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Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand

factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and

South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with

epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies

with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to

1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-

analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset,

and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and

reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus
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(Cohen’s d = �0.24 to �0.73; P5 1.49 � 10�4), and lower thickness in the precentral gyri bilaterally (d = �0.34 to �0.52;

P54.31 � 10�6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = �1.73 to

�1.91, P5 1.4 � 10�19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral

gyri, compared to controls (d = �0.36 to �0.52; P51.49 � 10�4). Thickness differences of the ipsilateral temporopolar, para-

hippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal

middle frontal gyri were observed in left, but not right, MTLE (d = �0.29 to �0.54; P5 1.49 � 10�4). Contrastingly, thickness

differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left,

MTLE (d = �0.27 to �0.51; P51.49 � 10�4). Lower subcortical volume and cortical thickness associated with a longer duration

of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b5�0.0018; P51.49 � 10�4). In the largest

neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired

in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and

neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes,

and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and

indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.
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Introduction
Epilepsy is a prevalent neurological disorder, comprising

many different syndromes and conditions, affecting 0.6–

1.5% of the population worldwide (Bell et al., 2014).

Approximately one-third of affected individuals do not re-

spond to antiepileptic drug therapy (French, 2007).

Alternative treatment options may not be appropriate

(Englot et al., 2011), and are not always effective (Téllez-

Zenteno et al., 2005; Englot et al., 2011). The identification

of shared biological disease pathways may help elucidate

diagnostic and prognostic biomarkers and therapeutic tar-

gets, which, in turn, could help to optimize individual treat-

ment (Pitkänen et al., 2016). However, disease biology

remains unexplained for most cases—especially in com-

monly occurring epilepsies.

Epilepsy is a network disorder typically involving wide-

spread structural alterations beyond the putative epileptic

focus (Bernhardt et al., 2015; Vaughan et al., 2016).

Hippocampal sclerosis is a common pathological substrate

of mesial temporal lobe epilepsy (MTLE), but extrahippo-

campal abnormalities are also frequently observed in MTLE,

notably in the thalamus (Keller and Roberts, 2008; Coan

et al., 2014; Alvim et al., 2016) and neocortex (Keller and

Roberts, 2008; Bernhardt et al., 2009b, 2010; Blanc et al.,

2011; Labate et al., 2011; Vaughan et al., 2016).

Neocortical abnormalities are also reported in idiopathic

generalized epilepsies (IGE) (Bernhardt et al., 2009a), and

many childhood syndromes (O’Muircheartaigh et al.,

2011; Vollmar et al., 2011; Ronan et al., 2012; Overvliet

et al., 2013). Thus, common epilepsies may be characterized

by shared disturbances in distributed cortico-subcortical
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brain networks (Berg et al., 2010), but the pattern, consist-

ency and cause of these disturbances, and how they relate to

functional decline (Vlooswijk et al., 2010; Bernasconi, 2016;

Nickels et al., 2016), are largely unknown.

Currently, we lack reliable data from large cross-sectional

neuroimaging, brain tissue, or biomarker studies in the

common epilepsies. Brain tissue is not available from

large cohorts of patients: common forms of epilepsy are

often unsuitable for surgical treatment, so biopsied tissues

are simply unavailable in sufficient numbers for research

into disease biology. Brain-wide post-mortem studies also

require extensive effort for comprehensive analysis. MRI

offers detailed information on brain structure, but MRI

measures from groups of individuals with and without epi-

lepsy are not always consistent. For example, MTLE is

associated with hippocampal sclerosis in up to 70% of

brain MRI scans (Blümcke et al., 2013). However, the ef-

fects of laterality, and the extent of extrahippocampal grey

matter loss are inconsistently reported in studies of left

versus right MTLE (Kemmotsu et al., 2011; Liu et al.,

2016). Similarly, abnormalities of the basal ganglia, hippo-

campus, lateral ventricles, and neocortex have all been re-

ported in IGE (Betting et al., 2006), but most alterations

are non-specific, and visual inspection of clinical MRI in

IGE is typically normal (Woermann et al., 1998). Genome-

wide association studies (GWAS) have identified genetic

variants associated with complex epilepsies by ‘lumping’

different epilepsy types together (International League

Against Epilepsy Consortium on Complex Epilepsies,

2014), but MRI studies are typically of smaller scale, and

have not widely explored whether distinct epilepsy syn-

dromes share common structural abnormalities.

There are many sources of inconsistency in previously

reported MRI findings. First, epileptic seizures and syn-

dromes are diverse; classifications are often revised and

contested (Berg et al., 2010; Scheffer et al., 2017).

Second, most cross-sectional brain imaging studies are

based on small samples (typically 550 cases), limiting the

power to detect subtle group differences (Button et al.,

2013). Third, variability in scanning protocols, image pro-

cessing, and statistical analysis may affect the sensitivity of

brain measures across studies.

The Enhancing Neuro Imaging Genetics through Meta-

Analysis (ENIGMA) Consortium was formed to address

these issues (Bearden and Thompson, 2017). ENIGMA is

a global initiative, combining large samples with coordi-

nated image processing, and integrating genomic and

MRI data across hundreds of research centres worldwide.

Prior ENIGMA studies have identified genetic variants

associated with variations in brain structure (Stein et al.,

2012; Hibar et al., 2015, 2017a; Adams et al., 2016), and

have reliably characterized patterns of brain abnormalities

in schizophrenia (van Erp et al., 2016), major depression

(Schmaal et al., 2016), obsessive compulsive disorder

(Boedhoe et al., 2017), attention deficit hyperactivity dis-

order (Hoogman et al., 2017), and many other brain ill-

nesses (Thompson et al., 2017). Large-scale, collaborative

initiatives such as ENIGMA may improve our understand-

ing of epilepsy, helping clinicians make more informed

decisions and provide personalized treatment strategies

(Ben-Menachem, 2016). Thus, we formed the Epilepsy

Working Group of ENIGMA (‘ENIGMA-Epilepsy’) to

apply coordinated, well-powered studies of imaging and

genetic data in epilepsy.

Here, in the largest analysis of structural brain abnorm-

alities in epilepsy to date, we ranked effect sizes for 16

subcortical and 68 cortical brain regions in 2149 individ-

uals with epilepsy and 1727 healthy controls, using harmo-

nized image processing, quality control, and meta-analysis.

First, we grouped all epilepsies together, to determine

whether biologically distinct syndromes show robust,

common structural deficits. Second, we assessed a well-

characterized form of epilepsy: MTLE with hippocampal

sclerosis, analysing patients with left- and right-sided hip-

pocampal sclerosis as independent groups. Third, we exam-

ined another major set of epilepsy syndromes: IGE. Finally,

we studied all remaining epilepsies as a combined sub-

group, to understand the relative contributions of IGE,

MTLE-L, MTLE-R, and all other syndromes on shared

patterns of structural compromise. We tested how age at

scan, age of onset, and epilepsy duration affected brain

structural measures. Based on existing neuroimaging

(Gotman et al., 2005; Bernhardt et al., 2009a; Liu et al.,

2016), neurophysiological (Gotman et al., 2005), neuro-

pathological (Thom et al., 2009), and genetic data

(International League Against Epilepsy Consortium on

Complex Epilepsies, 2014), we predicted that (i) biologic-

ally distinct epilepsy syndromes would exhibit shared pat-

terns of structural abnormalities; (ii) MTLEs with left or

right hippocampal sclerosis would show distinct patterns of

hippocampal and extrahippocampal structural deficits; and

(iii) IGEs would also display subcortical volume and cor-

tical thickness differences, compared to healthy controls.

Materials and methods
Each centre received approval from their local institutional
review board or ethics committee. Written informed consent
was provided according to local requirements (Supplementary
Table 1).

Experimental design

Participants

Twenty-four cross-sectional samples from 14 countries were
included in the study, totalling 2149 people with epilepsy
and 1727 research centre-matched healthy control subjects
(Fig. 1 and Table 1). The locations, dates, and periods of par-
ticipant recruitment are provided in Supplementary Table 1.
An epilepsy specialist assessed seizure and syndrome classifica-
tions at each centre, using International League Against
Epilepsy terminology (Berg et al., 2010). Participants were
aged 18–55.
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To test for shared and syndrome-specific structural alter-
ations, analyses included one group combining all epilepsies
(‘all-epilepsies’; n = 2149), and four stratified subgroups: (i)
left MTLE with left hippocampal sclerosis (MTLE-L;
n = 415); (ii) right MTLE with right hippocampal sclerosis
(MTLE-R; n = 339); (iii) IGE (n = 367); and (iv) all other epi-
lepsies (n = 1028). Supplementary Table 2 lists all syndromic
diagnoses included in the aggregate ‘all-epilepsies’ group. For
the MTLE subgroups, we included anyone with the typical
electroclinical constellation (Berg et al., 2010), and a neuror-
adiologically-confirmed diagnosis of unilateral hippocampal
sclerosis on clinical MRI. Participants were included in the
IGE subgroup if they presented with tonic-clonic, absence or
myoclonic seizures with generalized spike-wave discharges on
EEG. Participants were included in the ‘all-other-epilepsies’
subgroup if they were diagnosed with non-lesional MTLE
(43.3%), occipital (1.67%), frontal (8.78%), or parietal lobe
epilepsy (0.84%), focal epilepsies not otherwise specified
(37.03%), or another unclassified syndrome (8.37%;
Supplementary Table 2). We excluded participants with a pro-
gressive disease (e.g. Rasmussen’s encephalitis), malformations
of cortical development, tumours or previous neurosurgery.

MRI data collection and processing

Structural T1-weighted MRI brain scans were collected at the
24 participating centres. Scanning details are provided in

Supplementary Table 3. T1-weighted images from cases and
controls were analysed at each site using FreeSurfer 5.3.0,
for automated analysis of brain structure (Fischl, 2012).
Volumetric measures were extracted for 12 subcortical grey
matter regions (six left and six right, including the amygdala,
caudate, nucleus accumbens, pallidum, putamen, and thal-
amus), the left and right hippocampi, and the left and right
lateral ventricles. Cortical thickness measures were extracted
for 34 left-hemispheric grey matter regions, and 34 right-hemi-
spheric grey matter regions (68 total; Supplementary Table 4).
Visual inspections of subcortical and cortical segmentations
were conducted following standardized ENIGMA protocols
(http://enigma.usc.edu), used in prior genetic studies of brain
structure (Stein et al., 2012; Hibar et al., 2015, 2017a; Adams
et al., 2016), and large-scale case-control studies of neuro-
psychiatric illnesses (Schmaal et al., 2015, 2016; Hibar et al.,
2016; van Erp et al., 2016; Boedhoe et al., 2017). Analysts
were blind to participants’ diagnoses. Each analyst was in-
structed to execute a series of standardized bash scripts, iden-
tifying participants with volumetric or thickness measures
greater or less than 1.5 times the interquartile range as out-
liers. Outlier data were then visually inspected, by overlaying
the participant’s cortical segmentations on their whole-brain
anatomical images. If the blinded local analyst judged any
structure as inaccurately segmented, that structure was omitted
from the analysis. The Supplementary material provides fur-
ther information.

Statistical analysis

Participant demographics

All research centres tested for differences in age between indi-
viduals with epilepsy and controls using an unpaired, two-
tailed t-test in the R statistics package (https://www.r-project.
org). Each centre also tested for sex differences between indi-
viduals with epilepsy and controls using a chi-squared test in
SPSS Statistics package (IBM Corp., Version 21.0).

Meta-analytical group comparisons

Each research centre tested for case-versus-control differences
using multiple linear regressions (via the lm function imple-
mented in R), where a binary indicator of diagnosis
(0 = healthy control, 1 = person with epilepsy) was the pre-
dictor of interest, and the volume or thickness of a specified
brain region was the outcome measure. We calculated effect
size estimates across all brain regions using Cohen’s d, adjust-
ing for age, sex and intracranial volume (ICV). ICV is a reli-
able, indirect measure of head size (Hansen et al., 2015), used
as a covariate in other large-scale ENIGMA collaborations
(Schmaal et al., 2015, 2016; Hibar et al., 2016; van Erp
et al., 2016; Boedhoe et al., 2017). Cohen’s d effect sizes
and regression beta coefficients were pooled across centres
using a random-effects, restricted maximum likelihood
method of meta-analysis via the R package, metafor
(Viechtbauer, 2010). The Supplementary material provides
additional details.

Meta-analytical regression with clinical variables

Each centre conducted a series of linear regressions, testing the
association between subcortical volume or cortical thickness,
and: (i) age at onset of epilepsy; and (ii) duration of epilepsy.

Figure 1 Study flowchart. ILAE = International League Against

Epilepsy; MOU = memorandum of understanding.
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All centres tested for interactions between diagnosis of epilepsy
(including syndrome groups) and age at time of scan. Beta
values representing the unstandardized slopes of each regres-
sion were extracted for each analysis. Sex and ICV were
included as covariates in all secondary analyses.

Correction for multiple comparisons

We conducted four independent regressions (one case versus
control regression, and three regressions with clinical variables)
across 84 regions of interest, adjusting the statistical significance
threshold to Pthresh51.49 � 10�4 to correct for 336 compari-
sons. To account for correlations between tests, we also applied
a less conservative adjustment for false discovery rate (FDR),
using the Benjamini and Hochberg method (Benjamini and
Hochberg, 1995). For clarity, we report only P-values signifi-
cant after stringent Bonferroni correction; FDR-adjusted
P-values are summarized in the Supplementary material.

Power analyses

Across all regions of interest, we calculated the sample sizes
necessary to achieve 80% power to detect case-control differ-
ences, given the observed effect sizes at each region of interest,
based on two-tailed t-tests, using G*Power Version 3.1. For
each region of interest, we also estimated N80: the total
number of samples required, per group, to achieve 80%
power to detect group differences using a t-test at the threshold
of P50.05 (two-tailed).

Results

Participant demographics

The sample size-weighted mean age across all epilepsy sam-

ples was 34.4 (range: 26.2–40) years, and the weighted

mean age of healthy controls was 33.3 (range: 25.2–42.3)

years. The weighted mean age at onset of epilepsy and

duration of epilepsy were 17.6 (range: 12.1–28.2) years

and 17.4 (range: 8.3–28) years, respectively. Females com-

prised 57% of the total epilepsy sample (range: 34–75% by

individual sample), and 53% of the controls (range:

31–71% by individual sample). Case-control differences

in age were observed at 8 of 24 research centres, and

case-control differences in sex were observed at 2 of 24

research centres (Supplementary Table 5); hence, age and

sex were included as covariates in all group comparisons.

Volumetric findings

Compared to controls, the aggregate all-epilepsies

group exhibited lower volumes in the left (d = �0.36;

P = 1.31 � 10�6) and right thalamus (d = �0.37; P = 7.67

� 10�14), left (d = �0.35; P = 3.04 � 10�7) and right

hippocampus (d = �0.34; P = 6.63 � 10�10), and the right

pallidum (d = �0.32; P = 8.32 � 10�9). Conversely, the left

(d = 0.29; P = 2.14 � 10�12) and right (d = 0.27;

P = 3.73 � 10�15) lateral ventricles were enlarged across

all epilepsies when compared to controls (Table 2 and

Fig. 2A). A supplementary analysis of all-epilepsies,

excluding individuals with hippocampal sclerosis or other

lesions, revealed similar patterns of volume loss in the right

thalamus and pallidum, and bilaterally enlarged ventricles;

however, volume differences were not observed in the

hippocampus (Supplementary Table 6).

The MTLE-L subgroup showed lower volumes in the

left hippocampus (d = �1.73; P = 1.35 � 10�19), left

(d = P = 2.19 � 10�11) and right thalamus (d = �0.46;

P = 8.12 � 10�5), left putamen (d = �0.39; P = 1.07 �

10�6), and right pallidum (d = �0.45; P = 5.48 � 10�7).

As in the overall group comparison, we observed larger

left (d = 0.47; P = 1.96 � 10�7) and right lateral ventricles

(d = 0.36; P = 8.95 � 10�5) in MTLE-L patients relative to

controls (Table 2 and Fig. 2B).

The MTLE-R subgroup showed lower volumes across a

number of regions in the right hemisphere only, including

the hippocampus (d = �1.91; P = 6.36 � 10�37), thalamus

(d = �0.73; P = 1.6 � 10�12), and pallidum (d = �0.45;

P = 3.96 � 10�7), together with increased volumes of the

left (d = 0.39; P = 1.52 � 10�6) and right lateral ventricles

(d = 0.44; P = 6.57 � 10�12) compared to controls (Table 2

and Fig. 2C).

The IGE subgroup showed lower volumes in the right

thalamus (d = �0.4; P = 3.6 � 10�6) compared to controls

(Table 2 and Fig. 2D).

The all-other-epilepsies subgroup showed lower volumes

in the right thalamus (d = �0.31; P = 7.9 � 10�11) and the

right pallidum (d = �0.24; P = 8.1 � 10�5) compared to

controls. The all-other-epilepsies subgroup also showed sig-

nificant enlargements of the left (d = 0.33; P = 5.1 � 10�7)

and right amygdala (d = 0.22; P = 1.46 � 10�4), and the

left (d = 0.2; P = 1.2 � 10�5) and right lateral ventricles

(d = 0.21; P = 4.62 � 10�6) compared to controls (Table 2

and Fig. 2E).

All volume differences can be visualized using the

interactive ENIGMA-Viewer tool (Zhang et al., 2017), at

http://enigma-viewer.org/ENIGMA_epilepsy_subcortical.html

(Supplementary material). Volume differences significant

after FDR adjustment can also be visualized at http://

enigma-viewer.org/ENIGMA_epilepsy_subcortical_fdr.html

(Supplementary Tables 26–30).

Cortical thickness findings

The all-epilepsies group showed reduced thickness of cor-

tical grey matter across seven regions bilaterally, including

the left (d = �0.38; P = 1.82 � 10�18) and right precentral

gyri (d = �0.4; P = 8.85 � 10�20), left (d = �0.32; P = 2.11

� 10�15) and right caudal middle frontal gyri (d = �0.31;

P = 2.09 � 10�9), left (d = �0.31; P = 2.05 � 10�6) and

right paracentral gyri (d = �0.32; P = 2.19 � 10�9), left

(d = �0.19; P = 1.29 � 10�4) and right pars triangularis

(d = �0.2; P = 4.25 � 10�8), left (d = �0.28; P = 1.51 �

10�7) and right superior frontal gyri (d = �0.27;

P = 4.49 � 10�6), left (d = �0.19; P = 1.05 � 10�5) and

right transverse temporal gyri (d = �0.18; P = 2.81 �

10�5), and left (d = �0.23; P = 9.87 � 10�5) and right
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supramarginal gyri (d = �0.22; P = 5.24 � 10�5). The all-

epilepsies group also showed unilaterally thinner right

cuneus (d = �0.2; P = 9.68 � 10�8), right pars opercularis

(d = �0.18; P = 6.48 � 10�7), right precuneus (d = �0.28;

P = 2.7 � 10�5), and left entorhinal gyrus (d = �0.26;

P = 2.04 � 10�5), compared to healthy controls (Table 3

and Fig. 3A). Supplementary analysis in a non-lesional epi-

lepsy subgroup revealed a similar pattern of cortical thick-

ness differences compared to controls, suggesting that the

changes observed in our main analysis were not driven by

the inclusion of patients with hippocampal sclerosis or

other common lesions (Supplementary Table 7).

The MTLE-L and MTLE-R subgroups showed distinct

patterns of cortical thickness reductions when compared

to healthy controls (Table 3, Fig. 3B and C). In MTLE-R,

lower cortical thickness was reported across four motor

regions, including the left (d = �0.51; P = 7.67 � 10�7)

and right paracentral gyri (d = �0.42; P = 6.24 � 10�11),

Figure 2 Subcortical volume findings. Cohen’s d effect size estimates for case-control differences in subcortical volume, across the (A) all-

epilepsies, (B) mesial temporal lobe epilepsies with left hippocampal sclerosis (HS; MTLE-L), (C) mesial temporal lobe epilepsies with right

hippocampal sclerosis (MTLE-R), (D) idiopathic generalized epilepsies (IGE), and (E) all-other-epilepsies groups. Cohen’s d effect sizes were

extracted using multiple linear regressions, and pooled across research centres using random-effects meta-analysis. Subcortical structures with P-

values5 1.49 � 10�4 are shown in heatmap colours; strength of heat map is determined by the size of the Cohen’s d (d5 0 = blue,

d4 0 = yellow/red). Image generated using MATLAB, with annotations added using Adobe Photoshop. An interactive version of this figure is

available online, via ‘ENIGMA-Viewer’: http://enigma-viewer.org/ENIGMA_epilepsy_subcortical.html. See Supplementary material for guidelines

on how to use the interactive visualization.
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and the left (d = �0.42; P = 4.31 � 10�6) and right precen-

tral gyri (d = �0.52; P = 1.25 � 10�9). The MTLE-R sub-

group also showed thickness changes in the left transverse

temporal gyrus (d = �0.31; P = 2.15 � 10�5), and right

pars opercularis (d = �0.27; P = 1.45 � 10�4) (Table 3

and Fig. 3C). By contrast, in MTLE-L, lower thickness

was observed across six regions of the motor cortex,

including the left (d = �0.43; P = 1.61 � 10�5) and right

paracentral gyri (d = �0.38; P = 5.14 � 10�7), left

(d = �0.47; P = 8.64 � 10�9) and right precentral gyri

(d = �0.49; P = 2.37 � 10�10), and left (d = �0.54;

P = 7.35 � 10�5) and right precuneus (d = �0.47;

P = 5.16 � 10�6). The MTLE-L group also showed thickness

changes across five regions of the frontal cortex, including the

left (d = �0.41; P = 1.02 � 10�11) and right superior frontal

gyri (d = �0.37; P = 1.44 � 10�9), left (d = �0.4;

Figure 3 Cortical thickness findings. Cohen’s d effect size estimates for case-control differences in cortical thickness, across the (A)

all-epilepsies, (B) mesial temporal lobe epilepsies with left hippocampal sclerosis (MTLE-L), (C) mesial temporal lobe epilepsies with right

hippocampal sclerosis (MTLE-R), (D) idiopathic generalized epilepsies (IGE), and (E) all-other-epilepsies groups. Cohen’s d effect sizes were

extracted using multiple linear regressions, and pooled across research centres using random-effects meta-analysis. Cortical structures with

P-values5 1.49 � 10�4 are shown in heatmap colours; strength of heat map is determined by the size of the Cohen’s d (d5 0 = blue,

d4 0 = yellow/red). Image generated using MATLAB with annotations added using Adobe Photoshop. An interactive version of this figure is

available online, via ‘ENIGMA-Viewer’: http://enigma-viewer.org/ENIGMA_epilepsy_cortical.html. See Supplementary material for guidelines on

how to use the interactive visualization. HS = hippocampal sclerosis.
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P = 7.07 � 10�9) and right caudal middle frontal gyri

(d = �0.44; P = 3.61 � 10�7), and the right pars triangularis

(d = �0.29; P = 2.16 � 10�6). In MTLE-L, thickness alter-

ations were also observed in four regions of the temporal

cortex, including the left temporopolar cortex (d = �0.32;

P = 3.33 � 10�6), left parahippocampal gyrus (d = �0.3;

P = 3.95 � 10�5), left entorhinal gyrus (d = �0.45;

P = 7.35 � 10�10), and left fusiform gyrus (d = �0.36;

P = 2.19 � 10�7) (Table 3 and Fig. 3B).

The IGE subgroup showed reduced thickness in the left

(d = �0.34; P = 1.75 � 10�6) and right precentral gyri

(d = �0.39; P = 5.27 � 10�8), when compared to healthy

controls (Table 3 and Fig. 3D).

The all-other-epilepsies subgroup showed lower thickness

across six cortical regions bilaterally, including the left

(d = �0.38; P = 1.76 � 10�16) and right precentral gyri

(d = �0.35; P = 1.7 � 10�14), left (d = �0.26; P = 1.34 �

10�8) and right paracentral gyri (d = �0.35; P = 1.1 �

10�14), left (d = �0.29; P = 1.32 � 10�10) and right

caudal middle frontal gyri (d = �0.21; P = 2.62 � 10�6),

left (d = �0.22; P = 7.27 � 10�7) and right superior parietal

gyri (d = �0.22; P = 1.15 � 10�6), left (d = �0.24; P = 3.51

� 10�5) and right superior frontal gyri (d = �0.23;

P = 7.15 � 10�6), and the left (d = �0.18; P = 1.34 �

10�4) and right precuneus (d = �0.24; P = 7.78 � 10�6)

compared to controls. The all-other-epilepsies group also

showed unilaterally reduced thickness in six right hemi-

spheric regions, including the cuneus (d = �0.23; P = 2.15

� 10�7), lateral occipital gyrus (d = �0.21; P = 3.18 �

10�6), pars triangularis (d = �0.21; P = 3.32 � 10�6),

supramarginal gyrus (d = �0.21; P = 9.95 � 10�6), trans-

verse temporal gyrus (d = �0.18; P = 6.84 � 10�5), and lin-

gual gyrus (d = �0.18; P = 7.12 � 10�5), compared to

controls (Table 3 and Fig. 3E).

An interactive 3D visualization of these results is avail-

able via the ENIGMA-Viewer tool (Zhang et al., 2017), at

http://enigma-viewer.org/ENIGMA_epilepsy_cortical.html

(Supplementary material). Cortical thickness differences

significant after FDR adjustment can also be visualized

at http://enigma-viewer.org/ENIGMA_epilepsy_cortical_

fdr.html (Supplementary Tables 31–35).

Duration of illness, age at onset, and
age-by-diagnosis effects on brain
abnormalities

A secondary analysis identified significant associations

between duration of epilepsy and several affected brain re-

gions in the all-epilepsies, MTLE-R, and all-other-epilepsies

groups. In the all-epilepsies group, duration of epilepsy nega-

tively associated with volume measures in the left hippocam-

pus (b = �8.32; P = 8.16 � 10�13), left (b = �13.58;

P = 3.52 � 10�15), and right thalamus (b = �12.25;

P = 1.58� 10�13), and right pallidum (b = �2.67; P = 1.78

� 10�7), in addition to bilateral thickness measures in the

left (b = �0.003; P = 2.99 � 10�11) and right pars

triangularis (b = �0.002; P = 4.24 � 10�9), left (b = �0.003;

P = 1.61 � 10�15) and right caudal middle frontal gyri

(b = �0.003; P = 1.65 � 10�17), left (b = �0.003; P = 1.77

� 10�13) and right supramarginal gyri (b = �0.003;

P = 2.58 � 10�19), left (b = �0.003; P = 5.84 � 10�12) and

right precentral gyri (b = �0.003; P = 2.54 � 10�24), left

(b = �0.004; P = 1.94 � 10�12) and right superior frontal

gyri (b = �0.003; P = 4.65 � 10�11), left (b = �0.004;

P = 1.05 � 10�10) and right transverse temporal gyri

(b = �0.003; P = 8.24 � 10�10), and left (b = �0.002;

P = 5.22 � 10�6) and right paracentral gyri (b = �0.002;

P = 5.63 � 10�6). Duration of epilepsy also negatively asso-

ciated with unilateral thickness measures in the right precu-

neus (b = �0.003; P = 6.03 � 10�21), right pars opercularis

(b = �0.003; P = 5.59 � 10�13), and right cuneus

(b = �0.002; P = 1.1 � 10�9; Supplementary Table 8). In

the MTLE-R subgroup, duration of epilepsy negatively asso-

ciated with volume measures in the right hippocampus

(b = �22.42; P = 1.1 � 10�7), and the right thalamus

(b = �18.11; P = 1.84 � 10�5), and thickness measures in

the left transverse temporal gyrus (b = �0.007; P = 8.39

� 10�5; Supplementary Table 8). In the all-other-epilepsies

subgroup, duration of epilepsy negatively associated with bi-

lateral thickness measures in the left (b = �0.003;

P = 3.39 � 10�7) and right caudal middle frontal gyri

(b = �0.003; P = 6.91 � 10�8), left (b = �0.003; P = 1.36 �

10�9) and right superior frontal gyri (b = �0.003; P = 3.16

� 10�7), and the left (b = �0.003; P = 3.17 � 10�5) and

right precuneus (b = �0.003; P = 5.01 � 10�9), in addition

to unilateral thickness measures in the right precentral

gyrus (b = �0.004; P = 1.16 � 10�12), right cuneus

(b = �0.003; P = 8.57 � 10�8), right pars triangularis

(b = �0.003; P = 5.16 � 10�7), and right supramarginal

gyrus (b = �0.003; P = 2.24 � 10�7). Duration of epilepsy

also showed a positive association with the size of the left

lateral ventricle in the all-other-epilepsies group (b = 13.6;

P = 1.17 � 10�5).

In the all-epilepsies group, age at onset of epilepsy nega-

tively associated with thickness measures in the left

(b = �0.003; P = 2.66 � 10�15) and right superior frontal

gyri (b = �0.003; P = 9.77 � 10�10), left (b = �0.003;

P = 2.78 � 10�9) and right pars triangularis (b = �0.003;

P = 6.51 � 10�7), right pars opercularis (b = �0.003; P =

5.4 � 10�14), left transverse temporal gyrus (b = �0.003;

P = 1.03 � 10�8), and right cuneus (b = �0.001;

P = 4.9 � 10�6). In the all-other-epilepsies subgroup, age

at onset negatively correlated with thickness measures in

the left (b = �0.003; P = 3.21 � 10�8) and right superior

frontal gyri (b = �0.002; P = 1.18 � 10�4), left

(b = �0.002; P = 8.42 � 10�6) and right precuneus

(b = �0.002; P = 7.23 � 10�5), right pars triangularis

(b = �0.003; P = 2.53 � 10�5), and right supramarginal

gyrus (b = �0.002; P = 2.38 � 10�6). Age at onset also

positively associated with the size of the right lateral ven-

tricle in the all-other-epilepsies subgroup (b = 57.73;

P = 1.62 � 10�7).
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Age at onset negatively associated with other regional

volumetric and thickness measures in the all-epilepsies,

IGE, MTLE-L, MTLE-R, and all-other-epilepsies groups,

but these associated areas showed no significant structural

differences in the primary case-control analysis (Table 1

and Supplementary Table 8).

There were no interaction effects between age and syn-

dromic diagnosis in the all-epilepsies, MTLE-L, MTLE-R,

IGE, or all-other-epilepsies groups.

Power analyses for detection of
case-control differences

In our sample of 2149 individuals with epilepsy and 1727

healthy controls, we had 80% power to detect Cohen’s d

effect sizes as small as d = 0.091 at the standard alpha level

of P50.05 (two-tailed), and 80% power to detect Cohen’s

d effect sizes as small as d = 0.149 at the study’s stringent

Bonferroni-corrected threshold of P5 1.49 � 10�4.

N80, the number of cases and controls required to

achieve 80% power to detect group differences using a

two-tailed t-test at P5 0.05, ranged from N80 = 6, to

detect group effects in the right hippocampus in our

MTLE-R group, to N80 = 503, to detect group effects in

the right pars opercularis in our ‘all epilepsies’ group

(Tables 2 and 3).

Discussion
In the largest coordinated neuroimaging study of epilepsy

to date, we identified a series of quantitative imaging sig-

natures—some shared across common epilepsy syndromes,

and others characteristic of selected, specific epilepsy syn-

dromes. Our sample of 2149 individuals with epilepsy and

1727 controls provided 80% power to detect differences as

small as d = 0.091 (P5 0.05, two-tailed), allowing us to

identify subtle, consistent brain abnormalities that are typ-

ically undetectable on visual inspection, or overlooked

using smaller case-control designs. This international col-

laboration addresses prior inconsistencies in the field of

epilepsy neuroimaging, providing a robust, in vivo map

of structural aberrations, upon which future studies of dis-

ease mechanisms may expand.

In the first of five cross-sectional MRI analyses, we inves-

tigated a diverse aggregation of epilepsy syndromes, puta-

tive causes, and durations of disease. This all-epilepsies

group exhibited shared, diffuse brain structural differences

across several regions including the thalamus, pallidum,

precentral, paracentral, and superior frontal cortices. With

the exception of hippocampal volume and entorhinal thick-

ness differences (Supplementary material), these structural

alterations were not driven by any specific syndrome or

dataset (Supplementary Figs 3 and 7). Our findings suggest

a common neuroanatomical signature of epilepsy across a

wide spectrum of disease types, complementing recent evi-

dence for shared genetic susceptibility to a wide spectrum

of epilepsies (International League Against Epilepsy

Consortium on Complex Epilepsies, 2014). Some structural

and genetic pathways may be shared across syndromes,

despite the heterogeneity of epilepsy and seizure types.

This shared MRI signature underpins the contemporary

shift towards the study of epilepsies as network phenomena

(Caciagli et al., 2014).

In MTLE, as expected, we observed hippocampal volume

abnormalities ipsilateral to the patient’s side of seizure

onset. Neither MTLE-L nor MTLE-R showed significant

contralateral hippocampal volume reductions, confirming

that sporadic, unilateral MTLE is not routinely under-

pinned by bilateral hippocampal damage (Blümcke et al.,

2013). Both MTLE groups showed extrahippocampal

abnormalities in the ipsilateral thalamus and pallidum,

with widespread reductions in cortical thickness, support-

ing a growing body of literature indicating that MTLE, as

an example of a specific disease constellation in the epilep-

sies, is also a network disease, extending beyond the mesial

temporal regions (Keller et al., 2014; de Campos et al.,

2016). Disruption of this network, notably in the thalamus

(Keller et al., 2015; He et al., 2017) and thalamo-temporal

white matter tracts (Keller et al., 2015, 2017), may be

associated with postoperative seizure outcome in MTLE.

Patients with left and right MTLE showed distinct pat-

terns of structural abnormalities when compared to con-

trols, resolving conflicting findings from smaller studies,

some reporting an equal distribution of structural differ-

ences (Liu et al., 2016), and others indicating more diffuse

abnormalities, either in left MTLE (Keller et al., 2002,

2012; Bonilha et al., 2007; Kemmotsu et al., 2011; de

Campos et al., 2016) or in right MTLE (Pail et al.,

2009). The structural differences observed in the present

study may reflect a younger age at onset of epilepsy in

left MTLE, which occurred, on average, 1.2 years earlier

than those with right MTLE (Supplementary Table 20).

Independent, large-scale studies of MTLE patients have

confirmed a significantly earlier age at onset in left, com-

pared to right, MTLE (Blümcke et al., 2017). Duration-

related effects were also observed in right, but not left,

MTLE, pointing to possible biological distinctions between

the two.

In IGE, a clinically and biologically distinct group of epi-

lepsies typically associated with ‘normal’ MRI on clinical

inspection (Woermann et al., 1998), we identified reduced

volume of the right thalamus, and thinner precentral gyri in

both hemispheres, supporting prior reports of structural

(Bernhardt et al., 2009a), electroencephalographic, and func-

tional (Gotman et al., 2005) abnormalities in IGE. These

IGE cases were considered typical by reviewing neurologists,

suggesting that this common type of epilepsy is also asso-

ciated with quantifiable structural brain abnormalities.

The precentral gyri, site of the primary motor cortex,

showed bilateral structural deficits across all epilepsy

groups (all-epilepsies, IGE, MTLE-L, MTLE-R, and all-

other-epilepsies), without detectable inter-cohort or be-

tween-disease heterogeneity (Supplementary Figs 3–12).
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Atrophy of the motor cortex has been linked to seizure

frequency and duration of epilepsy in MTLE (Coan et al.,

2014); here, we observed a negative correlation between

precentral (and postcentral) grey matter thickness and dur-

ation of epilepsy in the aggregate all-epilepsies group.

The right thalamus also showed evidence of structural

compromise across all epilepsy cohorts, re-emphasizing

the importance of the thalamus as a major hub in the epi-

lepsy network (He et al., 2017; Jobst and Cascino, 2017).

Loss of feed-forward inhibition between the thalamus and

its neocortical connections may be epileptogenic (Paz and

Huguenard, 2015), and thalamocortical abnormalities have

previously been reported in IGE (Gotman et al., 2005;

Bernhardt et al., 2009a; O’Muircheartaigh et al., 2012)

and MTLE (Mueller et al., 2010; Bernhardt et al., 2012).

These findings support prior ‘system epilepsies’ hypotheses

of pathophysiology (Avanzini et al., 2012), suggesting that

a broad range of common epilepsies share vulnerability

within a thalamocortical structural pathway involved in,

and likely affected by, seizures (Liu et al., 2003;

Bernhardt et al., 2013). Given this study’s cross-sectional

design, we cannot determine if these are causative changes,

consequences of recurrent seizures, prolonged drug treat-

ment, or a combination of factors. The epilepsies, as a

broad group, may involve progressive structural change

(Caciagli et al., 2017), indicating the need for large-scale

longitudinal studies.

A heterogeneous subgroup of individuals without con-

firmed diagnoses of IGE or MTLE with hippocampal scler-

osis showed similar patterns of structural alterations to

those observed in the aggregate all-epilepsies cohort. The

findings included enlarged ventricles, smaller right pallidum

and right thalamus, and reduced thickness across the motor

and frontal cortices. Hippocampal abnormalities were not

observed in this subgroup, suggesting that the patterns of

reduced hippocampal grey matter observed in the aggregate

group were driven by the inclusion of MTLEs with hippo-

campal sclerosis. Unlike the IGE, MTLE, and aggregate

epilepsy cohorts, this subgroup also showed bilateral en-

largement of the amygdala—a phenomenon previously re-

ported in non-lesional localization-related epilepsies (Reyes

et al., 2017) and non-lesional MTLEs (Takaya et al., 2012;

Coan et al., 2013). Non-lesional MTLEs formed a large

proportion of this ‘all-other-epilepsies’ cohort (43.3%;

445 individuals), but the subgroup included many other

focal and unclassified syndromes, potentially obscuring spe-

cific biological interpretations. Future, sufficiently powered

studies will stratify this cohort into finer-grained subtypes

to delineate syndrome-specific effects.

Despite its international scale, our study has limitations.

All results were derived from cross-sectional data: we

cannot distinguish between historical acute damage and

progressive abnormalities. We cannot disentangle the rela-

tive contributions of environmental and treatment-related

factors, including antiepileptic medications, seizure types

and frequencies, disease severity, language dominance,

and other initial precipitating factors. On average, duration

of epilepsy was at least 10 years; longitudinal investigations

of new-onset and paediatric epilepsies will provide a more

comprehensive understanding. Despite using standardized

image processing protocols, quality control, and statistical

techniques, some brain measures showed a wide distribu-

tion of effect sizes across research centres, which may re-

flect sample heterogeneity and differences in scanning

protocols (Supplementary material).

We observed modest thickness differences across the ma-

jority of cortical regions; Cohen’s d effect sizes ranged from

small to moderate (d = 0.2–0.5), with some very small ef-

fects (d5 0.2) noted in the right pars opercularis, bilateral

pars triangularis, and bilateral transverse temporal gyri of

the aggregate all-epilepsies group. Other large-scale

ENIGMA studies have reported similarly modest (albeit

less widespread) cortical abnormalities in psychiatric ill-

nesses including major depression (Schmaal et al., 2016)

and bipolar disorder (Hibar et al., 2017b). Although epi-

lepsy is characterized by an enduring predisposition to gen-

erate abnormal excessive or synchronous neuronal activity

in the brain (Fisher et al., 2014), our findings indicate that

common epilepsies are associated with widespread, but

relatively subtle, structural alterations of the neocortex.

Replication in independent MRI cohorts, complemented

by advanced imaging modalities and large-scale gene ex-

pression datasets, will help elucidate how these cortical

abnormalities relate to underlying disease processes.

Overall, in the largest neuroimaging analysis of epilepsy

to date, we demonstrate a pattern of robust brain structural

abnormalities within and between syndromes. Specific func-

tional interpretations cannot be inferred from grey matter

differences, but lower volume and thickness measures may

reflect tissue loss, supporting recent observations that the

common epilepsies cannot always be considered benign

(Gaitatzis et al., 2004; Bell et al., 2016; Devinsky et al.,

2017). The study provides a macroscopic neuroanatomical

map upon which neuropathological work, animal models,

and further gene expression studies, can expand. Our con-

sortium plans to investigate more specific neuroanatomical

traits and epilepsy phenotypes, explore sophisticated shape

and sulcal measures, and eventually conduct genome-wide

association analysis of brain measures, to improve our

understanding and treatment of the epilepsies.

Web resources
All image processing, quality assurance, and statistical ana-

lysis protocols for this study can be downloaded from the

ENIGMA website, at: http://enigma.usc.edu/ongoing/

enigma-epilepsy/enigma-epilepsy-protocols/.
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