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ABSTRACT

Mast cells are numerous in the uppermost dermis of the normal skin, which is
normally exposed to external air. The mechanism why mast cells accumulate and persist
in the upper dermis is still obscure. Since there is a continuous cross-talk between the
epidermis and the dermis, it could be possible that the air exposure may be important to
the maturation or survival of mast cells in the dermis. This interaction was examined by
using air-liquid interface, submerged skin organ culture, proliferating keratinocytes, and
keratinocyte epithelium models. Also, release of soluble tryptase and chymase was
studied. Furthermore, the effect of air-exposure, retinoic acid, stem cell factor, TNF-a
and histamine on survival of dermal mast cells was studied, and the sequence of events
leading to mast cell death were described. Multiple histochemical techniques were used
and a new chymase-apoptosis double staining-method and objective measuring tool for
measuring histological staining intensity was developed.

The present results show that histamine and TNF-a can have strong inhibitory effects
on keratinocytes when functioning together, either simultaneously or sequentially. Mast
cells can be inhibitory, and even cytotoxic, to keratinocytes in their microenvironment.
These results show that tryptase is solubilized and can reach distant skin sites. The
chymase activity is partially inactivated and the rest of the activity, as well as most of
the protein, remain close to the site of mast cell degranulation. Chymase is rapidly
inactivated when released in physiological conditions but in pathological conditions,
¢.g., in pemphigoid, the control mechanisms may fail and chymase can freely destruct
or affect surrounding structures. The present findings may also explain why an urticarial
wheal does not lead to blister formation every time the mast cells are activated and
degranulated. These results also showed that chymase-positive, tryptase-negative mast
cell may represent a dead mast cell in tissues. Despite its evident action on mast cells
during culture, stem cell factor could not prevent or accelerate the decay in tryptase- and
chymase-positive cells in skin organ culture. Possibly, the apoptotic process in mast
cells began rapidly in submerged conditions and therefore exogenous stem cell factor
had no chance to prevent it. Also, all-trans retinoic acid had no effect on mast cell
survival in skin organ culture. These results indicate, that air exposure to the epidermis
is essential for the homeostasis and survival of mast cells in the dermis.

These findings may provide an experimental background for future studies and
perhaps for therapeutic use of histamine and TNF-o in combination e.g. in cancer
biology and immunotherapy. In chronic inflammatory skin diseases tryptase is an
interesting target for developing enzyme inhibitors for possible therapeutic use.

National Library of Medicine Classification; QH 631, QS 532.5.C7, QV 157, QW 568, QW 630
Medical Subject Headings: cell degranulation; cytokines; histamine; keratinocytes; mast cells;
organ culture; skin/ cytology; tumor necrosis factor/ genetics






Paul Ehrlich, 1854-1915 '

“Much testing; accuracy and precision is experiment;
no guesswork or self-deception.”

The Collected Papers of Paul Ehrlich,
London-New York, 1856-1960
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1. INTRODUCTION

Mast cells are especially numerous in the uppermost dermis of the normal skin, but
only occasionally can mast cells be found in close morphological contact with the
epidermis. The mechanism why mast cells accumulate and persist in the upper dermis is
obcure. The skin is normally exposed to external air, which is essential to maturation of
epidermis but possibly also dermis and mast cells. Stem cell factor is important in the
development of human mast cells, but a number of other factors can regulate the growth,
differentiation, and proliferation of mast cells. Retinoids are commonly known
modulators of hematopoictic differentiation but their importance to mast cells is poorly
known. Mast cells take part in many pathophysiological conditions in human skin but
their exact role in many skin diseases is still unclear. Mast cells and their proteolytic
enzymes have been suggested to play a marked role e.g. in blistering skin diseases
characterized by dermal-epidermal separation (1-3). Tryptase and chymase are the
major serine proteinases of the skin mast cells and the biological significance of these
two enzymes depends on their activity. Mast cells accumulate and persist in the upper
dermis of the skin, and they can be found in contact with the epidermis or even inside
the epidermis in chronic inflammatory skin diseases like psoriasis and chronic leg ulcers
(4-7). Since mast cell mediators, e.g. histamine, heparin and TNF-a, have been shown
to inhibit keratinocyte proliferation and epithelium growth in vitro (8-11), mast cells
have been assumed to be involved in controlling the growth of the epidermis. To
highlight the importance of these cells in the human body, mast cells have also been
viewed to have crucial roles in several other diseases e.g. arthritis (12, 13), fibrosing
diseases (14), atherosclerosis (15), myocardial infarction (16) and even dilated
cardiomyopathy (17).

This study examined the possible interaction of dermal mast cells and epidermis by
using skin organ cultures, proliferating keratinocytes and maturing keratinocyte
epithelium together with powerful mast cell mediators, TNF-a and histamine. Also, the
effect of retinoic acid on the mast cells growing in skin organ cultures and in vivo mast
cells was studied. Furthermore, the effect of air exposure to survival of dermal mast
cells was studied, and the sequence of events leading to mast cell death was evaluated.
The survival and effects of mast cells and their mediators on growth of human
keratinocytes and epidermis will be also discussed in later chapters. The roles of mast
cells and in normal skin physiology and pathophysiology will be discussed.
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2. REVIEW OF THE LITERATURE
2.1 The origin of mast cells and about the nomenclature

Mast cells were originally discovered from the frog mesentery by German pathologist
von Recklinghausen (1833-1910) already in 1863 (18). Later the German physics and
biochemistry student, nowadays known as Nobel-laureate, Paul Ehrlich (1854-1915)
described large, distinctively stained cells containing basophilic granules, for which
Ehrlich coined the term “mast cells” (german: masitzellen, well-fed cells), suggesting
that these cells, rich in granules, could help in the maintenance of the nutrition of
connective tissues (19).

Since the time of Ehrlich, scientific knowledge of the molecular and cell structures
and their function has increased to form data chaos e.g. many new cell structures and
gene products are described every year. To avoid confusions in the names of new
structures, the cluster of differentiation (CD) was introduced as a standardized,
numerical classification method for cells and their antigens based on monoclonal
technology allowing for the specification of cells and their antigens according to their
origin, differentiation stage, lineage, and activated state. Also, + or — signs are used to
indicate whether the antigen is presented or not in that cell. B-lymphocytes produce
immunoglobulins (latin: immunis, free + globules, a small ball) which are composed of
Fe-fragment and the Fab-fragment, which in turn is subdivided into heavy and light
chains (Figure 1). The five major classes of immunoglobulins (Ig) are IgA, IgD, IgE,
and IgM antibodies. Each immunoglobulin (antibody) class is distinguished by certain
effector functions and structural features including a unique heavy chain isotype,
designated a (IgA), & (IgD), ¢ (IgE), v (IgG), or u (IgM). Fc receptors (FcR) are
glycoproteins that bind specific Fc-fragments of these immunoglobulins (20).

CD34 antigen (gpl05-120) is expressed in early lympho-hematopoietic stem and
progenitor cells, small-vessel endothelial cells, embryonic fibroblasts, and some cells in
the fetal and adult nervous tissue (21). Also, mast cell (MC) precursors are now known
to be hematopoicetic CD34" cells in origin (22), being derived from bone marrow stem
cells, which enter the circulation as mononuclear cells. The circulating pluripotent mast
cell progenitors, CD34" cells, express the Kit (CD117) receptor for stem cell factor
(SCF), IgG receptor FeyRII (CD32) (23), and FceRI (24). Human hematopoietic CD34™
stem cells can proliferate and differentiate into mature mast cells even in the mouse skin

(25).
a) b)

Fc receptor \
I¢E A specific for IgE

Allergen —_ Heavy chain Light chain

Granule

Fe-fragment

Mast cell

Figure 1. The schematic depiction of a) a mast cell and b) an immunoglobulin.
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2.1.1 Homing of the circulatory mast cell progenitors to skin

The mast cell precursors leave the blood and enter the tissues, for example skin, where
they undergo the final phase of their differentiation in tissue microenvironments rich in
fibroblasts (26). The guiding mechanism for these progenitory mast cells out of vessels
to mature in skin, the phenomenon known as the homing effect, is poorly understood. It
is known that vessel endothelium is rich in various antigens that cause passing
leucocytes to slow down or enable them to extravasate in response to chemokines and
cytokines. Keratinocytes are also known to express these mediators, indicating their role
in chemotaxis.

The selectin family of adhesion molecules consists of lectins, leukocyte (L-selectin) or
endothelium (P- and E-selectin). Human skin-homing T lymphocyte (27) and
hematopoictic progenitor cell entry are dependent on the cell-adhesive interactions
between the cells and vascular E-selectin (known also as CD26E, ELAM-1, LECAM-
2), which is constitutively expressed on postcapillary venules in the skin (28). E-selectin
glycoprotein ligand identified on human progenitor cells is the predominant 220-kD
sialomucin-like protein, though P-selectin ligand glycoprotein 1 (PSGL-1, CD162) (29,
30) is also expressed in human CD34" progenitor cells (31). PSGL-1 possibly may act
as a skin homing receptor or cutaneous lymphocyte-antigen (CLA) (32). Normal MCs
in skin express also B1 integrin (CD29), which when activated cause crosslinking of the
with specific integrins (CD49c, known also as a3-integrin chain or VLA-3; CD49d, a4-
integrin chain, VLA-4; CD49¢, aS-integrin chain, VLA-5) (33, 34). Via these
interactions MCs are spontaneously associated with laminin and fibronectin in vivo and
pericellular laminin complexes in vitro suggesting that the MC and laminin interactions
may be important determinants of mast cell localization in the perivascular regions (33,
34). The possible supplementary linear pathway of human mast cell development from
tryptase single positive mast cells into tryptase and chymase double positive mast cells
as the cells mature suggests that this maturation process is promoted by interleukin 4
(IL-4) (35), though there is no strong evidence in support of this claim.

2.1.2 Heterogeneity, growth and differentiation of human mast cells

Histochemical studies have revealed the presence of two mast cell phenotypes
distinguished by their content, the two different neutral proteases tryptase and chymase
— MCr contains only tryptase whereas MCyc has both tryptase and chymase (36, 37).
MCr¢ are found mainly in the connective tissues and do not appear to be dependent on
lymphocyte-growth factors. In normal human skin, the majority of the mast cells are
MCc type (36, 37). Also, chymase-positive and tryptase-negative MC¢ mast cell type
has been identified (38, 39). The MCc are rich in chymase and carboxypeptidase and are
present in the skin only in low numbers (39, 40).

Mast cells have been considered to be stationary cells in tissues, just waiting to be
activated and then releasing their mediators. The primary role of MCrc cell is more
likely to be the involvement in angiogenesis and tissue reconstruction but these cells
also participate fully in IgE dependent allergic reactions (41). Mast cells have been
shown to be present in normal skin in the superficial dermal zone (42, 43). In the recent
study, it was also shown that there is no difference between males and females or young
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or old individuals in the mast cell distribution (42). The number of mast cells in normal
skin has been reported to be 7.3+3.0 x 10>/mm’ of skin (44) responding approximately
384 mast cells per mm’, though there are other estimates due to the different calculation
methods, e.g., values of 48 mast cells per mm” in skin from the upper arm (45) or in
normal skin 180 mast cells per mm? (46) have been reported. In the most recent studies,
the density of mast cells in peripheral skin was even over 20 fold compared to central
(e.g. abdominal skin) (42). Interestingly, mast cell number was highest in peripheral
skin sites e.g. chin and nose, accounting 80 mast cells per mm” in upper dermis (42). In
the other study, the variation was only minimal, e.g., scalp 7.3 /mm?, neck 7.5 /mm?,
flexure of the elbow 8.4 /mm” but the calculation was done from thicker sections (47).
Also, the density gradient, i.e. highest density at the dermo-epidermal junction (10 fold
amount compared to amount in upper subcutis) and the lowest in the deeper regions,
does not vary in different locations of the body (42, 43). Thus, healthy skin has a
proximal/distal and a central/peripheral mast cell gradient (42).

Mast cells have been demonstrated to accumulate or decrease according to different
skin conditions showing that they possess the capability to migrate in order to be
redistributed within tissues. In mice, it is shown that dry environment may increase mast
cell number and their histamine content (48) wheter this happens in humans is not
known. There are slightly more mast cells in the atopic lesions as compared to healthy
skin, but the increase has no correlation with the clinical severity of the disease (47).
More specifically, an increase in the number of tryptase-positive MCs in the upper
dermis of non-lesional and lesional atopic subjects is detected but the chymase has lost
its activity (49). Mast cells are normally concentrated around blood vessels, nerves and
appendages but the epidermis of healthy skin is normally devoid of mast cells (45). That
led to hypothesis that mast cells may participate angiogenesis (50), a theory that was
later confirmed several ways (51-54), thus mast cells may promote growth and
progression of cancers.

2.1.3 Properties and degranulation

Originally mast cells being close to body surface were thought to defend the host
against parasites (55). More recently, mast cells were viewed as being harmful due to
their key role in allergic and anaphylactic reactions resulting from their degranulation.
Degranulation is a sequence of events leading to release of various mast cell granules
and their contents into the surrounding cell space. That can happen by immunological or
non-immunological ways.

The immunological degranulation process involves binding of immunoglobulins to
the specific Fc-receptors that human mast cells express on their surface: FceRI, FcyRI,
II and III. The signalling via Fc receptor may influence the activation of mast cells by
cither up- or down-regulating certain molecules. The specific nature of mast cell
response is directly linked to motifs or subunits of the intracellular chains of these
receptors termed immunoglobulin receptor tyrosine activation motifs (ITAMs) (56, 57)
or immunoglobulin receptor tyrosine inhibitory motifs (ITIMs) (20, 57). The function of
FceRI receptor is type | hypersensitivity (anaphylaxis), parasite elimination and release
of various cytokines (e.g., TNF-a, IL-4, IL-5, IL-6, IL-10). During activation, the
tyrosine amino acid groups in the receptor motifs are phosphorylated by the src-kinase
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(Figure 2) p56™" (58), resulting in activation of tyrosine kinase p72%* followed by
stimulation of a downstream signalling pathway (59). The activation leads to either the
Ras-Raf-MAPK pathway for the cytokine gene expression (60) and arachidonic acid
metabolite generation (61, 62) or the pathway for phospholipase C/ phospholipase D
and calcium mobilization/ protein kinase C resulting in degranulation (63). FcyRI in
turn binds IgG and is up-regulated by IFN-y. Activation of this receptor leads to an
increase in the production of LTC,4, PGD; but also various cytokines are released (e.g.,
TNF-a and IL-8). In contrast, the function of FcyRII is to inhibit FceRI mediated mast
cell activation by co-aggregating with FceRI. FcyRIII mainly occurs in bone marrow.

FceRI FeyRI
'
pS6im p56v"/ Hek / Fer
p725yk
PI-3-kinase

P Ras-Raf-MAPK
PLC i PLD / \
Ca?/PKC  Phospholipase A, Transcripiton Factors

Degranulation Arachidonic acid Cytokine

metabolite production | | expression

Figure 2. The signalling pathways of FceRI and FcyRI in mast cells. PI-3 kinase =
phosphatidylinositol-3 kinase; PL = phospholipase; BTK = Bruton’s tyrosine kinase;
PKC = protein kinase C. Other abbreviations are commonly approved nomenclature.

The non-immunological degranulation may occur in anaphylactoid reactions by the
direct stimulus of various substances ¢.g. neuropeptides or by other basic secretagogues
such as morphine, poly-L-lysine and compound 48/80 (64). Compound 48/80 is a mast
cell degranulator that is widely used in mast cell research since it is a strong histamine
liberator (65). Also, nitric oxide (NO) suppresses antigen-induced degranulation,
mediator release, and cytokine expression. The action of NO on mast cells is time
dependent, requiring several hours, and it is non-cGMP mediated (66). Other
endogenous substances such as can induce mast cell degranulation like complement
peptides C3a and C5a (67), neuropeptides Substance P and vasoactive intestinal peptide
(VIP) (68), IL-4 (69) as well as tumor necrosis factor alpha (TNF-o) (69).
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2.1.4 Mast cell mediators

Mast cells play a central role in allergic responses but also can be activated by
immunological or non-immunological stimuli. In tissues, antigen-dependent mast cell
activation is classically initiated by binding specific IgE to high-affinity FceRI receptors
on their cell surface leading to inflammatory mediator release (70). The presynthesized
granule-associated and De novo synthesized lipid-derived mediators which are liberated
in the immediate response are released rapidly, within 1-5 minutes. The release of
cytokines and chemokines, instead, can require enhanced gene expression leading to
delayed release of these mediators, it is maximal after 12 hours of antigen binding. The
ever increasing list of mast cell mediators is shown in table 1. The supplementary
source for the function of these mediators is available on the internet ¢.g. Cytokines
Online Pathfinder Encyclopaedia (http://www.copewithcytokines.de/).
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2.1.4.1 Histamine

Histamine (f-imidazolethylenamine) was the first identified mast cell mediator (119).
It is a biogenic amine synthesized in mast cells by the action of histidine decarboxylase
(120) from the amino acid L-histidine (121, 122). The molecular weight of histamine is
111 Da and it is stored in mast cell granules bound to the carboxylic residues of the
heparin proteoglycan (82, 123). The concentration of histamine within mast cell
secretory granules approximates 100 mM (1-2 pg/cell, 40% cell volume in granules, 10
um cell diameter) (77). There are other estimates of the concentration of histamine in
the dermal skin, i.e. about 50 uM based on an assumption of 3100 mast cells/mm’ (124)
or 5-8 ug histamine/g wet weight of skin and assuming that 1 g skin equals to 1 ml (125,
126).

Four G-protein-coupled histamine receptors have been characterized, H1 (78), H2
(127), H3 (128) and recently H4 (80). H1 functions through activation of phospholipase
C with the generation of inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG)
and increased cytosolic Ca®™ (129). H2 receptors are coupled both to the adenylate
cyclase and phosphoinositide systems though the stimulation of the H2-receptor results
primarily in cAMP formation (130). H3 receptor is expressed on histaminergic neurons
in the brain, with low expression in peripherial tissues (130). The novel H4 receptor and
H3 receptor both activate cells by inhibiting cAMP accumulation and increasing
intracellular Ca®* (130). Allergic reactions evoked by histamine are mediated mainly via
the H1 receptor. H1 receptor antagonists are commercially available e.g. cetiritzine,
hydroxyzine, loratadine, which all are referred to “antihistamines”. Also, specific H2
receptor antagonists are avalaible, ¢.g., cimetidine, famotidine and ranitidine, which are
known as “H2 receptor blockers” used for hyperacidicity of gastric mucosa. Purified
histamine is commercially available.

Histamine can be detected classically from human plasma or other fluids by using
radio enzyme assay (REA), high performance liquid chromatography (HPLC) with
post-column derivatization system or radio immuno-assay (RIA) (131), gas
chromatography and mass spectroscopic detection (132) or also by
immunohistochemistry (133). Also, a histamine-free, histidine decarboxylase knockout
mouse model has been developed (134). Mouse models represent interesting tools
because recently it was found that over 90% of the mouse and human genomes can be
partitioned into corresponding regions of conserved synteny, reflecting segments in
which the gene order in the most recent common ancestor has been conserved in both
species (135, 136).

Histamine is a potent mediator for vasodilation and increased capillary permeability.
It can be released from mast cells during degranulation via slow IgE-dependent (more
than 5 minutes) and rapid (less than a minute) non-immunological stimulation (137).
After degranulation, histamine is catabolized along two main routes, deamination by
diamine oxidase (138) and methylation of the imidazole ring by methyltransferase (121,
126, 139). The various metabolites have no significant physiological activity and are
excreted in the urine (140), the main metabolite is tele-methylimidazoleacetic acid
(141).

Histamine has been found to inhibit epidermal cell outgrowth and mitosis (79, 142).
Inhibition was maximal at a histamine concentration of 10* M (142). In contrast,
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imidazole acctate, a histamine breakdown product, was found to be a striking mitotic
stimulator in organ culture (143). Histamine also modulates the proliferation of
keratinocytes - by binding to the H2 receptor on the keratinocyte membrane it induces
activation of adenylate cyclase and phospholipase C through a GTP binding protein and
evokes a transient increase in intracellular Ca®" (144), thus inhibiting the growth. In skin
organ cultures, histamine significantly stimulates the proliferation of keratinocytes as
compared to controls, reaching maxima within a range from nano- to micromolar
concentrations (145). These findings support the proposal that mast cell products can
modulate keratinocyte proliferation, and point to a role for mast cells in the regulation
of epidermal tissue turnover under physiological conditions. The suppression of TNF-a
synthesis by histamine is likely to be a transcriptional event, since histamine caused a
four-fold reduction in TNF-a mRNA levels this effect being reversed by cimetidine or
ranitidine, i.e., H2 receptor antagonists (146).

High histamine levels have been measured in blister fluids of bullous pemphigoid
(147). Also, acute ultraviolet light B (UVB) exposure decreases the treshold for
histamine stimulation in skin cells but also induces histamine release from mast cells
(81). Elevated histamine levels are also found in suction blister fluids collected from
UVB-exposed skin (148, 149).

2.1.4.2 Tryptase

Tryptase (EC 3.4.21.59) is a 135 kDa tetrameric serine proteinase (150) found inside
the granules of MCr¢ and MCr cells. Tryptase is stored in the secretory granules bound
to heparin proteoglycan which maintains the tryptase in a stable state in physiological
conditions (151). Tryptase is released during mast cell degranulation as an active
heparin complex. The adult foreskin contains 35 pg tryptase per mast cell (77). The
human mast cell tryptase gene is located to chromosome 16p13.3 (73, 152) in the
protease gene cluster encoding tryptases o, BI, BII, BIII, transmembrane tryptase (TMT)
(153), and eosinophil serine protease-1 (Esp-1, testisin, PRSS21) (154). Tryptase pII
and BIII probably are allelic variants of the same gene (152). Recently, tryptase o (74)
and tryptase ¢ (PRSS22) have been characterized (73). The mast cells that reside in
various human connective tissues express many combinations of tryptases o, BI, BII,
BIII, and TMT (155). The tryptase o is rather inactive, though it is also secreted and
stored in skin mast cells. Tryptase [ is the predominant form of tryptase in the skin and
it consists of monomeric subunits (156). The human p-tryptase, after mast cell
degranulation and exposure to neutral pH in the tissue, may become dissociated into
active monomers and possibly, some of the biological activities of human tryptase may
be attributable to active tryptase in its monomeric form (157).

Tryptase can be inhibited by synthetic inhibitors e.g. N-o-p-tosyl-L-lysine
chloromethyl ketone (TLCK), diisopropy! fluorophosphate (DFP),
phenylmethylsulfonyl fluoride (PMSF), leupeptin (158), and by the recently developed
nonelectrophilic MOL 6131 based upon a 3-strand template (159).

Tryptase is capable of cleaving synthetic substrates which have the basic amino acids
lysine and arginine, e.g., 1,2-benzisothiazol-3-one 1,1-dioxide (160), Z-Gly-Pro-Arg-p-
nitroanilide (pNA), Z-Gly-Pro-Arg-AMC, benzoyl-L-arginine ethyl ester (BAEE) and
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tosyl-L-arginine methyl ester (TAME) all can function as substrates (158, 161, 162).
These synthetic substrates have widely been used for the detection of tryptase from
biologically active samples (71, 126, 150), commonly by micro-ELISA reader.

The effects of tryptase on surrounding cells and matrix proteins are largely dependent
on its enzyme activity. Tryptase is stable when bound to heparin, and no physiologic
inhibitors for tryptase have been found. This makes sense while mast cells
predominantly are present in tissues, e.g., mucosa and skin where they can come into
contact with exogenous bacteria, and other biologically active material and have
important protective functions. Agents which displace tryptase from heparin can
inactivate this enzyme since the tryptase tetramer dissociates into inactive monomers
(163). Interestingly, tryptase may be a potent stimulus of microvascular leakage (164)
leading to inflammatory conditions. The anatomical association of mast cells with nerve
tissue and blood vessels may have role in dermal neurogenic inflammation (165-167).
Tryptase is able to modulate the biologic effects of neuropeptides, ¢.g. by cleaving the
VIP. Protease activated receptors (PAR-1 and PAR-2), are members of the G protein
signal transduction receptors that are activated by proteolysis (168). Tryptase can also
hydrolyse PAR-2 receptors present in the surrounding keratinocytes and fibroblasts
(168) during inflammation in atopic dermatitis and psoriasis (168). Tryptase has also an
important role in normal regulation of extracellular matrix turnover, wound healing and
tumor metastasis (115, 169). Furthermore, tryptase has been found to stimulate
histamine release from synovial cells (13). Tryptase can bind efficiently to heparin and
can degrade the basement membrane and induce dermal-epidermal separation. Tryptase
can degrade the pericellular matrix of fibroblasts, as well as cleaving fibronectin in vitro
and in the basement membrane ex vivo (170, 171) contributing focal dermal-epidermal
separation and blister formation. Tryptase can also stimulate fibroblast proliferation
(115, 172) and collagen synthesis (173, 174) as well as vascular tube formation and
hence angiogenesis (51). Thus, there is evidence in favour of concept of a synergistic
effect of the mast cell mediators.

Recombinant human B-tryptase has already been produced (175). Furthermore, a
mouse model for studying the effect of tryptase in asthma has been developed, in this
model MOL 6131 reduced airway inflammation (159).

2.1.4.3 Chymase

Chymase (EC 3.4.21.39) is a glycosylated chymotrypsin-like serine proteinase stored
as a heparin bound complex in the granules of MCrc cells (176, 177). The name
chymase was proposed by David Lagunoff and Earl P. Benditt in 1963 (178) to denote
an enzyme similar to pancreatic chymotrypsin that had been first detected in mast cells
10 years previously (179). Human chymase is a monomer of 27 kDa the activity of
which is regulated within the mast cell granule by pH and heparin (180). Chymase is
encoded by a gene located in 14q11.2 (181). It was initially purified from rat skin (75)
though it had earlier been purified from mast cells of rat thyroid (182). Subsequently, it
has been cloned and produced as recombinant human chymase (183). In the adult skin,
the majority of the mast cells are MCrc cells (36) and the chymase content per single
mast cell has been found to be 4.5 pg (77). Chymase has been classified by structural
analysis and reclassification into two groups o and 3 (184). There are 5 known mouse
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chymases of which all but chymase 5 are § chymases (185) similar to rat chymases 1
and 2 (186). The mouse chymase 5, rat chymase 5, dog chymase and human mast cell
chymase all are referred to o chymases (186).

Chymase activity can be measured by using commercially available substrates like N-
benzoyl-L-tyrosine ethyl ester, N-acetyl-L-tyrosine ethyl ester, and Suc-Ala-Ala-Pro-
Phe-pNA (75, 187-189). Mast cell chymase can be inhibited by diisopropyl
fluorophosphate (DFP), phenylmethylsulfonyl fluoride (PMSF) (190), lima bean trypsin
inhibitor (LBTI), soybean trypsin inhibitor (SBTI), ay-macroglobulin (191), o-
proteinase inhibitor (o;-PI), a-antichymotrypsin (a1-AC) (192). Recently, it was found
that secretory leukocyte proteinase inhibitor (SLPI) can also inhibit chymase, especially
if chymase and heparin are released from mast cell granules simultancously (87). SLPI
is also located and produced in mast cells (193, 194). Chymase-induced mast cell
accumulation may occur via the ability of chymase to process membrane-bound SCF on
the epidermal keratinocytes (195).

Chymase is a major constituent of the secretory granules of human mast cells, but little
is known of the contribution of this serine proteinase to acute allergic reactions. It has
recently been found to induce microvascular leakage in vivo (196). Little evidence was
found for synergistic interactions between chymase and either histamine or tryptase
(196). Thus, chymase could contribute to the increases in microvascular permeability
seen following mast cell degranulation in allergic discases (196). Chymase cleaves a
peptide bond within the SCF protein between Phe'>® and Met"’ resulting in a soluble
bioactive SCF which in turn may stimulate mast cell proliferation and differentiation
(197). Mast cell chymase, like leukocyte elastase can efficiently release matrix-bound
latent TGF-f1 complexes from cultured epithelial cells, possibly contributing to the
accumulation of connective tissue in inflammation (198), i.e., promoting the formation
of fibrosis. The rat chymase can activate specifically latent TGF-B1, indicating that mast
cells can act as potent paracrine effector cells both by secreting active and by enhancing
the TGF-B1 response in target cells (199). Chymase-released TGF-B1 inhibits the
growth of smooth muscle cells and induces their apoptosis (200, 201). Also, the MC
density and chymase activity has been found to increase in dermal fibrotic processes,
e.g., in burn scars in mice (202).

PAR-1 (thrombin receptor) can be hydrolysed by the chymase (168). Chymase can
also cause degradation of the epidermal-dermal junction leaving the bullous pemphigoid
antigen on the epidermal side and the laminin on the dermal side of the split (1).
Chymase has been reported to induce the mitogenicity of fibroblasts (203). Chymase
can release fibronectin and soluble CD44 from the pericellular matrix of airway smooth
muscle cells in vitro (204). Both tryptase and chymase can also promote matrix
degradation indirectly via activation of collagenolytic metalloproteinases and urinary-
type plasminogen activator (75, 170, 198, 200, 204). In addition to causing matrix
degradation, tryptase and chymase are thought to be involved in repair processes and
matrix deposition. Chymase, like tryptase, can bind efficiently to heparin. Chymase
seems to be more effective, since purified chymase separated fully the epidermis from
the dermis at the level of lamina lucida whereas purified tryptase induced only a focal
separation (1, 171).
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There are also many knock-out mouse models developed for investigating the role of
chymase in skin pathophysiology, ¢.g., models of atopic dermatitis (205), fibrosis in
scleroderma (206) and angiogenesis (52).

2.1.4.4 TNF-o

The tumor necrosis factor superfamily has been characterized in humans as at least
three members: cachectin alias tumor necrosis factor alpha (TNF-o, TNF2),
lymphotoxin alpha (LTA, TNF1, TNF-B) and lymphotoxin beta (LTB, TNF3). TNF-a
is a 17-kDa proinflammatory cytokine (207) that is stored and secreted by human
dermal mast cells (92). Elsewhere in the body, it is mainly secreted by macrophages and
it can induce cell death of certain tumor cell lines. It is a potent pyrogen causing fever
by direct action or by stimulation of IL-1 secretion and it is implicated in the induction
of cachexia. Under certain conditions, it can stimulate cell proliferation and induce cell
differentiation. The gene for human TNF-a is located on human chromosome 6p21.3
and it encodes a 233-amino-acid-long 26 kDa polypeptide. That polypeptide is further
cleaved by TNF-alpha-converting enzyme (TACE) releasing the soluble TNF-a (208).
TACE is a member of “A Disintegrin And Metalloprotease-” (ADAM) family of zinc
metalloproteases (208). Also, epidermal keratinocytes secrete ¢ which exerts its
biological activities via binding to specific cell surface receptors present in almost all
cells including keratinocytes (209). Two distinct TNF-o, cell surface receptors (TNF-R,
55 and 75 kDa) have been identified and cloned (210, 211). In normal epidermal
keratinocytes, the effects of TNF-a are apparently mediated via 55-kDa TNF-R
(CD120a, TNFRI, p55) (209). In the skin mast cells are the primary source of TNF-a
but also activated keratinocytes may produce it (212).

The TNF-a can be detected from human samples, e.g. plasma, by using highly
sensitive ELISA-methods or from tissues by means of specific antibodies. The synthesis
of TNF-a is induced by many different stimuli including interferons, IL-2, GM-CSF,
substance P, bradykinin, immune complexes, inhibitors of cyclooxygenase and platelet
activating factor (PAF). The production of TNF-a is in turn inhibited by IL-6, TGF-j,
vitamin D3, prostaglandin E2, dexamethasone, cyclosporin A, and antagonists of
platelet activating factor (PAF). The specific inhibitors e.g. etanercept and infliximab
for TNF-a are already in clinical use. Etanercept is a recombinant dimeric form of the
soluble TNF p75 receptor that binds tightly to TNF and to lymphotoxin, keeping them
in biologically inactive form (213). Infliximab is a chimeric (mouse-human)
monoclonal antibody that binds and neutralises the TNF-a (213). Both of these agents
are already in clinical use in the treatment of severe psoriasis and psoriatic arthritis.

TNF-a also acts on a variety of cells including mast cells (92), thus, enhancing
inflammatory and immune processes. Unregulated increases in the levels of TNF-a
could be pathogenic also in inflammatory diseases. TNF-a is cytostatic for normal
keratinocytes and may thus play a role in inhibiting epidermal proliferation (9). The
production and secretion of TNF-a depends on the state of cellular stimulation. TNF-o
can induce local proliferation of fibroblasts, capillaries, and epidermal cells (214) and is
thought to play a major role in many inflammatory skin diseases. TNF-a expression has
been shown to be markedly increased after UVB-exposure in the epidermis (215). This
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cytokine has been thought to be responsible for the formation of sunburn cells that do
not express differentiation markers like involucrin (216). TNF-a can induce ICAM-1
expression on keratinocytes and dermal endothelial cells providing adhesion sites for
leukocytes (8, 217, 218). Stimulation of mast cells by rh-TNF-a evokes a concentration
dependent release of histamine and tryptase (219). TNF-a appears to be a direct
stimulus for causing mast cells to degranulate and to release both histamine and tryptase
(219). Also in contrary, histamine has found to inhibit TNF-o release by mast cells
through H2 and H3 receptors (220). TNF-o has been found to inhibit cell proliferation
in human keratinocytes cultured in serum-free medium in a time- and dose-dependent
manner with a minimum effective dose of 10 U/ml and a 50% inhibitory dose of 100
U/ml (217). Even at subnanomolar concentration, TNF-a significantly inhibits the
incorporation of labelled thymidine by epidermal keratinocytes in murine skin organ
culture (145) but its growth inhibition was completely reversible. Furthermore, TNF-a
altered the morphology of the growing keratinocytes, inducing the appearance of a
fusiform, fibroblast-like population (217, 221). It is claimed that TNF-a activity is
determined by the balance of apoptosis-inducing and apoptosis-preventing factors that
also may be exogenous mediators (222). The cytotoxic effect of TNF-o occurs
primarily in the Gp-G; phase of the cell cycle (223, 224).

2.1.4.5 Stem cell factor

Stem cell factor (SCF, MGF, Kit ligand), the ligand for the receptor encoded by c-kit
gene (225), is known to be produced by fibroblasts, keratinocytes and endothelial cells
but also by human skin mast cells (226). The gene encoding SCF is located in
chromosome 1222 which produces a 31 kDa polypeptide. Two different SCF-specific
mRNA splice variants encode for either soluble (SCF-1) or membrane-bound (SCF-2)
forms. Their differential expression in immature and mature human mast cells, e.g., the
secretion of SCF-1 or -2 by these cells, may play a role in autocrine stimulation,
maintenance of survival and the differentiation of tissue mast cells (227). A possible
feedback loop has also been described in which chymase released from mast cell
secretory granules may solubilize SCF bound to the membrane of surrounding stromal
cells (197). The liberated soluble SCF may in turn stimulate mast cell proliferation and
differentiated functions; this loop could contribute to the abnormal accumulations of
mast cells in the skin and hyperpigmentation, at the sites of chronic cutaneous
inflammation. SCF is normally expressed in blood progenitory cells, melanocytes, germ
cells, basal keratinocytes and mast cells ad it is considered to be important in their
growth and development.

SCF is the principle cytokine that has been discovered to promote mast cell
proliferation and/or differentiation (228). SCF acts to maintain MC viability and
maturation (228), it is a growth factor that can act synergistically with other growth
factors and matrix components (228). SCF has also been shown to be a chemoattractant
cytokine for human mast cells (229).

Mast cells express also the receptor tyrosine kinase, the stem cell factor receptor
(CD117, SCFR, Kit protein) encoded by the proto-oncogene c-kit (225). Ligation of
SCFR induces its dimerization and activation of its intrinsic tyrosine kinase activity
leading to activation of Raf-1, phospholipases, phosphatidylinositol 3-kinase, and
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extracellular signal-regulated kinases (230). SCF can augment FceRI-mediated JNK
activation and cytokine gene transcription but this occurs via pathways that are
regulated differently than those activated through FceRI (230). Imatinib (STI 571 or
CGP 57148B) is a selective inhibitor for Kit receptor (231). This drug is in clinical use
as an anticancer drug in hematological malignancies.

The capacity to expand subsets of antigen-specific lymphocytes that become activated
by environmental antigens is termed "acquired” immunity. Immunologic memory,
although a fundamental aspect of mammalian biology, is a relatively recent evolutionary
event that permits organisms to live for years to decades. "Innate” immunity, mediated
by genes that remain in the germ line conformation and encode for proteins that
recognize conserved structural patterns on microorganisms, is a much more ancient
system of host defense. The studies using genetically mast cell-deficient WBB6F1-
Kit"/Kit"™ and congenic wild-type (WBB6F1-+/+) mice indicate that mast cells can
also promote health, by participating in natural immune responses to bacterial infection
(232). Repeated administration of SCF also can enhance survival in mice that
genetically lack TNF-a, demonstrating that the ability of SCF treatment to improve
survival does not solely reflect the effects of SCF on mast cell- dependent (or -
independent) production of TNF-a (232). These findings point to c-kit and mast cells as
potential therapeutic targets for enhancing innate immune responses.

The recombinant human SCF (rhSCF) has been developed and widely used for mast
cell studies. RhSCF potentiates histamine release from MC through immediate and
delayed mechanisms, but has no effect on TNF-a release (233). This regulation of MC
by SCF may be important in allergic and other inflammatory diseases. After
subcutaneous injection of thSCF, a wheal and flare reaction develops at the injection
site and clectron microscopy reveals that most dermal mast cells at these sites exhibit
extensive, anaphylactic-type degranulation (234). RhSCF significantly increases dermal
mast cell density at sites distant to the injection with the cytokine and also increases
both urinary levels of the major histamine metabolite, methyl-histamine, and serum
levels of mast cell alpha-tryptase (234) thus indicating that thSCF can promote the
functional activation of human mast cells in vivo. It has also been shown, that though
the numbers of resident mast cells are very low in human cutancous scars, the tissue
does not contain a mast cell subpopulation that is chymase -, avidin -, tryptase +, Kit +
(235). This may suggest massive mediator release from these cells into fresh wounds
and increased immigration and/or proliferation of immature mast cells and their
precursors (235). Also, a mast cell deficient mouse model has been developed to study
the effect of SCF (236).
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2.2 The structure of human skin

The skin is the largest organ of the human body, consisting of epidermis (appr. 0.03-
0.13 mm in thickness), dermis, and subcutis with fat tissue. The thickness of different
skin layers varies in different locations of the body, e.g. subcutis is thin at the face and
thick at the abdominal area, or stratum corneum and granulosum are thicker in the soles
of the feet than at the face. Epidermis, as the outermost surface, mainly consists of
keratinocytes, melanocytes and Langerhans cells. Keratinocytes form four different
layers, named according to their histological appearance: one cell layer of stratum
basale or germinativum, three to four layers of stratum spinosum, two to three layers of
stratum granulosum, and multilayered stratum corneum (Figure 3) (237).

stratum corneum
stratum granulosum
epidermis stratum spinosum

stratum basale

basement membrane

dermis 4, 71 &

MC FB ECM \4

Figure 3. The histological structure in the cross-section of the human skin stained with
hematoxylin and eosin. Hyperkeratotic appearance is due to one day cultivation prior
tissue processing. Abbreviations: ECM = extracellular matrix, FB = fibroblast, MC =
mast cell, V = blood vessel. Scale bar = 10 um.

Melanocytes produce melanin pigment that darkens the skin and has an important
protective function. Langerhans cells in turn take part in the immunological first line
defence of the skin. The majority of epidermis consists of keratinocytes. Two types of
the basally located keratinocytes have been identified: stem cells that have high
proliferative capability, and transit amplifying keratinocytes that undergo actively
terminal differentiation (238). The basal keratinocytes are connected to the basement
membrane, which is the tight, separating border between dermis and epidermis.
Basement membrane consists of three layers: the lamina lucida, the lamina densa, and
the lamina fibroreticularis (237). When the keratinocytes receive the signal for the
differentiation, multiple regulative events occur and the keratinocytes lose their contact
to the basement membrane and migrate outwards forming the rest of the epidermal cell
layers. Furthermore, the keratinocytes actively produce proteins and lipids needed to
form the lipid bilayers at the squamous layer as a barrier against water loss and also
provide defence against the microbial, mechanical and chemical attack (239). The
simplest and most common way to remove the dead keratinocytes is to scale from the
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outer surface of the skin. The dead keratinocytes can also be removed in some cases by
leukocytes and adjacent cells in the opsonization or endocytosis after necrotic or
programmed cell death. The time required for transition of basal cells to the surface of
skin is 47-48 days (240), denoted as the epidermal turnover time. Dermis consists
mainly of fibrillar collagen networks, clastin fibers, glycosaminoglycans, protcoglycans,
fibronectin, that all support fibroblasts, nerves and sensory nerve endings, different
sized vessels, hair bulbs but also mast cells (237).

Basal cells are in close contact with basement membrane, other basal cells and upper
spinous keratinocytes, showing important polarity. They also contact with melanocytes
and are also possibly affected e.g. by mast cells and their cytokines and growth factors.
The spinous layer forms bundles of keratin filaments, together with the desmosomes and
the adherens junctions (241), giving the spinous appearance. The cornified cell envelope
precursor protein, involucrin, is synthesized already in upper stratum spinosum (242). In
the granular layer, keratohyalin granules are synthesized and in the uppermost layers
they form lamellae between first cornified cells. In the stratum corneum, the lipid and
intermediate filament containing keratinocytes rapidly lose their nuclei and form a dense
barrier, sheding the lower skin structures against attacks of outside world. Also,
keratinocytes and mast cells are immunologically active (109), rcady to secrete
cytokines and chemokines when need be. Immunological and inflammatory reactions
are mediated by complex network of soluble products but also by intercellular adhesion
molecules.

Intercellular adhesion molecule-1 (ICAM-1, CD54) is coded by a gene that is located
in chromosome 19p13.3-p13.2. It is typically expressed on non-hematopoietic cells such
as vascular endothelial cells, thymic epithelial cells, certain other epithelial cells, and
fibroblasts, and on hematopoictic cells such as tissue macrophages, mitogen-stimulated
T lymphocyte blasts, and germinal center dendritic cells in tonsils, lymph nodes, and
Peyer's patches (243). ICAM-1 may be a ligand for an integrin leucocyte function
associated antigen one (LFA-1, known also as integrin heterodimer CD11a/CD18 or
alLB2) dependent reactions (244). Both histamine and TNF-o have been shown to
induce ICAM-1 expression in cultured human keratinocytes and these mediators
function synergistically leading to increased ICAM-1 expression (8, 245). Retinoic acid
(246) and histamine (247) have been found to enhance TNF-a-induced ICAM-1 levels
in human keratinocytes. However, ICAM-1 expression in keratinocytes does not only
lead to T cell activation but can also cause increased lysis of keratinocytes by cytotoxic
T cells (9, 248), thus showing the active participatory role of keratinocytes in cutaneous
immunohomeostasis.

The keratinocytes as the principle epidermal cells produce and secrete multiple
cytokines that are modulated by one or more other cytokines, including several agents
that keratinocytes themselves secrete (Table 2). These effects appear to be mediated by
high-affinity cytokine receptors on keratinocytes. However, the cytokines are also
capable of interacting with dermal cells. Thus, the function of skin as an immune organ
is extremely diverse.
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2.3 General characteristics of cell and skin organ cultures

The long term cultivation of human epidermal cells was first achieved several years
ago. Kitano (in 1970) firstly introduced a method so that trypsination could separate the
epidermal cells and that the keratinocytes grew as cells attached to each other forming a
sheet (274). This method was improved later by Prunieras (275) who demonstrated the
regeneration ability of skin in vitro. Flaxman and Harper (1975) studied the effect of
various agents on proliferation by using keratinocyte cultures (143). Later it was found
that keratinocyte growth depends on endocrine stimulation by other organs, including
the brain (276). At the beginning of the 80’s, the efforts to improve culture of
keratinocytes in vitro focused on two main aspects — ways to improve the proliferation
by hormones or growth factors in culture medium but also to search for some way to
achicve terminal differentiation of keratinocytes in vitro (277). By culturing the
keratinocytes in delipidized serum, i.e., in the absence of vitamin A, the keratinocytes
started to terminally differentiate (278), leaving the cell cycle (Figure 3).

The cell cycle (Figure 4) of keratinocytes consists of four phases: a DNA synthesis
phase (S) and cell division phase (M) scparated by two gap phases (G, and G;). Non-
dividing or non-cycling cells are resting in the Gy phase, from where they can be driven
into the cycle if required (279). Then the life cycle continues, alternatively the cells may
reach the non-cycling state to either terminally differentiate or just stop growing and be
dormant waiting for the appropriate stimulus for the start of cycling. The whole of the
cycle is strictly controlled by various growth factors and molecules. The response of
growth modulating molecules may vary depending on the cell cycle phase.

Cell death

7

_ Terminal differentiation

Cycling Non-cycling
Figure 4. A schematic representation of the cell cycle for keratinocytes.

Human epidermal keratinocytes in culture retain many of the properties of the intact
epidermis. One useful marker for an early stage of terminal differentiation is the
presence of involucrin, a soluble protein precursor of the cross- linked envelope (280).
Involucrin is synthesized after keratinocytes have left the basal layer and started to
enlarge, but some time before the onset of envelope cross-linking, which occurs only in
the outermost cell layers (280). If the level of calcium is raised in the keratinocyte
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culture to induce stratification, involucrin- positive cells are selectively expelled from
the basal layer (280-282).

The skin organ culture is a method for studying ex vivo skin biology. The modified
method of Trowell (283) is widely used with slight modifications (275, 284, 285). The
method of Trowell failed to become a popular experimental tool because organ cultured
human skin grew poorly and lacked some of the structures of skin in vivo (286). It was
also demonstrated that the temperature, oxygen tension, and pH of the medium could all
affect the physiology of cultivated skin tissue (287). The cultivation was in most cases
non-physiological due to immersion in medium but using the air-exposure achieved by
growing the cultures at the air-liquid interface made the cultures more physiological
(288). Nowadays, expensive living skin equivalents mimicking normal skin are
commercially available but mast cells and the remaining physiological structures are
commonly omitted. In organ cultured human skin, the dermal cells are found to survive
up to 10 weeks (289) but the degradation of dermis and especially epidermis can be
seen already at day 7 (285). Furthermore, high levels of both serine and matrix
metalloproteinases are present in skin organ culture fluids suggesting that degeneration
of the tissue is taking place (290). Ex vivo models were developed to mimic the in vivo
conditions, due to the cultivation difficulties encountered with pure mast cells.
Recently, a culture model has been developed where normal dermal mast cells and
fibroblasts were enclosed in a collagen gel and normal keratinocytes were grown on top
with exposure to an air interface (291).

2.3.1 Survival of mast cells

Apoptosis is a mechanism of physiological cell death that deletes cells during
development and homeostasis (292). The cytoplasms of apoptotic cells become
condensed and dyskeratotic, and the cells are then phagocytozed as fragments by
surrounding cells (292). At the biochemical level, the fragmentation of cellular DNA
into oligonucleosome-sized particles is characteristic of apoptosis (293). Fas antigen is a
member of nerve growth factor and tumor necrosis factor receptor superfamily, acting
as a membrane protein that induces apoptosis in human keratinocytes (294). Fas-ligand
(CD95, APO-1L) induces apoptosis and it is regulated by metalloproteases (295).

The differential expression of the soluble (SCF-1, sSCF) or the membrane-bound
form of SCF (SCF-2) in immature and mature human mast cells may play a role in
autocrine stimulation, maintenance of survival and differentiation of tissue mast cells
(227). A possible paracrine stimulation has also been described in which chymase
released from mast cell secretory granules may solubilize SCF bound to the membrane
of surrounding stromal cells (197), and the liberated bioactive sSCF may in turn
stimulate mast cell proliferation and specialized functions.

Mast cells live in tissues for several months but they are dependent on exogenous
factors for their survival. Mast cell numbers within tissues have been found to remain
constant in the normal state, reflecting the balance between proliferation or migration
and apoptotic cell death (296). It has been claimed that SCF may maintain mast cell
survival by suppressing apoptosis (225). The regulation of tissuec mast cell number
depends both on the rate of production of mast cell precursors and the length of survival
of mature mast cells within tissues. Human endothelial cells can also regulate survival
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and proliferation of human mast cells (297), which may be a reason for perivascular
location of mast cells. Once mast cell precursors target to tissues, their survival may
largely be dependent upon the local production of SCF but also on the interactions
between mast cells and their extracellular environment, e.g., collagen, laminin and
fibronectin may be important for migration and reactivity (298). Furthermore, human
skin mast cells have been shown to express receptors for laminin and fibronectin (229).
SCF appears to stimulate adhesion to fibronectin by activating mast cells through its
interaction with Kit/CD117. Thus, SCF stimulates mast cell adhesion, which is an
evidence for claim that it may be a major factor responsible for the adhesion of mast
cells to the connective tissue matrix under physiologic conditions (299).

SCF and interleukin-3 (IL-3) are the two principle cytokines that have been
discovered to promote mast cell proliferation and/or differentiation. IL.-3 seems to be
important for early MC proliferation whereas SCF acts to maintain MC viability and
maturation. In vitro (96) and in vivo (112), withdrawal of IL-3 results in mast cell
apoptosis and a decrease in endogenous Bcl-X,, and Bcl-2, which are down-regulated
but the apoptotic changes are prevented by SCF (96, 225, 296, 300, 301). Thus, SCF
may maintain mast cell survival by suppressing apoptosis. When overexpressed, bel-2
prolongs survival of bcl-2-transfected mast cells following IL-3 deprivation (300, 302).
IL-2 and IL-4 in combination enhance mast cell survival for up to 15 days (303).
Moreover, 1L-4 enhances the release of histamine, leukotriene C4, and IL-5 in MC
activated by IgE receptor crosslinking. These facts indicate that also IL-4 is an
important regulator of human MC function and is a support for the concept that mature
MC retain the capacity to proliferate in a particular tissue environment (302).

IL-1a stimulates mast cell growth by a fibroblast-dependent mechanism, in which the
SCF/Kit interaction may participate in a major way (93). TGF-f3 has been found to
specifically prevent the SCF-mediated rescue from apoptosis, probably by down-
regulating the expression of c-kit (300). Several other factors supporting mast cell
development and survival have also been described, such as nerve growth factor (171),
IL-6 (6) and thrombopoietin (77). Also, endothelial cells can be important for mast cell
development in vitro (124). Thus, microenvironmental factors play an important role in
regulating mast cell numbers by promoting survival in the periphery. However, there is
still lack of proper cultivation method of pure mast cells, which has lead to use of organ
cultures.

2.3.2 The effect of retinoic acid in human skin

Retinoic acid (atRA, all-trans retinoic acid, named also as rctinoate, retinoic acid,
tretinoin, 2,4,6,8-nonatetracnoic acid, vitamin A acid) is formed from [3-carotene in the
daily diet (Figure 5). It is converted to all-trans retinol which is delivered to the liver by
retinol binding protein (RBP) and from there to skin vessels and capillaries close to the
epidermis. In the human skin, retinyl esters are predominantly present in the storage
form of retinol. The hydrolysis of retinyls produces free retinol that is oxidized to all-
trans retinaldehyde and further to all-trans retinoic acid. The basal keratinocytes, which
are capable of migrating and maturing, can be regulated also by retinoic acid and its
derivatives. Normally, epidermis forms a gradient for atRA towards the surface of the
skin.
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All-trans retinoic acid has profound effects on epidermal homeostasis. However, the
molecular mechanisms by which retinoids regulate keratinocyte cell proliferation and
differentiation are not well understood. The knowledge of atRA as the major
biologically active form of vitamin A (304), and nuclear retinoid receptors as the major
mediators of all-trans retinoic acid actions, has provided exciting new insights into the
molecular basis of vitamin A actions. Retinoids profoundly influence epidermal
differentiation, and it has been presumed that antikeratinizing basis for retinoid activity
is attributable to the dose-dependent alterations in transepidermal water loss and
epidermal and stratum corneum loosening, which may, in turn, lead to loss of epidermal
cohesion and abnormal barrier function. An undesirable side-effect of retinoid treatment
is skin fragility due to compromised desmosomal adhesion.
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Figure 5. The metabolism of (3-carotene to all-trans retinoic acid. Modified from the
database “Retinol metabolism in humans” at the web site: http://www.genome.ad.jp/
dbget-bin/www_bget?path:hsa00830.

2.3.2.1 Retinoic acid-binding proteins and receptors

Cellular retinoid-binding protein (CRBP) and cellular retinoic acid-binding proteins
(CRABP) have been detected in normal human epidermis and dermis in the intracellular
compartments (305). CRBP mainly binds (Figure 5) all-trans retinal and it is found in
very high levels only in differentiating keratinocytes (306). CRABP-II is the protein,
that transports the all-trans retinoic acid to nucleus, and CRABP-I proteins were found
to be expressed in human skin (307). It is also known that the CRABP II mRNA is
selectively induced in human skin in vivo and this process is regulated by exogenous
all-trans retinoic acid and all-trans retinal (308, 309). In the nucleus, retinoic acid binds
to its receptors in order to mediate its effects on the cell.
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Nucleus

Figure 5. The schematic piture of the function of retinol binding proteins and retinoic
acid receptor. RA = retinoic acid, RAR = retinoic acid receptor.

Three types of nuclear retinoic acid receptors (RAR) have been characterized, RAR-
o, -B, -y (310-314). In human skin, the effect of all-trans retinoic acid is mediated
mainly by RAR-y accounting for 87 % of receptors, the remainder consisting of RAR-a
(311, 315). Also, three steroid hormone receptors (e.g. Ds-receptor, RARs) regulating
receptors named retinoid-X-receptors (RXR-a, -B, -y) have been characterized (311).
RXR heterodimerizes with RARs forming a transcriptionally active regulator. The
RXR-a is found in normal and psoriatic skin from keratinocytes, melanocytes,
fibroblasts and Langerhans cells (311). It is found in the subcellular compartments of
the basal keratinocytes, possibly participating in the change from proliferation into
differentiation. RXR-a is upregulated in basal cell carcinomas and it is the target for
potentially preventive or therapeutic treatment with RAR-a- or RAR-y-selective
retinoic acid metabolites (312). Transcription of the human CRABPII gene is inducible
by retinoids in human skin keratinocytes but not in cultured cells, due to the insufficient
levels of RARy x RXRa (316).

2.3.2.2 The effect of atRA in normal skin and cultured human skin cells

In the mid 80’s, atRA was found to cause cell death of epidermal cells in upper layers
and to prevent the formation of stratum corneum (317). The expression of the terminal
differentiation-specific keratins was completely suppressed by addition of retinoic acid
to the culture medium, or the cultures in normal medium but in submerged cultures
(318). However, the effect of growth medium, supplemented with fetal calf serum
containing retinoids, was not fully understood. The removal of vitamin A by
delipidization of the serum restored the keratinization process (318). In the organ
cultures, maintained in serum-free, growth factor-free culture medium containing 0.15
mM Ca®", the ultrastructural appearance of skin degenerated rapidly (319), showing a
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culture dependency on calcium and retinoic acid. Nowadays, the amount of calcium is
reported to be critical for growth and differentiation of many cells (320). In the early
90’s the retinoids were found to induce organ cultured skin samples to produce more
vital layers in vitro (321-324). The addition of 1.4 mM Ca’" in serum free growth
medium inhibited the proliferation, and atRA could not alter the Ca*" induced changes
in adhesion (321, 325), leading to the hypothesis that the calcium concentration should
be exactly controlled, together with atRA and all other regulative factors in all culture
systems. The dermal connective tissue was found to be histologically well-preserved in
atRA supplemented organ cultured human skin, which was an important finding of
series of studies conducted by J. Varani and his collaborators (325). The other important
finding of this era was that retinoids had often opposing effects in vitro and in vivo.

Topically applied atRA increases the thickness of the skin by increasing TGF-a
secretion in an autocrine manner from keratinocytes (326) and by increasing the amount
of cornifin (327), the cornified cell envelope (CCE) precursor, and via heparin-binding
epidermal growth factor (HB-EGF) (328). Topical application of RA (0.1%) for 2
weeks in vivo resulted in suprabasal expression of a2, a3 and 1 integrin subunits
(329), normally found in the hyperproliferative epidermis in wound repair and psoriasis.
Integrins a2f31 and a3p1 (the connecting molecules for type IV collagen, laminin-5 and
fibronectin) were detected in the epidermal layer in RA-treated skin (329). The atRA
modulates also the synthesis of keratins, intermediate filaments that indicate the
terminal differentiation of the epidermis and its barrier function (313, 330). The level of
involucrin is virtually unaffected in vitro in skin equivalents (331, 332), but the fully
grown confluent keratinocyte cultures up-regulate involucrin after treatment with atRA
leading to the formation of a less adhesive stratum corneum (333). Furthermore, atRA
has a strong antikeratinizing effect that leads to loosening of epidermal cohesion and
fragility of the epidermis. This is also a common side effect of retinoid therapy.

Keratinocytes are an important source of vascular endothelial growth factor (VEGF)
and vascular permeability factor (VPF), and production of these factors is inhibited by
retinoids (263). By RAR-3/RXR-a heterodimerization, atRA alone can stimulate (334)
or potentiate TNF-a induced ICAM-1 expression (246). AtRA has been shown to
reduce the production of nitrites by IgE-activated keratinocytes in a time- and
concentration-dependent fashion (335). As a consequence, RA derivatives also can
reduce the production of TNF-a (335). The level of inducible nitric oxide (NO)
synthase (iNOS) activity in CD23 (FceRIl)-activated human keratinocytes was
decreased after treatment of the cells with RA derivatives (335). Therefore, atRA
derivatives are thought to downregulate TNF-a and the NO-transduction pathway,
through the inhibition of iINOS transcription, thus possibly representing the mechanism
of the anti-inflammatory activity of RA derivatives in skin diseases (335).

AtRA down-regulates also c-kit (336) which leads to an increase in the level of TGF-
B which in turn potentiates the suppressive effect of atRA (326) on c-kit possibly
affecting the growth of mast cells. The result of this regulative feedback is that the mast
cell proliferation is decreased.

Proteoglycans participate in the assembly of the extracellular matrix, directly by
interacting with other matrix components and indirectly by regulating cellular growth-
factor responses. The dermal extracellular matrix is important in the structural integrity
of the skin, forming a network for, ¢.g., nerves, vessels, fibroblasts, and mast cells. It is
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regulated by stimuli entering into the dermis from outside of the body or from
cpidermal cells entering through the basement membrane. However, the dermal
components and cells also regulate their own surroundings in the microenvironment.
AtRA down-regulates human eclastin gene expression which is elevated by a single
exposure to ultraviolet B (UVB) at transcriptional and possibly protein levels in
cultured human skin fibroblasts (337). All-trans retinoic acid decreases also the levels of
type VII collagen (a major component of anchoring fibrils) (338) and reduces decorin
production in cultured human skin fibroblasts (339). The anti-photoaging effect of atRA
may be related, at least in part, to down-regulation of this elastin gene expression after
its elevation by UVB (337). The platelet-derived growth factor-BB (PDGF-BB) and
TGF-B can interact in a synergistic manner with retinoic acid to stimulate the
production of tissue inhibitor of metalloproteinases (TIMP) in human skin and synovial
fibroblasts (340). Retinoic acid also potentially inhibits basic-FGF (bFGF)- and EGF-
stimulated collagenase protein production in skin fibroblasts (340). Table 3 summarizes
previously described effects of atRA, TNF-o, histamine and stem cell factor (SCF) on
atRA, TNF-q, histamine, SCF, VEGF/VPF, and ICAM-1 production.

Table 3. The effect of all-trans retinoic acid (atRA), TNF-q, histamine and stem cell
factor (SCF) on atRA, TNF-q, histamine, SCF, VEGFE/VPF and ICAM-1. T =
stimulates/increases, { = inhibits/decreases, 0 = no effect.

Stimulants
Target atRA TNF-a Histamine SCF
atRA — T
(341)
TNF-a 0 —
(342) (146, 220)
N}
(335)
0
(233)
Histamine N T — J
(336, 344) (219, 345) (336)
N
(233, 346)
SCF T 0 —
(347) (348)
VPF/VEGF 1 0
(349, 350) (118)
ICAM-1 0 ) T
(246) (245, 246) (245, 247)
T

(334)
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3. AIMS OF THE STUDY

In normal human skin, mast cells are predominantly of the MCr¢ type containing
histamine, tryptase, chymase, carboxypeptidase and a cathepsin G-like protease. Mast
cells can be found in high numbers in the dermis but only rarely in or in contact with the
cpidermis. In the dermis, however, the highest density of mast cells can be found in the
upper dermis beneath the epidermis. The mechanisms for the growth and survival of
mast cells as well as the accumulation of mast cells in the upper dermis are poorly
understood. In chronic skin inflammation or inflammatory diseases, such as in psoriasis
or leg ulcers, mast cells are increased in number in the uppermost dermis and mast cells
can even be found in the epidermis. In addition, mast cells are assumed to participate in
the separation of the epidermis from the dermis in bullous skin diseases, such as in
pemphigoid. Thus, the mast cell and its mediators are supposed to interact with the
epidermis, but this interaction is largely dependent on the diffusion of released
mediators through the dermal matrix and on the availability of enzymatically active
proteinase. Based on this condensed background, the aims of this study were

1) to cultivate normal human skin specimens submerged in the medium or placed at the
air-liquid interface and to compare the epidermal expression of involucrin and tumor
necrosis factor-a in these two culture models that form the basics for further
experiments.

2) to cultivate normal human skin specimens submerged in the medium or placed at the
air-liquid interface and to compare the survival and the sequence of events during death
of mast cells in these two culture models.

3) to cultivate normal human skin specimens submerged in the medium in the presence
of stem cell factor, histamine or tumor necrosis factor-a, and to study whether these
cssential mediators can affect mast cell survival or death.

4) to study the release of soluble histamine, tryptase activity and chymase activity from
normal skin specimens during incubation with a mast cell degranulator, compound
48/80, and after rupturing mast cells by sonication.

5) to study the effect of histamine, tumor necrosis factor-a, or both in combination on
the growth and survival of keratinocytes using cell and skin organ cultures.

6) to study the effect of retinoic acid on cutaneous mast cells during skin organ culture
or during treatment of normal skin with a retinoic acid cream.
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4. MATERIALS AND METHODS
4.1 Chemicals (I-V)

Histamine diphosphate monohydrate was purchased from Fluka (Buchs, Germany) and
recombinant human TNF-o. (1.0x107 units/mg) from Genzyme (Cambridge, MA, USA)
or R&D Systems, Inc. (1.1x107 units/mg) (Minneapolis, MN, USA) (the concentrations
of thTNF-a purchased from the R&D Systems is given as ng/ml in figures).
Keratinocyte-SFM (KSFM) serum-free medium, Dulbecco’s modification of Eagle’s
medium (DMEM), fetal calf serum (FCS), Dulbecco’s phosphate-buffered saline (D-
PBS), penicillin and streptomycin were all purchased from Gibco BRL (Life
Technologies, Inc., Grand Island, N.Y.). Recombinant human TNF-a and recombinant
human SCF were purchased from R&D Systems Europe, Ltd (Oxon, U.K.) and
histamine from Fluka (Buchs, Switzerland). Fetal calf serum (FCS) was obtained from
Biological Industries (Kibbutz Beidhaemek, Israel), and DMEM and penicillin-
streptomycin solution from Gibco BRL (Life Technologies Ltd, Paisley, U.K). OCT
compound for freezing the samples was purchased from Miles Scientific (Naperville,
IL, USA). All-trans retinoic acid was purchased from Sigma (St. Louis, MO, USA).
Ringersteril® and Novalan® base cream were obtained from Orion corporation
(Helsinki, Finland).

For the thymidine incorporation assay, [°H]-thymidine (1.0 mCi/ml, 15.5 Ci/mmol)
was purchased from NEN Life Science Products, Inc. (Boston, MA, USA). 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), dimethyl sulphoxide,
sodium hydroxide (NaOH), trichloroacetic acid and sodium dodecyl sulphate were all
purchased from Sigma (Minneapolis, MN, USA). Ultima Gold liquid scintillation
cocktail was purchased from Packard (Groningen, the Netherlands).

For enzyme- and immunohistochemistry, Z-Gly-Pro-Arg-4-methoxy-2-naphthylamide,
Z-Gly-Pro-Arg-pNA  and  Suc-Val-Pro-Phe-4-methoxy-2-naphthylamide, = were
purchased from Bachem (Bubendorf, Switzerland). Sigma was also the source for
aprotinin, a]-proteinase inhibitor, compound 48/80, heparin sodium salt from porcine
intestinal mucosa, bovine serum albumin (BSA), Tris(hydroxymethyl)aminomethane,
Fast black K salt, Tween 20, and Fast Garnet GBC. N-Succinyl-Ala-Ala-Pro-Phe-pNA
was purchased from Vega (Tucson, USA). a;j-Antichymotrypsin was purchased from
Calbiochem (La Jolla, CA, USA). A mouse monoclonal anti-human involucrin antibody
(1:400, clone SY5) was obtained from Novocastra Laboratories (Newcastle upon Tyne,
U.K.), a mouse monoclonal antibody (20 ng/ml) against human stem cell factor (SCF)
was obtained from Genzyme (Cambridge, MA, USA), a mouse anti-human CD117/Kit
mAb (3 pg/ml) from Southern Biotechnology Associates, Inc. (Birmingham, AL, USA),
a rabbit polyclonal antihuman TNF-a from Sera-Laboratory (Crawley, Down, U.K.),
and a mouse mAb against human mast cell chymase (0.1 pg/ml) from Biogenesis Ltd
(Poole, U.K.). A rabbit polyclonal anti-tryptase antibody (0.19 pg/ml) was obtained
from the source described carlier (162). The chemicals for immunohistochemical
staining (Vectastain Elite ABC kit and alkaline phosphatase-conjugated secondary Ab)
were from Vector Laboratories (Burlingame, CA, USA), and the TACS TdT in situ
apoptosis detection kit and Red label substrate were from R&D Systems (Oxon, UK).
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For the colour reaction in the immunohistochemistry, 3,3’-diaminobenzidine
tetrahydrochloride (DAB) was purchased from Sigma (Minneapolis, MN, USA) and
nickel chloride from Merck (Darmstadt, Germany). Aquamount and DePeX Mounting
media were purchased from BDH Laboratory Supplies (Poole, UK)

4.2 Processing of skin samples (I-V)
4.2.1 Skin organ cultures (I-V)

The skin organ cultures were derived from fresh healthy-looking skin specimens
obtained from 11 female donors undergoing mastectomy due to breast cancer or breast
reduction surgery. The subcutaneous fat was removed with a knife and scissors and
several 6-mm adjacent punch biopsies were taken from the healthy looking skin areas.
The residual blood was washed away with phosphate-buffered saline, pH 7.4. For cach
well of the 6 well-plate, punch samples were chosen randomly from the skin specimen
to minimize coincidental differences in the samples. The skin biopsies were cultured 0,
1-2, 7 or 14 days either at the air liquid interface or submerged (I) or in the other works
(II-V) for 0, 1 or 3 days in the presence of histamine and/or TNF-a, all trans-retinoic
acid at a final concentration of 0, 0.1, 1.0 or 10 uM or recombinant human stem cell
factor (rhSCF) at a final concentration of 20 or 200 ng/ml in submerged conditions at 37
°C and 5% CO; by using 10% FCS and DMEM as the medium. The amount of atRA in
used, fully supplemented medium prior to addition of atRA was detected by HPLC as
previously reported (351) in the Department of Clinical Chemistry in Kuopio University
Hospital: DMEM 0.29 uM, KSFM 1.05 uM.

At the end of each culture period, two skin biopsies were randomly taken from each
well and were embedded in OCT compound and frozen in isopentane (-70°C) and kept
frozen (-70°C) until further processing. The methods were approved by the Ethics
Committee of Kuopio University Hospital, Kuopio, Finland.

4.2.2 Keratinocyte cultures (II)

Keratinocytes were cultured from human foreskin specimens using KSFM medium
supplemented with 5 ng/ml epidermal growth factor, 50 ug/ml bovine pituitary extract,
100 U/ml penicillin and 100 ug/ml streptomycin (complete KSFM) at 37 °C and 5 %
CO; as described in detail previously (352). The cells were used at third to fifth passage
and cultured to 70-80% confluence before use. The viability of the cells was over 95%
in all experiments. All incubations were made at 37 °C and 5% CO..

4.2.2.1 The in vitro-epithelialization model (IT)

An in vitro-epithelialization model was developed by placing 4 adjacent and thick-
walled stainless steel cylinders (inner diameter 6 mm) on the bottom of each well of a 6-
well plate (Falcon). The cylinders were heavy enough to ensure sufficient sealing onto
the plastic surface and thereby prevent the escape of keratinocytes. The wells and
cylinders were equilibrated with 5 ml of complete KSFM. Then, 30,000 keratinocytes
were added cautiously into each cylinder, and the cells were allowed to adhere onto the
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plastic surface overnight. Next day, practically complete confluence of keratinocytes
was reached and complete KSFM was changed to 5 ml of 10% FCS, DMEM, 100 U/ml
penicillin and 100 pg/ml streptomycin. The cylinders were removed and after 1-2 h,
modulating agents were added in varying concentrations and combinations into the
wells as described in Results. The medium and modulating agents were changed every
1-3 days until the epithelium border was near the wall of the well. The cultures were
terminated by removing the medium and after two washes with D-PBS, 4%
formaldehyde was added into the wells for 24 h. After the fixation, the epithelium was
stained with Mayer’s hematoxylin for 24 h. On the next day, hematoxylin was removed,
the epithelium was washed with deionized water, and then the epithelial cells were
allowed to dry.

4.2.2.2 Proliferating keratinocyte cultures (II)

Proliferating keratinocytes were seeded at a density of about 5,000 cells/cm? into each
well of the chamber slide, 6-well-plate and 24-well-plate by using complete KSFM in
the 4-well chamber slides (Nunc Lab-Tek™, Nunc, Roskilde, Denmark). Keratinocytes
were incubated for 24h to allow proper attachment to the base of the well. On the
following day, histamine and/or TNF-a were added into the wells and the cells were
cultured for 1 or 3 days. After the culture, the medium was removed and the wells were
washed twice with D-PBS. Then, the cells were fixed in 4% paraformaldehyde for 10
min and the cells were air-dried and stored at -20°C prior to staining.

4.2.2.3 [3H]-Thymidine-incorporation by cultured keratinocytes (II)

Proliferating keratinocytes were seeded at a density of 10,000-14,000 cells/cm? into
the wells of a 24-well plate (Falcon, Becton Dickinson, Plymouth, UK) and the cells
were cultured in 1 ml of complete KSFM for 1 day. On the following day, the complete
KSFM was changed to basal KSFM (without EGF and BPE) and the cells were cultured
for 1-2 days. Thereafter, the medium was replaced with fresh basal KSFM, varying
concentrations and combinations of histamine and/or TNF-a were added into the wells,
and the proliferative response of subconfluent keratinocytes was measured by adding 1
uCi [3H]-thymidine for about 20 h as described previously (11, 353). In this assay the
exogenous thymidine is transported into the cells by enzyme thymidine kinase and
incorporated in DNA during S-phase, which normally lasts 6-14 hours (354, 355).
Finally, the wells were washed 3 times with ice-cold D-PBS to get away the non-
incorporated thymidine and twice with 5% trichloroacetic acid. The radioactivity was
solubilized with 0.1 M NaOH containing 1% sodium dodecyl sulfate. Ultima Gold
liquid scintillation cocktail was mixed with the samples and radioactivity was counted
in a scintillation counter (LKB-Wallac 1215 Rackbeta, Wallac, Turku, Finland). The
experiments were performed in quadruplicate wells and the obtained results are
expressed as the percentage of radioactivity compared to control wells.
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4.2.2.4 MTT-analysis for the detection of cytotoxicity and cell viability (II)

The modified MTT-analysis was used (356) based on the ability of viable cells to
pump the yellow coloured salt out of the cell — the more intense yellow colour in the
cells, the less viable the cell. Keratinocytes were seeded into the wells of a 96-microwell
plate the day before the experiment at the density of 4000 cells/cm2 using complete
KSFM. The adhered keratinocytes were treated with modulating agents for 24 h and
then 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) in
incomplete KSFM was added into the wells for 2 h. Thereafter, the MTT-solution was
removed and the formed intracellular dye was solubilized by incubating with dimethyl
sulfoxide for 15 min. The absorbance of the solution was measured at 550 nm using a
micro-ELISA reader. The cultures and analyses were performed using 6 parallel wells
and each experiment was repeated at least twice.

4.2.3 Treatment of normal human skin with retinoic acid cream (V)

Three healthy subjects (2 males, aged 37 and 41, and 1 female, aged 35) volunteered
to participate in the study. Three treatment sites (each about 3 x 3 cm) on the non-sun
exposed healthy skin of left medial arm or forearm were chosen and marked. The first
area was treated with Novalan® base cream once a day for 6 weeks and used as the
control skin area. The second skin area was treated first with Novalan® base cream for 4
weeks and subsequently with 0.1 % all-trans retinoic acid (atRA) dissolved in Novalan
cream for 2 weeks. The third skin area was treated with 0.1 % atRA cream once a day
for 6 weeks. After the treatment, one 4-mm punch biopsy was taken from each skin area
following local anaesthesia (1 % lidocaine with epinephrine). Each specimen was
immediately embedded in OCT compound and frozen in isopentane cooled with a
mixture of absolute ethanol and dry ice. The methods were approved by the Ethics
Committee of Kuopio University Hospital, Kuopio, Finland.

4.2.4 Induction of skin blisters by liquid nitrogen spray (III)

Two healthy males and four females (mean 40 years, range 25-61) volunteered to
participate in the study. The liquid nitrogen was sprayed onto two adjacent, healthy
looking skin arecas of medial forearm until the skin was clearly frozen. One day later,
clear freezing blister was seen and the fluid samples were collected with sterile handling
from both blisters into Eppendorf® tubes on day 1 and 2. Then the fluid was centrifuged
at 2.500 rpm for 10 minutes to remove possible cells. The collected supernatant was
stored at —20°C for further processing.

4.3 Histochemical staining and analysis methods (I-V)

All samples were kept frozen (-20°C) until further processing. For the staining of mast
cells, cryosections of 5 um thickness were cut on poly-L-lysine coated slides which
were stored at —20°C. The reagents used in these analysis are listed in detail Chemicals
section.
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4.3.1 Enzyme-histochemical staining methods (II-V)

Prior to staining, 5-um cryosections were fixed in 0.6 % formaldehyde and 0.5 %
acetic acid solution, pH adjusted to 7.4, for 10 min. The activity of tryptase in mast cells
was demonstrated with 1 mM Z-Gly-Pro-Arg-4-methoxy-2-naphthylamide as the
substrate and 0.5 mg/ml Fast black K salt (resulting black colour) or Fast Garnet GBC
(resulting purple or reddish colour) as the chromogen at pH 7.5 (6). This substrate
solution contained 0.5 mg/ml a,-proteinase inhibitor to confirm the staining specificity
(162). The activity of mast cell chymase was demonstrated with 1 mM Suc-Val-Pro-
Phe-4-methoxy-2-naphthylamide as the substrate and 0.5 mg/ml Fast black K salt as the
chromogen, at pH 7.5 (6), containing 0.5 mg/ml aprotinin to inhibit cathepsin G activity
and to confirm the staining specificity (6, 40).

4.3.2 Immunohistochemical staining methods (I-V)

For immunohistochemistry, the skin cryosections were first fixed in ice cold acetone
for 10-15 min followed by blocking with 100 pg/ml purifed goat IgG dissolved in 1%
BSA in PBS. SCF, Kit protein, tryptase protein, and chymase protein were stained with
specific antibodies dissolved in 1 % BSA-PBS. The bound antibodies on skin sections
were visualized with the avidin-biotin-peroxidase (ABC) technique using the Vectastain
Elite ABC kit (Vector) together with 0.05 % 3,3'-diaminobenzidine tetrahydrochloride,
0.04 % nickel chloride and 0.03 % hydrogen peroxide. The specificity of the staining
was controlled by using the same skin samples with unrelated mouse monoclonals or
rabbit polyclonal immunoglobulins (purified IgG) at the same concentration as the
primary antibodies.

4.3.3 Apoptosis in chymase-positive mast cells (IV)

To identify apoptosis in mast cells, the immunohistochemical staining of chymase and
the TACS TdT in situ apoptosis detection kit were used (in detail, see IV) in sequential
order following the guidelines of the manufacturer (R&D Systems). Briefly, the
cryosection or chamber culture slides were first fixed in cold acetone and permeabilized
in Cytonin™ solution. Thereafter, chymase was stained by adding the primary anti-
chymase mAb and the alkaline phosphatase-conjugated secondary Ab and finally Red
Label Substrate. Next, endogenous peroxidase activity was quenched followed by
incubation in the TdT labeling buffer. After the labeling reaction the samples were
washed and then incubated in streptavidin-HRP. Finally, the samples were incubated in
TACS Blue Label to visualize the apoptotic nuclei. DNase-free deionized water was
used throughout the procedure. The slides were processed through increasing
concentrations of ethanol, then xylene and finally covered with Depex mounting media.
A TACS-nuclease-treated sample was used as a control for the labeling reaction and a
slide stained without TdT enzyme was used as a negative control. Positive tissue control
slides for apoptosis were provided by R&D Systems, and experimental nuclease-treated
control was also used.

The mast cell was judged to be apoptotic when the red colour for cytoplasmic
chymase and bluish colour for nuclear apoptosis were seen in close contact and the
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morphologic criteria for apoptosis, such as cell shrinkage, membrane blebbing, and
chromatin condensation, were fulfilled. The cells were counted as explained above and
the apoptosis index (%) was defined as the number of apoptotic mast cells in relation to
all chymase-positive cells. The proportion of apoptotic cells (given as the apoptotic
index) (357, 358) was counted as positively stained and morphologically apoptotic
considered cells divided by the total amount of counted positively stained cells. The
positive cells were counted in a Olympus BH-2 microscope using 40x objective with 12
fields resulting in at least 130 cells/sample from 3 independent experiments and the
results were given as percentage + SD.

4.3.4 Sequential double staining methods (11, I11, V)

The localization of the Kit receptor or TNF-a in tryptase-positive mast cells was
stained by identifying first tryptase enzyme-histochemically (162) followed by
photographing. Then, the red azo dye was dissolved away with Tween 20, followed by
immunohistochemical staining with a mouse antihuman CDI117/Kit monoclonal
antibody (II) or a rabbit antihuman TNF-o polyclonal antibody (V), and finally
photographing again at exactly the same site as the previous picture with the same
(120x) magnification. By comparing the micrographs, the percentage of tryptase-
positive mast cells expressing Kit or TNF-a was calculated as previously described
(359).

For the staining of first chymase activity and then chymase immunoreactivity (III) in
the same mast cells the sequential double-staining method was employed as previously
described (189). The sections were first stained enzyme-histochemically for chymase
activity and photographed. Thereafter, the blue dye was dissolved by overnight
incubation in 15 % Tween 20 and the same sections were stained
immunohistochemically with mouse monoclonal anti-chymase antibody. Finally, the
restained sections were photographed again at exactly the same sites as the previous
pictures. The sequential double-staining of first tryptase activity and then tryptase
immunoreactivity (III) in the same mast cells was performed similarly using rabbit
polyclonal anti-tryptase antibody as described (189).

4.3.5 Counting of mast cells (I, V)

Tryptase- and chymase-positive mast cells were counted separately in skin sections
under high magnification (x400) with the Olympus BH-2 microscope equipped with an
0.2x0.2 mm ocular grid (Ella Graticules, Tonbridge, Kent, UK). Only the clearly
identifiable mast cells were counted immediately beneath the epidermis. The number
and the percentage of mast cells were counted by comparing the photographs from
sequential double staining. The long lasting azo dye Fast black K salt was used as the
chromogen when counting the number of tryptase and chymase positive mast cells.
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4.4 Detection of histamine and enzyme activity in fluid samples (III)

Histamine was analyzed by radio enzyme assay using rat kidney histamine-N-
methyltransferase and (*H-methyl)-S-adenosyl-L-methionine as the methyl donor as
described earlier (125).

The tryptase activity in different fluid samples was detected in duplicate with 0.2 mM
Z-Gly-Pro-Arg-pNA substrate, 50 ug/ml porcine heparin and 1 mg/ml bovine serum
albumin as the stabilizing agents, 1 mg/ml o;-proteinase inhibitor to prevent possible
background activity, and 100 mM Tris-HCI buffer, pH adjusted to 7.6. The chymase
activity was analyzed with 0.2 mM Suc-Ala-Ala-Pro-Phe-pNA containing 50 pg/ml
porcine heparin, 1 mg/ml aprotinin, 2 M KCI and 100 mM Tris-HCI, pH 7.6. The total
reaction volume in each 96-well plate was 200 ul. The initial reaction velocity was
measured as the increase in absorbance with a micro-ELISA reader at 405 nm.
Spontancous hydrolysis of the substrates was controlled by replacing the sample
solution with the appropriate buffer. The results are expressed as U (U=umol/min) per
ml of sample.

4.5 Digital image analysis (I)

The skin specimens were examined using a Leitz Ortholux POL microscope with PL
Fluotar 40/0.70 P objective (Leitz, Wetzlar, Germany) under monochromatic light (543
+ 10 nm) with an interference filter (Schott, Mainz, Germany). A 12-bit, Peltier-cooled
digital camera (Photometrics CH 250, Tuscon, Ariz., USA) and a KAF-1400 (Kodak,
Rochester, Minn., USA) CCD detector was used for digitizing the images. Prior to the
image analysis, the greyscale response of the imaging system was calibrated. The
logarithmic grey-optical density (OD) conversion constants and correlation coefficient
were calculated for the pixel-grey value conversions, resulting in OD-converted pixels.
The IP Lab software (Signal Analytics, Vienna, Va., USA) was used for conversions
and measurements.

The spatial distribution of DAB staining was determined from 28.2 um wide region of
interest (ROI) with the height of the epidermal thickness within ROI. The width of the
ROI was determined from the pixel-scaled width that was later converted to um —scale.
For each sample, five sections per slide were cut and stained. Within a section, the first
technically acceptable section was sclected systematically for digital image analysis.
Within three sections, three similar separate ROIs were measured. The area-integrated
optical density (AIOD) was determined from each ROIs by summing all the pixel
values within each of the six subzones and dividing the OD sum by the sum of the
individual subzone areas (Figure 8).
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Figure 8. The schematic presentation of how the area-integrated optical density (AIOD)
is formed of a region of interest. E = epidermis, D = dermis, R = ROI = region of
interest.

4.6 The measurement of epithelial outgrowth area (V)

The growth area of keratinocyte epithelium was measured using digital image analysis
as previously described (11). Shortly, the initial area of seeded cells (4 cylinders) in the
6 well-plate was subtracted from the total arca to yield the growth areca by using
calibrated measurements. The final results are given as the percentage of the growth
area in the unstimulated control well.

4.7 Statistical methods (I-V)

Student’s two tailed paired t-test (SPSS for Windows 9.0 and 10.0.5, SPSS Inc, USA)
was used for statistical analysis when comparing the differences of the means in MTT-
analysis and thymidine incorporation (II) or in the calculations of cells in histochemical
samples (III, IV, V). The nonparametric Mann Whitney U-test (Statview 4.0 for
Maclntosh, Abacus Concepts, Berkeley, Calif., USA) was used for the AIOD estimates
because of the small sample size (the number of ROIs per section) (I).

4.8 Ethical aspects (I-V)

The Research Ethics Committee of the Kuopio University Hospital (Kuopio, Finland)
approved the methods used in this study.
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5. RESULTS

5.1 The suitability of digital image analysis for the detection of involucrin
immunostaining (I)

The highest background OD in negative controls was markedly lower than the OD of
specific immunopositivity in all cultured specimens after the corresponding cultivation
periods, indicating that the measured values are real. The analysis method used revealed
no positive immunoreactivity in negative controls. The lowest positive value in the
subzones of the samples was determined with statistical tests between positive samples
and negative controls. The means and variations within 3 and 5 measurements in one
section were almost identical. Also the means and variations between different section
measurements were almost identical between 3 and 5 measurements in any of other
selected sections. The percentage of the coefficient of variations (CV%) were very small
ranging from 0.45% to 7.11%. The variations within the same subzones in the same
section were biologically low and acceptable. All grey-OD conversions were made
against calibration (I, fig. 2).

5.2 Alterations in the epidermal expression of invelucrin and TNF-o during skin
organ culture (I, IT)

The epidermal morphology in cultures became more loose during the cultivation but
the air exposure seemed to keep the skin specimens vital for up to 7 days compared to
submerged (SM) specimens. The involucrin immunostaining was highest in the
uppermost zone of the epidermis on day 0. Involucrin immunoreactivity shifted
downwards along with the progress of cultivation, a change which was significant when
compared to the values on day 0 in both ALI and SM cultures. By culturing skin
specimens in SM conditions, involucrin immunoreactivity slightly increased from the
values on day 1 to those on day 3 (Il, fig. 7) or from the values on day 0 to those on day
7 (). The involucrin staining was diffuse and mainly cytoplasmic that made the staining
suitable for semi-quantitative, but calibrated, digitized image analysis. When the change
in area-integrated optical density (AAIOD) was measured, the results became more
pronounced. Also, AAIOD was higher in the specimens in SM culture than in those in
ALI culture. In the basal keratinocytes, the involucrin staining was more intense in
advancing cultures. In the SM samples, the staining appeared to be somewhat more
superficial than in the ALI samples and it peaked on day 7 in the mid epidermis. Thus,
the selected division into six subzones was able to find differences between the samples
and was found to be suitable for the detection of changes in staining (Figure 5 and 6, I).

The epidermal expression of TNF-o was also studied immunohistochemically in ALI
and SM specimens. These results have not previously been published. In day-0
specimens (two of three samples, five sections per each patient), the immunoreactivity
of TNF-a was found to be very faint, only single occasional dendritic cells were stained
in the epidermis, a feature which prevented the appropriate use of image analysis
(Figure 9). Already in day-1-2 specimens cultivated in ALI conditions, an increase in
TNF-o immunoreactivity was observed and it increased during the cultivation. Instead,
no such increase in TNF-a immunoreactivity was seen in SM samples (Figure 9). Thus,



50

the SM cultivation was associated with pronounced involucrin staining in the epidermis,
but the ALI cultivation with increased TNF-a staining.

day 1 ALI day 1 SM

Figure 9. TNF-o. immunoreactivity in organ cultured human skin. Positive
immunoreactivity can be seen in the mid epidermis and also some immunoreactive cells
can also be seen in basal cell layer.

In further experiments, skin specimens from 3 subjects were cultured in SM
conditions in the presence of histamine and/or TNF-a for 1 or 3 days. As demonstrated
in Fig. 7 (II), TNF-a inhibited the increase in involucrin immunostaining by only 0-5%,
whereas histamine inhibited it by 15-17% when compared to control values. By
combining histamine with TNF-c, the inhibition was 25%.

5.3 The effect of histamine and TNF-co on cultured keratinocytes (II)

Histamine decreased in a dose-dependent manner up to 40% of the thymidine-
incorporation by keratinocytes, maximally at 0.5 mM histamine (II, fig. 1a). TNF-a
could inhibit the thymidine-incorporation by about 20% (II, fig. 1b). By combining 1
uM histamine with increasing concentration of TNF-a up to 40% inhibition in the
thymidine-incorporation was noted (11, fig. 2a). Although 0.5 mM histamine produced
maximal inhibitory effect (II, fig. 1a), addition of increasing concentration of TNF-a
together with 0.5 mM histamine to the keratinocyte culture gave rise to as high as 63%
inhibition in the thymidine-incorporation (II, fig. 2b).

The growth of keratinocyte epithelium was inhibited by histamine in a dose-dependent
manner by up to 46% at 1 mM histamine and the degree of inhibition by histamine was
similar to that obtained in the thymidine-incorporation experiment (II). Addition of 10
ng/ml TNF-a together with 0.05 mM or 0.5 mM histamine to the epithelium culture
resulted in clear potentiation in the growth inhibition when compared with the effect of
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these mediators alone (II, fig. 3). Even more extensive growth inhibition was apparent
when 50 ng/ml TNF-a was combined with 0.05 mM or 0.5 mM histamine (11, fig. 4).

When culturing keratinocytes for 1 or 3 days, up to 50 ng/ml TNF-a did not induce
any changes in the apoptotic index compared to control values in one-day culture (II).
Under experimental conditions, histamine at 0.5 mM produced the highest apoptotic
index on day 1. However, when combining 0.5 mM histamine with TNF-a, a decrease
in the apoptotic index was noted when compared to the value by histamine alone on day
1 and in day-3 cultures and the cells seemed to be dead in a cytotoxic way.

One-day treatment with histamine and/or TNF-a and MTT-assay were used to study
possible cytotoxicity in keratinocytes using complete KSFM medium. Up to 0.5 mM
histamine or up to 9 ng/ml TNF-a alone could not cause significant reduction in
keratinocyte viability (II, fig. 5). When combining histamine and TNF-a together,
however, a significant (up to 40%) reduction in cell viability was obtained, maximally at
0.5 mM histamine and 9 ng/ml TNF-a (II, fig. 5). In another experimental setting,
keratinocytes were treated first with either 0.5 mM histamine or 9 ng/ml TNF-a for 1
day. On the following day, cells were treated with increasing concentration of TNF-a or
histamine. The pretreatment of keratinocytes with either histamine or TNF-a for 1 day
resulted in decreased viability by TNF-o or histamine, respectively, in a dose-dependent
manner in both culture systems, maximally at 9 ng/ml TNF-c or 0.5 mM histamine (11,
fig. 6a and 6b).

5.4 Release of soluble mast cell mediators from human skin (IIT)
5.4.1 Tryptase and chymase activity in the high-salt extract of human skin

Tryptase activity in the pooled high-salt extract (total protein 0.66 mg/ml) from the
skin specimens of 20 donors was 242 U/l and 230 U/l in the absence and presence of 1
mg/ml a1-PI, respectively. Chymase activity in the same extract was 41.4 U/l and 39.8
U/l in the absence and presence of 1 mg/ml aprotinin, respectively. Thus, the ratio of
tryptase to chymase activity was about 6:1 (I1I).

5.4.2 In vivo-release of tryptase and chymase activity to the blister fluid induced by
freezing the skin with liquid nitrogen

Maximal tryptic activity in blister fluids collected from 6 subjects was detected after 1
day from freezing (111, table 1), and the majority of the tryptic activity can be attributed
to tryptase that is known to resist the inhibitory action of a1-PI. On day 1, all 6 subjects
showed chymotryptic activity to varying extent but only 2 of them revealed low
aprotinin-resistant chymotryptic activity suggestive for chymase (III, table 1). The ratio
of total tryptic to total chymotryptic activity ranged from 37:1 to 778:1. Thus, in
contrast to the results of high-salt extract only very low levels of chymase activity could
be recovered to the blister fluid.
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5.4.3 Ex vivo-release of tryptase and chymase activity and histamine from skin
specimens induced by compound 48/80 and subsequent sonication

Normal skin specimens were incubated in Ringersteril® in the presence or absence of
10 or 100 pg/ml compound 48/80 for up to 30 min, 240 min, 1 day or 2 days and
thereafter the specimens were sonicated efficiently (III). However, no release of
chymotryptic activity, measured in the presence and absence of 1 mg/ml aprotinin,
could be detected at any time points, not even after the sonication, in 8 individual skin
specimens. Only in 1 skin specimen out of 9, aprotinin-resistant chymotryptic activity
was released markedly and even spontaneously during the 30-min incubation.

In contrast to chymase activity, a clear and parallel release of both tryptase activity
and histamine was induced by compound 48/80 and subsequent sonication (III, fig. 1,
table 2). In control solution after 4-h incubation, no release of tryptase activity and only
slight spontancous release of histamine was observed (III, fig. 1). However, on days 1
and 2 the spontaneous release of tryptase activity and histamine was markedly increased
exceeding the release rate of both mediators by compound 48/80. Hence, these ex vivo
results are similar with those obtained in freezing blisters in vivo.

5.5 Alterations in tryptase- and chymase-positive mast cells after incubation of
skin specimens with compound 48/80 (11I)

When skin specimens from 3 donors were incubated in diluent control (Ringersteril®),
the number of mast cells showing chymase or tryptase activity remained apparently
unchanged by day 1 (III, table 3). On day 2, the number of tryptase-positive cells tended
to decrease in every case whereas the number of cells with chymase activity was
unchanged, which resulted in an increase in the ratio of chymase to tryptase in all
subjects although statistical significance was not reached.

In skin specimens incubated with 10 pg/ml compound 48/80, the number of cells
showing chymase- or tryptase activity were sustained over 4h (III, table 3). On day 1,
however, the number of cells with chymase activity and thereby also the ratio of
chymase to tryptase were significantly reduced. This decrease is apparently due to
chymase inactivation since the number of cells with chymase immunoreactivity did not
change on day 1. On day 2, no further reduction in the number of cells with chymase
activity was noted. Instead, the number of tryptase-positive cells decreased and
simultaneously the ratio of chymase to tryptase increased significantly on day 2, a
change which suggests solubilization of tryptase activity but not chymase activity.

5.6 Alterations in mast cells during skin organ culture (III, IV, V)

5.6.1 Alterations in the number of tryptase- and chymase-positive mast cells (II1,

IV, V)

Skin biopsies were cultured in ALI and SM conditions using DMEM and 10% FCS as
the medium, and thus in the presence of serum protease inhibitors. In the ALI culture,
the number of tryptase-positive cells in the upper dermis decreased steadily with time
and the reduction was statistically significant on day 14 (IIl, table 4; IV, table 1)
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meanwhile the slight decrease in the number of cells with chymase activity was not
significant (III, table 4). Consequently, the ratio of chymase to tryptase tended to
increase, although statistically not significantly, suggesting slow spontancous release of
tryptase activity but persistence of chymase activity. In the SM culture, the number of
tryptase-positive cells decreased during cultivation, especially abruptly on day 14 (111,
table 4; IV, table 1). In contrast to the ALI culture, the cells with chymase activity in the
SM culture tended to decrease in number and simultaneously the ratio of chymase to
tryptase decreased significantly on day 7, suggesting chymase inactivation (111, table 4).
The decrease in the number of cells with chymase activity was significant on day 14,
when compared to cell numbers in the control biopsies, although no marked progression
was noted from the cell numbers counted on day 7 suggesting stability after initial
decrease. Thus, the ratio of chymase to tryptase increased again on day 14 (111, table 4).
To summarize, ALI conditions appeared to maintain better the mast cells than SM
conditions.

To further clarify the marked changes in tryptase- and chymase-positive mast cells
during cultivation, additional SM cultures were performed and mast cells were stained
immuno- and enzyme-histochemically. The number of mast cells with tryptase
immunoreactivity or chymase activity decreased steadily during cultivation (IV, table 3)
and the decrease in cell number was significant on day 7. Instead, the number of mast
cells with chymase immunoreactivity decreased only slightly reaching significance on
day 14 (IV, table 3). Furthermore, the number of cells with chymase immunoreactivity
appeared to be higher than the number of cells with tryptase immunoreactivity in day-14
specimens (IV, table 3). Thus, the results suggest solubilization of tryptase from the skin
tissue. Instead, chymase is partially inactivated but the chymase protein tends to persist
in the tissue.

Since SCF is an essential growth and survival factor of cutaneous mast cells,
exogenous SCF (20 or 200 ng/ml) was added to the SM culture. However, SCF had no
influence on the number of tryptase- and chymase-positive mast cells during cultivation
IV, table 3).

Histamine and TNF-a could be released spontaneously together with tryptase during
skin organ culture. Skin specimens from 3 subjects were cultured in SM conditions in
the presence of histamine and/or TNF-a for 1 or 3 days (IV, table 2). After 1 day in
culture, histamine had no effect, whereas TNF-a decreased maximally the number of
tryptase-positive cells by 33 %. After 3 days in culture, no marked reduction in the
number of tryptase-positive cells in the control culture, or further reduction in the TNF-
o, treated cultures, were detected. Instead, histamine alone and in combination with
TNF-a significantly reduced the number of tryptase-positive cells when compared to the
corresponding values in day-1 specimens (IV, table 2). Therefore, histamine and TNF-o.
may be mediators which impair mast cell survival during skin organ cultivation.

Since retinoic acid inhibited the development of tryptase-positive mast cells from
human umbilical cord blood and reduced the number of cultured human leukemic
HMC-1 mast cells (V), skin specimens from 3 subjects were cultured in SM conditions
in up to 10 uM retinoic acid for up to 14 days (V, table 1). The number of tryptase- and
chymase-positive cells decreased steadily during cultivation but exogenous retinoic acid
had no apparent effect on these changes.
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5.6.2 Alterations in the number of Kit-positive cells (IV, V)

As demonstrated in fig. 1 (IV) and fig. 6 (V), tryptase-positive mast cells are the
predominant cell type staining positively for Kit in the dermis. Hence, the changes in the
number of Kit-positive cells during culture reflect alterations mostly in mast cells and
not in other cells. After 1-2 days, the number of Kit-positive cells was decreased in the
SM culture but unchanged in the ALI culture. In the progress of the culture, the number
of Kit-positive cells decreased in parallel in both ALI and SM cultures on day 7 and 14
IV, table 1).

Similarly to tryptase-positive cells, also Kit-positive cells decreased steadily in
number in the absence or in the presence of 20 ng/ml SCF during cultivation in SM
conditions (IV, table 3). A significant drop in the number of Kit-positive cells was noted
already on day 2 when compared to control. Addition of 200 ng/ml SCF to the culture
resulted in a deep reduction in the number of Kit-positive cells on day 2, but without
affecting the number of tryptase-positive cells. This reduction reached maximum on day
2 without progressing further (IV, table 3).

In the SM cultures treated with histamine and/or TNF-a, the changes in the number
of Kit-positive cells paralleled those of tryptase-positive cells in day-3 specimens (IV,
table 2). Histamine or TNF-o reduced the number of Kit-positive cells when compared
to the control value.

In the SM cultures treated with up to 10 uM retinoic acid, the exogenous retinoic
acid could not affect the changes in the number of Kit-positive cells during the entire
culture period (V, table 1). This is in contrast to the results obtained in leukemic HMC-1
mast cells which showed a reduction in Kit expression by 1 uM retinoic acid (V, fig. 5),
or to the results obtained with 200 ng/ml SCF (IV, table 3).

5.6.3 Alterations in cells positive for stem cell factor (IV)

In the control skin, 2 specimens out of 3 revealed only occasional weakly stained cells
and endothelial-like positivity in the dermis (IV). During cultivation in ALI or SM
conditions, no apparent changes in SCF immunostaining, or any staining difference
between ALI and SM cultures, were seen during the course of culture. In one subject, no
SCF immunostaining was detected in the dermis of all skin specimens. Despite the low
SCF expression in the dermis, every subject exhibited positively stained dendritic cells
in the epidermis indicating that the staining method was competent.

5.6.4 Alterations in apoptosis in chymase-positive mast cells (IV)

Since chymase persists better in the skin tissue than tryptase and Kit during skin organ
culture (IV, table 3), chymase immunohistochemistry was used in the double-staining of
apoptotic mast cells (IV, fig. 2). As demonstrated in table 1 (IV), the apoptosis index of
chymase-positive cells increased rapidly and significantly from 6.1% to 27.2% already
in day-1-2 skin specimens in the SM culture. Later on day 7, the index declined back to
baseline. In contrast, the apoptotic process in mast cells was apparently delayed in the
ALI culture since the apoptosis index was unchanged in day-1-2 skin specimens but was
increased to 10.0% in day-7 specimens although statistical significance was not reached.
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5.7 Inhibition of chymase activity by o;-antichymotrypsin (IIT)

Serum contains protease inhibitors which may inactivate chymase. To study the
sensitivity of chymase activity to inactivation, skin sections from 3 control skin, i.e.
healthy-looking, specimens (day O specimens, III, Table 3) were preincubated in diluent
control or 0.1, 0.3, 1.0 or 3.0 mg/ml o,-AC at room temperature for 60 min. Thereafter,
chymase activity was stained enzyme-histochemically using Suc-Val-Pro-Phe-MNA.
The number of chymase-positive cells decreased dose-dependently and it was
54.0+£28.1%, 51.0+44.9%, 15.3+22.7% and 5.5+7.0% of the cell number counted in the
skin sections treated with diluent control by 0.1, 0.3, 1.0 and 3.0 mg/ml o,-AC,
respectively. There was, however, high individual variation in the sensitivity of chymase
activity to a,-AC and 0.3, 1.0 or 3.0 mg/ml o,-AC was needed for almost complete
inactivation of chymase activity on skin sections.

In contrast, preincubation of the high-salt extract with 0, 0.01, 0.03, 0.1, 0.3 or 1.0
mg/ml o;-AC in the presence of 0.1 mg/ml heparin, 1.0 mg/ml bovine albumin, 0.2 M
KClI and 0.06 M Tris-HCI buffer, pH 7.6, at room temperature for 30 min resulted in
practically complete inhibition of the chymase activity toward 0.2 mM Suc-Ala-Ala-
Pro-Phe-pNA by already 0.01 mg/ml o,-AC (III). Thus, chymase activity in solution
was considerably more sensitively inactivated by o;-AC than chymase activity
immobilized onto skin sections.

5.8 Alterations in mast cells after topical treatment of normal skin with retinoic
acid cream (V)

The number of tryptase-positive mast cells increased in the upper dermis during the
treatment of normal skin of 3 subjects with 0.1% retinoic acid cream, but the number of
mast cells showing chymase immunoreactivity or chymase activity, i.e., MCyc cells,
remained unaffected (V, table 2). This suggests that the number of MCr cells increased
during the treatment. The percentage of TNF-a-positive mast cells showed no apparent
changes (V, table 2). Furthermore, no alterations in the percentage of Kit-positive mast
cells were observed during the entire treatment period (V).
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6. DISCUSSION

A variety of factors can affect the growth, migration, survival and differentiation of
mast cells into a specific subtype in different tissues. Although the density of mast cells
is pronounced in the upper dermis beneath the epidermis, the mast cell-epidermis
association is even more obvious in chronic skin inflammation, such as in psoriasis (86).
The factors attracting mast cells towards the epidermis may include, e¢.g. SCF derived
from the epidermis (229, 360), TGF- (361, 362), dense capillary network and its
endothelial cells (297), and sensory nerves (363). Nevertheless, the skin is normally
exposed to air, which is essential for the maturation of the epidermis. Since there is a
continuous cross-talk between the epidermis and the dermis, it could be possible that the
air exposure may be important to the maturation or survival of mast cells in the dermis.

Many different mediators and cells are functioning together in pathological processes
at the tissue level, and therefore it is reasonable to elucidate the co-effect of potent
mediators in addition to studying the effect of a mediator alone. Histamine and TNF-a
reside in the secretory granules of cutaneous mast cells, and they are biologically
powerful and clinically relevant mediators in humans. When liberated simultancously
from the mast cell granules, histamine and TNF-o alone can possibly inhibit
keratinocyte growth and these mediators may function synergistically. The
concentration of histamine in the secretory granules of mast cells is about 100 mM (77)
and in the dermal skin about 50-100 uM (124). Therefore, the concentrations of
histamine used in this study are likely to occur in the microenvironment of cells in the
skin tissue. The concentration of TNF-c used was 1-50 ng/ml that can be considered to
be relevant when compared with TNF-a concentrations used previously (145, 219).

6.1 The skin organ culture model (I-V)

Skin organ cultures have widely been used as an experimental tool. Nowadays many
modifications of the model of Trowell (283) are used for unique experimental needs.
The development of synthetic skin as dressings for burn wounds and chronic skin ulcers
has been the great stimulus for developing such models by different research groups.
Nevertheless, all models have omitted important structures that may affect cell-cell and
cell-matrix interactions. Especially mast cells have received very weak attention in this
respect. Also, the purification and cultivation of human skin mast cells in vitro has been
very challenging. The mediators of mast cells are well known but their role ex vivo or in
vivo is still poorly known. The effect of air exposure to the epidermis has been studied
and shown that ex vivo cultivation should maintain epidermal structures over 11 days
(364). It has also been found that keratinocytes increase in number up to 18th day when
growing at air-liquid interface (364). Our studies (I) demonstrated that the epidermis of
skin specimens becomes loose after the 7th day as its consistency and gross morphology
is altered. By prolonging the cultivation time to 14 days even more destructed
morphology is seen and it is not beneficial to continue cultivation beyond this time point
(I). There has been an evident need for a model that could make it possible to study the
sequence of events of mast cell survival and death and their relation to epidermal

physiology.
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To detect immunohistochemical staining intensity, there has been commonly used +/-
signs to show the results. To measure in an objective way the changes in the staining
intensity, and to get numerical values that are reproducible and non-dependent on the
investigator, a method was developed from a commercially available software together
with the development of skin organ culture model. Involucrin was used as a marker and
control for testing the method and also for the characterization of the skin organ culture
model in this study. In normal human epidermis, involucrin is expressed in the upper
stratum spinosum (365). The expression of involucrin serves as a marker of
differentiation and epidermal homeostasis but not as a marker of the degree of
cornification (354). Our method showed that local expression of involucrin can vary
physiologically within the same section but the averaging the data yields consistent and
reliable results - even with 3 measurements per section of 3 different sections for one
sample case. Since the method is based on artificial division of the epidermis and
staining gradient into subzones, it may be insensitive to small focal changes, so it could
be reasonable to concentrate on certain cell layers — the averaging and division may
introduce bias. Although the detection method was used in skin histochemistry it can be
applied to analysis of any tissue. Our results show that even 3 measurements are
sufficient for reliable results for histological analysis. With small sample size false
positive measurements are rare, but false negative measurements may cause problems.
With the grayscale-OD -calibration equation it was possible to handle 99.64 % of the
gray scale values which is assumed to be sufficient (I, Figure 2). Thus, it was possible to
convert light intensity into OD units. This allowed reliable order scaled comparisons. It
is important to notice that by this method it is easier to compare different experiments
and safe measuring limits can be better found.

6.2 The involucrin and TNF-o immunoreactivity in keratinocytes in the different
culture models (I, IT)

In skin organ culture model ALI seemed to resemble normal skin up to 7 day, showing
in upper epidermis immunoreactivity. In SM samples involucrin immunoreactivity
shifted already on day 2 towards mid or basal epidermis and showed incresed
immunostaining possibly due to disturbed homeostasis and attempts to resist chemical
and physical stress (I). Similar results were obtained in the second experiment, where
involucrin labelling intensity increased in SM culture in day 3 (II). In the same
experiment, addition of TNF-a to the culture seemed not to prevent this increase in day-
3 samples (II). TNF-a had also no marked effect on the apoptotic index of cultured
monolayer keratinocytes. Involucrin staining has been found to markedly increase after
UVB-exposure reaching down to level of basal keratinocytes (215). This possibly
indicates the formation of sunburn cells that do not express differentiation markers like
involucrin (216). The epidermal expression of TNF-a in ALI and SM specimens was
found to be very faint, only single occasional dendritic cells were stained in the
cpidermis. Already in day-1-2 specimens cultivated in ALI conditions, an increase in
TNF-o immunoreactivity was observed and it increased during the cultivation. Instead,
no such increase in TNF-o immunoreactivity was seen in SM samples. In one study,
TNF-a could induce differentiation of keratinocytes in vitro as indicated by the
stimulation of cornified envelope formation though it had strong antiproliferative effect
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(366). In our study, TNF-a had only slight, if any, inhibitory effect on the increase in
involucrin immunostaining, but 0.25-1 mM histamine in turn showed clear and
significant inhibition (II). Interestingly, the combination of 1 mM histamine and 18
ng/ml TNF-a resulted in an additional increase in the inhibition of involucrin
immunostaining during skin organ culture (II, fig. 7). When skin specimens from 3
subjects were cultured in SM conditions in the presence of histamine and/or TNF-a for
1 or 3 days, TNF-a inhibited the increase in involucrin immunostaining by only 0-5%,
whereas histamine inhibited it by 15-17% compared to control values. By combining
histamine with TNF-q, the inhibition was 25%. The increased TNF-a staining in the
ALI culture together with spontaneously released histamine possibly prevented the
increase in involucrin staining seen in the SM cultures. Furthermore, this may suggest
that TNF-a cause cytostasis, not differentiation. Thus, histamine and TNF-o may
induce more profound changes in the epidermis of whole skin specimens when used in
combination than when used alone. Interestingly, the epidermal expression of involucrin
in the ALI culture reflected more normal skin expression up to 7th day. Histamine
prevented the increase in involucrin immunostaining during SM cultivation, a change
which may reflect increased apoptosis and death of keratinocytes.

As a conclusion, the SM cultivation was associated with pronounced involucrin
staining in the epidermis, but the ALI cultivation with increased TNF-o staining. In
normal human skin in vive, TNF-o. may need other counteracting stimulus like
histamine secretion for resulting its inhibitory effects (81, 216, 250), and the normal
production of TNF-a from keratinocytes may be insufficient to cause any cytotoxic or
apoptotic changes. TNF-a can also induce mast cell degranulation and release of
histamine (219, 345) and elevated histamine levels have been found in suction blister
fluids of UVB exposed skin (148, 149) showing their importance in epidermal
pathology.

6.3 The effect of TNF-o and histamine on proliferating keratinocytes and
developing keratinocyte epithelium (II)

The primacy of cytokines in eliciting cutaneous immune responses makes them a
highly attractive target for new biological response modifiers. In inflamed skin,
keratinocytes and inflammatory cells both produce large amounts of tumour necrosis
factor TNF-a.. TNF-a is also a key cytokine in innate immune responses and has many
effects, ranging from inflammation to apoptosis. These effects are reviewed to better
understand the role of TNF-a as it relates to the pathogenesis and treatment of
inflammatory skin diseases like psoriasis. TNF-o increases production of pro-
inflammatory molecules (e.g. IL-1, 1L-6, IL-8, NF-kappa [}, vasoactive intestinal
peptide) and adhesion molecules (e.g. intercellular adhesion molecule-1, P-selectin, E-
selectin) (367). TNF-o. also promotes apoptosis through binding to the TNF-receptor 1;
however, psoriatic lesions are hyperproliferative despite an increase in TNF-o (367).
This paradox is partially explained as NF-kappa 3 activation seems to inhibit TNF-a.-
induced apoptosis. The importance of TNF-alpha and apoptosis in psoriasis is shown
through the review of clinical trials using anti-TNF-c immunobiologics (e.g. etanercept,
infliximab) and apoptosis-inducing treatments that result in clinical improvement of the
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disease (368-370). Blockade of this proinflammatory cytokine by a monoclonal anti-
TNF-a antibody might be effectively used in the treatment of inflammatory skin
diseases especially in the management of psoriasis but this approach is also effective for
a varicty of other dermatological conditions including pyoderma gangrenosum and
Behcet's syndrome (371). Targeting of cytokines is still in its infancy for therapy of skin
disease. However, blocking tumour necrosis factor alpha by infliximab (372, 373) or
ctanercept (368, 370) has shown particular promise.

In a previous study (11), histamine at the concentration of 100 uM was found to
inhibit significantly the [3H]—thymidine—incorporation of proliferating monolayer
keratinocytes in low-calcium culture and the outgrowth of keratinocyte epithelium from
whole skin specimens. Similarly, 100 uM histamine was needed for significant
inhibition in the [BH]—thymidine—incorporation of monolayer keratinocytes in that same
study (II). Furthermore, histamine inhibited the growth of keratinocyte epithelium in a
dose-dependent manner paralleling the results obtained in the [3H]—thymidine—
incorporation assay. The mechanism for the growth-inhibitory effect of histamine was
also clarified. The results of the MTT assay suggest that histamine was not cytotoxic to
keratinocytes (11). The increase in the apoptotic index from 2.8% to 12.9% by 0.5 mM
histamine suggests that the growth inhibition by histamine is mediated at least in part
via increased apoptosis and death of keratinocytes.

An in vitro-epithelialization model was also developed to study the growth inhibitory
cffect of histamine and TNF-o alone and together. The growth of keratinocyte
epithelium was inhibited dose-dependently up to 25% by TNF-a. In other experiments,
TNF-a inhibited keratinocyte proliferation dose-dependently without noticeably
affecting viability (9, 366), and the cytostasis was increased by combining TNF-a with
gamma interferon (9, 217). The cytostatic effect was also reversible (217). Our results
are in accordance with previous studies which claim that TNF-a alone is insufficient to
induce apoptosis of keratinocytes (374) and the synergy with another mediator may be
needed. However, in one case the subcutaneous injection of TNF-ao DNA plasmid has
been found to causec apoptosis in epidermal keratinocytes (375). In our study, in the
high-calcium in vitro-epithelialization model the combination of histamine with TNF-a
in turn led to potentiation in inhibition, up to 87% inhibiton in epithelium growth. MTT
assay revealed that the potentiation in growth inhibition by simultancous effect of
histamine and TNF-a is due to greatly enhanced cytotoxicity. However, histamine and
TNF-a alone were not cytotoxic under experimental conditions used.

Expression of ICAM-1 by keratinocytes is an important activation event in the
pathogenesis of T cell-mediated immune reactions. Both histamine and TNF-o have
been shown to induce ICAM-1 expression in cultured human keratinocytes. In addition,
these mediators function synergistically leading to increased ICAM-1 expression (8,
245). The treatment with TNF-a markedly induces the expression of ICAM-1 on the
cultured epidermal keratinocytes (217). In previous studies, histamine has been shown
to inhibit the mitosis of keratinocytes by using both H1- and H2-receptors (148, 149).
Histamine promotes TNF-o mediated induction of keratinocyte ICAM-1 expression
probably through H2-receptors (245) but also suppresses gene expression and synthesis
of TNF-a via H2 receptors (146) implying the dualistic role of histamine on the
epidermis (142). However, ICAM-1 expression in keratinocytes may not only lead to T
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cell activation but to increased lysis of keratinocytes by cytotoxic T cells (248). ICAM-1
has also been found in many tumor cells (376).

The simultancous action of histamine and TNF-a on keratinocytes in this study
resulted in potentiation in growth inhibition and increased cytotoxicity. Previously,
treatment of cultured keratinocytes with 1 pg /ml paraphenylenediamine for 3 h has
been found to induce ICAM-1 expression probably due to slight membrane damage, but
already 2 pg/ml paraphenylenediamine induced cytotoxicity (377). Thus, ICAM-1
expression and cytotoxicity seem not to be completely separate events. Possibly, during
the simultaneous action of histamine and TNF-o. on keratinocytes, these mediators could
first activate and thereby induce ICAM-1 in keratinocytes but then cause cytotoxicity
(Figure 9). To clarify this, keratinocytes were first cultured with either histamine or
TNF-q, i.e. in conditions shown to induce ICAM-1 (8, 245) but not cytotoxicity.
Therefore, preactivation of keratinocytes by histamine or TNF-a renders the cells more
susceptible to subsequent cytotoxic effects by TNF-o or histamine. Figure 10 shows a
hypothetical model for possible cytotoxic keratinocyte death. [CAM-1 is only one of the
multiple surface markers that are expressed during keratinocyte activation.

Preactivation

/ MC

g K (7 V\Eﬂbmmmi, or THNF-o.
histamine or THF-i KC

TNF=-o.
Activation KC| —an
histamine

histamine or EM& -1 TNF-o. ‘
M{ﬁ AND

hletamme

Figure 10. A hypothetical schematic picture of the sequence of events leading to
cytotoxicity in keratinocytes. Either histamine or TNF-a from an adjacent keratinocyte,
mast cell or autocrinically from target keratinocyte itself may preactivate keratinocyte.
Upon activation, the keratinocyte expresses ICAM-1. After that, histamine and TNF-a
either separately, sequentially or both in combination act synergistically leading to
increased cytotoxicity. /n vivo, also cytotoxic T-cells interact via ICAM-1 with
keratinocytes to induce cytolysis of keratinocytes. MC = mast cell, KC = keratinocyte,
T, = cytotoxic T-cell.
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6.4 Sequence of events leading to death or survival of mast cells (II1, IV, V)

The present results indicate that after mast cell degranulation tryptase activity is
released and the enzyme complexed to heparin proteoglycan can diffuse through the
extracellular matrix to exert its activity near the degranulated mast cell and also at more
distant sites like in the basement membrane zone (2, 171). Opposite to tryptase,
chymase-heparin proteoglycan complexes do not diffuse to the same extent and
chymase is partially inactivated after degranulation, especially if it is in the soluble
form. Thus, chymase can mostly affect cells and different matrix structures that are
located close to the mast cell. Chymase activity persisting locally might contribute to
switching off the degranulation of mast cells (378) or promoting the growth and
activation of mast cells by cleaving soluble bioactive stem cell factor from cell
membranes (197).

In the skin, blisters can be formed in the intracpidermal or subepidermal layers.
Proteolytic enzymes participate in the blister formation by degrading structural
components of basement membrane and connective tissue in the dermis. In the first step
of the formation of blisters, mast cells degranulate their mediators to blistering area of
skin. Degranulated mast cells are a prominent feature of the skin blisters of individuals
affected with e.g. bullous pemphigoid (379), and mast-cell-derived chemoattractants are
present at high concentrations in blister fluids in vivo (147). Mast cell tryptase have also
shown to participate in the destruction of basement membrane, or at least fibronectin
(17D).

When incubating the high-salt extract containing soluble chymase activity with
varying concentrations of a;-AC extensive inhibition of chymase activity was measured
by a low 0.01 mg/ml dose of a1-AC. Clearly higher concentrations (0.3, 1.0 and 3.0
mg/ml in the 3 specimens) of a;-AC were needed for practically complete inactivation
of chymase activity on skin sections. This suggests that when tightly packed into the
mast cell granule chymase is relatively well protected from the action of o;-AC. In
contrast to chymase, similar inactivation of tryptase has not been detected (6, 86). It is
of interest that in day-7 and day-14 skin specimens the number of cells with chymase
immunoreactivity was higher than the number of cells with tryptase immunoreactivity,
i.e., there were chymase-positive and tryptase-negative cells. Thus, these chymase-
positive cells resemble the previously identified MC¢ (chymase-positive, tryptase-
negative) mast cell type (38, 39).

After freezing the skin, o,-Pl-resistant soluble tryptase activity was present in the
blister fluids on day 1 and 2 (III, table 1). This sustained activity over 2 days agrees with
the findings that there are no known physiological inhibitors for tryptase. Thus, the
involvement of tryptase in the blister formation is possible. On the other hand, the
results suggest that chymase is inactivated and/or chymase is not sufficiently diffused to
the blister fluid. The 6-mm specimens incubated for up to 2 days in Ringersteril® alone
showed no significant changes in the number of chymase-positive cells meanwhile a
tendency toward decreased numbers of tryptase-positive cells and increased ratio of
chymase to tryptase was noted suggesting spontaneous release of tryptase activity but
not chymase activity (I, table 3).

When incubating skin specimens in compound 48/80 (III, table 3) the number of
chymase-positive cells as well as the ratio of chymase to tryptase decreased significantly
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on day 1. An explanation for this decrease in chymase-positive cells may be that a
proportion of chymase was inactivated during mast cell activation and degranulation.
After the incubation in compound 48/80 for 2 days, the number of tryptase-positive cells
decreased and the ratio of chymase to tryptase increased significantly, which suggests
extensive solubilization of tryptase activity (III, fig. 1). Similarly, the ALI cultivation
for up to 14 days resulted in significantly decreased numbers of tryptase-positive cells
but no significant decrease in mast cells with chymase activity (1, table 4), although
serum and its protease inhibitors were present throughout the culture and the skin
biopsies were considerably destructed in morphology.

The more physiologic ALI culture preserved mast cells in the upper dermis better than
the SM culture In the SM culture (II1, table 4), the changes in mast cell numbers were
similar with those obtained with compound 48/80 (II1, table 3) suggesting that these less
physiologic culture conditions lead to mast cell degranulation and partial inactivation of
chymase. However, one cxplanation for the surprisingly high persistence of the
remaining chymase-positive cells, but not tryptase-positive cells, after 14 days in the
SM culture may be that chymase was entrapped by a,-macroglobulin preventing further
inactivation by large protease inhibitors but allowing detection with the small synthetic
substrate used (9). Tryptase and histamine are also spontancously released during
cultivation of skin specimens (III, fig. 1; IV, table I-III) and it has earlier been found
that 0.1 mM histamine strongly inhibits the outgrowth of keratinocyte epithelium in
whole skin culture using the same culture medium as in this study (11). In addition, an
enhanced expression of ICAM-1 on cultured keratinocytes has been detected by
simultancous action of 0.5 mM histamine and 500 U/ml TNF-o (245). Since the
concentration of histamine in mast cell granules and in the dermal skin is high, about
100 mM and 50-100 uM, respectively (8, 125, 380), relatively high histamine
concentrations (0.25 mM and 1 mM) were used in this study (I'V, table 2) assuming that
these concentrations can exist at least temporarily in the microenvironment of cutaneous
mast cells. Histamine at 0.25 mM reduced the number of tryptase- and Kit-positive cells
suggesting a possible mechanism for the decay in mast cells during skin culture.
Whether this is a direct or indirect effect of histamine on mast cells is unclear. Similarly
to histamine, exogenous TNF-a reduced the number of tryptase- and Kit-positive cells
(IV, table 2). TNF-a can induce the death of cells by different mechanisms (44, 45).
Since TNF-a is preformed in mast cell granules (92, 207, 219), the result obtained
provides another possible means for the decline in mast cells during culture, but the
detailed mechanism remains to be clarified. The number of Kit-positive cells showed
high variation in relation to the number of tryptase-positive cells in control skin
specimens, i.e., the percentage of Kit-positive mast cells varied in the range of 50-100%
(IV, table 1-3). One explanation may be the present finding that Kit is sensitively
regulated and it disappears rapidly during skin organ culture.

The differences in the changes of the number of mast cells with tryptase or chymase
immunoreactivity (IV, table 3) suggest that tryptase protein is solubilized but chymase
protein remains in the tissue. In contrast, the decrease in the number of tryptase- and
chymase-positive cells did not reach the same extent in the ALI culture (IV, table I).
This result indicates that mast cells remain longer intact in skin specimens cultured at
the ALI than in those cultured in SM conditions. Skin organ culture specimens undergo
destruction during prolonged cultivation and the differences in the number of tryptase-
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and chymase-positive cells between ALI and SM cultivation were not feasible until day
7 (IV, Table 1). The results on Kit-positive cells revealed differences already in day-1-2
skin specimens where the number of Kit-positive cells decreased in the SM culture but
was unchanged in the ALI culture (IV, table 1). This suggests that the decay in mast
cells in the SM culture started early on day 1-2 meanwhile mast cells in the ALI culture
remained viable. Most importantly, the apoptosis index of chymase-positive cells
increased substantially on day 1-2 in the SM culture but not in the ALI culture. It is
likely that the apoptotic process was over on day 7 in the SM culture and mast cells
were mostly dead since no marked apoptosis staining was detected anymore. In the ALI
culture, an apparent increase in the apoptosis index was noted on day 7 being congruent
with the results on tryptase- and Kit-positive cells (IV, table 1). These experiments
suggest that tryptase is solubilized from the skin specimens. Instead, chymase activity is
partially inactivated and the rest of the activity, as well as most of the protein, remains
close to the site of mast cell degranulation. The parallel release of both histamine and
soluble tryptase activity from whole skin specimens is also described. The more rapid
changes in mast cells in the SM culture may be due to less physiologic conditions, faster
destructive changes in the skin, and liberation of cytotoxic or apoptosis-inducing
molecules from the cultured cells.

SCF has been shown to be an essential factor for inducing proliferation or preventing
apoptosis in mast cells in culture (112). To further clarify the significance of SCF in
preventing the decay in mast cells in the SM culture, SCF was added to the culture
medium at the concentration of up to 200 ng/ml which should be sufficient to exert its
activity on mast cells (381-383). The enhanced decrease in the number of Kit-positive
cells by 200 ng/ml SCF already in day-2 specimens (IV, table 3) indicates that SCF had
reached and affected mast cells in the skin specimens. The decrease in the number of
Kit-positive cells by SCF may be due to SCF-induced down-regulation or
internalization of Kit in mast cells or proteolytic shedding of Kit from the mast cell
surface (384, 385). In fact, these mechanisms could explain the disappearance of Kit-
positive cells during culture in general. Nevertheless, despite its evident action on mast
cells during culture, SCF could not prevent or accelerate the decay in tryptase- and
chymase-positive cells (IV, V). Possibly, the apoptotic process in mast cells began
rapidly in SM conditions and therefore exogenous SCF had no chance to prevent it.
Alternatively, other cytokines, growth factors or neuronal supply besides SCF are
required (35, 363, 383, 386).

As an important modulator of hematopoietic cells, atRA had no effect on mast cell
survival (V). Up to 10 uM concentration were used but the number of Kit-positive mast
cells remained constant in skin organ culture. Though the cutancous mast cells are
mainly MCrc-type, these results indicate that atRA does not affect on mature mast cells
in tissue. This can also be seen when treated 0.1% topical atRA cream with normal
human skin in vivo, atRA had no effect on MCrc-type mast cells and on the expression
of Kit and TNF-o on mast cells (V).
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6.5 The significance of the present results

In human skin in vivo, TNF-a may need other concurrent mediators, like histamine,
for sufficient inhibitory effects (81, 216, 250). The implications of the present findings
for poor epithelialization or epidermal pathology, e.g., in chronic leg ulcers (7), bullous
pemphigoid (147), toxic epidermal necrolysis (101), and UV-induced sunburn skin (148,
149), are of interest. Furthermore, elevated histamine levels have been measured in
suction blister fluids of UVB-exposed skin (148, 149). TNF-a can also induce mast cell
degranulation and release of histamine (219, 345). The present results show that
histamine and TNF-a can have profound cffects on keratinocytes when functioning
together, either simultaneously or sequentially. This synergistic effect could be shown in
different experimental conditions; in monolayer cultures of keratinocytes, in epithelium
cultures of keratinocytes, and in the epidermis of cultured whole skin specimens.
Therefore, mast cells can be inhibitory, and even cytotoxic, to keratinocytes in the
microenvironment between mast cells and keratinocytes.

Parenterally-administered histamine dihydrochloride boluses have been used for H2-
receptor-mediated tumour growth inhibition in rat Leydig cell sarcoma (387, 388) or in
malignant glioma (389). Furthermore, combination of histamine with cytokine
immunotherapy may result in potentiation in the antitumor effect of interleukin-2 and
interferon-o (390). This study shows for the first time a great potentiation in the
inhibitory action of histamine and TNF-a on epithelium growth when these mediators
are combined together. Therefore, this finding may provide an experimental background
for possible future studies and perhaps for therapeutic use.

Mast cells contain large amounts of tryptase protein. After released enzymatically
active tryptase can relatively easily diffuse through the dermal matrix reaching local and
distant skin sites, such as the epidermis. In chronic inflammatory skin diseases, such as
in psoriasis, tryptase-positive mast cells are increased in number in the upper dermis.
Therefore, this enzyme is an interesting target for developing enzyme inhibitors for
possible therapeutic use. In contrast to tryptase, chymase is more carefully controlled
and the enzyme is inactivated at least partially after extrusion of granules from mast
cells. When in the soluble form, chymase is inactivated rapidly and sensitively by
protease inhibitors, such as 0,-AC. In addition, chymase protein complexed to heparin
proteoglycan diffuses slowly through the matrix. This strict control may be necessary in
physiological situations since chymase can have powerful effects in the skin, such as
dermal-epidermal separation. The present findings may explain why an urticarial wheal
does not lead to blister formation every time the mast cells are activated and
degranulated. In pathological conditions, e.g., in pemphigoid, the control mechanisms
may fail and chymase can freely destruct or affect surrounding structures.

Previously, a MC¢ type of mast cell (chymase-positive, tryptase-negative) has been
described immunohistochemically. Nevertheless, the present results suggest that this
cell type may represent a dead mast cell in tissues — tryptase is solubilized away but
chymase immunoreactivity remains at the site of granule extrusion.
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7. CONCLUSIONS

1)

2)

3)

4)

5)

6)

The epidermal expression of involucrin in the ALI culture resembled more that of
normal skin for up to 7 days in culture when compared to the increased involucrin
staining in the SM culture. Addition of histamine and especially the combination of
histamine and TNF-a prevented the increase in involucrin immunostaining during
SM cultivation. Epidermal TNF-q. staining was more pronounced in the ALI culture
than in the SM culture after 1-2 days in culture, a change which may explain the
result of lower involucrin staining in the ALI culture.

The cultivation of skin specimens in SM conditions induced rapid apoptosis and
subsequent decay in tryptase-, chymase- and Kit-positive mast cells whereas simply
the air exposure in the ALI culture was able to delay these changes considerably.
This suggests that air exposure to the epidermis is essential for the homeostasis and
survival of mast cells in the dermis. The more rapid changes in mast cells in the SM
culture may be due to less physiological conditions and faster destructive changes in
the skin.

SCF alone was not sufficient to prevent the rapid decay in mast cells during SM
cultivation. Possible factors promoting the decay in mast cells during skin organ
culture may be directly or indirectly associated with released histamine or TNF-aL.
Active tryptase together with histamine is released from mast cells to extracellular
matrix and further out from the skin tissue. Instead, chymase is partially inactivated
and the rest of the activity as well as chymase immunoreactivity tend to remain
close to the site of mast cell degranulation. The decrease in chymase activity during
cultivation is possibly due to protease inhibitors. The previously
immunohistochemically described MCc mast cell (tryptase-negative, chymase-
positive) may represent a dead mast cell from which tryptase is depleted.

Histamine and TNF-a function synergistically impairing epidermal viability. The
simultaneous or sequential action of histamine and TNF-a on keratinocytes resulted
in potentiation in growth inhibition and increased cytotoxicity. Interestingly,
histamine caused an increase in the apoptotic index in vitro showing a possible way
for mast cells to regulate keratinocyte growth in various skin conditions.

Up to 10 uM atRA could not affect the survival or death or Kit expression of mast
cells in skin organ culture. /n vivo 0.1% atRA cream increased the number of MCr-
type of mast cells, but the number of MCr¢ was unaffected as was the expression of
Kit and TNF-a in cutaneous mast cells.
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