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ABSTRACT 
Ocular neovascular diseases, including age related macular degeneration and diabetic 

retinopathy are major causes for blindness in the western world. The pathogenesis of these 

diseases remains partly unclear and currently there is no permanent cure for these diseases. In 

this study, we attempted to clarify the factors involved in the pathogenesis of diabetic 

retinopathy in type 1 and type 2 diabetes. We also experimentally evaluated the effects of 

overexpression of vascular endothelial growth factors (VEGF) -A and –D in the rabbit eye with 

adenovirus and baculovirus vectors. Finally, ocular phenotype of IGF-II/LDLR
–/–

ApoB
100/100

 

mouse was studied in order to develop a new animal model for age related eye diseases. 

   Diabetic retinopathy in type 1 and type 2 diabetes showed a different pattern of growth factor 

expression, which may explain the differences seen in these states. In diabetic patients, in 

addition to VEGF-A also other growth factors, particularly angiopoietin 2 were abundantly 

present. VEGF-D seemed to be important especially in type 2 diabetic retinopathy.  

VEGF-A plays a major role in the pathogenesis of ocular neovascularization. Intravitreal 

injection of adenoviral VEGF-A165 into the rabbit eye led to breakdown of the blood-retina 

barrier and ultimately neovessel formation. Furthermore, blocking the action of VEGF-A165 

prevented the progression of the angiogenic process. Intravitreal VEGF-D
∆N∆C

 in our 

experimental series with rabbits led to a similar breakdown of the blood retina barrier as VEGF-

A165 and increased permeability but it was not capable to induce neovessel formation alone.  

   Administration of the therapeutic agent to the retina and choroidea can be difficult due to the 

tight barriers in the eye. Multiple injections into the eye may damage ocular structures and the 

risk of complications including endophthalmitis, cataract and haemorrhages increases. The 

optimal method for the delivery of therapeutic agents to the retina and choroidea has not yet 

been developed. Gene therapy offers an alternative in which the therapeutic protein or proteins 

are induced in the target tissue with a single injection for a prolonged time period. Eye is an 

ideal target for gene therapy because of its small size and tissue boundaries that prevent leakage 

of the therapeutic material to other tissues and systemic circulation. Viruses are widely used as 

vectors in gene transfer. In this study, intravitreal injection of adenovirus vector into the rabbit 

eye was efficient in delivering genes to the ganglion cell layer and inner retina.  Baculoviruses 

showed transduction in the retinal pigment epithelium (RPE) and the photoreceptor layer even 

after the intravitreal injection into the rabbit eye. However, both vectors initiated an immune 

response in the target tissue, which limited the expression of the transducted gene to few weeks.  
   Diabetic IGF-II/LDLR

–/–
ApoB

100/100
 mice had moderately increased plasma glucose levels 

simulating early diabetes treated with diet therapy in humans.  Aging transgenic mice showed 

changes especially in their retinal structures. Neovascularization was not seen in the retina. 

Instead, photoreceptor atrophy and dysregularities of normal retinal cell layers were found 

throughout the retina. This model might be useful for the evaluation of early diabetic changes 

and retinal degeneration. 

 
National Library of Medicine Classification: WW 270, WW 245, WK 835 

Medical Subject Headings: Adenoviridae; Angiopoietins; Baculoviridae; Blood-Retinal Barrier; Choroidal 

Neovascularization; Diabetic Retinopathy; Disease Models, Animal; Eye/ blood supply; Gene Therapy; Gene Transfer 

Techniques; Neovascularization, Pathologic/ etiology; Retinal Degeneration; Retinal Neovascularization; Vascular 

Endothelial Growth Factor A; Vascular Endothelial Growth Factor D; Vascular Endothelial Growth Factors 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

”What was that?”, asked 

Moomintroll, for a discovery 

(next to Mysterious Paths, 

Bathing, and Secrets) was what 

he liked most of all. 

                    Tove Jansson 
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1 INTRODUCTION 

 
The human eye is a complex organ composed 

of many sections important to normal visual 

acuity. The cornea, lens, vitreous and outer 

retina are unique avascular structures 

allowing light to enter the eye. The light rays 

focused by the cornea and lens form an image 

to the retina, the light-sensing portion of the 

eye. The photoreceptor cells in the retina 

convert the image into an electrical signal 

that travels down the optic nerve to the brain 

(Figure 1).  

 

 

 

 

 

 

 

Figure 1. Normal anatomy of the eye. Image 

Source: National Eye Institute, National 

Institutes of Health.                                   

   Optical transparency of the eye is needed 

for normal visual function. On the other hand, 

the adult retina is a neural tissue with high 

metabolism and the highest oxygen 

consumption per unit weight of all human 

tissues. Therefore, the choroid, the most 

vascular portion of the eye also nourishing 

the retina, has one of the highest blood flow 

rates in the body, 800-1000 ml/100g 

tissue/min (Alm, 1992). In healthy adults this 

delicate ocular vascular system is maintained 

and controlled by the balance between the 

angiogenic factors and angiogenic inhibitors 

(Cao, 2001; Folkman and Ingber, 1992; Gao 

and Ma, 2002; Ma et al., 2005). 

Angiogenesis, or neovascularization, refers to 

the development of new vessels from 

preexisting vasculature. Most neovascular 

diseases in the eye begin with a shift of the 

balance between angiogenic and 

antiangiogenic factors towards angiogenesis. 

This phenomenon is called the angiogenic 

switch. The angiogenic switch occurs during 

neoplastic processes and various ocular 

diseases, including retinal and choroideal 

angiogenesis. Retinal and choroideal 

neovascularization leads to oedema, 

haemorrhages and fibrosis, causing visual 

impairment and blindness.      

   Diabetic retinopathy and age related 

macular degeneration (AMD) are the leading 

causes for visual impairment in developed 

countries (Table 1). Diabetes mellitus (DM) 

affects over 170 million people worldwide 

and the estimated amount of patients in the 

year 2030 is 366 million. The prevalence of 

diabetes is increasing particularly in low- and 

middle-income countries and in the working 

age population (WHO, 2005).  75% of both 

type 1 and type 2 diabetics will have diabetic 

retinopathy after 20 years of disease 

(Resnikoff et al., 2004).                         

   The incidence, prevalence, and progression 

of AMD increase with advancing age and 

will rise as the population of older than 65 

years increases (Mitchell et al., 2002a). 

Worldwide estimates indicate that the amount 

of AMD patients will double by the year 

2020 (The Eye Diseases Prevalence Research 

Group, 2004). The prevalence of early signs 

of AMD
 
is 18% in the population aged 65 to 

74 years and 30% in the
 
population older than 

74 years (Klein et al., 1992). In a combined 

analysis of population-based eye disease 

prevalence data, AMD was present in 0.2% 

of the population aged 55 to 64 years, rising 

to 13% of the population older than 85 years 

(Smith et al., 2001).  About 900 persons are 

visually impaired due to AMD in Finland 

each year (Finnish Federation of the Visually 

Impaired, 2007). 
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Table 1. Statistics of visual impairment in 

developed countries and the world. 

 

 

Region Western 

countries 

World 

No. of blind people 

(millions) 

2.02 36.86 

Prevalence of blindness, 

% 

0.23 0.57 

No. of blind 

people 

(millions) by 

age (years) 

<15 0.05 1.37 

15-49 0.39 5.18 

>50 1.59 30.31 

No. of people with low 

vision (millions) 

11.35 124.25 

Prevalence of low 

vision, % 

1.23 2.00 

No. of visually 

impaired (millions) 

13.37 161.12 

AMD as a cause of  

blindness, % 

50.00 8.70 

Diabetic retinopathy as 

a cause of blindness,  % 

17.00 4.80 

Modified from WHO global data on visual 

impairment in the year 2002 (Resnikoff et al., 

2004).  Sample of western countries include 

Australia, Denmark, Finland, Iceland, 

Ireland, Italy, Netherlands, UK and USA. 

 

In multiple studies, vascular endothelial 

growth factor (VEGF) has been shown to be 

the most important factor in ocular 

angiogenesis (Adamis et al., 1994; Aiello et 

al., 1994; Kvanta et al., 1996).  Recently 

discovered anti-VEGF treatments have 

revolutionized the therapy of neovascular 

diseases in the eye. These agents have shown 

not just to stop the angiogenic process and 

maintain visual acuity but also improve 

vision in a great proportion of patients at least 

during the two year follow-up (Brown et al., 

2009). However, there are also problems with 

these agents and their delivery regimens and 

new therapeutic strategies are needed.  
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2 REVIEW OF THE LITERATURE  

2.1 DIABETIC RETINOPATHY 

2.1.1 Clinical signs 

Diabetic retinopathy begins as mild, 

nonproliferative abnormalities and progresses 

to moderate and severe nonproliferative 

diabetic retinopathy (Figure 3A) and 

proliferative diabetic retinopathy (Figure 3B). 

Macular edema can develop at any time in 

the progression of diabetic retinopathy 

(Ciulla et al., 2003). Clinical features of 

nonproliferative diabetic retinopathy include 

microaneurysms, intraretinal hemorrhages, 

soft and hard exudates, venous tortuosity or 

beading and intraretinal microvascular 

abnormalities (IRMA) (Davis, 1992). 

Microaneurysms, focal dilations of retinal 

capillaries, are early signs of diabetic 

retinopathy. Hypoxia caused by capillary 

dysregulation provoke nerve fibre layer 

infarctions creating soft exudates, which are 

visualized as gray or white lesions and are the 

result of stasis of axoplasmic flow. Growth 

factors expressed due to hypoxia cause 

induction of fenestrations in the vascular 

endothelium and dissolution of tight junctions 

leading to accumulations of intraretinal 

plasma proteins and hard exudates. Increased 

venous tortuosity and beading is caused by 

dysregulation of the capillaries.  Prolonged 

occlusion of capillaries causes hypoxia, 

which leads to the development of IRMA, 

additional routes for blood through arteries to 

veins.  
   Diabetic retinopathy can be divided into 

stages depending on the severity of the 

disease. Microaneurysms in the retina refer to 

mild nonproliferative diabetic retinopathy. In 

moderate nonproliferative diabetic 

retinopathy there are more changes than 

microaneurysms including soft and hard 

exudates. Severe nonproliferative diabetic 

retinopathy is defined as more than 20 

intraretinal hemorrhages/microaneurysms in 

each of four quadrants, definite venous 

beading in at least two quadrants or 

prominent IRMA with no signs of 

proliferative diabetic retinopathy in any 

quadrant. Proliferative disease is diagnosed in 

the case of neovascularization or preretinal or 

vitreous hemorrhage in the eye. New vessels 

traverse the internal limiting membrane and 

grow into the vitreous. Neovessels are fragile 

and tend to bleed causing vitreous 

hemorrhages. Fibrous scar formation can 

result with accompanying tractional retinal 

detachment, leading to sudden blindness if 

left untreated (Figure 2).  

 

 

Figure 2. (A) Moderate nonproliferative 

diabetic retinopathy with hard exudates (large 

arrows), soft exudates (small arrows) and 

microaneurysms (arrowheads). (B) 

Proliferative diabetic retinopathy and 

neovascularization in the optic disc.   

    

A 

B 
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   The foveal region is especially susceptible 

to hypoxia because of the lack of retinal 

vessels in this region. Diabetic maculopathy 

is characterized by an increase in vascular 

permeability, which results from a 

breakdown of the inner blood retinal barrier 

and leads to leakage of plasma component 

like proteins and lipids to the intaretinal 

space. Clinically
 
significant macular oedema 

occurs if there is thickening
 
of the retina 

involving the area within 500 µm of fovea, if 

there are hard exudates
 
within 500 µm of the 

fovea with thickening
 
of the adjacent retina, 

or if there is a zone of retinal thickening
 
one 

disk area or larger in size, any part of which 

is within
 

one disk diameter of the fovea 

(Early Treatment Diabetic Retinopathy Study 

Research Group, 1985). Changes in the 

macular area cause metamorphopsia, 

micropsia, decreased colour vision and 

contrast sensitivity and are the main reasons 

for moderate visual loss in diabetic patients 

(Daley et al., 1987). It is not clear why some 

diabetic patients develop severe macular 

oedema and others suffer from 

neovascularization and proliferative diabetic 

retinopathy.                                                                                                  

2.1.2 Pathophysiology 

Preretinal neovascularization and chronic 

retinal oedema in the macular area are the 

two major causes for visual loss in diabetic 

retinopathy (Fong et al., 1999).  

Hyperglycaemia induces alterations in the 

pericytes and vascular endothelial cells (EC) 

activating a cascade of signaling pathways 

leading to cellular dysfunction and eventually 

death. Histological lesions in diabetic 

retinopathy include capillary basement 

membrane thickening, EC dysfunction and 

loss, increased deposition of extracellular 

matrix (ECM) components, pericyte loss and 

leucocyte adhesion to the vessel wall (Ansari 

et al., 1998; Koya and King, 1998; Miyamoto 

and Ogura, 1999; Mogensen et al., 1979; 

Paget et al., 1998; Speiser et al., 1968).  

Endothelial dysfunction refers to a 

generalized alteration in EC phenotype and 

function, characterized by an abnormal 

vasodilator response, such as decreased nitric 

oxide or increased production of 

vasoconstrictors, such as endothelin-1 

(Brownlee et al., 1984; Brownlee, 2001; 

Chen et al., 2004; Cukiernik et al., 2003; 

Deng et al., 1999; Dogra et al., 2001; 

Johnstone et al., 1993; Khan and Chakrabarti, 

2003; Khan et al., 2006; McVeigh et al., 

1992; van de Ree et al., 2001).  EC 

dysfunction disrupts autoregulation of retinal 

blood flow, which maintains optimal 

nutrition and oxygenation of the retina in 

different situations of ocular perfusion and 

intraocular pressures.  

   Pericytes are essential in the regulation
 
of 

retinal capillary perfusion, and damage to 

pericytes leads to altered retinal 

hemodynamics (Ciulla et al., 2002). Pericytes 

are responsible for the control of growth and 

survival of ECs, especially under stress 

conditions (Hammes et al., 2002). Damage to 

pericytes may lead to EC migration, growth 

and dysfunction. The absence of pericytes 

correlates with endothelial hyperplasia, 

increase capillary diameter and abnormal 

endothelial morphology (Hellstrom et al., 

2001b). Unlike other organs, there is a high 

number of pericytes in the retinal 

microvasculature (Frank et al., 1990). The 

pericyte-EC ratio is 1:1 in the retina, as 

compared to a ratio of 1:10 in other 

microvasculature beds in the human body 

(Chakravarthy and Gardiner, 1999). Pericytes 

are very sensitive to disruptions of the 

extracellular environment. The level of 

apoptosis is much higher in pericytes than in 

ECs under the same amount of glucose 

concentration fluctuations and diabetic 

conditions (Li et al., 1996; Li et al., 1997).   

   Leukocytes possess
 
large cell volume, high 

cytoplasmic rigidity, a tendency
 
to adhere to 

the vascular endothelium, and a capacity to 

generate
 

toxic superoxide radicals and 

proteolytic enzymes (Miyamoto and Ogura, 

1999).  In diabetes,
 
there is increased retinal 

leukostasis, which affects retinal
 
EC function, 

retinal perfusion, angiogenesis, and vascular
 

permeability. In addition, leukocytes in 

diabetic patients are less
 
deformable and may
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be involved in capillary nonperfusion, EC 

damage,
 
and vascular leakage (Miyamoto and 

Ogura, 1999).  

   Inflammation plays an important role in the 

degeneration of retinal capillaries in diabetic 

patients. The increased expression of many 

inflammatory proteins is regulated at the gene 

transcription level. NFκB is a widely 

expressed inducible transcription factor that 

is an important regulator of many genes 

involved in the inflammatory and immune 

responses, proliferation and apoptosis. NFκB 

is activated in retinal ECs or pericytes 

exposed to elevated glucose concentration 

and in retinas of diabetic rats (Kowluru et al., 

2003; Zheng et al., 2004).  In addition, 

inhibition of NFκB induced proteins inhibits 

diabetes-induced degeneration of retinal 

capillaries. Furthermore, compounds known 

to inhibit NFκB likewise inhibit the 

development of diabetic retinopathy (Kern, 

2007). Increased levels of TNFα, IL-1β, and 

other inflammatory mediators have been 

found in the vitreous of diabetic patients 

(Demircan et al., 2006; Doganay et al., 2002; 

Mysliwiec et al., 2006; Yuuki et al., 2001).  

Activity of caspase-1, the enzyme responsible 

for production of IL-1β, increases in retinas 

of diabetic humans, and correlates with the 

distribution of lesions in the retina (Tang et 

al., 2003).  In addition, deposition of C5b-9, 

the terminal product of complement 

activation, has been observed within retinal 

blood vessels of diabetic humans (Zhang et 

al., 2002).  

   Biochemical abnormalities related to 

diabetes include increased polyol pathway 

flux, which results in elevated levels of 

intracellular sorbitol (Gabbay, 1975). This 

disrupts the osmotic balance and results in 

cellular damage (Gabbay, 1975). In the 

presence of high glucose, carbohydrates 

interact with protein side chains in a 

nonenzymatic
 

fashion to form advanced 

glycation end products (AGEs) (Brownlee et 

al., 1984; Friedman, 1999). AGEs may affect 

such functions as enzyme activity and 

susceptibility of proteins to proteolysis 

(Brownlee et al., 1984).  

   Experimental studies have shown that 

protein kinase C (PKC) activity and levels
 
of 

an activator of PKC, diacylglycerol (DAG), 

are increased
 
in hyperglycemia (Inoguchi et 

al., 1992; Xia et al., 1994). PKC activity is 

also increased after exposure of
 

ECs to 

oxidative stress (Nishikawa et al., 2000; 

Taher et al., 1993). PKC-ß and –δ have been 

identified
 

as the main isoforms of PKC 

activated in vascular tissues in
 
response to 

hyperglycemia (Inoguchi et al., 1992; Koya 

and King, 1998). PKC-ß has been
 
shown to 

have an important role in regulating EC
 

permeability (Nagpala et al., 1996). It is also 

an important signaling component for 

angiogenic factors (Xia et al., 1996). The 

PKC-β inhibitor ruboxistaurin has been 

studied in animal and human clinical trials in 

patients with diabetic retinopathy. The trials 

have demonstrated a significant reduction in 

visual loss and need for laser treatment in 

patients with moderate to severe diabetic 

retinopathy over a 3-year period (Aiello et al., 

2006).  

   Production of reactive oxygen species 

(ROS) has also been implicated
 

in the 

development of diabetic complications. 

Diabetes
 
may cause ROS production through 

glucose auto-oxidation and increased
 

flux 

through the polyol pathway (Giugliano et al., 

1996). ROS may activate aldose reductase 

and PKC and increase
 
AGE production and 

DAG formation.  

   Besides vascular changes, chronic 

hyperglycemia also causes damages in retinal 

neural cells and glial cells (Barber, 2003; 

Rungger-Brandle et al., 2000). Retinal 

function is reduced in type 1 diabetics and in 

diabetic animal models (Hancock and Kraft, 

2004; Phipps et al., 2004; Phipps et al., 2007; 

Shirao and Kawasaki, 1998; Simonsen, 

1980).  Electrophysiological changes occur 

before visible retinopathy and can be 

monitored by electroretinogram (ERG) 

(Simonsen, 1980). These changes often 

precede the onset of microvascular lesions 

and predict the worsening of retinopathy 

better than clinical characteristics (Bresnick 

and Palta, 1987; Parisi and Uccioli, 2001).  
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   The optic nerve and visual pathway may 

also be affected as an early manifestation of 

diabetes. A progressive delay of the visual 

evoked potentials of diabetic patients has 

been demonstrated (Anastasi et al., 1985).  

Also nerve fibre layer defects have been 

detected by red-free photography in 20% of 

patients without microaneurysms and in 57% 

of patients with only microaneurysms 

(Chihara et al., 1993). The clinical findings 

on ganglion cell layer (GCL) have been 

confirmed in studies on rodents. Optic nerves 

of spontaneously diabetic rats have 

significantly smaller nerve fibres with 

increased atrophy and dystrophic changes in 

the nerve fibre layer (Sima et al., 1992).  

   Extensive loss of retinal microvasculature 

leads to retinal hypoperfusion, ischemia, and 

subsequent tissue hypoxia. Ocular 

neovascularization is strongly associated with 

retinal ischaemia, and multiple growth factors 

upregulated by hypoxia have been implicated 

in its pathogenesis. The ischaemic retina 

secretes growth factors that stimulate pre-

existing vessels to proliferate. The most 

important of these factors are VEGF, basic 

fibroblast growth factor (bFGF), insulin-like 

growth factor-I (IGF-I), platelet-derived 

growth factor (PDGF) and angiopoietins 

(ANG) (Paques et al., 1997).  Histologic 

studies have demonstrated the presence of 

growth factors and receptors in the preretinal 

membranes and the vitreous humour of 

patients with proliferative diabetic 

retinopathy (Adamis et al., 1994; Aiello et al., 

1994). These factors have also been shown to 

correlate with the neovascular activity.  

   VEGF expression was found to be 

upregulated in rat vessels soon after the 

induction of experimental diabetes suggesting 

that VEGF is implicated in the vascular 

hyperpermeability that occurs early in the 

course of diabetic retinopathy (Vinores et al., 

1997). Furthermore, intravitreal injection of 

VEGF induces vasodilation and 

microaneurysm formation before causing 

neovascularization, in a pattern similar to the 

initial stages of diabetic retinopathy (Miller et 

al., 1997). Several studies have been 

demonstrated an acute increase in serum 

levels of IGF-I preceding the onset of 

proliferative diabetic retinopathy in animal 

models (Grant et al., 1993; Hyer et al., 1988). 

Subsequently, increased IGF-I levels were 

measured in the vitreous of patients with 

proliferative diabetic retinopathy indicating 

that IGF-I may play a role in retinal 

neovascularization (Lee et al., 1994). Several 

in vitro studies have been shown that IGF-I 

can induce almost all steps of the angiogenic 

process including EC proliferation, migration 

and basement membrane degradation (King 

et al., 1985; Nakao-Hayashi et al., 1992; 

Nicosia et al., 1994).  bFGF is stored at high 

concentration within the ECM as an inactive 

complex, and released when ECs dissolve 

ECM via the release of proteases (Bashkin et 

al., 1989; Globus et al., 1989; Presta et al., 

1989). bFGF and hypoxia act synergistically 

to upregulate VEGF in ECs, resulting in 

retinal angiogenesis (Stavri et al., 1995).  

PDGF-B is known to induce a vascularized 

connective tissue stroma formation in many 

angiogenic and proliferative processes 

(Forsberg et al., 1993). Also in retinal 

neovascularization PDGF-B may be involved 

in the formation of fibrovascular retinal 

membranes. ANG-1 has been reported to 

induce sprouting in ECs in vitro, whereas 

ANG-2 appears to play a critical role in 

vascular remodeling (Hayes et al., 1999; 

Koblizek et al., 1998; Kukk et al., 1997; 

Stratmann et al., 1998).  It has been shown 

that ANG-2 is upregulated by hypoxia during 

normal and pathologic angiogenesis (Hackett 

et al., 2000; Oh et al., 1999a).   
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Figure 3. Consequences of hyperglycemia. 

2.2 AGE RELATED MACULAR 

DEGENERATION 

2.2.1 Clinical signs 

AMD can develop to either the dry form with 

RPE and photoreceptor atrophy, or the wet 

form with choroideal neovascularization 

(CNV). In the dry AMD, RPE and therefore 

also photoreceptors in the macular area 

gradually disappear and finally large scars of 

retinal atrofy develop. Geographic atrophy 

leads to gradual progression of visual loss, 

most likely because photoreceptors overlying 

areas of RPE atrophy are metabolically 
dependent on RPE cells (Ambati et al., 

2003). Marked apoptosis of the outer nuclear 

layer (ONL) and the inner nuclear layer 

(INL) of the retina is found near areas of RPE 

atrophy (Dunaief et al., 2002).  The wet 

AMD is responsible for 90% of cases of 

severe visual loss in AMD patients (Bressler 

et al., 1988). In the wet AMD, CNV causes 

sub- and intraretinal accumulation of plasma 

and its components and hemorrhages   

(Figure 4). Vision loss occurs through the 

structural and metabolic damages caused by 

exudates and hemorrhages, and the secondary 

cell death and reactive gliosis. 

Metamorphopsia is a common symptom. 

Repeated and untreated leakage of blood, 

serum, and lipid stimulates fibroglial 

organization leading to a disciform scar 

(Ambati et al., 2003). The disciform scar 

represents an end-stage of AMD. It is usually 

vascularized, almost invariably from the 

choroidal circulation but sometimes with 

retinal contribution as well, and can have 

both subretinal and sub-RPE components 

(Green, 1999; Green and Enger, 2005). The 

degree of RPE and photoreceptor 

degeneration is proportional to the diameter 

and thickness of the disciform scar. A tear of 

the RPE can accompany a minority of 

disciform scars. 

   The disease starts with subretinal drusens. 

Drusens are classified morphologically either 

as hard or soft. Hard drusen are yellow-white 

lesions, typically less than 63 µm in diameter, 

appearing as window defects on fluorescine 

angiography (FAG). In the earliest stage, they 

may be visible ophthalmoscopically as semi-

translucent punctate dots in retroillumination. 

Later in the disease, soft drusen, defined as 

being larger than 63 µm in diameter, may 

appear. (Ambati et al., 2003). Soft drusen 

have a tendency to become confluent, and 

multiple drusens are an independent risk 

factor for visual loss from AMD (Macular 

Photocoagulation Study Group, 1997). In 

addition, they can lead to deficits in macular 

function such as color contrast sensitivity and 

central visual field sensitivity (Frennesson et 

al., 1995; Midena et al., 1994; Midena et al., 

1997; Stangos et al., 1995; Sunness et al., 

1988; Tolentino et al., 1994). A prospective 

evaluation of patients with drusen in the 

fellow eyes of unilateral wet AMD suggests 

that the risk of developing CNV in the second 

eye peaks at 4 years, with an increasing 

incidence of geographic atrophy thereafter 

(Sarraf et al., 1999). Immunohistochemical 

analyses have shown several agents, such as 

apolipoproteins B and E, different 
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immunoglobulins, factor X, amyloid P 

component, complement C5 and C5b-9 

terminal complexes, fibrinogen and 

vitronectin to be present in drusen (Anderson 

et al., 2001; Hageman and Mullins, 1999; 

Hageman et al., 1999). These agents suggest 

a role of immunological and inflammatory 

processes in drusen pathogenesis. 

   The diagnosis of AMD is made with FAG 

and ocular coherence tomography (OCT). In 

dry AMD there is no leakage or oedema but 

atrophy in the macula. The earliest signs of 

CNV are subretinal or sub-RPE oedema 

and/or haemorrhages appearing as a greenish 

gray subretinal tissue in ocular examination. 

FAG leakage patterns of CNV are classified 

either as classic or occult. The former refers 

to discrete areas that hyperfluoresce early and 

continue to exhibit progressive leakage with 

increasing intensity and extent during the 

examination. Occult CNV refers either to a 

fibrovascular RPE detachment with irregular 

elevation of the RPE with stippled 

hyperfluorescence and late leakage, or to late 

leakage of undetermined origin. However, 

subretinal blood or lipid exudates may block 

the angiographic hyperfluorescence. In 

addition, CNV may not exhibit fluorescein 

leakage if it has undergone involution or is 

enveloped by RPE proliferation (Ambati et 

al., 2003).  

   In an OCT image classic CNV may appear 

as a highly reflective, fusiform thickening 

between the retina and the hyperreflective 

external band that corresponds to the 

RPE/Bruch's membrane/choroid complex. In 

addition, intraretinal oedema is present. 

Occult CNV can appear as an elevation of the 

RPE or as an irregularity of the external 

hyperreflective band. In geographic atrophy 

associated with the dry form of AMD, soft 

drusen may be identified as elevations of the 

RPE. Furthermore, atrophy is seen as 

thinning of the retina with an increased 

reflectivity of the choroid caused by the lack 

of pigment in the RPE (Hee et al., 1996).  

2.2.2 Pathophysiology 

Vascular risk factors, smoking, age, race, and 

family history have been shown to be the 

most important pathogenetic factors for the 

development of AMD (Age-Related Eye 

Disease Study Research Group, 2000; 

Delcourt et al., 1998; Klein et al., 1998; 

McCarty et al., 2001; Mitchell et al., 2002b; 

Smith et al., 2001). Also excessive exposure 

to light can damage the retina and has been 

implicated in the development of AMD 

(Tomany et al., 2004). Genetic predisposition 

has been demonstrated by familial 

aggregation studies and twin studies. The 

chromosomes most commonly implicated are 

1q25-31 and 10q26. In particular, variants in 

the gene for the complement factor H (CFH) 

and the genes PLEKHA1/LOC387715, 

Factor B (BF) and complement component 2 

(C2) have been implicated as major risk or 

protective factors for the development of 

AMD (Edwards et al., 2005; Gold et al., 

2006; Hageman et al., 2005; Haines et al., 

2005; Jakobsdottir et al., 2005; Rivera et al., 

2005; Seitsonen et al., 2008). 
   An early pathological change in AMD is 

the appearance of basal laminar deposits 

(BlamD) and basal linear deposits (BlinD) 

(Green and Enger, 2005; Green and Key, 

2005). BlamD consist of membrano-granular 

material between the plasma membrane and 

basal lamina of the RPE. BlinD consist of 

vesicular material located in the inner 

collagenous zone of Bruch's membrane. 

Although BlamD persists in areas of 

geographic atrophy, BlinD disappears, which 

is consistent with the fact
 
that BlinD arises 

mostly from the RPE-photoreceptor
 
complex 

(Sarks et al., 1994). BlinD may be more 

specific to AMD
 
than BlamD (Curcio and 

Millican, 1999). Soft drusen can represent 

focal
 
accentuations of BlinD and a localized 

accumulation of BlamD (Bressler et al., 

1994).  
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Figure 4. Wet form of age related macular 

degeneration with oedema, CNV (arrows) 

and haemorrhages (arrowheads). (A)  Fundus 

photograph. (B) FAG image in the 30 sec 

time point.   

 

   The RPE serves a variety of metabolic and 

supportive functions that are of vital 

importance for retinal photoreceptors, 

including maintenance of the blood-retina 

barrier, participation in the visual cycle, and 

phagocytic uptake and degradation of 

constantly shed apical photoreceptor outer 

segments (Strauss, 2005). Furthermore, in 

addition to many other growth factors the 

RPE produces VEGF in vivo under 

physiologic conditions to maintain the 

fenestrated choriocapillaris
 
endothelium (Kim 

et al., 1999). One of the reasons for the RPE 

dysfunction is an age-dependent phagocytic 

and metabolic insufficiency of postmitotic 

RPE cells. Impaired phagocytosis of 

photoreceptor outer segments by the RPE 

leads to a progressive accumulation of 

lipofuscin granules, a diverse group of 

autofluorescent lipid and protein aggregates, 

in the RPE (Kennedy et al., 1995; Sparrow 

and Boulton, 2005; Warburton et al., 2005). 

Lipofuscin accumulation reduces RPE 

phagocytic capacity (Sundelin et al., 1998), 

increases with age and is concentrated in the 

macula (Delori et al., 2001; Wing et al., 

1978). Lipofuscin disrupts RPE function by 

mechanical distortion of cellular architecture 

and potentiating phototoxicity. RPE cells fed 

lipofuscin granules and exposed to short 

wavelength visible light (390–550 nm) 

undergo lipid peroxidation, suffer structural 

disintegrity and ultimately cell death (Davies 

et al., 2001; Rózanowska et al., 1995; Shamsi 

and Boulton 2001).       

   Oxidative stress has a significant role in the 

pathogenesis of AMD (Beatty et al., 2000).  

The phagocytosis of photoreceptor outer 

segments by RPE cells generates oxidative 

stress caused by ROS (Tate et al., 1995).  

H2O2 treatment of RPE cells results in 

marked mitochondrial DNA damage 

(Ballinger et al., 1999). Photoreceptor outer 

segments enriched in polyunsaturated
 

fatty 

acids can undergo lipid peroxidation. In vitro
 

studies show that RPE lipofuscin is a 

photoinducible
 

generator of ROS that can 

compromise lysosomal
 
integrity, induce lipid 

peroxidation, reduce phagocytic capacity
 
and 

cause RPE cell death (Boulton et al., 1993; 

Holz et al., 1999; Sundelin et al., 1998). 

Lipofuscin granules are continuously
 
exposed 

to visible light and high oxygen tension, 

which cause ROS production and possibly 

further oxidative
 

damage to the RPE cell 

proteins and lipid membranes (Wassell et al., 

1999; Winkler et al., 1999). In humans, lipid 

peroxidation is greatest in the macula, 

particularly with age (De La Paz and 

Anderson, 1992; Stone et al., 1979; van Kuijk 

and Buck, 1992). Furthermore, AGE products
 

occur at sites of oxidant stress with hydroxyl 

radical formation. AGE products occur in soft 

drusen, in BlamD and BlinD, and in the cell 

cytoplasm
 

of RPE associated with CNV 

(Crabb et al., 2002; Ishibashi et al., 1998). 
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   It has been postulated that choroidal 

dendritic cells are activated and
 
recruited by 

injured RPE and oxidized proteins and lipids 

in the Bruch's membrane (Hageman et al., 

2001). The RPE cells respond to dendritic 

cell activation by secreting immune response 

modulators including vitronectin and 

apolipoprotein
 

E (Johnson et al., 2001). 

Activation
 
of choroidal dendritic cells might 

also initiate an autoimmune response
 

to 

retinal or RPE antigens (Hageman et al., 

2001). Antiretinal and anti–RPE antibodies 

have been
 
detected in the serum of patients 

with AMD (Gurne et al., 1991; Niederkorn, 

1990; Penfold et al., 1990). Inflammatory 

cells like multinucleated
 

giant cells and 

leukocytes are involved
 
in the later stages of 

AMD (Killingsworth et al., 1990; Penfold et 

al., 1985; Seregard et al., 1994). 

Macrophages near the Bruch’s membrane 

become more common when BlinD is present 

(Killingsworth et al., 1990). Activated 

macrophages and other
 

inflammatory cells 

secrete enzymes that can damage cells and
 

degrade the Bruch’s membrane. By releasing 

cytokines, inflammatory
 
cells might promote 

the growth of CNV into the sub-RPE space 

(Oh et al., 1999b).  

   Wet AMD is characterized by the 

proliferation of CNV. CNV originates from 

the choroid and extends through a defect in 

Bruch's membrane and into a plane between 

BlamD and Bruch's membrane (Green and 

Enger, 2005). CNV can also extend through 

the RPE into the subretinal space. CNV arise 

as capillary-like structures with multiple 

points of origin (Green and Enger, 2005; 

Green and Key, 2005; Schneider et al., 1998). 

CNV can cause serous detachment of the 

RPE or retina, pigment modeling, RPE tears, 

haemorrhages and lipid exudation. 

Morphometric data indicate that the elastic 

lamina of Bruch's membrane in the macula is 

3-6-fold thinner and 2-5-fold less dense 

relative to that in the mid-periphery in 

individuals of all ages rendering the macula 

more susceptible to the ingrowth of CNV 

than peripheral retina (Chong et al., 2005). 

Elastin fiber destruction in the macula could 

also play a role in the initiation of CNV 

because elastin degradation peptides are 

highly angiogenic (Kamisato et al., 1997; 

Nackman et al., 1997). High concentrations 

of VEGF and VEGF receptors are found in 

CNVs,
 

surrounding tissue, and RPE cells 

(Kliffen et al., 1997; Kvanta et al., 1996; 

Lopez et al., 1996). Levels of VEGF
 

are 

increased in cadaver AMD eyes, in the 

vitreous of patients
 
with AMD, and in the 

plasma of patients with AMD (Kliffen et al., 

1997; Lip et al., 2001; Wells et al., 1996). 

ANG-1, ANG-2, and Tie-2 immunoreactivity 

have been found in CNVs from AMD eyes 

(Otani et al., 1999). Cultured RPE cells also 

express ANG-1 and ANG-2 mRNA (Hangai 

et al., 2001).   

 

 

 
 

Figure 5. Consequences of wet AMD. 

 

2.3 OTHER ANGIOPROLIFERATIVE 

DISEASES  

 
The main pathogenesis is comprised of 

neovascularization and upregulation of 

VEGF also in several other diseases in the 

retina. These include retinal angiomatous 

proliferation, retinal telangiectasia, retinal 

vein occlusions and retinopathy of 
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prematurity (ROP). ROP is a disease in 

premature babies characterized by incomplete 

vascularization of the peripheral retina 

leading to retinal neovascularization (Terry, 

1942). Angiogenesis can lead to both normal 

and abnormal vessel formation. In 

experimental oxygen induced retinopathy 

(OIR) model, VEGF levels have been shown 

to rise resulting in neovascularization (Pierce 

et al., 1995; Smith et al., 1994). This finding 

was confirmed with elevated VEGF levels in 

the vitreous of an ROP patient (Young et al., 

1997). However, VEGF is also involved in 

normal vascular embryogenesis of the retina 

(Alon et al., 1995; Ozaki et al., 2000; Pierce 

et al., 1996; Stone et al., 1995). In addition to 

VEGF insulin-like growth factor I (IGF-I) is 

critical for normal retinal vascular 

development. A lack of IGF-I in the early 

neonatal period is associated with the 

proliferative ROP (Hellstrom et al., 2001a).  

Supplementation of IGF in preterm infants 

prior to the development of ROP could 

stimulate normal vessel development and 

prevent ROP. However, in the proliferative 

phase of ROP, IGF-I has been shown to 

stimulate neovascularization independent of 

VEGF levels as well as potentially regulate 

the effects of VEGF (Smith et al., 1999).  

Current therapy consists of monitoring 

oxygen supplementation, aggressive 

screening in children who are at risk of 

having ROP and laser treatment of the retina 

once threshold disease is reached (Palmer et 

al., 2005).  

   Pathological angiogenesis also occurs in 

tissues in the anterior segment of the eye. 

Neovascularization of the iris typically occurs 

within ischemic retinopathies like ischemic 

ocular syndrome and central retinal vein 

occlusion, and can cause loss of vision 

through the associated closure of the irido-

corneal drainage angle, resulting in raised 

intraocular pressure and neovascular 

glaucoma. Neovascularization of the cornea 

can occur in response to a number of 

different insults, including trauma, infection 

or inflammation (Chang et al., 2001).  

2.4 ANGIOGENIC FACTORS 

2.4.1 Vascular endothelial growth factors 

The first and the most potent member of 

VEGF-family, VEGF (also called VEGF-A), 

was first identified in highly vascularized 

tumors in 1983 (Ferrara and Henzel, 1989; 

Senger et al., 1983).  After the discovery of 

VEGF, four other members in the human 

VEGF family have been identified: VEGF-B, 

VEGF-C, VEGF-D, and placental growth 

factor (PlGF) (Achen et al., 1998; Joukov et 

al., 1997b; Maglione et al., 1991; Olofsson et 

al., 1996). In addition to these VEGFs, viral 

VEGF homologs (VEGF-E) and snake 

venom VEGFs (VEGF-F) have been found 

(Ogawa et al., 1998; Yamazaki et al., 2003). 

VEGF is a 46-kDa homodimeric glycoprotein 

with several isoforms including VEGF121, 

VEGF145, VEGF165, VEGF189, and VEGF206 

generated by alternative mRNA splicing from 

the same gene (Ferrara et al., 1991). It is a 

potent angiogenic stimulator, promoting 

proliferation, migration, proteolytic activity 

and capillary tube formation of ECs, thus 

playing a crucial role in both normal and 

pathological angiogenesis (Aiello and Wong, 

2000; Dvorak et al., 1995; Ferrara and 

Henzel, 1989). Heterozygous deletion of the 

VEGF gene results
 
in embryo death between 

days 8.5 and 9.5. The embryos are 

characterized
 

by impaired angiogenesis 

(Carmeliet et al., 1996). VEGF increases 

vascular permeability with an efficacy 5000-

fold higher than that of histamine (Senger et 

al., 1996). Injection of VEGF into the 

vitreous can induce preretinal and iris 

neovascularization (Tolentino et al., 1996; 

Tolentino and Adamis, 1998). In the retina, 

VEGF is produced by multiple cell types, 

including the RPE, pericytes, ECs, Müller 

cells and ganglion cells (Dorey et al., 1996; 

Lu et al., 1999; Pe'er et al., 1995). Among 

them, Müller cells and RPE are believed to be 

the major source of VEGF in the retina, and 

ECs to be the primary target of VEGF (Aiello 

et al., 1994; Dorey et al., 1996; Pierce et al., 

1995). VEGF synthesis is strongly 
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upregulated by hypoxia (Aiello et al., 1995b; 

Marti and Risau, 1998).  

   VEGF levels in the ocular fluid are very 

low in the normal eye (Aiello et al., 1994; 

Ogata et al., 2002). In normal adult monkey 

and mouse eyes, the most abundantly 

expressed isoforms are VEGF121 and 

VEGF165
 

(Kim et al., 1999). In humans, 

intravitreal levels of VEGF were elevated in 

proliferative diabetic retinopathy (Adamis et 

al., 1994; Aiello et al., 1994). Therapeutic 

laser photocoagulation decreases VEGF 

levels in the vitreous humour by 75% in 

patients with proliferative diabetic 

retinopathy, suggesting that the development 

and regression of retinal neovascularization is 

associated with VEGF levels in the diabetic 

eye (Aiello et al., 1994). In addition, 

significantly elevated VEGF levels in the 

aqueous humor have been reported in 

diabetic patients with macular edema 

(Funatsu et al., 2002).  High levels of VEGF 

are also found in CNV membranes excised
 

from patients with AMD and in the vitreous 

humour of a ROP baby (Kvanta et al., 1996; 

Rakic et al., 2003; Young et al., 1997).   

   Different VEGF isoforms may have 

different functions in ocular
 

diseases. 

VEGF165 has been shown to be the most 

important isoform in the blood-retina barrier 

breakdown and pathologic intraocular 

neovascularization (Ferrara et al., 2003). 

VEGF165 is the predominant isoform 

expressed at the
 
time of maximal preretinal 

neovascularization in a neonatal
 
rat model 

(McColm et al., 2004). It is also the primary 

isoform in the
 
retina of diabetic rats (Ishida et 

al., 2003; Usui et al., 2004). Levels of both 

VEGF121 and
 

VEGF165 are increased in 

monkeys after laser-induced retinal vein 

occlusion (Shima et al., 1996). VEGF121 is 

the main isoform expressed in mouse
 
CNV 

membranes, and inhibition of VEGF121 

results in reduction
 

of CNV in mice 

(Akiyama et al., 2005; Rakic et al., 2003).  

   VEGF has also been shown to have 

neuroprotective properties in the retina (Jin et 

al., 2000). Intravitreal VEGF165 and VEGF121 

displayed a protective effect on apoptotic 

retinal cells in a retinal ischemia–reperfusion 

rat model. This protective effect was 

inhibited by blockade of all VEGF isoforms 

but not by blockade of VEGF165 alone (Shima 

et al., 2004). It seems that VEGF isoforms 

may differ in neuroprotection suggesting that 

specific VEGF isoform targeting would be 

beneficial in blocking vessel growth and 

sparing the neuroprotective effects. In 

addition, VEGF acts as a survival factor for 

newly formed blood vessels in the retina and 

also inhibits apoptosis induced by tumor 

necrosis factor (Alon et al., 1995; 

Spyridopoulos et al., 1997). Development of 

the choroideal circulation is dependent on 

VEGF produced by RPE (Yi et al., 1998). 

The RPE expresses VEGF and the ECs of the 

choriocapillaris express VEGFR-2 which 

supports the role for VEGF in the 

maintenance of the adult choriocapillaris 

(Kim et al., 1999). Long-term therapeutic 

neutralization of VEGF may lead to the 

unexpected degeneration of the choroidal 

circulation (Peters et al., 2007).  

   Also other members of the VEGF family 

stimulate
 

neovascularization and excessive 

vascular permeability. PlGF, VEGF-B, 

VEGF-C and VEGF-D are EC mitogens in 

vitro and in vivo, but their role in ocular 

angiogenesis remains unclear (Achen et al., 

1998; Olofsson et al., 1996). VEGF-B does 

not seem to play a role in retinal 

neovascularization, because mice deficient in 

VEGF-B have normal retinal vascular 

development and no difference in hypoxia-

induced retinal neovascularization when 

compared to wild type mice (Reichelt et al., 

2003).  VEGF-C and VEGF-D are produced 

as prepropeptides and further processed to 

biologically fully active forms (Achen et al., 

1998; Joukov et al., 1997a). VEGF-C and 

VEGF-D are involved primarily in 

lymphangiogenesis but also in angiogenesis 

(Cao et al., 1998; Jeltsch et al., 1997; 

Marconcini et al., 1999). VEGF-C and 

VEGF-D have been found in subretinal 

vascular membranes of AMD patients 

implicating a role also in ocular angiogenesis 

(Ikeda et al., 2006). PlGF has also been 
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Figure 6. VEGF family and VEGF receptors.

 

directly implicated in proliferative 

retinopathy (Khaliq et al., 1998).  Knockout 

of
 
PlGF or neutralization with an anti-PlGF 

antibody substantially
 

suppresses retinal 

neovascularization (Carmeliet et al., 2001; 

Luttun et al., 2002).  
 

2.4.2 VEGF Receptors 

VEGF exerts its biological activities through 

multiple receptors; VEGFR-1 (Flt-1), 

VEGFR-2 (Flk-1/KDR) and VEGFR-3 (Flt-

4) which are expressed predominantly in 

ECs, and to a lesser extent on monocytes and 

macrophages (Ferrara et al., 2003; Terman et 

al., 1992).  The binding of VEGF to its 

receptors initiates a signal transduction 

cascade mediating vascular permeability and 

EC proliferation and migration. In addition, 

two co-receptors for VEGF, neuropilin-1 and 

2 (Nrp-1 and Nrp-2) has been described 

(Soker et al., 1998; Soker et al., 2002). 

VEGFR-1 binds VEGF, VEGF-B and PlGF. 

VEGFR-2 binds VEGF and proteolytically 

modified VEGF-C and –D. VEGFR-3 binds 

VEGF-C
 

and -D and mediates 

lymphangiogenesis (Figure 6).
 

The VEGF 

receptors are almost exclusively found on 

ECs. Homozygous VEGFR-1 deletion 

permits
 
EC differentiation, but the vascular 

channels that
 
form are grossly abnormal, and  

 

the animals die in utero (Fong et al., 1995).
 

Homozygous
 
deletion of VEGFR-2 leads to 

death of mice between embryonic days
 
8.5 

and 9.5, with the embryos having no yolk–sac 

blood
 
islands and ECs (Shalaby et al., 1995). 

In the histopathological analysis of a normal 

human retina and choroid, choriocapillaris 

shows an immunohistochemical positive 

reaction with VEGFR-1 and VEFGR-2. 

Furthermore, VEGFR-3 is present in the 

VEGFR-2 positive choriocapillaris 

endothelium that faces the RPE layer 

(Blaauwgeers et al., 1999).  VEGFR-2 is the 

major mediator of mitogenesis of ECs (Gille 

et al., 2001). By activating VEGFR-1, VEGF 

promotes assembly of ECs into tubes. The 

role of VEGFR-1 is context dependent. In
 

embryos and some adult tissues, it acts as a 

decoy receptor
 
that modulates angiogenesis 

and in some adult tissues
 
it mediates VEGF 

signaling and is proangiogenic (Fong et al., 

1999; Luttun et al., 2002; Park et al., 1994).  

In the eye,
 
VEGFR-1 is proangiogenic, and 

its inhibition can suppress retinal
 

or 

choroideal neovascularization (Shen et al., 

2006). VEGF also interacts with neuropilins 

(Klagsbrun et al., 2002; Neufeld et al., 2002). 

In early development,
 
Nrp-1 is expressed in 

arteries and Nrp-2 is expressed
 

in veins 

(Herzog et al., 2001). The absence or
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blockade of either Nrp-1 or -2 suppresses 

ocular neovascularization (Oh et al., 2002; 

Shen et al., 2004). Neuropilins do not have 

kinase domains and must complex with
 

VEGF receptors for
 
intracellular signaling to 

occur. Nrp-1 is involved in retinal 

neovascularization in diabetic retinopathy 

and in ischemic animal models (Ishida et al., 

2000; Ishihama et al., 2001). Coexpression of 

VEGFR-2 and Nrp-2 was suggested to 

facilitate fibrovascular proliferation in 

diabetic retinopathy (Ishida et al., 2000).  

2.4.3 PDGFs    

The platelet-derived growth factor (PDGF) 

was one of the first isolated and cloned 

angiogenic growth factors (Saint-Geniez and 

D'Amore, 2004). The PDGF family of growth 

factors is composed of four different 

polypeptide chains. The four PDGF chains 

assemble into disulphide-bonded dimers via 

homo- or heterodimerization, and five 

different dimeric isoforms have been 

described so far; PDGF-AA, PDGF-AB, 

PDGF-BB, PDGF-CC and PDGF-DD 

(Fredriksson et al., 2004; Li et al., 2005). 

PDGF-A and PDGF-B chains were 

discovered more than two decades ago, and 

only recently were PDGF-C and PDGF-D, 

also known as Iris-expressed
 
growth factor, 

chains discovered (Bergsten et al., 2001; 

Heidaran et al., 1991; Hirst et al., 1996; 

LaRochelle et al., 2001; Li et al., 2000; 

Seifert et al., 1989). The overall sequence 

homology among the different growth factor 

domains of the PDGFs is around 25%, while 

PDGF-A and PDGF-B are approximately 

50% identical. Similarly, the growth factor 

domains in PDGF-C and PDGF-D display 

approximately 50% homology (Fredriksson 

et al., 2004). There are two PDGF receptors: 

the PDGF α receptor (PDGFαR) and
 

the 

PDGF ß receptor (PDGFßR). The PDGFαR
 

binds both PDGF-A and -B and therefore 

PDGF-AA, -BB, and -AB
 
can all activate 

PDGFαR. PDGFßR binds PDGF-B but
 
not -

A, and therefore PDGF-BB, but not -AA, can 

activate PDGFßR. The action of PDGF-AB is 

more complex, but it appears
 

that at 

physiologically relevant concentrations, 

PDGF-AB can
 

activate PDGFßR only in 

combination with PDGFαR (Seifert et al., 

1993). Unlike PDGF-A and -B, PDGF-C and 

-D are
 
secreted as inactive proteins that are 

activated by proteolytic
 
cleavage, but similar 

to PDGF-A and -B, they signal through
 

PDGFαR or PDGFßR (Mori et al., 2002a). In 

the retina PDGFs are generally considered as 

pericyte recruitment and survival factor 

(Hellstrom et al., 2001b; Leveen et al., 1994; 

Lindahl et al., 1997).  PDGF-BB and PDGF-

CC are more potent in stimulating 

angiogenesis than PDGF-AA (Li et al., 2005; 

Risau et al., 1992). Additionally, significantly 

elevated concentrations of PDGF-AB are 

found in the vitreous and preretinal 

membranes of patients with proliferative 

diabetic retinopathy (Freyberger et al., 2000; 

Robbins et al., 1994).  

2.4.4 Angiopoietins 

Angiopoietin-1 (ANG-1) and angiopoietin-2 

(ANG-2) belong to a family of endothelial 

growth factors that function as ligands for the 

endothelial cell-specific receptor tyrosine 

kinase, Tie-2 (Nourhaghighi et al., 2003). 

Also Tie-1 has been identified but there is no 

ligand found for it. ANG-1 and ANG-2 share 

60% amino acid homology (Davis et al., 

1996). Tie-1 and Tie-2 receptors are 

selectively expressed on vascular
 
ECs and are 

required for embryonic vascular development 

(Dumont et al., 1994; Sato et al., 1995). 

Activation of Tie-2 promotes maturation of 

leaky vascular tubes into competent blood 

vessels. Over-expression of ANG-1 in the 

retina significantly reduced VEGF-induced 

retinal vascular permeability, and also 

suppressed the development of retinal 

neovascularization in an OIR model and in 

laser-induced CNV (Nambu et al., 2004). 

ANG-2 acts as an endogenous antagonist of 

the action of ANG-1 by decreasing its 

binding to Tie-2 (Maisonpierre et al., 1997). 

ANG-2 is upregulated by hypoxia and
 

angiogenic cytokines including VEGF. In 

addition, it is involved in pathologic
 

angiogenesis associated with ischemia in the
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retina in an animal model and in CNV
 

associated with AMD (Mandriota and 

Pepper, 1998; Oh et al., 1999a; Otani et al., 

1999).  Mice deficient in ANG-2 showed 

delayed and incomplete development of the 

superficial vascular bed of the retina, and 

complete absence of the intermediate and 

deep vascular beds, suggesting that ANG-2 is 

a crucial factor in the maturation of retinal 

vasculature (Hackett et al., 2002). In patients 

with ROP, colocalization of Tie-2, VEGF and 

ANG-2, but not ANG-1 was observed in 

fibrovascular membrane, suggesting a 

pathological role of ANG-2 and Tie-2 in 

retinal neovascularization (Umeda et al., 

2003). In OIR mice, ANG-2 expression was 

up-regulated in the retina during the period of 

angiogenesis and reached the peak at the 

maximal angiogenic response (Das et al., 

2003). In addition, ANG-2 has also been 

shown to enhance the sensitivity of retinal 

blood vessels to VEGF (Oshima et al., 2004).   

2.4.5 IGFs 

Insulin-like growth factors (IGF-I and IGF-II) 

are growth-promoting peptides with multiple 

biological effects (LeRoith and Roberts, 

1993). IGF-I was initially identified as a 

circulating factor that appeared to mediate the 

effects of growth hormone (Salmon and 

Daughaday, 1957). IGF exerts its effect on 

ECs via the IGF receptors (IGF-IR and IGF-

IIR) (Miller et al., 1997). Also six well-

characterized IGF binding proteins (IGFBP) 

have been found in circulation and 

extracellular fluids and can inhibit or 

potentiate IGF-I activity (LeRoith and 

Roberts, 1993). IGF-I is known to be present 

in small amounts in normal retina, and IGF-

IRs are found in retinal vascular ECs (Grant 

and Guay, 1991). IGF-I mediates both 

physiological and pathological 

neovascularization by stimulating migration 

and proliferation of retinal ECs and RPE cells 

and tube formation of retinal ECs (Grant et 

al., 1990). In the course of diabetic 

retinopathy, serum IGF-I levels were elevated 

in patients with proliferative disease (Dills et 

al., 1991). Also intravitreal levels of IGF-I 

were found to be elevated during proliferative 

diabetic retinopathy (Grant et al., 1986; 

Meyer-Schwickerath et al., 1993). 

   Normoglycemic transgenic mice 

overexpressing IGF-I in the retina developed 

several vascular alterations characteristic for 

DM including pericyte loss, thickened 

capillary basement membrane, IRMA, 

proliferative changes and retinal detachment 

(Ruberte et al., 2004).  IGF-I have not been 

found to have a causative role in diabetic 

retinopathy but may act as an aggravating 

factor (Miller et al., 1997).
 
In IGF-I knockout 

mice, normal retinal vascular development 

was arrested, despite the presence of VEGF 

(Smith et al., 1999). In a study on premature 

infants, the development of ROP was 

strongly associated with a prolonged period 

of low levels of IGF-I (Hellstrom et al., 

2001a). Infants with higher IGF-I levels 

earlier in life had more normal retinal 

vascular development, and did not have ROP. 

Thus, IGF-I has a critical role in normal 

retinal vascular development suggesting that 

the lack of IGF-I in the early neonatal period 

increases the risk of having ROP (Das and 

McGuire, 2003).  Although the role of IGF-I 

in retinal neovascularization has been studied 

extensively, its role in CNV is still not clear. 
 

2.4.6 FGFs 

Acidic and basic fibroblast growth factors are 

prototypes of the fibroblast growth factor 

(FGF) family. Basic fibroblast growth factor 

(bFGF) is the best characterized of the FGFs 

(Miller et al., 1997). It belongs to a large 

family of growth factors consisted of over 23 

proteins. bFGF lacks a signal sequence, 

remains cell-associated and is apparently not 

secreted (Miller et al., 1997).  Therefore, the 

origin of its presence in the ECM is not clear. 

bFGF has been localized to the astrocytes of 

the ganglion cell layer, as well as to the cells 

of the inner nuclear layer (Gao and 

Hollyfield, 1992; Kostyk et al., 1994). bFGF 

has a high affinity for heparin which protects 

it from inactivation and degradation 

(Gospodarowicz and Cheng, 1986; Sommer 

and Rifkin, 1989). bFGF has been shown to 
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stimulate EC proliferation and migration. In 

addition, it induces capillary ECs to form 

capillary-like tubes (Mignatti et al., 1989; 

Montesano et al., 1986).   

   The role of FGF in ocular angiogenesis is 

controversial.  In the OIR mouse model, 

FGF-like polypeptides were found to be 

elevated in the retinal tissues during 

neovascularization (Nyberg et al., 1990). 

bFGF injected into the subretinal space in 

rabbits induced subretinal neovascular 

membranes histologically similar to those 

seen in patients with AMD (Kimura et al., 

1999). In an animal model of laser-induced 

subretinal neovascularization, RPE cells 

stained with both aFGF and bFGF after laser 

treatment, indicating the role of these factors 

in choroidal angiogenesis (Zhang et al., 

1993).  Some studies have reported elevated 

levels of bFGF in vitreous humour and retinal 

neovascular membranes in patients with 

proliferative diabetic retinopathy (Frank et 

al., 1996; Hanneken et al., 1991; Sivalingam 

et al., 1990).  However, actively growing 

neovascular membranes show only minimal 

bFGF in the basement membranes of new 

vessels in spite of their capacity to bind 

exogenous bFGF (Hanneken et al., 1991). In 

the retina, overexpression of bFGF could not 

induce neovascularization (Ozaki et al., 

1998).  Transgenic mice deficient in bFGF 

developed the same amount of retinal or 

CNV as the wild-type mice in OIR or laser-

induced subretinal neovascularization 

models, indicating bFGF expression may not 

be necessary for the development of 

choroidal or retinal new vessels (Ozaki et al., 

1998; Tobe et al., 1998b). It has been 

hypothesized that increased retinal expression 

of bFGF is angiogenic only when there is 

accompanied cell injury unmasking control 

mechanisms that sequester bFGF (Yamada et 

al., 2000).   

2.4.7 HIF-1 

Hypoxia inducible factor (HIF)-1 is a 

transcription factor that regulates the 

response to both acute and chronic hypoxia. 

It is the primary hypoxic signaling protein in 

cells for regulating angiogenesis and is able 

to induce the transcription of more than 70 

genes (Semenza, 2004). HIF-1 stimulates the 

transcription of genes whose promoters 
include a hypoxia-response element (HRE) 

(Semenza and Wang, 1992; Tian et al., 1997; 

Wiesener et al., 1998). Products of these 

genes mediate the restoration of tissue 

oxygenation and limit tissue damage. HIF-1 

is a heterodimeric transcription factor that 

typically consists of an oxygen-regulated 

labile 120 kDa HIF-1α subunit and a 

constitutively expressed stable 92 kDa HIF-

1β subunit (Wang et al., 1995). Two other 

HIF molecules, HIF-2α and HIF-3α, have 

also been described (Wiesener et al., 1998).  

Homozygous knockouts of HIF-1α are 

embryonic lethal, whereas HIF-2α knockouts 

have less severe phenotypes but still exhibit 

vascular and respiratory abnormalities as well 

as blindness in mice one month old (Ding et 

al., 2005; Iyer et al., 1998).  Expression of the 

HIF-1α subunit is tightly regulated by the 

cellular oxygen concentration, but HIF-1β is 

oxygen insensitive. HIF-1α increases 

exponentially as oxygen concentration 

declines and determines the level of HIF-1 

activity (Jiang et al., 1996; Semenza et al., 

1996; Wang et al., 1995).  Under normoxic 

conditions, HIF-1α is continuously 

synthesized
 
and degraded proteosomally but 

in exposure to low oxygen tensions, it 

accumulates rapidly
 
and begins to act as a 

transcriptor factor by moving into the nucleus 

and activating an array of genes (Huang et 

al., 1998; Kallio et al., 1999; Salceda and 

Caro, 1997). In developing retina and in OIR 

mouse model HIF-1α levels have shown to be 

significantly increased (Ozaki et al., 1999).  

HIF-1α levels are also high in the nerves of 

diabetic rats (Chavez et al., 2005). HIF-1α 

has been found in neovascular membranes 

from diabetic patients (Abu El-Asrar et al., 

2007). Furthermore, the role of HIF in ROP 

has been implicated in experimental studies 

(Brafman et al., 2004; Morita et al., 2003).  
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2.5 GENE THERAPY 

 
Gene therapy is a promising strategy for the 

treatment of several inherited and acquired 

diseases in the eye. Gene therapy means the 

delivering of genes into the target cells to 

treat a disease. The encoding gene may be 

designed to induce a useful gene expression, 

to block a harmful gene expression, or, like in 

hereditary diseases, a defective mutant allele 

is replaced with a functional one. For 

effective gene therapy it is necessary to 

deliver therapeutic genes to specific cells at 

high efficiency, express the gene for a 

prolonged period of time and ensure that the 

introduction of the therapeutic gene is not 

harmful to the target tissue.  

   There are several methods and vectors in 

use for the delivery of therapeutic nucleic 

acids into cells (Verma and Somia, 1997). 

These methods can be classified as viral and 

non-viral technologies, and a number of 

different vector systems for ocular gene 

transfer have been developed (Wright, 1997). 

Viral vectors are very efficient in transducing 

genes into cells. However, their use has been 

restricted because of immunological 

problems and risk of the insertional 

mutagenesis. In addition, producing viral 

vector can be difficult (Dobbelstein, 2003). 

Non-viral vectors are easier to engineer and 

manufacture, but significantly less efficient in 

gene delivery compared with virus-based 

vectors. In addition, the lack of their 

chromosomal integration precludes long-term 

therapeutic effects (Masuda et al., 1996).  

   The eye is an ideal organ for in vivo gene 

transfer. It is easily accessible by 

microsurgical techniques under direct 

visualization and allows local application of 

therapeutic vectors (Figure 7). Precise 

targeting of vector within the globe 

minimizes systemic dissemination and the 

possibility of unwanted systemic side effects. 

Furthermore, the optical transparency of the 

eye enables transgene expression within the 

retina and effects of treatments to be 

monitored by a variety of noninvasive 

examinations. The small size of the eye 

means that small volumes of vector 

suspensions can transduce an adequate 

proportion of cells in the target tissue. Also 

non-dividing cell populations may be 

efficiently transduced by a single dose. In 

addition, the potential risk of virus-mediated 

insertional mutagenesis is significantly lower 

in the eye than in systemic applications as the 

ocular cells targeted are relatively few in 

number. 

   Furthermore, immune responses following 

intraocular vector administration are typically 

attenuated compared to those following 

systemic administration; a relatively immune 

priviledged system protects from immune 

responses directed against vector antigens 

that might otherwise cause inflammation and 

limit transgene expression (Bennett et al., 

1996). If only one eye is treated, the 

untreated eye may serve as a useful control 

for the evaluation of the efficacy of the 

treatment. The first clinical trials in ocular 

gene transfer strategy have been focused in 

gene replacement in inherited retinal 

degeneration, Leber’s congenital amaurosis 

(Bainbridge et al., 2008; Maguire et al., 

2008).  
 

 

 
 
Figure 7. Delivery routes in ocular gene 

therapy. 
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2.5.1 Viral vectors 

Viruses are intra-cellular parasites with 

specialized molecular mechanisms to 

efficiently transport their genomes to the 

cells. Viruses transfect their own DNA or 

RNA efficiently into the host cells which are 

then harnessed to produce new viral particles. 

By replacing genes that are needed for the 

replication phase of viruses life cycle with 

therapeutic genes, the recombinant viral 

vectors can transduce the cell type it would 

normally infect (Figure 8). The most studied 

viruses in ocular gene therapy field are 

adenoviruses (Ad), adeno-associated viruses 

(AAV) and lentiviruses. Adenoviral vectors 

efficiently target cells of the outer retina but 

their duration of expression is limited to a 

few weeks by immune responses to the vector 

(Ali et al., 1998a; Bennett et al., 1994; 

Bennett et al., 1996; Reichel et al., 1998).   

 

 

 

 
 

AAV vectors are used for sustained 

transduction of photoreceptor cells (Ali et al., 

1996; Bennett et al., 1999; Flannery et al., 

1997). Lentiviral vectors stably transduce 

RPE cells but are less efficient than AAV in 

transducing photoreceptors (Bainbridge et al., 

2001). Retroviral vectors specifically 

transduce dividing cells and have been 

developed for proliferative and neoplastic 

intraocular disorders (Hurwitz et al., 1999; 

Sakamoto et al., 1995). Ocular tissues are 

widely distributed, and therefore the capacity 

of the vector to transfect certain tissue is 

dependent on the site of its intraocular 

administration. Delivery of AAV vectors into 

the subretinal space results in the 

transduction of photoreceptors and RPE cells, 

whereas injection of the same vector into the 

vitreous humour targets only ganglion cells in 

the inner retina (Ali et al., 1998b). 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 8. Basic principal of gene transfer with viral and nonviral vectors. 
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2.5.1.1 Adenovirus 

Adenovirus is a non-enveloped double-

stranded DNA virus with maximal carrying 

capacity of 30kb of foreign DNA (Gonçalves 

and Vries, 2006).   It is a widely used vector 

in the gene therapy field due to many 

advantages.             Ad vectors are relatively 

easy to produce, have good capacity, and 

with an appropriate promoter can mediate 

good expression levels in many types of cells 

(Campochiaro, 2007).  The transduction 

efficiency for a certain cell type varies 

depending on the serotype of the Ad vector. 

The most studied serotypes are first or 

second generation type 2 and 5 

(Campochiaro, 2007; Chuah et al., 2003). 

Adenoviruses enter the cell by CAR-receptor 

mediated endocytosis and stay in the nucleus 

as episomes (Kovesdi et al., 1997). 

Therefore, they lack the ability to integrate 

the transferred gene into chromosomal DNA 

and their presence in cells is short-lived 
typically limited to a few weeks (Jomary et 

al., 1994). Repeated vector administration 

would be required to enhance expression 

levels, but the induction of a humoral 

immune response against the capsid proteins 

precludes vector readministration (Kafri et 

al., 1998). The T-cell–mediated immune 

response of the host has been shown to play 

a role in limiting the duration of adenovirus-

mediated transgene expression in the eye 

(Hoffman et al., 1997; Reichel et al., 1998; 

Tripathy et al., 1996).  

   The wild-type adenoviral genome can be 

divided into regions that are expressed either 

early or late after the infection of the target 

cell. The early region transcription units are 

E1-E4. The early gene products have 

different functions, such as initiation and 

activation of adenoviral replication, 

suppression of endogenous host gene 

expression and activation of late adenoviral 

gene expression (L1-L5), which encode most 

of the virion structural proteins (Chuah et al., 

2003). The first generation adenoviral 

vectors have deletions in at least one of the 

early genes, which consequently impair viral 

gene expression and replication (Figure 9) 

(Kozarsky and Wilson, 1993; Krougliak and 

Graham, 1995). Whereas early generation 

adenoviral vectors still contain residual viral 

genes that contribute to inflammatory 

immune responses, the latest generation, so 

called gutless adenoviral vectors, do not 

contain any residual viral genes. Gutless 

vectors contain only inverted terminal repeat 

(ITR) parts and a packaging sequence of the 

viral genome. Gutless adenoviral vectors are 

capable of transducing also rods, and 

mediate much longer transgene expression 

(Kumar-Singh and Chamberlain, 1996). 

They have significantly improved safety and 

expression profile of adenovirus vectors 

(Ehrhardt and Kay, 2002; Schiedner et al., 

1998). However, the immune system is still 

activated with gutless vectors due to their 

interaction with antigen-presenting cells 

(Chuah et al., 2003; Thorrez et al., 2004).  

However, in clinical trials second generation 

Ad vectors were well-tolerated 

(Campochiaro et al., 2006; Chevez-Barrios 

et al., 2005).  

   Intravitreous injections of Ad vectors 

resulted in transduction of corneal 

endothelium, trabecular meshwork, iris 

pigmented epithelium, ciliary epithelium, 

and GCL in the inner retina (Budenz et al., 

1995; Mori et al., 2002c). Subretinal 

injections result in transduction of RPE cells 

and occasional Müller cells, but little or no 

transduction of retinal neurons (Bennett et 

al., 1994; Hoffman et al., 1997; Li et al., 

1994). In eyes with proliferative retinopathy, 

there is strong transduction of cells 

participating in the disease processes, which 

could be a therapeutic advantage (Mori et al., 

2002c).   

 
Figure 9. First generation adenovirus vector. 
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2.5.1.2 Baculovirus 

Baculovirus (Bv) is a double-stranded DNA 

virus more seldom used in gene therapy. It is 

a large, approximately 130 kb sized virus 

with a transgene capacity up to 100 kb of 

foreign DNA. Over 500 different types of 

baculovirus have been found and the hosts 

are most usually insects (Hu, 2005). The 

most usually used and the best known 

serotype is Autographa californica multiple 

NPV (AcMNPV). Bv cannot replicate in 

vertebrate hosts and it is capable of 

transducing differentiated, nondividing cells 

(Hu, 2006; Mähönen et al., 2007).  Bvs have 

a low cytotoxicity in mammalian cells even 

at a very high virus load and they can be 

easily produced in high titers (Airenne et al., 

2003; Laitinen et al., 2005). Bv enters 

nondividing
 
mammalian cells by endocytosis 

and loses its envelope passing from the 

endosome to the cytoplasm. The 

nucleocapsid
 

is then transported to the 

nucleus through the nucleopore (van Loo et 

al., 2001). Recombinant Bvs have the 

capability of transducing a variety of 

mammalian
 

cells in vitro (Bilello et al., 

2001; Boyce and Bucher, 1996; Condreay et 

al., 1999; Ma et al., 2000; Merrihew et al., 

2001; Sarkis et al., 2000; Shoji et al., 1997; 

van Loo et al., 2001). Despite the ability to 

transduce mammalian cells in vitro, only
 

limited success has been reported in vivo. 

This is most likely due to viral inactivation 

by the complement system (Hofmann and 

Strauss, 1998). In the eye, the anterior
 

chamber, the subretinal space, and to a lesser 

extent, the vitreous
 

cavity, are relatively 

immune-privileged sites (Ferguson and 

Griffith, 1997; Kaplan et al., 1999; 

Niederkorn, 1990). Antigens in these
 
areas 

are not subject to the complement pathway 

and therefore Bvs are potential vectors for 

ocular gene therapy. Intravitreal injections
 
of 

Bv resulted in GFP expression in the corneal 

endothelium,
 
lens, RPE, and photoreceptor 

cells (Haeseleer et al., 2001). GFP 

expression was observed for up to two weeks 

after injection. Subretinal injection of 

BvGFP results in transduction of RPE cells. 

No alteration in ERG responses
 

was 

observed after injection of BvGFP 

(Haeseleer et al., 2001).  

2.5.1.3 Other viruses 

Adeno-associated viruses (AAVs) are 

nonenveloped parvoviruses
 

with linear, 

single-stranded DNA genomes that have 

many characteristics
 

that make them 

advantageous for use as viral vectors 

(Grimm and Kay, 2003). In humans AAV 

vectors appear to invoke little immune 

response and therefore have little toxicity 

and mediate prolonged transgene expression 

(Ali et al., 1998b; Bennett et al., 1997; 

Flannery et al., 1997). AAVs have the ability 

to transduce both dividing and non-dividing 

cells and recombinant adeno-associated 

viruses have been developed that integrate 

randomly in the host genome and have been 

shown to effect stable transduction of the 

retina for more than 1 year (Bennett et al., 

1999; Hauswirth and Beaufrere, 2000). 

Limitations of AAV
 
include difficulties to 

produce the virus, low maximal insert size of 

less than 5 kb and the induction of 

insertional mutagenesis (Miller et al., 2002). 

Moreover, AAV administration in patients 

has been associated with the induction of a 

possible cellular immune response directed 

against the processed AAV capsid antigens, 

leading to transient and acute hepatotoxicity 

(Manno et al., 2006; Zaiss and Muruve, 

2005). There are currently six known 

serotypes of AAV, of which type 2 has been 

most extensively studied as a potential 

vector (Rabinowitz et al., 2002). Different 

AAV serotypes have different virion shell 

proteins and therefore they vary in their 

ability to bind to and transfect different host 

cell types (Martin et al., 2002). Recombinant 

vectors can be generated using both capsid 

proteins and genomes from the same 

serotype or the vector genome can be 

derived from one serotype and included in 

the capsid from an alternative AAV serotype 

(Chao et al., 2000; Hildinger et al., 2001).  

   Intravitreous injections of AAV2/2 vectors 

result in transduction of ganglion cells, 
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trabecular meshwork cells and various cells 

of the inner nuclear layer, including Müller 

cells (Ali et al., 1998b; Auricchio et al., 

2001; Borrás et al., 2006; Flannery et al., 

1997; Martin et al., 2002). Subretinal 

injections of this serotype results in the 

transduction of photoreceptors and RPE 

cells, with an onset of transgene expression 

that peaks at 4 weeks after vector 

administration (Ali et al., 1996; Bennett et 

al., 1997; Flannery et al., 1997).  Subretinal 

administration of AAV5/5 or AAV2/5 also 

results in early RPE transduction, but more 

efficiently than that with AAV2/2 (Auricchio 

et al., 2001; Lotery et al., 2003; Yang et al., 

2002).   

   Lentivirus-based vectors are attractive 

candidates for ocular gene transfer because 

they efficiently transduce a variety of 

nondividing cells with little or no host 

response resulting in long-term transgene 

expression (Naldini et al., 1996; Poznansky 

et al., 1991). Human immunodeficiency 

virus-1 (HIV-1) and feline 

immunodeficiency virus (FIV) based 

lentiviral vectors efficiently transduce the 

corneal endothelium and trabecular 

meshwork following delivery into the 

anterior chamber (Challa et al., 2005; 

Loewen et al., 2004). Subretinal injection in 

rodents led to stable transgene expression in 

the RPE cells for at least 2 years (Cheng et 

al., 2005; Loewen et al., 2004; Tschernutter 

et al., 2005). HIV-1 based lentiviral vector 

has been shown to mediate therapeutic 

effects in retinal degenerations where RPE is 

involved (Miyazaki et al., 2003; Tschernutter 

et al., 2005). Lentivirus-mediated 

transduction of photoreceptor cells appears 

to be less predictable than transduction of 

RPE cells, but is reported to occur under 

certain circumstances depending on retinal 

maturity, the used promoter and anatomical 

barriers. Photoreceptor transduction is 

evident following subretinal vector delivery 

in neonatal rodents, but the efficiency of 

photoreceptor transduction in adults is 

relatively low (Kostic et al., 2003). The 

efficiency of photoreceptor cell transduction 

in adults is improved in locally traumatized 

retinas suggesting that anatomical barriers to 

tissue penetration by vector particles may be 

a limiting factor (Bainbridge et al., 2001; 

Gruter et al., 2005; Kostic et al., 2003). 

Vectors based on nonprimate lentiviruses 

such as FIV and bovine immunodeficiency 

virus (BIV) have transduction efficiencies 

and durations of expression in ocular tissues 

that are comparable to HIV-1 based vectors 

and may provide alternatives with potential 

safety advantages (Bainbridge et al., 2001; 

Cheng et al., 2005; Loewen et al., 2004; 

Molina et al., 2004). BIV is a lentivirus that 

is not known to cause human disease. 

Subretinal injection of a      BIVGFP vector 

resulted in a prolonged transduction of RPE 

cells with no inflammatory response 

(Takahashi et al., 2002).   

2.5.2 Non-viral vectors 

Problems associated with virus vectors have 

led to the development of non-viral methods 

(Abdallah et al., 1995; Glover et al., 2005; 

Niidome and Huang, 2002). These 

techniques are categorized into two general 

groups. Naked DNA delivery by a physical 

method, including electroporation, gene gun 

and ultrasound employ a physical force that 

permeates the cell membrane and facilitates 

intracellular gene transfer (Heller et al., 

2005; Lawrie et al., 2000; Liu et al., 1999; 

Neumann et al., 1982; Wolff et al., 1990; 

Yang et al., 1990; Yang and Sun, 1995; 

Zhang et al., 1999). The chemical 

approaches use synthetic or naturally 

occurring compounds such as cationic 

polymer and lipid as carriers to deliver the 

transgene into cells (Liu et al., 2003; Neu et 

al., 2005; Niidome and Huang, 2002).  

Advantages of non-viral systems include 

their reduced immunogenicity, unlimited 

size of therapeutic expression cassette and 

improved safety profiles (Li and Huang, 

2000). In addition, non-viral vectors are 

easier and less expensive to manufacture 

(Nabel et al., 1993; Stewart et al., 1992). 

However, non-viral approaches have been 

suffering from inefficient delivery resulting 
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in transient transgene expression (Dass, 

2004). In addition, vitreous humour has been 

shown to limit nonviral gene delivery to RPE
 

cells substantially in vitro (Peeters et al., 

2005; Pitkanen et al., 2003). 

2.5.2.1 Plasmids  

Simple injection of plasmid DNA directly 

into a tissue without additional help from 

either a chemical agent or a physical force is 

able to transfect cells (Li and Huang, 2000).  

Specific or nonspecific receptors on the cell 

surface that bind and internalize DNA have 

been implicated as a mechanism (Gao et al., 

2007).  However, owing to rapid degradation 

by nucleases in the serum and clearance by 

the mononuclear phagocyte system, the 

expression level and the area after injection 

of naked DNA are generally limited (Li and 

Ma, 2001). Following intravitreous injection 

of naked plasmid in mice, expression of the 

reporter gene was observed in retinal 

ganglion cells for only one day (Hangai et 

al., 1998a).  However, subretinal injection of 

a reporter gene encoding plasmid did not 

lead to gene expression (Kachi et al., 2005).  

2.5.2.2 Physical methods 

Various physical manipulations have been 

used to improve the efficiency of non-viral 

gene transfer. The transduction efficiency of 

non-viral vectors in the retina can be 

substantially improved by adjunctive 

electroporation. Electroporation is the use of 

electric fields to facilitate the penetration of 

macromolecules into cells; it is based upon 

the observation that electric fields can alter 

the structure and permeability of cell 

membranes (Coster, 1965). Following 

intravitreal injection of plasmid DNA 

electroporation results in short-lived but 

efficient transduction of retinal ganglion 

cells (Ishikawa et al., 2005). Electroporation 

of plasmid DNA delivered to the subretinal 

space in neonatal rodents leads to efficient 

reporter gene expression in photoreceptors, 

bipolar cells and Müller cells that is 

sustained for at least 50 days (Matsuda and 

Cepko, 2004). Electroporation can be 

associated with variable adverse effects on 

normal ocular structures resulting in 

inflammation, cataract, retinal degeneration 

and phthysis (Bainbridge et al., 2006).                  

   Gene gun technique consists of 

“bombarding” a tissue with gold or tungsten 

bullets covered with DNA. It is potentially 

applicable for the treatment of ocular surface 

diseases and particularly for corneal diseases 

(Bloquel et al., 2006). Ultrasound can alter 

the permeability of plasma membrane 

transiently and thereby facilitate DNA 

uptake (Bloquel et al., 2006). A number of 

groups have demonstrated the utility of these 

various modalities of ultrasound in 

enhancing the delivery of plasmid DNA 

(Chen et al., 2003; Danialou et al., 2002; 

Sonoda et al., 2006; Taniyama et al., 2002).  

2.5.2.3 Lipoplex 

Lipofection reagents are molecules 

composed of phospholipids that contain both 

hydrophobic and hydrophilic domains. 
These reagents form complexes with DNA 

in a physicochemical manner by electrostatic 

interactions between the positively charged 

(cationic) lipid and the negatively charged 

DNA (Felgner and Ringold, 1989). The 

DNA condenses with the lipofection reagent 

in a non-enzymatic fashion to form lipid/ 

DNA complexes that can be used to deliver 

foreign DNA to cells in vitro and in vivo 

(Bebok et al., 1996; Caplen et al., 1995; 

Chaum et al., 2000; Chaum, 2001; Felgner et 

al., 1987; Gershon et al., 1993; Kukowska-

Latallo et al., 1996; Masuda et al., 1996). 

Virus-coated liposomes have also been used 

to transfer genes to the anterior segment, 

retina, and choroidal neovascular tissue 

(Hangai et al., 1996; Hangai et al., 1998b; 

Otsuji et al., 2000). The lipid/DNA 

complexes enter the cell by endocytosis 

(Wrobel and Collins, 1995). After 

endocytosis, much of the DNA is degraded 

by fusion of the endosome with lysosomes 

(Friend et al., 1996). However, some of the 

DNA is released into the cytoplasm from the 

endosomes and makes its way to the nucleus 
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probably by a concentration-dependent 

manner (Friend et al., 1996; Xu and Szoka, 

1996). Active transport of DNA to the 

nucleus following lipofection has not been 

demonstrated (Chaum and Hatton, 2002). 

Disadvantages of lipofection include poor 

target selectivity, reduced efficiency 

compared to viral vectors, and short duration 

of expression. Transient transgene 

expression results from the episomal status 

of the plasmid vector after it reaches the 

nucleus, with low frequency of integration 

into the host genome. However, a small 

percentage of transfected retinal cells do 

show transduction with sustained transgene 

expression in vitro (Chaum et al., 2000).  

2.5.2.4 Transposons 

Transposable elements are non-viral gene 

delivery vehicles found ubiquitously in 

nature. Transposon-based vectors have the 

capacity of stable genomic integration and 

long-lasting expression of transgene 

constructs in cells. Transposons are discrete 

segments of DNA that have the distinctive 

ability to move from one genetic location to 

another in a genome (Ivics and Izsvak, 

2006). Transposon integration into 

chromosomes provides the basis for long 

term transgene expression in transgenic cells 

and organisms. The only known, naturally 

occurring, active transposable element of 

vertebrate origin is the Tol2 transposon 

isolated from the medakafish (Koga et al., 

1996). In addition, Tc1/mariner-type, active 

elements from transposon fossils found in 

fish genome were reconstructed and named 

Sleeping Beauty and Frog Prince (Ivics et 

al., 1997; Miskey et al., 2003). Sleeping 

Beauty transposition is efficient in cells of 

different vertebrate classes in tissue culture 

(Huang et al., 2006; Izsvák et al., 2000). 

Transposons have not been used in ocular 

gene therapy. 
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Table 2. Vectors in gene therapy. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector Advantages Disadvantages Gene expression after 

Intravitreal 

injection 

Subretinal 

injection 
Plasmid 

DNA  

and 

complexes 

Easy to produce 

Safe 

Low transduction 

efficiency 

Transient expression 

Ganglion cells No gene 

expression 

Adeno- 

virus 

Easy to produce 

High transduction 

efficiency 

Broad host spectrum 

 

Immunogenic 

Transient expression 

Repeated injections 

impossible 

Corneal endothelium 

Trabecular meshwork 

Ciliary epithelium 

Ganglion cells 

Occasional 

Müller cells  

RPE 

 

AAV Broad host spectrum  

Long expression 

Not associated with 

human diseases 

 

Difficult to produce  

Limited DNA capacity 

Trabecular meshwork  

Ganglion cells 

Müller cells  

 

RPE 

Photoreceptors 

 

Baculo- 

virus 

Easy to produce 

Not associated with 

human diseases 

High DNA capacity 

Inactivation by 

complement fractions  

Moderate transduction 

efficacy 

Transient expression 

Corneal endothelium 

Lens 

Photoreceptor cells  

RPE 

 

RPE 

Lentivirus Broad host spectrum 

Long expression 

Random integration of 

DNA 

Difficult to produce  

Low transduction 

efficiency 

Limited DNA capacity 

No gene expression RPE 

Photoreceptors 
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2.6 ANTIANGIOGENIC AGENTS FOR 

OCULAR NEOVASCULARIZATION  

2.6.1 PEDF 

One of the most studied proteins that has 

been shown to inhibit ocular 

neovascularization is pigment epithelium 

derived factor (PEDF). It was first isolated 

from cultured RPE cells as a neurotrophic 

factor (Tombran-Tink et al., 1991). PEDF is a 

50 kDa glycoprotein which belongs to the 

serine protease inhibitor (serpin) family in the 

plasminogen system, but it lacks the protease 

inhibitor activity normally seen in serpins 

(Becerra et al., 1995; Steele et al., 1993). 

PEDF has been shown to
 

inhibit the 

migration of ECs in vitro in a dose-dependent
 

manner more effectively than angiostatin or 

endostatin (Dawson et al., 1999).  It also 

promotes survival of cultured neurons and 

protects photoreceptors from the effects of 

excessive light exposure (Araki et al., 1998; 

Bilak et al., 1999; Cao et al., 2001; Steele et 

al., 1993). In the eye, PEDF is normally 

found in high concentrations in the vitreous 

humour, the lens and the cornea and it could 

be partly responsible for the avascularity of 

these tissues (Dawson et al., 1999; Wu and 

Becerra, 1996). PEDF is produced by the 

RPE, cornea and ciliary epithelium 

(Tombran-Tink et al., 1995). Oxidative stress 

is known to induce a dose-dependent 

reduction in the expression of PEDF (Cao et 

al., 1999). The vitreous concentration of 

PEDF declines with increasing age and is 

more marked in patients with AMD 

(Holekamp et al., 2002). It is not clear 

whether this is due to decreased synthesis or 

increased proteolytic activity in the vitreous 

(Wu and Becerra, 1996).  In addition, the 

levels of intraocular PEDF have been shown 

to decrease with
 
advancing stages of diabetic 

retinopathy (Boehm et al., 2003; Ogata et al., 

2001a; Ogata et al., 2002; Spranger et al., 

2001). Systemic delivery of recombinant 

PEDF inhibited ischemia-induced retinopathy 

in animal models (Duh et al., 2002; Stellmach 

et al., 2001). Subretinal transplanation of 

autologous iris pigment epithelial cells 

expressing PEDF inhibited laser-induced 

CNV in rats (Semkova et al., 2002). In the rat 

model of ischemia-induced retinopathy, an 

increased VEGF/PEDF ratio correlated with 

the presence of retinal neovascularization 

(Gao et al., 2001).  Intraocular AAV-

mediated gene transfer of PEDF has also 

been shown to inhibit retinal and choroidal 

neovascularization (Auricchio et al., 2002; 

Mori et al., 2002d; Raisler et al., 2002). 

Furthermore, intravitreous or subretinal 

injection of adenoviral vector expressing 

human PEDF (AdPEDF) suppressed the 

development of retinal or choroidal 

neovascularization and also caused regression 

of established neovascularization (Mori et al., 

2001b; Mori et al., 2002b).  Injection of 

AdPEDF beneath the conjunctiva along the 

outer border of the sclera resulted in 

transduction of episcleral cells that produced 

PEDF on the outside of the eye (Gehlbach et 

al., 2003a). The PEDF penetrated the sclera 

resulting in high levels in the choroid that 

caused regression of CNV. Subconjunctival 

injection of AdPEDF also inhibited CNV in 

pigs (Saishin et al., 2003b). Also AdPEDF 

phase I clinical trial in patients with advanced 

CNV due to AMD have been done. In this 

study, there were no serious adverse events 

and a significant proportion of the patients 

had an improvement in lesion size from 

baseline (Campochiaro et al., 2006).   

2.6.2 sFlt-1 

Soluble (s)Flt-1 is a naturally occurring 

protein antagonist of VEGF formed by 

alternative splicing of the pre-mRNA for the 

full length VEGFR-1 (He et al., 1999; 

Kendall et al., 1996). The angiostatic activity 

of sFlt-1 results from inhibition of VEGF by 

two mechanisms. It causes both sequestration 

of VEGF to which it binds with high affinity 

and forms inactive heterodimers with 

VEGFR-1 and VEGFR-2 (Kendall et al., 

1996). It is not clear whether sFlt-1 has a role 

in normal eyes, but several studies have 

tested the effect of overexpression of sFlt-1 in 

ocular neovascularization models (Gehlbach 

et al., 2003b; Honda et al., 2000; Lai et al., 
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2001; Rota et al., 2004). Inhibition of VEGF 

by repeated intravitreal injections of 

recombinant sFlt-1 chimeric proteins and 

antisense oligodeoxynucleotides have been 

shown to reduce retinal neovascularisation in 

OIR mouse model (Aiello et al., 1995a; 

Robinson et al., 1996). Intraocular injection 

of AdsFlt-1 suppressed retinal or choroidal 

neovascularization (Bainbridge et al., 2002; 

Honda et al., 2000; Rota et al., 2004).  

Periocular injection of AdsFlt-1 resulted in 

transduction of episcleral cells, penetration of 

the sclera and high levels of AdsFlt-1 in the 

choroid, which markedly suppressed CNV 

(Gehlbach et al., 2003b). Long-term 

suppression of CNV was achieved with 

intraocular injection of AAVsFlt-1 in mice 

and monkeys (Bainbridge et al., 2002; Lai et 

al., 2005; Lai et al., 2002).   

2.6.3 RNA interference 

The production of growth hormones can be 

inhibited by RNA interference. It is a natural 

mechanism to inhibit the intracellular 

production by silencing gene coding for a 

specific protein (Elbashir et al., 2001). Small 

interfering RNA (siRNA) is a double 

stranded RNA, which consists of 21-22 

nucleotides. After being further processed to 

a RNA-induced silencing complex (RISC) by 

intracellular enzymes, the fragment binds 

specifically to messenger RNA (mRNA), 

causing cleavage and further digestion of the 

mRNA. The RISC can then bind to other 

mRNA molecules and the process is repeated 

multiple times resulting in a very efficient 

overall inhibition of the production of the 

targeted protein (Schmidt-Erfurth and 

Pruente, 2007). Bevasiranib, siRNA targeting 

VEGF, has been shown to inhibit retinal 

neovascularization in a mouse model (Reich 

et al., 2003). In non-human primates the area 

of laser induced CNV was significantly 

decreased with intravitreal injection of 

bevasiranib (Tolentino et al., 2004). In the 

phase II randomized doubleblinded CARE 

(Cand5 Anti-VEGF RNAi evaluation) study 

designed to assess the safety and efficacy of 

bevasiranib, 129 patients with CNV due to 

AMD were randomized to receive three 

different intravitreal doses of bevasiranib at 

baseline and at 6 weeks. No local or systemic 

serious adverse events were found. However, 

there was evidence of continuing 

deterioration during the first three weeks of 

treatment. The phase III COBALT study is 

currently assessing the safety and efficacy of 

bevasiranib administered every 8 or 12 weeks 

as maintenance therapy following 3 monthly 

injections of ranibizumab in 330 patients with 

AMD.  

   Intravitreous or periocular injection of 

AGN211745 (Sirna-027), siRNA directed 

against VEGFR-1, resulted in significant 

reductions in the area of neovascularization 

in mouse models of retinal and choroidal 

neovascularization (Shen et al., 2006). A 

phase I dose-escalation study with 

AGN211745 in 26 patients with AMD 

showed single intravitreal injection of 

siRNA-027 to be safe and well tolerated. 

Visual acuity stabilization was achieved in 

92% of patients at 3 months and decreased 

foveal thickness was seen in some patients. A 

phase II 24-month single blinded safety and 

efficacy study is currently in enrolment 

(Chappelow and Kaiser, 2008).   

   RTP801i-14 (PF-4523655) is a siRNA 

designed to inhibit the expression of the 

hypoxia-inducible gene RTP801. The 

RTP801 gene is upregulated in response to 

ischemia, hypoxia and oxidative stress both 

in vitro and in vivo (Shoshani et al., 2002). It 

has been shown to promote neuronal cell 

apoptosis and the generation of ROS in vitro 

by a mechanism that is independent of 

growth factors such as VEGF (Ellisen et al., 

2002; Shoshani et al., 2002). In both 

RTP801-knockout and therapeutic mouse and 

primate models of laser-induced CNV, 

inhibition of RTP801 expression leads to 

inhibition or reduction of CNV and vessel 

leakage more efficiently than anti-VEGF 

drugs (Brafman et al., 2004; Nozaki et al., 

2006). In addition, knock out of RTP801 

ameliorates
 
diabetes–induced retinal vascular 

permeability and ERG abnormalities in 

diabetic mice (Timothy et al., 2005). Because 
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it has anti-inflammatory and antiapoptotic 

properties it may also be useful for the 

treatment of dry AMD. Results from a Phase 

I/II trial showed that RTP801i-14 was safe 

and well tolerated in patients with wet-AMD 

who failed to respond to currently approved 

therapies. The phase II prospective, 

randomized, dose-ranging study is currently 

evaluating the safety and efficacy of 

RTP801i14 versus laser therapy in 160 

patients with diabetic macular edema 

(ClinicalTrials, 2009b).  

2.6.4 Aflibercept  

Aflibercept, VEGF Trap, is a receptor decoy 

with a higher affinity for VEGF than native 

VEGF receptors or any of the currently 

available anti-VEGF drugs. It is a soluble 

protein, combining ligand–binding elements 

from the extracellular domains of VEGFR-1 

and VEGFR-2 fused to the Fc constant region 

of immunoglobulin G1. The molecule binds 

to all members of VEGF family with high 

affinity, but does not non-specifically attach 

to any components of the ECM. It has been 

shown to penetrate through all retinal layers. 

In a mouse model with laser induced CNV, 

aflibercept induced the regression of CNV by 

85% within 10 days (Saishin et al., 2003a). 

Furthermore, the CNV completely 

disappeared in a large percentage of eyes. 

Intravitreal administration of aflibercept 

significantly
 

reduced retinal vascular 

permeability in diabetic rat model (Cao et al., 

2006). Data from a phase I, randomized, 

double-blind, placebo-controlled, ascending-

dose trial of 25 patients with AMD showed a 

dose-dependent decrease in retinal thickness 

in patients who received intravenous 

aflibercept (Nguyen et al., 2006). However, 

dose-limiting toxicity (hypertension in one 

patient and proteinuria in another patient) 

was observed and the study and further 

clinical development of systemic aflibercept 

for ocular disease was halted (Nguyen et al., 

2006). The safety, tolerability and bioactivity 

of intravitreal aflibercept for the treatment of 

neovascular AMD was evaluated in the two-

part CLEAR-IT-1 (Clinical Evaluation of 

Anti-angiogenesis in the Retina Study). In 

part 1, 21 patients were randomized to 

receive one of six doses of aflibercept as a 

single intravitreal injection at baseline, then 

assessed at 1, 2, 4 and 6 weeks using ETDRS 

(Early Treatment Diabetic Retinopathy 

Study) best-corrected visual acuity, FAG and 

OCT. Aflibercept was well tolerated and 

there were no adverse events. At 6 weeks 

visual acuity remained stable or improved in 

95% of patients and the total area of CNV 

decreased 35%. Reduction in central 

thickness in OCT was also seen (Benz et al., 

2007).   

   A randomized, double-blind phase III trial 

of aflibercept in approximately 1200 patients 

with the neovascular form of wet AMD, 

VIEW 1 (VEGF Trap: Investigation of 

Efficacy and safety in Wet age-related 

macular degeneration) study will evaluate the 

safety and efficacy of intravitreal aflibercept 

at different doses administered at two 

different dosing intervals compared with 0.5 

mg ranibizumab administered every 4 weeks 

(ClinicalTrials, 2009a). 

   Additionally, a phase I trial of aflibercept in 

five patients with diabetic macular edema has 

been done. Results indicated that a single 4 

mg injection resulted in a marked decrease in 

mean central retinal thickness and mean 

macular volume. Aflibercept was well 

tolerated, and there were no drug-related 

serious adverse events (Do et al., 2007).   

2.6.5 Endostatin 

Endostatin is a cleavage product of collagen 

XVIII that inhibits EC adhesion, migration 

and proliferation, as well as the induction of 

apoptosis (O'Reilly et al., 1997). It has been 

studied most widely in cancer therapy. In the 

eye, endostatin has been found in the lens 

epithelium and in the ciliary body. In the 

retina, endostatin has been found in the inner 

limiting membrane. It has also been detected 

in the lens capsule and all border membranes 

lining the aqueous humor including the 

anterior surface of the iris. These findings 

suggest that there are specific endostatin 

expressing structures forming a barrier 
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around the anterior chamber and the vitreous, 

which may prevent ocular blood vessels from 

sprouting into these avascular compartments 

(Ohlmann et al., 2005). In collagen XVIII 

gene knockout mice, deficient endostatin 

production causes delayed regression of 

blood vessels in the vitreous and abnormal 

outgrowth of retinal vessels (Fukai et al., 

2002). In addition, the age-dependent vision 

loss in these mutant mice is associated with 

pathological accumulation of deposits under 

the RPE, as seen in early stages of AMD in 

humans suggesting that endostatin is an 

important endogenous regulator of 

vasculature formation and tissue development 

in the eye (Marneros et al., 2004). Endostatin 

levels in the vitreous and aqueous humor are 

decreased in patients with diabetic 

retinopathy and negatively correlate with the 

severity of retinopathy and VEGF levels 

(Funatsu et al., 2001; Noma et al., 2002). 

Endostatin is also reduced in Bruch's 

membrane and choriocapillaris basement 

membrane in AMD subjects compared to 

aged normal human subjects (Bhutto et al., 

2004).  Intravenous injection of adenoviral 
vectors encoding endostatin increased the 

serum level of endostatin and inhibited laser-

induced CNV (Mori et al., 2001a). In OIR 

mouse model intraocular injection of AAV 

endostatin inhibited ischemia-induced retinal 

neovascularization (Auricchio et al., 2002).  

Injection of endostatin into the eyes of the 

VEGF transgenic mice demonstrated that 

endostatin significantly reduced the VEGF-

induced retinal vascular hyper-permeability 

and inhibited retinal neovascularization 
(Takahashi et al., 2003).   

2.6.6 Angiostatin 

Angiostatin, a 38-45 kDa internal fragment of 

plasminogen, is a potent inhibitor of 

angiogenesis, which selectively inhibits 

proliferation and induces apoptosis in ECs. It 

is a cleavage product of fibrinogen that 

inhibits tumor angiogenesis and 

downregulates VEGF (O'Reilly et al., 1994).  
As a naturally occurring peptide, it is not 

likely to stimulate an immunogenic response 

(Cao, 2001). In the patients with proliferative 

diabetic retinopathy, significant elevation of 

vitreal angiostatin levels and decrease of 

VEGF concentration in the vitreous was 

observed in those who had previous laser 

photocoagulation, suggesting that local 

release of angiostatin and down-regulation of 

VEGF mediate the therapeutic effects of 

retinal photocoagulation in proliferative 

diabetic retinopathy (Spranger et al., 2000).  

Intravitreal delivery of AAV encoding 

angiostatin reduced vascular leakage in a 

diabetic rat model (Shyong et al., 2007). In 

OIR mouse model, systemic and intravitreal 

injections of angiostatin before the 

appearance of retinal neovascularization 

resulted in significantly fewer pre-retinal 

vascular cells, suggesting a preventive effect 

of angiostatin on the retinal neovessel 

formation (Drixler et al., 2001; Meneses et 

al., 2001). Subretinal or intravitreous 

injection of AAV or lentiviral vector 

expressing angiostatin has been shown to 

suppress retinal and choroidal 

neovascularization (Igarashi et al., 2003; Lai 

et al., 2001; Raisler et al., 2002). However, in 

normal neonatal mice, angiostatin does not 

affect any physiological development of 

retinal vasculature, indicating no toxicities to 

normal vasculature with the angiostatin 

administration (Drixler et al., 2001).   

2.6.7 Rapamycin 

Rapamycin, also known as sirolimus, targets 

the protein kinase mammalian target of 

rapamycin (mTOR), which regulates cell 

growth and metabolism. In addition to 

possessing anti-inflammatory, anti-fibrotic 

and anti-proliferative properties, rapamycin 

acts as an antiangiogenic agent decreasing 

VEGF and transforming growth factor-β1 

(Guba et al., 2002). Rapamycin also exerts an 

antiangiogenic effect by downregulating HIF-

1α, which effectively decreases VEGF 

production and inhibits VEGF induced EC 

proliferation. In preclinical studies, 

rapamycin inhibited VEGF-induced 

hyperpermeability in mice and reduced CNV 

in a murine laser-induced model of CNV 
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(Dejneka et al., 2004; Kleinman et al., 2007). 

In the phase I dose escalation study in 30 

patients with CNV and 50 patients with 

diabetic macular edema, single intravitreal 

injection of rapamycin was well tolerated and 

functional
 

and anatomical improvements 

were seen (Blumenkranz et al., 2008; Dugel 

et al., 2008).  

2.7 ANTI-VEGF THERAPY FOR 

OCULAR NEOVASCULAR DISEASES 

 

VEGF is an attractive target in anti-CNV 

therapy because of its important role in ocular 

angiogenesis. Anti-VEGF treatments of 

neovascular AMD and other ocular 

neovascular diseases have beneficial effects 

on disease progression. However, intravitreal 

administration of current treatment molecules 

has also several risks including 

endophthalmitis, retinal detachment, cataract 

and uveitis. In patients treated for up to 2 

years with pegaptanib the drug was well 

tolerated in the eye. Endophthalmitis 

occurred at a rate of 0.16% per injection, 

retinal detachment at 0.08% per injection, 

and traumatic cataract 0.07% per injection 

during the first year of study (D’Amico, 

2006).      Aseptic technique, including 

periocular and ocular surface preparation, lid 

speculum, and drape were found to be 

essential (D’Amico, 2006). With improved 

aseptic techniques,       the incidence of 

endophthalmitis was decreased to 0.10% per 

injection within the second year of the study.  
Intravenous bevacizumab in cancer therapy 

has shown systemic side-effects including 

hypertension, increased rate of 

thromboembolic events, gastrointestinal 

perforations, myocardial infarctions, and 

death (Hurwitz et al., 2004; Miller et al., 

2005). Intravitreal injections lead to 

detectable but significantly lower serum 

levels of ranibizumab and pegaptanib than 

with intravenous administration (Gaudreault 

et al., 2005; Siddiqui and Keating, 2005). 

There was no evidence of an increase in 

deaths, hypertension or thromboembolic 

events in the 2-year safety data from the 

VISION trial (D’Amico, 2006). In the first 

year of the ANCHOR and MARINA trials 

the risk of myocardial infarction and stroke 

was slightly higher in the 0.5 mg ranibizumab 

compared to the control group.  

   Current anti-VEGF drugs have a relatively 

short half-live leading to repeated 

administrations (Cao, 2001). The long term 

effects of these multiple injections on the 

structure and function of eye are still largely 

unknown. The risk of complications is 

anyway increased with the number of 

injections, and safer and more sustained 

regimens need to be developed for intraocular 

antiangiogenic therapy.  

2.7.1 Pegaptanib 

Pegaptanib is a pegylated ribonucleic acid 

oligonucleotide aptamer approved as the first 

antiangiogenic aptamer for use of wet AMD 

by the FDA in 12/2004 followed by an 

approval by the EMEA in 1/2006. Aptamers 

are oligonucleotides designed to bind to 

specific molecules based on their three-

dimensional structure. Aptamers rarely evoke 

immune responses (Eyetech Study Group, 

2002). Pegaptanib binds specifically to 

VEGF-A165 and inhibits angiogenesis and 

pathologic leakage (Moshfeghi and Puliafito, 

2005). The recommended dose of pegabtanib 

is 0.3 mg and the drug is administred 

intravitreally every six weeks as the molecule 

is rapidly degraded enzymatically by 

intraocular nucleases (Schmidt-Erfurth and 

Pruente, 2007). The VISION trial, designed 

as two parallel phase III double-masked, 

sham-controlled, dose-ranging studies 

included a total of 1186 AMD patients. 

Intravitreal injections were performed on a 

fixed regular schedule with six weeks 

intervals. After one year, 70% of pegabtanib 

treated eyes versus 55% of control eyes lost 

less than 15 letters in visual acuity 

(Gragoudas et al., 2004). At two years, 59% 

of eyes treated with a dose of 0.3 mg 

pegabtanib lost less than 15 letters compared 

to 45% of standard care treated eyes 

(D’Amico, 2006). Patients discontinuing 

pegabtanib treatment after the first year 
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experienced an additional mean loss of 15 

letters in 27% of eyes. These results suggest 

that pegabtanib injections need to be 

continued over a period of at least two years 

in order to maintain a small benefit consisting 

of a mean loss of two lines.  
   Pegaptanib has also been studied in diabetic 

retinopathy. Safety and efficacy of 

pegaptanib were assessed in a randomized, 

sham-controlled, double-masked Phase II 

trial enrolling 172 diabetic subjects with 

diabetic macular edema. Intravitreous 

injections were administered every six weeks. 

At Week 36, 0.3 mg pegaptanib was 

significantly superior to sham injections. 34% 

of patients gained ≥10 letters and also change 

in mean central retinal thickness decreased 

significantly (Macugen Diabetic Retinopathy 

Study Group, 2005). In addition, a 

retrospective subgroup analysis revealed that 

pegaptanib treatment led to the regression of 

baseline retinal neovascularization in 8 of 13 

patients with proliferative diabetic 

retinopathy (Macugen Diabetic Retinopathy 

Study Group, 2006).  

2.7.2 Ranibizumab 

Ranibizumab is a recombinant humanized fab 

fragment derived from a monoclonal 

antibody. It was approved by the FDA for the 

treatment of all lesion types in neovascular 

AMD at a dose of 0.5 mg in 7/2006 and by 

the EMEA in the first quarter of 2007. It has 

a rather small molecular size of 48 kDa 
which ables the drug to penetrate the inner 

limiting membrane and reach the subretinal 

space when injected intravitreally. It binds all 

biologically active isotypes of VEGF with 

high affinity (Chen et al., 1999).  Intravitreal 

injections of ranibizumab prevented 

formation of CNV in animal models, and 

decreased leakage of already formed CNV 

with no significant toxic effects (Husain et 

al., 2005; Krzystolik et al., 2002).  The half-

life of ranibizumab is 2–4 days, resulting in a 

rapid systemic clearance and high systemic 

safety. A randomized, sham-controlled phase 

III MARINA study included 716 patients 

with minimally classic or occult CNV. 

Patients were randomized into two treatment 

and one sham group. Injections were given in 

monthly intervals over 24 months. At the 12 

month visit, 95% of treated eyes had 

maintained stable vision within three lines 

compared to 62% of control eyes. After 24 

months, 90% of eyes in the 0.5 mg group 

versus 53% in the control group 

demonstrated stable vision (Rosenfeld et al., 

2006). The ANCHOR study was a 

prospective, randomized phase III trial 

including 423 patients with predominantly 

classic CNV. Fixed monthly injections of 0.3 

or 0.5 mg ranibizumab were compared to the 

photodynamic therapy (PDT). At one year, 

96% of all eyes treated with 0.5 mg 

ranibizumab had lost less than three lines 

versus 64% of PDT-treated eyes (Brown et 

al., 2006). The PIER study included 182 

patients with all lesion subtypes of CNV. The 

aim of this study was to evaluate the              

efficacy and safety of ranibizumab initially 

administered monthly for three injections 

followed by a fixed regimen of re-treatments 

in three month intervals. Overall, patients 

treated with ranibizumab remained stable at 

baseline visual acuity for 12 months. 

However, the proportion of gainers with 3 

lines was only 13% compared to 34% of 

three line gainers in MARINA and 40% in 

ANCHOR. For the majority of eyes, the fixed 

quarterly regimen was not sufficient and 

recurrence was not treated adequately. This 

observation highlights the importance of an 

individualized re-treatment regimen based on 

an individualized diagnostic monitoring 

(Schmidt-Erfurth and Pruente, 2007). 

2.7.3 Bevacizumab 

Bevacizumab is a full length recombinant, 

humanized antibody of a molecular weight of 

149-kDa which binds to all VEGF isoforms. 

Like ranibizumab, the drug reduces 

angiogenesis and vascular permeability. The 

drug was originally developed to target 

pathologic angiogenesis in tumors and was 

approved by the FDA for the treatment of 

metastatic colorectal cancer. Due to its 

substantially larger molecular weight, local 
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and systemic clearance of bevacizumab may 

be delayed, resulting in an extended 

durability of the treatment, but associated 

with higher systemic toxicity (Schmidt-

Erfurth and Pruente, 2007). Experimental 

studies showed no toxic effect of a 2.5 mg 

dose to the retina in a rabbit model, however, 

toxic effects were found following the 

application of a dose of 5 mg (Manzano et al., 

2006). Using immunohistochemistry, full 

thickness penetration following intravitreal 

injection of 500 µg bevacizumab was 

demonstrated in the rabbit retina (Shahar et 

al., 2006). In a phase I SANA study, 15 AMD 

patients were given bevacizumab 

intravenously in 2-week intervals. This 

resulted in a significant improvement in 

visual acuity, OCT and angiographic 

outcomes at a follow-up of 12 weeks 

(Michels et al., 2005). A mild elevation in 

systolic blood pressure was seen as a 

systemic adverse event, which was reportedly 

controlled by anti-hypertensive medication. 

Promising results have been reported from a 

case series including 266 AMD patients 

treated with intravitreal injections of 

bevacizumab at a dose of 1.25 mg. Within 

three months, improvement in function and 

visual acuity was seen in 38% of treated 

patients and the mean central retinal 

thickness decreased significantly (Spaide et 

al., 2006). Also improvement in the 

multifocal-ERG responses consistent with 

photoreceptor recovery was seen (Shahar et 

al., 2006). Small studies with intravitreal 

bevacizumab have also been done in diabetic 

patients (Avery et al., 2006; Spaide and 

Fisher, 2006). Intravitreal bevacizumab was 

given in monthly intervals and functional 

benefit was seen with mean visual acuity 

improvement  after two months (Avery et al., 

2006). Also other neovascular diseases have 

been treated with bevacizumab with positive 

effects (Avery, 2006; Iturralde et al., 2006; 

Spaide and Fisher, 2006). Bevacizumab 

appears to have a beneficial effect in the off-

label treatment of intraocular 

neovascularization at least based on 
retrospective case series. 
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3 AIMS OF THE STUDY  

 
The aim of the study was to determine factors involved in the pathogenesis of proliferative 

diabetic retinopathy and retinal neovascularization. Furthermore, the differences between type 1 

and type 2 diabetics were studied. From the basis of these results, we evaluated the effects of 

overexpression of vascular endothelial growth factors -A and –D in the rabbit eye. In addition, 

we evaluated adenovirus and baculovirus vectors for their efficacy, safety and distribution in 

ocular gene therapy in order to develop more sustain therapies for ocular neovascular diseases. 

Finally, ocular phenotype of IGF-II/LDLR
–/–

ApoB
100/100

 mice was studied.  

 

The following questions were addressed:  

 

-Which factors are involved in proliferative diabetic retinopathy? Are there differences between 

type 1 and type 2 diabetic patients? (I)  

 

-What are the effects of VEGF-A165 and VEGF-D
∆N∆C

 in ocular tissues? (II-III)  

 

-What is the efficacy, safety and distribution of adenoviral and baculoviral vector after 

intravitreal gene transfer? (II-III) 

 

-What is the ocular phenotype of diabetic IGF-II/LDL
–/–

ApoB
100/100

mice? (IV) 
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4 MATERIALS AND METHODS 

 

The following tables and figure contain the 

summary of the materials and methods used 

in this study. The materials and methods have 

been described in details in the original 

publications (I-III) and in the manuscript 

(IV). 

 

Informed consent was obtained from the 

subjects after explanation of the nature and 

possible consequences of the study. 

 

 

 

 

 

4.1 Human samples 

Table 3. Clinical characteristics of the patients. 

 

The study was approved by the Ethical 

Committee of Kuopio University Hospital, 

Kuopio, Finland and the study was in 

accordance with the principles outlined in the 

Declaration of Helsinki. 

   Both vitreous samples and neovascular 

tissues were collected from vitreoretinal 

surgeries. Vitreous humour was injected into 

a manually adjusted 2 ml aspiration syringe 

with infusion disconnected at the beginning 

of the pars plana vitrectomy. The sample was 

moved into a Eppendorf tube (Eppendorf 

Nordic, Horsholm, Denmark), and 

immediately stored in liquid nitrogen.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Later during the surgical procedure, a 

fibrovascular membrane was isolated from 

the surrounding vitreous and from the optic 

nerve head or retina, grasped with vitreous 

forceps and pulled out through a sclerotomy. 

The sample was placed in a 2.5 ml 

polypropylene tube (Meka Mini, Mekalasi 

Oy, Helsinki, Finland) in 4% PFA-sucrose, 

kept 1 h per 0.5 cm of neovascular tissue and 

embedded in paraffin for later 
immunohistochemical analyses.  

 

 

 

 

 

 

 

 

 

 

 Dm type 1 Dm type 2 Controls 

Number of 

patients 

13 17 7 

Age 

(years) 

34.7±8.8 60.4±8.4 71.6±4.5 

Duration of 

diabetes (years) 

24.2±5.9 17.5±8.4 - 

Gender 

(male/female) 

5/3 

62%/38% 

6/4 

53%/47% 

4/3 

57%/43% 

GHbA1c (%) 10.2±1.9% 9.1±1.9% - 
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4.2 Antibodies 

 
Table 4. Antibodies used in this study. 

 

 

 

 

 

 

Antibody Specificity Code/clone Species Dilutio

n 

Distributor Used  

CD-31 EC 

 

JC/70A mAb mouse anti-

human 

1:50 DAKO I-III 

PECAM-1 MEK13.3 mAb rat anti-mouse 1:50 BD  IV 

CD-68 Macrophages 

 

KP1 mAb mouse anti-

human 

1:50 DAKO I 

RAM11 RAM11 mAb mouse anti-rabbit 1:200 DAKO II-III 

mMQ AIA31240 pAb rabbit anti-mouse 1:5000 Accurate  IV 

VEGF-A VEGF-A sc-7269 mAb mouse anti-

human 

1:200 Santa Cruz  I-III 

VEGF-B VEGF-B sc-1878 pAb goat anti-human 1:200 Santa Cruz  I 

VEGF-C VEGF-C sc-1881 pAb goat anti-human 1:200 Santa Cruz  I 

VEGF-D VEGF-D 78923.11 mAb mouse anti-

human 

1:500 R&D  I,III 

PDGF-B PDGF-B  mAb mouse anti-

human 

1:100 R&D  I 

PlGF PlGF sc-1880 pAb goat anti-human 1:200 Santa Cruz  I 

anti-β-gal LacZ Z378 mAb mouse anti-β-gal 1:200 Promega II-III 

Ki-67 Proliferating cells 7B11 mAb mouse anti-

human 

1:100 Zymed  I 

HIF-1α  Hypoxia inducible  

factor  α  

H1α67 mAb mouse anti-

human 

1:100 Neomarkers I 

NFκB Nuclear factor κB 20 mAb mouse anti-

human 

1:250 BD  I 

αSMA α-smooth  

muscle actin 

1A4 mAb mouse anti-

human 

1:200 Sigma I-III 

ANG-1 Angiopoietin 1 sc-6319 pAb goat anti-human 1:100 Santa Cruz  I 

ANG-2 Angiopoietin 2 sc-7015 pAb goat anti-human 1:100 Santa Cruz  I 

Flt-1 VEGFR-1 sc-316 pAb rabbit anti-human 1:200 Santa Cruz  I 

KDR VEGFR-2 sc-6251 mAb mouse anti-

human 

1:200 Santa Cruz  I 

Flt-4 VEGFR-3 sc-321 pAb rabbit anti-human 1:200 Santa Cruz  I 

Tie-1 Angiopoietin  

receptor 1 

88016 mAb mouse anti-

human 

1:25 R&D  I 

Tie-2 Angiopoietin  

receptor 2 

83715 mAb mouse anti-

human 

1:25 R&D  I 

BrDU Proliferating cells Bu20a mAb mouse anti-

human 

1:100 DAKO II-III 

Caspase-3 Caspase-3 7481 pAb rabbit anti-human 1:250 Promega  IV 

Calbindin Calbindin D-28k CB38-a pAb rabbit anti-rat 1:1000 SWANT IV 

Calretinin Calretinin 7699/4 pAb rabbit anti-human 1:1000 SWANT IV 

anti-Rhodopsin Rhodopsin 9279 pAb rabbit  

anti-rhodopsin 

1:500 Chemicon IV 
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4.3 Gene transfer techniques 

Table 5. Animal models and viruses. 

 
 

 

 

Animal n Vector Promoter Transgenes Used 

in 

New Zealand White rabbit 43 Adeno 

serotype 5 

1st 

generation 

CMV hVEGF-A165 II 

hVEGF-D
∆N∆C

 III 

KDR II 

LacZ II,III 

23 Baculo 

boost FGII-

B2  

hVEGF-D
∆N∆C

 III 

GFP 

LacZ 

 
Animal Diet, n IV 

 Normal chow diet 

(R36, Lactamin, 

Sweden) for the whole 

time 

Western diet (TD 

88173, Harlan Teklad: 

42 % of calories from 

fat and 0.15 % from 

cholesterol, no sodium 

cholate) for the last 

three months 

IGF-II/LDLR
–/–

ApoB
100/100 

mouse 

12 7 5 

LDLR
–/–

ApoB
100/100

 

mouse 

11 6 5 

 

All animal procedures were approved by 

Institutional Animal Care and Use Committee 

of the University of Kuopio, Kuopio, Finland. 

   Replication-deficient human clinical grade 

first generation adenoviruses (serotype 5) 

encoding transgenes under CMV promoter 

were constructed by homologous 

recombination, and produced in 293 cells 

(Laitinen et al., 1998; Rissanen et al., 2003). 

Adenoviruses were analyzed to be free of 

endotoxin and microbiological contaminants 

(Hedman et al., 2003). 

   Recombinant viruses encoding transgenes 

under CMV promoter were constructed using 

pFASTBac1-plasmid (Gibco BRL, Life 

Technologies, Gaithersburg, MD, USA) and 

a Bac-To-Bac Baculovirus Expression (Gibco 

BRL) system (Airenne et al., 2000). 

Baculoviruses were titered on Sf9 insect 

cells. Virus preparations were tested for 

sterility and analyzed for the absence of 

endotoxin and mycoplasma contaminations. 

In order to demonstrate that the virus 

preparations contained equal amounts of viral 

particles per volume, purified viruses (107 

pfu/lane) were subjected to immunoblotting 

using mouse anti-gp64 (Bioscience, San Jose, 

CA, USA) as a primary antibody and goat 

anti-mouse IgG-AP as a secondary antibody 

(Biorad Hercules, CA, USA). 

 

 

 

 

 

 

 

 

 

 

 

 



 

50 

 

 

 

 

 

Figure 10. Illustration of the gene transfer technique used in studies II-III. 

 
For the gene transfer, animals were 

anesthetized with subcutaneous injections of 

ketamin hydrochloride 0.3ml/kg (Ketalar, 

Pfizer, Espoo, Finland) and medetomidin 

hydrochloride 0.3ml/kg (Domitor, Espoo, 

Finland). Intravitreal injections were 

performed through pars plana 5mm from the 

limbus in the temporal side of the eye with a 

30G needle (BD Microlance, Drogheda, 

Ireland). The site of the needle tip was 

ensured with a microscope and the solution 

was injected into the vitreous humour. 

Oxybuprocain (Obucain, Santen, Tampere, 

Finland) was used for topical anesthesia. 

Animals were given cefuroxim 125mg 

(Zinacef, GlaxoSmithKline, Research 

Triangle Park, NC, USA) intramuscularly to 

avoid postoperative infections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45° 

0.1ml 

5mm 

30G 
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4.4 In vivo methods 

 
Table 6. In vivo methods used in this study. 

Method Description Distributor Used 

Anesthesia Ketamin 

hydrochloride 

0.3ml/kg (Ketalar) 

Intramuscular/ 

subcutaneous injection 

Pfizer, Espoo, Finland 

 

II-IV 

Medetomidin 

hydrochloride 

0.3ml/kg (Domitor) 

Intramuscular injection Orion, Espoo, Finland II-III 

Xylazine 10 mg/kg  

(Rompun) 

Subcutaneous injection Bayer  IV 

Topical 

drugs 

oxybuprocain 

(Obucain) 

  

Topical anesthesia  Santen, Tampere, 

Finland 

II-IV 

Tropicamid 5mg/ml 

and Phenylephrine 

hydrochloride 

100mg/ml 

 

Mydriasis II-IV 

Photographs Anterior and posterior 

parts of the eye  

Zeiss, FF450 PLUS IR, 

Jena, Germany;  

Canon, CF-60UVi, 

Latham & Phillips 

Ophthalmic Products, 

Grove City, Ohio, USA 

II-III 

Nikon D70s, Nikon 

Corp., Tokyo, Japan 

IV 

FAG 0.3 ml of 

Fluorescein Sodium (AK-

FLUOR 10%)  

 

Intravenous injection, 

evaluation of the fundus 

in 2min time period 

Akorn, Buffalo Grove, 

IL, USA 

III 

Biomicroscopy Evaluation of of the eye   Haag-Streit, Bern, 

Switzerland 

II-IV 

Metabolic 

analyses 

Blood glucose Overnight fasting plasma 

samples 

Glucometer Elite 

analyzer , Bayer 

IV 

Plasma insulin levels Rat/mouse Insulin 

ELISA Kit, Linco 

Research Inc. 

Triglycerides  Ecoline S+, GPO-PAP 

method, Diagnostic 

Systems  

Total cholesterol Ecoline 25, CHOD-

PAP method, Merck 

Diagnostica  
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4.5 Analytical methods 

Table 7. Analytical methods used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Method Description Distributor Used  

Tissue 

processing 

Fixation Embedding Sectioning  I-IV 

 Paraffin blocks 

 

4% PFA 

for 5 h 

paraffin 

 

4-7 µm 

sections  

Frozen sections 

 

x-gal fix 33% optimal cutting 

temperature (OCT) 

compound 

 

Sakura 

Finetek, 

Zoeterwoude, 

the 

Netherlands 

II-III 

Flat mount 4% PFA for 1 h IV 

Liquid nitrogen Vitreous samples (0.3–0.4 mL) from each eye  

with a 1 mL syringe and a 24 G needle 

 

I-III 

Immunology  Immunohisto- 

chemistry 

Paraffin-embedded samples  I-IV 

ELISA, 

Quantikine 

Assays with vitreous 

samples 

R&D Systems, Minneapolis, MN, 

USA 

I-III 

Histological 

analyses 

Olympus AX70 Photographs and 

analyses of the 

histological sections 

Olympus Optical, Tokyo, Japan I-IV 

AnalySIS  GmBH, Munster, Germany 

PhotoShop  

 

Adobe, San Jose, CA, USA 

Other 

methods 

Fluorescence microscopy for GFP 

expression  

ECLIPSE E600, Nikon, Japan III 

Retina flat 

mounts 

4% PFA for 10 min. The 

cornea, lens, sclera, and 

vitreous excised and the 

retina isolated. Retina flat 

mounts fixed with 4% PFA 

for 1 hour 

Confocal 

microscopy 

Olympus IX70,  

Perkin Elmer 

IV 

Fluorescence 

conjugated 

isolectin 

GS lectin, I-

21413;  

Molecular Probes 

Statistical 

analyses 

mean± SEM or SD I-IV 

 

 
one-way ANOVA 

independent samples t-test 

Kruskal-Wallis test 

Mann-Whitney U-test 

Spearman’s correlation analysis I 
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5 RESULTS 

 
 

5.1 Angiogenic factors in vitreous humour and neovascular samples in type 1 and type 2 

diabetic retinopathy 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Scatter Plot analysis of type 1 and type 2 diabetic patients with proliferative 

retinopathy. (A) Correlation between the number of CD-31 positive endothelial cells in the 

tissue/mm
2 

and ANG-2 in vitreous humour (p<0.05). (B) Correlation between ANG-2 and 

VEGF-A in vitreous humour (p<0.01). 
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VEGF-A, ANG-1 and ANG-2 were found in 

the vitreous samples in both types of 

diabetics but there was no difference between 

type 1 and type 2 diabetics in ELISA analysis 

in the amounts of measured growth factors. 

In addition, ANG-1 was found in much lower 

levels than VEGF-A or ANG-2.  

The number of capillaries correlated 

positively with the amount of ANG-2 in the 

vitreous humour in type 1 (p < 0.05, r = 0.77) 

but not with type 2 diabetics. ANG-2 and 

VEGF-A in the vitreous humour correlated 

positively (p < 0.01, r = 0.59) with type 2 

diabetics (Figure 11). 

   Numerous CD31-positive ECs and several 

CD68 positive macrophages were present in 

all neovascular samples. In type 1 diabetics, 

the number of ECs in fibrovascular tufts was 

significantly higher than in type 2 diabetics (p 

< 0.05). α-SMA positive pericytes were 

found in the neovascular tufts in the same 

areas as ECs, but the number of ECs was 

higher than activated pericytes in the tissues. 

   Transcription factor NFκB, which mediates 

inflammatory responses, was also present in 

the nuclei in the samples of all patients 

indicating an ongoing inflammatory process 

in the neovascular tissues. A positive staining 

for Ki-67 indicates a proliferative process in 

the tufts in all patients. Almost every sample 

had HIF-1α stained nuclei reflecting hypoxic 

conditions in the eye. There were no 

differences in inflammatory response, 

number of proliferating cells, 
immunostaining for HIF-1α or α-SMA 
stainings between type 1 and type 2 diabetics.  

   Duration of diabetes correlated positively 

with the age of the patient (p < 0.05) but had 

no effect on the number of ECs neither in 

type 1 nor type 2 diabetics. The number of 

ECs and age had a significant negative 

correlation (p < 0.05, r = -0.74) in type 1 

diabetics. GHbA1c levels (p < 0.01, r = 0.58) 

had a positive correlation with the number of 

ECs in type 1 but not in type 2 diabetics 

(Figure 12). 

   All studied growth factors were found in 

the endothelial cells in neovascular tufts. 

There were staining differences in the 

presence of growth factors in the neovascular 

tufts between type 1 and type 2 diabetics. In 

type 1 diabetics, VEGF-A was most strongly 

present whereas over 50% of type 2 diabetics 

had either equal or more intense staining for 

VEGF-D than VEGF-A. ANG-2 were less 

abundant than VEGF-A or VEGF-D, but 

more abundant than the other measured 

factors. The overall order of the growth 

factors was VEGF-A > ANG-2 > VEGF-D, 

ANG-1 > VEGF-C > VEGF-B, PlGF > 

PDGF-B in type 1 diabetics and VEGF-D, 

VEGF-A > ANG-2 > ANG-1 > PLGF > 

VEGF-B > VEGF-C > PDGF-B in type 2 

diabetics. 

   In type 1 diabetics, VEGF-C was more 

abundant than VEGF-B, and in type 2 

diabetics, the situation was opposite. The 

presence of all VEGF receptors was 

significantly higher in type 1 diabetics than in 

type 2 diabetics (p < 0.05) (Figure 13). In 

addition, VEGFR-1 and VEGFR-3 were 

stronger than VEGFR-2 particularly in type 2 

diabetics. Presence and location of PDGF-B, 

ANG-1, ANG-2, Tie-1 and Tie-2 in type 1 

diabetics were similar to type 2 diabetics. 

ANG-1 and ANG-2 and their receptors Tie-1 

and Tie-2 were mostly present in the same 

areas as pericytes. Immunostaining for 

PDGF-B was less abundant than VEGFs. 

VEGF-A and VEGFR-1 were also present in 

the control samples but much less abundantly 

than in the diabetic tissues. ECs and α-SMA 

positive pericytes were also present in non-

diabetic eyes but in much less numbers than 

in diabetic fibrovascular tissues. There were 

no NFκB, Ki-67 or HIF-1α positive cells in 

the control retinas. 
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Figure 12. Scatter Plot analysis of type 1 and type 2 diabetic patients with proliferative 

retinopathy. (A) Correlation between the number of CD-31 positive endothelial cells/mm2 and 

age of patients (p<0.05). (B) Correlation between the number of CD-31 positive endothelial 

cells/mm
2 
and glycosylated haemoglobin (GHbA1c, %) (p<0.01).  
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Figure 13. Vascular endothelial growth factors and their receptors in type 1 and type 2 diabetic 

retinopathy. 

 

 

Figure 14. Capillary area in the retina after adenoviral and baculoviral intravitreal gene transfer 

encoding VEGF-A165 and VEGF–D
∆N∆C

. 
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5.2 Intravitreous VEGF-A165 and VEGF-D 
∆N∆C

 gene transfer 

5.2.1 Dose–response studies 

The amount of human VEGF-A165 and 

VEGF-D
∆N∆C

 in the vitreous humour showed 

a dose-dependent increase with the virus dose 

in the vitreous humour after intravitreous 

injection.  

   In the 10
8 

IU/ml eyes, there was no 

significant difference in the amount of human 

VEGF-A165 or VEGF-D
∆N∆C

 in vitreous 

humour when compared to control eyes. 

However, in the vascular structures a 

significant dilation and tortuosity of the 

vessels were seen in postoperative 

photographs and in the histological analyses 

6 days after the gene transfer with both 

growth factors. The difference in capillary 

area between VEGF-A165 and VEGF-D
∆N∆C

 

gene transfer was significant (p < 0.05) 

(Figure 14).  

   In the 10
9
 IU/ml eyes, clear changes were 

observed in the photographs taken after gene 

transfer. Moreover, the amount of human 

VEGF-A165 or VEGF-D
∆N∆C

 in vitreous 

humour was significantly higher (p < 0.05) 

than in control eyes. Haemorrhages and 

microaneurysms were present near the optic 

disc. The optic nerve head was swollen 

indicating an increased permeability of the 

retinal vessels and breakdown of the blood-

retina barrier. Retinal vessels were dilated 

and tortuous. Hyperaemia was seen in the 

anterior segments in the conjunctiva and the 

iris. Histological analyses revealed a 

significant difference (p < 0.05) between 

VEGF-A or VEGF-D
∆N∆C

 10
9
 IU/ml eyes and 

control eyes in the average capillary area. 

Furthemore, VEGF-A165 transduced eyes had 

a significantly higher average capillary area 

than VEGF-D
∆N∆C

 transduced eyes (p<0.05) 

(Figure 14). 

    In the VEGF-A165 5x10
9 

IU/ml eyes, new 

vessels were seen in post-operative fundus 

photographs. In histological analyses, there 

were lots of new vessels both in the anterior 

segments and the retina.  

   A strong inflammatory reaction was seen in 

the VEGF-A165 and VEGF-D
∆N∆C

 10
10

 IU/ml 

transduced eyes. The fundus was not clearly 

visible any more due to the leaky retinal 

vessels. After VEGF-A165 10
10

 IU/ml gene 

transfer, anterior segments were strongly 

hyperaemic and chemotic and the cornea was 

swollen and clouded. Also in histologic 

analysis anterior segments and normally 

avascular cornea were full of sprouting 

fragile new vessels. Microvascular density in 

the anterior segments of the VEGF-A165 10
10

 

IU/ml eyes was much higher than with other 

doses. In the AdVEGF-A165/AdsKDR 

combination group, no new changes were 

seen in the vasculature in the fundus 

photographs or in histologic analyses 

confirming the significant role of VEGF-A165 

in the pathogenesis of ocular 

neovascularization.  

   Also VEGF-D
∆N∆C

 10
10

 IU/ml caused an 

increase in the number of enlarged capillaries 

in the retina and optic nerve head (p<0.05) 

when compared to the control eyes. However, 

the difference in capillary area after VEGF-

A165 and VEGF-D
∆N∆C

 gene transfer was 

significant (p < 0.05) (Figure 14). 

 

5.2.2 Time curve of the effects of 

adenoviral VEGF-A165 or baculoviral 

VEGF-D
∆N∆C

 gene transfer 

The amount of human VEGF-A165 in the 

vitreous humour was significantly increased 

(p < 0.05) 3 days after the adenoviral VEGF-

A165 gene transfer when compared to AdLacZ 

injection (Figure 15). However, only slight 

changes were found in the vasculature of the 

eye in fundus photographs or in histological 

analyses. 

   The amount of human VEGF-A in the 

ELISA assay in vitreous humour was highest 

6 days after the gene transfer (Figure 15). In 

fundus photographs 6 days after the 

AdVEGF-A165 injection blood vessels were 

swollen, leaky and tortuous. Hyperaemia was 

present in the anterior segments. In 

histological analyses, a clear response to the 

AdVEGF-A165 gene transfer was found 

especially in the retina and the optic nerve 

head. The increase in the average capillary 

area in the AdVEGF-A165 10
9
 IU/ml eyes 
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compared with the AdLacZ 10
9
 IU/ml eyes 

was significant in the retina, the optic nerve 

head and the anterior segments (p < 0.05). 

Microvascular density was increased in the 

retina and the optic nerve head but not in the 

anterior segments.  

   Two weeks after the gene transfer, the 

amount of human VEGF-A165 in the vitreous 

humour had decreased (Figure 15). Vitreous 

haemorrhages were present in fundus 

photographs and it was very difficult to 

evaluate retinal vessels. The anterior parts 

were still slightly hyperaemic. In histological 

analyses, the response to the AdVEGF-A165 

gene transfer was as strong as 6 days after the 

gene transfer in the retina and the optic nerve 

head and even stronger in the anterior 

segments. Microvascular density was 

increased in the retina, the anterior segments 

and the optic nerve head. The number of 

proliferating cells was at its highest 2 weeks 

after the gene transfer especially in the 

anterior segments. 

   Four weeks after the gene transfer, no 

human VEGF-A165 was found in the vitreous 

humour (Figure 15). The anterior parts had 

returned to normal. In fundus photographs, 

haemorrhages were resolved and fibrous 

scars were seen just above the optic nerve 

head. There were no changes in the control 

AdLacZ eyes. In histological analyses, there 

were no significant differences in the average 

capillary area in the anterior segments when 

compared to the AdLacZ 10
9
 IU/ml eyes. 

However, in the optic nerve head and 

especially in the retina the difference was still 

significant (p < 0.05). Microvascular density 

in the retina and in the anterior segments was 

also increased. Double immunostaining with 

CD31 and alpha-actin revealed vessels with 

abnormal pericytes and vessels containing 

only ECs. The number of macrophages in 

RAM-11 staining was at its highest four 

weeks after the AdVEGF-A165 gene transfer.  

   The highest baculovirus-mediated VEGF-

D
∆N∆C

 expression in the vitreous humour was 

detected at 3 days after the intravitreal 

administration (Figure 15). Haemorrhages 

were seen near the optic nerve head both in 

the BacVEGF-D
∆N∆C

 transduced eyes and in 

the BacLacZ control eyes. Furthermore, in 

the BacVEGF-D
∆N∆C

 treated eyes capillaries 

were slightly dilated and the capillary density 

was significantly increased in the optic nerve 

head and in the anterior segments compared 

to the BacLacZ eyes (p < 0.05). However, 

there was no significant difference between 

BacVEGF-D
∆N∆C

 and BacLacZ treated eyes 

in the dilatation of retinal vessels. Only a few 

macrophages were found both in the 

BacVEGF-D
∆N∆C

 and BacLacZ treated eyes.  

   At 6 days after the BacVEGF-D
∆N∆C

 

intravitreal injection the amount of VEGF-

D
∆N∆C

 in the vitreous humour had diminished 

by half (Figure 15). The fundus was not 

clearly visible because of the breakdown of 

the blood retina barrier. There was an 

increased number of enlarged capillaries in 

the retina and optic nerve head (p < 0.05) in 

the BacVEGF-D
∆N∆C

 eyes when compared to 

the control eyes. The number of RAM-11-

immunopositive macrophages was 

significantly higher in the BacVEGF-D
∆N∆C

 

treated eyes at 6 days after intravitreal 

injection than at 3 days (p < 0.05). 

   Two weeks after the intravitreal injection, a 

40-fold drop was detected in the amount of 

VEGF-D
∆N∆C

 in vitreous humour compared 

to the highest level at 3 days (Figure 15). 

Both BacVEGF-D
∆N∆C

 and BacLacZ eyes 

were calm and the fundus area was 

normalized. The capillaries in the optic nerve 

head and in the retina looked diminished and 

the number of RAM-11-immunoreactive 

macrophages was lower when compared to 

eyes of rabbits that were treated for 6 days. 

   The lowest level of VEGF-D
∆N∆C

 

expression was found in the 4-week treatment 

group (Figure 15). Four weeks after the 

intravitreal injection the eyes were calm. No 

leakages were found in the retinal vessels in 

FAG. Capillaries were not dilated and the 

average capillary area was not increased 

when compared to the control eyes. However, 

the number of RAM-11-immunoreactive cells 

in the transduced eyes was similar to that 

seen in the two weeks group. 
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Figure 15. Time curve for adenoviral and baculoviral gene transfer. 

 

5.3 Assessment of Baculoviral and 

Adenoviral Gene Transfer 

The efficiency of baculo- and adenovirus-

mediated gene transfer was directly assessed 

by examination of GFP-positive or LacZ-

positive cell layers in the anterior and 

posterior parts of the eye. Baculoviral 

transfection was highly efficient for 

photoreceptor cells and RPE, and to a lesser 

extent for the inner retina. Adenoviral gene 

expression was detected mostly in the 

anterior segments, especially in the iris and 

the ciliary body, in the NFL and GCL of the 

retina. Also VEGF-D
∆N∆C

 expression showed 

similar pattern in the retina and RPE layer 

after baculoviral and adenoviral transduction 

(Figure 16). Adenovirus mediated expression 

of VEGF-D
∆N∆C

 in the vitreous humour was 

significantly higher than that of baculovirus 

at 10
9
 and 10

10
 IU/ml. Both BacVEGF-D

∆N∆C
 

and AdVEGF-D
∆N∆C

 caused dilatation of 

capillaries in all parts of the eye already at a 

dose of 10
8 

IU/ml (p < 0.05). Both 

baculoviral and adenoviral gene transfers 

caused similar inflammatory response: 

macrophage invasion into the anterior 

segments, the retina and the optic nerve head 

of the eye. Inflammation-like alterations in 

the choriocapillaries were observed in 

BacVEGF-D
∆N∆C

 treated eyes, but not in 

AdVEGF-D
∆N∆C

 treated ones at 6 days after 

the gene transfer. 

 

 
Figure 16. VEGF-D

∆N∆C
 expression in the 

retina and RPE layer after baculoviral (A, C) 

and adenoviral (B, D) transduction. Scale bar 

= 20 µm. 
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5.4 IGF-II/LDLR
–/–

ApoB
100/100 

mouse  

Fasting glucose levels of 15-month-old 

diabetic IGF-II/LDLR
-/-

ApoB
100/100

 mice 

were significantly elevated on Western diet 

compared to LDLR
-/-

ApoB
100/100

 controls 

(8.2±2.1 versus 4.6±1.1 mmol/L, P<0.05), 

but with normal diet, there was no significant 

difference in glucose values between diabetic 

and control animals.  In vivo examination of 

the mice eyes in biomicroscopy revealed no 

significant changes in neither diabetic 

animals fed with normal or Western diet nor 

in controls.  The pupils dilated normally with 

mydriatics and retinal photographs of the 

mice revealed no clinical diabetic changes in 

the retinas neither in the diabetic nor in the 

control animals. The number of capillaries in 

IGF-II/LDLR
–/–

ApoB
100/100

 mice was not 

significantly increased compared to control 

LDLR
–/–

ApoB
100/100

 mice. The number of 

pericytes did not differ between the diabetic 

and control animals. Capillaries were 

similarly situated in the nerve fiber layer and 

in the outer plexiform layer and there were no 

haemorrhages or other signs of 

hyperpermeability of the vessels in the retinal 

layers. In paraffin embedded samples stained 

with haematoxylin-eosin, the altered 

morphology of the entire retina was found in 

all IGF-II/LDLR
–/–

ApoB
100/100

 mice fed with 

normal diet. There were displaced amacrine 

cells in the inner plexiform layer which 

stained positively with calbindin, a specific 

marker for amacrine cells. The morphology 

of the inner nuclear, outer plexiform and 

outer nuclear layers was abundantly altered in 

the diabetic IGF-II/LDLR
–/–

ApoB
100/100

mice. 

Photoreceptor atrophy and thinning of the 

outer nuclear layer with large acellular areas 

were also present (Figure 17). There were no 

differences between the control and the 

diabetic mice in the retinal expression of heat 

shock proteins. However, caspase-3 was 

abundantly positive in the inner segment of 

photoreceptor cells indicating mitochondrial 

oxidative stress in the IGF-II/LDLR
-/-

ApoB
100/100

 mice. No such staining was 

observed in their littermate LDLR
–/–

ApoB
100/100

 controls. To evaluate the retinal 

structure of diabetic IGF-II/LDLR
–/–

ApoB
100/100

 mice, rhodopsin, a 

transmembrane protein that initiates the 

visual
 
transduction cascade was studied with 

antibody against rhodopsin.
 

Rhodopsin 

staining was reduced in the retinas of diabetic 

animals, consistent
 

with the decreased 

number of photoreceptor cells.  

 

 

 

 

 

 

 

 

 

 

Figure 17. Haematoxylin-eosin stained 

samples show displaced cells and altered 

morphology throughout the retina of IGF-

II/LDLR
-/-

ApoB
100/100

 mice fed with normal 

diet (large arrows; A, B). Photoreceptor 

atrophy is also present (arrowhead; B). 

Control animals have normal retinal 

morphology (C).  
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5.5 Summary of findings in this study 

 
Study Model Conclusions 

I Growth factor expression 

in diabetic retinopathy 

Different growth factor patterns 

between type 1 and type 2 

diabetic proliferative 

retinopathy 

II Adenoviral VEGF-A165 

gene transfer in the 

vitreous humour  

Adenovirally delivered VEGF-

A165 causes neovascularization 

in the retina and in the anterior 

segments 

III Baculoviral VEGF-D
∆N∆C

 

gene transfer in the 

vitreous humour  

Baculoviral gene transfer is 

efficient in transducing 

photoreceptor layer and RPE 

VEGF-D
∆N∆C

 causes blood 

retina barrier breakdown but no 

neovascularization in the eye 

IV Ocular findings of 

diabetic IGF-II/LDLR
–/–

ApoB
100/100

 mice 

Diabetic IGF-II/LDLR
–/–

ApoB
100/100

 mice reveal 

photoreceptor atrophy and 

altered retinal morphology 
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6 DISCUSSION 

 

6.1 Angiogenic factors in diabetic 

retinopathy 

Several angiogenic factors and their receptors 

are found in the neovascular tissue and in 

vitreous humour in diabetic retinopathy. 

VEGF-A and ANG-2 were equally abundant 

in the vitreous humour of studied diabetics. 

The amount of VEGF-A in the vitreous 

humour was at the same level as in previous 

studies, and also increased ANG-2 levels 

have been found in the vitreous humour of 

diabetic patients (Aiello et al., 1994; 

Watanabe et al., 2005).  ANG-2 expression 

has been demonstrated at the outer border of 

the inner nuclear layer, which is in close 

proximity to the deep retinal capillaries. The 

localized production of ANG-2 in the region 

of the deep capillaries may be the reason for 

their increased sensitivity to VEGF (Hackett 

et al., 2000).  ANG-2 deficient mice develop 

abnormal retinal vascular bed consisting of 

some formation of the superficial capillaries, 

but display an almost complete lack of vessel 

penetration into the retina resulting in the 

absence of the intermediate and deep 

capillary plexus. In addition, ANG-2 

deficient mice fail to develop ischemia-

induced retinal neovascularization (Hackett et 

al., 2002).  Furthermore, inhibition
 
of Tie-2, 

when combined with inhibition of VEGF, 

suppresses retinal angiogenesis more 

efficiently
 

than inhibition of VEGF
 

alone, 

suggesting that signaling of both Tie-2 and 

VEGF plays
 

a potential role in ischemia-

induced retinal angiogenesis (Takagi et al., 

2003). ANG-2 and its signaling pathways 

provide new molecular targets for the 

development of new treatments for ocular 

neovascularization. 

   In our study, type 1 diabetics had much 

more VEGF-A in the samples than other 

measured growth factors. In type 2 diabetics, 

VEGF-D was equally or even more 

abundantly present than VEGF-A in the 

neovascular tissues in more than 50% of the 

patients. VEGF-C was more abundantly 

present than VEGF-B in the neovascular 

tissues in type 1 diabetics. With type 2 

diabetics, the situation was opposite. VEGF-

A, VEGF-C and VEGF-D angiogenic effects 

are mediated by VEGFR-2. VEGF-A and 

VEGF-B signal through VEGFR-1. In 

addition, VEGFR-3 mediates the actions of 

VEGF-C and VEGF-D. VEGFR-2 is usually 

seen as the most important mediator of blood 

vessel growth. Signalling of VEGF-A by 

VEGFR-2 is fast and transient whereas 

signalling of VEGF-D is slower and more 

long-lasting (Jia et al., 2004).  VEGFR-3 is 

mainly expressed on lymphatic endothelium 

and VEGF-C and -D are thought to play a 

role in the maintenance of lymphatic 

endothelium and in lymphangiogenesis (Iljin 

et al., 2001; Stacker et al., 2001).  However, 

they have also been found in vascular 

structures (Rutanen et al., 2003; Witmer et 

al., 2001; Zhao et al., 2007).  Expression of 

VEGFR-3 has been found particularly in 

areas with leaky retinal microvessels (Witmer 

et al., 2002). In the present study we found 

more immunoreactive VEGFR-1 and 

VEGFR-3 than VEGFR-2 in the neovascular 

tufts in both types of diabetics suggesting the 

important role of these receptors in the 

pathogenesis of diabetic retinopathy and in 

the formation and maintenance of 

microvessels such as retinal capillaries. 

VEGF-B mRNA is expressed in the 

developing retina (Simpson et al., 1999; 

Yonekura et al., 1999).  However, VEGF-B 

expression appears not to be up-regulated in 

hypoxia, and the physiological role of VEGF-

B remains essentially unknown (Gollmer et 

al., 2000).  In addition, VEGF-B is unlikely 

to be necessary for the development of the 

retinal vasculature in an animal model under 

normal conditions (Reichelt et al., 2003).  

Recent reports have shown that VEGFR-1, 

mediator for action of VEGF-B, is also found 

in non-vascular retinal tissues in the mouse 

and primate eye (Robinson et al., 2001; 

Witmer et al., 2002).  The fact that neural 

retina is also damaged in diabetic retinopathy 

may explain the existence of VEGF-B in 

diabetic neovascular tissues.  

   Our finding showing VEGF-C expression 
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in proliferative diabetic retinopathy is in line 

with a recent study of Zhao and coworkers 

(Zhao et al., 2007). In addition, VEGF-C is 

shown to be regulated by both VEGF-A and 

high glucose and promote angiogenesis in 

vitro enhanced by the presence of VEGF-A 

(Zhao et al., 2006).  VEGF-D was not found 

in the vitreous humour in any patient in this 

study indicating that VEGF-D binds to retinal 

tissues more efficiently than the other growth 

factors in diabetic patients. VEGF-D has also 

recently been found in the subretinal vascular 

membranes of patients with AMD suggesting 

that it also plays some role in the 

pathogenesis of choroideal angiogenesis 

(Ikeda et al., 2006).  It has been shown that 

cell–cell adhesion and cell attachment 

independently regulate the VEGF-D mRNA 

expression in human RPE in vitro suggesting 

that the breakdown of these interactions 

causes the overexpression of VEGF-D (Ikeda 

et al., 2006).   

   The difference in growth factor and growth 

factor receptor expression in the retinas 

between type 1 and type 2 diabetics might 

contribute to the differences in their 

pathogenesis and clinical course. Type 1 

diabetics have a much higher risk of 

developing proliferative retinopathy than type 

2 diabetics and in type 2 diabetics, diabetic 

maculopathy is the
 

most prevalent sight-

threatening manifestation of retinopathy 

(Henricsson et al., 1996; Klein et al., 1984). 

In the pathogenesis of vascular diseases in 

type 2 diabetes, the damage and dysfunction 

of endothelial cells have shown to play a 

crucial role (Tooke, 2000). Similarly to 

studies in RPE cells, VEGF-D may contribute 

to the    breakdown of the inner blood retina 

barrier in diabetic patients leading to 

maculopathy and oedema in type 2 diabetics.  

Macrophages secrete many angiogenic and 

lymphangiogenic factors, including VEGF-D 

(Cursiefen et al., 2004).     Inflammation has 

shown to be involved in many ocular 

neovacular diseases (Killingsworth et al., 

1990; Meleth et al., 2005). Although the 

precise role of inflammation in the 

development of diabetic retinopathy is still 

unclear, it is possible that inflammatory 

mechanisms accelerate proliferative 

retinopathy in type 2 diabetics by VEGF-D 

dependent pathways. On the other hand, the 

fact that type 1 diabetics had more VEGF-A 

in the neovascular tissues than VEGF-D, 

suggests that with type 1 diabetics, hypoxia is 

more important in the development of 

proliferative retinopathy than inflammation. 

In order to stop the proliferative process, it 

might also be beneficial to prevent 

inflammation in the eye especially in type 2 

diabetics.     

   HIF-1α is activated in hypoxic conditions 

preceding the development of various 

retinopathies and stimulates the expression of 

proangiogenic growth factors (Semenza and 

Wang, 1992; Wiesener et al., 1998). HIF-1α 

has been found in the epiretinal membranes 

of diabetic patients without previous laser 

photocoagulation (Abu El-Asrar et al., 2007).  
It was also demonstrated that

 
HIF-1 mediates 

the hypoxic upregulation of VEGF and ANG-

2 in
 
vascular ECs (Yamakawa et al., 2003).  

Hyperglycemia can also regulate HIF-1α 

protein stability by interfering with its 

proteosomal degradation (Catrina et al., 

2004).  Also in this study, HIF-1α was 

detected both in type 1 and type 2 diabetic 

eyes despite of the previous panretinal laser 

photocoagulation. Normally, the retinal 

vessels are autoregulated in hypoxic 

conditions. However, the pathologic changes 

in retinal vasculature in diabetic retinopathy 

cause the distraction of the normal 

autoregulatory mechanism leading to active 

angiogenic process and proliferation. 

Manipulation of the HIF-1α pathway in the 

treatment of diabetic retina might be an 

attractive choice in addition to targeting 

VEGF and other growth factors.   

   Nuclear factor κ B (NFκB) is an ubiquitous 

transcription factor that, by regulating the 

expression of multiple inflammatory and 

immune genes, plays a critical role in host 

defense and in chronic inflammatory diseases 

(Barnes, 1997). NFκB is activated under 

hypoxic conditions, in retinal ECs or 

pericytes exposed to elevated glucose 



 

 

64 

 

concentration and in retinas of diabetic rats 

(Cummins and Taylor, 2005; Kowluru et al., 

2003; Zheng et al., 2004; Zheng et al., 2004).  

Specific
 
NFκB inhibitors were able to inhibit 

cell death in vitro and suppress retinal 

neovascularization in an OIR mouse model 

(Yoshida et al., 1999; Zheng et al., 2004).  It 

has also been demonstrated that VEGF is able 

to activate NFκB in ECs (Grosjean et al., 

2006).  In previous studies, elevated levels of 

NFκB, chemokines and cell adhesion 

molecules have been identified in the eyes 

with proliferative diabetic retinopathy 

(Harada et al., 2006; Meleth et al., 2005).  In 

this study, macrophages and NFκB were 

abundantly present in the neovascular 

samples in both types of diabetes. In diabetic 

rats, non-steroidal salicylate-based
 

anti-

inflammatory drugs have been shown to 

significantly inhibit the
 

degeneration of 

retinal capillaries and prevent ganglion
 
cell 

loss. The salicylate-mediated
 

inhibition of 

early stages of diabetic retinopathy is due at
 

least in part to inhibition of the diabetes-

induced activation
 

of NFκB and other 

transcription factors in the retina (Zheng et 

al., 2007).     

   All patients in our study had had previous 

panretinal laserphotocoagulation because of 

the proliferative retinopathy and in this sense, 

groups of type 1 and type 2 diabetic patients 

are comparable. The quantity of retinal 

photocoagulation was on average 1125 

applications in type 1 and 1660 applications 

in type 2 diabetics. The mean time scale of 

laserphotocoagulation before vitrectomy was 

on average 8 months in type 1 diabetics and 

16 months in type 2 diabetics. Laser 

photocoagulation has been shown to 

upregulate the expression of VEGF and 

transcription factors in photocoagulated 

human RPE cells in vitro 6 hours after 

photocoagulation. 72 hours after 

photocoagulation the expression of VEGF 

was decreased to the level before 

photocoagulation (Ogata et al., 2001b). In an 

in vivo study, changes in growth factor 

expression
 
following laser photocoagulation 

were observed only in    burn areas
 
and 

mainly confined to the RPE and outer nuclear 

layer. The
 
immunoreactivity was increased 

within the outer nuclear layer
 
of burn areas 

during the healing process but returned to 

normal
 
by 42 days (Xiao et al., 1999). Based 

on these reports it is presumable that the laser 

photocoagulation causes only temporal 

increase on growth factor expression. 

6.2 Antiangiogenic strategies 

With the current anti-VEGF treatment the 

ocular neovascular diseases are not cured, the 

progression of the disease is just slowed 

down. Current therapies to inhibit 

pathological angiogenesis in the eye use 

mostly inhibitors of one or two growth 

factors. This strategy has had only limited 

success (Afzal et al., 2007). This might be 

explained by other angiogenic factors 

involved that are not affected by the anti-

VEGF agents. Potential future approaches to 

pathological angiogenesis could be based on 

angiogenesis inhibitors that simultaneously 

target several angiogenic factors or on 

blocking some master modulators such as 

HIF-1α. However, it must be remembered 

that angiogenic growth factors also have 

important roles and protective properties in 

the normal eye and blocking the action of 

VEGF completely can be harmful in the long 

run.  

   Most of the existing angiogenic inhibitors 

are large proteins or peptides. There is 

currently no effective drug delivery route for 

the administration of these agents into the 

most susceptible sites for ocular NV, the 

retina and the choroid. With systemic 

administration the drug is not able to 

efficiently reach the retina and choroid 

because of the blood retina barrier. In 

addition, many diseases involving ocular 

neovascularization are chronic disorders 

which require a long-term administration of 

drugs. Recent angiogenic inhibitors have a 

relatively short half-live, which means these 

agents need to be injected repeatedly (Cao, 

2001). Furthermore, most of the angiogenic 

inhibitors are effective only in preventing the 

development of ocular neovascularization 
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(Das and McGuire, 2003; Zhang et al., 2001). 

Clinically, most ocular neovessels are formed 

in an indefinite period. Therefore, the 

angiogenic inhibitors regressing existing 

ocular neovascularization would be more 

useful in the treatment of ocular neovascular 

diseases.  

6.3 VEGF-A and VEGF-D in a rabbit 

model 

Type 1 diabetic patients had abundant VEGF-

A in the samples. In type 2 diabetic patients, 

VEGF-D was equally or even more 

abundantly present than VEGF-A. Based on 

these results, following studies with rabbits 

were focused on VEGF-A and VEGF-D 

effects in ocular tissues. In addition, we 

wanted to explore adenovirus and baculovirus 

as gene transfer vectors for more sustained 

therapy for ocular angiogenesis compared to 

current treatment.   Adenovirally delivered 

intravitreous VEGF-A165 caused increased 

dilation, tortuosity and leakage of the retinal 

vessels, breakdown of the blood-retina barrier 

and dilation of the capillaries in the optic 

nerve head and the anterior segments 

resembling the changes of diabetic 

retinopathy. Long lasting hyperglycaemia 

causes microvascular damage leading to 

pericyte loss, basement membrane 

thickening, microaneurysm formation and 

capillary hypoperfusion resulting in hypoxia 

and ischaemia (Garner, 1994). In healthy 

monkey eyes, intravitreal injection of VEGF 

caused retinal capillary nonperfusion 

documented by  FAG. This might be 

explained   by EC hyperplasia and 

subdivision or complete obstruction of vessel 

lumen by dividing ECs (Tolentino et al., 

2002). Ischaemia leads to overexpression of 

VEGF-A  which promotes neovascularization 

(Ozaki et al., 1997; Yla-Herttuala and Alitalo, 

2003). In our present study, high doses and/or 

long follow-up VEGF-A165 caused 

neovascularization in the anterior segments, 

the retina and the optic nerve head, whereas 

the choroidal vessels remained unchanged. 

The changes were   blocked by soluble KDR, 

which confirms the significant role of VEGF-

A165 and VEGFR-2 in causing these effects. 

Overexpression of VEGF-A in the RPE is 

shown to induce vascular leakage, new 

choroidal blood vessel growth, the 

development of CNV and neural retina 

degeneration (Spilsbury et al., 2000).  The 

development of CNV requires VEGF to be 

secreted from the RPE toward the inner 

choroid where high levels of VEGF receptors 

have been found (Blaauwgeers et al., 1999).  

Transgenic mice expressing VEGF in 

photoreceptor cells develop subretinal 

neovascularization of retinal vasculature 

origin and not from the choroid (Okamoto et 

al., 1997; Tobe et al., 1998a). VEGF 

expressed by the photoreceptor cells may be 

unable to pass through the outer blood-retina 

barrier to exert any effect on the choroid 

(Tobe et al., 1998a).      

   VEGF-D
∆N∆C

 caused a dose-dependent 

enlargement of capillaries and break down of 

the blood-retina barrier. However, intravitreal 

injection of VEGF-D
∆N∆C

 was not capable of 

inducing neovessel formation in the eye 

although other effects were similar to VEGF-

A. VEGF-D
∆N∆C

 in vitro leads to an 

approximately 2-fold greater increase in the 

number of bovine aortic endothelial cells 

after 3 days compared to the control. 

However, this effect is approximately 5-fold 

less potent than VEGF165 (Achen et al., 

1998).   

6.4 Diabetic mouse model 

The progression of diabetic retinopathy has 

not undeniably shown to correlate with 

dyslipidemia (Kohner et al., 1998; Stratton et 

al., 2001). The plasma lipid levels did not 

differ between diabetic IGF-II/LDLR
–/–

ApoB
100/100 

and control LDLR
–/–

ApoB
100/100

 

mice on neither of the diets. Therefore, the 

alterations in the retinal morphology are not 

caused by dyslipidemia. Hyperglycemia is a 

well known risk factor for diabetic 

retinopathy. However, there is no glycemic 

threshold for the development of long term 

complications in diabetic patients (Diabetes 

Control and Complications Trial, 1996). In 

diabetic IGF-II/LDLR
–/–

ApoB
100/100 

mice, the 
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plasma glucose levels were only moderately 

increased    simulating early diabetes treated 

with diet therapy in humans. However, the 

morphology of the retina was abundantly 

altered especially in the outer part already 

with the normal diet. Despite of this, there 

were no signs of microvascular damage. 

Hyperglycaemia causes the onset of diabetic 

retinopathy and the cascade of metabolic and 

biochemical changes long before disease 

pathology is detectable (Brownlee, 2001). In 

addition, hyperglycaemia is associated with 

biochemical alterations and apoptosis of 

neuronal and vascular cells in the retina 

(Gardner et al., 2002; Mizutani et al., 1996). 

Demonstrated by psychophysical and 

electrophysiological experiments, anomalies 

are developing especially in rod vision during 

the preclinical period of diabetic retinopathy 

although the fundus is normal. This is caused 

by changes in the circulation and slight 

reduction in oxygen supply in the retina 

(Arden, 2001). These findings are confirmed 

with diabetic cats, whose retinal oxygen 

tension is reduced when compared to control 

animals, even with no fluorescein 

angiographic evidence of actual capillary 

dropout (Linsenmeier et al., 1998). 

   In the retina, caspase-3 is activated in 

disorders that result in photoreceptor 

degeneration. Activation of caspase-3 has 

been
 

noted in the rd-1 mouse, in the 

rhodopsin mutant rat, in chemically induced 

models of retinal degeneration, and
 

in 

photoreceptor degeneration due to exposure 

to blue light (Jomary et al., 2001; Kim et al., 

2002; Liu et al., 1999; Wu et al., 2002; 

Yoshizawa et al., 2000). There is increasing 

evidence that diabetic patients with retinitis 

pigmentosa have a reduced risk of the 

development of preproliferative
 

diabetic 

retinopathy (Arden, 2001; Arden et al., 

1998).
 
It has been proposed that the loss of 

rods during retinitis pigmentosa leads to a net 

reduction in oxygen usage by the retina, a 

phenomenon that is intimately related to the 

high oxygen
 

demands of these cells in 

combination with the dark adaptation
 

response (Arden et al., 2005; Penn et al., 

2000). There is enhanced oxygen usage by 

rods under scotopic
 
conditions, and, in some 

pathologies, this physiological
 
phenomenon 

could serve to exacerbate pathologic hypoxia 

(Braun et al., 1995; Yu et al., 2000). Diabetic 

rho
–/–

 mice have been shown to suffer less
 

retinal hypoxia and reduced pathologic 

symptoms when compared
 
with their diabetic 

controls with no retinal degeneration (de 

Gooyer et al., 2006). It has been suggested 

that photoreceptor metabolism could play
 
a 

contributory role in the initiation and 

progression of diabetic
 

retinopathy even 

before there is overt microvascular damage 

(Arden, 2001; Lahdenranta et al., 2001). It is 

also possible in our model, that the lack of 

microvascular diabetic retinopathy is due to 

excessive photoreceptor atrophy. 

6.5 Viral vectors 

The in vivo gene therapy approach in rodent 

models of ocular neovascularization has been 

shown to be efficient in multiple reports. 

Also the safety data of different viral vectors 

in larger animals is accumulating. 

Adenoviruses are relatively easy to produce, 

have a good capacity of 30 kb, and with an 

appropriate promoter can mediate good 

expression levels in many types of cells 

(Mori et al., 2002c). Baculoviruses cannot 

replicate in vertebrate cells and are also 

capable of transducing differentiated, 

nondividing cells (Hu, 2006; Mähönen et al., 

2007). In addition, they have a low 

cytotoxicity in mammalian cells even at a 

very high virus load and they can be easily 

produced in high titers (Airenne et al., 2003; 

Laitinen et al., 2005). Furthermore, the large 

size of the baculovirus makes it possible to 

simultaneously transfer more than one gene. 

AAVs are substantially more difficult to 

produce than Ad vectors and have limited 

capacity of less than 5 kb. Lentivirus vectors 

have a similar transgene capacity (8–10 kb) 

but they can easily be generated in high titres 

(Lever et al., 2004). The major disadvantage 

with adenoviral vectors is that they induce an 

immune response that leads to inflammation, 

and mediates the destruction of transduced 
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cells reducing transgene expression (Loewen 

et al., 2004). Baculovirus causes a similar 

inflammatory response in transduced eyes. 

Fortunately the anterior chamber, the 

subretinal space and to a lesser extent the 

vitreous cavity are sheltered from a full 

immunological response that limits the 

immune response against the vector. 

However, AAV and lentivirus appear to 

invoke minor immune response and therefore 

mediate prolonged transgene expression 

(Bennett, 2003).     

   Intravitreally administered adenoviruses 

transduce genes in the nerve fibre and the 

ganglion cell layers in the retina and also in 

the anterior segment of the eye. On the other 

hand, baculovirus-mediated intravitreal gene 

transfer had the highest efficiency in the 

photoreceptor layer and the RPE followed by 

the inner retina. Intravitreally administrated 

AAVs transduce ganglion cells, trabecular 

meshwork cells and various cells of the inner 

nuclear layer (Ali et al., 1998b; Borrás et al., 

2006; Grant et al., 1997; Martin et al., 2002; 

Surace and Auricchio, 2008).   Lentiviral 

intravitreal gene transfer does not cause 

transgene expression in the retina (Greenberg 

et al., 2007). In order to transduce deeper 

layers of the retina, adenoviruses, AAVs and 

lentiviruses should be administered 

subretinally, whereas baculoviruses are able 

to transduce genes to deeper layers of the 

retina even after intravitreal injection.      

   Although intravitreal injection is somewhat 

less efficient than subretinal injection 

particularly when gene delivery to the outer 

retina is concerned, there are clinical aspects 

which favour this technique. The subretinal 

space is small, hence the subretinal injection 

is technically more difficult and only a small 

volume can be injected. Retinal 

neovascularization for example in 

proliferative diabetic retinopathy arises from 

the retina extending into the vitreous gel, and 

is therefore easily accessed with intravitreal 

techniques.       

   Viral vectors are in general more efficient 

than non-viral vectors in delivering genetic 

material into cells in vivo, and about 70% of 

the clinical trials are performed using viral 

vectors (Gene Therapy Clinical Trials). 

However, their safety is a concern. To 

achieve extended duration of transgene 

expression for gene therapeutic applications, 

the transgene should be either integrated into 

the genome or administered repeatedly. 

Chromosomal integration poses the risk of 

insertional mutagenesis and repeated 

administration of viruses might provoke an 

immune response with serious or even fatal 

consequences (Thomas et al., 2003). Non-

viral vectors are safer than virus-mediated 

gene delivery, but far less efficient and 

shorter in their duration (Abdallah et al., 

1995; Herweijer and Wolff, 2003; Niidome 

and Huang, 2002). A limitation of this 

approach is that long-term therapeutic 

transgene expression has been difficult to 

achieve due to the inefficiency of delivery.  

6.6 Ocular gene therapy 

The eye is one of the most suitable targets for 

gene therapy. It is easily accessible and 

allows restricted application of therapeutic 

agents with limited risk of systemic effects 

with a single injection. In addition, the effects 

of the treatment may be monitored by a 

variety of non-invasive examinations such as 

ophthalmoscopy, ERG and OCT. The amount 

of virus injected into the retina is about 

1/1000 of the amount used for systemic 

diseases. A virus delivered to the eye is 

unlikely to cause any systemic disease 

(Bennett and Maguire, 2000). Gene transfer 

experiments have demonstrated that it is 

possible to deliver transgenes to the retina in 

vivo in stable and efficient fashion with 

minimal toxicity (Hauswirth and Beaufrere, 

2000). However, the optimal gene transfer 

vector is not developed yet. Permanent 

models of retinal and choroidal neovascular 

disorders in larger animals would simulate 

clinical conditions better than recently used 

transient models. Attachment of regulation 

elements or tissue-specific promoters into the 

vector construct would increase their 

efficiency and safety in gene therapy.  
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   Major steps have been taken forward in the 

treatment of inherited diseases in the eye. A 

large number of inherited ocular diseases 

have been defined at the molecular level; 

there are approximately 150 retinal disease 

loci with 90 disease-causing genes identified 

to date (Bainbridge et al., 2006). However, 

there are still many unsolved problems. 

Several diseases have complexed pathways 

which complicate the treatments. Phenotypes 

of retinal diseases vary from early and severe 

to late and progressive. Slowly progressive 

diseases have a much wider therapeutic 

window than more acute, aggressively 

progressing and those with an earlier onset. 

AMD and diabetic retinopathy are chronic 

diseases and because of that permanent 

expression
 
of therapeutic genes is required. 

Also the therapy should occur early enough 

before the retina is permanently damaged.  

   Encouriging results in animal models have 

led to phase I clinical trials in patients with 

neovascular AMD. The improvement of gene 

therapy vectors has prolonged the expression 

period of the introduced gene after a single 

injection (Cao, 2001). Thus, gene therapy 

with angiogenesis inhibitors may be an 

option to repeated administrations that are 

costly and increase the risks of complications. 

Inhibition of CNV by gene therapy is also 

reached without delivery of vector 

intraocularly (Gehlbach et al., 2003a; Saishin 

et al., 2005).  

   In diabetic retinopathy, the complexicity of 

the disease offers several alternative targets 

for therapeutic intervention. In addition to 

targeting angiogenic factors, gene transfer of 

proteins targeted to aldose reductase, AGEs 

or PKC offers different options to influence 

the disease. RNA interference offers a 

potential approach for therapeutic gene 

silencing for downregulation of pathogenic 

proteins in acquired disorders (Campochiaro, 

2004; Reich et al., 2003). Also inhibition of 

inflammation involved in many ocular 

neovascular diseases offers an alternative 

treatment pathway. Recent success in clinical 

trials of gene therapy has demonstrated that 

gene-based therapies can be effective in 

patients (Bainbridge et al., 2008; Maguire et 

al., 2008). Although ocular neovascular 

disorders are not life threatening, we should 

not underestimate the impact of visual 

impairment on the quality of life. 

 

7 CONCLUSIONS 

 
Significant progress has been made in the 

understanding of molecular pathogenesis of 

several retinal neovascular disorders 

providing multiple new targets for therapeutic 

interventions. In this study, we evaluated 

which factors are involved in the 

pathogenesis of proliferative diabetic 

retinopathy and retinal neovascularization. 

Multiple factors, suitable as targets of 

therapeutic interventions are present in the 

neovascular tissues of proliferative diabetic 

retinopathy. There are also differences in the 

expression pattern of angiogenic factors 

between type 1 and type 2 diabetic 

retinopathy. These may partly explain the 

differences in their clinical course. In type 1 

diabetics, VEGF-A was much more abundant 

than the other growth factors but in type 2 

diabetics, VEGF-D was equally or more 

abundantly present than VEGF-A in the 

neovascular tufts in over 50% of cases. ANG-

2 seems to be an important factor in 

neovessel growth both in type 1 and type 2 

diabetics. These differencies should be 

considered when developing new treatment 

options for patients with proliferative diabetic 

retinopathy. In type 1 diabetics, the first 

targets should be VEGF-A, VEGFR-2 and 

ANG-2 while in type 2 diabetics, preventing 

the action of VEGF-D and other VEGFRs 

should also be considered.  

   Intravitreal overexpression of VEGF-A165 

led to the break down of the blood retina 

barrier, increased permeability and ultimately 

a dose-dependent neovessel formation in the 

rabbit eye. Blocking the action of VEGF-A165 

prevented the progression of the angiogenic 

process. Intravitreally administred VEGF-

D
∆N∆C

 leads to similar breakdown of the 

blood retina barrier and dilatation of 
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capillaries as VEGF-A165 but it was not 

capable of neovessel formation alone. 

   Adenovirus and baculovirus vectors turned 

out to be efficient vectors for ocular gene 

transfer. However, both vectors initiated an 

immune response in the target tissue which 

limited the expression of the transducted gene 

to a few weeks. In this study, intravitreally 

injected adenovirus vector was particularly 

efficient in delivering agents to the ganglion 

cell layer and inner retina.  Baculoviruses 

showed transduction in the RPE and 

photoreceptor layer even after the intravitreal 

injection and could therefore offer a novel 

choice for the development of treatments for 

certain diseases, such as AMD.  

   Diabetic IGF-II/LDLR
–/–

ApoB
100/100

 mice 

showed abundant changes in retinal 

morphology with no signs of microvascular 

damage normally seen in diabetic retinopathy 

possibly due to excessive photoreceptor 

atrophy. This model might useful in studying 

early diabetic changes and changes related to 

oxidative stress including retinal 

degenerations. 
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