM, suggesting their superiority over the 



other reporters in reflecting the calcification response of SMCs. In future, the reporter system could 

serve as a quick assay for effectiveness in CRISPR or drug screening for VC.
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Introduction  

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels, including 

coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other conditions (Roth et 

al, 2015; McAloon et al, 2016; Vaduganathan et al, 2022). According to the World Health Organization 

(2022), 17.9 million people worldwide are estimated to die from CVDs each year (WHO, 2022). Globally, 

the number of CVD deaths has increased from 12.1 million in 1990 to 20.5 million in 2021, with low- 

and middle-income nations accounting for four out of every five CVD fatalities (World Health 

Federation, 2023). In the United States (US), about 695,000 people died from heart disease in 2021, 

which is one in every five deaths (Vaduganathan et al, 2022). According to preliminary mortality data 

for 2021, heart disease and stroke continued to be the US's top two killers, respectively, even during the 

COVID-19 pandemic. (Ahmad, Cisewski and Anderson, 2022). Similarly, Townsend et al. (2022) reports 

that CVD is one of the leading causes of death in Europe, accounting for 37% of deaths within the 

European Union and 45% of fatalities across the continent. 

Worldwide trends for disability-adjusted life years for CVD and the burden of CVD related to modifiable 

risk factors have also increased significantly since 1990 (Murray et al. 2020), despite improvements in 

managing CVD and other health outcomes. This is so because there are numerous and diverse risk 

factors for CVD. Tobacco use, diabetes, hypertension, high cholesterol, obesity, and unbalanced diets 

are some of the more prevalent risk factors. Studies have shown that CVDs are important risk factors 

that can influence the development of diverse pathological conditions such as metabolic syndromes 

(Guembe et al, 2020), diabetes (Leon and Maddox, 2015; Dal Canto et al, 2019) and kidney disease 

(Major et al. 2018; Jankowski et al. 2021). Therefore, these studies highlight the interconnecting 

relationship between the state of the heart’s health and the incidence of these diseases and how these 

diseases influence an increased incidence of CVDs.  

The heart remains the focal point of cardiovascular diseases (Fuchs and Whelton, 2019). As a vital organ 

in the circulatory system, it functions as a four-chambered muscular pump that propels oxygenated 

blood throughout the body (Kuhn and Lynch, 2016). The right side of the heart receives oxygen-poor 

blood from the body and pumps it to the lungs for oxygenation. The left side receives oxygenated blood 

from the lungs and pumps it to the rest of the body (Lusis, 2000). Circulation of oxygenated blood to 

the rest of the body is executed via blood vessels called arteries (Björkegren and Lusis, 2022). Several 

https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://world-heart-federation.org/news/deaths-from-cardiovascular-disease-surged-60-globally-over-the-last-30-years-report
https://world-heart-federation.org/news/deaths-from-cardiovascular-disease-surged-60-globally-over-the-last-30-years-report
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studies have highlighted that the leading cause of death associated with cardiovascular disease is 

majorly caused by atherosclerosis (Mahmoud et al, 2014; Björkegren and Lusis, 2022). Coronary artery 

disease (CAD), often referred to as ischemic heart disease (IHD) or coronary heart disease (CHD), remains 

the most prevalent form of atherosclerotic cardiovascular disease (Shao et al, 2020). It is primarily caused 

by the gradual build-up of atherosclerotic plaques within the coronary arteries, which supply oxygen 

and nutrients to the heart muscle (Bentzon et al, 2014). Frostegård (2013) reports that these plaques 

consist of cholesterol, fatty deposits, inflammatory cells, and cellular debris that accumulate within the 

arterial walls.  

 

Fig. 1: Anatomy overview of human heart showing its vasculature including the coronary arteries.  

Source: Kuhn and Lynch (2016). 

Aside from the lifestyle risk factors of CVDs, there are pieces of evidence that the major risk factor for 

the development and progression of CVDs is a pathophysiological condition referred to as vascular 

calcification (VC) (Himmelsbach et al, 2020; Lee et al, 2021). Many diseases such as atherosclerosis, 

chronic kidney diseases and diabetes have been proven to have high prevalence of VC (Stabley et al, 
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2017; Valdivielso et al, 2019). In advanced cases, atherosclerotic plaques may advance further in 

development, undergoing the process of calcification, thereby contributing to the plaque stability, 

rigidity, and reduced flexibility (Trion and van der Laarse, 2004; Achim et al, 2022). Therefore, this 

transformative process has implications for the mechanical properties of the artery, reducing its ability 

to dilate and contract properly and further comprising the heart’s ability to function.  

Calcification in the context of cardiovascular diseases (CVDs) involves the accumulation and deposits of 

calcium and phosphate known as hydroxyapatite within tissues, particularly in the blood vessels and 

heart valves (Lee, Morrisett and Tung, 2012). In CVDs, calcification takes on two primary forms: vascular 

calcification and valvular calcification (Obisesan et al, 2022; Vieceli Dalla Sega et al, 2022). Vascular 

calcification (VC) occurs within the arterial walls, especially in areas affected by atherosclerosis (Wu, 

Rementer and Giachelli, 2013; Lee, Lee and Jeon, 2020). Valvular calcification, on the other hand, involves 

the deposition of calcium on heart valves, like the aortic and mitral valves (Achim et al, 2022). The 

accumulation of calcium on valve leaflets leads to their stiffening and reduced capacity to open and 

close as needed. This condition, known as valvular stenosis, obstructs blood flow and places additional 

strain on the heart (Björkegren and Lusis, 2022). 

VC occurs in both intimal and medial layers of the blood vessel (arteries) (Durham et al, 2018) Fig.1. 

Intimal calcification (IC) occurs in atherosclerotic plaque formed in the lumen of the blood vessel, 

consisting of fibrous cap and other cell types contributing to stability, rupture of plaque and restriction 

of blood flow (Lanzer et al, 2021). As shown in Figure 4, medial calcification (MC) has been discovered 

to be caused by alteration of the VSMCs microenvironment giving rise to diverse cell type such as the 

osteoblast-like, foam cells which promote mineralization (deposit and accumulation of calcium and 

phosphate) in extracellular matrix (Durham et al, 2018). Arterial blockage and atherosclerotic plaque 

rupture are both associated with intimal calcification (Karwowski et al, 2012). Contrarily, medial 

calcification is associated with vascular stiffness, systolic hypertension, and increased pulse wave 

velocity, all of which contribute to heart failure and diastolic dysfunction (Chow and Rabkin, 2015; St. 

Hilaire, 2022). VC is an active process similar to bone formation process (Espinosa-Diez et al., 2021). The 

pathogenesis of VC has been reported to be primarily driven by vascular smooth muscle cells (VSMCs) 

(Durham et al., 2018). 
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Fig.2: Coronary Artery Calcification 

In the blood vessel there are diverse cell types which include VSMCs, pericytes, fibroblasts, endothelial 

cells contributing to the normal physiological function of the vessel (Jiang et al, 2021). VSMCs are 

integral components of blood vessel playing various crucial role in many physiological processes.  They 

are non-striated, contractile and non-voluntary cells which are not terminally differentiated and show 

phenotypic plasticity. They are known to be the most abundant cell type in the blood vessel that aids 

proper flow of blood around the body by contraction and relaxation (Durham et al, 2018). These cells 

possess unique contractile properties, enabling them to regulate blood vessel tone, blood pressure, and 

blood flow (Anwar et al, 2012; Cao et al, 2022).  

In normal physiological state, VSMCs are contractile, not dividing or migrating however, when altered 

due to specific stimuli such as response to injury or pathogenesis such as mineral imbalance, 
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atherosclerosis etc. in their microenvironment, they undergo phenotypic switch; hence, the cells are said 

to obtain a synthetic state (which can be plastic and known as differentiated cells) (Schurgers et al, 

2018). The characteristic features observed during phenotypic switch include accelerated cell 

proliferation, migration and extracellular matrix (Schurgers et al, 2018). Furthermore, phenotypic 

switching of VSMCs has been established with the onset of atherosclerosis and vascular calcification 

(Tang et al, 2022). In addition, several studies have identified genes that are differentially expressed 

these alternative states of VSMC phenotypes such as SM α-actin, smoothelin, calponin acting as markers 

of contractile SMCs and, Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALPL), 

SOX9, Aggrecan (ACAN), CHAD, osteopontin, Col2A1, Osterix (OSX), as markers of synthethic 

osteogenic converting SMCs (Alves et al, 2014; Durham et al, 2018). When VSMCs undergo phenotypic 

switch, they have been discovered to switch towards osteogenic environment (Durham et al, 2018). 

Although, phenotypic switching process is important for the process of vascular repair in SMCs due to 

their plasticity. However, the VSMC are susceptible to changing to diverse cell types such as osteoblast-

like cells, foam cell-like cells etc. (Pustlauk et al, 2020). 

 

Fig. 3: Cell morphology changes occurring during VSMCs switch from contractile to calcified phenotype. 

The calcified phenotype shows released matrix vesicles which contributes to nucleation of calcium and 

phosphate deposits and accumulation. 

Source: Ceccherini et al, 2022 

A review on VC pathogenesis has proven that in the aging population and individuals with pathological 

conditions such as chronic renal disease, obesity, there is high expression of osteochondrogenic gene 

markers RUNX2, ALPL, Collagen type 1 and 2 etc (Durham et al., 2018).  Many other factors which include 



6 

 

cytokines (such as Tissue-nonspecific alkaline phosphatase (TNAP)) is associated with the expression of 

the osteochondrogenic genes hence increasing the risk of VC (Savinov et al, 2015). TNAP acts by 

hydrolysing pyrophosphate (PPi), thereby enabling deposited calcium and phosphate forming crystals 

in the extracellular matrix to increase association with collagen matrix (Kawtharany et al, 2022). 

Furthermore, overexpression of Tissue-nonspecific alkaline phosphatase (TNAP) in the vasculature has 

been established and frequently observed in VC (Sheen et al., 2015; Savinov et al., 2015). In addition, 

TNF (Tumor necrosis factor alpha) increases the development and progression of calcification in vascular 

cell cultures (Lai et al, 2012; Lim et al, 2016).  When active, the transcription factor RUNX2, which is 

involved in phenotypic switch of VSMCs to osteoblast-like phenotype, orchestrates the expression of 

downstream genes (such as ALPL, Collagen Type 1, Osterix) that are critical in inducing mineralization 

(Komori et al, 2010; Long, 2012; Durham et al, 2018). The alteration in the genes associated with the 

activity of VSMCs are established to contribute to the components of atherosclerotic plaque. 

The enzyme alkaline phosphatase (ALP) is homodimeric which catalyses dephosphorylation in alkaline 

pH conditions (Shaban et al, 2022). ALP is also an osteoblast functional phenotypic marker which 

reduces the synthesis of inorganic pyrophosphate, a strong inhibitor of vascular calcification (Liu et al, 

2018). Several ectonucleotidases, notably ALPL and ectonucleotide 

pyrophosphatase/phosphodiesterase 1 (ENPP1), are expressed in valve interstitial cells (VICs) in 

response to a procalcifying signal. The latter generates pyrophosphate, a powerful mineralization 

inhibitor (Côté et al, 2012). ALPL, on the other hand, hydrolyses a wide range of phosphate-rich 

compounds, including pyrophosphate, to produce inorganic phosphate. As a result, high levels of ALPL 

and ENPP1 expression contribute to the release of significant amounts of inorganic phosphate (Côté et 

al, 2012). An increased inorganic phosphate ratio to pyrophosphate stimulates tissue mineralization 

(Chignon et al, 2020). Zhu et al, 2011 studied VSMC calcification using both an in vitro model and ex 

vivo model of medial calcification, they reported that calcified VSMCs showed increased key osteogenic 

marker (alkaline phosphatase, phosphate transporter (PiT)) upon induction of calcification (Zhu et al, 

2011).   

Runt-related transcription factor 2 (Runx2), also known as polyoma-enhancer binding protein 2A 

(Pebp2A), is a crucial regulator of osteoblastic development and maturation of chondrocyte (Wu et al, 

2014; Jiang and Qian, 2023). RUNX2 is mainly associated with bone and cartilage development and 

remodelling, however, it has been proven to play a significant role in VC. Its expression in VSMCs, similar 
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to bone cells, acts as an early, unequivocal marker of osteoblastic differentiation, the first stage in 

vascular calcification (Sun et al, 2012). A growing number of research on diverse factors that contribute 

to VC, including increasing inorganic phosphate concentration, have been demonstrated to stimulate 

RUNX2 expression (Lin et al, 2016; Kim et al, 2020). The VSMC-specific deficiency of RUNX2 expression 

inhibits vascular calcification. Therefore, RUNX2 can serve as an early and definitive marker of 

osteoblastic differentiation, bone formation, and initiation of vascular calcification (Liu et al, 2018). 

Several studies have shown RUNX2 as a major factor in phenotypic switching of SMCs and suppression 

of normal SMCs phenotype, a feature of established VC pathogenesis. Studies have implicated the 

increased expression of RUNX2 in calcified arterial tissues of chronic kidney disease (CKD) patients. In 

the development of calcification with atherogenic lesions, hydrogen peroxide triggers the phenotypic 

switch of VSMC due to increased RUNX2 expression and transactivation through Akt signalling (Lee, 

2020). Interaction between RUNX2 and downstream transcription factor genes such as osterix (also 

known as SP7) have been reported to drive osteogenic phenotype during osteogenesis and VC (Durham 

et al, 2018).  

Excessive collagen build-up in tissue has been linked to a number of clinical disorders, including organ 

fibrosis, malignancies, bone disease, and VC. Type II collagen alpha 1 chain (Col2a1) encodes the alpha-

1 chain of type II collagen, a fibrillar collagen found in cartilage and vascular tissue linings. Col2a1 

interacts with RUNX2 to drive SMCs towards the osteogenic phenotype (Durham et al, 2018). Col2a1 

expressed in transdifferentiated VSMCs is a characteristic marker of chondrocyte phenotype in vascular 

calcification (Augstein et al, 2018). In dialysis patients, the phenotypic switch of VSMCs to osteoblast-

like phenotype generating VC was observed in the medial layer of the blood vessel (Dube et al, 2021).  

Previous studies on tracing of SMC lineage in atherosclerosis led to the discovery of three definite 

clusters of SMC derived cells which include fibromyocytes, pro-calcific chondromyocytes and mature 

SMC (Alencar et al, 2020; Pan et al, 2020; Chen et al, 2022). In plaques, there was high expression of 

Col2a1, ACAN and SOX9 in pro-calcific chondromyocytes, hence, the cells were suggested to contribute 

to increased VC (Chen et al, 2022).  
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Fig. 4: Intimal and medial calcification as mediated by (vascular) smooth muscle cells. 

Source: Durham et al, 2018 

Growing evidence has implicated VSMCs as the main contributor of calcium deposits in the 

atherosclerotic plaque found in the arterial wall (Achim et al, 2022). As the atherosclerotic lesions 

develop and progress, VSMC phenotypic switch occurs leading to an increased calcification process via 

accelerated mineralization within the plaque (Cao et al, 2022; Tang et al, 2022).  During the phenotypic 

switching, VSMC are converted to osteogenic or chondrogenic phenotype with development of 

calcifying vesicles also referred to as calcifying nodules (Shanahan et al, 2011). The atherosclerotic 

lesions are majorly composed of the fibrous materials (such as the fibrous cap, lipids etc.) and calcium 

during progression of atherosclerosis (Woo et al, 2023). This calcification tends to elevate the risk of 
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plaque rupture and cause plaque instability, which could result in severe cardiovascular consequences 

including heart attacks, myocardial infarction or strokes (Cao et al, 2022).  

According to diverse studies vascular calcification has important consequences for the risk of 

developing CVDs (Karwowski et al, 2012; Bentzon et al, 2014; Chen et al, 2017; and Greenland et al, 

2018). Calcification play a key role in stability and maintenance of atherosclerotic plaques, hence, in 

some cases leads to decreased plaque stability and susceptibility to rupture, thereby resulting in the 

formation of blood clots and abrupt blockages (Chen et al, 2017; Lee, Lee, and Jeon, 2020). The function 

of atherosclerotic calcification in plaque stability based on the location, shape and size of calcification 

gave rise to classes of calcification which are microcalcification and macrocalcification (Woo et al, 2023). 

In microcalcification, inflammatory activities negatively affect the plaque stability a risk for CVDs, on the 

other hand macrocalcification tends to enhance stability of the plaque (Harman and Jørgensen, 2019). 

Furthermore, VC also reduces arterial flexibility, preventing the artery from adjust to changes in blood 

flow, which elevates blood pressure and increased risk of heart disease (Greenland et al, 2018; Mori et 

al, 2018). In addition, the existence and severity of calcification serve as indicators of total cardiovascular 

risk, aiding in risk assessment and directing preventative interventions (Bentzon et al, 2014); Roth et al, 

2015). The likelihood of developing CVDs and the complications that accompany them can be 

significantly decreased by adopting a heart-protective habits, overseeing risk variables for calcification, 

such as high cholesterol and blood pressure, and seeking medical attention when essential (Coronado 

et al, 2022). 

VC has so far only been controlled by risk factor management and attempts to control the dysfunctional 

calcium-phosphate metabolism (Herrmann et al, 2020). However, it is a complex pathophysiological 

process that requires further understanding to tackle the pathogenesis of VC. It has been widely studied 

via different research models which includes in vitro, in vivo and ex vivo (Borland et al, 2020; Herrmann 

et al, 2020; 2021; Poznyak et al, 2020; Radvar et al, 2021, Bogdanova et al, 2022). 

In vitro models have emerged as indispensable tools in unravelling the intricate mechanisms underlying 

pathogenesis of several diseases including VC (Goto et al, 2019). These models offer controlled 

experimental environments that allow researchers to manipulate variables, dissect cellular interactions, 

and explore causative factors, thereby advancing our understanding of calcification and paving the way 

for novel therapeutic strategies. Using the in vitro model system, the most studied transition of SMCs 
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to osteogenic or chondrogenic phenotype have been explored (Durham et al, 2018).  Although, it has 

been reported that in the in vitro model system such as the cell culture, there is no natural existence of 

calcification occurring except the cells are stimulated or induced to generate calcification (Herrmann et 

al, 2020).   

In-vitro models offer a platform for studying the molecular players involved in calcification (Herrmann 

et al, 2020; Ceccherini et al., 2022). By genetically manipulating VSMCs or using inhibitors and activators, 

researchers can identify key molecules that regulate calcification processes, such as matrix vesicles, 

osteogenic markers, and calcium transporters (Holmar et al, 2020). These findings provide insights into 

potential therapeutic targets for preventing or mitigating vascular calcification. 

Reviewing cell type models as suitable approaches for in-vitro studies of vascular calcification, Hermann 

et al. (2020) reported that in vitro cell culture models, particularly using VSMC enabling investigation of 

cellular responses to various stimuli. In similar vein, Radvar et al. (2021) notes that researchers can mimic 

the microenvironment of calcifying arteries by exposing VSMCs to factors such as elevated calcium and 

phosphate levels, inflammatory molecules, and oxidative stress. This approach facilitates the dissection 

of signalling pathways and molecular events that drive VSMC phenotypic switching from contractile to 

calcifying states. For instance, Alves et al. (2014) used in vitro method to study the genes and 

mechanisms associated with calcification in calcified smooth muscle cells and osteoblasts. 

Aghagolzadeh et al. (2016) studied interplay between inflammatory cytokines and calciprotein particles 

using cultured VSMCs in vitro.  Kapustin et al. (2015) using in vitro model reported on the effect of 

matrix vesicles in VSMC calcification, they found that matrix vesicles (MVs) are exosomes, with their 

release by some factors they contribute to the process of calcification. Similarly, Aherrahrou et al. (2020) 

employed human patient samples and in vitro model and they reported that genetic variants play 

significant role in VSMCs function suggesting increased MIA3 expression to promote atheroprotective 

VSMC phenotypic transitions. The use of in vitro study only gives clear information about the 

calcification process hence, some studies have employed other forms of research models for 

calcification research. 

It is evident from most studies that the use of in vitro method where cell culture technique is employed 

to investigate pathogenesis of VC involve the induction of calcification. This is basically because in vitro 

experiments, the induction of calcification is not spontaneous, rather a calcifying medium is required 
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for the experiment. Hermann et al, 2020 review highlighted the different types of supplement which 

have been widely used to induce calcification with their respective frequent concentration, which 

includes organic phosphate (beta-glycerophosphate), dexamethasone, inorganic phosphate (sodium 

hydrogen phosphate), ascorbic acid, sodium pyruvate etc. 

Researches have shown that elevated concentration of serum phosphate causes calcification, hence, an 

individual’s risk of developing CVDs especially seen in chronic kidney diseases (CKD) patients (Massy et 

al, 2015; Reiss et al, 2018). According to many VC researches it is evident that one of the factors that 

triggers calcification process is alteration of phosphate levels (either pyrophosphate (PPi) or extracellular 

phosphate (Pi)) in the cell (Pescatore et al, 2019). A common method for producing vascular calcification 

in experimental models, particularly in cell culture model, is the use of inorganic phosphate inducing 

method. This method entails increasing the amount of inorganic phosphate, a critical component of the 

hydroxyapatite crystals seen in calcified tissues, on vascular VSMCs or other pertinent cell types as 

calcifying nodules (Lu et al, 2022; Rui et al, 2022). 

Cell culture media is supplemented with sodium phosphate salts or comparable substances to carry out 

the inorganic phosphate technique (Hermann et al, 2020). Efficiently simulating the mineral-rich 

environment that promotes the formation of hydroxyapatite crystals, increases the concentration of 

extracellular phosphate (Nagaishi et al, 2023). Because of this excess of phosphate, VSMCs, important 

contributors to vascular calcification, undergo a phenotypic change from their usual contractile state to 

a calcifying phenotype (Tsuda et al, 2020). This approach provides a controlled environment for 

researchers to examine the molecular processes and signalling networks that underlie vascular 

calcification. This technique enables the evaluation of prospective therapeutic interventions targeted at 

slowing down the process of calcification by adjusting phosphate concentrations and monitoring 

cellular responses. Serguienko et al, (2018) studied in vitro osteoblast differentiation by inducing 

calcification using dexamethasone, ascorbic acid and beta-glycerol, they were able to follow real time 

mineralization in vitro. Also, many retrospective researchers have discovered the significant role of 

phosphate in promoting atherosclerosis in arteries (Martin et al, 2015; Park et al, 2020).  

It has been established that calcify VSMC tend to switch to the osteochondrogenic phenotype owing to 

induction of calcification, hence, transition into osteoblast-like cells (Woo et al, 2023). Inducing 

calcification in VSMCs culture using osteogenic medium (with and without inorganic phosphate) have 
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been explored as a way to initiate osteogenic differentiation in VSMC to osteocytes explaining its role 

in VC pathogenesis (Yao et al, 2021). Osteogenic medium contains organic phosphate which also plays 

a role in deposition and accumulation of calcium and phosphate in the extracellular matrix of VSMCs. 

Schack et al, (2013) reported the use of osteogenic medium with inorganic and organic phosphate, they 

reported the inorganic phosphate have better more effect on the osteoblast markers in comparison to 

the organic phosphate. 

The well-established approach of staining methods (which includes Haematoxylin and Eosin, 

OsteoSense™680EX, von Kossa, Alizarin red stain etc.) are essential for observing and tracing changes in 

diverse biological processes thereby enabling the visualisation and analysis of cellular structures, 

molecules, and variations within tissues (Greco et al, 2022). As regards vascular calcification process, 

staining techniques have been explored and plays a significant role in the identification and 

quantification of mineralization (deposits and accumulation known as hydroxyapatite), calcified areas, 

and monitoring the progression of calcification in the artery (Liu et al, 2017). The detection of 

hydroxyapatite in cell culture and the vascular system cannot be overemphasized (Sato et al, 2020). For 

instance, both Alizarin Red (ARS) and von Kossa staining deposits of calcium and phosphate 

respectively. The use of these stains mostly calcein or ARS have advanced understanding in the field of 

VC process employing via in vitro, in vivo and ex vivo research model.  

Calcein stain (also referred to as calcein green) is a non-permanent dye used in in vitro studies such as 

VMSCs, and primary mesenchymal stem cell culture for tracing and quantification on mineralization.  

When activated, the fluorescent dye calcein, which binds to calcium ions deposits which displays a 

potent green fluorescence. It has been used to monitor mineralization during the induction of 

calcification both in vitro and in vivo experiments. By adding calcein to cell cultures or animal models, 

researchers observed calcium ion deposition (Trillhaase et al, 2021; and Zhao et al, 2022). The brightness 

of the green luminescence, serves as a quantifiable measure of mineralization progress over time and 

reflects the degree of calcification. The staining enables the visualisation of calcified nodules and the 

assessment of the impact of experimental conditions or interventions on the amount of mineralization 

in cells.  

These staining approaches are significant because they can give a clear visual picture of calcification, 

which is frequently difficult to see with more traditional techniques. For example, Serguienko et al, 
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(2018) studied the occurrence of mineralization in real time using cultured primary mesenchymal stem 

cells and found that the staining is very effective than the traditional staining (ARS) used in tracing VC.  

Researchers can compare experimental settings, measure calcification progression statistically and 

qualitatively, and assess the effectiveness of proposed therapeutic interventions by using calcein and 

alizarin red staining. These staining methods advance our knowledge of the pathophysiological 

processes that support calcification-related disorders and aid in the creating specialized approaches for 

the management or prevention of calcification-related problems. 

Reporter gene technique which involves the use of regulatory regions such as promoters and enhancers 

coupled with a reporter (usually a protein) that fluorescent upon activation of the regulatory region 

have extensively been used in different research to study gene expression and cell signalling (Serganova 

and Blasberg, 2019; Neefjes et al, 2021). Several approaches have been reported to be employed in 

packaging reporter such as biologic (e.g., bacterial or bacterial vectors), mechanical approach (such as 

microinjection or electroporation) and chemical method (including nanoparticle carriers or lipid) (Bartel 

et al, 2012; Yin et al, 2014; Lostale-Seijo et al, 2018). The reporter gene is usually delivered into a target 

(e.g. cell) by either transduction or transfection method.  

The importance of the report system cannot be overemphasized, having the following advantages to 

further understand the molecular mechanism of VC. One of such advantages is to allow researchers in 

the field of vascular calcification to visually track cells which take part in VC at any specific time. Also, 

the system can help assess temporarily when calcification is triggered and its duration. Additionally, the 

strength or degree of the calcification response can be quantified using the fluorescence of the reporter. 

Likewise, rapid screening of large samples or experimental conditions can be explored in order to 

determine factors that may have an effect on SMCs role in calcification. Conclusively, the system can aid 

in validation of markers considered to be linked with calcification for their function and importance in 

actual cellular conditions. 

Despite the significant increase in the knowledge on drivers of VC, additional study is still required to 

unravel the mechanism of phenotypic switching towards osteogenic phenotype in calcified VSMCs. To 

the best of our knowledge, no known study is reported to investigate tracing calcified VSMCs switch 

using promoter region of existing identified genetic markers with reporter genes in human coronary 

SMCs. Therefore, this study is aimed at dissociating and tracing transient SMCs dedifferentiating to 
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calcifying phenotype (osteoblast-like cells) in vitro. In future, the reporter system could be an effective 

fast assay that can be employed in either clustered regularly interspaced short palindromic repeats 

(CRISPR) or drug screening. This would allow for the identification of novel genes and drugs what can 

inhibit or enhance SMC calcification. 

Materials and methods 

Amplification and Extraction of Plasmids Construct  

Five plasmid constructs for selected genes which include ALPL, RUNX2, ACAN, CHAD and COL2a1 

associated with vascular calcification in SMCs were purchased from GeneCopoeia (Fig. 1). Each plasmid 

construct contains promoter of the above selected genes, reporter gene (mCherry which fluorescence 

in transduced cells) and antibiotics resistance gene (puromycyin) for selection of target cells expressing 

the gene of interest upon calcification. The plasmid for each gene was amplified using bacterial 

transformation.   

 

Fig. 4: Map and features of the designed plasmid construct for each selected gene 
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Fig.5: Example of the plasmid construct where promoter and gene replaced with mCherry is used for 

tracing calcification 

The amplification of the plasmids was carried out by plasmids being cultured on bacterial medium. 2µl 

of plasmid constructs was mixed with 30µl of bacteria in separate tubes. The mixture was incubated on 

ice for 20mins, then subjected to a 40-second heat shock at 420C in water bath, followed by cooling on 

ice for 2 to 5 mins. 500µl of SOC medium was added to each tube and then rotated on a shaker for 45 

mins at 37oC in the incubator. 200ul of the bacterial cells were plated on LB (Ampicillin) plate (20ml LB-

Agar and 40ul 50mg/ml ampicillin 100µg/ml). Plates were allowed to dry, placed upside down and kept 

at 37oC in incubator overnight (approximately 16-18 hours). One colony of bacteria from each plate was 

collected into a beaker containing 20ml of 5x LB, 80ml of sterile milliQ water and 200ul of ampicillin. 

The plasmid extraction was performed following the protocol from NucleoBond Xtra plasmid Midi EF 

kit. The concentration and purity of the extracted plasmid were measured using DeNovix 

spectrophotometer (DS-11 FX+). The extracted plasmids were used to prepare and generate lentiviral 

vector at the national virus vector laboratory at AIVI. 

Restriction Enzyme Digestion 

In order to validate the quality of the amplified plasmid, they were subjected to restriction enzyme 

digestion. The fragments should correspond to the expected size and number of sizes when digested 

with required restriction enzymes which are EcoRI (ER0271) and BamH1 (ER0051) (ThermoScientific). 

Amplified plasmids (template DNA) were digested following the manufacturer's protocol 

(ThermoScientific Fast Digest restriction enzymes). 2 μl template DNA (up to 1μg), 2 μl 10× buffer, 1 μl 

restriction enzyme, and 15 μl nuclease-free water (Thermo Fisher Scientific) were mixed to a final volume 

of 20 μl. The mixture was incubated at 370C on a heat block, 2 μl of FastDigest Green Buffer (Thermo 

Scientific) was added for visualization on the gel. 

Cell culture of Human Coronary Smooth Muscle Cells (HCASMCs) 

Materials: Human Vascular Smooth Muscle Cell Basal medium (Gibco M-231-500), smooth muscle 

growth supplement SMGS (Gibco S-007-25), 1% penicillin-streptomycin, 10cm dish (Greiner bio-one), 

Serological pipette (5, 10, 25 and 50 ml Sarstedt), Eppendorf CellXpert incubator. 
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To study the role of Smooth muscle cells (SMCs) reported as the primary source of vascular calcification, 

Human coronary smooth muscle cells (HCASMCs) donated from the CADGEN research group was 

cultured with Human Vascular Smooth Muscle Cell Basal medium (Gibco M-231-500) with smooth 

muscle growth supplement (Gibco S-007-25) and 1% penicillin-streptomycin as previously described. 

Cells were cultured in 10cm dish (Greiner bio-one) at 37oC in Eppendorf CellXpert incubator. Confluence 

cells grown on 10 cm dish were split (1:2) into 15cm dish in order to produce high number of cells for 

the experiment. 

Transduction and Selection of Stable Clones 

To generate stable lines to study the activity of the of the selected reporter genes on calcification, 

cultured HCASMCs were transduced with lentiviral vectors (HIV-based) to deliver the plasmids into 

VSMCs.  

Materials: Lenti-Viral stock (20µl aliquots), 10cm dish (Greiner bio-one), polybrene (Gibco TR-1003-G), 

puromycin 2µg/ml (Gibco A11138-03), Human Vascular Smooth Muscle Cell Basal medium (Gibco M-

231-500), 10cm dish (Greiner bio-one), Eppendorf CellXpert incubator. 

1.5 x 106 cells were seeded in 10cm dish for each gene, after 24hrs the cells were at 80% confluence. 

The medium was changed and replaced with medium containing polybrene (Gibco TR-1003-G), aliquots 

of thawed Lentiviral stock containing plasmids were added to the cells. The plates were kept in the 

fridge for 1-2 hours at 4oC and moved to the incubator at 37oC. 24 hours after transduction, medium 

containing viruses was changed and replaced with normal medium. After 48 hours, selection of stable 

clone was performed by adding directly into the medium puromycin 2µg/ml (Gibco A11138-03). 

Antibiotics selection was completed in 12-14 days.  

Induction of calcification 

Once the stable lines were generated, they were treated with calcifying medium (inorganic phosphate 

and osteogenic medium). Since then, it has been established that a high concentration of phosphate in 

cells induces deposit and accumulation of phosphate and calcium forming hydroxyapatite. Hence, 

calcifying medium containing high inorganic phosphate was used on SMCs.   
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Calcifying medium (CM) 

Materials: StemXVivo Osteogenic/Adipogenic Base media (CCM007) and Human Osteogenic 

supplement 20X (CCM008), 1% penicillin-streptomycin, 15ml and 25ml falcon tubes (Greiner bio-one), 

disodium hydrogen phosphate (Na2HPO4.7H20); Merck (Darmstadt, Germany) and sodium dihydrogen 

phosphate (NaH2PO4.H20 Merck (Darmstadt, Germany) and 0.2µl filter (Cat No.15206869). 

The protocol for the inorganic phosphate was adopted from Holmar et al, 2020. Two different calcifying 

media was used for the experiment. Osteogenic medium was prepared from StemXVivo 

Osteogenic/Adipogenic Base media (CCM007) and Human Osteogenic supplement 20X (CCM008) and 

1% penicillin-streptomycin. The medium was aliquoted in 25ml falcon tubes and stored in -200C for 

further use. Inorganic phosphate at concentration of 3.7mM was prepared by adding in 1:1 ratio 

disodium hydrogen phosphate (Na2HPO4.7H20); Merck (Darmstadt, Germany) and sodium dihydrogen 

phosphate (NaH2PO4.H20 Merck (Darmstadt, Germany) to normal medium. 100mM stock solution of the 

mix was prepared and filter sterilized with 0.2µl filter (Cat No.15206869). The stock was aliquoted in 

15ml falcon tube and kept in fridge at +4oC until use. 

Induction of calcification 

Materials: 12-well plate (Greiner bio-one), Calcifying Media (CM). 

1.5 x 106 cells were seeded in 12-well plate in normal medium, at 80% confluence the normal medium 

was changed to calcifying medium (CM) which causes the deposit of mineral in the cells. The CM was 

changed every 72 hours for 7 days. The first day of adding CM was defined as day zero (0).    

Staining of calcification 

Upon induction of calcification the calcified areas referred to as calcifying nodules were stained using 

calcein and Alizarin Red Stain (ARS) for visualization and quantification of calcification for each 

treatment condition.   

Calcein Staining 

Materials: Calcein stain (C0875, Sigma-Aldrich Merck), 0.1 M of NaOH, Molecular grade water, 0.2µl filter 

(Cat No.15206869), Incucyte S3. 
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The staining of calcification was adopted and modified from Serguienko et al., 2018. 10mM of calcein 

stain (C0875, Sigma-Aldrich Merck) solution was prepared with 0.1 M of NaOH. 1mM of the mixture was 

prepared by diluting the stock in 1:10 ratio as the working stock solution. The working solution was filter 

sterilized with 0.2µl filter (Cat No.15206869), stored at room temperature in dark till further use. The 

calcein solution was added directly to the medium in each well 24 hours prior to imaging. To enhance 

quality imaging by reducing fluorescent background, medium containing calcein was replaced with 

normal medium prior to images acquisition. The green fluorescence was detected with an incucyte. 

Alizarin Red Stain (ARS) 

Materials: Phosphate Buffered Saline (PBS) Gibco, 4% Paraformaldehyde (PFA), MilliQ water, Alizarin Red 

Stain (ARS), Plate Shaker 

Cell medium was aspirated from the wells, washed with 500ul PBS and fixed with 500ul 4% PFA for 20 

min at room temperature. The fixative was removed and cells washed with PBS. 250 ul of ARS was added 

to the well and incubated for 20 mins on a shaker at room temperature. The ARS was removed and cells 

were incubated with 1 ml milliQ water for 5 mins on shaker (this was repeated 4 times). Images were 

taken with inverted microscope.   

Collagenase Assay  

When calcification occurs, it is difficult to dissociate the calcified SMCs into single cells, hence, 

collagenase assay containing EDTA—collagenase was used to separate the cells.  

Materials: Phosphate Buffered Saline (PBS) Gibco, EDTA, Hanks’ Balanced Salts Solution (Cat No: 

ECM0507L), Gibco Collagenase lyophilized non-sterile prepared from Cl. histolyticum (Cat No: 17018-

029), Plate shaker, 1M Calcium Chloride (VWR Sterile E506), Trypan Blue Stain 0.4% (Cat no- 2365784 

Invitrogen by ThermoFisher Scientific), Eppendorf tubes, Countess Cell Counter, Beckman Coulter 

CytoFlex S. 

CM was aspirated and cell washed twice with PBS. 500µl of 30mM EDTA was added to each well and 

incubated for 15 mins at RT. The EDTA was aspirated and added once again for another 15 min.  Then, 

the EDTA was aspirated and 500µl of sterile 8mg/ml collagenase in Hanks’ Balanced Salts Solution 

HBSS/4mM calcium chloride CaCl2 was added to the well incubating for 10 mins at 37oC on a plate 
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shaker. Afterwards, pipette the lysate up and down then continue incubation for 20 mins at 37oC on a 

plate shaker. Transfer the lysate to 1.5ml Eppendorf tube, and spin at 500g for 5 mins at RT. The 

supernatant was aspirated and pellet resuspended in 500µl trypsin, then mix gently (approximately 20x). 

The tubes are then incubated for 15 mins in water bath at 37oC. Tubes were removed from water bath 

(Thermo Scientific) and lysate pipette up and down with further 15 min time incubation. 500µl media 

was added to the lysate and spin at 500g for 5 mins at RT. The supernatant was aspirated and pellet 

resuspended in 500µl media. Cells were counted with trypan blue stain 0.4% (Cat no- 2365784 

Invitrogen by ThermoFisher Scientific) using the countess cell counter. The single cells from the assay 

were subject to FACS sorting to determine the percentage positive of mCherry fluorescence using 

Beckman Coulter CytoFlex S. 

Data analysis 

Using the incucyte software the small green areas synonymous to calcium deposits were selected by 

adjusting the threshold GCU: Maximum mean intensity: Edge Sensitivity: and Area. Quantification of 

calcified area (count) was done using Fiji/ImageJ. Statistical analysis of data generated was done using 

GraphPad prism (version 10.0.2 (232)). Data are presented as mean ± SEM. 
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Results 

PLASMID CONCENTRATION 

The plasmids were amplified and then extracted to achieve the required concentration for lentiviral 

production (Table 1). Furthermore, restriction enzyme digest indicated that each gene had been 

successfully amplified through bacterial transformation (Table 2).  

Table 1: Obtained concentration (ng/µl) and purity of plasmids using spectrophotometer.  

GENE MARKERS 

CONCENTRATION 

(ng/µl) Purity (260/280) 

ALPL 846.34 1.91 

RUNX2 792.77 1.92 

ACAN 1033.65 1.92 

CHAD 824.18 1.91 

COL2A1 922.99 1.92 

 

ALPL- Alkaline phosphatase; RUNX2 - Runt-related transcription factor 2; ACAN- Aggrecan;  

CHAD- Chondroadherin; COL2a1 - Collagen type II Alpha 1 
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Table 2: The number of expected fragments upon restriction digest of amplified plasmid for each 

selected gene marker.  

GENE MARKERS EcoR1 BamH1 NUMBER OF EXPECTED 

BAND 

ALPL 7970, 8273 9532 3 

RUNX2 7970 9622 2 

ACAN 7970, 8558 9512 3 

CHAD 7970 9237 2 

COL2A1 7970 9553 2 

 

Calcification in HCASMCs 

Calcein stain nodules of calcification 

In order to study the reporter gene expression of cell lines stably expressing the reporter gene, we 

induced calcification via IP and OM in stable HCASMC lines expressing specific selected genes of 

interest. Then, calcification activity was monitored with calcein staining for 7 days with one-time image 

scan by the incucyte zoom. Fig. 6A-E show the fluorescent images and calcification areas with nodules 

(green dots). In all samples induced with IP, calcification was more evident by the green dots. However, 

in the OM, crystals were observed in the osteogenic medium which are not recognized as calcified 

nodules due to the very large size of the green dots. RUNX2 and Col2a1 showed the highest calcification 

(with more calcium deposits) in IP treated cells when compared to the other reporter systems (Fig. 11 

Appendix 1-3) 
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                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 6A: Cells stably expressing ALPL reporter gene, stained with calcein to identify calcified areas with 

nodules (deposited calcium-phosphate) using the incucyte S3 machine at day 7.  

   

                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig.6B: Cells stably expressing RUNX2 reporter gene, stained with calcein to identify calcified areas with 

nodules (deposited calcium-phosphate) using the incucyte S3 machine at day 7.  

 

   

                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 6C: Fig: Cells stably expressing ACAN reporter gene, stained with calcein to identify calcified areas 

with nodules (deposited calcium-phosphate) using the incucyte S3 machine at day 7.  
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                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 6D: Cells stably expressing CHAD reporter gene, stained with calcein to identify calcified areas with 

nodules (deposited calcium-phosphate) using the incucyte S3 machine at day 7.  

 

   

                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 6E: Cells stably expressing COL2a1 reporter gene, stained with calcein to identify calcified areas with 

nodules (deposited calcium-phosphate) using the incucyte S3 machine at day 7.  

To further elucidate on the activity of the marker genes upon induction of calcification for seven (7) 

days, we also captured images from the red channel of the incucyte S3 for both basal (control) and 

treated conditions for mCherry fluorescence of stable lines.  

Fig.7A-E shows the fluorescence (mcherry) of the cells upon induction of calcification. It was observed 

that there was increase in the fluorescence in the treated conditions as compared to the control. In 

addition, in the cells treated with osteogenic medium, it was observed that the cells morphology 

changed when compared to the control and inorganic phosphate cells. 
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                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig.7A: The ALPL-reporter construct showed mCherry fluorescence in calcified areas, as detected by the 

incucyte S3.  

   

                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 7B: The RUNX2-reporter construct showed mCherry fluorescence in calcified areas, as detected by 

the incucyte S3. 

   

                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 7C: The ACAN-reporter construct showed mCherry fluorescence in calcified areas, as detected by 

the incucyte S3. 
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                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig. 7D: The CHAD-reporter construct showed mCherry fluorescence in calcified areas, as detected by 

the incucyte S3. 

   

                   Control                              Inorganic phosphate                    Osteogenic medium 

Fig.7E: The COL2a1-reporter construct showed mCherry fluorescence in calcified areas, as detected by 

the incucyte S3. 
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Alizarin Red Stain (ARS) 

To further validate calcification in transduced cells, the calcified areas were stained with ARS. It was 

clearly seen that the calcification was high in osteogenic medium than in inorganic phosphate (Fig. 8).  

Mag. X10 

Fig.8: Cells showing calcified areas stained with ARS after treatment with IP and osteogenic medium 

 

Fluorescent-activated cell sorting of calcified smooth muscle cell 

We employed the EDTA-collagenase dissociation assay to separate the calcified VSMCs into single cells. 

The single cells were analyzed with fluorescence activates cell sorting to determine the percentage of 

mCherry fluorescence and the best calcification marker to trace calcification. Fig. 9 shows the percentage 

mCherry fluorescence of control cells (without transduction) where no mCherry fluorescence was 

observed as compared to the transduced control cells with mCherry fluorescence ranging between 

46.28% and 98.53%. RUNX2 showed the highest mCherry fluorescence and CHAD the lowest 

fluorescence in both IP and OM treated cells (Fig.11B-F). In IP condition, the reporter construct 

transduced cells demonstrated mCherry fluorescence ranging between 49.29% and 98.69%, while 

osteogenic treated cells mCherry fluorescence of stable cells were observed to range between 85.31% 

and 99.49% (Fig.12-13 Appendix 2-1).  



27 

 

  

  

  

Fig. 9: Representative images from the showing difference in mCherry fluorescence between control 

(non transduced cell and control transduced cells) 
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Fig.10A: Comparison of the mCherry fluorescence (%) of single cells between control cells (non-

transduced cell) and transduced cells for selected calcification marker 

 

Fig.10B: Comparison of the mCherry fluorescence (%) of single cells between control cells (transduced 

cell) and IP treated transduced cells for selected calcification marker 
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Fig. 10C: Comparison of the mCherry fluorescence (%) of single cells between control cells (transduced 

cell) and osteogenic treated transduced cells for selected calcification marker 

Fig.11A shows comparison of the mCherry fluorescence within the same group for control non-

transduced cells and stable cells for the selected marker genes. It was observed that the control group 

without transduction showed no mCherry fluorescence as compared to the stable cells. RUNX2 showed 

the highest mCherry fluorescence within the group when compared to ALPL, ACAN, CHAD and Col2a1 

(Fig. 11C).  There was no clear difference between the control and treatment condition (Fig.11B-F). It 

was observed that the difference between the control and IP treated stable cells was almost similar 

when compared to the osteogenic treated cells (Fig.11B-F). ALPL and CHAD showed significant 

differences comparing the difference between control and osteogenic treated cells (Fig. 11B and 11E). 

In addition, the replicate images of the mCherry fluorescence for ALPL and CHAD generated from the 

incucyte correlates with the observed differences in the mCherry fluorescence for FACS sorted cell in 

ALPL and CHAD (Fig.12-13 Appendix 2-1). 
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                                                             E 

 

                                                              F 

Fig.11: Comparison of mCherry fluorescence within the same group for control and treated cells. A. 

Non-transduced cells (B-F) stable clones. 
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Discussion  

Cardiovascular disease remains the leading cause of death globally affecting both males and females. 

In Europe, CVDs have been reported to cause 45% of death, hence, remains one of the major public 

health challenges (Townsend et al, 2022). Therefore, it is a paramount area of research to be explored. 

VC is one of the major hallmarks and strong predictor of CVDs such as atherosclerosis, myocardial 

infarction, stroke, CAD etc. (Woo et al, 2023). VSMCs have been discovered to be the primary source of 

VC implicated in CVDs development and progression such as found in atherosclerotic plaques (Durham 

et al, 2018; Sorokin et al, 2022).  

There are diverse significant studies revealing the process involved in initiation and progression of VC 

in pathological conditions such as atherosclerosis, diabetes mellitus and chronic kidney disease (CKD) 

(Durham et al, 2018). It is believed that VC is an actively regulated process involved in deposit and 

accumulation of calcium and phosphate. Reports on several studies on the molecular mechanisms of 

VC such as phenotypic switch of VSMCs, changes in calcium and phosphate level, identification and 

validation of genetic markers have been investigated using in vitro, in vivo and ex vivo research model. 

However, further research is required to unravel the molecular mechanisms of VC. We hypothesize that 

the regulatory regions (promoter) of genes expressed during phenotypic switch towards osteocyte-like 

cells in SMCs play significant function in understanding pathogenesis of calcification. The functions 

include real time tracking of calcification in cells, response time of calcification, quantification and 

validation of markers and high throughput screening of large samples with different experimental 

condition can be achieved. 

Reiss et al, 2018 reported that the high concentration of phosphate in the serum is linked to the risk of 

developing CVDs. The increase in the amount of phosphate and calcium in the cell have been found to 

lead to the process of calcification (Zhou et al, 2021). In addition, mineralization process occurring in 

the extracellular matrix involves phosphate binding with calcium released upon calcification to form 

hydroxyapatite (Rui et al, 2022). In this study, VC was successfully induced via inorganic phosphate (at 

a concentration of 3.7mM) and osteogenic medium in VSMCs (Fig. 6A-E and 7A-E).  

Calcification was observed using calcein staining which binds to the deposited calcium and phosphate 

in the cells. We found that the calcein staining had no effect on the viability and morphology of VSMCs 

which agrees with the findings by Serguienko et al, (2018). However, we discovered that there was 
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calcification in cell treated with inorganic phosphate (day 7) compared to the osteogenic medium 

treated cells. Studies have proven that cells induced with inorganic phosphate show calcification at early 

stage (evident with the calcifying nodule) than those treated with osteogenic medium supplemented 

with organic phosphate (Schäck et al, 2013; Lu et al, 2020; Rui et al, 2022). Robert et al, (2020) reported 

that the time point for analysis for induced calcification plays a significant role in appearance of markers 

and calcified nodules. This suggest why there was no calcification nodules yet in the cells treated with 

osteogenic medium. 

However, we found that cells treated with osteogenic medium showed change in their morphology 

without calcifying nodules rather we observed crystals (Fig. 1-5) (Appendix 1-1). We therefore suggest 

that the osteogenic medium might have an effect on the formation of the crystals rather than calcifying 

nodules. According to Lu et al., (2022) the visibility of calcification in cells treated with osteogenic 

medium requires long time (between 14-21 days), hence, this correlates with what we observed in the 

osteogenic treated cells with no visible calcified nodules at the seven days of treatment. Twine et al, 

2014 also reported that enriched gene expression is more observed during the late stage of 

osteogenesis.  

In vitro studies on both normal physiology and pathological mineralization via genome-wide gene 

expression analysis have discovered and shown the role of different genes in VC during phenotypic 

switching process (Alves et al, 2014). In addition, reporter gene assay has proven to be a good system 

for tracing the activity of regulatory regions (such as promoters and enhancers) coupled to the reporter 

(fluorescent or bioluminescent) when activated (Serganova and Blasberg, 2019). This study employed 

the reporter assay system where identified calcification genetic markers (which includes ALPL, RUNX2, 

ACAN, CHAD and Col2a1) which play significant role in the transition of VSMCs to the 

osteochondrogenic phenotype are coupled with reporter gene (mCherry).    

This study revealed that the promoter activity of selected genes was increased due to the induction of 

calcification through the calcifying medium (Fig. 7A-E). Although, we did not observe calcified nodules 

in the osteogenic treated cells, we found that there was a significant mCherry fluorescence difference 

between the basal condition and the treated conditions (Fig. 6-10) (Appendix 1-2). Furthermore, in the 

osteogenic treated cells we discovered that there was an increase in the fluorescence of the mCherry 

between basal condition and osteogenic treated cells. In contrast, the inorganic phosphate treated cells 
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showed no major difference between the basal and treated conditions (Fig.11B-F). RUNX2 showed 

almost similar mCherry fluorescence when comparing the basal (control) condition and treated 

conditions, hence, we suggest to optimize the reporter system, we might need to select clones with 

lowered basal activity due to integration site differences of the reporter system. 

One of the major challenges associated with calcified SMCs are dissociation and identification of 

calcified and non-calcified cells. To the best of our knowledge, for the very first time in this study we 

report the successful dissociation of calcified SMCs into single cells. To validate the findings from the 

images generated from the incucyte upon induction of calcification, single calcified cells were subjected 

to fluorescence-activated cell sorting (FACS). The sorted cells were used to identify the best genetic 

calcification marker for tracing calcification in VSMCs based on the promoter activity of the genes. We 

found from the study that ALPL and CHAD outperformed the other reporters for tracing calcification 

since there was significant difference between the basal condition and osteogenic treated cells (Fig.11B 

and E). This agrees with previous studies which have reported the high expression of these genes when 

VSMCs transition into the osteochondrogenic phenotype due to VC (Alves et al, 2014; Robert et al, 

2020).  
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Conclusion 

It is therefore concluded in this study that the use of our reporter system has proven to be a positive 

and useful technique to monitor calcification real time. Secondly, for the very first time we report the 

successful dissociation of calcified SMCs into single cells which will enable further studies such as 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screening and ATAC-seq to 

validate our findings. Finally, CHAD and ALPL are promising reliable markers for tracing vascular 

calcification. In future, for researchers the reporter system could serve as a quick assay for effectiveness, 

where the system can be used for either (CRISPR) or drug screening to identify novel genes or drugs 

that can inhibit or enhance SMCs contribution to vascular calcification.  

Future Perspective 

This experiment will be carried out with treatment conditions extended to 14 and 21 days so that 

calcification in osteogenic medium treated cells can be established by clearly observing the calcifying 

nodules. Also, the single cells generated from the study can be used for CRISPR and ATAC-Seq. 
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APPENDIX 1-1 

Calcification images of calcified areas stained with calcein generated from the incucyte in triplicates 

(Fig. 1-5). The green fluorescent dots are the deposits of calcium and phosphate in the cell 

   

    

   

Fig.1: Representative images of calcified area as observed in calcein stained stable cells expressing 

ALPL reporter gene. Treatment was done in triplicates as seen above. 
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Fig.2: Representative images of calcified area as observed in calcein stained stable cells expressing 

RUNX2 reporter gene. Treatment was done in triplicates as seen above. 
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Fig.3: Representative images of calcified area as observed in calcein stained stable cells expressing 

ACAN reporter gene. Treatment was done in triplicates as seen above. 
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Fig.4: Representative images of calcified area as observed in calcein stained stable cells expressing 

CHAD reporter gene. Treatment was done in triplicates as seen above. 
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Fig.5: Representative images of calcified area as observed in calcein stained stable cells expressing 

COL2a1 reporter gene. Treatment was done in triplicates as seen above. 

First row: Control; Second row: Inorganic phosphate treatment; Third row: Osteogenic medium 

treatment 
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APENDIX 1-2 

Images of the cells showing promoter activity for reporter gene upon induction of calcification in the 

stable lines. Fig. 6-10.  

   

   

   

Fig.6: Representative images of mCherry fluorescence in stable cells expressing ALPL reporter gene 

when calcification was induced us. Treatment was done in triplicates as seen above. 
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Fig.7: Representative images of mCherry fluorescence in stable cells expressing RUNX2 reporter gene 

when calcification was induced us. Treatment was done in triplicates as seen above. 
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Fig.8: Representative images of mCherry fluorescence in stable cells expressing ACAN reporter gene 

when calcification was induced us. Treatment was done in triplicates as seen above. 
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Fig.9: Representative images of mCherry fluorescence in stable cells expressing CHAD reporter gene 

when calcification was induced us. Treatment was done in triplicates as seen above. 
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Fig.10: Representative images of mCherry fluorescence in stable cells expressing Col2a1 reporter gene 

when calcification was induced us. Treatment was done in triplicates as seen above. 

First row: Control; Second row: Inorganic phosphate treatment; Third row: Osteogenic medium 

treatment 

*Applicable to all images both green and red channel 
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APPENDIX 1-3 

The table below shows the quantification data for the calcified areas in images from the stable lines 

stained with calcein. The green dots in the images were counted and analysed using the Fiji/imageJ. 

Table 1: Green dot (calcified area) count from the images generated for inorganic phosphate treated 

stable cells. The treatment was done in triplicates n=3 

GENETIC 

MARKER 
REPLICATE 1 REPLICATE 2 REPLICATE 3 Mean  

ALPL 650 695 804 716 

RUNX2 1206 1523 1322 1350 

ACAN 684 752 793 743 

CHAD 717 764 747 743 

Col2a1 1018 1343 1386 1249 
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Fig. 11.: The count for green dot in images showing calcified areas in reporter systems upon 

inorganic phosphate treatment in stable cells. n=3   
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APPENDIX 2-1 

Calcified SMCs were dissociated using collagenase assay, the singles cells were sorted by FACS to 

compared the mCherry fluorescence to identify which of the reporter gene is best used for tracing 

calcification (Fig. 12 and 13). 

              

               

               

Fig. 12: Comparison of FACS sorted single calcified cells between control and IP treated cells 
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Fig. 13: Comparison of FACS sorted single calcified cells between control and osteogenic medium 

treated cells 

 

 

 


