












































































3.2 Forward modelling of EIT 39

which can be written in the matrix form as

Uh = Cβ, (3.41)

where Uh = [Uh1 , U
h
2 , . . . , U

h
L]T and β = [β1, β2, . . . , βL−1]T . Now, the relation

between the injected currents and the computed voltages on the electrodes can be
written in the form

Uh = Cβ = CR̃h(σ, z)CT I = Rh(σ, z)I, (3.42)

where R̃h(σ, z) ∈ R(L−1)×(L−1) is a block matrix (A−1)i,j , N+1 ≤ i, j ≤ N+L−1
of the inverse of the matrix A. The matrix Rh(σ, z) is called the resistivity matrix.
The equation (3.42) can be seen as a generalized Ohm’s law; the relation between
the voltages on the electrodes and the injected currents is linear. It can also be
seen that the relation between the conductivity distribution, contact impedances
and the voltages is nonlinear. This implies that the estimation of the conductivity
distribution and contact impedances, when the injected currents and the voltages
on the electrodes are given, is a nonlinear estimation problem.

In the real case, the actual measurements are performed with respect to some
reference electrode. The actual measurements therefore are obtained by multi-
plying Uh from the left with a measurement matrix M ∈ RQ×L, where Q is the
number of the actual measurements of the single current pattern. Thus, the actual
measurements are obtained by

Uhactual = MUh = M C̃θ = M̃θ, (3.43)

where C̃ = (0, C)T and M̃ = M C̃.

Forward problem simulations

In this section some forward problem simulations are presented. All simulations are
performed in three-dimensional domain. Forward problem simulations have been
presented earlier e.g. in [146, 28]. In [146] three-dimensional potential distributions
in different domains were shown. In [28] boundary potential distributions and
boundary current densities in two-dimensional case were studied. Here three-
dimensional potential distribution, boundary potential distribution and boundary
current density in the case of a cylindrical tank are studied. A special attention
is paid to the effect of the electrode contact impedance z`. The effects to the
boundary current density and to the boundary potential are studied.

80 electrodes on five different layers were attached on the boundary of the tank.
Two of these electrode layers are shown in Figure 3.2(a). The number of the nodes
and elements in the finite element mesh were 1358 and 6240, respectively. The
tetrahedral elements were used. The conductivity and potential distributions were
represented in piecewise linear basis. The homogeneous conductivity distribution
was used the conductivity value being one (arbitrary unit). The current was
injected between an opposite pair of electrodes on the first and fifth electrode
layers. For details on the current injections, see Section 3.4.
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Figure 3.2: Three-dimensional potential distribution uh for modified opposite

current injection. (a) Three slices of potential distribution. Two electrode layers

and upper and lower edges of the tank are also shown. (b) vertical slice from (a)

and current density projected to this plane. The lengths of the vectors are scaled

the same. (a) and (b) are in the same color scale.

Let us consider first the potential distribution uh(x). The potential distribution
is shown in Figure 3.2(a). One vertical and two horizontal layers are shown. The
value of the potential is represented by color. It can be seen that the highest and
lowest values of the potential distribution are near the current carrying electrodes
as it should be. The current density projected to the vertical plane in Figure 3.2(a)
is shown in Figure 3.2(b). The current density is calculated from the potential
distribution as j|y=0 = σ∇u|y=0. The lengths of the current density vectors are
scaled the same, hence qualitative inspection is only possible. Current seems to
flow from the upper electrode to the lower electrode as it intuitively should do.
The presence of the passive electrodes can be seen in both vertical edges of the
plane as the varying variation of the direction of the current density vectors. The
presentations do not show the details of the potential distribution and current
density specially near the electrodes. Hence, to get a more closer view on the
behavior of the potential distribution and the current density, these quantities are
computed in the proximity of the electrodes.

Let us consider one of the active electrodes. The potential distributions un-
der the active electrode with different value of contact impedance are shown in
Figure 3.3. Values of the contact impedance were 1, 0.1, 0.01 and 0.001. The
effect of the electrodes to the potential distribution can be clearly seen. If the con-
tact impedance is large, the potential distribution under the electrode is smooth
whereas if the contact impedance is small, it is nearly constant. The boundary
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Figure 3.7: The construction of the standard smoothness prior.
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Figure 3.8: Conditional prior covariances of the elements corresponding to the

anisotropic priors. The value of the fixed parameter is set to zero. (a) wθm = 1,

for all m, wrm = 1, for all m. (b) wθm = 30 for all m and wrm = 1 for all m.

Proper smoothness prior model

Smoothness type of prior models, presented above, are improper. This is due to
the fact that the difference operators have non-trivial null space ‡. A Gaussian
smoothness prior model that is proper can be constructed as follows [88].

The parameter vector is reordered such that σ = [σI1
σI2

]T , where the σI1

are free parameters and the σI2
fixed parameters. The difference operator is also

partitioned as follows

LTL =

[
B11 B12

B21 B22

]
(3.61)

‡N(D) = {x | Dx = 0, x 6= 0}.
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The fixed parameters are assumed to be Gaussian distributed, that is σI2
∼

N(σ∗I2
,Γ2), where the mean and the covariance matrix are a priori known. It can

be shown that the proper Gaussian smoothness prior can be written in the form
[88]

π(σ) = π(σI1
| σI2

)π(σI2
)

∝ exp

(
−α(σI1

+B−1
11 B12σI2

)TB11(σI1
+B−1

11 B12σI2
)

−1

2
(σI2

− σ∗I2
)TΓ−1

2 (σI2
− σ∗I2

)

)

= exp

(
−1

2
(σ − σ∗)TΓ−1(σ − σ∗)

)
(3.62)

where the mean and covariance matrix are

σ∗ =

[
−B−1

11 B12σ
∗
I2

σ∗I2

]
(3.63)

Γ =

[
2αB11 2αB12

2αB21 2αB21B
−1
11 B12 + Γ−1

2

]
. (3.64)

It can be seen from the equation (3.63), that the mean of the fixed parameters is
σ∗I2

, as it should be and the mean of the free parameters depends on σ∗I2
, on the

variances and covariances of the free parameters through the block matrix B11 and
on the correlations between the fixed and free parameters through the block matrix
B12. Furthermore, it can be seen from the equation (3.64), that the covariances
of the free parameters depend only on the block matrix B11. In other words,
the correlation between the free parameters depends on the original smoothness
prior model but not on the correlations of the fixed parameters. Strength of the
correlation can be tuned by using a parameter α. The final covariances of the
fixed parameters depend on the given covariances of the fixed parameters Γ2, on
the correlation between free parameters and on the correlation between the free
and fixed parameters. This prior model is used in 3D laboratory test in Section
7.4.

Note that the conditional density π(σI1
| σI2

) can be used for visualization
of the improper prior density. This can be done by fixing some parameters and
viewing the prior density of the remaining ones conditioned on the fixed ones.
Visualization of the anisotropic smoothness prior derived earlier is shown in Figure
3.8. Two conditional prior covariances have been computed with different prior
assumptions (different weights wrm and wθm). The effect of the weight can be well
seen in the case when there is the smoothness assumption in the angular direction,
see Figure 3.8(b). Large weights wθm tend to give high correlation in the angular
direction and the correlation drops down very quickly in the radial direction (small
wrm).
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256 and the injected current was 1 mA. The EIT-system developed at University
of Kuopio was used [149].

4.3.1 First experiment

In the first experiment, the tank was filled with saline solution (tap water and
Potassium chloride). Targets were not immersed in the tank. In the estimation
it was assumed that the conductivity σ is homogeneous and contact impedances
z` are equal on all the electrodes i.e. z = z0(1, . . . , 1)T . Therefore there were
only two parameters to be estimated and the ML approach could be used. The
experiment was carried out in order to study the effect of the initial guess, step
size parameter and the measurement noise covariance matrix on the estimates and
the convergence of the algorithm.

First, the error contour ‖V −U(σ, z)‖2 was computed such that the conductiv-
ity σ varied from 4 Ω−1m−1 to 11 Ω−1m−1 and contact impedance z varied from
1×10−5 Ωm2 to 1×10−3 Ωm2. The error contour is shown in Figure 4.1. In order
to study the performance of the method five different initial guesses were chosen.
Three of these (Cases 1, 2, and 3) were used to study the effect of the initial guess.
In these cases the measurement noise covariance was Γv = I. The Cases 4 and 5
were used to study the effect of the measurement noise covariance matrix and step
size parameter, respectively. For all the cases the ML estimates were computed
from equations (4.9) and (4.14). The algorithm was stopped when the error norm
‖V −U(σ, z)‖2 reached the value of 2× 10−5. The results are shown in Figure 4.1
as blue (Case 1), red (Case 2), green (Case 3), yellow (Case 4), and black (Case
5) lines.

The error contour is seems to be elongated which is a typical feature of inverse
problems, see Figure 4.1. This may cause problems for the convergence of the
algorithm if the initial guess is chosen from the valley of the error surface. It can
be seen that the algorithm converges to the same point from each of the different
initial points (Cases 1, 2, and 3). These results are also summarized in Table 4.1.

When the estimated measurement noise covariance matrix is used in the es-
timation procedure the final result is different (Case 4). In this case the error is
much smaller than in the case without the covariance matrix, see Table 4.1. This
is due to implicit assumption of the noise covariance matrix (4.15). In the case
in which Γv = I it is implicitly assumed that variances of the measurements are
equal and having the value of one. This assumption is unrealistically high which
implies that the error estimates of the parameters are too large and unreliable.
In the case of estimated measurement noise covariance matrix the errors of the
parameters are more realistic.

The effect of the optimal step size parameter can be seen from Table 4.1. In
the Cases 1, 2, and 3 in which the optimal step size parameters are used, the
convergence is faster than in the case in which it is not used (Case 5, κi = 0.5 ∀i
and Γv = I). This is a well–known result from the literature [135]. There might
also occur oscillation in the algorithm if the step size parameter is chosen too large,
and this behavior is also discovered in this case. The measured (solid line) and
computed voltages (dashed and dotted lines) for one current pattern is shown in
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Figure 4.1: (a) The error contour and convergence steps for 5 different cases.

(b) The close-up view of rectangular area in a). The circles (o) and plus signs

(+) denote the initial guesses and final estimates, respectively. The meaning of

the colors are explained in the text, see Section 4.3.1.

Figure 4.2. The variation of the measured voltages might be due to environmental
noise and/or the variation of the contact impedances. It can be seen that the
computed voltages are smooth, due to the fact that the contact impedances in
our model are modeled as a single parameter. Note that the noise level in the
measurements is quite high (6 % in this case), so it is assumed that the main
part of the variation is due to the measurement noise. It is also seen that the fits
are almost the same with and without the noise covariance matrix as intuitively
should be.

The square error norm of the measured and computed voltages ‖V −U(σ, z)‖2
as a function of iteration number is shown in Figure 4.3. It can be seen from
the figure, that the error norm of the voltage difference is almost zero after the
third iteration step with each different initial point. A typical fit of the voltages is
presented in Figure 4.2. Only in the case in which the optimal step size parameter
is not used, convergence requires more than three iteration steps. This can be seen
more clearly from Table 4.1.

4.3.2 Second experiment

In the second experiment, a tank was filled with tap water. In the tank a cylindrical
plastic object, diameter of 52 mm, was located near the electrode number 1. A
20 Ω resistor was placed between the electrode number 13 and a current injection
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Figure 4.2: The boundary voltages for the 1st current injection. The solid line

is the measured voltages, the dashed and dotted lines are the computed voltages

with and without realistic noise covariance matrix, respectively.

Table 4.1: The results for cases 1–5. The units of the conductivity σ and contact

impedances z0 are Ω−1m−1 and Ωm2, respectively.

Initial point Minimum Errors No. of steps
Case σ z0 σ z0 ∆σ ∆z0

1 10 0.00005 7.3 0.00028 22.5 0.01 3
2 4.2 0.0004 7.3 0.00028 22.5 0.01 3
3 10.5 0.0004 7.3 0.00028 22.5 0.01 3
4 10 0.0002 6.9 0.00026 0.2 0.002 3
5 9 0.0005 7.3 0.00028 22.5 0.01 5

unit. This resistor represents larger contact impedance on this electrode.

The reconstruction procedure consisted of two parts. First, the estimates for
the homogeneous conductivity and all the contact impedances were computed
by equations (4.9) and (4.14). The data for this part was collected from the
tank without the plastic object. In the second part the object was placed in the
tank and an estimate for the inhomogeneous 3D conductivity distribution was
computed. To test the effects of the contact impedances, four different cases were
reconstructed:

1. The values of the contact impedances for all the electrodes were four times
the mean of the estimated contact impedances.
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Figure 4.3: The error norm as a function of iteration number.

2. The measurements of the current carrying electrodes were removed. Hence
the number of the measurements was 208 instead of 256. In this case the
values of the contact impedances were the same as in the case 1.

3. In the first part the contact impedances on all the electrodes were estimated
as a single parameter and was used as value of the contact impedances in
the estimation of the conductivity distribution.

4. The contact impedances on all the electrodes were fixed to the value obtained
in the first part of the estimation procedure.

The estimated homogeneous conductivity value was used as an initial guess of an
iterative reconstruction. The reconstruction was computed by equations (4.9) and
(4.10). It is assumed that σ∗ is zero. In this case the equation (4.10) is of the form

δσi =

[
JTi Ji + αLTL

]−1[
JTi (V − U(σi))− αLTLσi

]
. (4.24)

In the reconstruction an anisotropic smoothness prior presented in Section 3.3.2
was used. In this case there are three different regularization parameters, namely
parameters with respect to radius (αr), angle (αθ) and height (αz). These param-
eters were αr = 4.5 · 10−4, αθ = 4.5 · 10−4 and αz = 4.5 · 10−3, respectively and
they were adjusted by visual examination.

The results of the reconstructions are shown in Figure 4.4. When the incor-
rect value for the contact impedances was used it can be seen that the presence
of the object cannot be clearly identified, see Figure 4.4(a). Also high conduc-
tive ring can be seen near the boundary. This is due to the incorrect value of
contact impedance. In the algorithm the effect of the incorrect value of contact
impedance is compensated by changing the conductivity of the domain. It can be
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seen that this effect is large. Also the presence of the resistor on the electrode
number 13 can be seen. Similar results were stated in [103] in which trigonomet-
ric current pattern was used in reconstruction with simulated data. Also in [79],
it was stated that the conductivity distribution at the outer layer is sensitive to
the estimated conductivity values. It can be seen from the Figure 4.4(b) that if
the measurements from current-carrying electrodes are removed the effect of the
incorrect value of the contact impedances disappears. The presence and location
of the object can be clearly identified and its location is correct. This verify the
claim that the four-electrode measurement removes almost entirely the effect of
the contact impedance. The result of the case 3 in which only one parameter for
the electrode contact impedances is used is shown in Figure 4.4(c). It can be seen
that one parameter cannot explain the variation of the contact impedance from
electrode to electrode. Hence a resistive area near the electrode number 13 can be
seen due to the additional resistor. The presence and the location of the object
however is also clearly seen. Finally, if the contact impedances on all the elec-
trodes are estimated simultaneously the problem of the variation of the contact
impedances is overcome and the reconstruction is substantially better, see Figure
4.4(d). The values of the contact impedances as a function of iteration number
are shown in Figure 4.5. It can be seen that the value of the contact impedance
of the electrode number 13 is bigger than the other ones, as it should be due to
the additional resistor.

4.4 Summary

The applicability of contact-impedance estimation in two laboratory experiments
was studied. The performance of the method was shown to be reliable and that
the method can be applied for contact impedance estimation with real data in a
laboratory environment.

If contact impedance is modeled as a single parameter, it was found that this
approach substantially improves image reconstruction but it was considered that
still further improvement can be achieved by modeling each electrode contact
impedance separately. It is also found that the results of the 4-electrode data
collection method without electrode contact impedance estimation and 2-electrode
data collection method with electrode contact impedance estimation are essentially
similar. On the other hand, for example in the case of an optimal current patterns
the effect of the contact impedances is remarkable and these values have to be
estimated.

It was also assumed that the liquid was purely conductive and the contact
impedance was real valued. In some practical applications this assumption may
not be valid and it is preferable to estimate impedivity of the object and the
complex-valued contact impedances as presented in [175].
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Figure 4.4: The results of the second experiment. (a) The incorrect con-

tact impedances. (b) The 4-electrode data collection method. (c) The contact

impedances as a single parameter. (d) The 16 estimated contact impedances.

The unit of conductivity is (Ωm)−1. The electrode number 13 is located on the

bottom of the illustration.
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(a) (b)

Figure 5.3: The meshes for the forward calculations. (a) For the air-core imaging

and (b) for the connected conductive structures. The resistivity of the background

is 400 Ωcm (blue), of the known internal structures 4 Ωcm (dark blue) and of the

air 4000 Ωcm (red).

All the simulations are carried out in two-dimensions. The computational
domain has the radius of 14 cm and 16 electrodes, width of 2.5 cm, are attached
on the boundary. The covering ratio of the electrodes is 0.45. The meshes that were
used in the forward computations are shown in Figure 5.3. The mesh in Figure
5.3(a) that was used for the first simulation includes 4208 elements and 2217 nodes
and the mesh in Figure 5.3(b) for the second simulation consists of 4176 elements
and 2201 nodes. The meshes were fairly dense in order to obtain accurate voltage
values on the electrodes. These were dense especially near the boundary due to
the large gradients in the potential distribution near the electrodes. The potential
distribution u was approximated with the first-order basis functions which means
that the approximation of the solution is piecewise linear. The estimates of the
parameters {ρk} were computed on a coarser mesh such that the piecewise constant
basis {χk} was used. The estimated resistivity distribution was mapped from the
coarse mesh to the dense mesh for the forward computations in each iteration. In
the first case the number of parameters was 848 and in the second case it was
765. The meshes were generated with the QMG-package [1]. In the simulations
the trigonometric current pattern (3.89) was used.

In all the simulated electrode voltages two different types of noise were added.
One was Gaussian, zero mean random noise having the variance of 1 % of the
voltage range and the other one was zero mean Gaussian noise having the variance
of 0.1 % of each voltage value. The first one represents noise that is common
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for every electrode which can be, for example, induced from the measurement
environment. The second represents the error in the voltage measurements. The
contact impedances z` were assumed to be known a priori and in both cases
z` = 0.05 for all `.

Estimated images are solved using Gauss-Newton method (3.79) with tradi-
tional smootheness prior (“general approach”) and with proposed prior (“prior
information approach”) in which the prior information of the structures is taken
into account. Gauss-Newton iteration can be written in the form

ρi+1 = ρi +
[
JTi Ji + Γ−1

pr

]−1 [
JTi (V − U(ρ)) + Γ−1

pr (ρi − ρ∗)
]
, (5.5)

where the Jacobian is computed according to equation (3.68). Note that it is
assumed here that the measurement noise covariance matrix is I. The prior co-
variance matrix in “general approach” is

Γ−1
pr = 2αLTL (5.6)

and in “prior information approach” as shown in equation (5.4).

5.3.1 Air-core imaging of the mixing vessel

Consider a situation shown in Figures 5.2(a) and 5.3(a). In this case detecting
a poorly conducting region, air-core, in the center of the mixing vessel when dis-
turbing internal structure is present is of interest. The background resistivity of
the domain was 4 ·102Ωcm, the resistivity of the region of interest (air-core) in the
center was 4 · 103Ωcm and the resistivity of the paddle was 4 Ωcm. Ten simulated
voltage data sets for the object with and without a poorly conducting region in
the center were computed and random noise in the simulated voltages as explained
earlier were added. In the estimation with the general and the prior information
approaches the regularisation parameter α = 0.5 and the regularisation param-
eter β = 2 in the prior information approach. These parameters were chosen a
posteriori by visual examination.

General approach

An example of a reconstruction without the air-core inside the vessel is shown
in Figure 5.5(a) and a reconstruction of the domain with the air-core around the
mixing paddle is shown in Figure 5.5(c). The cross-sectional values (averaged over
10 simulations) along the blue line shown both in Figure 5.5(a) and Figure 5.5(c)
are plotted in Figure 5.5(e). The true resistivity distribution is shown in Figure
5.3(a).

Figure 5.5(a) reveals the effect of the mixing paddle. When the presence of the
paddle is not taken into account in the reconstruction, it tends to make a fairly
large poorly resistive region in the center of the image. In addition, the truly
homogeneous background is non-homogeneous in the reconstruction. It can be
seen from Figures 5.5(c) and 5.5(e) that there is a slight increase in the estimated
resistivity values that may be due to the presence of the air-core. However, the
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Figure 5.5: The air-core imaging simulations. Images (a), (c) and (e) were

reconstructed with the general approach and (b), (d) and (f) with the prior in-

formation approach. In (a) and (b) there is only the conductive paddle in the

domain and in (c) and (d) the air-core is present. The cross-sectional values av-

eraged over 10 simulations (blue lines in the reconstructed images) are plotted in

(e) and (f). The dashed lines are for the “empty domain” cases (no air-core, (a)

and (b)) and the solid lines for the air-core cases ((c) and (d)).
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(a) Γ·|104 (b) Γ·|500

(c) Γ·|788 (d) σ2
ρ

Figure 5.6: The posterior covariance for three chosen elements (a), (b) and

(c). (d) The diagonal elements of covariance matrix, i.e. the variances of the

parameters.
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The simulations of the potential distribution for the cases of conductive internal
structures (Cases 1 and 2) are shown. Simulated potential distributions of the
trigonometric current pattern Itri

1 are shown in Figure 5.7 as equipotential contour
plots. The potential distributions for the Cases 1 and 2 are shown in Figures 5.7(a)
and 5.7(b), respectively.

Forward problem simulations

Since all computations are carried out in 2D, computational problem arise in
case 2. The rods shown in the Figure 5.2(b) are conductors having very high
conductivity and since they are electrically connected on the bottom of the tank,
they will be in the same electric potential. From the computation point of view
this means that they are connected together outside the two-dimensional compu-
tational domain. In 2D finite element computations this type of situation can be
simulated by forcing the potential to be the same in the nodes that correspond
to the rods inside the object. This can be accomplished by making the following
modification for the previous FEM equations presented in Chapter 3.

Let W ⊂ Ω be a subdomain including all the highly conductive structures that
are connected together. Define

α = Gγ, (5.8)

where G ∈ RN×(N−p+1) and γ = (γ1, . . . , γN−p, γW )T ∈ R(N−p+1)×1, where p is
the number of nodes in the subdomain W ⊂ Ω and γW is the value of the potential
in W . The matrix G is a sparse matrix that includes ones in the specific locations
such that it maps the potential value γW to the correct node locations in α. After
substituting the formula (5.8) to the matrix equation (3.34), the following matrix
equation is obtained

Ãθ̃ = f̃ , (5.9)

where

Ã =

[
GT (B(σ) + C(z))G GTD(z)C
CTD(z)TG CTE(z)C

]
, (5.10)

and

θ̃ =

[
γ
β

]
, f̃ =

[
GT0
CT I

]
. (5.11)

The parameter θ̃ can be solved as

θ̃ = Ã−1f̃ . (5.12)

Three distinct features can be seen in the potential distributions. First, the
potential is constant in the subdomain occupied by the conductors. Second, due to
the complete electrode model the potential is almost constant under the electrodes.
This shunting effect was also studied in Chapter 3. The third feature is that when
the rods are connected and are in the same potential, only a small amount of
current will flow in the center of the domain (large gap between the equipotential
lines). This makes it very difficult to reconstruct centrally located objects in the
domain due to the decreased sensitivity in the center.
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(a) (b)

Figure 5.7: The potential distributions of the first trigonometric current pattern

Itri
1 for (a) separate and (b) connected rods.

Case 1: Separate rods, high conductivity

General approach

Ten simulated voltage data sets for the object with and without a poorly con-
ducting region in the center were computed and random noise in the simulated
voltages as explained earlier was added. The reconstructions were first computed
using the general approach without taking into account the presence of the rods.

A result from one of the reconstructions without a poorly conducting region
at the center and with the poorly conducting region are shown in Figures 5.8(a)
and 5.8(c), respectively. The rods are faintly seen in Figure 5.8(a) which is partly
because the images in Figures 5.8(a) – 5.8(d) are in the same color scale. The
poorly conducting region is seen to be easily detected. The cross-sectional values
(averaged over 10 simulations) along the blue line shown in Figure 5.8(a) and 5.8(c)
are plotted in Figure 5.8(e). It can be seen that the poorly conducting region is
well detected (solid line) but in the “empty domain” case (only the rods are in
the domain) the average resistivity value is slightly too small (dashed line). The
explanation for this is that the highly conductive rods tend to draw the solution
towards smaller resistivity. If the rods were larger, the error would be bigger.

Prior information approach

The results of the same situation but reconstructed by taking into account the
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presence and resistivity of the rods are shown in Figure 5.8. It can be seen that in
the “empty domain” case the background resistivity is slightly more homogeneous
and the poorly conducting rods do not affect the resistivity estimate (dashed line
in Figure 5.8(f)) as much as in the general approach. The poorly conducting
region is slightly better detected (higher resistivity) than by using the traditional
approach. The rods are seen in the correct places in both cases since they were
taken into account in the reconstruction.

Case 2: Connected rods, high conductivity

If the highly conductive rods are electrically connected together, reconstruction
of the poorly conducting region in the center of the object becomes impossible.
This can be seen in Figure 5.9. The explanation for this is that due to the high
conductivity, only a small amount of current flows to the center of the object which
makes the sensitivity very low in that region (see also the simulated potential
distributions in Figure 5.7). Even if the presence of the rods is taken into account,
the poorly conducting region cannot be detected, see Figure 5.9(f).

The difficulty of detecting an inhomogeneity in the center of the domain can be
understood if the differences in the measured voltages between the “empty domain”
UE (only the rods inside) and UF , the voltages with the poorly conducting region
in the center are computed, that is

Difference =
‖UE − UF ‖
‖UE‖

· 100% . (5.13)

In the case 1 (separate rods) the difference is 20.2 % and in the case 2 it is
0.0064 %. It is very difficult to reconstruct the poorly conducting region if the
voltage difference is this small.

Case 3: Separate rods, low conductivity

If there are structures such as large metallic paddles in the pipe or vessel, they may
disturb the reconstruction severely as was shown in Case 2. One possible solution
for this type of a case could be to make the internal structures non-conducting.
The Case 1 was recomputed with rods that have high resistivity ρ = 4 · 103Ωcm.
The results are shown in Figure 5.10.

General approach

If the rods are not taken into account in the estimation they can be seen in the
reconstructed image in the “empty domain” case Figure 5.10(a). However, since
the rods have high resistivity they tend to increase the estimated resistivity of the
background, especially in the center. This is seen in the cross sectional line plot
in Figure 5.10(e) (dashed line). The poorly conducting region in the center is well
detected, similarly as in the Case 1.
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Figure 5.8: Results for the Case 1. The vertical lines in (e) and (f) show the

true width of the inhomogeneity (the diameter of the circle in the reconstructed

images). Images (a), (c) and (e) were reconstructed with the general approach

and (b), (d) and (f) with the prior information approach. In (a) and (b) there

are only the rods in the domain and in (c) and (d) the air-core is present. The

cross-sectional values averaged over 10 simulations (blue lines in the reconstructed

images) are plotted in (e) and (f). The dashed lines are for the “empty domain”

cases (no air-core, (a) and (b)) and the solid lines for the air-core cases ((c) and

(d)).
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Figure 5.9: Results for the Case 2. The vertical lines in (e) and (f) show the

true width of the inhomogeneity (the diameter of the circle in the reconstructed

images). Images (a), (c) and (e) were reconstructed with the general approach

and (b), (d) and (f) with the prior information approach. In (a) and (b) there

are only the rods in the domain and in (c) and (d) the air-core is present. The

cross-sectional values averaged over 10 simulations (blue lines in the reconstructed

images) are plotted in (e) and (f). The dashed lines are for the “empty domain”

cases (no air-core, (a) and (b)) and the solid lines for the air-core cases ((c) and

(d)).
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Prior information approach

Taking into account the rods, the reconstructed resistivity distribution in the
“empty domain” case becomes more homogeneous and the estimated value is al-
most exactly correct across the whole domain. The poorly conducting region can
also be well detected.

It might look as if the general reconstruction would be better in detecting the
poorly conducting region in the center since the maximum value of the resistivity
in the center (approximately 1300 Ωcm in Figure 5.10(e), solid line) is nearer to the
correct value (4000 Ωcm) than the estimate obtained with the prior information
approach in Figure 5.10(f) (approximately 1100 Ωcm). However, the increase in
the reconstructed value in Figure 5.10(e) is mainly due to the insulating rods in
the object which makes the estimates to increase in the center (see the dashed line
in the “empty domain” case in Figure 5.10(e)).

The difference of 25.9 % in the electrode voltages is slightly bigger than in the
Case 1 in which the rods were highly conductive.

5.4 Summary

In this chapter, the effects of conducting internal structures on the reconstructed
images were studied. An approach for taking into account the presence of internal
structures was presented. In the simulations, it was concentrated on the case of
detecting a poorly conducting region in the center of circular domain.

Numerical two-dimensional simulations showed that a priori information can
in certain cases improve the reconstructions significantly. It was shown that, for
example, the mixing paddle may disturb the reconstruction obtained by the general
approach so much that centrally located air-core cannot be detected. With the
prior information approach the presence of the paddle can be taken into account
and the air-core can be fairly well detected.

In another simulation in which there were electrically separated conductors
(rods) in the tank it was found that they do not much affect on the reconstruction
and the centrally located inhomogeneity can be well detected with both recon-
struction approaches. The prior information, locations and resistivity of the rods
slightly improved the reconstructions. An artifact that was seen in the general
approach (tendency to underestimate the resistivity) could be removed by taking
into account the presence of the rods.

If the rods were electrically connected the centrally located inhomogeneity
could not be detected and the prior information did not help in this case. The
reason for this is the very low sensitivity in the center of the domain due to the
shunting effect of the connected rods. Poor results in the connected rods –case
could be overcome by making the rods non-conducting. In this case, the poorly
conducting region in the center could be well detected with both approaches.
The use of prior information removed the tendency of the general approach to
overestimate the resistivities in the reconstruction that was due to the presence of
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Figure 5.10: Results for the Case 3. The vertical lines in (e) and (f) show the

true width of the inhomogeneity (the diameter of the circle in the reconstructed

images). Images (a), (c) and (e) were reconstructed with the general approach

and (b), (d) and (f) with the prior information approach. In (a) and (b) there

are only the rods in the domain and in (c) and (d) the air-core is present. The

cross-sectional values averaged over 10 simulations (blue lines in the reconstructed

images) are plotted in (e) and (f). The dashed lines are for the “empty domain”

cases (no air-core, (a) and (b)) and the solid lines for the air-core cases ((c) and

(d)).
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the rods.
As a conclusion it can be said that if there are known internal structures in

the object they should be taken into account in the reconstruction. Especially,
if the structures are large, they tend to draw the estimated resistivities towards
the resistivity value of the structure and in the worst case, prevent the interesting
region to be reconstructed reliably. This tendency can be avoided by taking into
account the structures by the reconstruction approach proposed in this chapter.
If the internal structures form a poorly resistive path for the current to flow, it is
recommendable to “cut” these paths or insulate the internal structures.
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mean ρ∗ is zero. The prior model is an anisotropic model presented in Chapter
3. The relative errors of the true resistivity distribution ρt versus the estimated
resistivity distribution ρe as ‖ρt‖2/‖ρt−ρe‖2 were computed. These are given in
corresponding figures.

Four different cases introduced above were tested and the reconstructions are
shown in Figures 6.2 and 6.3. It can be seen from the results, that if any assump-
tions regarding the internal conductor is not made, it is impossible to detect the
low conducting region, see Figures 6.2(a) and 6.2(b). If the information on the
presence of the conducting shaft is taken into account, the reconstruction shown
in Figure 6.2(c) is obtained. The result is similar to the first case. The relative
error in this case, however, is smaller than that in the previous one.

If the conducting shaft is utilized as an internal electrode and it is used for the
current injection, one end up having much better reconstruction as seen in Figures
6.3(a) and 6.3(b). The poorly conducting annulus can be detected quite well even
though it is spread over a wider region than it should be. Similarly, if it is possible
to insulate the shaft from the surroundings and apply four additional electrodes on
the surface of the shaft, a reconstruction shown in Figure 6.3(c) is obtained. The
result is similar to the previous one and actually slightly worse in the center even
though there are more electrodes and hence more measurement data than there
were in the conducting shaft case. In these cases the relative errors are almost the
same.

6.4 Laboratory measurements

In the laboratory experiments the geometry and structures inside the domain are
similar to the situations in the simulations. Also the reconstructions are similar
but now difference estimation method (3.84) is used instead of static method.
According to equation (3.84), the difference estimation method is

δρ =
[
JT0 J0 + Γ−1

pr

]−1
JT0 δV , (6.2)

where the same assumption about the measurement noise covariance matrix is
made as in the numerical simulations. Also the prior model is the same as in the
numerical simulations.

All the measurements were carried out in a two-dimensional tank shown in
Figure 6.4. The radius of the tank was 14 cm and its height was 10.5 cm. The
tank was filled with saline solution. Stainless–steel electrodes were attached on the
boundary of the tank. The width of the electrodes was 2.5 cm; thus they covered
45 % of the outer boundary of the tank. The height of the electrodes is the same as
that of the tank. For the conducting shaft case, a stainless steel rod (of diameter
4 cm) was placed in the center of the tank. It was used as a grounded electrode
during the current injection. For Case 4, a plastic rod (of diameter 4 cm) was used.
Four additional electrodes were attached to the rod. These electrodes were made of
thin copper tape. The width of the internal electrodes was also 2.5 cm. The poorly
conducting annular region was simulated with a foam plastic ring of height 10.5
cm, shown in Figure 6.4(a). Since the electrodes and the foam plastic ring are of
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Figure 6.2: The reconstructions obtained from boundary measurements: (a)

conventional reconstruction, (b) the profile along the radius in (a) (black line

in (a)), (c) the reconstruction in which the central shaft is modeled as a non-

current-carrying electrode and (d) the profile along the radius in (c). In both

cases the regularization parameter α = 10−4. In (b) and (d) the solid lines are

profiles and the dashed lines denote the estimated best homogeneous distribution.

The relative error in (a) and (c) are 0.0137 and 0.0023, respectively. The unit

of resistivity (color bar and ordinate) is Ωcm and the unit of radius (abscissa) is

cm.
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Figure 6.3: The reconstruction obtained from the boundary and additional

internal measurements for (a) one grounded electrode and (c) four internal elec-

trodes. For the explanations of (b) and (d) see Figure 6.2. In (a) and (c) the

regularization parameter α = 10−4. The relative errors in (a) and (c) are 0.0013

and 0.0015, respectively. The units in figures are Ωcm and cm.
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(a) (b)

Figure 6.4: The experimental arrangement. (a) The two-dimensional tank with

16 boundary electrodes. In the center of the tank there is also a grounded stainless

steel electrode. The foam plastic ring is also in the tank. (b) The central rod

with four internal electrodes.

the same height as the tank, the assumption of the two-dimensionality is justified.
The conductivity of the annular region was about 75 % of the conductivity of the
saline solution. The measurements were carried out using a modified version of
the EIT measurement system introduced in [150].

6.4.1 Results of the reconstructions

The results of the tank experiments are shown in Figures 6.5 and 6.6. The reference
voltages were measured with saline-filled tank and the actual measurement with
the resistive object in the tank. The annular region should be seen as a greater
resistivity δρ > 0, in the images. As in the simulations, the poorly conducting
annulus cannot be detected with the traditional surface electrode approach, see
Figure 6.5. Even when the conducting shaft is taken into account in the modeling
but is not used as a current injecting electrode, the foam plastic ring cannot be
seen, see Figure 6.5(c).

If the conducting shaft is used as an additional grounded electrode and it is
exploited for the current injection and voltage measurements, the reconstruction
improves substantially, see Figures 6.6(a) and 6.6(b). The poorly conducting an-
nulus is well identified, even though the boundaries of the annulus are smoothed.
The same effect was also seen in the simulations. If the shaft is insulated and
four additional electrodes are attached to the shaft, one would assume to get an
even better reconstruction. However, as it can be seen in the simulations, the
result is not much better. The only improvement is the increase in accuracy of the
background value near the boundary, Figure 6.6(b).
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Figure 6.5: The reconstructions δρ obtained from boundary measurements: (a)

the conventional reconstruction, (b) the profile along the radius in (a) (black line

in (a)), (c) the reconstruction in which central shaft is modeled as non-current-

carrying electrode and (d) the profile along the radius in (c). In both cases the

regularization parameter α = 5 · 10−8. In (b) and (d) the solid lines are profiles

and the dashed lines denote the estimated best homogeneous distribution.
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Figure 6.6: The reconstruction δρ obtained from the boundary and additional

internal measurements for (a) one grounded electrode and (c) four internal elec-

trodes. For the explanations of (b) and (d), see Figure 6.5. In (a) regularization

parameter α = 5 · 10−8, whereas in (c) α = 10−5.
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Figure 6.7: The effect of prior information on the reconstruction: (a) with

the assumption of isotropy (b) with the assumption of the smoothness along the

radius (c) with assumption of rotational invariance and (d) the profiles along the

radius (black lines in (a), (b) and (c)). In (d) the dashed line is for (a), the

dashdot line is for (b) and the solid line (c).
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6.4.2 Anisotropic prior

The effect of the anisotropic weighting in the regularization was tested with the real
measurement case with the grounded electrode. The results are shown in Figure
6.7. The effect of the anisotropic prior is clearly seen in the images even though
the actual resistivity values are quite similar, Figure 6.7(d). The density of the
foam plastic annulus was not exactly constant, which is well seen in Figure 6.7(a)
as a greater resistivity. Also, the same can be seen in Figure 6.7(c) although the
increase is slightly smoothed out due to the assumption of (greater) smoothness
in the angular direction.

6.5 Summary

In this chapter, reconstruction approaches that exploit internal structures by us-
ing them as additional internal electrodes was proposed. Also an approach for
exploiting anisotropic prior information in the image reconstruction was tested.

By simulations and laboratory experiments it was shown that the internal
structures can be used in the image reconstruction and the results were shown to
be much better than without this prior information. It was shown that with the
resistivity contrast ratio used in the study, the poorly conducting annular region
cannot be detected without considering the internal structures in the reconstruc-
tion. It was also found that by using the conducting shaft as an additional internal
electrode the final reconstruction is almost as good as with four additional elec-
trodes. Therefore, in practice, with the low resistivity contrast ratio, it seems
reasonable just to ground the conducting internal structure and use it for the
current injection and voltage measurements. However, it should be pointed out
that the current injection scheme in the case of four internal electrodes might not
have been the optimal one and better reconstructions could be obtained by using
different current patterns.
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Figure 7.1: The 3D mesh used in the computations. Only half of the mesh is

shown. The boundary electrodes and one internal electrode are also shown.

a prior. In this case, the regularization parameters for the radius, angle and height
were αr = 1 · 10−7, αθ = 1 · 10−3 and αz = 1 · 10−5, respectively. The step length
was κi = 0.2 ∀ i and the initial distribution was chosen to be a homogeneous
distribution the value being 0.5. Moreover, the conductivity distribution of the
background was 0.2 mS/mm.

The result after 20 Gauss-Newton iterations is shown in Figure 7.3. It can be
seen that the volume fraction distribution can clearly be identified. The shape
and the value of the estimate are fairly good. The effect of the anisotropic prior
can also be seen. The distribution is smooth in angular direction whereas abrupt
change in the radial direction is not smoothed out. Also, the sharp edge in the
height direction is clearly seen. The inner edge of the annular ring is also very
clear which is obviously due to the use of the internal electrode. This is studied
in more detail in the next numerical simulation in 2D. The error norm is shown in
Figure 7.4. It can be seen that the convergence of the algorithm is quite slow. This
is due the small constant step size parameter. The use of the optimal step size
parameter presented in Chapter 4 would improve the convergence of the method.

7.3.2 Effect of conductivity contrast

The effect of the conductivity contrast between the background and dispersed
material is studied. The results of traditional EIT and the internal electrode
approaches are compared. Different volume fraction distributions are considered.
As an example, the estimation of the air volume fraction in stirrer vessel is used.
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Figure 7.2: The true volume fraction distribution.

Figure 7.3: The estimated volume fraction distribution.

Moreover it is assumed that the air bubbles create annular, low conducting region
around the shaft of the rotor in the center of the vessel.

All simulations were carried out in a 2D circular domain. The radius of the
domain was 14 cm and in the center of the domain there was a shaft having the
radius of 2 cm. In this case, the actual domain used in the computations is annular,
excluding the domain occupied by the shaft. The finite element mesh used in the
simulations is shown in Figure 7.5(a). In the FEM computations second order basis
functions for the potential distribution approximation were used. The number of
elements and nodes in the forward mesh were 732 and 1576, respectively. In the
inverse problem the conductivity is estimated in linear basis. The number of the
estimated parameters, i.e., the number of the nodes was 422, see figure 7.5(b).

As discussed above it is assumed that the volume fraction distribution is rota-
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(a) Forward mesh (b) Inverse mesh

Figure 7.11: The meshes used in computations.

errors and also the homogeneous assumption is not necessarily valid.

The mesh used in the computation of the Jacobian is shown in Figure 7.11(b).
In this case the number of the elements and nodes in the mesh were 6240 and
1358, respectively. The volume fraction distribution was approximated in piecewise
linear basis and therefore also the Jacobian was computed in with respect to nodal
values of the conductivity. The prior model which was used here is presented in
Section 3.3.2. The fixed parameters were Gaussian distributed, that is φI2

∼
N(φ∗I2

,Γ−1
2 ), where the index set I2, i.e. the index set for the fixed parameters,

was chosen to include all boundary nodes in vertical surface as well as one node
in the middle of the both ends of the tank. Hence, the number of the fixed
parameters was 450. The mean φ∗I2

of these parameters was chosen to be zero.
Moreover, the covariance matrix is of the form Γ2 = σ2I, where the variance σ2 is 1·
10−4. In other words, the fixed parameters were assumed to be independently and
identically distributed. In the prior model the smoothness operator was anisotropic
smoothness prior presented in Section 3.3.2. In this case it was assumed that the
conductivity distribution is isotropic.

If the estimation method (7.29) is compared with the Gauss-Newton method
(7.14) it can be seen that the presented method is a one step solution of G-
N iteration (i = 0) based on the assumption that φ0 = φ∗ = 0, κ = 1 and
U(φ0) = V 0. Note also that by using the proposed prior model the number of the
unknown parameters is reduced from 1358 to 908, which improves the conditioning
of the problem.

Finally in item 4 measurements are performed for which air was injected into
the water filled tank through a sparger which was placed on the bottom of the
tank, see Figure 7.13(a). The estimated air volume fraction distribution is shown
in Figure 7.13(b). The location of air stream is well detected. The maximum
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Figure 7.12: The reference voltage measurement corresponding to the first cur-

rent injection. Thick gray line is for measured voltages and thin red line is for

computed voltages. The dotted lines indicates the change of the electrode layer.

value of the air volume fraction is in the bottom of the tank and it is nearly 10
%. This is not probably high enough which is due to the linear approximation in
the estimation procedure and the smoothness assumption in the prior model. It
seems that air is spread out in upper layers and in the same time the air volume
fraction decreases which is a natural behaviour. This phenomenon can also be
seen in Figure 7.14 in which the air volume fraction distribution in different layers
as a contour plot is shown. The maximum air volume fraction in the upper layer
(z = 50 cm) is about 0.24 % which is obviously too low. This is due to both the
above mentioned assumptions and the fact that the upper layer is too far from the
sensing zone and therefore the sensitivity in that area is low. In this experiment
the data acquisition time was 180 ms/frame which means that the frame rate was
5.5 frame/s.

7.5 Summary

In this chapter, the estimation of the volume fraction distribution using EIT was
studied. The estimation method was based on statistical inversion. The method
is tested with 2D/3D numerical simulations and a 3D laboratory experiment. In
the numerical simulations also the use of the internal electrodes was studied.

It was also shown by numerical simulation that the MAP-estimation of the
air volume fraction is possible. Moreover, it was shown by numerical simulations
that by utilizing the internal electrodes the estimates are substantially improved
especially in the center of the vessel and when the contrast ratios are low. It can
also be said that with low contrast ratios it seems reasonable to use one grounded
electrode for the current injection and voltage measurements. In practice this
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(a) (b)

Figure 7.13: (a) The air flow within the tank. (b) The estimate of the air

volume fraction in different layers. Note that a modified colormap is used. The

unit of the height is cm.

approach is also easier to implement than the four internal electrodes -approach.
However, with the highest contrast ratios, the four internal electrodes -approach
produced more satisfactory estimates than the other two approaches. This is due
to the fact that in this approach we get more data from the central area.

The laboratory experiment of the air volume fraction estimation was also pre-
sented. In this case the estimation is based on the one step Gauss-Newton method.
This method is closely related to the NOSER reconstruction method presented in
[38]. By the experiment it was shown that the estimation of the air volume frac-
tion distribution is possible in laboratory environment and the results are quite
promising. The accuracy of the method is not necessarily adequate for all purposes
and it could be improved using more steps in the G-N iteration.
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Figure 7.14: Percentage of air as contour plots.


































































