The risk of Alzheimer's disease associated with benzodiazepines and related drugs: A nested case-control study

Vesa Tapiainen^{1,2*}, Heidi Taipale^{1,3,4}, Antti Tanskanen^{4,5,6}, Jari Tiihonen^{4,6,7}, Sirpa Hartikainen^{1,3},

Anna-Maija Tolppanen^{1,2}

Affiliations:

¹School of Pharmacy, University of Eastern Finland, Kuopio, Finland

²Research Centre for Comparative Effectiveness and Patient Safety (RECEPS), University of Eastern Finland, Kuopio, Finland

³Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland

⁴Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

⁵National Institute for Health and Welfare, Helsinki, Finland

⁶Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland

⁷Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden

This is the accepted version of the following article: Tapiainen V, Taipale H, Tanskanen A, Tiihonen J, Hartikainen S, Tolppanen AM. The risk of Alzheimer's disease associated with benzodiazepines and related drugs: A nested case-control study. *Acta Psychiatr Scand*. 2018. This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Polycy [https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-access/open-access/self-archiving.html].

*Corresponding author. School of Pharmacy, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland. E-mail: vesa.tapiainen@gmail.com. Phone number: +358509121140.

Running head: Benzodiazepines and risk of Alzheimer's disease

ABSTRACT

Objective: To assess the association between benzodiazepine and related drug (BZDR) use and risk of Alzheimer's disease (AD) with cumulative consumption and duration of use based models.

Method: A nationwide nested case-control study of all Finnish community-dwelling persons who received clinically verified AD diagnosis in 2005-2011 (N=70,719) and their matched controls (N=282,862). AD diagnosis was based on DSM-IV and NINCDS-ADRDA criteria. BZDR purchases were extracted from the Prescription register since 1995. The association between BZDR use and AD was assessed using conditional logistic regression with 5-year lag time between exposure and outcome.

Results: BZDR use was associated with modestly increased risk of AD (adjusted OR1.06, 95% CI1.04-1.08). A dose-response relationship was observed with both cumulative consumption and duration. Adjustment for other psychotropics removed the cumulative dose-response relationship by attenuating the ORs in the highest dose category.

Conclusion: BZDR use in general was associated with modestly increased risk of AD. No major differences were observed between different subcategories of BZDRs (i.e. benzodiazepines, Z drugs, short/medium acting or long acting BZDRs). As dose-response relationship abolished after adjustment for other psychotropics, it is possible that the association may partially be due to antidepressants and/or antipsychotics, or concomitant use of these medications.

Keywords: Alzheimer; Pharmacoepidemiology, Risk Factors; Dementia

Significant Outcomes:

- Benzodiazepine and related drug (BZDR) use in general was associated with modestly increased risk of Alzheimer's disease. Cumulative dose-response relationship was abolished after adjustment for other psychotropics, indicating that the association may partially be due to these medications, or reasons for their concomitant use.
- Even though the association between BZDR use and Alzheimer's disease was small in this study, BZDRs should be avoided when possible and threshold for prescribing should be high enough due to their overall adverse effect profile.

Limitations:

- Only reimbursed drug purchases could be extracted from the Prescription Register and therefore BZDR use may be underestimated in our study. This is likely nondifferential misclassification.
- Information of drug use in hospitals were not available from the Prescription Register which may have caused some misclassification of exposure.

INTRODUCTION

The prevalence of benzodiazepine (BZD) and related drug (Z drug) use, i.e. BZDR use, among older people varies between 9%-32% in developed countries[1-5]. Their adverse effects and events include drowsiness, higher risk of falls and hip fractures and mobility problems[6]. Despite the recommendations[7], BZDRs are commonly used long term[8]. Short-term negative effects on memory and cognition are well known.[9-12] Thus, their long-term use has been hypothesized to hasten cognitive decline and increase dementia risk.

Alzheimer's disease (AD) accounts for 60-80% of dementia cases[13]. BZDRs are used to treat prodromal or neuropsychiatric symptoms of dementia/AD such as anxiety and insomnia.[14-16] Because AD has long latency period, prodromal symptoms can arise years before diagnosis of AD. Thus, protopathic bias must be taken into account by using sufficient time lag between BZDR use and AD. In most of the studies, the time lag in main analyses has been 1-2 years[17-20], and in one study 5 years[21]. These studies have been inconsistent, with some claiming that BZDRs and BZDs are AD/dementia risk factors[18,21,22] and others reporting no association.[20] One, without any time lag reported that BZDs were associated with decreased risk of AD[23]. A recent metaanalysis[22] concluded about 50% increased dementia risk among BZDRs users.

Studies on dose-response relationship of BZDs have been equally heterogeneous, with two studies showing a dose-response effect[18,21], one reporting an increased risk with smaller cumulative doses only[17], and one reporting null results[20]. We are aware on only one study that assessed association between Z-drugs and AD or vascular dementia, concluding with null results[20]. The impact of elimination time has also been debated. Three previous studies found higher

dementia risk for those who used long-acting BZDRs compared to those who used short-acting BZDRs[18,19,21]. One study[19] found the risk only for long-acting but not for short-acting BZDRs and one study[20] found no associations.

Aims of the Study

We assessed the association between between benzodiazepine and related drug use and risk of Alzheimer's disease in a nationwide nested case-control study of all clinically verified Alzheimer's disease cases diagnosed in Finland in 2005-2011. The effect of dose, half-life, cumulative consumption and duration, as well as the individual associations of benzodiazepines and Z drugs were examined.

MATERIAL AND METHODS

Study population

Cases of the study were from the nationwide MEDALZ (Medication use and Alzheimer's disease) cohort, that includes all Finnish community-dwelling persons who received a clinically verified AD diagnosis in 2005–2011 (N=70,719, age range 34–105 years, 65.2 %. women).[24] To conduct a nested case-control study of the population of Finland, 1-4 age, sex and region of residence matched controls were identified for each case (N=282,862).

Data sources

Data were extracted from the Special Reimbursement Register (since 1972), the Prescription Register (since 1995), the Hospital Discharge Register (since 1972) and the population censuses maintained by Statistics Finland since 1970. All data sources have nationwide coverage. Register data were retrieved using personal identity numbers[25]. All data were de-identified before submission to the research team and therefore ethics committee approval was not required according to Finnish legislation. Permissions for data use were received from register maintainers. Registers and linkage process have been previously described in detail.[24]

Identification of AD cases

The AD cases were identified from the Special Reimbursement Register. The diagnostic criteria of AD were based on NINCDS-ADRDA[26] and DSM-IV[27]. All AD cases had to fulfil the requirements for the reimbursement of anti-AD drugs which are: (1) symptoms consistent with AD; (2) a decrease in social capacity over a period of at least 3 months; (3) received a computed tomography/magnetic resonance imaging scan; (4) had possible alternative diagnoses excluded; and (5) received confirmation of the diagnosis by a registered neurologist or geriatrician.[28]

Identification of controls

The matched controls were identified from nationwide registers of SII including all residents with the following criteria: (1) Alive and community-dwelling during the last day of the month when case was diagnosed with AD (index date); (2) no special reimbursement for AD medication or acetylcholinesterase inhibitor or memantine purchases (N06D) before index date and within 12 months after it.

BZDR use

BZDRs are categorized according to World Health Organization's Anatomical Therapeutic Chemical (ATC) classification system[29]. BZDRs were defined as benzodiazepines (ATC-classes N05BA and N05CD and clonazepam N03AE01) and benzodiazepine-related drugs, so called Zdrugs (ATC class N05CF). Various combination products including a BZD component, such as combination of diazepam with glycopyrronium, were identified as being on market and used by the study cohort during the follow-up and these also were included in analysis. Use of combination products was re-coded to the use of the corresponding BZD substance (diazepam-glycopyrronium recoded as diazepam use) to retrieve total duration of use and cumulative consumption for each drug substance (Supplementary table 1).

BZDRs were classified into short/medium and long-acting BZDRs according to Gomm et al[18], with the exception of alprazolam that was classified as long-acting, because of its increased half-life in old adults[30]. The following substances were categorized as short/medium-acting BZDRs: oxazepam (N05BA04), lorazepam (N05BA06), temazepam (N05CD07), zopiclone (N05CF01), zolpidem (N05CF02), triazolam (N05CD05) and midazolam (N05CD08); and long-acting BZDRs: diazepam (N05BA01) chlordiazepoxide (N05BA02), alprazolam (N05BA12), nitrazepam (N05CD02), clobazam (N05BA09), clorazebate (N05BA05) and clonazepam (N03AE01).

7

BZDR use were calculated since 1995 until 5 years before the index date (date of AD diagnosis of the index case). BZDR use was defined as any BZDR use during the follow-up.

BZDR use periods, i.e. when continuous drug use started and ended, were calculated using validated PRE2DUP-method from prescription register data[31,32]. The method is based on mathematical modelling and calculation of sliding averages of Defined Daily Dose (DDD)[33] for each ATC code. Each drug substance was modelled separately and then overlapping use periods combined to retrieve "any BZDR use". Individuals could change the BZDR substance during the "any BZDR" use period. BZD, Z-drug, long-acting and short/medium-acting BZDR use periods were constructed similarly.

To study the impact of exposure duration, BZDR use were categorised into four groups according to the cumulative duration of BZDR use: 1 day – 1 month, 1 month – 1 year, 1 year - 5 years and over 5 years. Same cutoffs were used for BZDs, Z drugs, short/medium acting BZDRs and long acting BZDRs.

To study the effect of cumulative BZDR consumption in DDDs, cumulative amount of DDDs were calculated from drug purchase data. Cumulative sum of DDDs were categorised to three groups according to tertiles of cumulative consumption: 1-102 DDD, 103-779 DDD, 780-32298 DDD for BZDR use. Respectively for BZDs 0 DDD (reference group), 1-61 DDD, 62-451 DDD, 452-26037 DDD and for Z drugs 1-123 DDD, 124-750 DDD, 751-23990 DDD.

Cumulative BZDR consumption in DDDs were converted to total standardised doses (TSDs) based on minimum effective daily dose according to Gray et al.[34] and Ashton Manual[35] to examine if results differ if TSDs are used instead of DDDs (Supplementary table 2). Cumulative sum of TSDs were categorised to three groups according to tertiles of cumulative consumption: 1-415.8 TSD, 415.8-5000 TSD, 5001.3-513349 TSD for BZDR use. Respectively for BZDs 0 TSD (reference group), 10-250 TSD, 250.5-2720 TSD, 2721-512672.3 TSD and for Z drugs 11.7-373.3 TSD, 373.3-4083.3 TSD, 4083.3-177676.7 TSD.

For dose-dependency analyses, cumulative purchased amount in DDDs was divided by duration of use for each person to define the average BZDR dose. The average BZDR dose was categorized to low (>0 to <0.5 DDD/day), medium (\geq 0.5 to <1 DDD/day) and high (\geq 1 DDD/day). Doses were categorized similarly for BZDs and Z drugs.

Confounders

The following comorbidities were used for adjustment: asthma/COPD, any cardiovascular disease (arrhythmia, hypertension, coronary disease or heart failure) and diabetes from the Special Reimbursement Register and mental and behavioural disorders (any of ICD-10 F-codes, excluding F00-F03 dementia diagnoses, and corresponding ICD-9 and -8 codes) from the Hospital Discharge register from 1972 onwards.

A composition variable indicating substance abuse was derived from the Hospital Discharge Register data using mental and behavioural disorders due to psychoactive substance use (ICD-10 codes F10–F19), alcohol-induced chronic pancreatitis (ICD-10 codes K86.00, K86.01 and K86.08) and hospitalizations due to substance abuse.

Antipsychotic use (purchased or not antipsychotics class N05A excluding lithium (N05AN)) and similarly antidepressant use (all antidepressants (N06A) excluding 'Monoamine oxidase inhibitors, non-selective' (N06AF) as they were not on market in Finland during the study period) was extracted from the Prescription register since 1995.

Socioeconomic position, defined as the highest occupational social class, was obtained from the censuses maintained by Statistics Finland. The data were collected on five-year intervals between 1970-1990, on 1993, 1995, 2000, and annually from 2004 onwards. An ordinal variable with the

following categories was derived "managerial/professional", "office worker", "farming/forestry", "sales/industry/cleaning", "unknown" and "did not respond".

All confounders were extracted until 5 years before the AD diagnosis of the index case.

Statistical Analysis

All analyses were conducted using Stata, version 13.1. All continuous variables were compared with Wilcoxon rank-sum test due to skewed distributions. All categorical variables were compared with conditional logistic regression.

The associations between BZDR exposure and AD were assessed with conditional logistic regression. To account for reverse causality, only drug use that occurred at least 5 years before AD diagnosis was considered in the analysis. Those persons who were exposed only during the lag time were not included in the analyses. Persons who did not use any BZDRs during follow-up (1995-2011) were used as reference group (N=190,924). Similar 5-year time lag was applied to confounders. To calculate the attributable proportion among the exposed (i.e. the proportion of disease in the exposed group that can be attributed to the exposure), the following formula was

used: $AR\% = \frac{(OR-1)}{OR}$

RESULTS

Characteristics of study population

History of diabetes, mental disorders as well as antidepressant and antipsychotic use were more common among cases. (Table 1). There were no major differences in socioeconomic position.

Use of any BZDR was more common among cases (40.2%) than controls (37.0%) due to more common use of BZDs (Table 2). Cases were also more likely to have used both BZDs and Z drugs, or short/medium and long-acting BZDRs.

Total cumulative consumption of BZDRs and BZDs in DDDs during the follow up was higher in cases and duration of use were longer than in controls (Supplementary table 3). Similar, although smaller differences were observed with Z drugs. Cases also used both short/medium-acting and long-acting BZDRs for longer periods. There were no significant differences in average BZDR doses (DDD/day). Assessment of BZDR use duration according to dose categories showed that highest doses were used shorter time and total consumption of BZDRs was smaller in the highest dose group (Supplementary table 4).

Average time for exposure assessment (the 5-year time lag not included in the exposure assessment time) was 8.7 years (SD 2.0). The exposure assessment time ranged from 5.0 years to 11.9 years.

Association between any BZDR use and AD

Any BZDR use was associated with an increased risk of AD (OR 1.19, 95% CI 1.17-1.21) compared with no use (Table 2). The association was attenuated after adjustment for comorbidities, socioeconomic position and use of other psychotropics (OR 1.06, 95% CI 1.04-1.08) The attributable proportion among the exposed was 0.057. Similar associations were observed with the use of BZD or Z drug alone. The same pattern was observed with short/medium- and long-acting BZDRs.

Average BZDR dose and the risk of AD

In dose-dependent analysis among BZDR users, unadjusted ORs were slightly higher in persons with lower dose compared to higher doses (Table 3). The same was evident among BZD users. Z drug use was not associated with AD in low dose group and the highest risk was observed in the medium dose group. In general, the differences were small and the 95% CIs were overlapping. Adjustments for comorbidities, socioeconomic position and other psychotropics slightly lowered ORs and removed the associations in high dose groups among BZDR users and BZD users but did not change previously mentioned order of risks.

Duration of BZDR use and AD risk

The risks in all drug categories were the highest in the two longest duration of use groups (1yr-5yr and >5yr) and the risks slightly lowered in shorter use compared to nonusers of each drugs (Table 4). In the fully adjusted model, no risks were observed in the shortest use (1d-1mo) and the risks increased until the second longest (1yr-5yr) duration of use group. No significant differences in risks between BZDs and Z drugs, or short/medium and long-acting BZDRs were observed.

Cumulative BZDR consumption and risk of AD

In unadjusted analyses, a dose-response relationship was evident in the DDD analyses and less clear in the equivalent dose analyses where the ORs for the highest category were similar to the lowest category for BZDRs and Z-drugs (Table 5). In the fully adjusted model, the differences between the highest and lowest category disappeared and the highest ORs were seen in the second tertiles of each drug category. Similar results were observed with equivalent doses.

DISCUSSION

Our study showed that the past use of BZDRs were associated with modestly increased risk of AD (adjusted OR 1.06, 95% CI 1.04-1.08). The attributable proportion among the exposed was 0.057, meaning that assuming there were no uncontrolled bias or confounding, 5.7% of AD cases occurring among BZDR users were attributable to exposure. This is worrying because BZDRs are commonly used among old persons[1-5], and despite recommendations[7], the use is often long-term[8]. This is the first study on this topic that also included BZD combination products. Adjustment for other psychotropics removed the dose-response relationship by attenuating the ORs in the highest cumulative consumption category.

Comparison with other studies

All drug categories (BZDRs, BZDs, Z drugs, short/medium-acting and long-acting BZDRs) were associated with higher risk of AD. No major differences between these categories were observed. The overall risk of past BZDR use we found, was smaller than in most previous studies[18,21,22]. One previous study found no association[20]. It was also only previous study that investigated Z drugs separately, and did not find association between Z drugs or BZDs and AD. Some [18,19,21] but not all [20] studies have found higher risk of dementia for long-acting BZDR use compared to short/medium-acting use. Classifications into short/medium acting and long-acting BZDRs varied in previous studies and therefore their results are not directly compared to ours.

Lower (≥ 0 to <0.5 DDD/day) average doses of BZDRs increased the risk more than the higher doses (≥ 0.5 DDD/day). One explanation for this is that highest doses were used shorter time and total consumption of BZDRs was smaller in the highest dose group. In addition, high and low doses might have been used for different indications. Our result is contrary to previous study[18] where average dose -dependent association was found. However, the differences between dose categories in our results were small. Similar to a previous study[21], a dose-response relationship between cumulative BZDR consumption and AD was observed when other psychotropics were not taken into account. In our study, adjustment for psychotropics removed the dose-response relationship, suggesting that the association was at least partially explained by more frequent use of other psychotropics among high-dose users. This result is in line with one previous study[17], which found risk for dementia with two lowest cumulative consumption categories but not with the highest consumption category. In that study, an increased risk for dementia was observed with 1- and 2-year lag time, but none with a 5-year lag time which is contrary to our findings. Another study with two-year lag time also concluded with null results[20]. It might be that these null results are due to lack of power as both these studies had considerably smaller study samples, low number of AD cases and persons in subcategories.

Strengths and weaknesses of the study

Our study is a nationwide nested case-control study of all community-dwelling AD cases who received a clinically verified AD diagnosis in 2005-2011. The diagnoses were confirmed according to a standardised protocol and the positive predictive value of diagnoses is high (PPV 97.1%)[36]. To our knowledge, our study is the largest one in this topic and this enabled us to perform more detailed analyses according to the duration, dose and type of BZDRs. In addition, due to the long exposure assessment, we were able to use a 5-year time lag between exposure and outcome, which is longer than in main analyses of most of the previous studies[17-20] and accounts at least partially for the reverse causality. The five-year time lag is justified by our previous studies in the same population, showing that a steep increase in the use of antidepressants[37] and antipsychotics[38] occurs in this time window.

A further strength is the exposure ascertainment. We used data on purchased prescriptions, which were modelled to actual use periods with a validated PRE2DUP modelling method[32]. This enabled us to assess duration of use and dose (intensity of use) issues properly, which offer

additional information on the associations between different drug use patterns. Further, including combination BZDs as exposures reduces indication bias as combinations are indicated for a larger variety of symptoms (such as gastrointestinal cramps, dizziness and muscle tension) than traditional BZDs. This also reduces the possibility of protopathic bias.

Our study is limited in the sense that only reimbursed BZDR purchases were included. It is likely that nonreimbursed small size packages were equally often purchased by cases and controls. This would dilute our estimates by increasing the confidence intervals, but not cause systematic bias. Thus, our results may be an underestimation. In addition, Prescription Register does not include information on drug use in hospital. This might have caused some misclassification of exposure. However, as we restricted the analyses to time preceding AD diagnosis by at least five years, it is likely that the amount of possibly misclassified exposure time was similar between cases and controls.

In conclusion, BZDR use in general was associated with modestly increased AD risk, with no major differences between BZDR subcategories (i.e. BZD, Z drug, short/medium-acting or long-acting). Due to frequent use of BZDRs among older people, even small increases in absolute risk may be important on a population level. A dose-response relationship between BZDR use and AD was observed, but adjustment for other psychotropics removed this relationship suggesting that the association was at least partially explained by more frequent use of antidepressants and/or antipsychotics, or reasons for concomitant use of these medications. Even though association between BZDR use and AD was modest in this study, BZDRs should be avoided if possible and threshold for prescribing should be high enough due to overall adverse effect profile of the BZDRs.

Funding

AMT is funded by Academy of Finland (grants 307232 and 295334) which also paid VT's salary. HT and AMT acknowledge strategic funding from the University of Eastern Finland. The funders had no role in study design; in the collection, analysis, and interpretation of data, in the writing of the report; and in the decision to submit the paper for publication.

Declaration of Interest

VT, AMT and SH report no competing interests.. HT, JT and AT have participated in research projects funded by Janssen and Eli Lilly with grants paid to the institution where they were employed. AT is a member of advisory board of Janssen. JT has served as a consultant to the Finnish Medicines Agency (Fimea) and European Medicines Agency (EMA), has received lecture fees from Eli Lilly, Janssen-Cilag, Lundbeck, and Otsuka; and grants from the Stanley Foundation and Sigrid Jusélius Foundation.

Authors' contributions

AMT, HT, SH and VT planned the study. VT performed statistical analyses, drafted the first version of the manuscript and acts as a guarantor. AT and HT preprocessed and modelled prescription data. All authors contributed to the interpretation of the data, revised the manuscript, and approved the final manuscript.

REFERENCES

[1] Carrasco-Garrido P, Jimenez-Garcia R, Astasio-Arbiza P, Ortega-Molina P, de Miguel AG. Psychotropics use in the Spanish elderly: predictors and evolution between years 1993 and 2003. Pharmacoepidemiol Drug Saf 2007;**16**:449-457.

[2] Fourrier A, Letenneur L, Dartigues JF, Moore N, Begaud B. Benzodiazepine use in an elderly community-dwelling population. Characteristics of users and factors associated with subsequent use. Eur J Clin Pharmacol 2001;**57**:419-425.

[3] Hogan DB, Maxwell CJ, Fung TS, Ebly EM, Canadian Study of Health and Aging. Prevalence and potential consequences of benzodiazepine use in senior citizens: results from the Canadian Study of Health and Aging. Can J Clin Pharmacol 2003;**10**:72-77.

[4] Windle A, Elliot E, Duszynski K, Moore V. Benzodiazepine prescribing in elderly Australian general practice patients. Aust N Z J Public Health 2007;**31**:379-381.

[5] Linden M, Bar T, Helmchen H. Prevalence and appropriateness of psychotropic drug use in old age: results from the Berlin Aging Study (BASE). Int Psychogeriatr 2004;**16**:461-480.

[6] Schroeck JL, Ford J, Conway EL, Kurtzhalts KE, Gee ME, Vollmer KA et al. Review of Safety and Efficacy of Sleep Medicines in Older Adults. Clin Ther 2016;**38**:2340-2372.

[7] European Medicines Agency. Summary of Product Characteristics for Benzodiazepines as Anxiolytics or Hypnotics. 1994.

[8] Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry 2015;**72**:136-142.

[9] Lister RG. The amnesic action of benzodiazepines in man. Neurosci Biobehav Rev 1985;**9**:87-94.

[10] Curran HV. Tranquillising memories: a review of the effects of benzodiazepines on human memory. Biol Psychol 1986;**23**:179-213.

[11] Ghoneim MM, Mewaldt SP. Benzodiazepines and human memory: a review. Anesthesiology 1990;**72**:926-938.

[12] Buffett-Jerrott SE, Stewart SH. Cognitive and sedative effects of benzodiazepine use. Curr Pharm Des 2002;**8**:45-58.

[13] Alzheimer's Association. 2014 Alzheimer's disease facts and figures. Alzheimers Dement 2014;**10**:e47-92.

[14] Amieva H, Le Goff M, Millet X, Orgogozo JM, Peres K, Barberger-Gateau P et al. Prodromal Alzheimer's disease: successive emergence of the clinical symptoms. Ann Neurol 2008;**64**:492-498.

[15] Stella F, Radanovic M, Balthazar ML, Canineu PR, de Souza LC, Forlenza OV. Neuropsychiatric symptoms in the prodromal stages of dementia. Curr Opin Psychiatry 2014;**27**:230-235.

[16] Richard E, Reitz C, Honig LH, Schupf N, Tang MX, Manly JJ et al. Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol 2013;**70**:374-382.

[17] Gray SL, Dublin S, Yu O, Walker R, Anderson M, Hubbard RA et al. Benzodiazepine use and risk of incident dementia or cognitive decline: prospective population based study. BMJ 2016;**352**:i90.

[18] Gomm W, von Holt K, Thome F, Broich K, Maier W, Weckbecker K et al. Regular Benzodiazepine and Z-Substance Use and Risk of Dementia: An Analysis of German Claims Data. J Alzheimers Dis 2016;**54**:801-808.

[19] Shash D, Kurth T, Bertrand M, Dufouil C, Barberger-Gateau P, Berr C et al. Benzodiazepine, psychotropic medication, and dementia: A population-based cohort study. Alzheimers Dement 2016;**12**:604-613.

[20] Imfeld P, Bodmer M, Jick SS, Meier CR. Benzodiazepine Use and Risk of Developing Alzheimer's Disease or Vascular Dementia: A Case-Control Analysis. Drug Saf 2015;**38**:909-919.

[21] Billioti de Gage S, Moride Y, Ducruet T, Kurth T, Verdoux H, Tournier M et al. Benzodiazepine use and risk of Alzheimer's disease: case-control study. BMJ 2014;**349**:g5205.

[22] Zhong G, Wang Y, Zhang Y, Zhao Y. Association between Benzodiazepine Use and Dementia: A Meta-Analysis. PLoS One 2015;**10**:e0127836.

[23] Fastbom J, Forsell Y, Winblad B. Benzodiazepines may have protective effects against Alzheimer disease. Alzheimer Dis Assoc Disord 1998;**12**:14-17.

[24] Tolppanen AM, Taipale H, Koponen M, Lavikainen P, Tanskanen A, Tiihonen J et al. Cohort profile: the Finnish Medication and Alzheimer's disease (MEDALZ) study. BMJ Open 2016;6:e012100-2016-012100.

[25] Personal identity code - Population Register Centre. http://vrk.fi/en/personal-identity-code1. Accessed: 20 April 2017.

[26] McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;**34**:939-944.

[27] American Psychiatric Association, American Psychiatric Association. Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed., American Psychiatric Association, Washington, DC; 1994.

[28] Memory disorders. Current care guideline. Working group set up by the Finnish Medical Society Duodecim, Societas Gerontologica Fennica, the Finnish Neurological Society, Finnish Psychogeriatric Association and the Finnish Association for General Practice. Helsinki: The Finnish Medical Society Duodecim, 2010 Available at: http://www.kaypahoito.fi. [In Finnish with English summary].

[29] WHO Collaborating Centre for Drug Statistics Methodology. The Anatomical Therapeutic Chemical classification system. Oslo: WHO Collaborating Centre for Drug Statistics Methodology, Norwegian Institute of Public Health. Available at: http://www.whocc.no/atc_ddd_index/. Accessed: 20 April 2017.

[30] Kroboth PD, McAuley JW, Smith RB. Alprazolam in the elderly: pharmacokinetics and pharmacodynamics during multiple dosing. Psychopharmacology (Berl) 1990;**100**:477-484.

[31] Tanskanen A, Taipale H, Koponen M, Tolppanen AM, Hartikainen S, Ahonen R et al. From prescription drug purchases to drug use periods - a second generation method (PRE2DUP). BMC Med Inform Decis Mak 2015;**15**:21-015-0140-z.

[32] Taipale H, Tanskanen A, Koponen M, Tolppanen AM, Tiihonen J, Hartikainen S. Agreement between PRE2DUP register data modeling method and comprehensive drug use interview among older persons. Clin Epidemiol 2016;**8**:363-371.

[33] WHO Collaborating Centre for Drug Statistics Methodology. Defined Daily Dose. Available at: http://www.whocc.no/ddd/definition_and_general_considera/. Accessed: 20 April 2017.

[34] Gray SL, Eggen AE, Blough D, Buchner D, LaCroix AZ. Benzodiazepine use in older adults enrolled in a health maintenance organization. Am J Geriatr Psychiatry 2003;**11**:568-576.

[35] benzo.org.uk : Benzodiazepines: How They Work & How to Withdraw, Prof C H Ashton DM, FRCP, 2002. Available at: http://www.benzo.org.uk/manual/bzcha01.htm. Accessed: 20 April 2017.

[36] Solomon A, Ngandu T, Soininen H, Hallikainen MM, Kivipelto M, Laatikainen T. Validity of dementia and Alzheimer's disease diagnoses in Finnish national registers. Alzheimers Dement 2014;**10**:303-309.

[37] Puranen A, Taipale H, Koponen M, Tanskanen A, Tolppanen AM, Tiihonen J et al. Incidence of antidepressant use in community-dwelling persons with and without Alzheimer's disease: 13-year follow-up. Int J Geriatr Psychiatry 2017;**32**:94-101.

[38] Koponen M, Tolppanen AM, Taipale H, Tanskanen A, Tiihonen J, Johnell K et al. Incidence of antipsychotic use in relation to diagnosis of Alzheimer's disease among community-dwelling persons. Br J Psychiatry 2015;**207**:444-449.

	Total (N=35	3 581)	AD ca	ises	Contro	ls	
			(N=70	(N=70 719)		(N=282 862)	
	Ν	%	Ν	%	Ν	%	р
Comorbidities							
Asthma/COPD	26,711	7.6	5,392	7.6	21,319	7.5	0.427
Cardiovascular disease ^a	152,347	43.1	31,726	44.9	120,621	42.6	< 0.001
Diabetes	28,297	8.0	6,904	9.8	21,393	7.6	< 0.001
Any mental disorder	25,251	7.1	5,655	8.0	19,596	6.9	< 0.001
Substance abuse	5,329	1.5	1,247	1.8	4,082	1.4	< 0.001
Socioeconomical position							
Managerial/professional	75,061	21.2	14,680	20.8	60,381	21.3	< 0.001
Office	29,576	8.4	5,974	8.4	23,602	8.3	< 0.001
Farming, forestry	68,965	19.5	13,443	19.0	55,522	19.6	< 0.001
Sales, industrial,	141,080	39.9	30,150	42.6	110,930	39.2	< 0.001
cleaning							
Unknown	29,227	8.3	5,932	8.4	23,295	8.2	< 0.001
Did not reply	9,672	2.7	540	0.8	9,132	3.2	< 0.001
Non-BZDR drug use							
Antipsychotic use	23,693	6.7	5,505	7.8	18,188	6.4	< 0.001
Antidepressant use	56,263	15.9	13,524	19.1	42,739	15.1	< 0.001

 Table 1 | Characteristics of study population at five years before the index date

Note: Index date: date of AD diagnosis for each case and the corresponding matching date for controls

AD = Alzheimer's disease

BZDR = Benzodiazepine and related drug

^aCardiovascular disease: arrhythmia, hypertension, coronary disease or heart failure

	AD case	es	Control	ls	Unadjusted	Adjusted 1 ^a	Adjusted 2 ^b
	(N=70,71	.9)	(N=282,8	62)	-	-	-
-	Ν	%	N	%	OR (95% CI)	OR (95% CI)	OR (95% CI)
No BZDR use	35,627	50.4	155,297	54.9	1.00 (REFERENC	E IN ALL ANALY	SES)
Drug class							
Any BZDR use	28,462	40.2	104,746	37.0	1.19 (1.17-1.21)	1.13 (1.11-1.15)	1.06 (1.04-1.08)
Only BZD	15,148	21.4	56,628	20.0	1.17 (1.15-1.20)	1.12 (1.09-1.14)	1.05 (1.03-1.08)
Only Z drug	5,390	7.6	20,750	7.3	1.14 (1.10-1.18)	1.09 (1.05-1.12)	1.05 (1.01-1.08)
Both BZD & Z drug	7,924	11.2	27,368	9.7	1.27 (1.24-1.31)	1.20 (1.17-1.24)	1.09 (1.05-1.12)
Elimination half-life							
Only short/medium acting	12,904	18.2	48,711	17.2	1.16 (1.14-1.19)	1.11 (1.08-1.13)	1.05 (1.03-1.08)
Only long acting	6,621	9.4	25,146	8.9	1.15 (1.12-1.19)	1.10 (1.07-1.14)	1.06 (1.03-1.09)
Both short/medium & long acting	8,937	12.6	30,889	10.9	1.27 (1.24-1.31)	1.20 (1.17-1.23)	1.08 (1.05-1.11)

Table 2 | Association between benzodiazepine and related drug use and Alzheimer's disease with 5-year lag time between exposure and outcome

^bAdjusted for antidepressant use, antipsychotic use, any mental disorder, substance abuse, asthma/COPD, cardiovascular disease (arrhythmia, hypertension, coronary disease or heart failure), diabetes and socioeconomic position.

AD = Alzheimer's disease

BZDR = Benzodiazepine and related drug

BZD = Benzodiazepine

between exposure and ou							
	AD cases (N=70,719)		Controls		Unadjusted	Adjusted 1 ^a	Adjusted 2 ^b
			(N=282,	,862)	-	-	-
	N	%	Ν	%	OR (95% CI)	OR (95% CI)	OR (95% CI)
No BZDR use	35,627	50.4	155,297	54.9	1.00 (REFEREN	CE IN ALL ANAL	YSES)
BZDR							
>0 to <0.5 DDD/day	8,180	11.6	29,383	10.4	1.22 (1.19-1.26)	1.16 (1.13-1.20)	1.10 (1.07-1.13)
≥ 0.5 to <1 DDD/day	11,996	17.0	44,129	15.6	1.19 (1.17-1.22)	1.13 (1.10-1.16)	1.06 (1.03-1.08)
≥1 DDD/day	8,286	11.7	31,234	11.0	1.16 (1.13-1.19)	1.10 (1.07-1.13)	1.02 (0.99-1.05)
BZD							
>0 to <0.5 DDD/day	10,472	14.8	37,685	13.3	1.22 (1.19-1.25)	1.16 (1.13-1.19)	1.09 (1.06-1.12)
≥ 0.5 to <1 DDD/day	8,220	11.6	29,907	10.6	1.21 (1.18-1.24)	1.14 (1.11-1.17)	1.06 (1.03-1.09)
≥1 DDD/day	4,380	6.2	16,404	5.8	1.17 (1.13-1.21)	1.10 (1.06-1.14)	1.02 (0.98-1.05)
Z drug							
>0 to <0.5 DDD/day	74	0.1	312	0.1	1.05 (0.81-1.35)	1.00 (0.77-1.29)	0.95 (0.74-1.23)
≥ 0.5 to <1 DDD/day	6,264	8.9	22,208	7.9	1.24 (1.20-1.28)	1.17 (1.14-1.21)	1.09 (1.06-1.13)
≥1 DDD/day	6,976	9.9	25,598	9.0	1.20 (1.16-1.23)	1.14 (1.10-1.17)	1.06 (1.03-1.09)

Table 3 | Association between benzodiazepine and related drug average dose and Alzheimer's disease with 5-year lag time between exposure and outcome

^bAdjusted for antidepressant use, antipsychotic use, any mental disorder, substance abuse, asthma/COPD, cardiovascular disease (arrhythmia, hypertension, coronary disease or heart failure), diabetes and socioeconomic position.

AD = Alzheimer's disease

BZDR = Benzodiazepine and related drug

DDD = Defined Daily Dose [33]

BZD = Benzodiazepine

	AD cases (N=70,719)		Controls		Unadjusted	Adjusted 1 ^a	Adjusted 2 ^b
			(N=282,				
	Ν	%	N	%	OR (95% CI)	OR (95% CI)	OR (95% CI)
No BZDR use	35,627	50.4	155,297	54.9	1.00 (REFERENC	E IN ALL ANALYS	ES)
BZDR							
1d-1mo	2,901	4.1	11,521	4.1	1.10 (1.06-1.15)	1.06 (1.02-1.11)	1.03 (0.98-1.07
1mo-1yr	9,473	13.4	35,804	12.7	1.16 (1.13-1.19)	1.11 (1.08-1.14)	1.06 (1.03-1.09
1yr-5yr	8,505	12.0	30,391	10.7	1.23 (1.20-1.26)	1.17 (1.13-1.20)	1.08 (1.05-1.12
5yr-	7,583	10.7	27,030	9.6	1.23 (1.20-1.27)	1.16 (1.12-1.19)	1.05 (1.01-1.08
BZD							
1d-1mo	2,832	4.0	11,086	3.9	1.12 (1.07-1.17)	1.07 (1.03-1.12)	1.03 (0.99-1.07
1mo-1yr	8,685	12.3	32,098	11.3	1.19 (1.16-1.22)	1.13 (1.10-1.17)	1.07 (1.04-1.10
1yr-5yr	6,366	9.0	22,344	7.9	1.25 (1.22-1.29)	1.18 (1.15-1.22)	1.09 (1.06-1.13
5yr-	5,189	7.3	18,468	6.5	1.24 (1.20-1.28)	1.16 (1.12-1.20)	1.05 (1.01-1.09
Z drug							
1d-1mo	1,763	2.5	6,656	2.4	1.16 (1.10-1.22)	1.11 (1.06-1.18)	1.06 (1.00-1.12
1mo-1yr	4,758	6.7	17,353	6.1	1.20 (1.16-1.25)	1.15 (1.11-1.19)	1.08 (1.04-1.12
1yr-5yr	4,403	6.2	15,469	5.5	1.25 (1.21-1.30)	1.19 (1.14-1.23)	1.09 (1.06-1.14
5yr-	2,390	3.4	8,640	3.1	1.22 (1.16-1.28)	1.14 (1.09-1.19)	1.04 (0.99-1.09
Short/medium acting							
1d-1mo	2,249	3.2	8,795	3.1	1.12 (1.07-1.17)	1.07 (1.02-1.13)	1.03 (0.98-1.08
1mo-1yr	6,414	9.1	24,044	8.5	1.17 (1.14-1.21)	1.12 (1.09-1.15)	1.06 (1.03-1.10
1yr-5yr	6,755	9.6	24,167	8.5	1.23 (1.19-1.27)	1.16 (1.13-1.20)	1.08 (1.05-1.11
5yr-	6,423	9.1	22,594	8.0	1.25 (1.21-1.29)	1.17 (1.13-1.21)	1.06 (1.02-1.09
Long acting							
1d-1mo	1,822	2.6	7,171	2.5	1.11 (1.06-1.17)	1.07 (1.01-1.13)	1.03 (0.97-1.08
1mo-1yr	5,691	8.0	20,895	7.4	1.19 (1.16-1.23)	1.14 (1.11-1.18)	1.08 (1.05-1.12
1yr-5yr	4,060	5.7	13,931	4.9	1.28 (1.23-1.33)	1.21 (1.17-1.26)	1.12 (1.07-1.16
5yr-	3,985	5.6	14,038	5.0	1.25 (1.20-1.30)	1.17 (1.13-1.22)	1.05 (1.01-1.09

Table 4 | Association between duration of benzodiazepine and related drugs use and Alzheimer's disease with 5-year lag timebetween exposure and outcome

^bAdjusted for antidepressant use, antipsychotic use, any mental disorder, substance abuse, asthma/COPD, cardiovascular disease (arrhythmia, hypertension, coronary disease or heart failure), diabetes and socioeconomic position.

AD = Alzheimer's disease

BZDR = Benzodiazepine and related drug

BZD = Benzodiazepine

		AD cases Controls (N=70,719) (N=282,862)			Unadjusted	Adjusted 1 ^a	Adjusted 2 ^b
	N	%	N	%	OR (95% CI)	OR (95% CI)	OR (95% CI)
No BZDR use	35,627	50.4	155,297	54.9	1.00 (REFERENC	E IN ALL ANALYS	SES)
Consumption in DDI	Ds						
BZDR							
1-102	9,268	13.1	35,430	12.5	1.15 (1.12-1.18)	1.10 (1.07-1.13)	1.06 (1.03-1.08)
103-779	9,476	13.4	34,636	12.2	1.20 (1.17-1.23)	1.14 (1.11-1.17)	1.08 (1.05-1.10)
780-32298	9,718	13.7	34,680	12.3	1.23 (1.20-1.26)	1.15 (1.12-1.19)	1.05 (1.02-1.08)
BZD			198,866	70.3			
1-61	7,507	10.6	28,405	10.0	1.16 (1.13-1.19)	1.11 (1.08-1.14)	1.06 (1.03-1.09)
62-451	7,777	11.0	27,728	9.8	1.23 (1.20-1.27)	1.17 (1.14-1.21)	1.10 (1.06-1.13)
452-26037	7,788	11.0	27,863	9.9	1.23 (1.20-1.26)	1.15 (1.12-1.19)	1.04 (1.01-1.08)
Z drug							
1-123	4,330	6.1	16,161	5.7	1.18 (1.13-1.22)	1.12 (1.08-1.17)	1.06 (1.03-1.10)
124-750	4,499	6.4	15,974	5.6	1.24 (1.19-1.28)	1.18 (1.14-1.22)	1.10 (1.06-1.14)
751-23990	4,485	6.3	15,983	5.7	1.23 (1.19-1.28)	1.16 (1.12-1.20)	1.06 (1.02-1.10)
Consumption in TSE	Ds						
BZDR							
1-415.8	9,168	13.0	35,236	12.5	1.14 (1.11-1.17)	1.09 (1.06-1.12)	1.05 (1.02-1.08)
415.8-5000	9,807	13.9	34,599	12.2	1.24 (1.21-1.28)	1.18 (1.15-1.22)	1.11 (1.08-1.14)
5001.3-513349	9,487	13.4	34,911	12.3	1.19 (1.16-1.23)	1.12 (1.09-1.15)	1.01 (0.98-1.04)
BZD							
10-250	7,536	10.7	28,661	10.1	1.15 (1.12-1.19)	1.10 (1.07-1.14)	1.06 (1.03-1.09)
250.5-2720	7,700	10.9	27,493	9.7	1.23 (1.20-1.27)	1.17 (1.14-1.20)	1.09 (1.06-1.12
2721-512672.3	7,836	11.1	27,842	9.8	1.24 (1.20-1.27)	1.16 (1.13-1.19)	1.05 (1.02-1.08
Z drug		2					
11.7-373.3	4,323	6.1	16,229	5.7	1.17 (1.13-1.21)	1.12 (1.08-1.16)	1.06 (1.02-1.09
373.3-4083.3	4,684	6.6	15,720	5.6	1.31 (1.26-1.36)	1.25 (1.20-1.29)	1.16 (1.12-1.20

Table 5 | Association between cumulative benzodiazepine and related drug consumption and Alzheimer's disease with 5-year lag time between exposure and outcome

^bAdjusted for antidepressant use, antipsychotic use, any mental disorder, substance abuse, asthma/COPD, cardiovascular disease (arrhythmia, hypertension, coronary disease or heart failure), diabetes and socioeconomic position.

AD = Alzheimer's disease

DDD = Defined Daily Dose [33]

BZDR = Benzodiazepine and related drug

BZD = Benzodiazepine

TSD = Total Standardised Dose based on minimum effective daily dose according to Gray et al.[34] and Ashton Manual[35]

Supplementary Table 1 | Combination products including benzodiazepines and related drugs and how they were recoded in this study

Combination pre	paration	Benzodiazepine component		
Original ATC	Product name	Drugs included in the	Benzodiazepine	New ATC
code ^a		product	amonth	code
A03CA02	LIBRAX	Chlordiazepoxide,	Chlordiazepoxide	N05BA02
		clidinium	5 mg	
A03CA05	GASTRODYN	Diazepam,	Diazepam 2 mg	N05BA01
	COMP	glycopyrronium		
A03CA07	SPASMO-	Oxazepam, ambutonium	Oxazepam 10 mg	N05BA04
	OXEPAM			
C01DA70	NITRAPAMIL	Diazepam, 2-methyl-2n-	Diazepam 2 mg	N05BA01
		propyl-1 3-propandiol		
M09AA72	RELAPAMIL	Diazepam, quinine	Diazepam 2 mg	N05BA01
N02BA71	ASPAM	Diazepam, acetylsalisylic	Diazepam 2 mg	N05BA01
		acid		
N02BA71	DOLOPAM	Diazepam, acetylsalisylic	Diazepam 2 mg	N05BA01
		acid		
N06CA01	KLOTRIPTYL	Chlordiazepoxide,	Chlordiazepoxide	N05BA02
	MITE	amitriptyline	5 mg	
N06CA01	KLOTRIPTYL	Chlordiazepoxide,	Chlordiazepoxide	N05BA02
		amitriptyline	10 mg	
N06CA01	LIMBITROL	Chlordiazepoxide,	Chlordiazepoxide	N05BA02
		amitriptyline	5 mg	
R06AE53	VERTIPAM	Diazepam, cyclizine,	Diazepam 2 mg	N05BA01
		nicotinic acid		

Note: ^aATC code of the Anatomical Therapeutic Chemical (ATC) Classification System[29]

ATC code ^a	Drug	DDD in mg	Equivalent dose ^b
Long acting			
N05BA01	diazepam	10	4
N05BA02	chlordiazepoxide	30	15
N05BA12	alprazolam	1	0.75
N05CD02	nitrazepam	5	5 ^c
N05BA09	clobazam	20	10 ^c
N05BA05	clorazebate	20	15
N03AE01	clonazepam	8	0.5
Short/medium actin	g		
N05BA04	oxazepam	50	30
N05BA06	lorazepam	2.5	2
N05CD07	temazepam	20	15
N05CF01	zopiclone	7.5	7.5 ^c
N05CF02	zolpidem	10	10 ^c
N05CD08	midazolam	15	7.5 ^c
N05CD05	triazolam	0.25	0.125

Supplementary Table 2 | Conversion of benzodiazepine and related drug consumption in Defined Daily Doses to standardised doses

Note: ^aATC code of the Anatomical Therapeutic Chemical (ATC) Classification System[29] DDD = Defined Daily Dose [33]

^bEquivalent dose according to Gray et al.[34]

^cNitrazepam, clobazam, zopiclone, zolpidem and midazolam were not mentioned in Gray et al.[34]. Achieved by scaling Approximately Equivalent Oral dosages of Ashton Manual[35] to half.

	AD cases			Controls			р
	Median (interquartile range)	Mean	SD	Median (interquartile range)	Mean	SD	
Total DDD							
BZDR	324 (63, 1241)	972	1589	302 (62, 1187)	933	1515	< 0.0001
BZD	168 (37, 769.5)	712	1353	160 (33, 744)	688	1298	0.0003
Z drug	327 (101, 1135)	845	1208	303 (93, 1124)	830	1191	0.0479
Drug dose (DDD/day)							
BZDR	0.73 (0.43, 1.02)	0.77	0.48	0.74 (0.44, 1.02)	0.77	0.47	0.0655
BZD	0.55 (0.30, 0.87)	0.63	0.46	0.55 (0.30, 0.88)	0.64	0.46	0.1225
Z drug	1.02 (0.78, 1.07)	0.97	0.29	1.02 (0.79, 1.07)	0.97	0.28	0.8525
Use period (days)							
BZDR	570 (99, 1907)	1084	1150	512 (99, 1865)	1053	1148	< 0.0001
BZD	366 (99, 1666)	943	1107	326 (91, 1617)	918	1102	< 0.0001
Z drug	386 (99, 1384)	856	999	367 (99, 1375)	851	1009	0.0791
Short/medium acting	723 (121, 2027)	1172	1178	662 (106, 1994)	1141	1177	< 0.0001
BZDR							
Long acting BZDR	422 (99, 1849)	1024	1164	361 (99, 1827)	998	1166	0.0001
Equivalent dose (TSD)							
BZDR	1537.5 (240, 8400)	8073	17001	1400 (233.33, 8866.67)	8597	18429	0.0335
BZD	837.5 (150, 5700)	7481	17626	800 (135, 5600)	7967	19059	0.0038
Z drug	1180 (233.33, 6066.67)	4295	7032	1166 (233.33, 6906.67)	4806	8340	0.1203

Supplementary Table 3 | Use of benzodiazepine and related drugs at five years before the index date

Note: Index date: date of AD diagnosis for each case and the corresponding matching date for controls

AD = Alzheimer's disease

DDD = Defined Daily Dose[33]

BZDR = Benzodiazepine and related drug

BZD = Benzodiazepine

TSD = Total Standardised Dose based on minimum effective daily dose according to Gray et al.[34] and Ashton Manual[35]

benzodiazepine and related drugs	benzodiazepine and related drugs by dose categories					
	Median (interquartile range)	SD				
Cumulative consumption (DDD)						
Dose >0 to <0.5 DDD/day	86 (20, 387)	259				
Dose ≥ 0.5 to <1 DDD/day	593 (144, 1401)	877				
Dose ≥1 DDD/day	303 (84, 2910)	2389				
Cumulative use periods (days)						
Dose >0 to <0.5 DDD/day	331 (99, 1405)	986				
Dose ≥ 0.5 to <1 DDD/day	826 (198, 1926)	1095				
Dose ≥1 DDD/day	279 (66, 2214)	1322				

Supplementary Table 4 | Cumulative consumption and use periods of benzodiazepine and related drugs by dose categories

Note: DDD = Defined Daily Dose[33]