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ABSTRACT

Tumours and other superficial targets are often treated with elec-
tron beams in radiotherapy. The build-up dose and the therapeutic
range of electrons are controlled by selecting the electron energy
and by using a water-equivalent bolus placed on the skin. Cur-
rently, the shaping of clinical electron beams is often done via low
melting point alloy block inserts individually made for each patient.
However, leaf based collimation with an electron multi-leaf collima-
tor (eMLC) might represent a more practical option. In the present
study, the possibility of using a new eMLC as an add-on device to
an existing linear accelerator was investigated. The main focus was
on the dosimetric properties and feasibility of modelling the eMLC
beam with a parametrized Monte Carlo (MC) beam model. Sec-
ondly, the effect of eMLC leaf geometry on build-up dose of narrow
beams was studied with the aim of replacing a conventional bolus
with eMLC. In this work, the Voxel Monte Carlo++ (VMC++) algo-
rithm was demonstrated to be very accurate in the dose calculation
of the eMLC beam. Compared against measurements in water, the
agreement was within 2% or 2 mm in 88% of the calculated voxels.
The maximum dose from eMLC beams was only slightly higher
in the target volume when compared with the current insert-based
collimation in the chest wall irradiation of breast cancer. Narrow
eMLC beams with a field size 1×10 cm2 have a markedly higher
build-up dose compared to a large field meaning that it was possi-
ble to replace a bolus by the combination of several narrow eMLC
fields. Depending on the eMLC leaf end shape, the surface dose at
0.5 mm depth can be up to 90% of the dose maximum with abutting
narrow beams which is approximately 25% higher than the surface
dose with an open field and is comparable to electron beams used
with a with bolus material. The add-on type eMLC results in only
marginal differences compared with the present technique for elec-
tron beam collimation with block inserts. The novel beam model
together with VMC++ enables patient dose calculations and may be
developed for clinical use.
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ABBREVIATIONS

CH condensed electron history
CSD collimator-to-surface distance
DVH dose volume histogram
ECUT cut-off energy for electrons
eIMRT intensity modulated radiotherapy with electrons
eMLC electron multi-leaf collimator
pMLC photon multi-leaf collimator
MC Monte Carlo
MERT modulated electron therapy
MS multiple scattering
PCUT cut-off energy for photons
OAR organ at risk
PTV planning target volume
SSD source-to-surface distance
VMC++ Voxel Monte Carlo++

SYMBOLS

D5% dose to 5% of the volume of interest from the DVH curve
ΦD direct electron fluence differential in energy and angle
ΦI indirect electron fluence differential in energy and angle
f f eMLC leaf front face surface
γ gamma index for the agreement between calculated

and measured dose
ie eMLC leaf inner edge surface
κ f f front face scatter kernel
κie inner edge scatter kernel
ΨB bremsstrahlung photon energy fluence



R85 therapeutic (85%) range
V20 Gy percentage of the volume of interest with

20 Gy dose from the DVH curve
zeff distance to the virtual electron source
σ microscopic cross-section
T electron kinetic energy
Tc, kc cut-off energies for electrons and photons which are

explicitly followed in the MC simulation
T, T′ incident and scattered electron kinetic energies
k, k′ incident and scattered photon energies(

dT
ρdx

)
mass stopping power

L(E, Tc, kc) restricted stopping power for threshold energies
Tc and kc

s electron path
θs multiple scattering angle
s̄ straight electron path length between the initial

and final electron position in a condensed history step
ψ lateral deflection angle
pe reduced momentum transfer
F(λ, pe) MS distribution
ϕ(E) energy spectrum
S, S̃ source and exit phase space planes
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1 Introduction

1.1 ELECTRON BEAM RADIOTHERAPY

External electron beams are applied for radiotherapy of the skin
or to targets near the skin surface. The types of electron beams in
clinical use range from small fields with a size of a few centimetres
to total skin irradiation of the patient. According to the Interna-
tional Commission on Radiation Units and Measurements (ICRU),
the global use of electron beams varies from 10 to 15% of all cancer
radiotherapy [95].

The relative biological effectiveness of megavoltage electron bea-
ms is approximately the same as can be attained with megavoltage
photons [95]. However, depending on the beam energy, the surface
dose of an electron beam is typically higher compared to a pho-
ton beam. With 16 MeV beam energy electrons, the surface dose
is nearly 85%, which is approximately twice as high as obtained
with a photon beam of the same nominal energy. The surface dose
of electrons increases towards the higher electron beam energies.
Often the surface dose is further increased with a water equivalent
bolus material placed on the patient’s skin [33,75,95,96,98]. Scatter-
ing materials in the electron beam, typically polymethylmethacry-
late (PMMA), are used to increase the surface dose with total skin
electron therapy and intraoperative radiotherapy [113].

Electrons are characterized by their limited range and their rel-
atively uniform depth dose distribution near build-up maximum
[73, 95]. Hence, with beam energies between 4–20 MeV a high dose
can be delivered to a depth of 1–7 cm. The electrons undergo mil-
lions of elastic and inelastic interactions with atoms while passing
through the medium [55]. For example, an electron slowing down
from 0.5 MeV to 1 keV will experience about 104 collisions [7]. The
energy loss of the electron increases towards the end of the elec-
tron’s track [9]. However, due to the lateral scattering, the inte-
grated dose from millions of electrons will lead to a depth dose
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curve that is a characteristic of electron beams i.e. a short dose
build-up, plateau and a rapid dose fall-off. With small electron
square field sizes, typically less than 5×5 cm2, the depth of the dose
maximum is shifted towards the phantom surface and the thera-
peutic range is reduced [95]. Actually, this effect depends on the
nominal beam energy and is found for field sizes smaller than half
of the electron range [39, 90]. An extended source-to-surface dis-
tance longer than 100 cm will lead to similar changes in the depth
dose curve as seen with small fields.

Due to the limited range of electrons and rapid dose fall-off, the
dose passing to the underlying healthy tissues is very low, usually
only a few percent of the dose delivered to the target. This means
that patient with a superficial target volume will likely suffer fewer
adverse side effects compared to the situation with treatment by a
megavoltage photon beam. Sometimes the best result is achieved
with a combination of both electrons and photons. This is the case
in the chest wall irradiation of breast cancer where matched adja-
cent electron and photon fields are applied.

Challenges encountered in the development electron beams are
related to devising a more practical treatment delivery than the
present technique of using low melting point-alloy inserts for beam
collimation. On the other hand, beam modelling and dose calcu-
lation are complicated by the multiple scattering of electrons. The
methods for increasing the surface dose with a bolus may not al-
ways be practical in clinical use due to complex patient anatomy
and uncertainties in the positioning of the bolus. Additionally, the
therapeutic range is reduced when applying scattering materials in
the electron beam.

1.2 COLLIMATION OF ELECTRON BEAMS

Therapeutic electron beams with nominal energies from 4 to 50 MeV
are produced by accelerating electrons to high velocities (compara-
ble to the speed of light in a vacuum). The most common treatment
units are scattering foil accelerators which can produce flattened
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beams in the energy range 4 to 20 MeV. Another type of treatment
units is the scanning electron beam device which accelerates elec-
trons via a microtron [42,47,85]. The term linear accelerator is com-
monly abbreviated as linac.

In conformal radiotherapy, a high dose is delivered to the tar-
get volume while sparing the healthy tissues and organs. Electron
beams are shaped by primary collimators (e.g. jaws) and patient
specific secondary electron collimators. Currently, secondary colli-
mation according to target volume is usually based on the applica-
tion of low melting point-alloy inserts or blocks. Inserts are made
of different variations of Wood’s metal, that is an alloy made from
bismuth, lead, cadmium and tin with a melting point of approxi-
mately 70 ◦C. The Wood’s metal has various trade names such as
Cerrobend R©. In an effort to avoid cadmium, Rose’s alloy, such as
MCP96 R© is used often instead of Wood’s metal. The Rose’s alloy
has a melting point of 98 ◦C and it consist of bismuth, lead and tin.
Patient specific inserts are made by casting.

Typically, electron inserts are mounted in a special applicator
structure located at approximately 95 cm distance from the beam
source. In an alternative method, a technique which uses several
opposing, metallic leaves, called MLC, for electron beam shaping
has been investigated [20,24,29,30,36,43–45,61,63,70,81,88,92,100].
Al-Yahya et al. have proposed a slightly different approach for
secondary collimation with the so-called few-leaf electron collima-
tor [2, 4]. Collimation based on the existing photon MLC (also
known as pMLC) has also been investigated. Although the initial
results of utilizing a pMLC for electron beam collimation described
by Klein et al. [61] were not very encouraging, this option has been
further studied [24, 45, 46, 63, 64, 70, 88]. Problems with using the
pMLC with electron beams are related to the need for a longer
collimator-to-surface distance than with eMLC, which causes in-
creased electron scatter in air. Klein et al. have reported penum-
bras from 13 to 29 mm for SSD between 70 and 80 cm [61]. With
inserts they found markedly smaller penumbras between 10 and
12 mm which is similar to the penumbra for an eMLC beam at

Dissertations in Forestry and Natural Sciences No 33 3
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SSD 100 cm [70]. As a special case with scanning electron beam
accelerators, the pMLC has been found to be suitable for electron
beam collimation with a 12 mm penumbra for 10 MeV energy at
SSD 100 cm [42, 43, 46, 88, 122].

Both eMLC leaf thickness and the material influence the amount
of leaf transmitted dose and also the energy and fluence distribu-
tion of electrons scattered from leaves. The existing eMLC proto-
types consists of 2.54 cm thick steel leaves [81], 1.8 cm and 3.0 cm
thick brass leaves [30, 36], and 1.6 cm thick leaves made of a low
melting point alloy [100]. Leaves made of steel result in higher
transmission of treatment head generated bremsstrahlung photons
and a slightly wider fluence distribution compared to tungsten leaves
[81].

For large field sizes, similar eMLC beam profiles for leaves fo-
cussed on the source and straight leaf ends have been reported [70].
With electron beams collimated by a pMLC, there appears to be
a negligible difference between round and leaves focussed on the
source [44]. Compared with straight pMLC leaves, round pMLC
leaf ends have been reported to yield slightly more uniform dose
profiles [81].

For a standard electron applicator and an insert as a secondary
collimator the treatment is typically delivered at a fixed SSD due
to the short collimator-to-surface distance. Tenhunen et al. have
reported an isocentric technique with short applicators [110]. For
eMLC prototypes, the standard electron applicator of the linac has
been redesigned [81,100] or removed in the installation of the eMLC
[29, 36]. In the latter case, both fixed SSD and isocentric electron
irradiations became possible [29, 30, 36].

An eMLC might offer a more advanced and less laborious col-
limation than electron inserts. With an eMLC it would also be
possible to produce intensity modulated electron beams. A simple
example of electron beam modulation is the combination of adja-
cent electron beams with different energies and weights [46,60,122].
Depth dose can be modulated by summing fields with different en-
ergies and weights [38,94]. However, the present treatment units do

4 Dissertations in Forestry and Natural Sciences No 33



Introduction

not have devices that could produce intensity modulated electron
beams. Archambeau et al. [8] and Low et al. [75,76] have developed
range modulation techniques with water-equivalent bolus materi-
als or compensators that are individually machined for each patient
and placed on the skin [67,98]. Advanced techniques that are based
on modulating the actual beam with a collimator, such as intensity
modulated radiotherapy with electrons (eIMRT) or modulated elec-
tron therapy (MERT) are under research [3, 20, 23, 69, 78, 81, 94, 124].

1.3 BEAM MODELLING

If one wishes to perform Monte Carlo (MC) dose calculations in a
patient, one must have information on the fluence, energy and an-
gle distribution of incident particles, photons, electrons and positro-
ns, from the linear accelerator. This information is usually calcu-
lated in a exit phase space that is underneath all beam modifying
devices or collimators. There are two basic ways for doing the calcu-
lation of the exit phase space. A full treatment head MC simulation
of the linear accelerator requires that one is aware of the treatment
head geometry, as well as the materials and energy and angle dis-
tributions of the electron source. However, usually this data is not
reported accurately. The second option is to use a semi-empirical
beam model which is based on different sources of electrons and
photons in the treatment head. Structures and collimators in the
electron beam, such as the eMLC, contribute to the dose compo-
nent from collimator scattered particles and have to be included in
the beam model. This kind of beam model offers better than 2%
accuracy and achieves a faster exit phase space reconstruction (by a
factor of 10) than with a full treatment head simulation [41, 82].

Semi-empirical methods are needed to match the simulated and
real accelerator beams as accurately as possible. In beam mod-
elling this refers to a process called beam characterization where
the beam model parameters are changed iteratively. Usually the en-
ergy distribution of source electrons is adjusted until the calculated
and measured depth dose curves agree. Subsequently, the model

Dissertations in Forestry and Natural Sciences No 33 5



Tero Vatanen: Multi-leaf Collimation of Electron Beams with Monte
Carlo Modelling and Dose Calculation

parameters related to lateral electron distribution are varied until
there is a good agreement in the field profiles. Typically, the beam
characterization measurements are conducted in a simple geome-
try, such as in a homogenous water phantom, where it is possible
to calculate dose accurately.

1.4 DOSE CALCULATION

Since there is a steep dose response of tumors and healthy tis-
sues, it is important to develop calculation methods and treatment
techniques to achieve accurate delivery of the dose to the target
volume [15]. Electrons interact primarily with matter via inelastic
scattering (electron-electron scattering), bremsstrahlung and elastic
scattering [10,89]. Simultaneously, primary and secondary photons
interact via a photoelectric effect, Compton and coherent scatter-
ing, and pair production. These processes produce new charged
particles in the form of photoelectrons, Compton electrons, and
electron–positron pairs. Electrons and positrons lose energy to the
medium through many collisions with atoms and electrons. These
collisions can be divided into (1) ionizational (also known as colli-
sional) losses and (2) radiative losses (bremsstrahlung production).
The electrons released in the ionizational collisions are generally of
low energy and release their energy locally [89]. In hard collisions,
the scattered electron has enough energy to travel away from its
point of origin and to trigger further ionization. These electrons are
called delta rays. The energy of bremsstrahlung photons is nearly
uniformly distributed between zero and the electron energy [89].
In human tissues at lower energies, ionizational losses are more
probable and at very high energies (over 100 MeV) radiative losses
predominate [9, 12]. In addition to the energy losses in inelastic
collisions, electrons and positrons interact by particle–antiparticle
annihilation, producing a pair of annihilation photons [89]. The
gradual energy loss of particles by multiple scattering means that
the solution of the transport problem is highly dependent on its
boundary conditions [89]. It is possible to solve the Boltzmann
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transport equation for electron beams by a finite element method,
although the calculation is time-consuming [14].

Clinical electron beam planning has been traditionally based on
semi-empirical dose calculation algorithms and pencil beam mod-
els [16,37]. The generalized Gaussian pencil beam model takes into
account large angle single scattering and range straggling [16]. In
these models the energy deposition from beam particles, photons,
electrons and positrons is typically modelled in a homogenous and
semi-infinite water phantom. The dose in the patient is then cal-
culated by summing many pencil beams in the medium with the
actual electron densities of the different tissues. However, in a het-
erogenous tissue, the estimate of the lateral energy deposition from
a pencil beam may not be correct due to the intense elastic and in-
elastic scattering of electrons. This can lead to a reduced (over 5%)
accuracy in the dose calculation [106]. Larger deviations may be
found near to the interfaces of tissues with high and low densities
such as bone and lung or air cavities [21, 22, 55].

The Monte Carlo method uses repeated sampling of known in-
teraction probability distributions to simulate the tracks of photons,
electrons and positrons [57]. Large numbers of electrons (millions)
have to be simulated in order to obtain a statistically meaningful
dose distribution. The traditional MC algorithms, such as BEAM-
nrc code system [103, 120], require computational resources and
time from tens of minutes up to hours. If it is to be feasible in
clinical treatment planning, it must be possible to calculate patient
dose distribution in a few minutes. In the VMC++ algorithm de-
veloped by Kawrakow et al. [48,50,52,55] this is realized mainly by
reducing “separate” electron histories, by neglecting explicit sim-
ulation of bremsstrahlung photons and making approximations of
the bremsstrahlung and inelastic scattering cross-sections. These
simplifications are known to have only a minor effect (2%) on the
accuracy of the calculated dose [50, 55]. Therefore, in this work the
VMC++ algorithm was applied for dose calculation of the eMLC
beam.
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2 Aims of the thesis

The main goals of this thesis were

• to study the feasibility of using a new eMLC as an add-on
device for use with an existing electron applicator of the linear
accelerator.

• to apply MC based modelling and dose calculation for the
eMLC beam.

• to examine small and narrow eMLC fields as a choice for the
bolus technique to increase electron beam build-up dose.

• to investigate the effect of eMLC leaf geometry on build-up
dose of the add-on electron MLC.

Dissertations in Forestry and Natural Sciences No 33 9
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3 Monte Carlo simulation of
megavoltage electron beams

3.1 MONTE CARLO METHOD

The Monte Carlo method uses known interaction probability dis-
tributions and repeated sampling of random numbers to simulate
tracks of particles, namely photons, electrons and positrons [89,
101]. This involves the calculation of particles energy, charge, posi-
tion and direction, which is also known as the determination of the
phase space. In the simulation of megavoltage electrons, one needs
to model the beam and dose to be delivered to the patient (fig-
ure 3.1).

In each step of the simulation, a sample x∗ of a random variable
with a probabiliy density function f (x) and cumulative distribution
F(x) is selected. The principle of sampling is as follows. Select
a uniformly distributed random number r∗ from the unit interval
[0, 1] such that

r∗ = F(x∗) =
∫ x∗

−∞
f (x)dx. (3.1)

The quantity of interest (interaction type, scattering angle, etc.) is
calculated by inversion, or direct sampling, as

x∗ = F−1(r∗). (3.2)

Another common method is rejection sampling [89]:

1. Generate two random numbers {r∗1 , r∗2} ∈ [0, 1].

2. Calculate x∗ = a + (b− a)r∗1

3. Accecpt x∗, if r∗2 ≤
f (x∗)

M , M = Supx∈[a,b] f (x). If not, go to
step 1.
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Electron source

Vacuum
Air Scattering foil

Monitor chamber

Primary collimator
(jaws)

pMLC, fully opened
(SCD 51 cm)

Applicator with
two scrapers

Secondary collimator
(SCD 95 cm
to lower end)

Projection of
the electron field

Patient surface
(SSD 105 cm)

Figure 3.1: Typical electron beam collimation from a linear accelerator. The figure shows
the main collimators and beam modifying devices including the low melting point-alloy
insert (dark grey color). Not shown are the mirror (below the monitor chamber) and
acrylic foil (below pMLC) for the light field and graticule.

The transport equation for electrons is

dΦ(x, Ω, E, t)
dt

= Se(x, Ω, E, t) + vI[Φ], (3.3)

where Φ(x, Ω, E, t) is the electron fluence, S(x, Ω, E, t) the number
of electrons with energy E and velocity v = (v, Ω) at a position
x per unit volume, energy and solid angle interval, imparted per
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unit time by an external source or by photons interacting with the
medium at time t [57, 89]. The coupling of the electron and photon
fluences is included in the source term. The total time derivative is

dΦ(x, Ω, E, t)
dt

=
∂Φ(x, Ω, E, t)

∂t
+ v∇Φ(x, Ω, E, t). (3.4)

The changes of the particle fluence due to collisions with atoms or
molecules n(x) are given by the collision term

I(Φ) = −n(x)Φ(x, Ω, E, t)
∫ E

0
dE′

∫
4π

dΩ′σ(E, E′, Ω′, x)

+n(x)
∫ ∞

E
dE′

∫
4π

dΩ′Φ(x, Ω, E′, t)σ(E, E′ − E, Ω′ ·Ω, x), (3.5)

where σ(E, E′ − E, Ω′ · Ω, x) is the microscopic cross-section at a
position x for all interactions in which an electron with energy E
loses energy E− E′ and scatters to angle Ω.

The collision integral I(Φ) represents the balance between par-
ticle losses and gains due to interactions described by the cross-
section σ(E, E′− E, Ω, x). Equation 3.3 is solved formally in a Monte
Carlo simulation by

Φ(x, Ω, E, t) =
∫ t

0
dt0

∫ ∞

E
dE0

∫
dx0

∫
4π

dΩ0Se(x0, Ω0, E0, t0)Φ0,

(3.6)
where Φ0(x, Ω, E, t) := Φ0(x0, Ω0, E0, t0; x, Ω, E, t) is the solution
of 3.3 for a source Se,0 i.e. a single particle from the source set
in motion at time t0 with energy E0 and direction Ω0 at a position
x0 [57].

3.2 INTERACTIONS AND CROSS-SECTIONS

The most important electron interactions are inelastic electron–electron
scattering, bremsstrahlung interaction and elastic scattering, which
are based on electromagnetic forces between atoms and particles.
The total microscopic cross-section σ for electrons is the sum of the
microscopic cross-section for inelastic collisions with atomic elec-
trons, σinel, the microscopic bremsstrahlung cross-section σbrem, and
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the microscopic elastic scattering cross-section σel:

σ(E, E′, Ω, x) = σinel(E, E′, Ω, x)+ σbrem(E, E′, Ω, x)+ σel(E, E′, Ω, x),
(3.7)

where x = (x, y, z) ∈ R3. The macroscopic cross-section is

Σ(E, E′, Ω, x) = n(x)σ(E, E′, Ω, x). (3.8)

Integration of the macroscopic cross-section over E′ and Ω′ gives
the number of interactions per unit length for electrons with energy
E. The atom or molecule density n is

n = ρ
NA

MA
(3.9)

where NA = 6.022045 · 1023 mol−1 is the Avogadro’s constant, MA

the molar mass in mol−1.

3.2.1 Stopping power

Electrons lose energy to the medium through collisions with the
electrons in the medium, resulting in ionization and exitations of
the atoms. These collisions are divided into soft and hard colli-
sions. Soft collisions produce energy transfers less than a cut-off
value ∆, and deposit energy locally, while hard collisions produce
energy transfers greater than ∆, resulting in knock-on electrons or
delta rays which can produce ionization tracks. On the whole, hard
collisions are rare events but have a large energy transfer [89].

Stopping power dT
dx is the average energy loss per unit path

length for electrons including both hard and soft collisions. The
stopping power divided by the density of the material is called the
mass stopping power (in units of MeVcm2g−1, figure 3.2)(

dT
ρdx

)
=

2πNAr2
0m0c2

β2
Z
A

[
ln

T2(T + 2)

2
( I

m0c2

)2 +
T2/8− (2T + 1) ln 2

(T + 1)2

+1− β2 − δ

]
(3.10)
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where T is the kinetic energy of the electron (in units of m0c2),
β = v/c, I is the mean ionizational potential in MeV and δ is the
density effect correction factor [89].

The restricted stopping power
(

dT
ρdx

)
∆

includes only soft colli-

sions with energy transfer less than ∆. L(E, Tc, kc) is the restricted
stopping power for threshold energies Tc and kc,

L(E, Tc, kc) = Lcoll(E, Tc) + Lrad(E, kc) (3.11)

Lcoll(E, Tc) =
∫ Tc

0
dE′Σinel(E, E′)E′ (3.12)

Lrad(E, kc) =
∫ kc

0
dE′Σbrem(E, E′)E′. (3.13)
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Figure 3.2: Mass stopping power as a function of electron energy for different biological
materials and air on a logarithmic scale [12].
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3.2.2 Inelastic scattering

The Møller cross-section for the inelastic electron–electron scatter-
ing differential in the kinetic energy T′ of the scattered electron
is [57]

dσ−inel
dT′

=
2πr2

0m
β2

1
T′2

[
1 +

T′2

(T − T′)2 +
τ2

(τ + 1)2

(
T′

T

)2

− 2τ + 1
(τ + 1)2

T′

(T − T′)

]
(3.14)

where β is the incident electron velocity in units of the speed of
light, T the incident kinetic energy in units of m0c2 and τ = T/m.
The scattered electron is assumed to be initially at rest. By defini-
tion, the electron with the higher energy after the collision is con-
sidered to be the primary electron. Let aT be the kinetic energy of
the secondary electron. The polar scattering angle θ of the primary
electron can be calculated from [89]

cos θ =
[
(1− a)(T + 2)
(1− a)T + 2

]1/2

, 0 ≤ a ≤ 1
2

(3.15)

and the scattering angle θ′ of the secondary electron from

cos θ′ =
[

a(T + 2)
aT + 2

]1/2

. (3.16)

When most of the energy is left to the primary electron, the scatter-
ing is at forward angles [105].

The total cross-section for Møller interactions is obtained via
integration of 3.14 from Tc to T/2:

σ−inel =
∫ T/2

Tc

dσ−inel
dT′

dT′ (3.17)

The Bhabha cross-section is the cross-section for the positron–
electron scattering differential in the kinetic energy of the scattered
electron which is initially at rest. The Bhabha cros section also de-
pends mostly on the incident particle’s kinetic energy [57].
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3.2.3 Bremsstrahlung

The bremsstrahlung cross-section for an electron with a total energy
E incident on an atom with atomic number Z, differential in the
photon energy k, is calculated by First Born approximation Bethe-
Heitler cross-sections with an empirical correction factor A′(E, Z):

dσbrem(E, Z)
dk

=
A′(E, Z)r2

0αZ(Z + ξ(Z))
k

[(
1 +

E′2

E2

)
(

φ1(δ)− 4
3

ln Z
)
− 2

3
E′

E

(
φ2(δ)− 4

3
ln Z

)]
(3.18)

where E′ = E− k is the electron energy after the interaction, r0 =
2.81794 · 10−15 m the classical electron radius, α the fine structure
constant and

δ = 136Z−1/3 km
EE′

. (3.19)

The functions φ1(δ), φ2(δ) are called mass screening correction pa-
rameters and ξ(Z) = L′rad(Z)/Lrad(Z) [57]. The bremsstrahlung
photons are emitted at forward angles [105] and the interaction
happens near to the nucleus [9]. Therefore, bremsstrahlung is more
likely in a high-Z materials and the cross-section depends on Z2.

3.2.4 Elastic scattering

The screened Rutherford cross-section, differential in the cosine µ

of the polar scattering angle of electrons or positrons incident on
atoms of atomic number Z, is

dσsr

dµ
=

2πr2
0Z2

β2τ(τ + 2)
1

(1− µ + 2η)2 (3.20)

where β is the particle velocity in units of the speed of light, τ the
kinetic energy T in units of m and η the screening parameter [57].
By integrating 3.20 over µ from -1 to 1, the total elastic scattering
cross-section is calculated as

σSR =
πr2

0Z2

β2τ(τ + 2)η(1 + η)
. (3.21)
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Backscattering may happen mostly in materials with a high atomic
number and with low electron kinetic energies [9].

3.2.5 Photon interactions

In the radiotherapy energy range 4-20 MeV, the main photon inter-
actions are well known, i.e. photoelectric effect, Compton and co-
herent scattering, and pair production process. The Klein-Nishina
cross-section for the Compton scattering differential of the cosine
for the polar angle of the scattered photon with respect to the ini-
tial direction is

dσkn

d cos θ
= πr2

0Z
(

k′

k

)2[ k′

k
+

k
k′
− sin2 θ

]
(3.22)

where k′ = E′
m0c2 is the energy of a photon scattered at an angle

θ [57]. In the above equation, the electron is assumed to be free
and initially at rest. The energy of the scattered photon is related to
incident photon energy k = E

m0c2 and photon scattering angle θ by
the kinematics of the collision:

k′ =
k

(1 + k(1− cos θ))
. (3.23)

3.3 ELECTRON TRANSPORT

3.3.1 Multiple scattering

Since electrons undergo a large number of interactions in a short
distance, it is not practical to model every scattering event. In-
stead, the electrons are transported in a schematized random walk,
in which each step or path increment accounts for the effects of a
multitude of collisions [49, 89]. This modelling is also known as
the condensed history approximation [7, 57]. The energy loss be-
tween hard collisions and bremsstrahlung interactions is calculated
as a continuous energy loss, whereas the change in direction due to
elastic scattering is modelled by the multiple scattering distribution.
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Figure 3.3: a) Spherical coordinate system. b) Electron path s, the multiple scattering angle
θs, the lateral deflection angle during the step ψ and the straight line distance between
initial and final position s̄ (modified from [50]). Ideally, the calculated electron path should
converge to the true electron path, when s̄ approaches zero.

The path-length s satisfies ds/dt = v and

dE
ds

= −L(E, Ec, kc), s =
∫ E0

E

dE′

L(E, E′, kc)
. (3.24)

The approximation 3.24 is known as the continuous slowing down
approximation (CSDA).

Assume that the lateral deflections during the step are neglected,
i.e. the angle ψ is zero. The direction cosines with respect to x, y
and z axis at the beginning of the step are (ux, uy, uz). Let the polar
axis of spherical coordinate system be along the direction of motion
of the electron (w = 1) and θs and φs the polar and azimuthal angles
of scattering (figure 3.3). The new direction cosines at the end of
the step are then

u′x = cos φs sin θs

u′y = sin φs sin θs

u′z = cos θs. (3.25)

In the case when the electron’s initial motion is not along z-axis
(ux 6= 1, uy 6= 1 and uz 6= 1), the new direction cosines are [89]

u′x = ux cos θs +
uxuz sin θs cos φs − uy sin θs sin φs√

1− u2
z
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u′y = uy cos θs +
uyuz sin θs cos φs + ux sin θs sin φs√

1− u2
z

u′z = uz cos θs − sin θs cos φs

√
1− u2

z . (3.26)

The azimuthal angle φs is uniformly distributed between [0, 2π] and
θs is sampled from a multiple scattering distribution. A simple
choice is the Gaussian distribution

p(θs)dθs =
2
θ̄2 exp

(
− θ2

s

θ̄2

)
dθs, (3.27)

where θ̄2 is the mean square scattering angle [89]. Multiple scatter-
ing distributions that better account for large angle deflections have
been developed e.g. by Goudsmit and Saunderson [32].

3.3.2 Path length correction

The CSDA approximation gives a mean energy loss per unit path
length. In reality, there is a statistical distribution for electron en-
ergy loss, called the energy loss straggling distribution which re-
sults from stochastic variations in rates of energy loss [9, 89]. Start-
ing from momentum transfer and the screened Rutherford cross-
section, Kawrakow [49] has derived a MS distribution

F(λ, pe) =
2

p2
e,0

(1− η1− η2) exp
(
− p2

e

p2
e,0

)
+

2µ2
1η1

(p2
e + µ2

1)2
+

4µ2
2η2

(p2
e + µ2

2)3
,

(3.28)
where pe,0, µ1, µ2, η1 and η2 are parameters which depend on λ, the
average number of elastic collisions per step:

λ =
bcs
β2 . (3.29)

The β is the electron’s velocity (in units of c). In 3.28, the pe is the
so-called reduced momentum transfer and λ is a material specific
quantity. The scattering angle θs is related to y as [50]

cos θs = 1− χ2
ccs

2E2β4 p2
e . (3.30)
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The energy dependent parameters bc and χcc describe the scattering
properties of the medium according to the theory of Molière [48].
In Kawrakow’s model the lateral deflections during the step are in-
cluded in the calculation of the final position of the electron and
path length s̄. Since the distribution of number of collisions is Pois-
sonian, the final position of electron can be calculated as [48] (elec-
tron’s motion prior to scattering is along the z-axis)

x = s̄ sin ψ cos(φs + φ̃)

y = s̄ sin ψ sin(φs + φ̃)

z = s̄ cos ψ. (3.31)

The angle φ̃ is sampled from an actual distribution [48]. The straight
line path is given by

s̄2 =
2s2

ξ

(
1− 1− e−ξ

ξ

)
, ξ =

1
2

Tss. (3.32)

The scattering power Ts is

Ts =
2b2

c
β2 (1− 〈cos Θ〉), (3.33)

where 〈cos Θ〉 is the average polar scattering angle in a single elec-
tron scattering [50]. The lateral deflection angle ψ is related to the
scattering angle θs as

cos ψ = 1− α(1− cos θs) (3.34)

together with

α ≈ 1
3

(
1 +

ξ

4
+

ξ2

360
− 19ξ3

4320
. . .
)

. (3.35)

The electron’s position according 3.31 and the above equations is
valid when the energy loss during the step is neglegted. The path
length correction in both lateral (ψ) and longitudinal directions (z)
is accordingly [48]:

α = α1/2(1− ε/4) (3.36)

s̄ = s̄1/2
1− α1/2(1− exp−ξ)

1− α1/2(1− exp(−ξ))(1− ε/4)
, (3.37)
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where ε is the parameter for energy loss fraction per step (usually
set to 0.25) and s̄1/2 the path length during which the electron loses
half of its kinetic energy. Since the average electron energy during
the step E1/2 is used to sample the MS scattering angle, there is a
limit to the maximum allowable step length

s̄max = min
(

1
Ts

, s̄1/2

)
. (3.38)

With 10 and 0.1 MeV electron energies, the s̄max values are approx-
imately 1.0 and 0.01 cm [48].

22 Dissertations in Forestry and Natural Sciences No 33



4 The VMC++ algorithm

VMC++ algorithm is optimized for three dimensional dose calcula-
tions in voxels defined by computer tomography images of the pa-
tient [48,50,52,55]. The principal concept is that it involves some ap-
proximations which make the simulation quick to perform (within
minutes).

4.1 INELASTIC SCATTERING

The Møller cross-section 3.14 is a function of the kinetic energies of
the electron T and delta particle T′,

dσδ(T, T′)
dT′

=
f (T, T′)

T′2
. (4.1)

Since f (T, T′) varies slowly with T′, the production of secondary
electrons is sampled from an approximate 1

T′2 distribution [55].

4.2 BREMSSTRAHLUNG

The differential cross-section for bremsstrahlung 3.18 is a function
of the incident electron energy E and bremsstrahlung photon k

dσγ

dk
=

g(E, k)
k

(4.2)

where g(E, k) is a complicated function of E and k. However, g de-
pends only slightly on k. Hence, only the 1/k dependence is taken
into account for the differential cross-section [55]. Bremsstrahlung
photons are not simulated. Instead, the dose from bremsstrahlung
photons in the phantom and from the linac treatment head is added
from a measured dose profile in water. Therefore, bremsstrahlung
that is produced in the patient is not modelled explicitly.
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4.3 NUMBER OF PARTICLE HISTORIES

Assume that there are two electron sources emitting “separate”
electrons i.e. in a certain voxel there is a dose contribution from
electrons from only one of the two sources. In this case, a simula-
tion with N/2 electrons from two adjacent sources is equivalent to
simulation from a single source with N electrons. In the VMC++
model, a single electron history is applied Nr times in the phan-
tom. The total number of histories is N = Nr Nh, where Nh is the
number of different histories. Simulations with Nr ≤ 4 cm−2 (and
Nh = 5 · 104) are possible without impairing unfavourably on the
statistical uncertainty of the dose [55].

4.4 ENERGY DEPOSITION

4.4.1 In water

The electron’s history is formed by a series of steps s1, s2, . . . , si until
a cut-off energy is reached. Before each step with initial energy
Ei the path si to the next discrete interaction is sampled from the
probability distribution

F(x̂) = exp(−x̂), x̂ =
∫ s

0
(Σδ(Ei, s′) + Σγ(Ei, s′)ds′, (4.3)

where Σγ and Σδ are the macroscopic bremsstrahlung and Møller
cross-sections. If ti ≥ tmax, no secondary particle is produced and
the new electron energy is

Ei+1 = Ei − ∆Ei,γ − ∆Ei,δ. (4.4)

In this step, the deposited energy is ∆Ei,δ since the bremsstrahlung
photons are omitted from the simulation (section 4.2). When si <

smax, the probability for a delta particle production is Σδ/(Σδ + Σγ).
A photon is emitted with probability Σγ/(Σδ + Σγ). The energy of
secondary particles is selected from the respective approximated
differential cross-sections 4.1 and 4.2.
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Based on the CSDA approximation, the energy is deposited in a
small volume element, or voxel, corresponding to the straight path
length in the voxel:

∆E1(this voxel) = ∆E1
∆s1(this voxel)

s1
. (4.5)

If no voxel boundaries are crossed (figure 4.1), the total energy is
left in the current voxel [55]. The new direction of the electron is
calculated from the MS angle distribution 3.28.

s̄

s θs

Figure 4.1: Illustration of an electron path s and scattering angle θs in a geometry defined
by three-dimensional rectilinear voxels. Only a two-dimensional plane is shown.

4.4.2 In heterogeneous tissue

In a heterogeneous tissue, the total energy loss must be equal to the
energy loss in water. Hence, the electron’s path length s in the voxel
has to be scaled with the stopping power of the medium, (dT/dx):

s = s0
(dT/dx)0

(dT/dx)
(4.6)

where s0 and (dT/dx)0 are the path length and stopping power
in water, respectively. Similarly, the average number of elastic colli-
sions in the actual medium λ is determined from the value of water,
λ0:

λ =
bcs
β2 = λ0

bc(dT/dx)0

bc,0(dT/dx)
= λ0 fλ. (4.7)

Dissertations in Forestry and Natural Sciences No 33 25



Tero Vatanen: Multi-leaf Collimation of Electron Beams with Monte
Carlo Modelling and Dose Calculation

Equation 3.34 relates to the reduced momentum transfer pe and
scattering angle θ0 in water and is re-written as

cos θ = 1− χ2
ccS0

χ2
cc,0

(1− cos θ0)

= 1− fχ(1− cos θ), (4.8)

where the scattering angle in the medium s denoted with θ. Hence,
there are two tissue-specific parameters, fλ and fχ, which are deter-
mined from computer tomography images by fitting a calibration
curve for the mass density against the Houndsfield number [50,55].

The electron transport theory of section 3.3.2 provides informa-
tion on the probability distribution of finding an electron at a cer-
tain position after travelling a path length s. However, the elec-
tron’s trajectory between the initial and final position is not known.
So, the exact position where the voxel boundaries are crossed can-
not be determined. Therefore, the following approximations are
needed [50]:

1. Transport the electron on a straight line between the initial
and final position i.e. approximate s with s̄.

2. Instead on λ of the actual medium, use the number of elastic
collisions of water λ0.

3. When crossing a voxel boundary, calculate the lateral deflec-
tion angle ψ from the scattering properties of the current voxel.

The difference between λ0 for water and materials with mass den-
sities of human tissues (less than 3 gcm−3) is smaller than 10%.
Hence, the effect of the second approximation on multiple scatter-
ing distribution 3.28 is only marginal [50].

The third approximation has the largest effect since it causes a
slight overestimation of the lateral deflection angle when the elec-
tron is moving from a voxel with high density to a voxel with low
density and vice versa. However, the overestimation happens only
in boundaries of different materials. The multiple scattering in the
passed tissues is properly modelled.
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4.5 DOSE CALCULATION

The absorbed dose, D = dE/dm, is the expectation value of the
energy imparted to matter per unit mass [9]. The absorbed dose
from the electron beam can be calculated from the particle fluence
as [9, 89]

D(x) =
∫ ∫

Φ(x, Ω, E)Lcoll(E, Tc)dΩdE. (4.9)

In the VMC++ simulation, the absorbed dose in a voxel with a
density ρ and volume ∆V is determined by the path lengths ∆s̄j in
the voxel and the bremsstrahlung dose profile Dγ(x):

D(x) = ∑
j

∆s̄jLcoll(E, Tc)
ρ∆V

+ Dγ(x). (4.10)

Due to random sampling, there is statistical noise that depends
on the number of simulated particles. The statistical uncertainty
is usually estimated by dividing the calculation into n batches, say
n = 10. The uncertainty of the dose in a voxel can be expressed by
the standard error of the mean:

σ̄D =

√
∑n

i=1 (Di − D̄)2

n(n− 1)
. (4.11)
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5 The eMLC prototype and
beam model

5.1 CONSTRUCTION OF THE PROTOTYPE

The electron multi-leaf collimator prototype (figure 5.1) consists of
steel leaves mounted in an aluminium frame. The leaves are 2.0 cm
thick and 5.0 mm wide. The prototype was attached below a stan-
dard 20×20 cm2 electron applicator type III of a Varian 2100 C/D
linac without any modifications for the electron applicator. The
source-to-upstream leaf surface distance was 97.2 cm.

Electron
applicator

eMLC field
edges

eMLC

Reference
detector

Field
detector

Water
phantom

Figure 5.1: The eMLC prototype attached below the electron applicator of the linac. Leaves
of the eMLC can be seen in the aluminium frame below the applicator. Also shown in the
figure is the measurement set-up with detectors in a water phantom.
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5.2 THE MC BEAM MODEL

The exit phase space plane is defined below the treatment head
of the linear accelerator. Therefore, any components that might
have an effect on the electron fluence, such as collimators, must be
considered in the beam modelling.

The beam model divides the electron fluence emitted from the
treatment head into a direct electron fluence component ΦD (no
collimator interactions, only scattering in air) and an indirect elec-
tron fluence component ΦI (at least one collimator interaction). In
addition, a photon fluence component ΨB is applied to account for
bremsstrahlung photons:

ΦS̃ = ΦD + ΦI + ΨB. (5.1)

x

y

z

(0, 0, ẑ)

θ

θ̄

r
φ

S̃

Figure 5.2: Geometry of the exit phase space plane S̃ located at the distance z̃ from the
source at (0, 0, 0).

5.2.1 Modelling of the electron source

The beam model uses multiple sub-sources of electrons with am-
plitudes coupled to a common source of direct electrons located
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below the secondary scattering foil [112]. Briefly, electrons with
energy E and an energy spectrum ϕ(E) are emitted from the source
through the source phase space plane S(r, φ̄) = (r cos φ̄, r sin φ̄, xeff),
r ∈ R, φ̄ ∈ [0, 2π]. The fluence distribution is symmetrical with
respect to z-axis (the azimuthal angle φ ∈ [0, 2π]) and the polar an-
gles of electrons θ are sampled from a Gaussian distribution. Let
ΦS(E, Ω, r), r ∈ [0, rmax] be the phase space density of electrons,
also known as fluence differential in energy and angle, in the plane
S. The electron source is described by the fluence

ΦS(E, Ω, r) = ϕ(E) exp
(

r2

σ2
r
+
√

2 φ2+(θ−θ̄)2

σ2
θ̄
(r)

)
, r ≤ rmax

ΦS(E, Ω, r) = 0, r > rmax,
(5.2)

where r is the radial distance of the fluence distribution extending
to rmax and σr ∈ R. The mean angle θ̄ is determined by the effec-
tive source position xeff [112]. The effect of scattering foils, monitor
chamber and air on the lateral spread of the fluence distribution is
included in σ2

θ̄
(r) = a− br, {a, b} ⊂ R. Hence, for a fixed energy

spectrum, the radial modulation of the phase space density of elec-
trons travelling in the direction Ω(φ, θ) through the source phase
space plane S is determined by ΦS := ΦS,ϕ,Ω(σr, a, b, xeff, rmax) dur-
ing the beam characterization process.

5.2.2 Exit phase space parameterization

Direct electrons have no interactions with the applicator or eMLC.
Electrons hitting the eMLC leaves or applicator elements are scored
and terminated. The direct electron fluence differential in energy,
angle and position ΦD = ΦD(E, Ω, x, y), Ω = (φ, θ) is defined by
a lateral fluence distribution and a Gaussian distributed directional
spread with a standard deviation σθ around an average direction θ̄

given by

θ̄(r) = tan−1
(

r
ze f f (r)

)
, (5.3)

where r = (x2 + y2)1/2 is the distance from the beam axis (fig-
ure 5.2) and ze f f (r) is the distance to a virtual source point located
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x

y

z

(0, 0, 97.2 cm)

Leafj

Uie

Uff

S̃

Phantom surface

Figure 5.3: Schematic presentatation of the eMLC leaf geometry for the leaf j with the
inner edge surface Uie

j and front face surface U f f
j .

on the beam axis upstream from the exit phase space plane. The
Gaussian distributed spread σθ = σθ(r) is a function of the distance
from the beam axis. The functions ze f f (r) and σθ(r) are determined
by scoring the exit directions on a set of beam axis centered, annular
rings [112].

Electron out-scatter modelling

A direct electron hitting an upstream collimating aperture has a
certain probability of being out-scattered back into the field and
thereby constituting a source of indirect electrons. For the current
eMLC, one should consider this kind of out-scatter from the eMLC
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leaves and from the two upstream applicator scraper layers. Since
the eMLC device is effectively shadowing the lowermost scraper
below which the eMLC is mounted, the out-scatter from this layer
need not to be considered.

One can identify two distinct cases leading to out-scatter, namely
grazing incidence on the front face ( f f ) and near perpendicular in-
cidence on the inner edge (ie) surface of the scattering object [1,111].
Accordingly, the indirect fluence differential in energy and angle ΦI

at a point p = (x, y, z̃) in the exit phase space plane S̃ is separated
into fluences Φie

I and Φ f f
I such that

ΦI(p) =
3

∑
l=2

4

∑
k=1

(
Φie

I,l,k(p) + Φ f f
I,l,k(p)

)
+

N

∑
j=1

(
Φie

I,j(p) + Φ f f
I,j (p)

)
,

(5.4)
where the subscripts l and k refer to the two upstream scraper layers
and the four sides of each aperture, respectively. The summation
in the right term runs over all eMLC leaf sides j = 1, . . . , N facing
the open part of the field. The indirect fluence ΦI is reconstructed
by sampling from pre-calculated edge scatter kernels following the
principles presented by Ahnesjö [1] and Traneus et al. [111] using
separate scatter kernels κie and κ f f for the inner edge and front face
surfaces, respectively. The scatter kernels are calculated using the
EGSnrc code [57].

The characteristics of the leaf out-scatter depend on the incident
electrons energy, leaf thickness and the electron incidence angle and
position. For the inner edge case, the electrons hit the surface at
an approximately perpendicular angle. Since the inner edge out-
scatter is only weakly dependent on the incidence angle, one can
assume that the electrons hit the inner edge surface at a perpen-
dicular angle and therefore a single inner edge kernel is sufficient.
For the front-face case, it is possible to assume that the front-face
surface is infinite, thus neglecting transmission through the down-
stream edge and effects of nearby corners. As the front-face out-
scatter probability is strongly dependent on the incidence angle be-
tween the direction of the electron and the front-face surface one
can apply a set of front-face kernels generated for a discrete set
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Figure 5.4: BEAMnrc calculated total and eMLC scattered electron fluence in air for
different beam incidence angles. Field size is 5×10 cm2 and the field edge is at zero
position.

of incidence angles ranging from 1◦ to 16◦. This angle range was
selected since it includes the scatter from the lowermost applica-
tor scraper. Figure 5.4 shows electron fluence below the eMLC for
different beam incidence angles.

Let Uie
j and U f f

j ⊂ R2 be the front face, inner edge and leaf side
surfaces for the leaf j, j = 1, . . . , N (figure 5.3). For a full description
of the scatter kernels, one needs to determine, how much the flu-
ence on element areas ∆Uie

j and ∆U f f
j at points uie

j = (uie,1,j, uie,2,j)

and u f f
j = (u f f ,1,j, u f f ,2,j) contribute on the exit phase space density

at a point x = (x1, x2, x̃) in the exit phase space plane S̃. The phase
space densities in points uie

j and u f f
j at the front face and inner

edge are Φ(uie
j ) and Φ(u f f

j ), respectively. Once the scatter kernels
are known, the phase space density for leaf scattered electrons from
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N leaves can be calculated from the usual convolution such that

ΦI,4(x) =
N

∑
j=1

[∫
Uie

j

κie(x, uie
j )Φ(uie

j )duie
j +

∫
U f f

j

κ f f (x, u f f
j )Φ(u f f

j )du f f
j

]
. (5.5)

5.3 VERIFICATION OF THE BEAM MODEL

The agreement between calculated and measured dose distributions
was evaluated according to Low et al. [74] by using the gamma
index. It is defined for a fixed allowable deviation in distance, ∆dM,
and dose ∆DM for the calculated and measured doses Dc(xc) and
Dm(xm) in points xc and xm ∈ R2 as

γ(xm) = min{Γ(xm, xc)}, ∀ xc, (5.6)

where

Γ(xm, xc) =
(
‖xc − xm‖2

∆d2
M

+
(Dc(xc)− Dm(xm))2

∆D2
M

)1/2

. (5.7)

The units for ∆d and ∆D are millimeter and percent. Hence, for
values γ ≤ 1, the calculated dose is within certain acceptance crite-
ria, say 2% and 2 mm. Depth dose curves were measured with the
Scanditronix PPC-40 parallel plate ionization chamber and profiles
were acquired with the PTW-31 006 pinpoint chamber in water.

5.4 COMPARISON OF CONVENTIONAL INSERTS AND THE
eMLC

For the electron beam shaping 1.5 cm thick individually made Cer-
robend R© inserts mounted in a standard 20×20 cm2 electron appli-
cator of a Varian 2100 C/D linac were used. The insert and eMLC
fields were compared in the situation of chest wall irradiation. With
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a standard applicator the distance from focus to the lower surface
of the insert was 95 cm i.e. the collimator-to-surface distance (CSD)
was 5.8 cm at the applied treatment distance (SSD = 100.8 cm).
The adjacent electron fields shared the same virtual source position
such that the abutting field edges coincided and the isocenter was
the same for both electron and photon fields (figure 5.5).

Figure 5.5: Beams eye-view of the chest wall irradiation for breast cancer with adjacent
electron beams E1 and E2 together with a matched photon beam (P).

5.5 SIMULATIONS AND MEASUREMENTS OF DIFFERENT
LEAF SHAPES AND MATERIALS

Depth dose curves and profiles were measured with the Scanditronix
SFD diode detector in water for narrow fields with sizes from 0.3×10
cm2 to 1.5×10 cm2. The voxel sizes in the VMC++ simulations were
1×1×1 mm3 and 1×2×2 mm3 for the 6 and 9 MeV energy.

The properties of the straight, round and 15◦ face angle leaf
ends for 6, 12 and 20 MeV electron beam were investigated us-
ing the BEAMnrc code revision 1.78 [103]. The eMLC with leaf
materials made of steel, brass and tungsten were included in the
model. The energy of the source electrons exiting from the vacuum
was adjusted such that the calculated and measured depth dose for
the 5×5 cm2 field agreed to within 1%. The cut-off energies for
electrons (ECUT) and photons (PCUT) were 0.521 and 0.01 MeV,
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respectively. These same values were also applied for the thresh-
old energies Tc and kc. In the simulations, the EXACT boundary
crossing and the PRESTA-II electron-step algorithm were used.

5.6 RESULTS

5.6.1 Verification of the beam model

The depth dose curves for different field sizes and energies 6, 12
and 20 MeV at SSD 100 cm are presented in figure 5.6 for the eMLC
prototype with steel leaves. The profiles close to the depth of dose
maximum and a superficial profile at 0.5 cm depth are shown in fig-
ure 5.7 where only half profiles are shown because of the symmetry.
The calculated depth dose was slightly underestimated near to the
surface of the phantom (I). This effect was pronounced with high
energies and small field sizes such that for the 20 MeV 5×5 cm2

field, the calculated dose was underestimated by up to 8% while
for other energies and field sizes, the maximum deviations were
less than 5% and there was a good agreement between the calcu-
lated and the measured dose. At the beam axis, the indirect dose
component increased with the decreasing field size as the front face
out-scatter dominated and was more forward peaked compared to
the inner edge out-scatter (I).

The calculated profiles near the dose maximum depth were sligh-
tly underestimated with small field sizes and high energies (I).
However, the agreement between calculated and measured profiles
in the penumbral region was excellent except for the 20×20 cm2

field. The calculated indirect electron component increased near to
the field edges (I).

In total, 88% and 95% of the voxels were within 2%/2 mm and
3%/3 mm acceptance criteria. In 89% of the voxels, the dose differ-
ence was within ±3%.
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Figure 5.6: Calculated (·) and measured (–) depth dose curves for (a)-(c) 5×5 cm2 field;
(d)-(f) 10×10 cm2 field and (g)-(i) 20×20 cm2 field at SSD 100 cm for energies (a), (d),
(g) 6 MeV; (b), (e), (h) 12 MeV; (c), (f), (i) 20 MeV. The doses from direct electrons
(dash-dotted line) and indirect collimator scattered electrons (light-dotted line) are plotted
separately. The dose from the indirect electrons is plotted multiplied by ten.
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Figure 5.7: Calculated (·) and measured (–) profiles for (a)-(c) 5×5 cm2 field; (d)-(f)
10×10 cm2 field and (g)-(i) 20×20 cm2 field at SSD 100 cm for energies (a), (d), (g)
6 MeV at 1.0 cm depth; (b), (e), (h) 12 MeV at 2.0 cm depth and (c), (f), (i) 20 MeV at
3.0 cm depth. A superficial profile at 0.5 cm depth is plotted for the 10×10 cm2 field (open
circles). The doses from direct electrons (dash-dotted line) and indirect collimator scattered
electrons (light-dotted line) are plotted separately. The profiles are for the eMLC prototype
with steel leaves.

Dissertations in Forestry and Natural Sciences No 33 39



Tero Vatanen: Multi-leaf Collimation of Electron Beams with Monte
Carlo Modelling and Dose Calculation

5.6.2 Comparison of conventional inserts and the eMLC

When two abutting electron–electron or electron–photon fields are
matched, there are dose maximum and minimum areas in the field
junction (II). Figures 5.8 and 5.9 illustrate unpublished profiles for
matched electron–electron and electron–photon fields with the same
isocenter. In figure 5.8, there are dose maxima 110% and 105% and
minimima 70% and 80% for insert and the eMLC prototype with 6
and 12 MeV energy, respectively. The dose uniformity can be im-
proved by overlapping the abutting electron field edges or leaving
a gap between them (figure 5.8).

In the case of matched electron–photon fields, the uniformity of
the dose is markedly better with the eMLC than for the insert close
to the 6 MeV electron beam dose maximum depth (1 cm). However,
at 2 cm depth, the uniformity is similar between the collimators
(figure 5.9).
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Figure 5.8: Matched 6 and 12 MeV electron fields normalized to 100% at dose maximum
depth. Field sizes are 10×20 cm2 and the profiles are measured at 2 cm depth in water
with SSD 100 cm.

In the dose distribution for the eMLC, the dose was slightly
pronounced near the edges of the adjacent electron fields compared
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Figure 5.9: Matched 6 MeV electron and 6 MV photon fields normalized to 100% at dose
maximum depth. Field sizes are 10×20 cm2 and the profiles are measured at SSD 100 cm
in a water phantom.

to the insert plan (figure 5.10). In addition, the mean and maximum
PTV doses were slightly higher for the eMLC plans (II). The mean
calculation time per electron beam for the insert plans was 10.7
minutes compared to 14.8 minutes for the eMLC plans with 1%
statistical uncertainty of the dose. At a 2% uncertainty level, the
mean calculation times were decreased by more than half (II).

5.6.3 Build-up dose of narrow beams

Figure 5.11 illustrates the calculated and measured central axis depth
dose curves for 6 and 9 MeV energies with various field widths at
SSD 105 cm. With the 1.5 cm wide beams, the build-up region was
clearly detectable but for the 1.0 cm beams the dose at the build-up
region was within 90% of the depth dose maximum. The build-up
region almost disappeared with the 0.5 and 0.3 cm beams but at the
expense of a marked decrease in the therapeutic range. The calcu-
lated depth doses agreed to within 2 mm of the measured dose in
93.2% of the voxels, whereas 85.1% of the voxels were within 3%
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Figure 5.10: Calculated dose distributions in the chest wall for one of the patients with
6 and 9MeV electrons and 6 MV photons, (a) insert plan and (b) eMLC plan with steel
collimator leaves. The PTV is marked with a white line. The VMC++ algorithm was
applied to calculate electron fields and a pencil beam algorithm was used for the photon
field.
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dose difference.
For a composite segmental field formed from adjacent beam

segments, the surface dose at 0.5 mm depth was increased as com-
pared to a size-equivalent open, single field (III). With the segmen-
tal field technique, the resulting decrease in the therapeutic range
was less than 2 mm compared to a 6 MeV open field. The increase
in the surface dose depended on the individual segment width and
SSD. The surface dose at the level of 90% of the depth dose maxi-
mum was found for the segmental fields with 0.5 and 1.0 cm wide
segments at SSD 102 cm (III). With SSD 105 cm, the surface dose
was similar to an open field of the same size with 6 MeV energy.

5.6.4 Leaf shape and material

The leaf material had only a slight effect on the fluence for straight
and round leaves for a 6 MeV electron beam (IV). With 15◦ face
angle leaves made of tungsten, the total fluences at 1 cm outside
field edge were 38%, 54% and 59% lower compared with steel and
brass for 6, 12 and 20 MeV (IV). Hence, the fluence distributions for
tungsten leaves are more focused compared to steel and brass. This
was more clearly seen with the higher beam energy and a larger
face angle.

With a 6 MeV energy, the 15◦ face angle leaves led to increased
dose per simulated particle in the build-up region and at a dose
maximum compared to other leaf shapes (IV). The depth dose was
almost identical with straight and round leaves for both SSD 102
and 105 cm. With the 15◦ face angle leaves, the build-up dose varied
between 91-100% and with other leaf shapes between 90-100% (SSD
102 cm) and 89-100% (SSD 105 cm). There was no difference in
the dose from bremsstrahlung photons, i.e in the tails of the depth
dose curves between fields with different leaf geometries (IV). With
straight, round and 15◦ face angle leaves, the doses at 1 cm outside
field edge were 4.6, 5.0 and 6.6% of the central axis at SSD 102 cm,
respectively. Hence, the scatter arising from the round and 15◦ face
angle leaves can be observed in profiles. Despite a 1 mm deviation
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Figure 5.11: Effect of field width on calculated (symbols) and measured (lines) depth doses
(a), (b) and profiles (c), (d) with beam energies (a), (c) 6 MeV and (b), (d) 9 MeV at SSD
105 cm. The depth dose curves and profiles are for the eMLC prototype with steel leaves.
The dose calculations were done using the VMC++ algorithm.
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in the build-down region, the agreement between calculated and
measured depth doses and profiles was good for a narrow field
with straight eMLC leaf ends (IV).

For 12 MeV energy with the 15◦ face angle leaves, the build-up
dose varied between 95-100% and with other leaf shapes between
94-100% at SSD 102 and 105 cm (IV). With straight and round leaves,
the dose at 1 cm outside field edge was 8.3% of the central axis
compared with 11.3% for 15◦ leaf face angle at SSD 102 cm. Hence,
the scatter from the round and 15◦ face angle leaves can also be
seen in 12 MeV profiles (IV).

With a 20 MeV beam energy, the build-up dose varied between
94-100% for all leaf shapes at SSD 102 and 105 cm (IV). With straight,
round and 15◦ face angle leaves, the doses at 1 cm outside field edge
were 6.4, 5.9 and 9.6% of the central axis at SSD 102 cm, respectively.
Therefore, the scatter and leaf transmitted electrons arising from the
15◦ face angle leaves can be more clearly seen in the 20 MeV profiles
(IV).

The summed depth doses from five narrow abutting 6 MeV en-
ergy 1×10 cm2 fields were normalized to the depth dose maximum.
With the 15◦ face angle leaves, the build-up dose at 5 mm depth is
96% of the depth dose maximum at SSD 102 cm (IV) compared with
86% for straight and round leaves. Simultaneously, the therapeutic
range is reduced by less than 1 mm. At SSD 105 cm, the 6 MeV
build-up dose at 5 mm depth was still higher by four percentage
units for the 15◦ face angle compared with the other leaf ends (IV).
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6 Discussion

An eMLC prototype was developed as an alternative for use with
the present collimation of electron beams with block inserts. Monte
Carlo dose calculation was applied to the eMLC beam for accurate
modelling of the dose. Dosimetry of the eMLC and the accuracy
of the beam model were studied by comparing the calculated and
measured dose in water.

For a beam model aimed at clinical use, a compromise has to be
made between the accuracy and complexity of the model. The ker-
nel model with relevant scatter kernels was chosen to calculate the
leaf scattered indirect electron component to enable faster compu-
tation. The calculations were evaluated against measurements with
good accuracy since 88% of the voxels were within 2%/2 mm. This
was comparable to previously reported calculations for electron in-
serts with various beam energies, field sizes and SSD [18]. With the
VMC++ algorithm, there are some approximations that make the
simulation rapid to perform. However, with typical radiotherapy
energies (< 20 MeV) and tissue densities (< 3 gcm−3), the simpli-
fications lead to a minor loss of accuracy (1%) for electron trans-
port [28, 50, 55]. The resulting effect on the accuracy of calculated
dose is only minimal, only 2% [18, 19, 28, 50, 55]. In particular, the
modelling of lateral and longitudinal energy loss straggling with
the VMC++ is very good, with only a 2% variation of the calculated
electron position as a function of energy loss per step [48].

The prototype add-on eMLC was implemented below a stan-
dard electron applicator without modifications for the applicator.
Ma et al. [81] and Ravindran et al. [100] used a slightly different
solution where the eMLC was inside the applicator and closer to
the electron source. One drawback from the present short (8 mm)
collimator-to-surface distance was a pronounced dose near the field
edges at SSD 100 cm as shown in the original publication I. This
“horn” effect has been previously reported by Lee et al. [70] and
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Ravindran et al. [100] who found that the short CSD resulted in
smaller penumbras. The leaf transmission with high energies (6.3%
with 20 MeV) can be reduced using an appropriate leaf material
and leaf thickness.

At SSD 110 cm, the agreement between calculated and mea-
sured depth doses was practically the same as with SSD 100 cm for
different beam energies. In spite of a slight overestimation of cal-
culated dose near to the edge of the field, the agreement was good
also with tested irregular fields (I).

The fluence distribution of the leaf-scattered electrons depends
on beam energy, leaf material, thickness and field shape. For elec-
trons incident to the leaf front face, the out-scatter probability de-
pends strongly on the incidence angle distribution. Overall, there
was a good agreement between calculated and measured dose for
most clinically relevant energies between 6–12 MeV, field sizes and
SSD. For small square fields with 20 MeV energy, the calculated
depth doses were underestimated. The deviations observed in the
penumbral region of the 20×20 cm2 field may be due to scattered
electrons from the upstream applicator structures. In the beam
model, the electrons are emitted from the downstream surface of
the leaves. By emitting the electrons by distributing them uniformly
over the full leaf thickness, the penumbral region could be better
modelled. Additionally, the fact that the bremsstrahlung from the
eMLC leaves was not explicitly included in the VMC++ dose calcu-
lations may explain some of the deviations in particular with 16-
20 MeV energies.

Electron beam patient dose calculations for an add-on multi-leaf
collimator prototype were compared with the conventional electron
inserts in chest wall irradiation of left-sided breast cancer (II). Be-
tween matched, abutting fields, the dose profiles are not uniform
(figures 5.8 and 5.9). There are different methods for smoothing the
dose distribution in the junction area, for example overlapping the
fields or leaving a gap between them [110].

The mean PTV and OAR doses were slightly higher for the
eMLC generated plans (II). The largest differences accounting for
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approximately 4% of the prescribed dose were found in the mean
dose and in the high dose region of the PTV (D5%, D10%). For
both the left lung, and heart the differences were small (0.5% or
even less). The slightly higher dose for the eMLC compared to the
insert plans may be due to a different shape of the eMLC field (saw-
toothed edges), a different source-to-collimator distance or different
thicknesses and materials of the collimators. However, the particle
fluence with low energy eMLC beams are smooth already at the
surface [81] and the saw-toothed field shape is not seen in isodoses
at the dose maximum depth [70].

Using the same CSD 5.8 cm for both collimators leaves enough
space for patient positioning. A longer CSD (e.g. 10 cm) would
likely have lead to differences in the penumbra and dose inside the
field edge even smaller.

The possibility to increase the dose in the build-up area of the
electron depth dose curve was studied by using adjacent narrow
beam segments with a width from 0.3 cm to 1.5 cm (III). The accu-
racy of the beam model for the narrow beams was good since the
VMC++ dose calculations and measurements agreed within 2 mm
in 93.7% of the voxels. This was comparable to previously reported
calculations for electron inserts [18, 19, 87, 107, 111]. The build-up
dose was enhanced due to the absorption of direct electrons by
the eMLC, edge scatter and collimator transmission. Beam seg-
ments with a width less than 1.0 cm at SSD 102 cm have a surface
dose more than 90% of the depth dose maximum. At a longer
SSD 105 cm, the surface dose is increased only modestly compared
with the open field of the same size (III). For the segmental field
with 1.0 cm wide segments at SSD 102 cm, the surface dose and
target coverage was comparable to a 0.5 cm thick bolus. With the
1 cm wide segment the therapeutic range was not markedly re-
duced compared to an open field (III). The reduction was clearly
evident with narrower fields.

The dose from bremsstrahlung photons with 6 MeV electrons
was 4% for the 9×10 cm2 field (1.0 cm wide segments). The photon
dose may limit the use of the segmental field technique in some
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cases since the amount of treatment head generated bremsstrahlung
increases with the number of segments due to leaf transmission.
However, the photon dose could be reduced by using thicker leaves
made of high-Z material.

Flatness for the segmental field profiles was slightly worse than
with a size-equivalent open field (III). Summing of various small
fields and energies, with the weights determined by inverse op-
timization similar to the proposal of Al-Yahya et al. [2, 3] might,
result in improved profiles.

The effects of the leaf shape and material were studied by a
BEAMnrc treatment head model and there was found to be an ex-
cellent agreement between calculated and measured dose (IV). A
field size of 1×10 cm2 was selected to study the effect of leaf shape
since the differences should be most evident with a narrow field.
With the 15◦ face angle leaves pointing towards the beam axis, the
build-up dose was higher as compared to straight and round leaf
shape for narrow eMLC fields.

There were only minor differences in fluence and angle distri-
butions between different leaf materials for 6 MeV beam energy.
With tungsten, the total fluences at 1 cm outside of the 1×10 cm2

field were 54% and 59% lower compared with steel and brass for
12 and 20 MeV. With high energies, the fluence and angle spec-
tra were more peaked for tungsten than other materials (IV). Sim-
ilar to the report of Ma et al. [81], leaves made of steel resulted in
slightly wider fluence distribution than tungsten. Additionally, for
the 15◦ face angle the mean energy for brass was identical to steel
with 6 MeV.

In the energy spectra for different leaf shapes, the 15◦ face an-
gle leaves had a slightly wider spectrum compared with straight
and round leaves. With the 15◦ face angle leaves, there were more
electrons scattered at wide angles below the eMLC compared to
straight and round leaves (IV). In addition, there were more low en-
ergy electrons in the energy spectrum for the 15◦ face angle leaves.
For five abutting 6 MeV fields, the 15◦ face angle leaves resulted in a
96% build-up dose at 5 mm depth, which was ten percentage units
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higher than with round or straight leaves. However, the effect was
reduced to 89% build-up dose at 5 mm depth with 15◦ face angle
leaves compared with 85% for other leaf shapes for SSD 105 cm (IV).
This was due to scattering of electrons in the air gap between the
eMLC and the phantom surface. Because of the low energy of these
electrons, they had only a slight effect (less than 1 mm decrease) on
the therapeutic range.

The effect of eMLC leaf shape on build-up dose at 5 mm depth
was between 3-4% units with 12 MeV at SSD 105 cm. At SSD 102 cm
and for 20 MeV beam energy, the effect was only marginal. Since
bremsstrahlung photons from the treatment head are known to
be produced mainly in the scattering foils of the linac in electron
beams [92, 109], the photon tail in depth dose curves was of the
same order for all leaf shapes.

In summary, the eMLC is potentially feasible for electron beam
collimation. Although in a typical treatment, there are no major
differences compared to insert-based collimation, the profiles are
slightly pronounced near to the field edges at SSD 100 cm. This
effect should be considered when matching the eMLC beams. In
the segmental field technique, the dose in the build-up area of the
depth dose curve was increased. The cost was a minor reduction
of the therapeutic range and summing the dose from leaf transmit-
ted photons. Since the bremsstrahlung dose was only a fraction of
the build-up maximum dose due to a low beam energy, segmental
fields might be considered as a choice for using a bolus on the skin.
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7 Conclusions

Electron beam collimation with an add-on type eMLC is a feasible
technique. In a clinical case of the chest wall irradiation, there are
no major differences in dose distributions from the eMLC compared
to the present collimation with low melting point inserts.

Modelling of the eMLC beam can be performed with a good
accuracy by a parametrized Monte Carlo beam model. In addition
the calculation time is short enough for clinical use with the VMC++
algorithm. Thus the beam model may be further developed for
clinical application. However, some improvements will be needed
in modelling the small square fields of high energy (16-20 MeV).

Build-up dose of narrow composite segmental eMLC fields is
markedly enhanced compared with the situation in a large field.
The advantage of this is that one achieves a higher dose to the target
volume near to the skin surface at the cost of dose homogeneity in
the abutting fields. The segmental 9×10 cm2 field formed from
1×10 cm2 segments results in a build-up dose that is comparable to
the bolus technique. The segmental fields may be considered as a
choice for using a bolus on the skin.

The shape of the eMLC leaf has a marked effect on the build-up
dose with narrow fields. A 15◦ angle leaf end can result in a surface
dose which is up to 91% of the dose maximum. A device equipped
with motorized leaves would facilitate the clinical use of the eMLC.
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Megavoltage electron beams have 

been applied to treat superficial 

target volumes throughout the past 

few decades of modern radiotherapy. 

The new and promising leaf-based 

collimators aim at more practical 

beam delivery. Together with the 

new beam models and fast Monte 

Carlo simulation methods, the accu-

racy of dose calculations is improved 

without markedly increasing the re-

quired computational resources and 

time in clinical situations.
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