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Structured Abstract 

 

Purpose 

We introduce a capital return rate function for growth processes, and apply it to financial 

sustainability considerations in growing multiannual plants.  

Design 

A partition function of change rate of capitalization is introduced, as well as that of 

capitalization itself, and the expected value of capital return rate is produced as the ratio of the 

two functions.  

Findings 

Financial sustainability significantly differs from maximum-yield sustainability, and does not 

depend on any external interest rate.  

Research Implications 

It is proposed that financial considerations should not be based on any arbitrary external 

interest. Neither should the shape of any yield function be neglected. Constancy of capital 

return rate in time is not assumed. 

Practical Implications 

Two forestry examples show that the capital return rate is sensitive to rotation time, and in 

particular to the level of initial investment. The proposed procedure can be applied in the 

absence of periodic boundary conditions in time. 

Originality 

The methodology has not been applied in this field previously.  
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1 Introduction 

 

Businesses should be sustainable. In businesses involved in growing multiannual plants, 

sustainability may refer to maintenance of growing stock, maintenance of growth, or 

maintenance of productive area (Kuusela 1961, Posavec et al. 2012).  A variety of decisions 

contributes to such measures, including rotation times, regeneration practices, eventual 

thinning schedules, etc. Another view is that maintenance is not necessarily enough, there 

possibly should be a progression in the amount of growing stock, growth, or possibly 

productive area (Kuusela 1961).  

 

Financial considerations have been incorporated to sustainability criteria. Most commonly, a 

discount interest rate is applied in order to compute the present value of future incomes and 

expenses (Faustmann 1849, Pearse 1967, Samuelson 1976, Yin and Newman 1995, Deegen et 

al. 2011, Campbell 1999, Nyyssönen 1999, Tahvonen 2016, Gong and Löfgren 2016, Abdallah 

and Lasserre 2017). The discount interest rate may vary over time (Price 2011, Buongiorno 

and Zhou 2011, Brazee 2017, Price 2017).  Risk of destructive events has been considered as 

a premium to the discount interest (Loisel 2011, Hyytiäinen and Haight 2010). Evolution of 

prices, as well as fluctuations in growth and prices may be added (Buongiorno and Zhou 2011, 

Yin and Newman 1997). Taxation does contribute, as well as personal financies (Koskela and 

Alvarez 2004, Tahvonen and Salo 1999, Tahvonen et al. 2001). A Hamiltonian formulation is 

available (Termansen 2007).  

 

Assuming periodic temporal boundary conditions, the computation of the present value of 

future incomes and expenses can be extended to infinity (Faustmann 1849, Pearse 1967, 

Samuelson 1976, Yin and Newman 1995, Deegen et al. 2011, Campbell 1999, Nyyssönen 

1999, Tahvonen 2016, Gong and Löfgren 2016, Abdallah and Lasserre 2017). However, 

periodic temporal boundary conditions do not necessarily exist, at least not up to infinity. In 

such a case, the computation the net present value of future proceeds becomes rather 

complicated. 

 

The net present value of future proceeds strongly depends on the discounting interest rate. 

Then, also the financial soundness of any management decision depends on the discounting 

interest rate (cf. Tait 1987, Posavec et al. 2012, Abdallah and Lasserre 2016). Even if the 

discounting interest rate may reflect a variety of factors, it generally reflects the cost of capital, 
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either as a borrowing cost or as an opportunity cost of missed alternative investments. 

Consequently, reference values may be adopted from the financial market. However, at the 

time of writing, mortgage interest rates within the Eurozone vary 1% to 2%, but an opportunity 

cost for neglected alternative investments easily becomes 6% to 9%. Such a range of interest 

rates dramatically changes net present values, as well as the management decisions considered 

financially sustainable. The reference range is far too wide. 

 

A third possible problem with the computation of the net present value of future proceeds is 

that it does not consider capitalization in any way. We suspect there are circumstances where 

this does not induce problems, but we also suspect there are cases where problems do arise. 

This issue will be discussed in more detail below. 

 

We are aware of one process for the determination of rotation age without a predetermined 

discount rate (Boulding 1955, Newman 1988).  A rotation time is found that maximizes internal 

discount interest, harvesting income being discounted in order to cover initial investments 

(Boulding 1955, Newman 1988).  

 

Instead of discounting final income, we discuss capital return rate in multiannual nonlinear 

growth processes. In order to compose an expected value of the capital return rate, we introduce 

a state-space approach to the capital return. We define a partition function of momentary 

capitalization, as well as that of a momentary return rate of capital. An expected rate of capital 

return is produced as the ratio of the two functions.  

 

In the special case of constant capital return, the outcome naturally shall correspond to 

exponential prolongation of initial investment. However, in the case of real-life growth 

processes, the momentary capital return rate typically varies according to some growth 

function, and also depends on capitalization.  

 

As a practical example of the different capital return approaches, we discuss the optimal 

rotation time in growing multiannual plants. We compare the state-space results with some 

alternative financial sustainability criteria. In particular, the outcome is compared with the 

criterion of maximum internal rate of return (Boulding 1955, Newman 1988).  The latter 

criterion is special because it does neither contain any arbitrarily chosen external discount rate. 

The comparison is implemented in terms of two different yield functions (Gong and Löfgren 
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2016), along with a few parametrizations. Finally, prospective further applications are 

discussed. 

 

 

2 State-space capital return model 

 

Let us first introduce a three-dimensional continuous state space, the three dimensions 

consisting of capitalization per unit area, change rate of the capitalization, and time. We first 

write a partition function of the capitalization K within a particular time range 

0

( )KZ K t dt


    (1).  

 

Then we write the partition function of the time change rate of capitalization 

0

d

dt

d
Z dt

dt






    (2).  

. 

The expected value of capitalization is  

 
0 0

( ) ( ) ( ) ( ) ZdKE K Kp K dK Kp K dt K t p t dtdt

 

        (3), 

where p refers to a probability density function.  

 

Similarly. the expected value of the change rate of capitalization is  

0

( ) ( ) ( )
d

dt

Z
d d d d dE p d p t dtdt dt dt dt dt

 
    


          (4).  

 

The expected value of the change rate of capitalization, in relation to the expected value of 

capitalization, corresponds to the expected value of the capital return rate 

 
d

dt

K

Z
E r Z



   (5).  

 

Considering that the momentary capital return rate is 

d
r

Kdt


   (6), 
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the partition function of the change rate of capitalization can be rewritten 

0

( ) ( )d

dt

Z K t r t dt


     (7), 

and substituted into Eq. (5) at will.  

 

In order to reflect capital return rate within the system, the change rate of capitalization 
d

dt


  

in the above equations must correspond to changes occurring internally, in terms of growth, 

eventual amortizations, etc. In an open system, however, capital flows may appear from (or to) 

the environment through investments or withdravals. The capitalization K must thus consider 

any eventual exchange of capital with the environment. 

 

The simplest possible application of the above Equations would correspond to a case with 

constant capital return rate and non-amortizable initial investment. In that case the 

capitalization would simply correspond to exponential prolongation of the initial capitalization, 

and the expected value of the capital return rate would become 

 

0

1r

rt

e
E r r

e dt





   


  (8). 

 

Real-life yield curves however often significantly differ from simple exponential prolongation. 

We will below discuss some yield curves in detail. However, let us first briefly compare Eq. 

(5) with techniques traditionally used for the evaluation of financial sustainability of growing 

multiannual plants like forest trees.  

 

Firstly, the seminal approach introduced by Faustmann 170 years ago, simply computes the 

present value of all expenses and revenues as (Faustmann 1849, Pearse 1967, Samuelson 1976, 

Yin and Newman 1995, Deegen et al. 2011, Campbell 1999, Nyyssönen 1999, Tahvonen 2016, 

Gong and Löfgren 2016, Abdallah and Lasserre 2017)   

0

0

1
( )

1
qt

t q
NPV R t e dt

e






 
   (9),  
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where where R(t) corresponds to net proceeds at time t, q is discounting interest rate, and  

again is rotation age. The latter factor in Eq. (9) arises from discounting of further growth 

cycles, each of duration . In other words, Eq. (9) assumes a periodic boundary condition in 

time. A significant problem in Eq. (9) is that it contains an external discount rate q. The discount 

rate is external in the sense that it is unrelated to the capital return within the growth process, 

and consequently subject to arbitrary changes. Another issue in Eq. (9) is that it does not 

consider the shape of the yield curve in any way. In other words, Eq. (9) discusses revenue in 

cash basis, instead of financial grounds. In the absence of investments or withdravals within 

any growth period, Eq. (9) can be rewritten 

0

1
( ) (0)

1
q

t q
NPV K e K

e


 
 

    
  (10).  

 

The problem of arbitrary external interest has been resolved by introducing an internal rate of 

return. As introduced by Newman (Newman 1988, Boulding 1955), it is determined for a 

period of duration  according to the criterion 

0

( ) 0stR t e dt


     (11), 

where s is internal rate of return. In the absence of investments or withdravals within any 

growth period, Eq. (11) can be rewritten 

 

  (0) 0sK e K     (12). 

 

Ihere is no explicit indication of further growth cycles in Eqs. (11) or (12). These Equations 

however do apply to cyclical boundary conditions in time, but unlike Eqs. (9) and (10), such 

boundary conditions are not required.  From Eq. (12), the internal rate of return can be readily 

resolved as 

 

 1
( ) ln

(0)

K
s

K





 

  
 

 (13). 

 

A substantial benefit of Eq. (11), in comparison to Eq. (9) is that it does not contain any 

arbitrary external interest. Eq. (11) is not solvable in the absence of any investment. This, 

however, is not too detrimental since there hardly is any production that would not require 
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investments, at least in terms of the opportunity cost of not selling bare production land.   Eq. 

(12) neither considers the shape of the yield curve. 

 

 

3 A practical forestry example with volumetric growth 

 

As a practical example, we consider a recently introduced (Gong and Löfgren 2016) yield 

function, applicable to average pine stands in Northern Sweden. A volumetric growth function 

is  

 

   2.8967/95580.14* 1 6.3582 tV t     (14). 

 

The application introduced by Gong and Löfgren (2016) assumes a volumetric stumpage price 

of 250 SEK/m3, and an initial investment of 6000 SEK/ha. The maximum sustained yield 

rotation being 95 years, corresponding to that duration of time that gives the greatest average 

annual growth (Gong and Löfgren 2016). A 3% discount interest applied in Eq. (10), without 

considering any bare land value, yields an optimal rotation age of 52 years (Gong and Löfgren 

2016). We now apply Eq. (5) for this case. 

 

Fig. 1 shows the value growth function, in terms of momentary growth, average growth and 

accumulated growth. The Figure confirms that the maximum sustained yield is reached at 

rotation time 94 years: this is where momentary and average growth curves coincide.   

 

Fig. 1 does not contain any amortization of investments, nor any bare land value. These factors 

are introduced in Fig. 2. The base case is that the initial regeneration investment of 6000 

SEK/ha, amortized at the end of any rotation. A non-amortizable bare land value of 2500 

SEK/ha is included in the capitalization. Fig. 2 shows the partition function of capitalization 

(Eq. (1)), as well as the partition function of the time change rate of capitalization (Eq. (2)). 

While the capitalization per hectare is always positive, the state sum of the time change rate is 

negative until rotation age 21. This is due to the amortization of the initial investment of SEK 

6000/ha. Correspondingly, the expected value of capital return rate, according to Eq. (5), is 

negative up to rotation age 21, and reaches its maximum at rotation age 48.  

 



8 
 

 

 

Fig. 1. Pine stand value growth according to a North-Swedish growth function (14), (Gong and 

Löfgren 2016).  

 

 

Fig. 2. Partition function of capitalization according to Eq. (1), and growth according to Eq. 

(2), as well as expected value of capital return rate according to Eq. (5), as a function of rotation 

age.  

 

Figure 3 shows the expected value of the capital return rate according to Eq. (5) and the internal 

rate of return according to Eq. (13) as functions of rotation age. In addition, Figure 3 shows the 

net present value of further growth according to Eq. (10), using 2% and 3% discounting interest 

rates. Again, a non-amortizable bare land value of 2500 SEK/ha is included in the 
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capitalization. The average capital return rate reaches its maximum at rotation age of 48 years. 

The internal rate of return reaches maximum at 52 years. 2% discounting interest results as 

maximum net present value at 60 years. 3% discounting interest results as maximum net present 

value at 52 years.  

 

 

Fig. 3. Capital return rate (Eq. (5)), internal rate of return (Eq. (13)) and net present value of 

proceeds (Eq. (10)) as functions of rotation age. The NPV is computed with 2% and 3% 

discounting interests.   

 

4 A practical forestry example with value growth 

 

Eq. (10), as well as Fig. 1, assumes the volumetric stumpage price to be constant. In other 

words, the value growth corresponds to volumetric growth, multiplied by a constant. That may 

be an unrealistic assumption, for a variety of reasons, including harvesting expenses as well as 

industrial use of the crop. In order to release this assumption, Gong and Löfgren (2016) 

established an age-dependent price function 

 

   0.2602
104.63* 29h t t    (15). 

 

We will now apply Eq. (15), for t>29, in addition to Eq. (14), in order to establish another 

version of the practical forestry example.  
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Fig. 4 shows the outcome. Maximum sustainable value yield is gained at 130 years of rotation. 

There is a break-even point at 31 years, where internal interest becomes nonnegative, according 

to Eq. (9).  

 

Fig. 4 does not contain any amortization of investments, neither any bare land value. These 

factors are introduced in Fig. 5. Again, the base case is that the initial regeneration investment 

of 6000 SEK/ha amortized at the end of any rotation. A non-amortizable bare land value of 

2500 SEK/ha is included in the capitalization. Fig. 5 shows the partition function of 

capitalization (Eq. (1)), as well as the partition function of the time change rate of capitalization 

(Eq. (2)). While the capitalization per hectare always is positive, the state sum of the time 

change rate is negative until rotation age 31. This is due to the amortization of the initial 

investment of SEK 6000/ha. Correspondingly, the expected value of capital return rate, 

according to Eq. (5), is negative up to rotation age 31, and reaches its maximum at rotation age 

53.  

 

 

Fig. 4. Pine stand value growth according to a North-Swedish value growth function (14), 

(Gong and Löfgren 2016).  
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Fig. 5. Partition function of capitalization according to Eq. (1), and growth according to Eq. 

(2), as well as expected value of capital return rate according to Eq. (5), as a function of rotation 

age. 

 

Figure 6 shows the expected value of the capital return rate according to Eq. (5) and the internal 

rate of return according to Eq. (13) as functions of rotation age. In addition, Figure 6 shows the 

net present value of further growth according to Eq. (10), using 2% and 3% discounting interest 

rates. Again, a non-amortizable bare land value of 2500 SEK/ha is included in the 

capitalization. The average capital return rate reaches its maximum at rotation age of 53 years. 

The internal rate of return reaches maximum at 62 years. 2% discounting interest results as 

maximum net present value at 72 years. 3% discounting interest results as maximum net present 

value at 62 years.  
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Fig. 6. Capital return rate (Eq. (5)), internal rate of return (Eq. (13)) and net present value of 

proceeds (Eq. (10)) as functions of rotation age. The NPV is computed with 2% and 3% 

discounting interests.   

 

 

5 Further applications 

 

Forest estates are sold and bought at the real estate market. It would be interesting to consider 

what kind of an investment a young stand might be. The result naturally depends on the 

purchase price. In order to create an example, let us discuss the North-Swedish case defined by 

Eqs. (10) and (11) to be purchased at the age of 20 years. Now, there are no periodic boundary 

conditions in time. This makes Eqs. (9) and (10) inapplicable, whereas Eqs. (5), (10) and (11) 

can be applied. 

 

We find from Fig. 7 that if the stand is acquired at the price corresponding to the sum of the 

initial investment of 6 000 SEK/ha and the bare land value of 2 500 SEK/ha, a capital return 

rate of 4.4% is gained if harvested at age 44, according to Eq. (5). The maximum internal rate 

of return according to Eq. (11) is 4.9%, gained at age 46. An acquiry price of 12 000 SEK/ha 

would correspond to capital return 3.2% at age 52, and internal rate of return of 3.7% at age 

54. An acquiry price of 18 000 SEK/ha would correspond to capital return 2.3% at age 64, and 

internal rate of return of 2.7% at age 66. 
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Fig. 7. Pine stand value growth according to a North-Swedish value growth function (11), 

(Gong and Löfgren 2016). Solid lines correspond to average financial return rate, as a function 

of rotation time , according to Eq. (5), for three different levels of acquiry price at the age of 

20. Dotted brown lines correspond to internal rate of return according to Eq. (12).  

 

 

6 Discussion 

 

A state-space approach for capital return in growing multiannual plants like forest trees was 

introduced.  A partition function of growth rate, as well as capitalization, was introduced. It 

was shown that the expected value of capital return rate corresponds to the ratio of the partition 

functions. The outcome does not depend on any external interest rate, which reduces arbitrary 

factors in any analysis. Provided an applicable yield function can be established for local 

circumstances, the introduced return rate function can be used in the design of technical 

operations and commercial transactions. 

 

The introduced state-space approach is not the only procedure not relying on arbitrary external 

interest. Terminal harvesting income may be discounted to the time of initial investment 

according to Eq. (11), in order to yield an internal rate of return (Newman 1988, Boulding 

1955). However, Eq. (11), as well as Eq. (12), contain an inherent assumption that the rate of 

return is constant in time. There actually is an equivalency between Eqs. (12) and (5) 
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   
0 0

0 1 ( ) ( ) 0 exp ( ) 1s
d

dt

K e Z K t r t dt K r t dt
 




  
            

   (16). 

 

Clearly, s in Eq. (12) and r in Eq. (7) are two different quantities, as also is visible in Figs.  3, 

6 and 7. They coincide only if r becomes constant in time, which is unlikely in the case of the 

production of multiannual plants. The relation of the two quantities certainly depends whether 

there is positive or negative covariance between the capitalization K and the momentary capital 

return rate r. 

 

In order to further clarify the practical differences between the two quantities s and r, let us 

discuss a distribution of growing stands of different ages. Then, the momentarily expected 

value of capital return rate is 

   
0 0

0 0

( , )
( ) ( ) ( , ) ( , )

( )

( ) ( , ) ( ) ( , )

d a td p a da p a a t r a t daE
dtdt

E r t
E K

p a K a t da p a K a t da

 

 

  
    

 

 
  (17),  

where p(a) corresponds to probability density function of stand age a. Clearly, one can expect 

that the momentarily expected return rate of capital depends on the distribution of stand ages. 

A special case would be constant stand age distribution, which however would recover Eq. (5): 

  0

0

( )

( )

d

dt

K

d a
da Z

dt
E r Z

K a da









 



  (18).  

 

Reliance on arbitrary external interest is not the only problem related to the net present value 

computation given in Eqs. (9) and (10). Apparently, these Equations only apply to periodic 

boundary conditions in time. Such boundary conditions may at first appear as a convenient 

idealization. However, there are many situations, including that discussed in Fig. 7, where no 

such condition exists. Common sense might suggest that in a rapidly changing world, periodic 

boundary conditions probably do not often exist for systems growing several decades. 

 

It is often stated that an external discounting interest rate reflexes the cost of capital, which in 

turn depends on the risks involved (Pearse 1967, Samuelson 1976). A question arises, how the 

risks of destructive events are considered in the state-space approach to capital return. 
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Firstly, let us discuss risks internal to the growth process: risks depending on selection of plant 

species and regeneration practices, application of pre-commercial and commercial thinnings, 

drainage, fertilization, etc. Such risks possibly should be included in the yield function as 

stochastic elements. This is far from trivial, and obviously should be applied to any yield 

function regardless of the economic objective function used.  

 

Risks of externally introduced destructive events may or may not be embedded in the 

discounting interest, while computing a net present value (Loisel 2011, Hyytiäinen and Haight 

2010). A stochastic risk formulation can be included in the objective function, regardless if it 

is based on net present value, internal rate of return, or an expected value of capital return rate.  

 

In financial theory, high-risk investments or investment environments require a higher 

expected return rate, or a greater discounting interest rate. The internal rate of return in Eqs. 

(11) and (12) maximizes the discounting interest. The state-space approach (Eq. (5)) maximizes 

the expected rate of capital return. There is no artificial interest rate that could be manipulated 

on the basis risk analysis. On the other hand, in computation of net present value according to 

Eqs. (9) or (10), there is an external discounting interest that can be manipulated on the basis 

of risk analysis. The result of the manipulation in the occurrence of strongly increasing risk 

factors would be that the discounting interest would approach the rate of internal return, in 

which case equations (9) and (11) would coincide. 
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