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Several properties of paper are largely de-

termined by the fibre orientation distribu-

tion in a paper sheet. The fibre orientation 

distribution is, in turn, mainly determined 

by the complex fluid dynamics in the be-

ginning of the paper making process.

In this thesis, the fibre orientation distri-

bution at the beginning of the paper mak-

ing process is studied using an Eulerian 

modelling approach which results in a 

fibre orientation probability distribution 

in certain flow conditions.

The results presented in this thesis 

provide information about how the fibres 

would most probably behave in low 

concentrations by statistical means. Thus, 

with the aid provided by these results, 

new ideas about the improvement of the 

process design may be evoked.
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ABSTRACT

Multiphase flows are of great interest in many fields of science and

industry. In such a flow the particles are carried along the fluid flow

but as the particle concentration grows they start to modulate the

flow of the carrying fluid. The interaction, or the coupling, between

the particles and the fluid vary depending on the properties of the

particles. In papermaking process the fluid-particle mixture is called

the fibre suspension, which consists of water, flexible wood fibres,

fillers and chemicals. In these suspensions the salient feature is the

length and flexibility of the wood fibres. The fibres translate, rotate

and stretch under the effect of the fluid forces. The properties of

the produced paper is largely determined by the two-way interaction

between the fluid and the fibres.

In the beginning of the manufacturing process the suspension

flows through a device called the headbox. The hadbox includes flow

distributors, turbulence generator and a slice channel. The slice chan-

nel is a contracting channel which generates a thin jet which delivers

the suspension into moving porous fabrics. This so-called wire-section

initiates the water removal process and the basis of the paper sheet

is formed. The fluid dynamics of the headbox and the wire section

play crucial role in the papermaking process. Since the fibres used

in the papermaking are long their alignment with respect to the flow

direction can vary. The headbox, especially its slice channel, can be

used to control this alignment, the so-called fibre orientation, which

affects the paper properties such as the strength of the paper sheet.

The fibre orientation distribution, in turn, is mainly determined by

the fluid dynamics of the headbox. Thus, the understanding of the

orientation mechanism and the two-way interaction between the fi-

bres and the flow is essential to be able to control the orientation

distribution which has to be different depending on the paper type.

In this thesis work the development of fibre orientation distribu-

tion in a contracting channel flow and in a jet-to-wire-impingement

is studied with modelling. The model used in this work for the fibre

orientation probability distribution is based on a diffusion-convection



equation and it includes the flow induced rotation of a fibre and the

turbulence’s randomising effect. Numerical solution of the model is

carried out by means of finite element method with using flow profiles

simulated with commercial computational fluid dynamics software.

The flow conditions and model parameters are adjusted with the aid

of experimental data provided by Tampere University of Technol-

ogy. The aim of the thesis is to study the physics of the phenomena

in question and to investigate the models capability to predict the

complicated phenomena occurring in the scope of the thesis. The

achieved fibre orientation distributions in the contracting channels of

different contraction ratios and flow rates, and in the impingement

zone are presented and discussed in the light of current knowledge.

PACS Classification: 47.55.-t, 47.11.-j, 47.57.E-, 47.60.Dx, 83.80.Hj,
83.50.Ha
Universal Decimal Classification: 532.52, 532.54, 676.014.8
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tional fluid dynamics; numerical analysis; finite element analysis
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V Niskanen, H., Hämäläinen, T., Eloranta, H., Vaittinen, J. and
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of J. Hämäläinen and T. Hämäläinen. The model was solved with

commercial CFD software Ansys CFX. The validation of the model

was done with the aid of the experiments performed by H. Eloranta,

who also contributed in writing the experimental part of the paper.

The publication V is a extended conference abstract and was written

by the author of the thesis under guidance of J. Hämäläinen. The
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1 Introduction

Papermaking, like many other phenomena in nature and processes in

the fields of science and industry, involves fluid flows where the carry-

ing fluid transports particles and other ingredients among its passage

through the manufacturing process. In the case of papermaking the

carrying fluid is water and the particles and other ingredients are e.g.

the wood fibres, chemicals and fillers. This mixture is called the fibre

suspension which forms the basis of the produced paper. The pres-

ence of the many ingredients and their interaction with each other in

the flowing suspension makes the behaviour of the flow very complex

by nature.

The fibre suspension goes through many phases during the manu-

facturing process. Shortly put, the production line in general consists

of the same basic unit processes which are the headbox, former, press

and dryer. The suspension is led to the headbox from where it is

spread out as a thin jet to the moving fabrics, the so-called wires,

then entering further on to the other processes. The water removal

begins at the wire section where the fibres settle down on top of wires

and the basic structure of the paper is formed. While the manufac-

turing process continues the water is being removed completely and

after pressing and drying the paper is ready to be rolled.

The way the fibres finally settle down to form the network is

mainly determined at the wet-end of the paper machine, or more

precisely, at the paper-machine headbox. The design and flow con-

figuration of this particular unit is used in controlling the paper prop-

erties which need to be different for the all various paper grades, e.g

for printing or packing paper. One of the key issues to be controlled

is the alignment of the fibres, that is the fibre orientation. It af-

fects e.g. the strength properties and on phenomena like cockling

and curling [1] of the paper thus, is essential in determining the qual-

ity and usability of the paper. Besides the design of the headbox,

since the fibres are dispersed in water, the natural consequence is
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that the initial orientation as it leaves the headbox is largely affected

by the fluid dynamics of the headbox. Not only the headbox flow

configuration affect the large-scale profile of the orientation, such as

the basis-weight variation, but also it has significant impact on the

small-scale profile by means of formation. Thus, in order to be able

to control the papermaking process to produce paper of high qual-

ity it is essential to understand the fluid and particle dynamics and

mechanisms inducing certain kind of fibre orientation state.

Figure 1.1: The structure of a modern headbox. The different parts indicated in
the figure are 1. Header, 2. Dilution control, 3. Manifold tube bank, 4. Equalising
chamber, 5. Turbulence generator, 6. Slice channel, 7. Vanes and 8. Slice bar.
The figure is printed by courtesy of Metso Paper, Inc.

An example of a headbox is presented in Fig.1.1 The main purpose

of the headbox is to create a thin and even jet by the width of the

whole paper machine to be supplied to the forming section. The

suspension enters the headbox from the stock preparation. After that

2 Dissertations in Forestry and Natural Sciences No 46
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it is mixed in the turbulence generator and finally accelerated in the

slice channel. From the slice opening the jet enters into the open air

and hits the wires which initiates the water removal process and the

formation of the fibre network. Figure 1.2 illustrates the structure of

the former and the jet impingement from the headbox to the wires.

The jet-to-wire impingement may influence the paper properties such

as formation, fines distribution and two sidedness [2–4]. Thus, the

behaviour of the suspension as it hits the wire is an important factor

in studying and understanding the mechanisms and phenomena in

different steps of the papermaking process.

Figure 1.2: Sketch of a gap former. By courtesy of Metso Paper, Inc.

1.1 ON FLUID DYNAMICS IN FIBRE SUSPENSION

FLOWS IN PAPERMAKING

The paper machines run with high speed of about 100km/h. The

speed of the fibre suspension at the opening of the headbox can be

several tens of meters per second making the flow of fibre suspension

turbulent. The fact that suspension consists of basically two differ-

ent phases causes additional complexity in its behaviour. Even if the

concentration of the fibres in the water in the headbox is seemingly

small (about 1%) the effect of the presence of the fibres and other

ingredients is tremendous, especially when the concentration grows.

Interparticle forces become important even at volumetric concentra-

tions of 1% or less [5]. The presence of the fibres affect e.g. the

Dissertations in Forestry and Natural Sciences No 46 3
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drag reduction and the stress on the fluid [6]. Not only the carrying

fluid, in this case the water, have effect on the fibre phase but also

the presence of the fibres modulate the carrying fluid. It has been

observed (e.g. [7–9]) that the viscosity of the water can be altered

because of the fibres and that the properties, such as stiffness and

curvature, of the fibres affect the variation in viscosity. In [10] the

modified stress was studied in different situations e.g. for strong and

weak Brownian motion. The additional stress in the fluid due to the

fibres and their orientation distribution for short fibre suspensions

have been discussed also in [11–13]. In addition, the fibre orientation

and the stress were coupled in their work and differences in the flow

configuration due to the fibres were seen.

The rather small concentration of the suspension in papermaking

process may not seem like the optimal solution. However, growing

the concentration would increase the resistance of the suspension,

i.e. increasing the yield stress, so that it is more difficult the get the

suspension flowing. The fibre suspensions have been observed to obey

the so-called power law arising from the modified viscosity and the

power law behaves differently according to the type of fibre used, as

discussed e.g. in [14]. The basis for good formation is the uniformity

and the mobility of the fibres and dilution is principal method in

increasing those factors leading to a small headbox concentrations.

The concentration however, is not the only aspect but the length of

the fibre plays an important role as well [15].

In addition to the aspects discussed previously, the flow occurs in

a closed system of large amount of fine details which cause various,

complicated flow phenomena to co-exist in the system. Presence of

the walls affect e.g. the fibre deposition process [17]. It has been ob-

served e.g. by [16] that there may exist different flow regimes in pulp

fibre suspensions already at low concentrations. The flow regimes

are illustrated in Fig. 1.3. The regimes are often called as 1) the

plug flow with wall contact, 2) plug flow with lubrication layer, 3)

plug flow with streaming annulus, 4) mixed flow and 5) fully turbu-

lent flow. Basically this indicates that the fluidisation of a fibre plug

is induced at the vicinity of the walls and is further spread out in

4 Dissertations in Forestry and Natural Sciences No 46
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Figure 1.3: Regimes of fibre suspension [16].

to the flow finally breaking the plug-structure and causing complete

fluidisation and turbulent flow. In order to get the suspension flow-

ing, a certain yield stress needs to be overcome. In the work of [9]

it was observed using particle-level simulations that the yield stress

depends on volume fraction, and that in the flocculated suspensions

the shear thinning regime extends into lower shear rates than it does

in homogeneous suspensions. The headbox flow can be considered

as a fully turbulent flow with intense enough strain rate so that the

fibres are completely mixed in the water and plug-flow is not formed.

Because of this, from the modelling point of view, the flow of fibre

suspension in the headbox can be considered to be similar with the

flow of pure water, especially when considering a case of very dilute

laboratory-scale headbox experiments.

Besides the closed flow systems, there exist free boundary layer

flows, e.g. the jet originating from the slice channel, and permeable

surfaces like the wires at the forming section, where the water is

passed through the moving porous fabrics. In addition, there might

be flow dividing components in the flow configuration like the vanes

in the slice channel. The existence of the vanes cause instabilities

producing vortices and cause wake and streaks into the flow, as dis-

cussed e.g. in [18, 19]. The phenomena due to the varying geometry

and properties of the boundaries may cause sudden changes e.g. in

Dissertations in Forestry and Natural Sciences No 46 5
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turbulent kinetic energy and dissipation and in the flow velocity gra-

dients. These all are important issues determining the orientation of

the fibres in the flow.

A detailed knowledge about the interaction between the fibres

and the flow still remains an open question. It is commonly sug-

gested that the fibres dampen the velocity fluctuations [20], whereas

intense enough turbulence increases the fibre dispersion preventing

flocculation and induce random orientation [21, 22]. In addition, de-

pending on their size the presence of particles may decrease or in-

crease the level of turbulence. Whereas small particles increase the

dissipation the large particles may cause additional turbulent pro-

duction. The particles of intermediate size may do both. What it

comes to particles of long aspect ratio, such as fibres, the effect is

even more complicated because of the possible floc formation and its

effect on turbulence. The various effects of particles on the flow field

and turbulence as discussed e.g in [23]. It was observed that the par-

ticle concentration plays important role in development of turbulent

intensity and that the effect is also dependent on the mean flow ve-

locity. Further on, the acceleration of the flow, as it is present in the

slice channel, contributes greatly to the fibre orientation by aligning

the fibre into the flow direction (e.g. [24]). Depending on the flow

configuration and e.g. on disturbances of the run in the manufac-

turing process, the profiles in machine, cross-machine and in vertical

directions may vary largely between the products. Work concerning

large scale fluid dynamics of the flow configuration has been carried

out e.g. in [25–27]. The work has been concentrating on optimising

the shape of the headbox in a way that the outflow profile is as even

as possible, and the fibre orientation distribution is optimal with re-

spect to the preferred paper properties. To draw a conclusion, the

development of the certain fibre orientation profile in different hori-

zontal and vertical directions is extremely sensitive to all the different

factors and thus, is not simple task to be resolved.

Besides the fluid dynamical aspects of the process line, the chem-

icals and fillers affect the properties of fibre suspensions, see e.g. [28].

The additives affect e.g. on surface chemistry of fibres and thus, plays

6 Dissertations in Forestry and Natural Sciences No 46
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role e.g. in flocculation and retention. Naturally the surface chem-

istry of the fibres cause different kind interaction with water when

compared with the situation where the additives are not present. In

general the use of additives is rather complex issue and have effect on

the runnability and is very important factor in papermaking. How-

ever, in this thesis the aspects related e.g. to the generation and

distribution of electrostatic forces or chemistry of the suspensions are

not addressed in any details.

1.2 MOTIVATION OF THE THESIS

As mentioned, the orientation of the fibres in paper and in paper-

making process affect notably on paper properties. Because of this

it deserves attention while considering the papermaking process and

its design. Basically there exists two ways to predict the orientation

of the fibres. First one is the Lagrangian approach which models

individual fibres and second one is the Eulerian approach, which con-

siders the undefined numbers of fibres and predicts their statistical

behaviour. The first approach is more accurate but requires also

much of computational power and can be solved only in very small

scales. However, it is the only way to study the mechanisms affecting

the fibre orientation in greater details. The second approach is less

accurate but may be used in larger scales and it provides information

about how the fibres most probably behave.

The approach to consider the probability distribution of certain

orientation has been widely (e.g. [29–34]) used during the past decades.

The result of the approach is the fibre orientation distribution for

different orientation angles with respect to the mean flow, that is,

the paper machine direction. Some of the researcher in the field use

components of the orientation tensor instead of the probability dis-

tribution in determining the orientation tendency. The basis of the

modelling approach is the use of conservation of the probability flux

and the use of diffusion-convection or Fokker-Planck-type equation.

The latter uses the assumption of distribution function in describing

the development of the orientation distribution along the fluid flow

Dissertations in Forestry and Natural Sciences No 46 7
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in given flow conditions. There exists various ways to formulate the

problem. Some differences in approaches arise mainly from the def-

inition of the flow induced rotational velocity of the fibre. However,

all the variations are based on the work of Jeffery [35] for a rigid

ellipsoidal particle in simple shear flow. The work has been later on

extended to cover particles with different aspect ratios. In addition to

the general model formulation the diffusion coefficients appearing in

the model have been under discussion and several models have been

developed to describe them.

The modelling approach used in this thesis has been widely used

in many different applications such as contracting channel flows e.g.

[32, 36, 37], in turbulent conditions [29, 38, 39], near walls [40] and in

fixed beds or porous media e.g. [41]. Even though the problem formu-

lation is rather common, there is not much documentation about how

the problem formulation behaves mathematically and how it works

in different flow situations.

In this thesis the orientation distribution is solved using diffusion-

convection equation with one of the commonly (e.g. [20,31,42]) used

vector formulation for the rotational velocity, as will be described

later in the text. The chosen model is tested in the light of experi-

mental data provided by Tampere University of Technology. In ad-

dition, different flow configurations are modelled in order to see how

the model works and behaves in general. This is of interest because

the spherical coordinate system used in determining the fibre orien-

tation is singular and simplifications have to be done in order to be

able to solve the problem. In addition, the effect of simplifications is

studied using the different level of simplifications in modelling. The

study of model capability is essential in developing modelling tools

and improving them. The purpose of the work is to clearly derive the

model and list the assumptions and simplifications, and to investigate

in what kind of situations it works or fails thus, to give ideas about

what approaches to use in modelling the orientation of the fibres.
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1.3 OUTLINE OF THE THESIS

The thesis is constructed as follows. First the theoretical background

and related phenomena are described in Chap.2. In addition, the

governing equation and short review on their basis is given. The full

model is derived and simplifications used in this thesis are stated.

The determination of the diffusion coefficients is also discussed and

the model for the rotational diffusion coefficient is given.

In Chap.3 the numerical approach to solve the fibre orientation

distribution is given and the variational formulation used in building

the model for the fibre orientation is derived. The implementation

of the model for the case of the contracting channel and for the jet

impingement is depicted.

The modelling results are presented in the Chap.4. First the lab-

oratory scale headbox used in [43] is covered comparing the model re-

sults with experimental data. Next, the effect of the flow rate and the

vane is studied. In addition, two other contractions are investigated

and the orientation behaviour and model’s functionality is discussed

using different stages of simplifications and using a constant value

and the model described in Chap.2 for the rotational diffusion coef-

ficient. After studying the contracting channel with various model

formulations the modelling results from the jet-to-wire impingement

are presented and analysed with using the most detailed model for-

mulation given in Chap.2.

After showing the results the discussion and concluding remarks

are discussed in Chap.5 and ideas for future work are suggested.
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2 Theoretical background of

the fibre orientation model

Because it is often difficult or expensive to perform experiments or

to measure certain properties or quantities of different phenomena,

common procedure is to model the phenomena and by that means to

predict the properties and relevance of the quantities of interest. In

some cases, like in papermaking, the execution of the experiments is

sometimes rather difficult since the applications can be very closed

systems and it may not be possible to install experimental set-ups

without disturbing the process and thus, maybe ending up with erro-

neous results. In the case of experiments, and especially in the case

of modelling, one of course has to bear in mind that the results can

not be expected to provide the full knowledge of the modelled system

since some compromises and simplifications have to be made in most

cases.

It is common to use mathematical equations in describing certain

practical or natural phenomena. However, the analytical solutions

are not often available in these cases. That is why numerical meth-

ods have to be used in order to achieve the solutions to the equations.

The approximations used in numerical approaches may induce errors

and one has to be aware of what kind of a numerical method is suit-

able for the modelled problem in question. In addition, the physical

domain where the model is to be solved has to be approximated by

discretisation, that is, creating a mesh for the domain using small ele-

ments e.g. triangles, squares, pyramids or hexahedron. The accuracy

of the discretisation cause also some error to the solution. Sometimes

compromises between the computational cost and accuracy have to

be made e.g. by limiting the number of iterations or using coarse

computational mesh. However, when the model is defined and im-

plemented properly, good results are achieved and the results can

be used in indicating how the various quantities behave in certain
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situation.

2.1 BACKGROUND OF THE FIBRE ORIENTATION MODEL

In this section the different aspects related to the flow of fibre sus-

pensions are introduced. Basically when the flows consisting of sev-

eral phases are considered, a distinction can be made between the

dispersed and the continuous phases. The fibre suspension can be

assumed to be a two-phase flow, where the fibre phase is dispersed in

the water phase. In the following some characters of these flows are

discussed.

Since the fibres have a notable length-to-diameter aspect ratio

their motion in the carrying fluid is basically a combination of trans-

lation and rotation which are determined by the flow conditions. The

mean flow transports the fibres along the flow field and the velocity

fluctuations and the turbulence induce the rotation. Considering a

pure straining motion, elongated rigid particles (or the fibres) mainly

align parallel to the direction of the greatest principal rate of ex-

tension, provided that the Brownian motion is weak. Within this

manner their contribution to the bulk stress is the greatest [11]. Of-

ten when studying particle orientation a simple shear or constant

velocity gradient flow is assumed. Different kind of shear flows have

been discussed e.g. by [44,45] in the study about the rheological and

micro-rheological properties of dispersions. In [45] it was observed

that the nonhomogenity of the flow field plays important role in the

motion of the fibre. The headbox flow, for example, is highly non-

homogenious containing strong velocity gradients. Good example of

such is especially the streamwise velocity gradient which is increas-

ing notably while approaching the outlet of the channel. It was found

in [20] that fibres tend to align with the rotational and extensional

axes. According to [46] the strain, vorticity and the dimensionality

of the flow are suggested to be the main factors affecting the particle

orientation. The importance of shear rate was observed also in [47].

In addition to the translational motion of the fibres, there exists

the random motion similar to diffusion, often described by Brownian
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motion, which arise from the particles motion independent of the

flow. The random motion caused by the turbulence is often referred

as turbulent dispersion or diffusion. The contribution of the flow

is composed so that the mean flow tends to align the fibres into the

flow direction, whereas the velocity fluctuations tend to distract their

alignment from the flow direction. In general, fibre orientation in

laminar regime is found to be very different from the orientation in

turbulent regime [48]. It was observed in [10] that even the weakest

rotary Brownian motion causes the orientation distribution of the

particles to be independent of the initial orientation state. This kind

of situation occurs in the headbox and there seems to be a delicate

balance between turbulence and acceleration, as discussed e.g. in

[43,49]. It is common (e.g. [31,38,50]) to use the so-called rotational

Peclet number Per to estimate the relation between these two factors.

Some authors e.g. [47] use the product of the Peclet and Reynolds

numbers to characterise the effect of the flow regime on the fibre

orientation.

Besides the flow configuration, the concentration of the fibres

plays an important role. The concentration varies depending on the

application and the rheological properties of the suspensions change

notably according to the concentration and elasticity (see e.g. [51–

54]). Obviously the concentration affects the way the fibres can move

in the suspension. The lower the concentration the more freely the

fibres can rotate and move among the flow. As the concentration

grows the contact between the fibres increase and the increased in-

teraction and contact between the fibres cause flocculation, that is,

the fibres attach to each others and form lumps. Besides the com-

mon way to use Stokes number in defining the regime of the flow, the

interaction tendency of the fibres with each other can be described

with crowding number N as discussed e.g. in [55, 56]. It was further

mentioned that for the headbox concentrations the number is in the

range 1 < N < 60, which means that there exists forced collisions

and the flow regime can be assumed to be semi-concentrated. The

effect of the fibres’ length distribution on the crowding number was

discussed in [57]. It was observed that the distribution of lengths
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increases the mean crowding number compared with the situation

where the length distribution is uniform. In addition, the distribution

of crowding number was found to resemble a log-normal distribution.

Moreover, for a given volume fraction in dilute suspensions, the con-

tribution of the length distribution increases rapidly according to the

length-to-diameter aspect ratio of the fibres [11]. In the case of dilute

suspensions the fibres are hydrodynamically independent. However,

the definition dilute depends on the particle length-to-diameter as-

pect ratio. In addition, the dilute-suspension theory can not predict

the particle stresses which according to [11] are more than the pertur-

bation of the stress due to the ambient fluid alone. Naturally surface

chemistry have effect on fibre-fibre and fibre-water interactions but

those aspects are excluded from the scope of this thesis.

As it has become clear, there is strong coupling between the fibres

and the flow. Additional challenge with fibre suspensions arises from

the fact that the fibres are long and slender, not spherical as often

is the case when theories to describe multiphase flows (e.g. [58]) are

derived. The properties of the fibres (or particles in general) affect

the way the particles respond to the changes in flow configuration.

The long fibres respond to the average of the fluid velocity along the

fibre length rather than to the velocity at the fibre centre. Because of

the particle inertia, or because the particle size becomes larger than

the size of the smallest eddies the motion of the particles may devi-

ate from the fluid motion. However, often the inertia of the particle

is neglected. It was observed in [20] that the fibres whose length is

much smaller than the Kolmogorov’s length scale translate like fluid

particles and rotate like material lines. While the fibre length in-

creases their translational and rotational motion slows down since

the fibres becomes insensitive to the smaller eddies. In addition, as

already stated, depending on the concentration and the properties

of particles, the dispersed particle phase may affect the behaviour of

the continuous phase. In case that there exists a mutual interaction

between the particles and the flow, the flow is said to be two-way cou-

pled. If, in addition, the interactions such as collisions or attachments

between the particles in the dispersed phase are taken into account,
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the interplay is essentially a three-way-coupling. In this thesis, the

study is reduced in the situation where the flow affects the fibres but

not vice versa, i.e. the one-way coupling of the system is considered.

This is just assumption in the case when the focus is on the head-

box flow as in most of the cases of the present study. However, this

assumption may fail in some cases which are to be discussed later.

Often in the case of multiphase flows attention is paid on mass, mo-

mentum and energy transfer between the particles. In this thesis,

those issues are not addressed since any transformation is not taking

place in the system.

Figure 2.1: An example image of flexible fibres from [43] provided by Dr. H.
Eloranta.

One important feature to be mentioned related to the fibre sus-

pensions is the flexibility of the wood fibres generally used in the

paper manufacturing process. It has been discussed e.g. in [52] that

for polymers the properties from a rodlike polymer differ notably

from the properties of flexible polymers. In addition, to be precise,

the shape (e.g. sharp- or blunt-ended body) of the particles in gen-

eral have an effect on how they move in the surrounding fluid. What

Dissertations in Forestry and Natural Sciences No 46 15



Heidi Niskanen: Modelling of fibre orientation in contracting channel flows
and in the jet-to-wire impingement

it comes to the flexibility the same holds for the fibres and thus, the

research concerning the flexible and curly fibres and other particles

have been vivid e.g. [7–9, 59, 60]. One obvious distinction between

the rigid and flexible fibre is the deformation of the flexible fibres due

to the flow forces. Hence, their alignment with respect to the flow

configuration is not that ambiguous as can be seen from Fig. 2.1.

The orientation of various fibre types have been studied e.g. in [61]

and indeed the orientation distribution develop in different manners

for the different fibre types studied. In addition to the general prop-

erties of the fibres, or particles in general, the effect of their size can

be essential.

2.2 THE MODEL FORMULATION

There exist various ways to model the development of the fibre ori-

entation, for example, using orientation tensors as e.g. in [33, 62, 63]

which are defined as an average of the second moment of the orien-

tation vector. They however, require closure approximations which

are not always trivial to define. The approach which can solve parti-

cle trajectories and basically determine the orientation directly is the

Lagrangian approach. In that approach the hydrodynamics of the

fibres are studied by means of single spheres and spheroids or con-

structing a fibre with chains of balls or rods (see e.g. [64, 65]). Then

the deformation of that constructed fibre is determined. Advantage

with that approach is that it can solve the fibre motion accurately

but on the other hand it is computationally very expensive since in

order to achieve distribution of fibre orientation plenty of simulations

have to be performed. One computationally heavy way to do that is

to simulate plenty of fibres and calculate the statistics based on the

simulations, as done e.g. [66,67] in, but the drawback with nowadays

computers with that approach is that it can only be used in very

small volumes of approximately 1cm3.

In this thesis one of the popular methods, the so-called fibre ori-

entation probability distribution model is used. That is somewhat

statistical, often referred as Eulerian approach to solve the problem.
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It concerns solving the probability of all the possible orientations in a

given flow field. It is not very accurate method but it can be used in

much larger scales than those models using the Lagrangian approach.

In addition to the mean components, the fluctuating components can

be included in the model, as done e.g. in [48,68]. The various ways to

model different scales of fibre suspensions are discussed e.g. in [69].

2.2.1 Derivation of the fibre orientation probability distri-

bution model

To formulate the fibre orientation probability distribution model the

common assumptions and notations familiar from the theory of dif-

ferential geometry and manifolds are used. More details of the fol-

lowing can be found e.g. from [70–72]. Here the system is basically

5-dimensional manifold consisting of the fluid flow space and the fi-

bre orientation space. Thus, a fluid domain Ω ⊂ R
3 and a unit

sphere S2 ⊂ R
3 are defined and further define M = Ω × S2, M be-

ing a smooth manifold. Next, consider a coordinate system defined

with coordinates xi and some smooth function u ∈ M. Let g be a

Riemannian metric on M. Components of g in the given coordinate

system are denoted by gij and gij producing a matrix G and G−1,

respectively.

Figure 2.2: The spherical coordinate system used in determining the orientation
vector.

The fibre orientation in S2 is determined using parametrisation

X : S2 → R
3, X(θ, φ) → (x1(θ, φ), x2(θ, φ)x3(θ, φ)), where 0 ≤ θ ≤
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2π and 0 ≤ φ ≤ π (illustrated in Fig. 2.2). The orientation vector

is defined as

p =

⎛
⎜⎝ cos θ sin φ

sin θ sin φ

cos φ

⎞
⎟⎠ . (2.1)

Using these parameters the components of the metric tensor can be

calculated as

gij = Xθ · Xφ (2.2)

where Xθ and Xφ are the partial derivatives of xi with respect to θ

and φ,respectively. The metric tensor is then written as

G =

(
sin2(φ) 0

0 1

)
.

Next, the model used in evaluating the development of fibre orienta-

tion in certain flow field is described. Let us define Ψ : M → R to be

the solution of the problem. At the field of fibre orientation studies Ψ

is often referred as the fibre orientation probability distribution. Here

it describes the likelihood of a certain orientation angle at certain lo-

cation in Ω. The evolution of the distribution is commonly modelled

by a diffusion-convection equation (e.g. [29, 30, 39, 40]) which arises

from the continuity equation. It combines the diffusion and convec-

tion (or advection as called in some fields) equations illustrating the

diffusion and transport of the probability distribution Ψ in certain

domain. Since in this work the domain in question is basically the

5D manifold, the equation combines both the space of the flow field

and the fibre orientation space. Thus, the equation is written as

follows

∂Ψ

∂t
− DtΔΨ − DrΔS2 Ψ + ∇ · (vΨ) + ∇S2 · (wΨ) = 0, (2.3)
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where the notations ΔS2 and ∇S2 refers to the Laplace and divergence

operators on a unit sphere, respectively.

Furthermore, v is the velocity of the fluid and w is the rotational

velocity of the fibre. Coefficients Dt and Dr are the translational and

rotational or orientational diffusion coefficients, respectively, describ-

ing the effects of velocity fluctuations on how the fibres are distracted

from their state of orientation at certain moment. The first one is a

property of the fluid domain and the latter is a property of the orien-

tation domain. The concentration distribution is not considered here

i.e. the solution corresponds only to the orientation distribution of fi-

bres. It is worth to notice that in reality it is possible that the orienta-

tion distribution is not steady e.g. inertia and particle response time

to flow field fluctuations may cause some time-dependence. In this

thesis the flow is assumed to be incompressible and time-independent,

i.e. ∇ · u = 0 and ∂Ψ
∂t = 0, respectively, giving

−DtΔΨ − DrΔS2 Ψ + v · ∇Ψ + ∇S2 · (wΨ) = 0. (2.4)

One of the earliest studies concerning the motion of non-spherical

particles was done in [35]. There the equations of motion for an sin-

gle ellipsoidal, non-Brownian particle in Newtonian fluid with simple

shearing was derived and it was shown that particles will rotate in

periodic, closed orbits. The effect of Brownian motion is furhter dis-

cussed e.g. in [10]. Here the rotational velocity of the fibre is given

as (e.g. [20, 31,42])

w = ωp + λεp − λ < p, εp > p, (2.5)

where λ = (r2 − 1)/(r2 + 1) is a parameter related to the fibre aspect

ratio L/d, L and d being the length and the diameter of the fibre,

respectively and p gives the orientation of the fibre in surface of a

unit sphere. The origin of the vector p is placed at the centre of the

fibre. The notation <, > refers to the inner product of the vectors.

Further
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ε =
1
2

(
∇u + (∇u)T

)
and ω =

1
2

(
∇u − (∇u)T

)
(2.6)

are the strain rate and vorticity tensors, respectively. The experimen-

tal basis for the work are the long wood fibres. Thus, it is possible to

use approximation r → ∞ so that λ → 1. Assumption is reasonable

because it has been numerically tested in [73] that the length-to-

diameter aspect ratio should be less than 10 to affect the simulations

and here we are dealing with wood fibres of length-to-diameter aspect

ratio of about 100. Now using the coordinates (2.1) Eq. (2.5) can be

written according to e.g. [70, 71] as

w = w1êθ + w2êφ. (2.7)

To avoid errors the calculation of the components w1 and w2 was

verified with Maple ( [74]) and are given as follows

w1 =
1
2

sin (2θ)(ε22 − ε11) + cos (2θ)ε12

+ cot (φ)(cos (θ)ε23 − sin (θ)ε13)

+ cot (φ)(cos (θ)ω23 − sin (θ)ω13) − ω12

(2.8)

w2 =
1
2

sin (2φ)
(
(1 + cos2 (θ))ε11 + (1 + sin2 (θ))ε22

)
+

1
2

sin (2θ) sin (2φ)ε12

+ cos (2φ)(cos (θ)ε13 + sin (θ)ε23)

+ cos (θ)ω13 + sin (θ)ω23

(2.9)

Further, the divergence of the rotational or the angular velocity of a

fibre in its three-dimensional form is
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∇S2 · w = 3
(
(cos2(φ) − cos2(θ) sin2(φ))ε11

+ (cos(2φ) + cos2(θ) sin2(φ))ε22

− sin(2θ) sin2(φ)ε12 − sin(2φ) cos(θ)ε13

− sin(θ) sin(2φ)ε23

)
.

(2.10)

The diffusion-convection equation (2.3) is rather well-defined whereas

the spherical coordinate system, which is used in determining the fibre

orientation vector and the rotational velocity of the fibre, is singular

at poles i.e. in φ = 0 and φ = π. This cause some difficulties while

seeking for the solution for the problem.

Considering the solution Ψ as a probability distribution for all

the possible orientations few rules needs to be determined. First, the

unit sphere determined with parameters θ and φ gives all the possible

orientations for the fibre. Provided that Ψ gives the orientation in

the range of 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, it has to be normalised to be

unity over the surface as

∫
S2

ΨdS2 = 1 (2.11)

or ∫ 2π

0

∫ π

0
Ψ(p, r) sin(φ)dθdφ = 1. (2.12)

In addition, if the solution of the problem is unique the function Ψ

is π-periodic, that is

Ψ(θ, φ) = Ψ(θ + π, π − φ), (2.13)

that is, the fibre’s ends are indistinguishable. Furthermore, in the

case of probability the solution should be positive, i.e. Ψ > 0. While

considering the problem defined with the equation (2.3) and with the

vector field (2.5) there may occur situations where the model solu-

tions are not positive for all the vector fields w (and v). Solution for

some modelled flow profiles was negative which violates the assump-
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tion of probability. Those solutions are not included in this thesis

since the negative solutions are not physically meaningful. The neg-

ative solutions may be a problem related to the numerical aspects

of the model implementation. Clearly the rapidly varying velocity

gradients at some locations affects the numerical stability and makes

the convergence of the solution rather difficult. The cases where the

model did fail will be discussed later in more details.

2.2.2 2D simplification

The application related to the subject of the thesis is the headbox

slice channel which is essentially a planar contraction. The geometry

in question has been widely studied (e.g. [24, 32, 36, 75–78]) due to

its relevance for industrial application. In this work the model de-

scribed in the previous section has been validated with experiments

performed in a laboratory scale headbox used in [18,43]. The exper-

imental set-up is shown in Fig. 2.3. The experimental measurements

are performed in two cross-sections, that is in the xy- and xz-planes,

giving information about behaviour of the orientation at different

cross-sections.

Figure 2.3: The laboratory-scale headbox as utilised in [18].

The flow in the converging channel of the geometry, where the

orientation distribution is experimentally measured, is essentially 2-

dimensional in the xy-plane thus, here it is assumed that ε13 = ε23 =

ε33 = ω13 = ω23 = 0 and ε22 = −ε11. With this assumption the

equations (2.8) and (2.9) give
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w1 = − sin (2θ)ε11 + cos (2θ)ε12 − ω12 (2.14)

and

w2 =
1
2

sin 2φ(cos(2θ)ε11 + sin (2θ)ε12). (2.15)

The divergence of the rotational velocity is in this case

∇S2 · w = −3 sin2(φ)
(

cos(2θ)ε11 + sin(2θ)ε12

)
. (2.16)

Further on, because of the singularity problem the orientation is stud-

ied in xy-plane, i.e. in the plane of the paper. However, this is rather

reasonable simplification since the experiments, on which the numer-

ical results are compared, are performed in the plane of paper and in

the plane of contraction. For the plane of the paper φ = π/2 and

Eq. (2.3) becomes

−DtΔΨ − Dr
∂2Ψ

∂θ2 + v · ∇Ψ + ∇S2 · (wΨ) = 0. (2.17)

The components of the rotational velocity and the divergence are now

w1 = − sin (2θ)ε11 + cos (2θ)ε12 − ω12, (2.18)

w2 = 0, (2.19)

and

∇S2 · w = −3
(

cos(2θ)ε11 + sin(2θ)ε12

)
. (2.20)

With the planar simplification the only velocity component remain-

ing in the model is the streamwise velocity, that is, the velocity is

not introduced in in two-dimensions because of the above stated as-

sumption about the two-dimensional flow field in the plane of the

contraction. The plane of the contraction could be estimated by set-

ting θ = 0. This however, produce difficulties due to the singularity.

The case was tested by cutting off the poles but the model did not

Dissertations in Forestry and Natural Sciences No 46 23



Heidi Niskanen: Modelling of fibre orientation in contracting channel flows
and in the jet-to-wire impingement

converge well and even when some kind of convergence was reached

the results were not physically rational.

2.2.3 1D simplification

The one-dimensional headbox have been studied e.g. in [38]. Thus, in

addition to the 2D simplification the so-called one-dimensional head-

box is considered. Here the motivation for deriving this particular

model reduction is the above mentioned singularity problem which

arises especially in the plane of the contraction. The one-dimensional

approach have shown to be reasonable simplification in studying the

development of orientation in bulk flow, as presented e.g. in [43, 69].

It is of interest to compare different model formulations in order to

understand how to model certain phenomena and how the different

model components affect the solution. In the one-dimensional case

the equation of fibres rotational velocity (2.5) reduces to

w1 = − sin (2θ)ε11 (2.21)

and

w2 = 0. (2.22)

The divergence of the rotational velocity is then

∇S2 · w = −3 cos(2θ)ε11. (2.23)

2.3 DIFFUSION OF THE FIBRES AND THE DIFFU-

SION COEFFICIENTS

Besides the convection and turbulence of the flow, it is important

to consider the diffusion the fibres experience. In addition to the

initial, rather random orientation distribution, the presence of the

rotary diffusion in the fibre orientation distribution model prevents

the fibres from aligning completely into the flow direction. Among

numerous applications plenty of work (e.g. [34, 37, 41, 42, 79–81]) has

been done in order to determine the diffusion coefficients appearing in

the various approaches to model the motion and orientation of non-
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spherical particles. They include diffusion of tracer particles in fixed

beds (e.g. [41, 82]) and porous media (e.g. [83]) or the flow of fibres

in contracting channel flow (e.g. [37]), to mention but a few. Many

rather complicated models have been suggested for orientational and

translational diffusion in different flow configurations. One approach

for determination of orientational diffusion coefficient is the assump-

tion that it arises from hydrodynamical interaction which disturbs

the fibres away from the Jeffery orbits (e.g. [80,81]). In those studies

the diffusion was assumed to arise from fibre-fibre interaction being

random in nature. Some authors (e.g. [39, 49]) relate the diffusion

coefficient to the velocity fluctuations or to Lagrangian and Eulerian

velocity correlation using stochastic simulation. Dissipation is also

used while describing the effect of flow field as a randomising factor.

One rather common way to interpret the orientational diffusion is to

connect it with velocity gradients as suggested in [34].

The manifestation of the diffusion depends on the Reynolds num-

ber. For small Reynolds numbers, that is, basically for a laminar

flow, the interparticle interactions cause diffusion of the particles due

to the influence of the other particles. It is common to consider a

low-Reynolds number, simple shear flow as done e.g. in [35, 80, 81].

In order to investigate the effect of different turbulence scales, us-

ing slender body theory, the dependence of the fibres’ rotational and

translational diffusion on the fibre length and the Reynolds number

of the turbulent flow was studied in [20] and the predictions of [39]

was investigated in details. The authors [20] found that the rotary

diffusion coefficient is dependent on Reynolds number. They also ob-

served that there was no simple scaling related to the Kolmogorov

length and time scales indicating that eddies of all scales contribute

to the rotational dispersion.

Besides the flow conditions, the fibres’ properties affect the dif-

fusion or dispersion they experience. In addition, the orientational

state, that is more aligned versus random orientation distribution

plays a role in the diffusive processes. It is worth noticing that some

of the studies (e.g. [81,84]) consider both the number density or con-

centration of fibres in solving the orientation distribution and some
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studies (e.g. [37,49]) consider only the orientation neglecting the con-

centration variations. In addition, the diffusion in the absence of the

mean flow is considered e.g. in [84], where it was discussed that while

following a tracer particle the molecular diffusion is negligible com-

pared with the spread caused by long-range velocity fluctuations. In

this thesis the approach considering only the orientational diffusion is

taken since here we refer to experiments performed in [43, 61] where

the concentration is very low. Thus, strong concentration gradients

should not be present. The diffusivities of various flow regimes are

studied e.g. in [81] and it was discussed that even at semi-dilute

regime the effect of fibre-fibre contacts did not significantly deviate

the fibres from the Jeffery orbits. In addition, the flow field is clearly

turbulent thus, the fibres should be evenly mixed and their mutual

interactions should not be of that great importance. Neither the state

of the orientation is included in the diffusion coefficients in this work.

One more aspect in the studies related to the diffusion is the assump-

tion of the rigidity of the fibre; many researchers use the assumption

of rigid fibre based on the work of [35] and other consider slender

body theory (e.g. [80, 81]) applicable for large aspect ratio particles

when determining the fibres’ diffusivity. It is of great interest to con-

sider the assumption of rigidity since there exists many applications

where the particles are not rigid and hence, the assumption of rigidity

is then violated.

The paper [42] introduced an anisotropic rotary diffusion model

for both long and short fibre thermoplastic suitable for other appli-

cations as well. They discussed that the model derived by [79] for

long-range hydrodynamical interactions did not provide any improve-

ment for the model presented in [34] and was in addition heavy to use.

In [42] a projection from the from the Cartesian coordinate system

to the spherical coordinate system was used. This kind of projection

is not considered to be necessary in this work since here the diffusion

coefficient is scalar quantity instead of a tensor and a scalar measure

is a coordinate invariant.
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2.3.1 Shear rate dependent Dr

Basically the translational and rotational diffusion coefficients reflects

the Brownian motion of the fibres, which is here mainly initiated by

the turbulence and velocity fluctuations rather than by the random

collisions of the fibres with other fibres or walls. In the paper [81] the

coefficient has been related to the shear rate. The assumption of the

dependence of diffusion coefficient on shear rate is said to be valid for

fibres with aspect ratio bigger than 50. The interest in this work are

the wood fibres of aspect ratio about 100 thus, it is reasonable to use

the shear rate dependent diffusion coefficient. In [80] it was discussed

that according to slender body analysis the presence of large aspect

ratio fibres modifies the flow field only slightly at distances large

compared with fibre radius. Thus, the coefficient is not accompanied

with the orientational state. However, it is worth to mention that the

interaction coefficient is found to be dependent on the orientational

state e.g. in [85] for higher concentrations.

The rotational diffusion coefficient is defined according to [34] as

Dr = Ciγ̇, (2.24)

where Ci is often referred as an interaction coefficient which can be

related to quantities like concentration, aspect ratio or fibre length,

or it can be fitted from the experiments. Further, γ̇ is the shear strain

rate defined as

γ̇ =

[
n

∑
i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj

]1/2

. (2.25)

In addition to physical properties, some studies (e.g. [86]) use a slip

factor representing direct effect of fibre-fibre interactions. In this work

the interaction coefficient was fitted from the experiments presented

in [43]. In addition to the the value of Ci achieved from the fitting, an

alternative value was estimated depending on the contraction ratio

and the velocity at the outlet of the contraction. It was done simply

by scaling the reference value achieved from the experimental case
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with the values of contraction ratio and the outlet velocity of the

case in question.

Determination of the translational diffusion coefficient is discussed

with numerical results in Chap.4.
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3 The numerical approach

In this chapter the model implementation is described. Here the

method based on the use of finite elements (FE) is chosen for the

numerical solution of the equations. The solution procedure is named

accordingly as the finite element method (FEM). Principles of FEM

and its applications can be found e.g. from books [87,88]

3.1 VARIATIONAL FORMULATION

As defined in the previous section the fibre orientation distribution

is achieved as a solution for the equation

−DtΔΨ − DrΔS2 Ψ + v · ∇Ψ + ∇S2 · (wΨ) = 0. (3.1)

In order to solve the equation and get the approximative solution

the variational formulation of the problem has to be set. In order to

define the solution let us consider Sobolev space Ws,p(M) which can

be defined as Ws,p(M) = { f ∈ Lp(M) : ∀|α| ≤ s, ∂α
x f ∈ Lp}, where

α = (α1, . . . , αd), |α| = α1 + . . . αd and the derivatives ∂α
x f are taken

in a weak sense. Further, let us define a finite subspace Ws,p
0 (M) ⊂

Ws,p(M) and Ws,p
0 (M) = span{v1, . . . , vk}, where the functions vk

are the test functions. Formally vk = 0 at the boundaries.

Residual for the Eq.(3.1) is defined as

r = −DtΔΨ − DrΔS2 Ψ + v · ∇Ψ + ∇S2 · (wΨ). (3.2)

Here it is required that r = 0 in the weak sense. This means that

∫
∂M

rvkdM = 0, (3.3)

where the residual is multiplied with the test function defined earlier.

In previous chapter domain was defined as M = S2 × Ω, thus Eq.

(3.2) can be written as
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∫
M

rvkdM =
∫

Ω
(−DtΔΨvk + v · (∇Ψ)vk) dΩ

+
∫

S2
(−DrΔS2 Ψvk + gw · (∇Ψ)vk + (∇ · w)Ψvk) dS2. (3.4)

Here g is the Riemannian metric defined in the previous chapter.

Basically the solution is now an approximative solution of the form

Ψ ≈ Ψh = ΣN
i=1βiφi, where βi are unknown constants and functions

φi are known basis functions of the subspace. For the convenience

the solution is denoted with Ψ. Using the Greens formula of partial

integration Eq. (3.4) becomes

∫
Ω

(Dt∇Ψ∇vk + v · ∇Ψvk) dΩ

+
∫

∂Ω
Dt∇Ψ · nvk∂Ω

+
∫

S2
(Dr∇Ψ∇vk + gw · (∇Ψ)vk + (∇ · w)Ψvk) dS2 = 0. (3.5)

Now the metrics is defined as g(∇Ψ · ∇vk) = ∇Ψ · G−1∇vk and

g(w,∇Ψ) = w · ∇Ψ. The gradient and divergence are defined as

usual. Further, because the function vk was chosen to be zero at

the boundaries the corresponding boundary integral vanishes and the

formulation in Eq. 3.5 becomes

∫
Ω

(Dt∇Ψ∇vk + v · ∇Ψvk) dΩ∫
S2

(Dr∇Ψ · C∗∇vk + sin(φ)(w · (∇Ψ)vk) + (∇ · w)Ψvk) dS2 = 0.

(3.6)

The matrix C∗ is defined as

C∗ =
√

det(G)G−1 =

(
1/ sin(φ) 0

0 sin(φ)

)
.
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Above given variational formulation in Eq. (3.6) is written in its gen-

eral form. To be precise, the problem is actually defined on the surface

of a unit sphere thus, there is no boundary. However, because of the

singularity issue the model in this thesis is simplified into a plane

and is solved using parameterisation in 2-dimensional computational

mesh. This leads to the situation where the boundaries arise and

have to be considered. In the following section description of simpli-

fications and implementation of the equation in Numerrin software is

given.

3.2 MODEL IMPLEMENTATION FOR CONTRACTING

CHANNEL

In solving the fibre orientation the flow field was solved first and

the resulting flow field was imported into the fibre orientation solver.

First, the flow field in the geometry corresponding to the experimental

set-up was solved with commercial CFD software ANSYS CFX 12.1.

Turbulence was modelled with the Reynolds stress model. The model

was chosen for convenience since the turbulence in the contracting

channel is highly anisotropic as discussed e.g in [75,89]. The average

Reynolds number was defined as

Reav =
(vh)av

ν
, (3.7)

where (vh)av is the product of average the velocity v and the height

h of the channel, ν being the kinematic viscosity. The Reynolds

numbers in different cases are listed in Table 3.2.

In this work two different flow rates were considered in order to

study the effect of the acceleration with respect to the contraction

ratio. The reason to do so is that based on experimental results

it was suggested in [61] that the flow rate is essential factor in the

development of the fibre orientation. In addition, the experimental

geometry in Fig.2.3 was modelled without the vane with the same flow

rates as the original experimental set-up. The fluid in the simulations
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was pure water. The simplification was done because the orientation

model does not account for concentration. Thus, it does not take

into consideration possible modification of the fluid due to the fi-

bres neither the properties of the suspension. Rheological behaviour

of suspension is discussed e.g. in [90, 91]. However, the power-law

model discussed in those studies was tested (the results not shown

here) but the velocity profile from that simulation did not affect no-

tably the orientation in the bulk flow so the pure Newtonian water

approach was chosen. In addition, this choice was reasonable since

the fibre orientation distribution is not solved simultaneously with

the flow field. Some shear-induced migration of the fibres may occur

which could cause decrease in viscosity as discussed in [92]. In some

studies (e.g. [93–96]) the presence of the fibres is considered as an

extra stress in momentum equation. In [97] the stress in the three

scales of macroscopic flow field, the mesoscopic fibre orientation and

the microscopic macromolecular scales were summarised. In addition,

the orientation state of the fibres affect the flow kinematics (e.g. [98]).

However, here the concentration is assumed to be low so the phenom-

ena related to the extra stress and non-Newtonian behaviour should

not be of that great importance even though the presence of the long

and flexible fibres may cause some deviation in the flow configuration

compared with the flow of pure water.

The fibre-fibre interactions are not taken into account in the

model. Yet they may be important to some extent. However, because

modelling case Reynolds number×105

Geometry Fig.2.3 FL 26l/s 2.1
Geometry Fig.2.3 FL 52l/s 4.2

Geometry Fig.2.3 without vane FL 26l/s 2.7
Geometry Fig.2.3 without vane FL 52l/s 5.4

CR10 FL 26l/s 4.23
CR20 FL 26l/s 5.5

Table 3.1: Reynolds numbers in different modelled cases. Abbreviation FL stands
for flow rate.
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the experiments used in comparison with numerical results were per-

formed with dilute suspension, where the interactions should not take

place, the lack of the fibre-fibre interactions should not be that criti-

cal aspect. There is only one-way coupling between fluid and fibres,

that is, the flow conditions determines the development of the fibre

orientation distribution but the possible flow modification due to the

orientation distribution is not taken into account. The effect of fibres

on turbulence, for instance, is still unresolved aspect even though it

has been studied e.g. in air-particle flows [99] and it would be of great

interest to have the issue solved. For example, the presence of the

fibre phase has been shown to have great impact on laminar flow [77]

and thereby it would supposedly play a role also in turbulent flows.

3.2.1 Fibre orientation model realisation

As mentioned, the orientation model was solved using FEM based

software Numerrin and its modelling language. The partial differ-

ential equation determining the orientation distribution was solved

with Newtonian method. In the case presented in Fig. 2.3 the prob-

lem was solved in a rectangular geometry which was parameterised

in [−π/2, π/2]× [0.05, 0.7]. The former is the orientation angle and

the latter is the length of the laboratory scale headbox. The lat-

ter parameterisation was used because here the experimental data

50mm from the inlet was used as an initial condition for the orienta-

tion model. The size of the elements was (0.002 − 0.04). The mesh

was refined with respect to the centre line and towards the end. In

addition to the refined mesh, an evenly spaced mesh was tested in

some of the simulations in order to investigate the effect of the mesh.

The element sizes of 0.02, 0.01 and 0.005 was used. However, in

many cases the evenly spaced mesh did not provide any reasonable

results, thus the refined mesh was used. Further on, the standard

P1 elements are used and the relevant integrals were computed with

Gaussian quadrature. The flow profile taken at different locations

from the CFD results was imported into the Numerrin-code in order

to provide the required velocity components and velocity gradients.

In order to solve the variational formulation of the model given
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in Eq.(3.6) few simplifications have to be made. First, the angle φ

is fixed in the (x, y)-plane, that is, φ = π/2 is considered. Thus,

when it comes to solving the orientation the degrees of freedom re-

duce to one, i.e. the orientation distribution is solved for θ only. This

is rather unfortunate drawback of the model, arising because of the

singularity of the spherical coordinate system. One way to overcome

the problem would be to introduce a sphere on which surface the full

2-dimensional orientation could be solved. The word two-dimensional

in previous sentence refers to the dimensions of the unit sphere which

can be parametrised with using the two angles θ and φ. Within this

procedure the determination of the boundary conditions would be

avoided because the problem would lie in the surface of the sphere

which has no boundary. Basically the problem containing the flow

and the orientation domains is 5-dimensional. Solving the full prob-

lem would require combination of two domains and determination of

the interface between these domains. In this thesis the simplifica-

tion of the model is chosen and the problem with using one angle is

formulated as follows

∫
rvkdM =

∫
Ω′

(
Dt

∂Ψ

∂x
∂vk

∂x
+ u

∂Ψ

∂x
vk

)
dΩ′

+
∫

S′2

(
Dr

∂Ψ

∂θ

∂vk

∂θ
+ w1

∂Ψ

∂θ
vk + (∇ · w)Ψvk

)
dS

′2. (3.8)

Here u is the velocity component in the mean flow direction. The

diagonal elements in matrix C in (3.6) become equal to one since

here we assume that φ = π/2. The notations Ω′ and S
′2 stand for

the reduced fluid and the orientation spaces, respectively.

The boundary conditions for the model were determined with

using the zero-flux assumption, that is

(∇Ψ) · n = 0, (3.9)

where n is the normal vector perpendicular to the boundary. Peri-

odic boundary conditions were also tested but the zero-flux bound-
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ary condition worked better in this case. The zero-flux assumption

is reasonable since it would violate the continuity equation if the

probability flux would vanish through the boundaries. Dirichlet type

boundary condition could be also considered e.g. by using analytical

function defined by [24] or using e.g. Gaussian distribution. However,

is not guaranteed that the orientation on the boundaries would be-

have as described by an analytical function. In addition to the rather

common ways to determine boundary conditions [40] used boundary

conditions especially developed for solid walls prohibiting unphysical

motion of a fibres into the walls. That kind of realisation was not

possible for the moment in this work. However, that would be one

aspect to further improve and develop the model used in this work.

When the comparison with experiments was done the experimen-

tal data 0.05m downstream from the turbulence generator was used

as an initial condition. In that case, the geometry was of the size

given earlier. In the other cases the length of the geometry was 0.7m
and the inlet boundary condition was taken to be the random fibre

orientation, i.e.

Ψ0 =
1
π

. (3.10)

3.3 MODEL IMPLEMENTATION FOR JET-TO-WIRE

IMPINGEMENT

After validating the fibre orientation model in the laboratory scale

contracting channel the capability of the model and the development

of the orientation was studied in a situation imitating the jet-to-wire

impingement, where the jet from the headbox hits the moving wire.

The geometry used in this thesis was the same as in [73] as illustrated

in Fig. 3.1. The flow simulation in the jet-to-wire impingement was

done in 2D since there is no need to solve the full 3D flow fields be-

cause only the components in the flow direction and perpendicular to

it in horizontal direction was used in the orientation model. Basically

the presented geometry illustrates a Fourdrinier-type of forming sec-

tion where the surface tension of the fabric is assumed to be infinite
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i.e. a flat fabric.

Figure 3.1: The geometry for studying the jet-to-wire impingement.

The flow field was solved using two-phase flow configuration with

using pure water and surrounding air as continuous fluids in order to

enable the imitation of the jet-to-wire impingement as it would be in

real life situation. Thus, any shape for the jet was not set beforehand

and it was solved in the simulation. Use of pure, Newtonian water

in modelling the impingement zone and the initial water removal was

chosen because the orientation is solved separately from the flow field,

thus there is no interaction with the fibrous phase or no concentration

variations take place.

The water enters the configuration from the inlets from the tur-

bulence generator with volume fraction of one into the slice channel.

The air is supplemented from the inlets on top of the slice channel

and under the slice channel just before the wire with volume fraction

of one. The air inlets was considered as an opening type of boundary

with setting zero-pressure on both of the inlets. The speed of the

jet was about 28.7m/s and the Reynolds number in the jet about

2.4 × 105. The air-water interface was modelled as free surface and

the turbulence model in the simulation was the standard k− ε-model.

The water removal through the wire was utilised with using a sink

for the water defined in similar manner as in [4] as

q̇
A

=

√
2pρc

Rw
(3.11)

where p is the static pressure on top of the wire, ρc is the water den-
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sity, A is the unit area and Rw is a dimensionless coefficient describing

the fabric resistance including the effect of the inertial resistance and

the thickness of the porous medium. The term used as a sink arise

from the expression for the head loss through the wire. Here the

reference pressure under the wire is assumed to be zero. Basically

the given sink term is used to illustrate the water flow through the

porous wire. In this thesis the porosity of the wire was not modelled

but the simple sink term was used in order to remove the water from

the wire section. Often, like e.g. in [4], Darcy’s law is considered

in modelling a flow through porous media. However, here the actual

porous medium is not modelled because there is no need for a detailed

information about the water removal process. Three different cases

were studied with using velocities given in 4. The wire was utilised

as moving wall type boundary condition. The velocity of the wire in

the different cases was determined from the wanted jet-to-wire speed

difference ratio.

As in the case of the contracting channels, the velocity profiles

from the CFD simulation was imported into the orientation model.

The orientation model was built with the same idea using a 2-dimensional

mesh as for the contracting channel with zero-flux boundary condi-

tions at sides corresponding φ = −π/2 and φ = π/2, and in the end

of the wire section. The element size in the mesh was in the range

of (0.001 − 0.02), with refinement towards the centre. In this case

the geometry was cut to take into account the end part of the slice

channel, that is 5cm before the opening, the jet and first 40cm after

the impingement, as illustrated in Fig.3.1. This size was chosen be-

cause the orientation in contracting part of the geometry was studied

separately. Thus, it is not necessary to solve the orientation for the

part much before the slice opening. The orientation model was solved

with a velocity profile taken from location very near the surface of

the wire. The initial condition for the orientation distribution was

taken from the simulations done for the contracting channel with the

case of the smallest contraction ratio CR = 6.3 at the last investiga-

tion point, i.e. 5cm before the slice opening. This choice was made

because of roughly the same velocity at the two locations with these
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cases thus, the inlet distribution should be a representative state of

the orientation at that point.
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4 Numerical results

4.1 LABORATORY SCALE CONTRACTING CHANNEL

Contracting channel is an application which appears in e.g. paper-

machine headbox. Thus, in this thesis the contracting channel was

chosen in studying the development of fibre orientation and to in-

vestigate the model used in describing the fibre orientation. The

fibre orientation model was validated with experiments performed in

a geometry presented in [18] with modification regarding a slightly

different size of the outlet as described in [43]. The experiments were

performed with flexible fibres by experimental fluid dynamics group

in Tampere Technical University (TUT). This was a great opportu-

nity to compare the model results with experiments performed with

flexible wood fibres.

4.1.1 Flow profiles

In this section the velocity profiles from the flow configurations with

and without the vane are presented in order to illustrate the velocities

and the velocity gradients, which are essential parameters as an input

for the fibre orientation model. In addition, the turbulence quantities

are presented. At the moment turbulence is not directly connected

into the model formulation. However, the intensity of turbulence and

its affect can be estimated based on the experimental observations

while discussing the model and its behaviour and considering the

development of the fibre orientation distribution. A more detailed

investigation of flow in slice channel configuration is not addressed in

this thesis, the purpose of modelling the flow field in the experimental

geometry is simply to provide velocity profiles for the fibre orientation

model. Study of the flow, instabilities and disturbances in the slice

channel is performed e.g. in [18].

The simulations in the configuration presented in Fig. 2.3 were

performed using two different flow rates. The flow quantities are
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plotted as a function of distance from the inlet and as a function of

contraction ratio defined as

C =
v0

v
, (4.1)

where v0 is the velocity at the inlet and v is the velocity along the

contraction. The contraction ratio in the case of the laboratory scale

contracting channel was approximately CR = 6.3.

The first flow rate 26 l/s was roughly the same as in the exper-

imental case in [43] producing the same velocity at the outlet as in

the experiments. In the second case the flow rate was doubled to

be 52 l/s. The velocity and velocity gradients of the two cases are

shown in Fig.4.1, Fig.4.2, Fig.4.3, Fig.4.4, Fig.4.5 and Fig.4.6. The

gradient ∂v/∂y was practically zero thus, it is not included in the

plot. The velocity profiles are typical for a contracting channel with

steep acceleration produced as the contraction gets narrower. The

effect of the vane on velocity gradients is clearly seen. The role of

velocity gradients in the orientation model is essential thus, it is of

interest to study the effect of different velocity gradient profiles on

the development of the fibre orientation profiles.

Turbulence eddy dissipation is shown in Fig. 4.7. The axis range

is limited in order to see the variation between the different cases at

the end of the channel. The values at the beginning of the channel

are greatly bigger, about 5− 6m2/s3 with smaller flow rate and about

70− 80m2/s3 with the higher flow rate, respectively. Dissipation and

turbulence decay very rapidly after the inlet being rather constant

and increasing slightly towards the end of the channel. The increase

might be due to the outlet and the boundary condition. There is small

difference between the case including the vane and in the case where

the vane was not included. Similar results about decaying turbulence

according to experiments made in narrow contracting channel have

been reported e.g. in [61].
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Figure 4.1: Velocities along the contraction with and without the vane in the
experimental geometry with flow rate of 26 l/s (upper panel) and with 52 l/s
( lower panel)as a function of distance.

4.1.2 Determination of the diffusion coefficients

In order to determine the diffusion coefficients the modelling results

were compared with experimental data. The effect of coefficient Dt

was studied by calculating the orientation profile with different values

in the range 10−4 − 102. The value of the coefficient started to play
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Figure 4.2: Velocities along the contraction with and without the vane in the
experimental geometry with flow rate of 26 l/s (upper panel) and with 52 l/s
( lower panel)as a function of contraction ratio.

role only with larger values of about 100 − 101. Here the velocity is

high enough so that translational diffusion of the fibres in the flow

should be of smaller importance than the rotational diffusion. In ad-

dition, it was discussed in [20,49] that Dt should decrease while fibre

length is increasing. Thus, the values in the range of 100 − 101 seems
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Figure 4.3: Velocity gradients along the contraction with (upper panel) and with-
out the vane ( lower panel) in the experimental geometry with flow rate of 26 l/s
as a function of distance.

to be rather high to be used. In the contracting channel with the vane

a value 10−4 was used and for the other simulations Dt was kept zero

just for convenience. The latter choice was made because the value

zero and 10−4 did not produce different kind of results for the accu-

racy of this model implementation. However, according to [39] the

dimensionless translational diffusion coefficient might be more im-
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Figure 4.4: Velocity gradients along the contraction with (upper panel) and with-
out the vane ( lower panel) in the experimental geometry with flow rate of 26 l/s
as a function of contraction ratio.

portant to some extent. Thus, it would be of great importance to

determine also Dt properly. In this case that was not reasonable be-

cause there was only a limited amount of experimental data available

and it is rather difficult to determine two parameters based on only

one experimental dataset. Most obviously different combinations of
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Figure 4.5: Velocity gradients along the contraction with (upper panel) and with-
out the vane ( lower panel) in the experimental geometry with flow rate 52l/s as
a function of distance.

Dt and Dr would produce similar results thus, it would be impossible

to make the distinction between the most suitable values. The results

obtained from the case where Dt had a small value are comparable

with the results where Dt was zero since there was no effect of such

a small value on the results.

The coefficient Dr was determined by comparing the numerical
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Figure 4.6: Velocity gradients along the contraction with (upper panel) and with-
out the vane ( lower panel) in the experimental geometry with flow rate 52l/s as
a function of contraction ratio.

distributions with experimental distributions. An example of the

comparison is presented in Fig.4.8. Simulations were performed with

giving different constant values for Dr and the best fit with respect

to the experiments was chosen. The diffusion coefficients achieved

from experimental comparison are shown in table 4.1.2 in the case of
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contracting channel with vane included.
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Figure 4.8: Experimental and modelled distributions with fitted diffusion coeffi-
cients at different locations in the channel in Fig.2.3. The experimental data
provided by Dr. Hannu Eloranta is adopted from [43].

A value for the coefficient Ci appearing in the shear rate depen-
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x [m] Dr [m2/s] (Full model) Dr [m2/s] (Simplified model)

0.15 31 30
0.25 31 30
0.35 - -

0.45 31 30
0.55 25 25
0.65 19 19
0.7 19 19

Table 4.1: Estimates for Dr as a best fit between experiments and modelling for
the full and simplified models, respectively, (-) stands for a missing value due to
the lack of experimental data in that point.

dent Dr in Eq.(2.24) was also estimated based on the experiments.

The exact value for the two tested cases was Ci = 0.43 and Ci = 0.4
for the full (2D) and simple (1D) model formulation, respectively.

The results from the comparison with experimental data show that

Dr is decreasing while approaching the outlet. Basically this contra-

dicts with the use of Eq.(2.24) in determining Dr because it grows

along the contraction and gains its maximum at the outlet. However,

that is rather commonly used approach to determine Dr thus, it was

used also in this thesis to make comparison with the results achieved

using different model parameters. In addition, the formulation using

turbulence eddy dissipation εt and kinematic viscosity ν as proposed

e.g. in [38, 39] was tested. However, it did not produce good results

even though the dissipation decays very rapidly after the inlet the

approach, which would be reasonable in the light of the behaviour

of Dr according to the comparison with experiments. The coefficient

was estimated with using the rather constant dissipation closer to the

outlet as shown in Fig.4.7 with using the expression presented in [38].

In this case the value of the coefficient was about three times bigger

than the one achieved from the validation based on the experiments.

In the other modelled cases the constant value at the outlet (Dr =19

m2/s) was used throughout the contraction. The choice was made

because the way the distribution behaves at the outlet is more impor-

tant when considering e.g. the jet-to-wire impingement. In addition,
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it was proposed in [38] that one constant value would be suitable

for a range of different contraction ratios. The constant could have

been calculated as an average or using a weighted average but the

previously stated reasoning to provide a distribution corresponding

to the experiments at the outlet was used in choosing the value for

the coefficient.

The contraction ratio of the contracting channel is supposed to

be one ot the key parameters affecting the development orientation.

Thus, in addition to the experimental fitting the contraction ratio

was used in estimating the interaction coefficient Ci in determining

the rotational diffusion coefficient. The experimental case was used

as reference case in calculating the value. Naturally the effect of

different contraction ratio comes already from the velocity gradients.

However, the use of only a different flow profile did not change much

the behaviour of the orientation distribution when one fixed value of

Ci was used.

4.1.3 Development of orientation distribution

Here the distributions obtained with the previously described meth-

ods are presented. In addition, the variance, Ψ(0) and anisotropy,

(Ψ(0)/Ψ(π/2)) of the distributions are shown.

Fig.4.9 and Fig.4.10 show the distributions calculated with con-

stant coefficients and with shear rate dependent rotational diffusion

coefficient defined with Eq. (2.24) using the full (or 2D) formulation

and simple (or 1D) formulation. Especially the case with constant

Dr with 1D model formulation compares extremely well with the ex-

perimental data presented in [43]. The detailed comparison with the

experiments is not shown in this thesis. In all the cases the distri-

butions closer to the outlet of the contraction are very close to the

distribution obtained from the experiments. With the full model for-

mulation there is some peculiar behaviour in the distributions near

the inlet. This is most probably due to the experimental data used

as an inlet condition. At the beginning of the contraction the dis-

tribution seems to be settling down finally achieving quite Gaussian

alike shape. At the outlet the highest value for the full model does
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Figure 4.9: Distributions for the channel in Fig. 2.3 with flow rate 26 l/s ob-
tained wit full (2D) model formulation using various constant diffusion coefficients
achieved from model validation with experimental data (upper panel) and the shear
rate dependent diffusion coefficient ( lower panel).

not occur exactly at θ = 0 but the peak is slightly sifted from the

symmetry value i.e.Ψ(0). It may be due to the fact that the ve-

locity profile is taken from the upper part of the contraction where

the upper wall is tilted with respect to the bottom wall. In [93] it

was found that by solving the Jeffery equations along streamlines the
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Figure 4.10: Distributions for the channel in Fig. 2.3 with flow rate 26 l/s ob-
tained wit simple (1D) model formulation using various constant diffusion coeffi-
cients achieved from model validation with experimental data (upper panel) and
the shear rate dependent diffusion coefficient ( lower panel).

orientation ellipsoid is slightly tilted with respect to the streamline.

The shift observed here could be something similar with that. The

simple 1D model produces quite symmetrical distributions for both

definitions of Dr. The full 2D model includes more velocity gradients

which clearly affects the solutions by making the model little more
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complicated. According to the model using shear rate dependent Dr

the peak value of the distribution does not grow similarly with the

experiments. Based on the experiments the growth of the zero value

is rather linear whereas the use of shear rate dependent Dr increases

the value more strongly after the inlet and while approaching the

outlet the growth slows down. This is due to the fact that Dr grows

while shear rate is increasing towards the outlet. This is opposite to

the case where Dr was estimated based on the experiments.

Fig.4.11 shows the simulated probability of the streamwise ori-

entation. While using the shear rate dependent Dr the Ψ(0) grows

stronger closer to the inlet and the growth slows down while ap-

proaching the outlet. This is especially seen when Ψ(0) is plotted

as a function of contraction ratio. When using the constant val-

ued Dr achieved from the experiments the growth is more linear and

steady throughout the contraction. The latter observation of linear

behaviour arose from the experiments in [43]. The faster increase

close to the inlet in streamwise orientation with shear rate depen-

dent Dr is direct result from the determination of the coefficient. Its

value is smaller closer to the inlet thus, it limits less the growth of Ψ.

Whereas closer to the outlet its value grows giving lesser alignment

into the flow direction by randomising the orientation distribution.

However, all the cases give very similar results in general as can be

seen in the top panel of Fig.4.33, where the distributions at the outlet

are plotted using the different diffusion coefficients and model formu-

lations. This is quite interesting result since the value of Dr when

calculated using the shear rate at the outlet is about double com-

pared with the constant value of Dr. This is probably arising from

the model implementation and numerics.

The variances resulting from above given distributions are shown

in Fig. 4.12 as a function of distance and contraction ratio. As it

is common, in this context the variance is considered to measure the

deviation from the mean. Fig.4.12 shows that the simple 1D and

full 2D models give almost the same result depending on how the

diffusion coefficient is determined. However, the results from two

different approaches to define the coefficient deviate quite notably.
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Figure 4.11: The development of Ψ(0) for the channel in Fig.2.3 with flow rate
26l /s along the contraction as a function of distance (upper panel) and contrac-
tion ratio ( lower panel). The letters F and S stands for full and simple model
formulation, respectively.

This obviously results from the faster alignment of the fibres accord-

ing to the model using shear strain rate dependent Dr. In addition,

as expected, the variance grows towards the slice opening indicating

the more aligned state of the fibres. Further on, in the case where

the distributions was obtained with using the constant diffusion co-
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Figure 4.12: Variances of the orientation distributions for the channel in Fig.2.3
with flow rate 26 l/s obtained with different model formulations as a function of
distance (upper panel) and of contraction ratio ( lower panel).

efficient achieved from the experiments, the variance increase rather

linearly as a function of contraction ratio. This seems to be natural

consequence from the linear increase of the velocity profile along the

contraction.

The state of perpendicular orientation shown as Ψ(π/2) in Fig.

4.13 is decreasing along the contraction as expected. However, it is
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Figure 4.13: The development of Ψ(π/2) for the channel in Fig. 2.3 with flow
rate 26 l/s along the contraction as a function of distance (upper panel) and
contraction ratio ( lower panel).

worth to notice that it does not go to zero but the probability of

the fibres to orientate perpendicular to the flow direction remains

relatively high until the outlet. Considering the case of simplified

model with fitted constant diffusion coefficient, where the profiles

behave most smoothly, the probability of perpendicular orientation

Ψ(π/2) at the outlet is only twice as big as the corresponding value
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Figure 4.14: The development of the anisotropy i.e. Ψ(0)/Ψ(π/2) for the channel
in Fig. 2.3 with flow rate 52 l/s along the contraction as a function of distance
(upper panel) and contraction ratio ( lower panel).

at the inlet. This is quite different observation compared with other

studies, where the perpendicular orientation at the outlet is almost

zero. The anisotropy, i.e. Ψ(0)/Ψ(π/2) shown in Fig.4.14, behaves

very similarly with the variance, showing the linear increase along

the contraction. As in the case of variance, the trend of the quantity
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is the same according to the certain approach to define the diffusion

coefficient.

The effect of the flow rate on the orientation distribution was also

investigated. The distributions with flow rate 52 l/s is shown in Fig.

4.15 and in Fig.4.16. The constant valued Dr and the shear rate de-

pendent Dr with reduced interaction coefficient Ci = 0.2 give quite

similar results whereas the Ci value fitted from the experiments is

clearly depicting lesser aligned orientation state for the higher flow

rate. As a matter of fact the result is about the same as for the

smaller flow rate. The use of a smaller interaction coefficient seems

to be reasonable since the orientation into the streamwise direction

is supposed to be stronger with the higher velocity. The smaller co-

efficient indicates also smaller randomising effects as it is supposed

to be the case when the velocity grows. Here again the sift from the

zero is seen for the distributions obtained with the more complete

model formulation. Compared with the case where the flow rate was

26 l/s the development of Ψ(0) is more peaceful, that is, the growth

into its peak value at the outlet with higher flow rate is almost linear

whereas with the previous case the growth enhances while approach-

ing the outlet. In addition, the difference in the development of the

orientation along the contraction with shear rate dependent Dr and

constant Dr is smaller than is in the case of the smaller flow rate.

This could indicate the importance of the streamwise acceleration

i.e. ∂v1/∂x in orientation mechanism. In general, the distributions

are more peaked, i.e. the probability of the alignment into the flow

direction is greater. This is also seen in variance in Fig.4.18 and in

the values of the orientation perpendicular to the flow direction in

Fig.4.19 and also in the anisotropy shown in Fig.4.20. The observed

increase in orientation into the streamwise direction is expected and

is also observed in experiments in [61]. However, it is worth to no-

tice that twice as large flow rate does not affect the peak value in

the same way, that is, the peak value is not doubled even if the flow

rate is. Thus, the mechanisms inducing certain kind of orientation is

not that straightforward. For example, [38] observed that the fibre

orientation is only weakly dependent on the inlet velocity.
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The anisotropy shown in Fig.4.20 is the same for the two different

interaction coefficients. It seems reasonable since the ratio of the

perpendicular and streamwise orientation is not changing when only

the coefficient Dr is modified.
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Figure 4.15: Distributions with full model formulation in the geometry with vane
with flow rate of 52 l/s with constant Dr ( top panel) and with shear rate dependent
Dr with Ci = 0.4 (middle panel) and with Ci = 0.2 (bottom panel).
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Figure 4.16: Distributions with simplified model formulation in the geometry with
vane with flow rate of 52 l/s with constant Dr ( top panel) and with shear rate
dependent Dr with Ci = 0.4 (middle panel) and with Ci = 0.2 bottom panel.
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Figure 4.17: Development of Ψ(0) as a function of distance (upper panel) and as
function of contraction ratio ( lower panel) with flow rate 52 l/s.
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Figure 4.18: Variances of the distributions as a function of distance (upper panel)
and as function of contraction ratio ( lower panel) with flow rate 52 l/s.
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Figure 4.19: Development of Ψ(π/2) as a function of distance (upper panel) and
as function of contraction ratio ( lower panel) with flow rate 52 l/s.
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Figure 4.20: Development of anisotropy i.e. Ψ(0)/Ψ(π/2) as a function of dis-
tance (upper panel) and as function of contraction ratio ( lower panel) with flow
rate 52 l/s.
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4.1.4 The laboratory scale contracting channel without the

vane

In addition to the effect of flow rate, the effect of the vane was stud-

ied using the same geometry (Fig.2.3) as in the previous section by

excluding the vane. The motivation was to study the effect of the

velocity gradients. It was found in [100] that the magnitudes of the

velocity gradients are essential for development of the fibre orienta-

tion. The velocity profile imported into the orientation model was

taken from the same position as in the case with vane included (the

“measurement line” in Fig.2.3).

Fig.4.21 and Fig.4.22 shows the distributions obtained with dif-

ferent model formulations. Compared with the case where the vane is

included the model predicts the orientation into the flow direction to

be stronger in this case. In addition, the maximum values are slightly

higher and the distributions in general behave more peacefully i.e. at

the beginning of the channel there is not that kind of variation in the

shape of the distribution as seen with the vane. This arise because

the random orientation, i.e. Ψ = 1/π was used as the inlet condi-

tion. This illustrates the sensitivity of the model for the changes in

the boundary conditions.

The development of the streamwise orientation is illustrated in

Fig.4.23. The differences between the two ways to define Dr are

pretty much the same as in the case with vane. Moreover, Ψ(0) is

very similar in the two cases. However, the contracting channel with-

out the vane shows more clearly the linear growth of the streamwise

orientation when plotted as a function of contraction ratio. Basically

the same holds for the variance as seen in Fig.4.24. In this case the

difference at the outlet of the channel between the two methods to

determine Dr is smaller than with the vane. This obviously arises

from the difference in the velocity gradients between the case with

vane and without the vane, respectively. In the former the velocity

gradients are largely affected by the vane which affects further the

development of the orientation via the velocity gradients both in Dr

and in the model itself.

The orientation perpendicular to the flow direction is shown in
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Figure 4.21: Distributions in the geometry without the vane for flow rate 26 l/s
with constant Dr (upper panel) and with shear rate dependent Dr ( lower panel)
using the full model formulation.

Fig.4.25. As it is the situation with the streamwise orientation, the

approximately linear decrease is seen more clearly when constant Dr

is used. Interestingly there is rather clear difference in simple and full

model formulation in the case of constant Dr around the middle part

of the channel. This clearly arise from the asymmetric distributions
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Figure 4.22: Distributions in the geometry without the vane for flow rate 26 l/s
with constant Dr upper panel and with shear rate dependent Dr lower panel using
the simple model formulation.

achieved with the full model formulation.

As expected, the anisotropy of the orientation distribution (Fig.4.26)

behaves very similarly with the streamwise orientation and with vari-

ance. Here the linearity arise in both cases. When using shear rate

dependent Dr the growth is nearly linear as a function of physical
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distance. When the constant Dr is used the growth as a function

of contraction ratio is close to linear. This is due to the fact that

Dr follows closely the streamwise velocity gradient when determined

from the shear strain rate. The smaller values at the beginning of the

channel limits less the growth of the streamwise orientation, whereas

at the end part of the channel the growth decreases due to the big-

ger values of Dr. The same constant value throughout the channel

enables the increase according to the velocity profile.
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Figure 4.23: Development of Ψ(0) in the contraction without the vane along the
contraction as a function of physical distance (upper panel) and contraction ratio
( lower panel) with flow rate of 26 l/s.
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Figure 4.24: Development of variances of distributions along the contraction with-
out the vane as a function of physical distance (upper panel) and contraction ratio
( lower panel) with flow rate of 26 l/s.
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Figure 4.25: Development of Ψ(π/2) along the contraction as a function of phys-
ical distance (upper panel) and contraction ratio ( lower panel) with flow rate of
26 l/s.
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Figure 4.26: Development of anisotropy along the contraction as a function of
physical distance (upper panel) and contraction ratio ( lower panel) with flow rate
of 26 l/s.
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Next, the experimental set-up was investigated without the vane

by increasing the flow rate. The model was solved using the same

rotational diffusion coefficients as in the previous cases. In addition

to those used previously, the orientation was calculated using the

scaled interaction coefficient Ci = 0.2. The distributions obtained

with the three different Dr are shown in Fig.4.27 and Fig.4.28. As

in the earlier cases, the shift with respect to zero is seen with the

full model. Here the use of the bigger interaction coefficient seems to

limit the growth of streamwise orientation compared with the case of

constant Dr The the distribution obtained with the constant value.

The orientation into the flow direction is shown in Fig.4.29. The

behaviour in general is very much alike in all the cases. However, with

bigger flow rate the drop at the beginning of the channel is smaller.

This might indicate the importance of the streamwise velocity, that

is with higher velocity the fluctuation of the inlet distribution is less

significant. In addition, with the smaller flow rate the full and simple

model with the constant-valued Dr give basically the same results

for Ψ(0). Whereas the higher flow rate depicts some differences with

those cases. This is most likely due to the slightly different kind of

behaviour in the velocity gradients ∂v1/∂y and ∂v2/∂x. In the case of

the lower flow rate those are roughly the same at the outlet, whereas

with higher flow rate there is small difference in those at the exit.

The variances shown in Fig.4.30 are slightly higher in the con-

traction without the vane. The same applied for the smaller flow

rate. It seems that the vane hinders the alignment into the stream-

wise direction. This is rather natural consequence following from the

rapid changes in velocity profile after the vane. In real life situation

the turbulence and the fluctuations due to the vane would mix the

fibre suspension and affect the orientation profile of the fibres. The

development of the perpendicular orientation (Fig.4.31) is very sim-

ilar with the previous cases. The anisotropy presented in Fig.4.32

shows same kind of behaviour as in the case with the vane, that is,

the three different Dr produce very similar results with full and sim-

ple model. With bigger interaction coefficient there is however, an

interesting saturation into a certain level after about C = 3. This is
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not that clearly seen in other cases. Supposedly this indicates that

the interaction coefficient needs to be modified if the flow rate grows.

Fig. 4.33 and Fig. 4.34 show the distributions at the outlet

with all the four cases considered previously with the different model

formulations. As a general observation the distributions without the

vane are slightly more peaked. This observation is supported with the

behaviour of anisotropy. The distributions are slightly more symmet-

ric with respect to the zero in the cases where the vane is excluded.

The full and simple model with experimentally fitted constant dif-

fusion coefficients are very similar with the smaller flow rate. The

difference appears when the flow rate is doubled and the interaction

coefficient in the shear rate dependent Dr is not modified. All the

three different approaches will be next considered with channels with

different contraction ratios.
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Figure 4.27: Distributions using different model formulations without the vane
for flow rate 52 l/s with full model using constant Dr ( top panel and shear rate
dependent Dr with Ci = 0.4 (middle panel and Ci = 0.2 (bottom panel.
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Figure 4.28: Distributions using different model formulations without the vane for
flow rate 52 l/s with simple model using constant Dr ( top panel and shear rate
dependent Dr with Ci = 0.4 (middle panel and Ci = 0.2 (bottom panel.
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Figure 4.29: Development of Ψ(0) along the contraction as a function of physical
distance ( lower panel) and contraction ratio (upper panel) with flow rate of 52
l/s.
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Figure 4.30: Development of variances of the distributions along the contraction as
a function of physical distance (upper panel) and contraction ratio ( lower panel)
with flow rate of 52 l/s.
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Figure 4.31: Development of Ψ(π/2) along the contraction as a function of phys-
ical distance (upper panel) and contraction ratio (upper panel) with flow rate of
52 l/s.

Dissertations in Forestry and Natural Sciences No 46 79



Heidi Niskanen: Modelling of fibre orientation in contracting channel flows
and in the jet-to-wire impingement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

x [ m]

an
is

ot
ro

py

const. Dr F
const. Dr S
F
S
F Ci=0.2
S Ci=0.2

1 2 3 4 5 6 7
0

5

10

15

20

25

C

an
is

ot
ro

py

const. Dr F
const. Dr S
F
S
F Ci=0.2
S Ci=0.2

Figure 4.32: Development of anisotropy along the contraction as a function of
physical distance (upper panel) and contraction ratio (upper panel) with flow
rate of 52 l/s.
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Figure 4.33: Distributions at the outlet of the laboratory scale contracting channel
with different model formulations with the vane (upper panel) and without the
vane ( lower panel) for flow rate 26 l/s.
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Figure 4.34: Distributions at the outlet of the laboratory scale contracting channel
with different model formulations with the vane (upper panel) and without the
vane ( lower panel) for flow rate 52 l/s.
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4.2 CONTRACTING CHANNEL WITH DIFFERENT CON-

TRACTION RATIOS

Besides the laboratory scale experimental setup shown in Fig.2.3 two

other contraction ratios were simulated in order to investigate the ef-

fect of the contraction with respect to flow configuration. The outlet

height in both of the contractions was 10mm and the inlet heights

100mm and 200mm providing contraction ratios of 10 and 20, respec-

tively. The vane was not included in these geometries so that there

would not be rapidly varying velocity gradients which were produced

due to the presence of the vane in the laboratory scale channel. In

these cases both the upper and lower walls were tilted in order to

provide as symmetrical velocity field as possible in order to ensure

the convergence of the orientation model. The orientation was solved

with using velocity profiles taken from three different locations inside

the contraction as shown in Fig.4.35.

Figure 4.35: The locations at which the fibre orientation is solved.

4.2.1 Flow profiles

The flow rate was kept same as in the case based on the experimen-

tal set-up. The velocity profiles along Line 1 with the two different

contraction ratios are shown in Fig. 4.36. The velocity profiles in

the other two locations were basically the same thus, they are not

shown here separately. The velocity profiles are very similar with the

profiles presented in the case of the geometry in Fig.2.3 as expected.
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The main difference arises from the velocity gradients because of the

absence of the vane. In the case of contraction ratio CR = 10 the

velocity as a function of contraction ratio is steeper than in other

cases. This is obviously due to the higher contraction compared with

the previous case. For CR = 20 the acceleration towards the outlet

is higher, which is natural consequence from the conservation laws.

As expected, the streamwise velocity gradient grows strongly in the

bulk flow. The other gradients are practically zero in the middle part

of the channel whereas the gradient ∂v1/∂y decreases notably along

Line 2 due to its closer location with respect to the channel wall.

The velocity gradients are shown in Fig.4.37, Fig.4.38, Fig.4.39 and

in Fig.4.40.

4.2.2 The orientation distributions

The orientation distributions were calculated in three different loca-

tions inside the contractions as illustrated in Fig.4.35. The simulation

was done in different locations in order to estimate how the model

responds to different kind of flow profiles, not only by using velocity

and velocity gradients of different magnitude but also to investigate

the effect of their profiles along the flow. The diffusion coefficients

determined in the first case were also used in these simulations. In

addition, values of interaction coefficient were modified with respect

to the contraction ratio and velocity. The coefficients are shown in

Table 4.2.2. The choice of the value of the constant diffusion co-

efficient was based on the flow rate which was kept the same in the

cases of higher contraction ratios. In addition, in [38] it was suggested

that one constant value would be applicable for a range of different

contractions.

The distributions for the contraction ratio CR = 10 are presented

in Fig.4.41, Fig.4.42 and in Fig.4.43. The orientation distributions

along Line 3 were the same as in Line 1. This is a natural conse-

quence from the fact that the flow profiles are pretty similar in these

two locations. In addition, the simple and full model produced the

same results along those lines because besides the streamwise velocity

gradient the gradients were practically zero. The use of constant Dr
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Figure 4.36: The velocities in contracting channels with contraction ration CR =
10 and CR = 20 as a function of distance (upper panel) and contraction ratio
( lower panel).

gives reasonable results since the alignment into the flow direction is

supposed to increase if the contraction ratio is increased. Naturally

the velocity has and effect and it needs to be high enough but in this

case, compared with the case of the Fig.2.3 the velocity is higher at

the outlet with the same flow rate thus, the orientation into the flow
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Figure 4.37: The velocity gradients in contracting channel CR = 10 along Line 1
(upper panel) and Line 2 ( lower panel) as a function of distance.

direction should be stronger. The peak values vary according to the

approach chosen for Dr. Clearly the use of the shear strain rate de-

pendent diffusion coefficient with bigger Ci limits again the growth of

the orientation into the streamwise direction. On the other hand, the

decrease of the coefficient by scaling the reference value with respect

to the velocity and contraction ratio depicts stronger alignment into

the flow direction than resulting from the case where the constant
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Figure 4.38: The velocity gradients in contracting channel CR = 10 along Line 1
(upper panel) and Line 2 ( lower panel) as a function of contraction ratio.

value was used. The results achieved with the smaller interaction

coefficient are most likely closer to the reality because of the assumed

increase of streamwise orientation as the velocity and the contraction

ratio grows. In addition, the use of bigger Ci gives results very similar

to that with the smaller contraction ratio of about CR = 6.3. This is

a consequence from the almost same magnitude of the velocity gradi-

ents in the two cases. The ratio of the shear rate dependent diffusion
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Figure 4.39: The velocity gradients in contracting channel CR = 20 along Line 1
(upper panel) and Line 2 ( lower panel) as a function of distance.

coefficient and the velocity is quite similar in those two cases, thus

their relative effect on the orientation is roughly the same.

When calculated along Line 2, there is a shift in the maximum

orientation towards the negative angle when the full 2D model for-

mulation is used. The shift occurs for both the constant Dr and shear

strain rate dependent Dr. The simple 1D model does not predict this

phenomenon. The shift seems to be logical since one might predict
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Figure 4.40: The velocity gradients in contracting channel CR = 20 along Line 1
(upper panel) and Line 2 ( lower panel) as a function of contraction ratio.

that the wall could have some effect on the orientation distribution.

The simple 1D model accounts only for the velocity gradient into the

flow direction, which is pretty much the same in all the cases thus, as

considered alone, it does not induce any shifts neither result in no-

table differences in the distributions. In this case the model with the

shear strain rate dependent Dr depicts very peculiar orientation dis-

tributions. According to the Fig.4.42 the distribution would be more
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CR=10 CR=20

Dr 19 1/s 19 1/s
Cre f

i 0.4 0.4

Cmod
i 0.2 0.1

Table 4.2: Values for Dr[1/s] and interaction coefficients Ci. The abbreviations
ref and mod stands for the reference value fitted from experiments and for the
scaled value based on velocity and contraction ratio, respectively.

isotropic at the outlet than it is earlier in the channel. This is because

of the rapid growth in the velocity gradient ∂v1/∂y. The phenomenon

could be interpreted so that the intense shear flow makes the fibres

rotate faster and thus, they would not be so clearly aligned into the

flow direction. If however, they would be aligned along the flow they

could be distracted from that state much more easily. The flip-over

or oscillation phenomenon of the fibres close to walls by solving the

Jeffery equations along streamlines have been observed in [94]. Thus,

the effect of the wall would cause more unstable and random fibre

orientation states.

The flow directional orientation is shown in Fig.4.44 and Fig.4.45.

As seen already from the distributions, the probability to align into

the flow direction grows rather expectedly along Line 1 with all the

model formulations. When calculated along Line 2, there is rather

big differences in the results achieved using the different model for-

mulations. The full model formulation with shear rate dependent

Dr decrease the streamwise orientation while approaching the outlet.

This is likely due to the large values of the velocity gradients, which

induces more isotropic distributions. Because the peak value did not

occur at zero, the maximum value (shown in Fig.4.46) of the distri-

butions was also plotted. In this case the decrease is not that strong

as it is for Ψ(0), but it is still obvious. With the constant valued Dr

the trend is the usual increase towards the outlet.

The variances of the distributions are shown in Fig.4.47 and in

Fig.4.48. Along the Line 1 the variances behave as expected. Along

the Line 2 the results achieved with full model formulation using the
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shear rate dependent Dr show the same decreasing trend as seen for

Ψ(0) and for Ψmax. With the rest of the models the variance grows

illustrating the peaking of the distributions towards the outlet.

The same, rather unexpected behaviour with full model formula-

tion using the shear rate dependent Dr is seen also for the other quan-

tities i.e. Ψ(π/2) and the anisotropy, shown in Fig.4.49, Fig.4.50,

Fig.4.51, Fig.4.52 and in Fig.4.53. Because of the shifts in this case,

in addition to defining the anisotropy by using Ψ(0) and Ψ(π/2),

the anisotropy was calculated from maximum and minimum values

as Ψmax/Ψmin. This was done because the anisotropy based on the

Ψ(0) and Ψ(π/2) may not be very representative in this case. Fur-

thermore, the anisotropy based on maximum and minimum values are

commonly used in the field of papermaking. With this approach the

development of anisotropy seems to be more reasonable. However,

still with smaller interaction coefficient the anisotropy is decreasing

towards the outlet, which contradicts the other results. The obser-

vations are rather dubious and questions the use of the shear rate

dependent diffusion coefficient. However, the vicinity of the wall and

its effect on the velocity profile may also affect the results.
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Figure 4.41: The distributions with contraction ratio CR = 10 at the centre line
(Line 1) using constant value for Dr ( top panel) and using shear strain rate depen-
dent Dr with interaction coeffcient Ci = 0.4 (middle panel) and with interaction
coefficient Ci = 0.2 (bottom panel).
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Figure 4.42: The distributions with contraction ratio CR = 10 at Line 2 using
the full model formulation with constant Dr ( top panel) and shear strain rate
dependent Dr with Ci = 0.4 (middle panel) and Ci = 0.2 (bottom panel).
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Figure 4.43: The distributions with contraction ratio CR = 10 at Line 2 using
the simple model formulation with constant Dr ( top panel) and shear strain rate
dependent Dr with Ci = 0.4 (middle panel) and Ci = 0.2 (bottom panel).
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Figure 4.44: Development of Ψ(0) for CR = 10 along Line 1 (upper panel) and
along Line 2 ( lower panel) as a function of distance.
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Figure 4.45: Development of Ψ(0) for CR = 10 along Line 1 (upper panel) and
along Line 2 ( lower panel) as a function of contraction ratio C.
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Figure 4.46: Development of Ψmax using the full model formulation for CR = 10
along Line 1 (upper panel) and along Line 2 ( lower panel) as a function of
distance and contraction ratio C.
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Figure 4.47: Development of variance for CR = 10 along the Line 1 (upper panel)
and along the Line 2 ( lower panel) as a function of distance.
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Figure 4.48: Development of variance for CR = 10 along the Line 1 (upper panel)
and along the Line 2 ( lower panel) as a function of contraction ratio C.
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Figure 4.49: Development of Ψ(π/2) for CR = 10 along the Line 1 (upper panel)
and along the Line 2 ( lower panel) as a function of distance.
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Figure 4.50: Development of Ψ(π/2) for CR = 10 along the Line 1 (upper panel)
and along the Line 2 ( lower panel) as a function of contraction ratio C.
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Figure 4.51: Development of anisotropy i.e. Ψ(0)/Ψ(π/2) for CR = 10 along
Line 1 (upper panel) and along Line 2 ( lower panel) as a function of distance.

102 Dissertations in Forestry and Natural Sciences No 46



Numerical results

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

C

an
is

tr
op

y

const. Dr F
const. Dr S
F
S
F Ci=0.2
S Ci=0.2

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

C

an
is

tr
op

y

const. Dr F
const. Dr S
F
S
F Ci=0.2
S Ci=0.2

Figure 4.52: Development of anisotropy i.e. Ψ(0)/Ψ(π/2) for CR = 10 along the
Line 1 (upper panel) and along Line 2 ( lower panel) as a function of contraction
ratio C.
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Figure 4.53: Development of anisotropy i.e. Ψmax/Ψmin for CR = 10 along Line
2 function of distance (upper panel) and contraction ratioC ( lower panel) .
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Next, the contraction ratio was doubled for CR = 20. The orien-

tation probability distributions are shown in Fig. 4.54 for Line 1, and

in Fig.4.55 and in Fig.4.56 for Line 2. In this case the results along

Line 3 were the same as along Line 1 and thus, they are not shown

separately. In addition, the results with simple and full model along

the Line 1 were practically the same and they are neither shown sep-

arately. The distributions along Line 1 behaves very similarly with

the case of the contraction ratio CR = 10. However, compared with

the case of the smaller contraction ratio of CR = 10, the constant

valued Dr gives clearly more isotropic distribution for the contraction

ratio CR = 20. This seems to be consequence from the fact that the

velocity at the two different cases are roughly the same at the outlet,

whereas the velocity gradients are much larger in the case of bigger

contraction ratio.

The orientation into the streamwise direction is lesser along the

Line 2 than along the Line 1. In the case of the shear rate dependent

Dr the explanation to this observation is rather straightforward. It is

the growth of Dr due to the bigger velocity gradients. With the simple

model the more isotropic orientation distribution and smaller peak

value arise obviously because of the smaller gradient ∂v1/∂x. The

orientation distribution along Line 2 shows the same shift as observed

in the previous cases. Here the use of smaller interaction coefficient

produce results which are more expected, that is, the maximum value

increase towards the outlet. That was not the case in CR = 10. This

seems to be a manifestation of difference in the velocity gradients.

The development of the streamwise orientation for CR = 20 is

shown in Fig.4.57 and in Fig.4.58. In most of the different cases Ψ(0)

grows towards the outlet, except for the cases which shows the shift

of the peak value from zero. Thus, as in the case of CR = 10, the

maximum value along the contraction is shown in Fig.4.59. The plot

shows the increase of Ψmax towards the outlet. The variances of the

distributions are shown in Fig.4.60 and Fig.4.61. The variances for

simple and full model with smaller interaction coefficient along Line

1 grows stronger towards the outlet than the variances along Line 2.

This is the consequence from the higher anisotropy. The rest of the
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results are very similar along Line 1 and Line 2.

The results for perpendicular orientation obtained with different

model formulation show variation, that is, Ψ(π/2) does not behave

similarly in all the cases. This however, is natural consequence due

to the very asymmetric distributions in Ψ(π/2) and Ψ(−π/2). Here

the values were taken at θ = π/2. If one counts the average of the

Ψ(π/2) and Ψ(−π/2) (not shown here) the result is, as expected,

that closer to the outlet the probability of perpendicular orientation

decrease also along Line 2. Because of the asymmetric distributions,

the anisotropies shown in Fig.4.64 and Fig.4.65 behaves rather pecu-

liarly. If the averages would have been used, the result would have

been more like anticipated from the other cases. Because of the shift

in the distributions, the anisotropy for the full model formulation

with different Dr was calculated also using the minimum and maxi-

mum values, shown in Fig.4.66. In that case the anisotropy increases

towards the outlet in all the cases.
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Figure 4.54: The distributions with contraction ratio CR = 20 at Line 1 using
constant value for Dr ( top panel) and using shear strain rate dependent Dr with
interaction coefficient C1 = 0.4 (middle panel) and with interaction coefficient
Ci = 0.1.
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Figure 4.55: The distributions with contraction ratio CR = 20 at Line 2 using full
model with constant valued Dr ( top panel), with shear strain rate dependent Dr
with interaction coefficient Ci = 0.4 (middle panel) and Ci = 0.1 (bottom panel).
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Figure 4.56: The distributions with contraction ratio CR = 20 at Line 2 using
simple model with constant valued Dr ( top panel), with shear strain rate dependent
Dr with interaction coefficient Ci = 0.4 (middle panel) and Ci = 0.1 (bottom

panel).
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Figure 4.57: Development of Ψ(0) for CR = 20 with flow rate 26 l/s along Line
1 (upper panel) and along the Line 2 ( lower panel) as a function of distance.
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Figure 4.58: Development of Ψ(0) for CR = 20 with flow rate 26 l/s along the Line
1 (upper panel) and along the Line 2 ( lower panel) as a function of contraction
ratio C.

Dissertations in Forestry and Natural Sciences No 46 111



Heidi Niskanen: Modelling of fibre orientation in contracting channel flows
and in the jet-to-wire impingement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

x [ m]

Ψ
m

ax

Const.Dr
C

i
=0.4

C
i
=0.1

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

C

Ψ
m

ax

Const.Dr
C

i
=0.4

C
i
=0.1

Figure 4.59: Development of Ψmax for CR = 20 with flow rate 26 l/s along Line
2 as a function of distance (upper panel)and contraction C ( lower panel).

112 Dissertations in Forestry and Natural Sciences No 46



Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x [ m]

va
ri

an
ce

const. Dr F
const. Dr S
F
S
F Ci=0.1
S Ci=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x [ m]

va
ri

an
ce

const. Dr F
const. Dr S
F
S
F Ci=0.1
S Ci=0.1

Figure 4.60: Development of variance for CR = 20 with flow rate 26l/s along Line
1 (upper panel) and along Line 2 ( lower panel) as a function of distance.
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Figure 4.61: Development of variance for CR = 20 with flow rate 26 l/s along
Line 1 (upper panel) and along Line 2 ( lower panel) as a function of contraction
ratio C.
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Figure 4.62: Development of Ψ(π/2) for CR = 20 with flow rate 26 l/s along
the Line 1 (upper panel) and along the Line 2 ( lower panel) as a function of
distance.
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Figure 4.63: Development of Ψ(π/2) for CR = 20 with flow rate 26 l/s along the
Line 1 (upper panel) and along the Line 2 ( lower panel) as a function of distance
and contraction ratio C.

116 Dissertations in Forestry and Natural Sciences No 46



Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

x [ m]

an
is

ot
ro

py

const. Dr F
const. Dr S
F
S
F Ci=0.1
S Ci=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

x [ m]

an
is

ot
ro

py

const. Dr F
const. Dr S
F
S
F Ci=0.1
S Ci=0.1

Figure 4.64: Development of anisotropy i.e. Ψ(0)/Ψ(π/2) for CR = 20 with flow
rate 26 l/s along the Line 1 (upper panel) and along the Line 2 ( lower panel) as
a function of distance.
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Figure 4.65: Development of anisotropy i.e. Ψ(0)/Ψ(π/2) for CR = 20 with flow
rate 26 l/s along the Line 1 (upper panel) and along the Line 2 ( lower panel) as
a function of contraction ratio C.
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Figure 4.66: Development of anisotropy i.e. Ψmax/Ψmin for CR = 20 with flow
rate 26l/s along the Line 2 as a function of distance (upper panel) and contraction
ratio C ( lower panel).
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4.3 THE EFFECT OF THE PECLET NUMBER

In this section the locally determined rotational Peclet number is

discussed. It is often considered to illustrate the ratio between the

turbulence and stresses due to the mean flow acceleration. Common

way to define the Peclet number is (see e.g. [30, 31,38,50])

Pe = γ̇/Dr, (4.2)

where γ̇ is the shear strain rate. The rotational Peclet number ac-

counts for the effect of the fluctuating velocity gradient versus that

of the mean velocity gradient. In this case the Peclet number for

different cases was calculated using the constant value of Dr so that

the results of the different cases would be comparable. To keep in

mind, in this studye there is not a straight connection to turbulence

quantities since they are not taken into account in the model. How-

ever, the constant value of Dr obtained validating the model with

experiments can be considered to represent the role of turbulence to

some extent. The Peclet numbers for the configuration in Fig.2.3

(CR = 6.3), CR = 10 and CR = 20 with flow rate 26l/s are shown in

Fig.4.67. The bottom panel shows the same information as the top

panel with reduced y-axis in order to investigate the development of

the local Peclet number in greater details.

The Peclet number shows quite smooth growth as a function of

the contraction ratio. This illustrates strong effect of the flow accel-

eration. Similar results were obtained in [31]. In [50] it was stated,

that for Pe << 1 diffusive motion with strong Brownian forces is

dominating. Here the Pe < 1 occurs only at the beginning of the

channel for CR = 6.3. For CR = 10 and CR = 20 Peclet number

grows over 1 around x = 0.35m and x = 0.45m, respectively. After

that it grows drastically towards the outlet. It was found in [36] that

for Pe < 10 turbulence can notably affect the evolution of the orien-

tation distribution. Here in all the studied cases the Peclet number

close to the outlet is greater than 10 indicating the important role of

the mean rate of strain. The fact that Pe > 1 occurs earliest with

the smallest contraction ratio is because of the relatively largest inlet
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velocity in that case. Thus, in that case the turbulence at the begin-

ning of the channel is dominating the flow acceleration. This seems

logical phenomenon also from the experimental point of view, since

the suspension enters the slice channel from the turbulence generator

thus, the flow is highly turbulent. The rapid drop in shear rate and in

the Peclet number after the vane indicates the increased turbulence

effects caused by the vane. It can also indicate the different kind of

instabilities due to the change of pressure gradients and the velocities

after the vane. This would also affect the fibre motion in real life in

that point. The drop is seen also in orientation with more isotropic

distribution shortly after the vane. On the other hand, in the reality,

the small Peclet number at the beginning of the channel should be

result of a turbulence because of the turbulence generator just be-

fore the contracting channel. In addition, if considering the values of

Dr based on the model validation, the value at the beginning of the

channel is bigger than used in the rest of the simulations. This would

make the Peclet number smaller indicating even stronger Brownian

forces. However, in this case there is not actual turbulence at the

beginning of the channel thus, the deduction is only qualitative. In

order to see if the relationship is that unambiguous, it would be in-

teresting to compare the model results with experiments performed

with higher contraction ratios. This would enable the study of the

behaviour of the diffusion coefficient more comprehensively.

In general, it seems that there is rather sensitive balance between

the flow acceleration and turbulence inside the contracting channel.

At some point the flow acceleration overcomes the initial turbulence

intensity and begins dominating the flow conditions and the motion

of the fibres. It is impossible to determine the exact relationship of

this complicated issue based on only one laboratory scale contracting

channel measurements and based on the rather simple modelling ap-

proach used in this work. It seems that the inlet turbulent intensity

determines the level of randomness for the fibre orientation distribu-

tion at the beginning of the channel and the contraction begins to

work in aligning the fibres into the flow direction, overcoming the

effect of turbulence at some point. Provided of course, that the con-

Dissertations in Forestry and Natural Sciences No 46 121



Heidi Niskanen: Modelling of fibre orientation in contracting channel flows
and in the jet-to-wire impingement

traction is steep and long enough and the acceleration strong enough.

The results shown here illustrate the strong effect of the contrac-

tion ratio and the mean velocity and velocity gradients on the devel-

opment of the orientation distribution. Naturally turbulence plays

important role as well. Unfortunately turbulence is not directly taken

into account in the current modelling approach. That is one draw-

back of the model used in this thesis. However, the randomising effect

of turbulence can be considered to some extent with the rotational

and translational diffusion coefficients. The former coefficient was

adjusted based on the experiments performed with flexible fibres in

turbulent flow conditions thus, it can be used as qualitative estimate

of the impact of the turbulence level. In general, the model is able

to predict the similar behaviour as observed from the experiments in

the bulk flow. Thus, it can be used to give qualitative insight into the

phenomena taking place in a contracting channel. However, more de-

tailed model formulation, taking into account the concentration and

the fibre properties would be preferable.
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Figure 4.67: The development of Peclet numbers for CR = 6.3, CR = 10 and
CR = 20 with flow rate 26l/s as a function of distance ( top and bottom panels)
and contraction ratio (middle panel).
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4.4 JET-TO-WIRE IMPINGEMENT

In addition to the headbox fluid dynamics, paper qualities such as

formation and two-sidedness, are affected by the geometry of the

forming section and properties of the jet and its impingement to the

moving wire. Thus, the impingement zone may have a great impact

on the qualities mentioned above, depending e.g on the jet-to-wire

speed difference, which is one of the most important process control

parameters. After investigating the fibre orientation probability dis-

tribution in the contracting channel the model was applied into the

jet-to-wire impingement. It is rather difficult aspect and there does

not exist much of research concerning this issue. Thus, the research

area lacks detailed knowledge and the results presented here should

be considered as preliminary and qualitative. Some work has been

done concerning the jet-to-wire-impingement e.g. [2–4,73,101] where

its effect e.g.on orientation two-sidedness and flocculation tendency

have been studied. However, those papers do not involve the fibre ori-

entation probability distribution. The results from the previous work

however, will be referred and compared with the presented results to

a certain extent.

J/W speed ratio vjet [m/s] vwire [m/s]
0.9 28.7 31.9
1.0 28.7 28.7
1.1 28.7 26.1

Table 4.3: The velocity of the jet and wire in the different cases studied.

The flow field and orientation was calculated along the line shown

in Fig.4.68 with three different jet-to-wire speed differences defined

as J/W = 0.9, J/W = 1.0 and J/W = 1.1. The velocities in different

cases are shown in Table 4.4. The line is located just on top of the

wire and the flow profile was taken along that line.
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Figure 4.68: The location of modelled orientation profiles.

4.4.1 Velocity profiles

The velocity contour of the jet and jet-to-wire impingement is shown

in Fig.4.69 for J/W = 0.9 to illustrate the behaviour of the flow at the

impingement. The jet impinges the wire approximately at x = 0.03m.

As can be seen, the jet is accelerated up to its maximum speed at

the end part of the contracting channel and it enters the wire section

with about the same speed. The boundary layers forming on the

top and bottom surface of the jet are clearly seen. The impingement

is observed as clear decrease in the velocity. The fact that the jet

enters with some angle to the wire from free air, naturally causes a

rapid change in velocity. Because of the impingement, the velocity

close to the surface of the wire remains reduced even though the wire

is moving faster. This is interesting result and arise most probably

because of the very thin boundary layer due to the high velocity of

the jet. Only the very thin layer (not seen in this figure) moves at the

speed of the wire. This suggests that the speed of the wire would not

affect strongly the speed of the jet directly after the impingement.

However, the thin layer of the same speed with wire, may also be a

manifestation of the boundary condition, i.e. the speed set for the

wire in the simulation.

The velocities with three different jet-to-wire speed differences i.e.

J/W = 0.9,J/W = 1.0 and J/W = 1.1 is shown in Fig. 4.70. The

difference between the three cases is apparent. The steepest velocity

change takes place for J/W = 1.1. This is most probably due to
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Figure 4.69: Velocity contour in the jet and in jet-to-wire impingmenet for J/W =
0.9.
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Figure 4.70: Velocity x-component along the line indicated in Fig. 4.68 for J/W =
0.9, J/W = 1.0 and J/W = 1.1.

the slower velocity of the wire, which is seen as sharpest deceleration

when jet with higher velocity hits the wire. In the other cases the jet

is not forced to encounter that kind of a deceleration thus, the velocity

profiles behaves in smoother manner. After the impingement it seems
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to take a rather long time for the jet to adopt the speed of the wire

and it does not occur before the end of the simulation i.e. x = 0.4,

meaning that the velocity would still be growing. Only at very close

to the surface of the wire the speed is varying between the different

cases, as can be seen from Fig.4.71. The velocity higher from the

surface is not affected much by the wire velocity. Most likely e.g. for

gap-former, where there would by a wire on top of the jet as well,

the change in the jet velocity would occur more rapidly and would

be more clear.

The machine directional velocity profiles perpendicular to the wire

is presented in Fig.4.71. As mentioned earlier, the velocity of the wire

affects only at the very narrow layer just on top of the wire. Already

at about 2mm from the top of the wire, the water flows about with

the same velocity as the jet. The effect of the impingement however,

is seen until quite far downstream. Moving further on the wire the

water velocity very slowly takes the same velocity as the wire. It does

not occur completely during the first 0.4m modelled here. In order to

see the effect of the wire the simulation should be made with much

longer geometry. What can be seen already with this length, is the

narrowing of the jet as the water is being removed.

The velocity component perpendicular to the flow direction is

shown in Fig.4.72. It can be considered to represent the drainage

velocity. As can be seen, the biggest velocities are observed right after

the impingement. The velocities for J/W = 0.9 and for J/W = 1.1
are roughly the same, whereas the velocity for the ratio J/W = 1.0
differs from those two. Some minor differences in the velocities are

seen also after the drop from the maximum value at around x = 0.035.

This would indicate that with rush or drag the flow through the

wires would be stronger. After the location of about x = 0.07 all

the velocities are almost the same. Similar results were obtained

also in [73, 101]. When compared more accurately there is a very

small difference of about 10−4 in the velocities. This however, is

rather negligible and can not be used in this case to draw deeper

conclusions about the differences in drainage velocities when various

jet-to-wire speed differences are used. In order to make more detailed
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comparisons it would most probably require the modelling of the wire

as a porous medium.

The velocity gradients are shown in Fig.4.73 and in Fig.4.74. In-

terestingly the gradients for J/W = 0.9 and J/W = 1.0 are the same

except in the case of ∂v1/∂y. The case of J/W = 1.1 behaves differ-

ently from the two other cases. This is natural consequence from the

behaviour of the velocities.
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Figure 4.71: Velocities perpendicular to the wire at different locations for J/W =
0.9, J/W = 1.0 and J/W = 1.1..

Dissertations in Forestry and Natural Sciences No 46 129



Heidi Niskanen: Modelling of fibre orientation in contracting channel flows
and in the jet-to-wire impingement

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x [ m]

v 2 [
 m

/s
]

JW=0.9
JW=1
JW=1.1

Figure 4.72: Velocity y-component along the line indicated in Fig. 4.68 for J/W =
0.9, J/W = 1.0 and J/W = 1.1.
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Figure 4.73: Velocity gradients for machine directional velocity along the line
indicated in Fig. 4.68 for J/W = 0.9, J/W = 1.0 and J/W = 1.1.
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Figure 4.74: Velocity gradients for vertical velocity along the line indicated in Fig.
4.68 for J/W = 0.9, J/W = 1.0 and J/W = 1.1.
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4.4.2 Orientation distributions

After solving the velocity fields in the three different cases the flow

configurations were imported into the fibre orientation probability

distribution model. It was solved in the three different situations de-

scribed in the previous section in order to study the jet-impingement

and the effect of the jet-to-wire speed difference.

Here the full model formulation with the constant valued diffusion

coefficient was used in the fibre orientation distribution simulations.

The shear rate dependent diffusion coefficient was also tested but it

did not provide any physically meaningful result. This is most prob-

ably because of the rapidly varying velocity and the velocity gradient

at the impingement zone, which makes the numerical treatment dif-

ficult. In the case of the constant diffusion coefficient some of the

results at the jet and the impingement zone had to be excluded since

the results were negative and that is not reasonable if one considers

the results to represent the probabilities. Most of the results however,

where physically meaningful and are shown in this section.

Figure 4.75 shows the fibre orientation probability distributions

in the three cases. Clear differences can be seen. In the case of

J/W = 0.9 the anisotropy (shown in bottom panel of Fig.4.76) is

the largest. The big values in the anisotropy arise because of the

very small minimum values (middle panel in Fig.4.76 ) approaching

zero. The values at x = 0.4 were excluded from the results because

of the very large value of the anisotropy. In that case the maximum

value (shown in the top panel of Fig.4.76) is growing steadily until

about x = 0.1m which after it grows very rapidly during few cen-

timetres, beginning to decrease very slowly after that. There is not

clear reason for that if one considers the flow profiles. On the other

hand, one reason for growth can be the fact the flow evens out so the

rapid variation in the velocity gradients does not induce rotation and

that enables the higher alignment of the fibres into the flow direction

because of the higher wire velocity.

For the case of even jet-to-wire speed ratio (the middle panel in

Fig.4.75) the maximum value grows until about x = 0.1 more in-

tensively than in the case of rush and begins to decrease after that.
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Furthermore, the distributions become more anisotropic again. An-

other interesting feature in this case is the shape of the distribution

at x = 0.05m which is right after the impingement. It seems that

there is not only a one clear peak in the distribution but another

smaller and flatter maximum is seen. The same is observed in the

case of J/W = 1.1. This kind of behaviour was observed also in [73]

at the outlet of the slice channel. In this study however, this kind

of phenomenon is not seen in the contracting channels. It is also

interesting to point out that while moving further on the wire, the

maximum values are shifted from a positive angles to negative angles.

In the case of J/W = 0.9 the maximum of the distributions stays at

negative side of the θ-axis throughout the wire after being declined

there after the impingement. Further on, in the case of J/W = 1.1
the opposite happens, that is, the maximum value is tilted towards

the positive angles. The same shape as in the case of J/W = 1.0
at location of x = 0.05 is seen also in the case of J/W = 1.1. Here

however, the maximum value and also the anisotropy are decreasing

when moving further on the wire. The decrease of anisotropy is seen

in the case of J/W = 1.1 as well. This might be something similar

with the observed layered orientation e.g. in [2]. However, in this

case the different heights on top of the wire were not simulated. In

addition, in this studye there exist only one wire and water removal

occurs only at one side the top side being free surface. Thus, similar

comparison as in [2] can not be made. Based on the results presented

here it seems that when the wire and the jet velocities are not the

same, more aligned state in the orientation distribution is seen. This

seems like a logical observation because of the stronger shear at the

boundary of the jet and the wire due to the speed difference. That

orients fibres more than in the case of obviously smaller shear if the

jet and the wire velocities are the same.

The preliminary results on the jet-to-wire impingement zone pre-

sented in this work show that impingement has great effect on how

the fibre orientation distribution develops at the early forming sec-

tion, provided that the simple modelling approach used here is reliable

in modelling this kind of a complicated phenomenon. In addition, by
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varying the jet-to-wire ratio speed, differences arise. The results show

that J/W = 0.9 orients fibres the most and the even ratio of jet-to-

wire speed the less. The case J/W = 1.1 lies somewhere between

those two. This phenomenon is also observed in practice. In addi-

tion, the variations according to the jet-to-wire speed difference in

orientation anisotropies were observed in [2]. These findings made

in this thesis support the fact that by varying the wire speed with

respect to the jet velocity, differences in the early drainage and sheet

forming are observed thus, it affects the properties of the produced

paper and is important aspect in controlling and designing the pa-

permaking process.
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Figure 4.75: Distributions along the line indicated in Fig. 4.68 for J/W = 0.9,
J/W = 1.0 and J/W = 1.1.
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5 Discussion

In this thesis one of the common modelling approaches was used in

modelling the different situations which are present in papermaking

process. The model derivation is shown and the assumptions and sim-

plifications in the modelling approach used in this thesis are stated.

In addition, the validation of model with experiments performed in

a laboratory-scale contracting channel is illustrated.

The model used here is based on a diffusion-convection equation

which is used to describe the evolution of a certain variable under the

effect of convective and diffusive forces. Here the equation is used to

depict the development of a probable orientation distribution of an

arbitrary number of fibres with respect to the physical position in a

given flow configuration. The orientation of the fibres is taken into

account with the variable Ψ which is representing the fibre orientation

probability distribution. It is 5-dimensional variable which depends

basically on time, the position (x, y, z) and the orientation angles φ

and θ which determines the orientation of a vector on the surface of

a unit sphere. The equation combines the Cartesian and the spher-

ical coordinate systems to form a 5-dimensional manifold in which

the operators are naturally defined according to the metrics of the

corresponding coordinate system. The model includes the velocity

of the fluid, the rotation of the fibre and the translational and the

rotational diffusion of the fibres. The fluid velocity is adopted from

the CFD simulation and the rotation of the fibre is determined with

a vector defined with the shear rate and the vorticity of the fluid.

The equation itself and vector fields used in it are well-defined. How-

ever, the use of spherical coordinates poses the problem related to

the singularity at the poles, i.e. at φ = 0 and φ = π. This is rather

unfortunate disadvantage in the model formulation. The problem ap-

pears in the Laplace and the divergence operators determined with

using the spherical coordinates. Thus, here the model was simplified

with using a fixed value of φ which reduces the distribution in to a
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plane. With this assumption one degree of freedom is lost and thus,

the results can not present the actual three-dimensional situation. In

addition, by fixing the model in to a plane a need for a boundary

conditions appears. As the orientation is determined on the surface

of a unit sphere there is no boundary thus, there is no need for bound-

ary conditions. Setting the boundary condition for the model is not

that trivial. Common way is to use periodicity at −π/2 and π/2.

This is reasonable approach in the sense that if the solution exists

and is unique, it should be π-periodic. In this work the zero-flux

at the boundaries was used because it provided more reasonable re-

sults than the periodicity in this model implementation. In order to

overcome these problems new, different kind of method to model the

phenomenon should be developed. However, there is one advantage

in the use of the planar orientation model. The experiments used in

model validation in this thesis were performed in a planar manner

using optical imaging technique, for more details see [102]. Thus,

the planar orientation model gives reasonable basis to that kind of

comparison with experimental data.

In addition to the problem arising from the singularity, the mathe-

matical formulation of the model does not necessarily provide a stable

basis for the probability approach which is assumed in the model. It

is assumed that the model depicts the development of distribution

function Ψ(rrr, ppp, t) which in this case is assumed to be independent

of time. The solution of the model gives only the value of Ψ at a

certain point and a distribution of these values can be formed from

the values in all the points. The model however, shows some con-

tradictory behaviour. Depending on the velocity profile, the solution

can be either negative or positive. Thus, if one makes the assumption

of the probability the solutions should always be positive. In many

cases with strong gradients the solution of the model is very likely

negative. This kind of situation occurs e.g. near solid boundaries, at

the vicinity of the vane or in the jet-to-wire impingement. The solu-

tions which were negative were excluded from the thesis because they

would not be representative results for a probability. The negative

solution is probably a problem related to numerics. Rapidly vary-
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ing velocity gradients cause convergence difficulties leading to bizarre

solutions. Whereas for smoothly behaving velocity fields the results

are good. However, in theory those negative solutions could also be

actual solutions of the model since the equation and the variables do

not necessary guarantee or determine that the solutions are positive.

In [98] it was stated that the development orientation of the macro-

scopic particles is affected by the nature of the constitutive equation

used to determine the orientation of particles. Thus, it is important

to consider the properties of the equations used in the basis of a

model.

The main assumption behind the model is the rigidity of the par-

ticles. However, e.g. papermaking industry uses flexible wood fibres.

The orientation and the behaviour of long and slender particles is not

similar to those of rigid particles. They may stretch and curl or bend

under the flow forces. In addition, their presence cause variation in

the flow kinematics. The effect of the particle e.g. on the stress how-

ever, have been taken into account in some studies as discussed ear-

lier. In this work the fibre-fluid coupling was not considered because

the experiments were performed using very small volume concentra-

tion of the fibres so the effect of coupling should not be of that great

importance in this case. But as the concentration grows the cou-

pling between the fibres and the fluid become important. In addition

the fibre-fibre interactions are significant in that case and should be

taken into account. In addition to the concentration variations, the

properties of fibres should somehow be included into the model. The

fibres of different properties have been shown to orientate in different

manner in [61], for example. The different kind of properties and

the length distribution of fibres affect differently the flow kinematics

and e.g. the drag reduction. It was found in [94] that the long fibres

could stabilise the flow whereas the short fibres may cause oscillation

in the velocity. As discussed in [61] the long and slender fibres stretch

into the flow direction and thus, their orientation into the flow direc-

tion is stronger. That changes also the stress of the fluid. Similar

findings were done in [11] for long flexible chain-like macromolecules.

The alignment into the bulk flow direction was found to increase with
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increasing aspect ratio also in [41], and the dependence of the orien-

tation on fibre aspect ratio was observed in [10]. Thus, it would be

important to include the fibre properties into a modelling method.

Another important aspect in fibre suspension flows is the turbu-

lence of the flow since it tends to randomise the orientation distribu-

tion. Further, the fibres may also effect the turbulence by dampening

the turbulent fluctuations. This is an issue which has not been com-

pletely solved. In the model the random rotational and translational

motion has been taken into account with the translational and ro-

tational diffusion coefficients. They provide one way to consider the

turbulence effects. They however, can be considered to model the

randomising effect of either Brownian motion or the turbulent eddies

or to take into account the fibre-fibre interactions. Thus, there is

not unambiguous consistent definition for the coefficients. Of course

the determination of the coefficients depend on the application and it

may not be possible to define one single way to estimate them. How-

ever, within a certain application there exist various ways to define

the coefficients by using turbulence eddy dissipation, Lagrangian or

Eulerian velocity correlations or shear rate, for example ( [34, 39]).

Some studies consider the rotational diffusion coefficient to form an

anisotropic tensor, which likely is the case of the diffusion in real-

ity. Whereas according to some studies e.g. in contracting channels

( [36, 38]) the coefficient should be constant. In addition to the flow

properties, the fibre properties have been found to play role in the

diffusivity. According to [81] lower aspect ratio fibre cause larger

velocity disturbance inducing bigger values for the components of

diffusivity tensor. The results shown in this work suggest that the

diffusion coefficient should vary along the contraction. However, if

one is most interested in the distribution at the channel exit, one

constant value can be used. In addition, the shear rate dependent

diffusion coefficient tested in this work may not be the best way

to determine the variable. However, if the interaction coefficient is

adjusted according to the contraction ratio and the velocity better

results are achieved. It seems reasonable since the contraction ratio

is suggested to be one of the main factors affecting the development
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of the orientation distribution. Naturally the flow rate and the accel-

eration of the flow affects the development.

The relative ratio between the mean flow acceleration as aligning

factor and the turbulence as randomising factor is also of great im-

portance. If turbulence level is not high enough its randomising effect

is negligible. Whereas for high Reynolds number flows with strong

turbulence the orientation distribution becomes highly isotropic as

discussed e.g in [21, 22]. The effect of turbulence versus that of the

mean flow acceleration is often estimated with rotational Peclet num-

ber. Large Peclet number indicates strong effect of the shear and

small Peclet number stands for strong randomising turbulence effects

or for Brownian forces. It has been suggested that for Pe < 10 tur-

bulence may have significant affect. In this study at end part of the

contraction Pe > 10 in all the studied cases indicating the strong

impact of the flow acceleration due to the contraction. However, the

orientation distributions shown in this thesis are more isotropic in

general than in many other studies. That is an experimental obser-

vation from the study of a contracting channel with strong turbulence,

and the model validation was done in the light of that observation.

It suggests that turbulence intensity plays important role and it is

not that straightforward to estimate which one is more important

and to what extent. Obviously the turbulence generator before the

contraction sets the level of isotropy and then the contraction begins

aligning the fibres with a tendency depending on the contraction ra-

tio and the velocity.

Even when having such a good correlation between modelling and

experiments as achieved in this work one has to keep in mind all the

possible uncertainties related to both of the approaches. First, model

includes assumptions and simplifications and in general it is worth to

point out that the models are only as good as the understanding and

the theory about the phenomenon. In this case there is many un-

resolved issues, e.g. the interaction between the turbulence and the

fibres. In addition, both the experiments and model consider a planar

orientation. In that way the information about full three-dimensional

orientation is not provided by either of the approaches. In order to
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get more detailed idea about how the fibres will be oriented and de-

formed in reality in certain flow configurations, the model and maybe

the experiments as well should be developed to consider a real three-

dimensional situation. However, based on the current modelling and

experimental methods important information can be gained. Care-

ful investigation of possible errors in the methods and simplifications

used provides understanding about the mechanisms which are impor-

tant in determining the orientation distribution.
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6 Conclusions

The results and the discussion of the current work illustrates the dif-

ficulties which are present in the chosen modelling approach. How-

ever, some guidelines can be found. The main finding was the lower

anisotropy of the orientation distribution than those suggested in pre-

vious studies cited in this thesis. This observation was based on the

experiments referred in this thesis. Thus, it is important to combine

experiments and modelling in studying such a complicated phenom-

ena as is in the scope of this work. In addition to the study of

contracting channels, a jet-to-wire impingement was studied. It was

found that by varying the jet-to-wire speed difference the orientation

distribution does change.

With these findings and the properties of the model discussed ear-

lier the current approach seems to be reasonable in modelling the fibre

orientation in bulk flow conditions. The results provide information

about how the fibres would most probably behave in low concentra-

tions by statistical means. For the future studies however, there is

a need for more complete modelling approach which would take into

account the properties of the fibres and their number concentration.

The energy demands of the nowadays world have arisen the question

of the possible increase in concentration in drainage process. Thus,

the modelling approach should be able to capture the essential aspects

related to the increased concentration. This would require consider-

ation of the rheological properties of the suspension discussed, and

in addition, more detailed description about the fibre-fibre and fibre-

flow interactions. Hence, the properties of different phases should

be modelled in a coupled way. Besides the coupling with the flow

through the stress, a more elaborate coupling is not possible with

the modelling approach presented in this work. More relevant way

to investigate those issues would be the use of multi-phase flow or

rheological modelling or the Lagrangian way to gain more detailed

information about how the fibres and the flow behaves as a whole.
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Heidi Niskanen

Modelling of Fibre Orientation
in Contracting Channel Flows and
in the Jet-to-Wire Impingement

Several properties of paper are largely de-

termined by the fibre orientation distribu-

tion in a paper sheet. The fibre orientation 

distribution is, in turn, mainly determined 

by the complex fluid dynamics in the be-

ginning of the paper making process.

In this thesis, the fibre orientation distri-

bution at the beginning of the paper mak-

ing process is studied using an Eulerian 

modelling approach which results in a 

fibre orientation probability distribution 

in certain flow conditions.

The results presented in this thesis 

provide information about how the fibres 

would most probably behave in low 

concentrations by statistical means. Thus, 

with the aid provided by these results, 

new ideas about the improvement of the 

process design may be evoked.
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