KUOPION YLIOPISTON JULKAISUJA G. - A.l.VIRTANEN -INSTITUUTTI 60
KUOPIO UNIVERSITY PUBLICATIONS G.
A.LLVIRTANEN INSTITUTE FOR MOLECULAR SCIENCES 60

JONNA KOPONEN

Lentiviral Vector for Gene Transfer

A Versatile Tool for Regulated Gene Expression, Gene
Silencing and Progenitor Cell Therapies

Doctoral dissertation

To be presented by permission of the Faculty of Natural and Environmental
Sciences of the University of Kuopio for public examination in

Auditorium, Tietoteknia building, University of Kuopio,

on Saturday 19" April 2008, at | p.m.

Department of Biotechnology and Molecular Medicine
A.l. Virtanen Institute for Molecular Sciences
University of Kuopio

ﬁ

KUOPION YLIOPISTO

KUOPIO 2008



Distributor: Kuopio University Library

P.O. Box 1627
FI-7021 1 KUOPIO
FINLAND

Tel. +358 17 163 430
Fax +358 17 163 410
http://www.uku.fi/kirjasto/julkaisutoiminta/julkmyyn.htm!]

Series Editors: Research Director Olli Gréhn, Ph.D.
Department of Neurobiology
A.l. Virtanen Institute for Molecular Sciences

Research Director Michael Courtney, Ph.D.
Department of Neurobiology
A.l. Virtanen Institute for Molecular Sciences

Author’s address: Department of Biotechnology and Molecular Medicine
A.l. Virtanen Institute for Molecular Sciences
University of Kuopio, Bioteknia |

P.O. Box 1627
FI-7021 | KUOPIO
FINLAND

E-mail: Jonna.Koponen@uku.fi

Supervisors: Professor Seppo-Ylda-Herttuala, M.D., Ph.D.
Department of Biotechnology and Molecular Medicine
A.l. Virtanen Institute for Molecular Sciences
University of Kuopio

Docent Jarmo Wabhlfors, Ph.D.

Department of Biotechnology and Molecular Medicine
A.l. Virtanen Institute for Molecular Sciences
University of Kuopio

Reviewers: Docent Ari Hinkkanen, Ph.D.
Department of Biochemistry and Pharmacy
Abo Akademi University

Pauliina Lehtolainen, Ph.D.
Centre for Cardiovascular Biology and Medicine
University College London

Opponent: Professor Akseli Hemminki, M.D., Ph.D.
Molecular Cancer Biology Program and Institute of Biomedicine,
Biomedicum Helsinki
University of Helsinki

ISBN 978-951-27-0619-8

ISBN 978-951-27-1101-7 (PDF)
ISSN 1458-7335

Kopijyva
Kuopio 2008
Finland



Koponen, Jonna. Lentiviral Vector for Gene Transfer — A Versatile Tool for Regulated Gene
Expression, Gene Silencing and Progenitor Cell Therapies. Kuopio University Publications
G. — A.l.Virtanen Institute for Molecular Sciences 60. 2008. 71 p.

ISBN 978-951-27-0619-8
ISBN 978-951-27-1101-7 (PDF)
ISSN 1458-7335

ABSTRACT

Gene therapy holds promise to improve the treatment options of both inherited and acquired
diseases like cardiovascular diseases. There is still a need for optimal gene delivery vectors for
enhanced efficacy and safety. The aim of this research was to apply the human
immunodeficiency virus-1 (HIV-1) derived lentiviral vector (LV) for different approaches of gene
therapy. LVs have the ability to integrate into the host cell genome and are thus suitable for
applications requiring long-term expression of the therapeutic gene. However, in such
applications, there is a need to regulate the level of therapeutic protein expression. During this
research, a LV system was developed and its efficacy tested for the capacity to adjust the
amount of protein expressed or to switch the expression on and off by the addition of the
antibiotic, doxycycline. This study demonstrates the ability to fine-tune the expression of a LV
delivered therapeutic gene by adjusting the concentration of doxycycline within a range which
can be achieved by oral administration. It also shows the functionality of the system in vivo in
rat brain. Another approach for therapeutic gene regulation is to utilize an endogenous,
pathophysiological stimulus of the target tissue. We designed a series of vectors exploiting a
novel approach, oxidative stress induced gene regulation. This is an alluring concept for
cardiovascular gene therapy applications, since oxidative stress plays a role in a number of
cardiovascular diseases. Our results showed that antioxidant response elements introduced
into LVs can be used for oxidative stress induced gene expression. Also, we studied whether
LVs can be applied in a gene knock-down approach exploiting a small hairpin RNA (shRNA) —
based method. Our results demonstrate efficient, long-term gene silencing by LV-shRNA both
in cell culture and mouse brain. As a potential therapeutic application for LVs, we studied their
ability to transduce cord blood (CB) derived progenitor cells and found that these cells could be
efficiently transduced by LVs. CB is a unique source for hematopoietic stem cells and other
progenitor cells, which can be exploited for novel cell therapy approaches. We also assessed
the therapeutic potential of progenitor cells in a nude mouse model of hindlimb ischemia. We
did not detect engraftment of progenitor cells into the target tissue. However, our results show
enhanced regeneration of the ischemic muscle by progenitor cell injections. Based on these
results, we suggest that progenitor cells may be beneficial in the recovery of injured tissue by
indirect mechanisms. Taken together, this study demonstrates the applicability of HIV-1 based
vectors as a basic research tool and a potential gene therapy vector, particularly for ex vivo
approaches such as progenitor cell therapies.

National Library of Medicine Classification: QU 470, QU 475, QZ 52, QW 168.5.H6, QU 325
Medical Subject Headings: Gene Therapy; Gene Transfer Techniques; Genetic Vectors;
Lentivirus; HIV-1; Gene Expression Regulation; Gene Silencing; Doxycycline; Brain; Rats;
Oxidative Stress; Umbilical Cord; Blood; Stem Cells; Transduction, Genetic; Cardiovascular
Diseases/therapy; Ischemia; Muscle, Skeletal; Mice
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INTRODUCTION

The concept of gene therapy, an approach to
treat disease by either modifying the gene
expression or correction of abnormal genes,
has been around since the first gene therapy
applications were introduced in the early
1980s. By administration of DNA rather than
a drug, many different diseases are currently
being investigated as candidates for gene
therapy. This has been influenced by the
rapidly increasing knowledge of the human
genome and its regulatory mechanisms.
However, the success of clinical therapies is
still limited due to the lack of optimal gene
transfer vectors. Rather than aiming at a
single vector that is suitable for all genetic
therapies, different vectors with qualities
tailored for each application is the objective.
The most important features and
requirements should be taken into account.
These include the vector tissue tropism, the
duration of gene expression, the possible
genomic integration ability, the feasibility to
switch off gene expression or to regulate its
expression, the expected immune responses
elicited by the vector, the possible need to
repeated vector administrations, and safety
and ethical considerations. Adenoviral
vectors have been extensively and
successfully used both in experimental and
clinical settings and may be considered as
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the standard vector of choice for many
applications that need short-term therapeutic
gene expression. However, for therapies
requiring long-term  therapeutic gene
expression, there is not such a standard
vector. Also, when long-term expression of
the therapeutic gene is desired, distinct
safety and efficacy concerns need to be
considered, such as the ability to regulate
therapeutic gene expression within the
therapeutic window, to switch off expression
when required and the possibility of
insertional mutagenesis in the case of
integrating vectors. The increased data on
HIV-1 molecular biology has been applied to
gene therapy research to enable HIV-1 to be
used as a gene therapy vector with a feature
of stable integration into the target cell
genome. With the latest generation HIV-1
vectors, only a minute proportion of the viral
genome is exploited, both in the vector and
the production system, resulting in a vector
which does not transfer any viral genes, thus
attenuating safety concerns. This thesis has
focused on the development and appliance
of HIV-1 derived lentiviral gene transfer
vectors for regulated expression, gene
silencing and progenitor cell therapies. Also,
the efficacy of LV in animal models of
cardiovascular diseases is evaluated.



REVIEW OF THE LITERATURE

GENE THERAPY
General concept

The basic concept of gene therapy is to
insert genes into the somatic cells of an
individual in order to treat a disease, either
inherited or acquired. Hereditary diseases
targeted by gene therapy usually aim at the
correction of the function of one abnormal
gene. However, in acquired diseases the
activity of several genes is disturbed and the
disease caused by these combined effects
makes the gene therapy approaches of such
diseases less straightforward.

Cardiovascular diseases

Despite major advances in therapies,
cardiovascular diseases are still the leading
cause of death in the Western world and are
therefore attractive targets for gene therapy.
Gene therapy approaches have been
directed to hyperlipidemias, promotion of
therapeutic angiogenesis in myocardium and
skeletal muscle, post-angioplasty restenosis,
hypertension, heart failure, the prevention of
thrombosis and the protection of vascular by-
pass grafts (reviewed by Yla-Herttuala et al.,
2000, Rissanen et al., 2007, Vincent et al.,
2007).

To date, the promotion of blood vessel
growth, that is, therapeutic angiogenesis,
has been the most studied aspect of
cardiovascular gene therapy. Gene transfer
for therapeutic angiogenesis has been
targeted to both myocardial and lower limb
ischemia, which are induced by
atherosclerosis. Genes for  vascular
endothelial growth factors (VEGFs) (Mack et
al., 1998, Gowdak et al., 2000, Arsic et al.,
2003, Rutanen et al., 2004, Stewart et al.,
2006), fibroblast growth factors (FGFs)
(Giordano et al., 1996, Ueno et al.,, 1997,
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Rissanen et al, 2003a), platelet-derived
growth factors (PDGFs) (Richardson et al.,
2001, Cao et al., 2003, Li et al., 2005b), and
angiopoietins (Arsic et al., 2003, Cho et al.,
2005) have been the mostly used
therapeutic genes. Several clinical trials for
therapeutic angiogenesis have been carried
out (Rissanen et al., 2007).

For genetic cardiovascular diseases, gene
therapy is a conceivable treatment option
especially for familial hypercholesterolemia

(FH), which is caused by the lack of
functional LDL-receptor. This results in
serious  hyperlipidemia, especially in

individuals whose both alleles are defective.
Promising results have been attained with
LDL-receptor gene transfer targeted to the
liver in animal models (Pakkanen et al.,
1999, Kankkonen et al., 2004, Lebherz et al.,
2004).

Other targets

Other genetic disorders are also potential
candidates for gene therapy. Probably the
most known gene therapy studies are those
directed to the primary immunodeficiency
disorder SCID/ADA (Blaese et al., 1995,
Muul et al.,, 2003). Other candidates with
published gene therapy research include
cystic fibrosis (Flotte et al., 2007), inherited
metabolic disorders like phenylketonuria
(Ding et al, 2006), lysosomal storage
disorders like Gaucher’'s disease (Sands et
al., 2006), hematological disorders like
hemophilias, hemoglobinopathies, anemias
and thalassemias (Nathwani et al., 2005)
and muscular dystrophies (Foster et al.,
2006).

Cancer gene therapy covers a number of
alluring treatment options for different types
of cancer. These applications can be divided
into three subgroups: immunotherapy,
oncolytic therapy and gene transfer therapy.
Immunotherapy covers the studies in which
a cancer vaccine is produced by engineering



cancer cells to be more recognizable by the
immune system. This can occur by the in
vitro transfer of gene producing molecules
which are pro-inflammatory (Simons et al,,
2006). Oncolytic gene therapy vectors are
viruses which are modified to infect cancer
cells and induce cell death through the
propagation of the virus, expression of
cytotoxic proteins and cell lysis (Rein et al.,
2005). The gene transfer concept involves
the transfer of suicide genes (genes that
cause cellular death when expressed)
(Rasmussen et al., 2002), antiangiogenesis
genes (Ohlfest et al., 2005) and cellular
stasis genes (Eastham et al., 2000). Suicide
gene therapy, utilizing herpes simplex virus
thymidine kinase (HSV-tk) gene transfer to a
tumor followed by ganciclovir treatment, has
shown potential in the treatment of the
malignant  brain  tumor, glioblastoma
(Immonen et al., 2004).

In addition to genetic disorders and
glioblastoma, there are a number of other
pathologies which make the brain an
important gene therapy target tissue. Gene
therapy treatments have been engineered
for  neurodegenerative  disorders like
Alzheimer's disease, amyotrophic lateral
sclerosis, Parkinson’s disease (Cardone,
2007) and for multiple sclerosis (Martino,
2003), CNS injuries (Murray et al., 2001),
epilepsy (Noe' et al, 2007) and
cerebrovascular diseases like stroke (Jacobs
et al., 2005).

Gene therapy has also been studied for the
treatment of viral infections, mostly for the
HIV-1 infection (Dropulic et al., 2006). In
terms of endocrine and metabolic disorders,
diabetes is probably the most abundantly
studied (D'Anneo et al., 2006).
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GENE TRANSFER VECTORS
Overview of vectors
Principles of gene transfer

Gene transfer aims at the delivery of nucleic
acids across the cell membrane and into the
nucleus of target cells. These genes are
introduced into the cells in vectors. The
efficiency of therapeutic gene transfer is
dependent on the ability of the vector to
deliver the gene into target cells and on the
transgene expression level. Different target
tissues and cells require vectors with distinct
properties. Also, the vector choice is
dependent on the application, for example,
on the desired duration of expression of the
therapeutic gene. The development of
optimal gene transfer vectors is one of the
key issues in determining the applicability of
gene therapy in clinical settings.

Nonviral gene transfer vectors

The concept of nonviral gene transfer covers
plasmid vectors or oligonucleotides which
are introduced into the cells either as naked
DNA or by chemical or physical approaches.
Early experiments suggested that a simple
injection of naked DNA produced remarkable
gene transfer efficiency in the muscle (Wolff
et al., 1990), liver (Hickman et al.,1994) and
skin (Choate et al.,1997). However, gene
transfer by naked plasmids has not proven
efficient enough for in vivo applications. In
terms of chemical approaches, DNA is
formulated into condensed particles by
using, for example; cationic lipids (Liu et al.,
2003a) or polymers (Neu et al., 2005) as
carriers. These compounds are useful for
enhanced gene transfer efficiency in vitro.
Physical approaches for gene transfer
utilizing mechanical (particle bombardment
or gene gun), electric (electroporation),
ultrasonic, hydrodynamic or laser-based
energy to penetrate the cell membrane have
been explored (Gao et al., 2007). Although



these methods may be efficient in vitro, they
have not shown remarkable potency in vivo.
In conclusion, nonviral vectors have not
been able to improve upon the performance
of viral vectors to date.

Viral gene transfer vectors

In viral vectors, parts of the native viral
genome have been deleted and replaced by
genetic elements needed for the expression
of the therapeutic gene. Genetic engineering
has meant that viral vectors do not carry the
genetic elements needed for the formation of
all the essential components of a virus
particle such as viral structural proteins and
enzymes. Therefore, they are not able to
replicate and are not infectious. Elements
for viral vectors are provided in trans by virus
producing systems such as helper constructs
or packaging cell lines, increasing the safety
of the vectors. The tropism of viral vectors,
that is the ability to transduce cells of
different tissue types or animal species, may
be modified by coating the viral particle with
envelope proteins from another virus with
known specificity.

Vectors based on DNA viruses

Adenoviral vectors are non-enveloped,
double stranded DNA vectors, which deliver
genes efficiently into a wide variety of cells
both in vitro and in vivo, and are the most
widely used viral vectors so far. Wild-type
human adenoviruses are a general cause of
benign respiratory and other infections in
humans. Approximately 50 serotypes of
adenovirus have been identified and gene
therapy vectors derived from serotypes 2
and 5 are most commonly used. Adenoviral
vectors are able to transduce both dividing
and non-dividing cells. Their genome
remains extrachromosomal in the host cell
resulting in a transient expression of the
therapeutic gene. Conditionally replicating
adenoviral vectors have shown promise in
cancer gene therapy (Carette et al., 2007,
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Ranki et al, 2007). However, a major
problem of adenoviral vectors is their
immunogenicity and toxicity (Liu et al.,

2003b). In fact, on one occasion, gene
therapy using adenoviral vector delivery
caused the death of a patient involved in a
clinical trial for the treatment of ornithine
transcarbamylase deficiency due to a huge
immune response triggered by the vector
(Marshall, 1999).

Adeno-associated virus (AAV) derived
vectors are single-stranded DNA vectors.
The prototype of AAV gene therapy vectors
is based on serotype 2. However, recent
data from mouse experiments has shown
that vectors derived from AAV serotype 8
show superior tropism for the liver (Nakai et
al., 2005) and those from serotype 6 for
cardiac and skeletal muscles (Gregorevic et
al., 2004). Also, serotype 9 vectors have
been shown to transduce the myocardium
more efficiently than serotype 8 vectors
(Inagaki et al., 2006). AAV vectors are able
to transduce both dividing and quiescent
cells and although they remain
extrachromosomal, long-term gene
expression is achieved. In one clinical trial,
the duration of therapeutic gene expression
for up to several years has been reported
(Jiang et al, 2006). Native AAV is a
parvovirus that is non-pathogenic in humans.
In addition, AAV vectors are considered to
be rather low in immunogenicity. However, a
major drawback is the cumbersome virus
production procedure, which is extremely
difficult to upscale (Xiao et al., 1998).

Other less frequently used gene transfer
vectors derived from DNA viruses are those
from baculovirus (Lehtolainen et al., 2002),
herpex simplex virus (Gao et al., 2006) and
Epstein-Barr -virus (Hellebrand et al., 2006).

Vectors based on RNA viruses

Retroviral vectors are based on RNA
viruses. The most extensively used retroviral



vectors are those derived from oncoviruses,
such as murine leukemia virus (MLV) or

lentiviruses  (LV), such as human
immunodeficiency virus-1 (HIV-1), simian
(SIV), equine (EIAV) or feline (FIV)

immunodeficiency viruses (reviewed by
(Sinn et al. 2005)). Retroviral vectors carry
their genetic information in the form of single
stranded RNA (ssRNA). In the target cell,
viral RNA is reverse-transcribed into double
stranded DNA, which is then integrated into
the host cell genome resulting in long-term
transgene expression. The prototype of
retroviral gene transfer vectors is derived
from MLV (Mann et al., 1983). MLV vectors
are only able to transduce dividing cells and
they have been used for both ex vivo and in
vivo applications. In clinical ftrials, MLV
vectors have been used for the treatment of
cancer, inherited and acquired monogenic
disorders and AIDS. However, in a trial for
the treatment of X-linked SCID patients with
MLV vector gene transfer to hematopoietic
stem cells ex vivo, vector induced leukemias
were reported raising safety concerns
(Hacein-Bey-Abina et al., 2003). In contrast,
there have been no reports of insertional
mutagenesis in ADA/SCID patients treated
with MLV vector gene ftransfer to
hematopoietic stem cells (Aiuti et al., 2007).
Thus, the risks of insertional mutagenesis
may depend on the vector system, the
targeted cell types, the site of integration, the
transgene and the underlying
immunodeficiency, as suggested by the
molecular analysis of the three affected
patients’ cells from the X-SCID trial (Hacein-
Bey-Abina et al., 2003).

In contrast to MLV vectors, lentiviral vectors
(LVs) are able to transduce both quiescent
and dividing cells, which is an advantage for
many experimental and clinical settings. Of
the lentiviruses used for gene transfer, HIV-1
derived vectors are the most advanced and
owing to species-specific restrictions, it is
likely that they are more efficient than animal
LVs for the transduction of many types of
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human cells. HIV-1 derived vectors are
described in detail in the next chapter.

Lentiviral HIV-1 derived vectors
HIV-1 biology and genome

In the late 1970s and early 1980s, a new
syndrome, with symptoms of immunologic
dysfunction, was discovered in United States
and Europe. A connective laboratory finding
was the depletion of CD4+ T-lymphocytes in
affected individuals. The disease was termed
acquired immunodeficiency syndrome
(AIDS). Later, a new retrovirus was isolated
from both AIDS patients and infected,
asymptomatic individuals from various risk
groups. The new retrovirus causing a slow,
progressive disease affecting the immune
system and exhibiting morphologic and
genetic characteristics  typical of the
lentivirus genus (Lentivirinae), was named
human immunodeficiency virus (HIV) (Coffin
et al,, 1986) and subsequently HIV-1. Other
lentiviruses include HIV-2 and nonhuman
lentiviruses such as the feline
immunodeficiency virus (FIV) of cats, simian
immunodeficiency virus (SIV) of monkeys,
bovine immunodeficiency virus (BIV) of
cattle, equine infectious anemia virus (EIAV)
of horses, Maedi/Visna virus and caprine
arthritis encephalitis virus of sheep and
goats.

Retroviral virion particles are spherical in
shape and surrounded by a lipid membrane
bilayer envelope with projections of
glycoproteins. There is a spherical layer of
protein under the membrane and an internal
nucleocapsid whose shape varies from virus
to virus. The members of the lentivirus genus
are complex retroviruses with  the
morphology of cylindrical or conical cores.

Typically, all retroviruses carry three major
genes that are critical for retroviral replication
and assembly, gag, pol and env. The more
complex retroviruses contain accessory



genes that are essential or contribute to
efficient virus replication and persistence.
HIV-1 encodes six additional genes: tat, rev,
vif, vpu, vpr, and nef. (Figure 1 and Table
1). The HIV-1 virion has a diameter of ~110
nm. The viral SU and TM glycoproteins are
inserted into the lipid membrane surrounding
the nucleocapsid. Proteins within the inner
shell of a mature virion are cleavage
products of the Pr55%%° and Pr160%9°°
polyproteins. The condensed inner core is
formed by the capsid protein (CA), p24.
Between inner core and the lipid membrane
is the matrix protein (MA), p17, which
remains associated with the lipid membrane.
The virion core contains two copies of the
single-stranded genomic RNA to which the

9a9 | PR RT IN |

NC protein is bound. Also packaged into the
virion are the host transfer RNA; tRNAs"®,
and the viral proteins RT, PR, IN, Vif and
Vpr. (Haseltine, 1991)

The HIV-1 life cycle

The HIV-1 replication cycle, started with the
viral genome integrated into a host
chromosome, leads to expression of viral
gene products, production of new virus
particles, infection of a new cell and
reintegration of the viral genome. The HIV-1
life cycle may be split into 15 steps (Frankel
et al., 1998). These are illustrated in Figure
2 and are described below.

vorfl | su ™ nef

LU MA CA NC p6

tat -
LTR

Figure 1. Diagram of the HIV-1 genome and virion structure. The genome is flanked by long
terminal repeat (LTR). Nine genes (gag, pol, env, tat, rev, vif, vpr, vpu and nef) encode 15
proteins, see Table 1 for descriptions. Modified from Frankel et al., 1998.
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Viral transcripts are expressed from the
promoter located in the 5 long terminal
repeat (LTR) (1), with Tat greatly
enhancing the rate of transcription. Viral
RNAs are then transported from the
nucleus into the cytoplasm where they can
be translated or packaged (2). This step is
regulated by Rev. Some viral RNAs are
translated by ribosomes in the cytoplasm
to form Gag and Gag-Pol polyproteins,
which localize to the cell membrane (3).
The Env mRNA is translated at the
endoplasmic  reticuum and  forms
complexes with the co-expressed HIV-1
cell-surface receptor CD4. The virion core
particle is constructed from the Gag and
Gag-Pol polyproteins which are later
processed into subunits (see Tablel),
accessory proteins Vif, Vpr and Nef, and
the genomic RNA (4). The immature virion
begins to bud from the cell surface. To
provide surface (SU) and transmembrane
(TM) proteins for the virion outer
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membrane, the Env polyprotein must be
released from the complexes it has formed
with CD4. Vpu assists this process by
promoting CD4 degradation (5). Env is
transported to the cell surface, where it
must be protected from binding to CD4 (6).
Nef promotes endocytosis and degradation
of surface CD4 (7). As the virion particle
buds and is released from the host cell
surface (8), it undergoes maturation
involving proteolytic processing of the Gag
and Gag-Pol polyproteins by protease (PR)
and Vif (9). After budding, the mature virion
is ready to infect another cell. This is
induced by interactions between surface
protein SU and CD4 receptor and CC or
CXC chemokine coreceptors of the target
cell (10). After binding, the TM undergoes
a conformational change that promotes
virus-cell membrane fusion thereby
allowing entry of the core into the cell (11).
The virion core is then uncoated to expose
a viral nucleoprotein complex containing



the viral proteins matrix (MA), reverse
transcriptase (RT), integrase (IN), Vpr and
viral RNA (12). During the microtubule
based nuclear transport of this pre-

transcribed into double-stranded RNA (13).
The viral replication cycle is completed by
IN catalyzing the integration of the viral
DNA into a host chromosome (14).

integration complex, the viral single-

stranded

RNA genome

is reverse

Table 1. HIV-1 genes, gene products and their function. Modified from (Ramezani et al., 2002)

Gene

Encoded protein(s)

Function

Regulatory genes

tat

Tat

Trans-activation of gene
expression

rev

Accessory genes

vif

Rev

Vif

Nuclear export of late mMRNAs

Promotion of polysomal
binding to RRE-containing
RNAs

Enhancement of virus
transmission

vpr

Vpr

Nuclear transport of viral
nucleoprotein complex
Induction of G, arrest in
dividing cells

vpu

Vpu

CD4 degradation
Virus maturation and release

nef

Structural genes

Nef

polyproteins
cleaved into subunits
Pr559%:
matrix MA (p17), capsid

CD4 and MHC-1 down-
regulation
Enhancement of virus
replication

Formation of viral particles

gag CA (p24), nucleocapsid Packaging of viral genomic
NC (p9), p6 RNA
Pr160929°°; Reverse transcription
protease PR (p10),
pol reverse transcriptase RT Integration
(p61/p52), integrase IN
(p31) Virus maturation
gp160:
env surface SU (gp120), Binding and entry into the host

transmembrane TM
(gp41)

cell
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The development of HIV-1 derived
gene transfer vectors

Like in any other viral gene transfer vectors,
the generation of replication-defective LVs
requires splitting the cis-acting sequences
(vector sequences) needed for the transfer
and expression of a transgene in target cells
and the trans-acting sequences (packaging
sequences) encoding the essential viral
structural and enzyme proteins, onto
separate genetic units. The tropism of viral
vectors is broadened by pseudotyping; via
encapsidation of the viral particle with the
envelope of another virus. LVs are mostly
pseudotyped with vesicular stomatitis virus
G-protein (VSV-G), which is pantropic and
highly stable. The transfer vector plasmid is
cotransfected with the packaging and
envelope plasmids into a cell line where
virions are produced. Virions are assembled
of viral proteins encapsidating the
replication-defective transfer vector RNA.

The HIV-1 derived transfer vector cis-acting
sequences include viral LTRs, the primer
binding site, the packaging signal, the Rev
responsive element, and an internal
promoter linked to a transgene of interest
constituting a transcriptional unit (Naldini et
al., 1996). The genetic elements derived
from HIV-1 are required for viral
encapsidation, reverse transcription and
integration. Like MLV retroviral vectors, HIV-
1 vectors do not transfer viral coding
sequences into target cells, meaning that
cells transduced with the HIV-1 vector do not
express any viral proteins.

HIV-1 transfer vectors have been modified
by introducing various internal promoters
driving transgene expression, and by the
inclusion of genetic elements such as the
central DNA flap and the post-transcriptional
element. The central DNA flap is a 99
nucleotide-long overlap formed after native
HIV-1 reverse transcription and it is involved
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in the import of the HIV-1 preintegration
complex into the nucleus. The sequence for
this element, the central polypurine tract
(cPPT), was omitted from early generation
HIV-1 vectors but has been routinely
included in current vector designs because
of its beneficial effect on gene transfer
efficiency (Follenzi et al., 2000). The
woodchuck hepatitis virus post-
transcriptional regulatory element (WPRE)
sequence is also commonly included in
current HIV-1 vectors. This element has
been shown to enhance transgene
expression from several types of promoters
(Deglon et al., 2000) by augmenting mRNA
3’-end processing and polyadenylation.

The HIV-1 vector packaging systems have
been extensively developed. The first-
generation packaging systems comprised
three expression plasmids: the transfer
vector, the plasmid for VSV-G envelope
protein production and the packaging
construct (Naldini et al, 1996). In this
system, only two of the nine native HIV-1
genes, vpu and env, were deleted.
Subsequently, it was shown that none of the
four HIV-1 accessory genes vif, vpr, vpu or
nef were required for efficient production of
VSV-G pseudotyped vector particles
(Zufferey et al., 1997). Therefore, the
second-generation packaging system only
utilized HIV-1 gag, pol, rev and tat genes,
which further attenuated the potential for the
generation of replication-competent viruses.

For the currently used third-generation HIV-1
vector system, several additional
modifications have been made to ensure the
safety of these vectors. Firstly, they have
been modified to self-inactivate (SIN) by
deleting the promoter sequences of the U3
region of the 3'LTR (Miyoshi et al., 1998).
Since the U3 region of the 3'LTR serves as a
template for the U3 regions of both LTRs,
the provirus carries the deletion in both LTRs
after reverse transcription. As a result, the



LTRs of the integrated vector are almost
completely inactivated. The inability to
transcribe full-length vector RNA minimizes
the chance of replication-competent virus
generation and reduces the potential of
oncogene activation by promoter insertional
mutagenesis. To avoid the reconstitution of
deleted U3 sequences by homologous
recombination with intact 5° LTR during viral
vector production, the U3 region of the &’
LTR is replaced with a heterologous
promoter, usually a cytomegalovirus (CMV)
promoter. Since the LTR promoter is
dependent on Tat interaction, the use of the
CMV promoter allows tat gene independent
production of viral vectors. Therefore, from
the third-generation HIV-1 vector packaging
system, tat is deleted. This has enabled
further refinement of the packaging system
for increased safety, such as the expression
of gag-pol and rev genes from two separate
nonoverlapping plasmids. With 40% of the
wild-type virus genome (three out of nine
genes) left, the parental virus can not be
reconstituted from such an extensively
deleted packaging system. Also, in the
absence of overlapping viral sequences the
risk of recombination events between
components of the viral production system is
abolished, further limiting the possibility to
yield replication-competent vectors. To date,
replication-competent vector production has
not been associated with the production of
HIV-1 lentiviral vectors.

Applications of HIV-1 derived gene
transfer vectors

HIV-1 derived gene transfer vectors show
efficient delivery, integration and long-term
expression of transgenes in both dividing
and nondividing cells, thus making them
excellent vehicles for basic studies of gene
overexpression and knockdown. As such,
they represent an attractive tool for most
potential targets of gene therapy, whether
the targets are early precursors or terminally
differentiated cells. While third generation
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HIV-1 vectors are able to transduce virtually
all types of cells in vitro, it seems that the
accessory protein, Vpr, is important for the
transduction of macrophages and
hepatocytes (Naldini et al., 1996, Kafri et al.,
1997). Also, although HIV-1 vectors do not
require cell division, like the native HIV-1
virus, they are unable to successfully
transduce T lymphocytes during the G stage
of the cell cycle. This is due to blocks at the
levels of reverse transcription and nuclear
import. However, HIV-1 vectors mediate
efficient stable transduction of many cell
types which are poorly transduced by other
vectors. For example, gene transfer to
progenitor and stem cells is one of the most
important applications of HIV-1 derived
vectors.

Embryonic stem cells (ESCs) are cells
derived from the inner cell mass of an early
embryo. They can be maintained in an
undifferentiated state indefinitely and can be
genetically manipulated in vitro without
losing their differentiation potential. This
unique property of ESCs suggests that they
may provide a useful tool to analyze
developmental pathways and are a
promising cell source for transplantation
therapies. Efficient genetic manipulation of
ESCs is critical for both development,
biology research and for maximizing the
therapeutic potential of ESCs. HIV-1 derived
vectors have been shown to efficiently drive
transgene expression in mouse (Kosaka et
al., 2004) and human (Gropp et al., 2003)
ESCs. ’

Of all blood cell types, only hematopoietic
stem cells (HSC) can self-renew, persist
throughout a lifetime and reconstitute the
whole lympho-hematopoietic system of an
individual. HIV-1  LVs can efficiently
transduce ex vivo mouse (Moreau-Gaudry et
al.,, 2001), non-human primate (Horn et al.,
2002) and human (Miyoshi et al., 1999)
HSCs in the absence of cytokine stimulation
and cell cycle induction. This is important



because culture conditions which facilitate
the proliferation of HSCs without the loss of
their stem cell capacity have not been
identified. HIV-1 derived LVs efficiently
transduce human CD34" cells, a
heterogenous population of HSCs and
progenitor cells. The LV-transduced CD34"
cells are capable of engraftment and multi-
lineage differentiation in NOD/SCID (non-
obese diabetic/severe combined
immunodeficient) mice (Miyoshi et al., 1999).
Such genetically modified cells can be
passed to secondary transplants (Woods et
al., 2000) which further confirms the
transduction of true HSCs and not only the
multipotent progenitor cells.

The stereotactic injection of HIV-1 LV was
the model initially used to illustrate the ability
of these vectors to transduce nondiving cells
in vivo (Naldini et al., 1996). Numerous
studies have reported successful long-lasting
and efficient transgene expression in
terminally differentiated neurons of rodent
brain after a single injection of only a few
microliters of high titer (magnitude of 10°
TU/mI) vector stock. In addition to neurons,
LVs are able to transduce most cell-types
within the CNS in vivo, including astrocytes,
oligodendrocytes, adult neuronal stem cells
and glioma cells (Jakobsson et al.,, 2003,
Consiglio et al., 2004, Miletic et al., 2004).
LVs have a property of highly efficient
retrograde transport providing access to a
wide area of the brain after a single injection,
thus enabling potential therapy for widely
disseminating neurological disorders. Also,
the delivery of ex vivo LV transduced HSCs
trafficking to the CNS has been exploited.
Promising therapeutic effects of HIV-1 LV
mediated gene transfer has been
documented in animal models of Alzheimer’'s
disease (Dodart et al., 2005), Huntington’s
disease (de Almeida et al, 2001),
Parkinson’s disease (Kordower et al., 2000),
amyotrophic lateral sclerosis (ALS, Raoul et
al.,, 2005a) and lysosomal storage diseases
(Biffi et al., 2004). Also, LV gene transfer has
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been utilized in the development of new
animal models of Huntington’s (Regulier et
al., 2003) and Parkinson’s disease (Lo
Bianco et al., 2002). In these models LV
gene transfer has been used to induce
overexpression of the mutated form of
protein present in these diseases.

The liver is an important target tissue for
gene therapy because of the numerous
genetic defects that cause defects in liver
function resulting in severe disorders such
as hemophilia A and B and FH. Also, the
liver is a target of chronic virus infections
such as hepatitis B and C. Despite the
regeneration  capacity of the liver,
hepatocytes divide only occasionally in the
adult. Several studies have reported that LVs
can transduce nondividing rodent and
human hepatocytes, both ex vivo and in vivo
(Kafri et al., 1997, Nguyen et al., 2002,
VandenDriessche et al., 2002, Follenzi et al.,
2004). However, mouse studies have shown
higher LV gene transfer efficiency in
neonates and after partial hepactomy (Park
et al., 2000, Ohashi et al., 2002, Park et al.,

2003), suggesting  that proliferating
hepatocytes are more prone to LV
transduction. Some properties of the

architecture of the hepatic lobule or the
tightness of the endothelial barrier in hepatic
blood vessels may be influenced by liver
growth or regeneration, thus favouring viral
entry. Alternatively, it has been suggested
that the HIV-1 accessory protein Vpr, absent
from later generation LVs, can enhance
hepatocyte transduction (Kafri et al., 1997).
However, in a study of LV mediated LDL-
receptor gene transfer in rabbit model of FH,
a long term therapeutic effect without
hepactomy was reported (Kankkonen et al.,
2004). Although only a modest gene transfer
efficiency of 0.01% of the liver cells was
achieved, the results showed a significant
(44%) decrease in the serum cholesterol
level of the treatment group at a one year
timepoint compared to controls. These



results support further research of LV
mediated liver gene therapy.

When the early generations of HIV-1 LVs
were developed, high expectations of their
performance in in vivo gene therapy
applications were raised. So far, these
expectations have been fulfilled only in the
targets of the central nervous system (CNS),
lympho-hematopoietic system and to a
lesser extent in the liver. More work is
needed to evaluate the true utility of LVs in
targeting tissues such as skeletal muscle
and the myocardium. The first clinical trial
utilizing HIV-1 LV for the treatment of HIV-1
infection is currently in process (Levine et al.,
2006). In this study, an antisense approach
against the HIV-1 envelope was utilized by
ex vivo transduction of the patients’ T-cells.
A LV with wild-type LTRs was used and
therefore, expression of the antisense
sequence was up-regulated upon the wild-
type HIV-1 infection of the vector bearing
cell. The results demonstrate safe and
efficient gene delivery and good persistence
in vivo and also, an improvement of the
immune function in four out of five patients.
However, the use of LV in patients infected
with wild-type HIV-1 presents a problem, the
potential of the wild-type virus to infect a cell
modified by the vector. As a result, the wild-
type virus infection would mobilize the vector
genome by packaging it and transferring it to
new cell. For HIV-1 patients, such a spread
of the vector might actually be beneficial.
However, it poses complex biosafety and
ethical problems and should be avoided. The
patients from this trial were monitored for
over one year (Levine et al., 2006). Only a
long-term follow-up after at least three years
will reveal the true safety of such treatment.
Nonetheless, based on the results from the
first clinical trial with LV, it possesses the
potential to be used for the therapies
involving prior ex vivo genetic modification of
cells of the lympho-hematopoietic system.

A few years ago, lentiviral HIV-1 derived
vectors made a breakthrough in the
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generation of transgenic animals (reviewed
in Park, 2007). Previously, transgenesis has
been achieved by pronuclear injection of
naked DNA. This is a rather inefficient and
tricky technique requiring a clearly visible
oocyte pronucleus mostly inapplicable to
species other than mouse. Also, mouse
transgenesis utilizing MLV retroviral vectors
failed as a result of transgene silencing
during development (Cherry et al., 2000).
HIV-1 LVs have been successfully used to
generate transgenic mice and rats by the
transduction of single-cell embryos, early
blastocysts or embryonic stem cells (Lois et
al., 2002, Pfeifer et al., 2002). In these
experiments, LV mediated transgenesis
resulted in very high embryo viability with
80% of mice carrying the provirus. Unlike
MLV retroviral vectors, HIV-1 LVs appear to
escape epigenetic silencing. The reason for
this remains unknown but might be linked to
different integration site preferences. MLV
vectors have been found to integrate
predominantly close to transcriptional start
regions and CpG islands (Wu et al., 2003).
In contrast, LVs, studied to date, integrate
across the entire transcribed gene region
with no preference to the proximity to the
transcriptional start site. Also, LV genomes
contain fewer CpG dinucleotides susceptible
to cytosine methylation than the onco-
retroviral vectors, which may partially explain
the finding that they are less prone to

silencing. Successful LV-mediated
transgenesis has also been extended to
larger animal species including cattle

(Hofmann et al., 2004) and pig (Hofmann et
al., 2003). In addition to offering models of
human diseases, especially large transgenic
animals may find applications in future
bioindustry for example as producers of
human proteins for drug use or as a potential
source of  humanized organs for
transplantation.



CELL THERAPIES FOR
CARDIOVASCULAR DISEASES

General concept

Among treatment options for cardiovascular
diseases, there is a definite need for
alternative  therapies, particularly  for
advanced and severe disease. Experimental
studies have indicated that progenitor or
stem cells derived from different sources
possess regenerative capacity in the heart
and vasculature, which has raised
expectations of clinically applicable cell
therapy for tissue repair in cardiovascular
diseases. The initial concept for this
research was based on the cell plasticity-
hypothesis, which suggests that progenitor
cells can transdifferentiate in vivo across
generally agreed tissue lineage boundaries.
The concept of plasticity has, however, been
challenged by data proposing that HSCs are
committed to differentiate into cells of
hematopoietic lineages and do not own the
capacity to transdifferentiate (Wagers et al.,
2002). Cell fusion has since been proposed
as an alternative explanation for observed
transdifferentiation events. On the other
hand, by secretion of paracrine factors,
progenitor cells might affect vasculogenesis,
tissue repair and remodelling without the
need to undergo transdifferentiation or cell
fusion. Also, stem cell niches have been
identified from myocardium. The concept of
stem cell niche covers the local tissue
environments of surrounding cells which are
important for the regulation of stem cells
controlling and balancing self-renewal and
differentiation (Moore et al., 2006, Morrison
et al., 2008). There is evidence of nesting
cardiac stem cells and progenitors that are
connected structurally and functionally to
myocytes and fibroblasts by junctional and
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adhesion proteins, such as connexins and
cadherins (Urbanek et al., 2006). A novel
fascinating mechanism proposed to play a
role in cell therapy is the putative stimulation
of endogenous tissue repair pathways which
might contribute to the regeneration of stem
cell niches (Mazhari et al., 2007).

With the evolving experimental data, the
concept of cell therapy for cardiovascular
diseases has shifted from the original idea of
progenitor cells taking part in the
regeneration of injured myocardium or
skeletal muscle or playing a part in the
induction of angiogenesis by the direct
involvement of progenitor cells into newly
forming vessels. Instead, a broader
hypothesis suggests that cell therapy might
in fact facilitate complementary aspects of
tissue repair (Figure 3). These effects might
include augmentation of cell survival (for
example, in limiting apoptosis), tissue
oxygenation by angiogenesis or
improvement in positive tissue remodelling.
The most potent target diseases for cell
therapy include myocardial infarction,
ischemic cardiomyopathy and peripheral
vascular disease causing skeletal muscle
ischemia in lower limbs.

Cell types and sources

Several sources of progenitor cells for
cardiovascular cell therapy exist in adults,
including  unfractioned or fractioned
hematopoietic and mesenchymal stem cells
from bone marrow, circulating progenitor
cells, skeletal myoblasts and resident
progenitor cells for example, from adipose
tissue. Also, cord blood HSCs and
cardiomyocytes derived from embryonic
stem cells have been used in animal models.
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For cardiovascular gene therapy, bone
marrow has been proposed as a source of
hematopoietic, vasculogenic and
mesenchymal stem cells. Initial experimental
evidence suggested a significant degree of
myocardial regeneration by the
administration of lineage negative c-kit" bone
marrow mononuclear cells (BMCs) into a
murine model of myocardial infarction (Orlic
et al., 2001). However, this has been
questioned by subsequent studies showing
little or no tissue integration of these BMCs
in similar animal models (Balsam et al.,
2004, Murry et al., 2004). These findings
challenged the paradigm of BMC
transdifferentiation, although did not exclude
the possibility that such cells could potentiate
myocardial repair by other mechanisms.
Bone marrow mesenchymal stem cells
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(MSCs) are a component of marrow stroma.
They are self-renewing, clonal precursors,
which expand easily in culture, exhibit
multipotency and have also been shown to
differentiate to cardiomyocytes and vascular
cells (Jiang et al, 2002). Endothelial
progenitor cells (EPCs) have been proposed
to induce angiogenesis and re-
endothelization in the models of ischemia
and vascular injury (Madeddu et al.,, 2004,
Nowak et al., 2004). Mechanisms suggested
for EPC-mediated angiogenesis include
integration of the EPC into newly formed
micro- and macrovessels and the secretion
of growth, survival and cell-modulatory
factors. EPCs have been identified and
enriched from bone marrow and peripheral
blood by the expression of surface antigens
such as CD31, CD133, VEGFR-2 and Tie-2.



Whether these cells, exhibiting endothelial
plasticity, offer a significant therapeutic
advantage remains unclear in the absence of
convincing data.

Skeletal myoblasts are satellite progenitor
cells in muscle. In response to muscle injury,
they are able to proliferate and fuse to
regenerate new multinucleated cells. The
potential advantage of using these cells in
cell therapy applications include their
autologous origin, ease of isolation, high in
vitro proliferative capacity, in vivo ischemic
tolerance and myocyte restricted lineage
commitment which limits the risk of
oncogenetic transformation (Deasy et al.,
2004). In animal models of myocardial
ischemia, autologous skeletal myoblasts
augmented contractile function (Taylor et al.,
1998) and findings from clinical studies
suggested that implanted myoblasts
engrafted viably in scarred myocardium
(Pagani et al., 2003). The enthusiasm for
myoblast therapy has faded by the lack of
evidence for cardiomyocyte differentiation of
myoblasts and further, due to arrhytmias
observed in a clinical ftrial, presumably
caused by the inability of myoblasts to
integrate into the conduction system of the
heart (Menasche et al., 2003). Recently, a
population of myoendothelial cells with
multilineage capacity, including skeletal and
cardiac muscle regenerative potential, has
been identified within human skeletal muscle
(Zheng et al., 2007). Further research will
show whether these cells, showing myogenic
and endothelial properties, can be
envisioned as a therapy for muscle diseases.

The ability of human embryonic stem cell
(ESC) derived cardiomyocytes to survive
and integrate structurally and functionally
into healthy and post-infarct cardiac tissue
has been demonstrated in animal models
(Kehat et al., 2004, Laflamme et al., 2005,
Xue et al.,, 2005, Caspi et al,, 2007). The
recent breakthrough findings show that
mouse and human fibroblasts can be

27

reprogrammed to pluripotent ESC-like cells
by the transfer of three to four transcription
factor genes (Takahashi et al., 2006,
Takahashi et al., 2007, Wernig et al., 2007,
Yu et al., 2007, Nakagawa et al., 2008). The
resulting induced pluripotent stem cells have
the potential to be used in future treatments
for cardiovascular diseases.

For cell therapy research of cardiovascular
diseases to date, bone marrow derived
progenitor cells are the most commonly
used. An important issue complicating the
interpretation and comparison of both
experimental and clinical data is the
heterogeneity of cell preparations, since both
unfractioned  mononuclear cells and
fractioned preparations selected for CD34"
or CD133" have been used.

Cell therapy combined with gene
therapy

Gene therapy has been widely applied for
the therapy of cardiovascular diseases, most
popularly in the concept of angiogenic
growth  factor therapy for ischemic
myocardium or skeletal muscle. Although the
biological effects of such growth factors are
well understood, these therapies have not
proven efficient in clinical trials presumably
due to the limited efficacy of current gene
transfer technology. One approach to
improve the delivery of growth factors might
be the combination of cell and gene therapy
to utilize progenitor cells as carriers. After a
transgene is introduced, these engineered
progenitor cells would home into the target
area and secrete therapeutic proteins. Also,
by gene transfer, the chemokine expression
profile of the progenitor cell might be altered
to improve homing of endogenous progenitor
cells into the injured area (Askari et al,
2003). Another approach using cell based
gene therapy is to engineer progenitor cells
to express a protein which is not secreted
but modifies the biology of the cell itself.
Such a modification might aim at improving



cell survival by inhibiting apoptosis for
example (Mangi et al, 2003), or by
strengthening resistance to ischemia or
scavenging free radicals.

Clinical trials and future prospects

Small clinical trials have focused on the
safety and feasibility of progenitor cell
therapy in cardiovascular diseases, including
ischemic cardiomyopathy (Fuchs et al.,
2003, Perin et al., 2003, Tse et al., 2003),
peripheral vascular disease (Tateishi-
Yuyama et al, 2002b) and myocardial
infarction (Strauer et al., 2002, Britten et al.,
2003, Fernandez-Aviles et al., 2004, Wollert
et al., 2004). While the safety of cell therapy
has been demonstrated it has been difficult
to compare data because of variations in the
methods used. These include variations in
routes of cell delivery, preparation of cells
and chosen endpoint parameters for efficacy
evaluation. To date, several randomized,
controlled trials of intracoronary application
of bone marrow cells for patients with acute
myocardial infarction have been reported
(Chen et al.,, 2004, Bartunek et al., 2005,
Erbs et al., 2005, Hendrikx et al., 20086,
Janssens et al., 2006, Kang et al., 2006,
Meyer et al., 2006, Cleland et al., 2007). The
change in the left venctricular ejection
fraction (LVEF) after cell therapy has been
assessed by angiography, magnetic
resonance imaging or ultrasound and
compared to a control group. Statistically
significant LVEF improvements have been
obtained in some of the studies (Chen et al.,
2004, Erbs et al, 2005, Hendrikx et al.,
2006, Kang et al.,, 2006, Cleland et al.,
2007). Nevertheless, it has been pointed out
that these improvements in myocardial
function are not likely to be significant in a
clinical context. In fact, experts have agreed
that before pursuing further clinical trials a
better understanding of the mechanisms of
progenitor cell mediated therapy, the
methods used to produce the therapeutic cell
preparations, the application route, the
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timing of treatment and patient selection
needs to be attained (Bartunek et al., 2006).
This will show the true potential of progenitor
cell therapy as a clinical treatment for
cardiovascular diseases.

GENE TRANSFER VECTORS
WITH REGULATED GENE
EXPRESSION

General concept

In terms of both experimental and clinical
gene therapy applications, one of the key
issues is the ability to regulate the
expression of a therapeutic gene, in order to
produce levels of protein within a therapeutic
window, and to switch off the expression if
desired. Regulated gene expression vectors
are based on the insertion of sequences
binding to  transcriptional activators
preceding the minimal promoter. These
activators will bind, and thus, activate gene
expression when a particular inducer
compound is present. Binding is either
achieved subsequent to a conformational
change in the activator or by
heterodimerization of two distinct factors,
one that is responsible for specific DNA
binding and the other for transcription
activation. Regulated gene expression
systems consist of at least two separate
expression cassettes: one that contains the
transcriptional activator under the control of
either a constitutive or a tissue specific
promoter, and the other contains a
transgene under the control of the regulated,
transcriptional activator responsive promoter.
To deliver these expression cassettes into
target cells, either two separate gene
transfer vectors are used or, all the elements
are combined into a single vector. To date,
tetracycline-dependent  gene  regulation
systems are the most utilized and advanced.
These and some other commonly applied
systems are introduced in the following
sections. A direct comparison of different



regulation systems is difficult and therefore,
each system should be selected according to
the requirements of the particular
application.  When  regulatable  gene
expression is used in clinical applications,
the pharmacology of the inducer drug plays
a key role in selection of the system.

Tetracycline-regulated gene
expression

Tetracycline (Tet) —regulated transcriptional
expression systems have been adapted from
studies of the E.coli tetracycline resistance
mechanism (Hillen et al., 1994). In bacteria,
the TetR protein inhibits the transcription of
genes in the tetracycline-resistance operon
present in the Tn10 transposon by docking
to the Tet operator (tetO) sequences, in the
absence of tetracycline. Therefore, the
transcription of the genes needed to
metabolize Tet is inhibited by TetR in the
absence of Tet. When Tet is present, it is
bound by TetR, inducing a conformational
change, which results in the release of TetR
from tetO, allowing transcription. In the Tet-
off system (Figure 4), TetR is modified to
function as a transcriptional activator by
fusion with a viral protein domain VP16, a
eukaryotic  transactivator derived from
herpes simplex virus type 1. As a result,
TetR is converted from a transcriptional
repressor to an activator, and is termed the
Tet transactivator (tTA). The tTA is
expressed independently of the tetracycline
response element (TRE, a framework of
seven tandem sequences upstream of a
minimal CMV promoter) -driven transgene
encoding cassette. In the absence of Tet the
tTA binds to the TRE, and activates
transcription of the transgene from an
otherwise silent minimal promoter. When Tet
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is present, it binds to tTA, which is then
released from tetO and transcription is no
longer continued. Thus, Tet-off system
driven gene expression is switched on and
off in the absence or presence of the
inducer, respectively. As an inducing drug,
the Tet analog doxycycline (Dox) is often
used.

When mutations were randomly introduced
into the TetR part of the tTA a separate
protein was produced which exhibited
opposite binding properties and led to the
development of the Tet-on system (Figure
4). The mutant of tTA, termed rtTA, triggers
transcription by activating the TRE in the
presence of the inducer Tet. The Tet-on
gene regulation system, that utilizes rtTA,
has been widely applied, but the system is
somewhat limited with respect to the
precision of regulation. The rtTA has been
found to also show some degree of affinity
for tetO sequences in the absence of Tet,
therefore inducing a low basal level of gene
expression in the off state. To further
improve the Tet-on system, the inventors of
the system screened for mutant rtTA
molecules in yeast to obtain a transactivator
with more specific binding properties. One
mutant with superior features was identified
and this novel transcriptional activator was
named rtTA2°M2. The Tet-on system with
nTA2°M2  showed  negligible  basal
expression and was fully induced with a 10-
fold lower Dox concentration than rtTA
(Urlinger et al., 2000). To date, the ntTA25M2
has been successfully used in a wide variety
of applications (Lamartina et al, 2002,
Chenuaud et al., 2004, Vogel et al., 2004,
Pluta et al., 2005).
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Figure 4. Components of the Tet-off and Tet-on gene expression regulation system. Both
systems consist of two transcriptional units: one for the expression of transactivator (tTA or
rtTA) and the other has the regulated transgene under the control of the transactivator binding
promoter. The transactivator consists of the tetracycline operon (TetO) binding domain fused to
the transactivation domain VP16 originating from HSV virus. In the Tet-off system the TetO
binding domain, tetracycline repressor (TetR) is able to bind in the absence of tetracycline or its
derivative, doxycycline (Dox) and thus, transcription is activated by the VP16 domain of the tTA
in the absence of Dox. When Dox is present, it binds to the tTA and induces a conformational
change, releasing tTA from TetO and deactivating transcription. In the Tet-on system the
binding properties of TetR are mutated for reversed binding properties. Thus, the resulting
transactivator, rtTA induces transcription in the presence of Dox.

In addition to its tight regulation and the and repression of gene expression. The
possibility to strictly adjust the transgene components of the Tet-on system recognize
expression level dose-dependently, the unique sequences of DNA, thus reducing the
tetracycline-regulated gene  expression risk of side effects. However, because the
system has several advantages over other transactivator protein has both bacterial and

systems. The inducer drug has been used as viral protein components, an immune
an antibiotic for decades and thus, has well response is possible. In fact, the
characterized pharmacological properties in immunogenicity of rtTA2°M2 transactivator

a clinical setting. Doxycycline is non-toxic at has been reduced by humanized amino acid
doses required for gene induction and the codon optimization (Urlinger et al., 2000).
tissue concentrations needed are achieved

by oral administration of the drug.

Doxycycline is lipophilic and hence efficiently

absorbed by cells. It is also rapidly

metabolized and cleared from the body

making it an ideal drug for rapid induction

30



Steroid hormone receptor -based
regulated gene expression

Steroid hormones can easily cross epithelial
barriers and plasma membranes.
Endogenously, steroid hormones bind to
their receptors in the cytoplasm and these
complexes are then translocated to the
nucleus where they bind to DNA to regulate
gene expression. Thus, steroid hormone
receptor ligands bear the potential to be
utilized as soluble drugs for the regulation of
transgenes in therapy applications.

A gene regulation system exploiting a
truncated form of the ligand-binding domain
of the human progesterone receptor has
been developed (Wang et al., 1994). This
system relies on the ability of the modified
ligand-binding domain to bind to synthetic
antiprogestins as agonists. An antiprogestin-
dependent, site-specific chimeric
transcription factor was generated by linking
the modified ligand-binding domain to a
heterologous DNA-binding domain, yeast
GAL4, and to a ftranscription activation
domain, NF« p65 subunit. In the presence
of an antiprogestin, such as mifepristone, the
chimeric transactivator binds to its target
sequence, the 17-mer GAL4 sequence
positioned upstream of the minimal
promoter, to activate transcription of the
transgene. Mifepristone regulated gene
expression has been used both in in vitro
and in vivo applications (Wang et al., 1997,
Oligino et al.,1998, Burcin et al., 1999). An
advantage of the antiprogestin gene
regulation system is that it mostly comprises
of modified human proteins and thus, should
be less immunogenic. However, inducers of
the system are generally able to activate
native steroid hormone receptors, which
creates a risk of side effects. In fact,
mifepristone is a drug which is used to
induce abortion in women, although with a
dose well above that is sufficient for
transgene regulation. These concentrations
of mifepristone are similar to those in
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estrogen replacement therapies used during
menopause (Wang et al., 1994) and thus,
known to have biological effect.

Another strategy to utilize steroid hormone
regulation is the use of a non-mammalian
steroid hormone receptor, such as the
ecdysone receptor. The ecdysone receptor

is of insect origin, and is involved in
triggering metamorphosis in  Drosophila.
Ecdysone regulated gene expression

systems consist of a chimeric transactivator
protein composed of the VP16 activation
domain fused to the ecdysone receptor with
altered DNA-binding specificity and with the
ability to hetorodimerize with the retinoid X
receptor. The response element, which is
combined to the transgene, is synthetic and
not recognized by natural nuclear receptors.
The presence of an ecdysone analog elicits
heterodimerization of the transactivator
leading to transgene expression. Ecdysone
regulated gene expression has been
successfully applied in animal models (Johns
et al., 1999, Karns et al., 2001, Galimi et al.,
2005). As gene expression inducers,
ecdysteroids have certain advantages
compared to human steroids. Ecdysteroids
have short half-lives, which aids in precise
gene induction. Also, they are considered
relatively non-toxic and do not appear to
affect mammalian physiology (No et al,
1996). However, a disadvantage of the
system is that expression of insect proteins
in vivo may induce an immune response in
the host.

Rapamycin-regulated gene
expression

Rapamycin-regulated gene  expression
systems are based on the ability of the
immunosuppressant drug rapamycin to
dimerize two cellular proteins, immunophilin
FKBP12 (FK506-binding protein of 12 kDa)
and FRAP (FKBP rapamycin-associated
protein). The system utilizes two fusion
proteins. The first is a fusion of the FKBP12



domain and a synthetic DNA-binding domain
ZFHD1 (zinc-finger homeodomain fusion 1).
The second protein is a fusion of a domain of
FRAP, called FRB (FKBP rapamycin-
binding) and a transcriptional activation
domain of the p65 subunit from the NF-kp.
Rapamycin induced dimerization is able to
constitute a  functional transcriptional
activator which binds to the ZFHD1
recognition site located upstream of the
transgene cassette containing a minimal
promoter and thus, induce transcription
when rapamycin is present (Rivera et al.,
1996). Rapamycin-regulated gene
expression has been applied in animal
models for erythropoietin expression and
cancer therapy (Crittenden et al., 2003,
Rivera et al., 2005, Nguyen et al., 2007). An
advantage of the rapamycin-regulated gene
expression system is that it is free of
bacterial and viral protein components.
However, the immunosuppressive activity of
the inducer drug rapamycin limits its
potential use in clinical applications.

Physiologically regulated gene
expression

Instead of controlling transgene expression
by dosing of a drug, gene expression may be
regulated by an endogenous physiological
stimulus. A prototype of such a “vigilant
vector” is the hypoxia regulated vector,
which has potential in gene therapy of
myocardial and skeletal muscle ischemia. In
its current form, hypoxia-induced gene
regulation is achieved by an oxygen
sensitive transcription activator, which is
composed of the oxygen degradation
domain of hypoxia-inducible factor 1a fused
to the transcriptional activation domain p65
and to the DNA binding domain GAL4. This
engineered transcription factor is degraded
in normoxic conditions, but in hypoxia it is
able to bind to its GAL4 target sequence,
placed upstream of the transgene, and
activate transcription (Tang et al., 2005).
Other pathophysiological stimuli which might
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be utilized in therapeutic transgene
regulation are vascular shear stress and
oxidative stress. Oxidative stress has been
implicated to play a role in a number of
cardiovascular pathologies including
hypertension, atherosclerosis, myocardial
infarction, reperfusion injury and restenosis
(Levonen et al., in press) and thus, oxidative
stress induced gene regulation could be
exploited in a variety of potential gene
therapy applications. Therapeutic gene
expression regulation by a physiological
stimulus typical for the targeted pathology is
an alluring concept and presumably, will be
increasingly applied in future therapies.

Radiation induced gene expression

Genetic radiotherapy was introduced based
on the finding that a specific sequence of the

early growth factor response-1 gene
promoter, called the CArG element,
mediates ionizing radiation-induced gene

transcription (Hallahan et al., 1995). This
application to cancer therapy is based on a
vector where tumor necrosis factor-a (TNF-
a) expression is under the control of the
CArG elements and combines both the
spatial and temporal control of therapeutic
gene expression. By using an adenoviral
vector, radiation induced TNF-a expression
has resulted in high intratumoral TNF-a
concentration and produced antitumor
effects in animal models of human cancers
and has been tested in phase | clinical trials
for the treatment of advanced solid tumors
(reviewed by Mezhir et al., 2006).



GENE EXPRESSION KNOCK-
DOWN BY RNA INTERFERENCE
(RNAI)

Introduction to RNAI

The Nobel Prize awarded discovery in 1998,
showed that long double-stranded RNA
(dsRNA) could silence gene expression in
the nematode Caenorhabditis elegans (Fire
et al.,1998). This was followed by the finding
in 2001, that showed that short synthetic
RNAs could induce the same phenomenon
in mammalian cells (Elbashir et al., 2001).
These findings have led to an increasing
amount of information of the role of small
RNAs in gene regulation and the subsequent
use of RNAi based therapeutics in
preliminary clinical trials. To date, several
small regulatory RNAs have been
discovered. These include short interfering
RNAs (siRNAs), microRNAs (miRNAs) and
Piwi-interacting RNAs (piRNAs). In addition
to uncovering new mechanisms of gene
silencing and revolutionizing the
understanding of endogenous mechanisms
of gene regulation, the discovery of RNAI
has provided a powerful new tool for
biological research and a potential
therapeutic approach for the in vivo
inactivation of proteins linked to human
disease progression and pathology.

The mechanism of RNAI

In the RNA-guided gene-silencing pathway
discovered thus far, dsRNA is the trigger
molecule. Long dsRNA can derive from
various sources, such as simultaneous
sense and antisense transcription of specific
genomic loci or from viral replication
intermediates. However, the predominant
form of dsRNA in mammalian cells is derived
from endogenously expressed miRNAs.
miRNAs are derived from imperfectly paired
non-coding hairpin RNA structures and are
encoded within introns. They are transcribed
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by a RNA polymerase Il enzyme, processed
in the nucleus by the Drosha enzyme
complex and exported to the cytoplasm as
precursor molecules called pre-microRNAs.
In the cytoplasm, the pre-microRNAs are
further shortened and processed by an
RNAse Il endonuclease enzyme called
Dicer to produce imperfectly matched,
double-stranded miRNAs. Similarly, Dicer
processes long, perfectly matched dsRNAs
into shorter siRNAs. In the next step, a multi-
enzyme complex, including the Argonaute 2
—protein and the RNA-induced silencing
complex (RISC), binds to miRNA or siRNA
duplex and discards one strand, to form an
activated complex containing the guide or
antisense strand. If complementarity of the
strands is imperfect, as with a miRNA and
mRNA, the enzyme complex blocks
translation. When complementarity is perfect
or nearly perfect, such as with a siRNA and
mRNA, the complex degrades the RNA
strand in a guided fashion. In both cases,
translation of the target mRNA is inhibited,
either by translational repression or mRNA
cleavage. (Kim et al., 2007). The principle of
siRNA and miRNA function in the cytoplasm
of mammalian cells is presented in the
Figure 5.

The goal of RNAi-based research
applications and therapies is to activate
selective mRNA cleavage for efficient gene
silencing. It is possible to harness the
endogenous pathway in two ways: either by
using a gene transfer vector to express a
short hairpin RNA (shRNA) that resembles a
micro-RNA precursor, or by introducing
synthetic siRNAs into the cytoplasm that
readily mimic the Dicer cleavage product. To
date, only synthetic siRNAs have been
utilized in clinical RNAi therapeutics, while
vector mediated shRNA-based approaches
are widely used in basic research and pre-
clinical gene therapy applications.
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Figure 5. Mechanisms of siRNA and miRNA pathways in the cytoplasm of mammalian cells.
Cytoplasmic dsRNAs or pre-miRNAs are processed by an enzyme complex consisting of Dicer,
TAR RNA-binding protein (TRBP) and protein activator of protein kinase PKR (PACT) into
siRNAs or miRNAs which are loaded into Argonaute 2 (AGO2) and the RNA-induced silencing
complex (RISC). The siRNA guide strand recognizes the target sites to direct mRNA cleavage,
which is carried out by the catalytic domain of AGO2. In the case of the miRNA-pathway, the
mature miRNA recognizes target sites in the 3’ untranslated region (3° UTR) of mMRNAs to direct
translational inhibition and mRNA degradation in processing P-bodies that contain the
decapping enzymes DCP1 and DCP2. ORF: open reading frame. Figure modified from Kim et

al., 2007.

shRNA delivery by gene transfer
vector

Vector mediated shRNA delivery is based on
DNA-based cassettes expressing shRNAs
from RNA polymerase Il (Pol Ill) promoters
(Brummelkamp et al., 2002). These
promoters include the human ribonuclease P
RNA component H1 or the human or mouse
U6 small nuclear RNA promoter. They have
well defined transcriptional initiation and
precise termination sites, and have therefore
become a popular choice for vector based
gene silencing. The minimal shRNA
expression cassette includes a Pol |l
promoter, directly followed by at least 19
nucleotides of the sense target sequence, a
loop of 4-10 nucleotides, the complementary
antisense target sequence, and a stretch of
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four to six uridylates as a terminator (Figure
6). The duplex shRNAs are substrates for
nuclear export by the exportin-5 pathway,
and they are further processed by Dicer to
yield functional siRNA duplexes. In contrast,
the siRNAs enter the RISC directly. The
most critical factor in determining the
success of RNAi mediated gene silencing is
the choice of target sequence. Despite the
presence of different algorithms predicting
the performance of a particular sequence,
not all predicted sequences result in efficient
silencing. Thus, each siRNA or shRNA must
be tested independently. The expression
cassettes for shRNAs may be introduced
into cells within a plasmid vector or, for
improved efficiency and stable expression,
within a viral vector such as an adenoviral
vector (Shen et al., 2003), a retroviral vector
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Figure 6. A diagram of a polymerase Ill (Pol Ill) driven shRNA hairpin expression cassette
used in gene transfer vectors. Expression cassette consists of a Pol Il promoter, a hairpin
forming sequence and a termination sequence of thymidines (T) and the resulting shRNA

molecule after transcription.

(Barton et al.,, 2002), a lentiviral vector
(Rubinson et al., 2003) or an AAV-vector
(Han et al, 2004). The LV-mediated
approach has proven efficient in the delivery
of shRNAs into stem cells and in the
development of gene-knockdown in pre-
implantation mouse embryos (Rubinson et
al., 2003, Tiscornia et al., 2003).

RNAI applications

In addition to in vitro applications of RNAi it
has also been exploited in transgenesis
using lentiviral vectors (Singer et al., 2006).
In comparison to the standard method of
generating knock-down rodents, that is the
induction of targeted deletions in the mouse
genome via homologous recombination, LV-
mediated RNAIi has proven efficient in both
loss-of-function analysis and the
establishment of disease models. As a
therapeutic approach, RNAi has enormous
potential in a vast range of pathologies. Viral
diseases are potent targets of RNAI, and the
efficacy of this approach has been
demonstrated against the HIV infection by
successful targeting of most viral transcripts
in cells infected with HIV (reviewed by Rossi,
2006). Clinical trials for the treatment of
respiratory syncytial virus infection and of
HIV infection were scheduled to begin in
year 2007. Also, RNAi therapeutic
approaches directed to ocular disease and
age-related macular degeneration, are
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currently in progress. These trials are based
on the intraocular delivery of siRNAs
targeting VEGF and VEGF-receptor 1. For
cancer therapy, various molecular pathways
may be intervened by the employment of
RNAI, and antiproliferative or proapoptotic
effects have been reported in cell culture
studies or animal models (reviewed by Pai et
al., 2006). Suggested targets for cancer
therapy include gene products involved in
carcinogenesis, e.g. cell cycle regulators,
molecules of oncogenesis pathways and cell
senescence factors. Also, molecules crucial
for tumor-host interactions, factors involved
in tumor resistance to chemo- or
radiotherapy and molecules related to DNA
repair mechanisms represent potential
targets for RNAi mediated cancer therapy.
RNAi based gene therapy has also been
studied in animal models of
neurodegenerative diseases. For example,
the delivery of a shRNA against mutant
ataxin-1 by AAV vector into the brain of mice
representing the pathology of
spinocerebellar ataxia type 1, led to a
beneficial effect on neuronal cells (Xia et al.,
2004). Also, in a mouse model of ALS, LV-
mediated delivery of shRNA against the
mutant superoxide dismutase 1 led to long-
term, stable gene silencing along with
improved survival of motor neurons and a
delayed onset of the disease phenotype in
mice (Ralph et al.,, 2005, Raoul et al.,
2005a).



Although RNAi holds a clear potential for
therapeutic  applications, the current
technology has its limitations. Due to
similarities in nucleic acid sequences, RNAI
mediated therapy may mediate off-target
effects (Jackson et al., 2006). Also, non-
specific immune stimulation, such as
interfferon response and dendritic cell
activation through toll-like receptors, has
been observed (Judge et al, 2005).
However, it is likely that a greater
understanding of the selection criteria for
optimal siRNA or shRNA sequence will at
least partly overcome these issues. As in the
case of gene therapy, the potential success
of RNAI therapy is much dependent on the
development of improved delivery methods,
relating both to synthetic siRNA delivery and
transfer vector based shRNA delivery.
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AIMS OF THE STUDY

The aim of this study was to develop HIV-1
derived lentiviral gene transfer vectors for
gene therapy, mainly for applications of gene
therapy for cardiovascular diseases. Since
LVs are able to integrate into the host cell
genome, there is a requirement for regulated
therapeutic gene expression. Therefore,
approaches to regulate LV-mediated gene
expression were explored in this study.
During the recent years two novel
technologies, RNA interference  and
progenitor cell therapy, have emerged. We
aimed at combining these approaches to
lentiviral gene transfer technology.

More specifically, the following objectives
were addressed:

The design of an exogenously
regulated lentiviral vector system (I)

For regulated gene expression by
administration of an orally available drug,
can the novel transactivator tTA25M2 for the
Tet-on system be successfully applied to the
HIV-1 derived vector system?

The design of an oxidative stress
induced lentiviral vector (I1)

Can the antioxidant response element (ARE)
sequence be utilized for an oxidative stress
inducible gene transfer vector? Which of the
studied ARE-elements are the most potent
and what is the most effective combination?
Is the HIV-1 derived lentiviral vector suitable
for oxidative stress induced gene expression
applications?
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Long-term therapeutic gene
expression in cardiovascular gene
therapy applications (unpublished)

Is the HIV-1 based lentiviral vector effective
for in vivo gene transfer to the rabbit carotid
artery by intraluminal or periadventitial
approach, rabbit skeletal muscle by
intramuscular injection and to the porcine
myocardium by intramyocardial injection?

Cord blood derived progenitor cell
therapy in skeletal muscle ischemia

()

Do HIV-1 derived lentiviral vectors efficiently
transduce different subfractions of human
CB derived progenitor cells? Do CB

progenitor  cells possess therapeutic
potential in the mouse model of skeletal
muscle ischemia? Does lentiviral

transduction of the VEGF-D*™® growth
factor gene to progenitor cells enhance their
therapeutic potential?

The design of a lentiviral vector for
gene silencing by RNA-interference
(V)

May HIV-1 derived lentiviral vector be
utilized for long-term gene silencing by
RNAIi? Which RNA polymerase Ill promoter
is more powerful for efficient silencing; U6 or
H1?

Real-time quantitative PCR -
approach for the analysis of lacZ
marker gene expression (V)

Can a real-time quantitative PCR method be
developed for the accurate quantification of
lacZ marker gene transcription?



MATERIALS AND METHODS

SUMMARY OF THE MATERIALS
AND METHODS

The materials and methods used in this
study are summarized in the following tables
and described in detail in the original

publications (I, 1lI-V) and in the manuscript
(). The methods used for assessing
lentiviral vector efficacy in animal models
that are not intended for publishing are
described below.

Table 2. A summary of the prime methods used for this study.

Principal method

Description

Used in

DNA cloning

Vector construction

I, 1,1V

Production of lentiviral vectors

FUGENEX transfection
Calcium phosphate transfection

Ultracentifugation for virus concentration

I

I, 1, vV
1AL LIV,
up.

Analysis of lentiviral vector
quality

Titer determination by p24 ELISA
Titer determination by FACS

[T
1]

Cell biology methods

FACS

Fluorescence microscopy

Luminescent B-galactosidase assay
Luciferase assay

Chemical induction of oxidative stress by
DEM or 15dPGJ,

hCB cell subfraction isolation

Progenitor cell differentiation assays

i, v
i, v
|
Il

DNA-based analysis methods

PCR
Southern blot

11, 111, up.
\Y

RNA-based analysis methods

RT-PCR
Quantitative real-time PCR (qPCR)

I, 1, up.
IV, V

Immunological methods

Immunocytochemistry
Immunohistochemistry
ELISA

Western blot

MACS

I, v
111, 1V, up.
RN
I
i

Tissue sample processing

Fixation, embedding, sectioning, liquid
nitrogen freezing

1, 1, v

Other analysis methods on
tissue samples

X-gal staining for 3-galactosidase activity
Hematoxylin-eosin -staining
Morphometric analysis

Miles assay

I, up.
1
1]

up.

Abbreviations used: up.: unpublished results, FACS: fluorescence activated cell sorting, ELISA: enzyme
linked immunosorbent assay, DEM: diethyl maleate, 15 dPGJ,: 15-deoxy-12-14-prostaglandin J2, PCR:
polymerase chain reaction, MACS: magnet activated cell sorting

38



Table 3. Plasmids used in this study.

Plasmid Description Origin Used in
. . T. Friedmann, USCD, La I, 10, 11,
pCMV-G VSV-G envelope expression plasmid Jolla, CA, USA v
HIV-1 Gag-Pol encoding packaging I. Verma, Salk Institute, I, 10, 11,
PMDLg/PRRE plasmid La Jolla, CA, USA Y
pRSV-Rev HIV-1 Rev encoding packaging plasmid I. Verma :{/”‘ i,
Third generation HIV-1 vector plasmid,
PHIV-CS SIN-vector due to deletion in 3° LTR l. Verma !
s . . H. Bujard, ZMBH,
pUHrT61-1 hCMV-rtTA2°M2 encoding plasmid Heidelberg, Germany |
PHIV-rtTA25M2  HIV-CS based vector encoding iTA2SM2 - Koponen, University of
Kuopio, Finland
Plasmid with lacZ cDNA under the control
pTRE2-LacZ of tetracycline responsive element Clontech |
containing promoter
pHIV-TRE-LacZ pHIV-CS based vector with TRE-LacZ J. Koponen |
pGL3-Promoter Plasmid luciferase cDNA under the Promega I
minimal SV40 promoter
Luciferase reporter constructs with
pgtﬂggf& antioxidant response elements (AREs) of H. Hurttila, University of I
p ’ respective genes in combinations of of 1, Kuopio, Finland
pGL-mHO1 A
2 and 3 copies of each element
pLV-hNQO1, Lentiviral plasmid vectors of ARE reporter
pLV-hGCLM, constructs, vectors with 1 and 2 copies of  H. Hurttila Il
pLV-mHO1 each element
Third generation HIV-1 SIN-vector with
pLV-PGK-GFP cPPT and V\_/I_DRE elements. Human PGK L. Naldini, IRCC, Turin, m
promoter driving the expression of the Italy
GFP marker gene.
pLV-PGK-VEGF-  As pLV-PGK-GFP, but GFP replaced with  P. Makinen, University of I
DANAC VEGF-D“"*° cDNA Kuopio, Finland
pBluescriptll Cloning vector Stratagene v
pLV-PGK- As pLV-PGK-GFP, but GFP replaced with L Naldini v
ANGFR ANGFR marker gene cDNA )
pLV-U6shGFP,
pLV-H1shGFP, shGFP vectors with U6 or H1 promoter or P Makinen v
pLV-U6shGFP- both, based on pLV-PGK- ANGFR ’
H1shGFP
pLV-
U6shGAPDH,
pLV- shGAPDH vectors with U6 or H1
H1shGAPDH, promoter or both, based on pLV-PGK- P. Méakinen v
pLV- ANGFR
U6shGAPDH-
H1shGAPDH
Third generation HIV-1 SIN-vector with W. Osborne, University of
pRRL cPPT and WPRE elements. CMV Washington, Seattle, WA, up.
promoter for transgene expression. USA
pRRL- VEGF- pRRL-based vector encoding VEGF- s
pANAC pANAC P. Makinen up.
pRRL-LacZ pRRL based vector encoding lacZ P. Makinen up.
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Table 4. Cell lines and primary cell types used in this study.

Cell line or type Description Origin Used in
Human embryonic kidney American type culture
293T epithelial cell line expressing collection (ATCC), I, 10,1, 1V
SV40 large T antigen Manasass, VA, USA
CHO Chinese hamster ovary cell line ATCC |
Human endothelial hybridoma C.J. Edgell, UNC,
EAny926 cell line Chapel Hill. NC, USA !
HUVEC Human u_mblhcal vein Primary c_e_lls isolated I
endothelial cells from umbilical cord
. Human CD133" and CD34" ) )
hCB CD133" and e Primary cells isolated
CD34* MNCs MACS-p_urlfled mononuclear cell from cord blood I}
subfractions
hCB MSCs Human mesenchymal stem cells Primary cells isolated 11}
from cord blood
Mouse endothelial cell line with
c166-GFP stable expression of GFP ATCC \Y)
marker gene
Hela Human cervical . ATCC \Y
adenocarcinoma cell line
Mouse fibroblast cell line with )
) T. Friedmann, USCD, La
PA317 stable expression of LacZ Jolla, CA, USA V
marker gene
Table 5. Primary antibodies used in this study.
Antibody Description Application Distributor Used in
Mouse anti-human
CD34 and antibodies conjugated with MACS, FACS Miltenyi Biotec 1}
CD133 o
magnetic microbeads
CD34, CD133,
CD13, CD29, Mouse anti-human
CD44, CDA49e, antibodies for the detection
CD73, CD90, of cell surface antigens FACS BD Biosciences 11}
CD105, HLA- conjugated with
ABC, CD14, fluorochromes
CD45, HLA-DR
Rat anti-mouse antibody for
CD34 the detection of blood IHC HyCult Biotechnology 1
vessel endothelium
Rabbit anti-mouse antibody .
mMQ for the detection of IHC Ac_cure_)t_e Chemical and 11}
Scientific
macrophages
VEGF-D Mouse anti-human antibody  ELISA R&D Systems 11}
Mouse anti-human PE-
NGFR conjugated and non- FACS, IHC  BD Biosciences W,
conjugated antibody
targeted to NGFR
HO-1 Rabbit anti-human WB Stressgen I
polyclonal antibody
. - T. Kavanagh, University
GCLM R;bs;:;sgf'aﬁi?:é] WB of Washington, WA, I
poly Y Seattle, USA
B-actin Rabbit anti-human WB Cell Signaling I

polyclonal antibody

Abbreviations used: MACS: magnetic activated cell sorting, FACS: fluorescence activated cell sorting, PE:
phycoerythrin, NGFR: nerve growth factor receptor, IHC: immunohistochemistry, ELISA: enzyme-linked

immunosorbent assay, WB: western blotting, GCLM: glutamate-cysteine ligase modifier subunit
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Table 6. HIV-1 lentiviral vectors and their properties used in this study.

Vector Promoter Transgene AERILITE] Origin psed
elements in
Reverse J. Koponen,
HIV-rtTA2 SM2 cMV tetracycl_me Un|ve_rS|ty of
transactivator Kuopio,
rTA2 M2 Finland
Minimal
CMV with LacZ marker
HIV-TRE-LacZ seven gene encoding for J. Koponen |
copies of B-galactoside
TRE
ARE
elements (1
or 2 copies)
of . H. Hurttila,
tmgga\}_tm’ respective Luciferase or cPPT, University of
- -Luc, genes heme oxygenase WPRE Kuopio Il
LV-hGCLM-HO-1 combined 1 Finland
with
minimal
SV40
L.Naldini
Human cPPT, -
LV-PGK-GFP PGK GFP marker gene WPRE :tR;IC;C, Turin, I}
P. Makinen,
LV-PGK-VEGF- Human _[ANAC cPPT, University of
DANAC PGK VEGF-D WPRE Kuopio, i
Finland
LV-UB6shGFP, LV- Human U6 small hairpin RNA
H1shGFP, LV- or/and H1 targeting GFP; cPPT, P Makinen v
UBshGFP- and PGK shGFP, ANGFR WPRE ’
H1shGFP marker gene
small hairpin RNA
LV-U6shGAPDH, Human U6 targeting mouse
LV-H1shGAPDH, APDH; PPT, s
LV-UBShGAPDH. OZZ?GT ShGAPDH, WPRE P. Makinen v
H1shGAPDH a ANGFR marker
gene
RRL- VEGF-D™™C  cmv VEGF-DNC cPPT, P. Makinen up
WPRE ’ )
LacZ marker cPPT, s
RRL-LacZ CMV gene WPRE P. Makinen up.

Abbreviations used: CMV: cytomegalovirus, TRE: tetracycline responsive element, hNQO1: human
NAD(P)H quinone oxidoreductase, hGCLM: human glutamate-cysteine ligase modifier subunit, HO-1:
heme oxygenase 1, ARE: antioxidant response element, PGK: phosphoglycerate kinase, GFP: green
fluorescent protein, cPPT: central polypurine tract, WPRE: woodchuck hepatitis virus post-transcriptional
element, ANGFR: truncated form of nerve growth factor receptor, GAPDH: glyceraldehyde-3-phosphate
dehydrogenase, up.: unpublished results
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Table 7. PCR-methods used in this study.

Target gene or region Application Used in
Beta-galactosidase (lacZ) gPCR, RT-PCR, I, V, u.p.
gPCR
Tetracycline reverse transactivator tTA2 M2 gPCR, RT-PCR |
hNQO1, hGCLM AREs PCR cloning Il
hHO1 gPCR Il
Human chromosome 17 a-satellite region gPCR 1}
Human U6 and H1 promoter PCR cloning v
Green fluorescent protein (GFP) gPCR v
Rodent GAPDH gPCR \Y
Mouse Oas-1a, MCP-1, VEGF-A, PDGF-B gPCR [\
Eukaryotic ribosomal 18S RNA gPCR IV, V
Human VEGF-D"™" RT-PCR up.

Abbreviations used: gPCR: genomic PCR, RT-PCR: reverse-transcription PCR, gPCR: quantitative PCR,
hNQO1: human NAD(P)H quinone oxidoreductase, hGCLM: human glutamate-cysteine ligase modifier

subunit, ARE: antioxidant response element,

hHO1:

human heme oxygenase -1,

Oas-1a: 2',5-

oligoadenylate synthetase -1a, MCP-1: monocyte chemoattractant protein-1, VEGF-A: vascular endothelial

growth factor -A, PDGF- B: platelet derived growth factor — 3, up: unpublished results

Table 8. Animal models used in this study.

Animal Model Usedin n
Rat Intracerebral injection of lentiviral vector | 20
Mouse I(;i;rlwltsjllmb ischemia model, intramuscular injection of progenitor I 40
Intracerebral injection of lentiviral vector [\ 28
. Intraluminal administration of lentiviral vector into carotid
Rabbit up. 4
artery
Periadventitial administration of lentiviral vector into carotid
artery
Intramuscular injection of lentiviral vector up. 9
Pig Intramyocardial injection of lentiviral vector up. 3

Abbreviations used: n: number of animals, up: unpublished
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Methods of assessing HIV-1
lentiviral vector efficacy in animal
models of cardiovascular gene
therapy (unpublished)

General methodology

Pilot animal studies to assess the efficacy
of third generation lentiviral gene transfer
vector in previously established animal
models are described below. For these
studies RRL-LacZ, RRL-VEGF-D“:¢ or
LV-PGK-VEGF-D*"A° vector preparations
with viral titers of 7x10%1x10° TU/ml were
used.

Intraluminal and periadventitial
approach for lentiviral vector
administration into the rabbit
carotid artery

Intraluminal administration of the viral
vector in to the rabbit carotid artery was
performed as previously described
(Gruchala et al, 2004). New Zealand
White (NZW) rabbits (n=2) were used.
Briefly, a segment of exposed carotid
artery was isolated between atraumatic
vascular clamps, and two cannulas were
introduced into the vessel lumen through
proximal and distal arteriotomies. The
lumen of the vessel was flushed with
saline, and a volume of 100 pl of RRL-
LacZ vector was administered into the
vessel lumen and allowed to dwell for 20
min. After the incubation, blood flow was
restored. In a subgroup of rabbits (n=2),
the carotid artery was mechanically injured
4 days before gene transfer. Injury was
done by introducing an angioplasty balloon
catheter into the artery and passing it three
times to denude the endothelial layer and
disrupt the internal elastic lamina. Animals
were sacrificed 7 days after viral vector
administration and artery = samples
collected for lacZ gene expression
determination by X-gal, RT-PCR and PCR.

43

Periadventitial administration of the viral
vector was done with the extravascular
model taking advantage of a silastic collar
positioned around the rabbit carotid artery
(n=4) (Laitinen et al., 1997). Briefly, a
collar (2 cm in length, Ark Therapeutics,
Kuopio, Finland) was placed around the
exposed carotid artery. The vector solution
(300 pl) was administered into the collar
and tissue glue was used to seal the collar.
The animals were sacrificed 10 (n=2) or 28
(n=2) days after viral vector administration
and samples collected for lacZ gene
expression determination by X-gal, RT-
PCR and PCR.

Intramuscular injection of lentiviral
vector in rabbit skeletal muscle

Intramuscular injection of the RRL-LacZ LV
in non-ischemic NZW rabbit
semimembranosus thigh muscle (n=3) was
performed as previously described
(Rissanen et al., 2003a). A total volume of
1 ml of vector stock was divided into 10
separate injections. Seven days after the
injections, the animals were sacrificed and
muscle samples collected for lacZ gene
expression analysis by X-gal staining, PCR
and RT-PCR.

The angiogenic potency of RRL-VEGF-
D*NAC was studied by skeletal muscle
injections. Also, the potential gene transfer
efficiency enhancing effect of bupivacaine,
a myotoxic local anaesthetic, was studied
by bupivacaine pre-treatment of muscle (5
mg/ml, 10 injections 0.1 ml each) 3 days
before vector injections. Lentiviral vectors
RRL-LacZ (n=2, of which one rabbit was
pre-treated with bupivacaine) and RRL-
VEGF-D*"AC (n=4, of which 2 rabbits were
pre-treated  with  bupivacaine) were
injected. Contrast enhanced ultrasound
imaging was used to asses muscle
perfusion 7 and 21 days after vector
administration. Animals were sacrificed
after 21 days and samples collected for X-



gal staining, PCR and RT-PCR. To
analyse the angiogenic effect, samples
were subjected to immunohistochemical
staining of capillary vessels and vascular
permeability by the Miles assay as
previously described (Rissanen et al.,
2003a).

Intramyocardial injection of
lentiviral vector in porcine
myocardium

The efficacy of RRL-VEGF-D*“¢ in
porcine myocardium (n=3) was studied by
utiizing a NOGA electromechanical
mapping and injection system offering a
percutaneous route of intramyocardial
injection as previously described (Rutanen
et al, 2004). Briefly, electromechanical
mapping of the left ventricle was performed
with the NOGA system and injection
catheter. After mapping, ten myocardial
injections of the RRL-VEGF-D*M2¢ vector
(0.2 ml per injection, total volume 2 ml)
were performed to the anterolateral wall.
Six days after the injections, myocardial
perfusion was studied with contrast
echocardiography. The animals were
sacrificed 14 days  after  vector
administration and samples collected for a
Miles permeability assay and histological
analyses.
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RESULTS AND DISCUSSION

Doxycycline regulated lentiviral
vector system (l)

A lentiviral vector system utilizing the revised
tetracycline transactivator, rtTA23M2,
showed a tight regulation of lacZ gene
expression with negligible basal level in the
non-induced stage. The gene expression
level could be adjusted by the dosing of
doxycycline, and expression could be
repeatedly switched on and off. These
results were obtained by in vitro
cotransduction of two LVs, one encoding the
nTA2°M2 and the other the lacZ marker
gene under the control of the tetracycline
responsive promoter. By cotransducing CHO

and EAhy926 cell lines at a low viral
multiplicity of infecton (MOl 1 for
HIV/TRE/LacZ and MOl 2 for HIV/

rtTAZSMZ), a 132 and 17 —fold induction in 3-
galactosidase activity, respectively, was
detected. During long-term culture of co-
transduced CHO cells, the lacZ gene could
be repeatedly switched on and off by the
addition and withdrawal of doxycycline.
Importantly, the induction level was dose-
dependent and full induction was achieved at
a doxycycline concentration of 500 ng/ml,
which  can be obtained by oral
administration. LVs efficiently transduce
several cell types of brain. Also, doxycycline
is known to penetrate the blood-brain barrier.
Therefore, as proof of the principle of the in
vivo functionality of the vector system,
vectors were injected into the rat brain.
Following cotransduction of viral vectors into
the rat striatum (n=20), RT-PCR revealed
that doxycycline induced lacZ transcription in
5 out of 7 rats and not in the 3 rats where
doxycycline was not administred. Ten rats
were used for X-gal staining to study (-
galactosidase activity in frozen brain
sections. In all rats which received
doxycycline (n=5) X-gal positive cells were
detected. No positive cells were seen in
samples from rats without doxycycline
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treatment (n=5), further confirming the
tightness of gene induction with our vector
system. DNA PCR confirmed the presence
of both vectors in the brain of every animal.
However, this does not confirm that
cotransduction of both vectors targeted the
same cells.

The use of rtTA2°M2 for tight doxycycline
dependent regulation has also been
reported by others, for example, in the
generation of conditionally transgenic
animals (Michalon et al., 2005, Katsantoni et
al., 2007) and in in vivo gene ftransfer
approaches with AAV-vectors in mouse and
nonhuman primate muscle and retina
(Chenuaud et al., 2004, Stieger et al., 2006).
However, dose-response experiments have
demonstrated that tightness of control may
be partially lost at higher vector doses
(Lamartina et al., 2002). These findings
stress the importance of specifying an
optimal vector dose for each application.

There are specific advantages achieved by
introducing the elements for doxycycline
regulated gene expression into two separate
vectors. The first, is the ability to adjust the
proportion of each transcriptional unit by
simply changing the ratio and amount of
vector particles applied for optimal gene
regulation. Secondly, in the two vector
system the transcriptional units are not in
close proximity and therefore, the regulated
promoter is not disturbed by promoter
interfference from an adjacent promoter
constitutively expressing the transactivator,
an apparent disadvantage of the single
vector system (Bornkamm et al., 2005). The
two vector -system enables the generation of
transgenic animals with induced transgene
expression accomplished by first generating
separate mouse lines that contain the
transactivator and target constructs, and
then producing double transgenic animals by
breeding. Since lentiviral vectors are proven
to be exceptionally powerful tools in
transgenesis, our vector system shows the



potential to be exploited in the generation of
conditionally transgenic animals.

Despite the advantages of a two-vector
system, there are numerous applications
where  repeatable transfer of the
transcriptional units required for regulated
gene expression require the use of a single
vector. These include all in vivo gene
transfer procedures. Vogel and coworkers
have described a HIV-1 based single-vector
system, in which the transcriptional unit for
rtTA2°M2 has been inserted in the antisense
orientation and separated from the
regulatable unit by the chicken B-globin
insulator (Vogel et al., 2004). The authors
report transgene expression regulation in the
rat striatum over two orders of magnitude by
the addition or withdrawal of doxycycline.
The latest and most advanced versions of
the Tet-on system where all components are
on a single vector combine the rtTA25M2
with the use of a transrepressing factor,
doxycycline-dependent trans-silencer called
tTS. tTS is a fusion protein consisting of the
KRAB (Kruppel-Associated Box)
transrepressing domain of the human Kid-1
protein fused to the wild-type TetR (Salucci
et al., 2002, Lamartina et al, 2003,
Epanchintsev et al., 2006). The KRAB-
domain can induce transcriptional silencing
to within 3 kb of its binding site. In the
absence of doxycycline, tTS binds to the
tetO target sequence and inhibits basal
transcription. As doxycycline is added, the
tTS dissociates allowing rtTA2°M2 to bind
and trigger activation. This design is
preferred in single-vector applications since
the transrepressing factor, that ensures the
inactivity of the regulated promoter in the off-
state, abolishes any potential promoter
interference. It may also reduce interference
from genomic elements which come into
proximity after integration when integrating
vectors are used to deliver the regulatory
system. However, a disadvantage of using
the tTS means the inclusion of an additional
transcriptional unit, which complicates the
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vector system and increases the size of
genomic material to be inserted into the
transfer vectors.

Overall, particularly from a clinical point of
view, the doxycycline system has a clear
pharmacological advantage over other gene
regulation systems like mifepristone or
rapamycin. Namely, that doxycycline has a
half-life of 14-22 h, has excellent tissue
penetration due to its lipophilic nature and is
well tolerated. The most serious side effect is
a dose-dependent photosensitivity that may
occur in 1-3% of patients after prolonged
administration (Klein et al., 2001). The latest
versions of the Tet-on system can be fully
induced in rodents and monkeys by
doxycycline at doses comparable to those
commonly used for antibiotic therapy
(Lamartina et al., 2003). The major concern
with respect to the use of an antibiotic-
induced regulatory system is the possibility
of raising resistance to the antibiotic itself.
Although tetracycline derivatives are less
used than in the past, they may still
represent the treatment of choice for certain
infectious diseases such as Lyme disease
(Klein et al., 2001). Thus, the generation of
Tet-system compatible, non-antibiotic
doxycycline analogs would be desirable.

Oxidative stress inducible lentiviral
vector (Il)

We studied if the antioxidant response
element (ARE), a cis-acting sequence found
in the promoters of the genes induced by
oxidative stress, can be utilized for gene
induction in a transfer vector. The ARE
sequences of three genes, human NADPH
quinine oxidoreductase 1 (NQO1), human
glutamate-cysteine ligase modifier subunit
(GCLM) and mouse heme oxygenase 1 (HO-
1), were subcloned into a reporter plasmid
vector in combination with one, two or three
copies of the ARE sequence, upstream of
the minimal promoter. After plasmid
transfections, oxidative stress was mimicked



by the addition of a chemical, either diethyl
maleate (DEM) or 15-deoxy12'14-
prostaglandin J> (15-dPGJz), and luciferase
activity of the cell cultures was analysed. In
all constructs, luciferase activity was induced
upon chemical induction of oxidative stress.
However, there was some basal expression
of luciferase without induction and the
expression increased in relation to the
number of ARE elements in the constructs.
The basal expression level could be due to
reactive oxygen species and oxidative
products of macromolecules produced by
normal cell respiration and thus cannot be
avoided. Also, it should be noted that the
oxygen levels in cell culture conditions (21%)
are much higher than the naturally occurring
levels in most tissues (Roy et al., 2003), and
it is likely that basal ARE-activity would be
lower in an in vivo situation. In our study, for
more efficient and long-lasting expression,
the reporter constructs with one and two
copies of AREs from hNQO1 or hGCLM
genes were cloned into LVs and their
efficacy for oxidative stress induced gene
expression studied in human umbilical vein
endothelial cells (HUVECSs). Endothelial cells
represent a potential target for antioxidant
gene therapies (Levonen et al., in press) and
were therefore selected for these studies.
Upon chemical induction of oxidative stress,
a clear induction of luciferase activity was
seen with all lentiviral constructs. When
HUVECs were transduced at the MOI of 5,
the highest induction in luciferase activity
(nine fold activity compared to the uninduced
state) was seen with a construct carrying two
copies of hGCLM ARE. Thus, this vector
was used for the following studies. When the
luciferase reporter gene was replaced with
the potential therapeutic gene, heme
oxygenase 1 (HO-1), a 10-fold induction of
gene expression was seen. This is a
significant result, as the most advanced
hypoxia-induced vector system yield seven
fold induction in gene expression upon
hypoxia in cell culture (Tang et al., 2005). In
addition, we used TNF-a to mimic vascular
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inflammation in HUVECs and studied the
effect of ARE-induced HO-1 therapeutic
gene expression on the expression of the
proinflammatory factor, VCAM-1. Our results
showed that ARE induced HO-1 gene
expression was able to decrease the
expression of VCAM-1 and thus, the system
holds potential for the therapy of oxidative
stress.

Based on our results the genetic ARE
elements, induced cytoprotective genes by
oxidative stress, and can be exploited in
gene transfer vectors. Since oxidative stress
can not be completely mimicked in cell
culture conditions, the true performance of
our ARE vectors need to be defined in
animal models. Considering the lentiviral
vector tropism for brain tissue, an
experimental model of stroke might be
optimal for these studies. Also, for the
promotion of cell survival in oxidative
conditions in progenitor cell therapy
approaches, our lentiviral ARE constructs
may be readily applicable. As oxidative
stress plays a role in atherosclerosis,
restenosis and ischemia-reperfusion injury of
myocardium and skeletal muscle, the ARE
induced expression of therapeutic genes
using AAV vector, which has proved to be
more effective at the transduction of these
tissues, is an appealing concept.

The performance of lentiviral HIV-1
derived vector in cardiovascular
gene therapy applications
(unpublished data)

Most of the previous gene
applications for cardiovascular diseases
have used adenoviruses. Despite their
efficiency, only short-term transgene
expression is achieved; maximal protein
expression is achieved after four days and
this declines to below detection level after
two weeks in most applications. Several
cardiovascular applications would benefit
from long-term therapeutic gene expression.

therapy



Therefore, we tested the efficiency of the
HIV-1  derived, third generation self-
inactivating LV to transduce skeletal muscle,
blood vessel and myocardium and mediate a
therapeutic effect. The results of these pilot
studies are summarized in Table 9.

The intraluminal approach may be performed
simultaneously with angioplasty and is a
potential choice for the administration of
vectors for gene therapy of restenosis. We
studied the efficacy of LV in the blood vessel
by intraluminal administration in a rabbit
model (Gruchala et al., 2004). In a subgroup
of rabbits, mechanical injury by balloon
catheter was performed simultaneously to
disrupt the endothelial cell layer and the
internal elastic lamina of the blood vessel in
order to model balloon angioplasty
revascularization procedure. As a result, no
LacZ gene expression was detected by X-gal
staining or RT-PCR in arterial samples of
rabbits sacrificed seven days after vector
administration into the Ilumen of intact
arteries, whereas in the samples of denuded
arteries LacZ gene expression could be
detected with RT-PCR. However, f-
galactosidase positive cells were not
detectable by X-gal staining, suggesting a
low level of transgene expression only
detectable with the sensitive RT-PCR
method. LacZ expression present only in
arteries  preconditioned  with  balloon
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denudation may be due to the abolishment
of the endothelial cell layer or, induced
proliferation of endothelial and smooth
muscle cells due to injury, thus facilitating
the viral transduction. In intraluminal gene
transfer of the rabbit carotid artery, the use
of AAV and adenoviral vectors have resulted
in effective transduction (Gruchala et al.,
2004). AAV vectors showed efficient
transduction of smooth muscle cells lasting
for at least 100 days and therefore, can be
regarded as more potent arterial gene
transfer vehicles than LVs for prolonged
therapeutic gene expression.

To study whether adventitial exposure of LV
would result in a significant gene transfer
efficiency into the blood vessel, we assessed
a model of periadventitial administration of
vector making use of a silastic collar placed
around the rabbit carotid artery (Laitinen et
al., 1997). Ten days after LV administration,
transgene expression could be detected with
RT-PCR, while X-gal staining did not show
the presence of positive cells suggesting a
very low efficacy of gene transfer. 28 days
after LV administration, LacZ expression was
no longer detectable by RT-PCR. Based on
these results, we concluded LV is not an
ideal vector for periadventitial arterial gene
transfer requiring long-term  transgene
expression.
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The efficacy of LV gene transfer was studied
in rabbit skeletal muscle to assess its
potential to be utilized in long-term gene
therapy applications in a rabbit model of hind
limb  ischemia. Seven days  after
intramuscular  injections, LacZ gene
expression and LV vector presence could be
detected by RT-PCR or genomic PCR.
However, in tissue sections, transgene
expression was not detectable by X-gal
staining. Three weeks after LV injections,
transgene expression or vector presence
could not be detected with RT-PCR or
genomic PCR. Also, in animals injected with
LV-VEGF-D*™€, the effects typical for this

growth factor could not be detected,
including  enhanced blood  perfusion
assessed with  ultrasound, increased

extravasated plasma proteins from newly
formed vessels within the tissue measured
by Miles assay or, promoted capillary vessel
formation detected by immunohistochemistry
(Rissanen et al., 2003b). In a subgroup of
animals, we studied if LV transfer efficiency

could be increased by muscle
preconditioning with injections of local
anaesthetic, bupivacaine, which is

considered myotoxic and therefore might
enhance proliferative activity of muscle cells
(Wells, 1993). As studied 21 days after LV
injections, bupivacaine pretreatment of
muscle was not seen to promote LV
transduction.

In our hands, LV mediated gene transfer in
rabbit models of cardiovascular gene therapy
did not show potency. Supporting our
finding, there are reports suggesting that
rabbit cells are to some extent resistant to
transduction by HIV-1 derived, VSV-G
pseudotyped LVs in vitro (Hofmann et al.,
1999, Ikeda et al.,, 2002). According to the
results of Hofmann et al, human, hamster
and pig cell lines are most prone to HIV-1 LV
transduction, while mouse, rat and rabbit
cells lines are less efficiently transduced,
listed in order of reducing transduction
efficiency. This is in line with our own
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observations that human primary cells and
cell lines are very efficiently transduced in
vitro even with low multiplicities of infection
(MQI) of the viral vector, while mouse, rat
and rabbit cell lines require higher MOls for
efficient transduction (Koponen JK and
Méakinen P, unpublished data). These
observations may be explained by species-
specific host cellular factors that limit the
post-entry events of the viral vector, such as
the nuclear translocation (Hofmann et al,,
1999). Based on the in vitro results showing
HIV-1 being more prone to the transduction
of human cell lines, it is impossible to predict
if LVs could mediate efficient gene transfer in
human tissues.

The myocardium is an important target
tissue for cardiovascular gene therapy
including many applications where sustained
expression of the therapeutic gene would be
essential. We studied the efficacy of LV in
pig myocardium by the intramyocardial
approach. We assessed a gene transfer
vector injection technique readily applicable
for clinical use, the NOGA-catheter -assisted
injections with electromechanical mapping of
the myocardium (Rutanen et al., 2004). After
injections of LV- VEGF-D*™€ we searched
for the effects of the growth factor previously
seen in both skeletal muscle (Rissanen et
al.,, 2003b) and myocardium (Rutanen et al.,
2004). We were unable to see VEGF-D*NA®
mediated effect by ultrasound measurement
of blood perfusion (6 days after injections),
or by Miles assay for the detection of
extravasated proteins from newly formed
capillary vessel or induced capillary
angiogenesis in immunohistochemical
stainings (14 days after the injections).
Therefore, we concluded LV gene transfer
insufficient to trigger therapeutic effect in pig
myocardium.

As the pilot animal studies with LVs,
performed in our previously established
animal models of cardiovascular gene
therapy, and described in this thesis,



resulted in no positive LV transduced cells
(as detected by histological methods) and
was inefficient in terms of the effect of
transgene expression, we concluded that the
gene transfer efficiency was below what is
required for a therapeutic effect. In fact, at
least in their current form, LVs seem
comparatively poor at delivering genes into
the liver and muscle. Despite some
encouraging results originally obtained with
HIV-1 LVs (Kafri et al, 1997), further
experiments have generally revealed low
efficacies, at least in adult animals. In a
previous study from our research group, a
modest LV gene transfer efficiency of less
than 0.01% of the liver cells has been
reported in a rabbit model of FH (Kankkonen
et al., 2004). However, in this model even a
low level of LDL receptor gene transfer was
sufficient to produce a long-term serum
cholesterol reducing effect probably due to
the fact that even a low number of cells with
a functional LDL receptor are adequate for
such an effect. In terms of gene transfer
efficiency, it appears that adenoviral and
AAV vectors are better suited for therapies
targeted to the liver or muscle, which seems
to apply to blood vessel as well (Gruchala et
al., 2004). Nevertheless, LVs still show
excellent performance in gene delivery into
the central nervous system, retinal cells and
into the cells of Iympho-hematopoietic
system. In relation to cardiovascular gene
therapy, the ability of LVs to transduce HSCs
may hold therapeutic potential. For example,
ex vivo genetic manipulation of progenitor
cells of the monocyte lineage could be
utilized to modify the effect of macrophages
in the development of atherosclerotic lesions
or restenosis or, to take advantage of the
recruitment of macrophages into areas of
pathology where they could express the
therapeutic protein. Also, genetic
modification of stem and progenitor cells for
combined gene and cell therapy for
cardiovascular diseases like myocardial
ischemia is a fascinating prospect for which
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HIV-1 LV would be a highly potent vector of
choice.

Cord blood-derived progenitor cells
in a mouse model for skeletal
muscle ischemia (l11)

Progenitor cell therapy is a novel approach
which may be utilized for the treatment of
ischemia in the myocardium and skeletal
muscle. Combining gene therapy with cell
therapy applications allows for the
modification of progenitor cell properties,
such as cytokine release, surface receptor
expression and factors potentially promoting
cell survival in conditions like ischemia or
oxidative stress. LVs have enabled the
genetic modification of HSCs and embryonic
stem cells that were nonpermissive to earlier
vectors, especially in the quiescent state.
Cytokines, for example, stem cell factor and
interleukins, may be used to stimulate HSCs
to proliferate and facilitate transduction.
However, as it is important to preclude
unwanted differentiation of the cells by
cytokine induction, an efficient transduction
method for unstimulated cells is essential. It
has been reported that cytokine pre-
treatment of human CD34" cells reduces
their long-term engraftment ability in mice
indicating a defect in cell survival or homing
to bone marrow (Ahmed et al., 2004, Wulf-
Goldenberg et al.,, 2007). In our study, we
assessed whether cord blood derived HSC
subfractions of CD34" and CD133" cells can
be efficiently transduced by LV without the
need for cytokine induced proliferation. At a
LV MOI of 100, we achieved comparable
transduction efficiencies with and without
cytokine induction of both CD34" (57.0% and
52.5%, respectively) and CD133" (53.0%
and 52.5%) cell subfractions as judged from
FACS detecting GFP marker gene
fluorescence. Also, we used cell cycle
analysis to confirm that cytokines induced
cell cycling in HSCs (data not shown). In the
majority of published reports utilizing LV
gene transfer into HSCs, cytokine stimulation



has been used. However, to exclude
cytokine induced effects, optimal
transduction conditions requiring minimal
modifications of the HSCs should be
determined for each application. By a colony
forming assay, we were able to show that
the ability of CD34" and CD133" cells to
differentiate into cells of the hematopoietic
lineage was not altered by LV transduction,
suggesting that their progenitor capacity was
not affected. Also, we were able to efficiently
transduce MSCs and as detected by
adipogenic and osteogenic differentiation
assays, the transduced MSCs did retain their
differentiation ability.

Cord blood (CB) is an excellent source of
progenitor cells in terms of a high
percentage of stem cells and the presence of
immature HSCs derived from a young
individual. We assessed the therapeutic
potential of two sub-populations of progenitor
cells, CD133" and MSCs, in a nude mouse
model of hind limb ischemia. Cells were
transduced with a LV vector encoding the
GFP marker gene or the VEGF-D*NAC growth
factor gene. Due to the more primitive nature
of CD133" compared to CD34" cells
(Hemmoranta et al., 2006), the CD133"
subpopulation was selected to be tested in
the animal model. Also, since CD133"
antigen expression has been connected to
endothelial progenitor cells (Gehling et al.,
2000), and CB derived CD133" cells have
been reported to be capable of differentiation
into endothelial and cardiomyocyte-like cells
in vitro (Bonanno et al., 2007), we wanted to
see if these cells could incorporate into
newly forming vessels or regenerating
muscle. MSCs have been shown to be
capable of multilineage differentiation, for
example into skeletal muscle cells (Pittenger
et al, 1999) and therefore, might have
therapeutical potential in the regeneration
process of ischemic muscle.

Because of the
published earlier,

contradictory results
mostly concerning cell
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therapy of myocardial ischemia, we also
analysed whether progenitor cell therapy
might mediate a therapeutic effect without
cells directly participating in the regeneration
process. As a model of progenitor cell
mediated gene therapy, we also assessed
whether CB cell subfractions expressing
VEGF-D*MC could mediate an angiogenic
effect, previously shown to be induced by
this particular growth factor (Rissanen et al.,
2003b, Rutanen et al., 2004, Kholova et al.,
2007). In our model, we injected progenitor
cell suspensions (total cell number ~1><105)
intramuscularly into the left hindlimb muscles
of nude mice, for which unilateral hind limb
ischemia was induced by femoral artery
ligation immediately before injections.
Animals were sacrificed 3, 7 or 21 days after
the operation. We were unable to show the
presence of progenitor cells by
immunohistochemistry at any of the time
points, as studied by GFP- or human cell
mitochondrial or cytoskeleton -specific
antibodies in immunohistochemistry (data
not shown). By human chromosome 17 a-
satellite region specific PCR, we were able
to show the presence of human genetic
material in the injected muscles three days
after injection. However, seven days post-
injection human DNA was no longer present.
Also, PCR-based detection does not indicate
if the cells are alive. Our result is in line with
the previous observation by Tateno et al.,
who have shown that mouse bone marrow -
derived mononuclear cells disappeared from
mouse ischemic muscle three days after
implantation (Tateno et al.,, 2006). It is
unknown, whether these observations are
due to the general inability of progenitor cells
to engraft or are attributed to ischemic
conditions of the muscle, presumably limiting
cell survival. By counting capillary vessels,
we did not observe enhanced capillary
angiogenesis in mice groups injected with
CD133+ cells or MSCs transduced with LV-
VEGF-D*"C or LV-GFP, when compared to
the control group. Since the typical effect of
VEGF-D**° was not seen, we concluded



that the injected cells did not secrete enough
growth factor to induce therapeutic
angiogenesis. This might be due to a too
short survival time of the cells in the
ischemic muscle. The direct incorporation of
bone marrow derived progenitor cells into
new or remodelling blood vessels in the
ischemic myocardium and skeletal muscle
has been previously reported. The
magnitude of cellular incorporation highly
varies between studies. Although a high
occurrence  of  capillaries  containing
transplanted cells has been depicted in
some studies (Asahara et al., 1997, Kocher
et al.,, 2001, Kawamoto et al., 2003), only a
single transplanted cell in the circumference
of the capillary vessel is required for the
vessel to be counted as positive. This may
limit the interpretation of the true effect of cell
incorporation into structures of a vascular
bead. Furthermore, some studies have
reported only small numbers of positive
vessels, despite impressive improvements in
blood perfusion (Tomita et al., 1999, Wang
et al., 2001, Iba et al., 2002), suggesting the
existence of alternative mechanisms to the
direct cellular incorporation mediating the
effects.

In our study, we observed increased
regeneration of ischemic muscle by
progenitor cell injections (regenerating

muscle area 86.7% - 93.8% in progenitor cell
injected groups versus 73.2% in the control
group) as measured from the histology
sections 21 days after the operation. Our
results suggest that both CB CD133" and
MSC —progenitor cells increase the
regeneration capacity of ischemic muscle by
a mechanism unrelated to progenitor cell
engraftment. As an alternative mechanism
for progenitor cell -mediated therapeutic
response in ischemic skeletal muscle, a
paracrine effect has been suggested
(Kinnaird et al., 2004, Ziegelhoeffer et al.,
2004, Tateno et al., 2006). This might be
mediated either by the factors released by
the progenitor cells themselves or by tissue
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resident cells stimulated by the progenitor
cells. Immunohistochemical staining for
macrophages showed a higher count of
infiltrated macrophages in the progenitor cell
injected muscles. In fact, impaired
macrophage recruitment has been reported
to cause delayed recovery of hind limb
function, increased muscle atrophy and
fibrosis in a hind limb ischemia model in
CD4-knock-out mice (Stabile et al., 2003).
Therefore, the regenerative effect of
progenitor cell injection might be explained
by their attraction of monocytes resulting in a
higher number of infilirating macrophages,
which might further stimulate regeneration
for example by the release of cytokines.
However, as we studied the effects of human
CB cells in mouse skeletal muscle ischemia,
an immune deficient nude mouse model was
required, limiting the interpretation of issues
concerning inflammatory mechanisms.

Overall, the mechanisms of progenitor cell
mediated response in ischemic myocardium
and skeletal muscle require further
evaluation. Therefore, new experimental
studies are warranted. Clinical trials have
been focused mostly on myocardial ischemia
(Wollert et al., 2005) rather than skeletal
muscle ischemia (Tateishi-Yuyama et al,
2002a, Ishida et al., 2005). Nevertheless,
skeletal muscle ischemia might be a more
potent candidate for progenitor cell
therapies, since there is no need for
electrical coupling of engrafting cells and
because of the presumed easier
administration of the cell preparation in the
skeletal muscle compared to the
myocardium. Also, the most potent subtypes
and sources of progenitor cells need to be
identified. CB is enriched with HSCs as
compared to other sources like bone marrow
or peripheral blood. A world-wide CB
banking system provides rapid supply to
HLA-typed CB tested for infectious agents as
the material can be shipped easily anywhere
(Brunstein et al., 2006). This makes cord
blood an optimal source for progenitor cell



preparations for clinical use. Thus, the
potential of CB derived cells in different
therapies is worth studying.

A lentiviral vector for gene silencing
by RNAI (1V)

A wide range of experimental and
therapeutic applications would benefit from
sustained RNAi-mediated gene silencing,
which is not achieved by introducing
synthetic siRNA oligonucleotides. In these
situations shRNA-mediated silencing
delivered into a target cell within a transfer
vector is applicable. However, specific
constructs are required for each application.
Pol Il promoters have well-defined
transcriptional start sites and they produce
RNA transcripts lacking a polyadenylation
tail and are therefore ideally suited for the
production of shRNAs. We compared the
efficiency of two widely used Pol Il
promoters, the human U6 small nuclear
promoter and the human H1 promoter for
their effects on gene silencing after LV
mediated transfer of a shRNA against GFP.
We chose the marker gene GFP as a target
gene because it is easily detected by FACS
and fluorescence microscopy. Also, cell lines
with stable GFP expression, such as the
mouse endothelial cell line c166-GFP, and
GFP transgenic mice are commercially
available. Our results showed that by LV
mediated transduction, the U6 promoter is
more powerful than the H1 promoter for GFP
marker gene expression silencing in vitro in
a GFP expressing endothelial cell line as
judged at the protein level by FACS (94%
and 86% silencing for U6 and H1,
respectively) and at the RNA level by
quantitative RT-PCR (88% and 71%). Similar
results were obtained in vivo, in mouse brain
as revealed by immunohistochemistry. Also,
the U6 promoter was found to be more
effective than the H1 promoter in the
silencing of the GAPDH housekeeping gene
as studied by RT-gPCR (35% and 22%).
Compared to the silencing effect of the U6

54

promoter driven vectors, we did not find
enhanced silencing of GFP or GAPDH by a
vector with two shRNA cassettes driven by
both promoters. This might be due to
maximal loading of the small RNA-guided
gene-silencing pathway in the transduced
cells achieved by strong transcription from
the U6 promoter. The fact that we reached
far more efficient maximal silencing of GFP
than GAPDH gene transcription (88% versus
35%) might be due to tight regulation and
higher expression levels of the GAPDH
housekeeping gene and more likely, a less
efficient RNAI target sequence. By assessing
viral vector copy number in the genome of
transduced cells by southern blot we were
able to confirm the more powerful effect of
the U6 LVs compared to the H1 LVs.
Namely, in comparison to a single copy of a
U6 LV, a higher copy number of H1 LV (5-10
copies) was required for an equal 80%
silencing effect. The powerful knock-down
effect obtained with a single integrated copy
of U6 LV suggests that our vector design has
the potential for in vivo applications and
RNAi applications in cells which are not
easily transduced in vitro, including stem and
progenitor cells and thus, has the
applicability in the generation of transgenic
mice.

We also studied long-term gene silencing
mediated by LVs in vitro and in vivo. Since
the silencing of the GFP marker gene does
not lead to a loss of function -effect, it is a
potential target for studying long-term
silencing. Our in vitro results showed that
with all constructs, silencing of GFP lasted
up to 28 weeks and remained at constant
level, as assessed by FACS. Further,
stereotactic injection of LV-U6shGFP or LV-
H1shGFP vectors into the brain of GFP
transgenic mice showed GFP gene silencing
for up to 9 months as studied by
fluorescence microscopy of frozen brain
sections. The merged images of GFP
fluorescence and  immunohistochemical
stainings with a fluorescent signal to detect



marker gene ANGFR expression showed the
co-localization of diminished GFP
fluorescence and the expression of ANGFR,
further confirming vector-mediated GFP
silencing. This suggests the usefulness of
our vector in the field of brain research, for
example, in developing either models or
therapeutic tools for neurodegenerative
diseases.

Originally, siRNA induced gene silencing
was introduced as a mechanism which can
be utilized without inducing a type 1
interferon response when dsRNA sequences
shorter than 30 bp are used (Elbashir et al.,
2001). However, it has been shown that
dsRNA molecules mediating RNAi may
trigger an interferon response by alternative
pathways, like via Toll-like receptors (Seth et
al., 2006). Therefore, the possibility of
evoking an interferon response needs to be
evaluated for each application. In our study,
we used RT-gPCR to study the potential
induction of the mouse Oas-1a gene, whose
expression is upregulated by an interferon
response. We found that LV-mediated RNAI
did not induce Oas-1a gene expression and
thus did not evoke an interferon response.
RNAI induced off-target effects also need to
be assessed for each application. For this,
we analyzed the expression levels of MCP-1,
VEGF-A and PDGFR-f3 genes, which are all
expressed in endothelial cells. We found
them unaffected by shRNA expressing LV
transductions. Despite the limited gene
expression array analysis, the unchanged
expression of these representative genes
suggests a lack of widespread off-target
effects by our vector design.

LV-mediated shRNA delivery has been
successfully applied by others in various
applications in vitro (Li et al., 2005a), in vivo
(Raoul et al., 2005b, Pfeifer et al., 2006) and
ex vivo (Anderson et al., 2007, Ohmori et al.,
2007) and also, in the generation of knock-
out mice (Tiscornia et al., 2003). Combining
the efficient LV-mediated generation of
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transgenic mice with the shRNA approach
results in a feasible tool. In fact, we have
also used our U6 driven shRNA LVs in the
generation of knock-down mice, and the
analysis of the generated mouse lines is
currently in progress (Hamalainen et al,
unpublished data).

To date, the advantages of utilizing Pol Il
promoters in inducing RNAi have been
clearly demonstrated. However, one major
limitation of Pol Ill promoters is their lack of
tissue specificity. Therefore, Pol Il promoters
have also been utilized in RNAi vectors. The
Pol Il based systems mimic miRNA-based
silencing (Zeng et al., 2005), meaning that
the transcript needs additional processing by
the cellular enzyme Drosha to produce a
shRNA before Dicer-mediated processing to
yield siRNAs. Because this system mimics
the natural miRNA pathway, it might prove
advantageous. However, it adds a level of
complexity which may be detrimental in
some settings. In addition, Pol Il based RNAI
systems may directly utilize regulatory
systems, such as the tetracycline systems.
In fact, several systems have been
developed for both Pol Il and Pol Il based
RNAi regulation, either reversibly by
doxycycline or irreversibly by Cre-Lox based
systems (reviewed in Wiznerowicz et al.,
2006). Conditional knock-down approaches
are useful for therapeutic applications that
require long-term silencing, for
developmental research, when the effect of
knockdown of lethal genes is desired or, for
modelling human pathologies in animal
models, that is to induce and revert the
shutoff of a disease affecting gene, such as
an oncogene or tumor suppressor gene.
Although using Pol Il promoters for RNAi has
certain advantages, a more systematic
comparison of the levels of RNAi obtained
with Pol lll-driven shRNAs versus Pol IlI-
driven miRNA-based shRNA is needed.
Finally, it is likely that for RNAi applications
ranging from screening of shRNA libraries to



gene-based therapies, both systems may be
useful.

A real-time quantitative PCR -
approach for the analysis of lacZ
marker gene expression (V)

Quantitative reverse transcription PCR (qRT-
PCR) is a method for quantitative
determination of gene expression. The real-
time -method, a method monitoring the PCR
reaction in the thermal cycler as it
progresses, has been extensively utilized
since first discovered (Gibson et al., 1996).
The real-time method utilizes 5’ exonuclease
activity of Tag-DNA polymerase enzyme
through the use of sequence-specific
fluorogenic hydrolysis (TaqMan®-chemistry).
During the amplification stage of the PCR
cycle, a probe that is specific to the amplified
region will bind, and as the DNA-polymerase
synthesizes the complementary strand, its
5-exonuclease activity degrades the bound
probe. As a result, once the fluorescent
molecules, that are tagged to the 5-end of
the probe are released from the close
proximity of the 3’-end fluorescent quenching
molecules, a fluorescence signal s
generated. This signal fluorescence can be
measured and it is proportional to the
amplified product amount, and thus, relative
to the amount of starting material. qPCR or
gRT-PCR methods taking advantage of the
sequence specific probe are sensitive,
specific and enable quantitative
determination of traces of sample DNA or
very low levels of target gene expression.

We assessed whether a real-time gqRT-PCR
method utilizing TagMan®-chemistry would
be suitable for the quantification of LacZ
marker gene expression. This method was
intended for determining the LacZ gene
expression level in our doxycycline regulated
LV-constructs and for assaying gene transfer
efficiency and biodistribution of various viral
vectors in animal models. However, despite
the appropriate design of primers and probe,
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gRT-PCR analysis constantly resulted in a
strong amplification signal from the controls
which did not include any sample. Further,
we did not observe a signal in the negative
controls for 18S RNA amplification, an
endogenous control used to normalize the
results. Since the possibility of external
contamination of reagents was also ruled out
by testing several aliquots, we reasoned that
the amplified genetic material was originating
from the commercial reagents used. The
LacZ gene, encoding for the bacterial B-
galactosidase enzyme, origins from E.coli.
Unfortunately, there is contaminating
bacterial DNA present in the Taq polymerase
(Bottger, 1990, Rand et al., 1990), which
gave rise to the strong amplification signal in
our qRT-PCR method. The enzyme
(AmpliTag Gold DNA polymerase®) is
commercially synthesized in E.coli as a
recombinant protein, and the incomplete
purification of the enzyme results in traces of
bacterial DNA in the preparation. In our
hands, the amplification of the control
sample without sample resulted in a strong
amplification signal with a relatively low
threshold cycle (Ci=32), indicating a
remarkable amount of contaminating
sequence. The resultant amplification of the
negative control could not be ruled out by
mathematical elimination, since the
amplification of low concentrations of target
DNA or RNA would presumably be masked
by the contamination at this level. Therefore,
we concluded that our method was not
applicable for the intended use. Also, if the
detection of other bacterial genes is
performed with a comparable method,
adequate controls should be included in
each run to rule out amplification originating
from the DNA polymerase. Today,
commercial DNA polymerase enzymes of
greater purity are available. In fact, Tondeur
et al reported that the qRT-PCR method for
LacZ gene expression designed by us can
be successfully utilized by wusing a
polymerase of higher purity, AmpliTaq Gold
DNA polymerase low DNA®, or alternatively,



by treating the standard AmpliTaq Gold DNA
polymerase® with DNAse enzyme prior to
use (Tondeur et al., 2004). This observation
enables the use of our qRT-PCR design for
the quantification of LacZ gene expression
and detection of the LacZ encoding vector
DNA.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Studies included in this thesis indicate the
versatile applicability of HIV-1 derived LVs.
In our studies, third generation LVs were
successfully used as a platform for regulated
gene expression induced by the orally
available  drug, doxycycline or an
endogenous pathophysiological stimulus,
oxidative stress. The SIN-design of third
generation LVs, whereby after vector
integration into host cell genome no
promoter activities are left in the LTR regions
flanking the integrated sequence, means that
possible promoter interference with the
regulated promoter is abolished and, may be
one key factor in successful transgene
regulation. In fact, inactive LTRs flanking the
transgene cassette might also operate as
genomic insulators and hinder the
interference of genomic promoters near the
integration site with transgene promoter
regulation. Also, LVs exploited for RNAI
resulted in powerful, long-term gene
silencing. The in vivo performance of LV in
cardiovascular disease gene therapy
models, whereby the rabbit skeletal muscle
and blood vessel and pig myocardium were
used as target tissues, did not prove to be
efficient. However, as shown by us and
others, LVs are valued because of their high
transduction efficiency into the stem and
progenitor cells such as HCSs and ESCs
and are thus, excellent candidates for gene
transfer vectors in progenitor cell therapies
and the generation of transgenic animals. In
our studies, we also took advantage of the
high transduction efficiency of LVs into the
brain tissue. In their current form, LVs
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represent excellent tools for long-term
genetic modification of the cells of the
lympho-hematopoietic and central nervous
system. From the viewpoint of experimental
research, third generation HIV-1 LVs are
easy to produce by a simple co-transduction
protocol of four separate plasmids. However,
for the clinical use of LVs, a stable
production of vectors would be desirable.
Safety issues regarding the use of HIV-1 LVs
in clinical treatments are of concern. Herein,
it should be noticed that third generation LVs
do not transfer any viral genes into the host
cell genome and, the packaging system is
deleted of genes that are not absolutely
necessary for vector production. Given these
modifications HIV-1 LVs can be considered
as highly safe for experimental use.
However, the use of integrating vectors in
clinical gene therapy trials is under the
spotlight because of the lymphomas that
occurred in the trial for the treatment of X-
linked SCID. It can not be predicted if these
serious adverse effects could have been
ruled out with the use of SIN-vector
possessing inactive LTRs. It may be
proposed that the risk of insertional
mutagenesis might have been reduced by
the use of SIN-vectors. The results of the
first clinical trial with the HIV-1 LV for the
treatment of the HIV-1 infection suggest that
ex vivo maodification of autologous T-cells by
LV is safe and efficient and transduced cells
persist in vivo. Moreover, based on this
study, LVs hold promise for efficient gene
transfer into cells of the lympho-
hematopoietic system, and thus, may be
utilized in a variety of therapies, for example
in combating viral infections, in the treatment
of blood-cell disorders such as
hemoglobinopathies, storage and metabolic
diseases, immunodeficiencies and cancer. In
the design of these therapies the possibility
to use the LV as a platform for regulated
transgene expression is of an advantage.

The concept of progenitor and stem cell
therapies has shifted from the original idea of



cells taking part in the regeneration process
through mechanisms such as
transdifferentiation or cell fusion, into a
broader hypothesis that cell therapy might
facilitate complementary aspects of tissue
repair. The beneficial effects, although
arguable, that have been observed in the
clinical cell therapy ftrials for myocardial
infarction, may be explained by the
involvement of indirect mechanisms such as
the secretion of paracrine factors by the
therapy cells, or by their effects mediating
endogenous regenerative pathways of the
tissue. In our study, we demonstrated a
beneficial effect on the regenerating
ischemic skeletal muscle by the injection of
progenitor cells. As we could not detect
engraftment of the cells, we concluded that
the effect was indirect and might be
associated with enhanced recruitment of
macrophages into the ischemic muscle area.
Thus, progenitor cell induced
immunostimulatory processes may also play
a role in cell therapies. In conclusion, a
better understanding of cell therapy
mechanisms and a critical evaluation of the
results from both experimental and clinical
studies are crucial for the development of
new therapies.

Finally, genetic therapies, either alone or
combined with cell therapies, hold promise
for the treatment of cardiovascular diseases.
The development of suitable gene transfer
vectors for each specific application plays a
critical role in this progress. Along with the
evolving knowledge of the human genome
and its regulatory mechanisms and the
molecular details of different viruses,
improved gene transfer vectors will be
developed. It may be speculated that the
future gene transfer vectors will not be
directly based on any natural viruses but
instead, will be based on engineered,
synthetic  virus-like vectors  mimicking
combined features of several different
viruses.
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