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ABSTRACT 

Speaker recognition has been an active topic of research for 
several decades already. Successful application utilizing this 
technology can already be found from the market. However, 
reliable recognition system requires fast and expensive 
hardware to operate in reasonable time. In this work, we 
concentrate our efforts to squeeze a complex recognition system 
into low-cost and low-resource hardware usually found on a 
typical mobile phone. 

This work has been a long journey for the author who has 
been working during this time in several closely related 
domains such as speaker recognition, speaker verification and 
speech recognition. While these are different applications, they 
share the same underlying components. A synergy of these 
areas has found its place in this work as well. 

The research in this thesis mainly addresses the limitations 
that are found in typical mobile phone implementation. Firstly, 
we propose several speaker pruning methods which are able to 
significantly speed up the speaker matching step. Secondly, we 
limit the number of computations by effectively removing 
redundant data from speech input utilizing voice activity 

detection and feature vector quantization techniques.  
Finally, we look into mobile phone specific design issues, 

most notably the absence of floating point unit and analyze 
algorithm conversion results to run on a fixed point processor 
with as little degradation in accuracy as possible. We also 
present efficient model quantization techniques that have been 
used in the speech recognition domain but can be easily applied 
to speaker verification as well. 
 
Keywords: Speaker recognition, speaker verification, 
computational complexity, voice activity detection, speaker 
pruning, quantization, fixed-point implementation 
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1 Introduction 

Speech signal conveys many different types of information, 
including the words and language being spoken, speaker 
specific characteristics and emotions, background noise and 
transmission channel properties to name a few. The main task of 
speaker recognition is to extract and characterize speaker specific 
properties while minimizing the effect of the other information 
and later to recognize the user’s identity based on a given 
speech sample. 

Because of the physical properties of the vocal tract, larynx 
and other voice production organs, no two human voices sound 
identical. Voice as a biometric modality has its own advantages 
and disadvantages compared to traditional methods such as 
fingerprint or face recognition. For humans, speech is a natural 
way to communicate and therefore easy to use. In telephone-
based systems voice is the only available biometric. Another 
advantage is that equipment required to collect speech sample is 
usually cheap and often readily available (like in telephone 
systems).  

Speaker recognition is a broad area that also includes speaker 

verification, speaker identification, speaker segmentation and speaker 

indexing. In this thesis we focus on speaker verification and 
identification systems. Speaker verification system targets to 
verify whether a given speech sample belongs to a claimed user 
or not. Whereas the speaker identification tries to find the most 
probable user from the set of speaker models enrolled to the 
system which has produced an unknown speech sample. 

1.1 MOTIVATION 

Speaker recognition techniques have been studied for several 
decades and successful applications utilizing this technology are 
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already available on the market. These include, for example, 
Nuance Verifier [Nuance], speaker verification products from 
Loquendo [Loquen] and voice authentication solutions from 
Bayometric [Bayom]. However, the majority of the existing 
solutions are focused on desktop environment or call centers 
where computationally demanding algorithms are running on 
efficient but expensive hardware. In mobile device environment, 
on the other hand, available computational resources are 
normally very limited and require special optimizations of 
existing algorithms. One modern approach to overcome 
resource limitations is to split the speaker recognition system 
into two parts, where data is only collected on the mobile device 
and sent over the network to the server which then runs the 
actual recognition. Most known examples of this approach are 
speech input on Google Android phones [ASDK] and Nuance 
Dragon dictation for Apple iPhone [Dragon]. This method, 
however, is not always preferable as it requires persistent 
network connection which might be unavailable or expensive 
for the actual user. In this thesis we focus on speaker recognition 
systems that run entirely on mobile or other resource limited 
device that does not require additional infrastructure to operate.  

The speaker recognition topic has not received as much 
attention compared to automatic speech recognition (ASR) 
which has more potential applications. As a consequence, many 
techniques in speaker recognition have been borrowed from 
ASR even though the goals in these two tasks are quite opposite. 
In speech recognition, one attempts to eliminate speaker specific 
characteristics whereas the speech content is usually not 
important in speaker recognition. Good overview tutorials 
about speaker recognition can be found in [Bimbot04, Camp97, 
Furui97, Kinn10]. 

2.1 THESIS STRUCTURE  

The rest of the thesis is organized as follows. In Chapter 2, 
we give general introduction into the area of speaker 



  3 
 

recognition. We discuss methods and algorithms that have been 
most successful in modern systems. In Chapter 3, we discuss 
optimization strategies and provide algorithms to improve 
computational performance of speaker recognition systems. The 
main focus of these optimizations is to allow speaker 
recognition applications to run on mobile or embedded devices. 
In Chapter 4, we give summary of the original publications of 
this thesis, and summarize their main results in Chapter 5. 
Finally, we draw conclusions and outline future research 
directions in Chapter 6. The original publications are attached at 
the end of this thesis. 
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2 Speaker recognition 

There are two operational modes involved in a typical speaker 
recognition system: enrollment (Fig. 2.1) and recognition that, 
depending on a system type, can be identification or verification 

(Fig. 2.2). In the enrollment mode a system is trained to 
recognize a particular speaker. Based on a provided speech 
sample, a speaker model is created and stored in a speaker 
database.  
 

 
Figure 2.1 Enrollment mode 

 
This model is later used to match a provided unknown 

speech sample and decide on its identity.  
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Figure 2.2 Verification mode 

 
A typical recognition system is composed of two main 

components: feature extraction and modeling. The feature 
extraction component or front-end is responsible for 
transforming the raw audio data into a compact form so that 
speaker specific characteristics are emphasized and redundant 
or non-relevant information is removed. The modeling 
component or back-end aims at modeling unique speaker 
characteristics so that they can be stored in a system database 
and later used in recognition mode to judge incoming user 
claims.  

To normalize the effect of non-speaker characteristics in a 
speaker verification system, a technique called impostor modeling 
is introduced [Reyn02]. There are two dominant approaches 
used to represent impostor model. The first is known as cohort 
background set, which is a collection of the other speaker models. 
The second approach known as the universal background model 
(UBM) is a large single speaker-independent model that has 
been trained on a large amount of data from different speakers 
[Reyn00]. 
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2.1 FEATURE EXTRACTION 

Feature extraction, or speech parameterization, is an important 
part of a speaker or speech recognition system that aims to 
convert the continuous speech pressure signal into a series of 
reasonably compressed vectors. Here, features are speaker 
specific characteristics that are present in a speech signal. The 
goal of the feature extraction step is to extract them from the 
signal while minimizing the effect of other less meaningful 
information such as background noise and the message itself. 
Ideally, features should have the following properties [Wolf72]: 
 

− High between-speaker variability and low intra-speaker 
variability 

− Easy to measure 
− Stable over time 
− Occur naturally and frequently in speech 
− Change little from one speaking environment to another 
− Not be susceptible to mimicry 

 
Human speech production is driven by the excitation of the 

vocal folds due to the air flow expelled from the lungs. The 
produced sound is then modified by the properties of the vocal 
tract (oral cavity, nasal cavity and pharynx). From the source-

filter theory of speech production [Deller00] we know that the 
resonance characteristics of the vocal tract can be estimated from 
the short-term spectral shape of the speech signal. Even though 
there are no exclusive speaker identity features, they are 
encoded via resonances (formants) and pitch harmonics 
[Deller00, Reyn02]. 

Ideally, speaker recognition systems should operate in 
different acoustic environments and transmission channels so 
that enrollment might be done at IT service desk and 
recognition over telephone network. However, since the 
spectrum is affected by environment and channel, feature 
normalization techniques are required for compensating the 
undesired effects. Usually this is achieved by different linear 



  7 
 

channel compensation techniques like short or long term 
cepstral mean subtraction [Reyn94, Reyn02]. 

A lot of research has been done in the speech 
parameterization area for speech recognition systems resulting 
in many different algorithms. However, little has been done for 
finding the best representation of precisely speaker specific 
characteristics that minimizes the effect of commonalities 
present in speech (e.g. same word pronounced by different 
users will have many characteristics in common). Even worse, 
speech recognition methods are, in general, designed to 
minimize inter-speaker variability and thus removing speaker 
specific information. Yet, many of these methods have been 
successfully utilized also in speaker recognition by using 
different normalization methods like background modeling. 

We categorize different speech parameterization methods 
into three broad categories (1) short-term features, (2) prosodic 

features and (3) high-level features. We review these in the 
following sub-sections. 

2.1.1 Short-terms features 

 
The speech signal, in general, is seen as a quasi-stationary or 
slowly varying signal [Deller00]. In other words, speech signal is 
assumed to be stationary over relatively short intervals. This 
idea has motivated a series of methods that share the same main 
principle: the signal is divided into short segments (typically 20-
30 ms) that usually overlap by about 30%. These segments are 
called frames and a set of coefficients calculated from a single 
frame forms a feature vector. 

To avoid undesired effects due to splitting continuous signal 
into short segments, each frame is usually first preprocessed. A 
common step is to apply window function with the purpose to 
minimize effects of abrupt changes at the frame ends and to 
suppress the sidelobe leakage that results from the convolution 
of the signal spectrum [Deller00]. The most popular selection for 
window function is Hamming function. In addition, each frame 
might be pre-emphasized to boost higher frequency components 
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which intensity would be otherwise low due to the downward 
sloping spectrum of the glottal voice source [Deller00]. 

Most popular methods for short-term feature extraction 
include mel-frequency cepstral coefficients (MFCCs) [Davis80, 
Deller00], linear prediction cepstral coefficients (LPCCs) [Camp97, 
Makh75] and perceptual linear prediction (PLP) cepstral coefficients  
[Herm90]. A thorough evaluation of these methods from a 
recognition performance point of view is available in [Reyn94].  

MFCCs are by far the most popular features used both in 
speech and speaker recognition. This is due to their well defined 
theoretical background and good practical performance. Mel-
frequency warping of the spectrum gives emphasis on low 
frequencies that are more important for speech perception by 
humans [Deller00]. MFCC feature extraction technique (Fig 2.3) 
consists of the following steps. First, the signal is windowed. Its 
spectrum is computed using Fourier transform (FFT). The 
spectrum is then warped on Mel-scale by averaging out FFT 
spectral magnitudes equi-spaced on the Mel-scale. In terms of 
linear frequency scale, this means that the lower frequencies are 
processed with filters having narrower bandwidths to give 
higher spectral resolution to these frequencies. Final coefficients 
are computed by taking inverse Fourier transform.  

 
 

 
Figure 2.3 Computing MFCCs 

 
Usually MFCCs are computed from the FFT spectrum but 

this is not always the case. The FFT spectrum is subject to 
various degradations, such as additive noise and fundamental 
frequency variations. Replacing FFT with alternative spectrum 
estimation may help to tackle those issues [Saeidi10]. 
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Each MFFC vector is extracted independently from the other 
short-term frames and, consequently, information on their 
ordering is lost, meaning that feature trajectories are not taken 
into account. A common technique to capture some contextual 
information is to include estimates of the first and second order 
time derivatives – the delta and delta-delta features – to the 
cepstral feature vector. The delta coefficients are usually 
computed via linear regression: 

 

( )
,

2
1

2

1

∑

∑

=

=
−+ −⋅

=
K

k

K

k
ktkt

t

k

ffk

d    (2.1) 

 
where f and d correspond to the static and delta (dynamic) 
coefficients respectively, K is the number of surrounding frames 
and t is feature vector for which the delta coefficients are being 
computed for. Delta-delta (acceleration) coefficients are 
computed in the same way but over the delta (first derivative) 
coefficients. The derivatives are estimated over a window of 
frames surrounding current frame (typically 7 frames for delta 
and 5 for delta-delta). Delta coefficients are normally appended 
to the end of the feature vector itself [Furui81, Huang01].  

2.1.2 Prosodic features 

 
In linguistics, prosody refers to various features of the speaker 
like speaking rhythm, stress, intonation patterns, emotional 
state of the speaker and other elements of the language that may 
not be encoded by grammar. Prosodic features are also referred 
to as suprasegmental features as they do not correspond to single 
phoneme but rather span over long periods of speech such as 
syllables, words and phrases. Even though modeling these 
features for speaker recognition systems is a challenging task, 
recent studies indicate that prosody features improve speaker 
verification system performance [Kockm11]. 
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By far the most important prosodic feature is the fundamental 

frequency (also called F0) which is defined as the rate of vibration 
of the vocal folds during voiced speech segments [Hess83]. F0 
has been used in speaker recognition system already in 1972 
[Atal72]. The fundamental frequency value depends on the mass 
and size of the vocal folds [Titze94] and therefore it contains 
information that is expected to be independent of the speech 
content. Therefore, combing it with spectral features should 
improve overall system accuracy. For example, it has been 
found in [Kinn05] that using F0 related features alone shows 
poor recognition accuracy but when used in addition to spectral 
features recognition accuracy is improved, especially in noisy 
conditions. 

The advantage of F0 is that it can be reliably extracted even 
from noisy speech [Hess83, Iwano04]. A comparison of F0 
estimation methods can be found in [Chev01]. However, as F0 is 
a one-dimensional feature, it is not expected to be very 
discriminative in a speaker recognition system. These aspects 
have been studied in [Kinn05].  

Other prosodic features that have been used for speaker 
recognition systems include duration features (pause statistics, 
phone duration), energy features (like energy distribution) and 
speaking rate among others. These features were extensively 
studied in [Shrib05] where it was found that F0 related features 
are still the best in terms of recognition accuracy. 

2.1.3 High-level features 

 
Human voice characteristics differ not only due to physical 
properties of the vocal tract but due to speaking style and 
lexicon as well. Listeners can distinguish between familiar 
people much better than between those they have not ever 
heard. This is due to certain idiosyncrasies present in speech that 
a human is able to catch.  

The work on high-level features was initiated in [Dodd01] 
where the authors explored idiolectal differences by using N-
gram language models for modeling co-occurrences of words 
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and using this information as speaker specific characteristics. 
Another approach was studied in [Camp04] where the authors 
used frequency analysis of phone sequences to model speaker 
characteristics. 

High-level features are not yet widely used in modern 
speaker recognition systems. However, with advances in speech 
recognition it is now possible to utilize efficient phone and word 
recognizers in speaker recognition area as well. An overview of 
recent advances in this area is available in [Shrib05, Kinn10]. 

2.1.4 Channel compensation 

 
Modern speaker recognition systems strive to operate reliably 
across different acoustic conditions. There might be different 
equipment used at enrollment and recognition steps. In addition 
to background noise, transmission channel bandlimiting and 
spectral shaping greatly affect the system accuracy. Therefore, 
different channel compensation techniques are used for tackling 
those challenges. According to [Reyn94], short-term spectral 
features suffer from adverse acoustic conditions and thus 
perform poorly without channel compensation. Other feature 
types are expected to be less sensitive to channel properties. 

From the signal processing theory we know that convolutive 
distortion in signal domain becomes additive in log-spectral 
domain. The simplest compensation technique is therefore to 
subtract the mean value of each feature over the entire speech 
sample. This technique is called cepstral mean subtraction (CMS) 
or cepstral mean normalization (CMN) [Atal74, Furui81]. In 
addition, the variances of the features can also be normalized by 
dividing each feature by its standard deviation. However, using 
mean value over the entire utterance is computationally not 
efficient as features are not available for processing before the 
entire utterance has been spoken. Channel characteristics may 
also change over the time of speaking. A segmental feature 
normalization approach was proposed in [Viikki98] where mean 
and variance of the features are updated over a sliding window 
usually of 3 to 5 seconds in duration. 
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Another important channel compensation technique, known 
as RASTA filtering, has been proposed in [Herm94]. The main 
idea of this method is to band-pass filter each feature in the 
cepstral domain and remove modulations that are out of typical 
speech signals. RASTA processing alone helps to improve 
system performance but it is not as efficient as other more 
advanced techniques [Reyn94].  However, its combinations with 
other methods have been extensively used. 

Channel compensation is a very important step in any 
practical speaker recognition system and it is therefore still an 
active topic in research. There are many other promising 
methods found in the literature such as feature warping [Pele75], 
feature mapping [Reyn03] and different combinations [Burget07, 
Kinn10]. 

2.2 SPEAKER MODELING 

Speaker modeling component or back-end is a part of the speaker 
recognition system that aims to create a parametric 
representation of the speaker’s voice characteristics. This model 
is stored into the speaker database and later used to verify 
identity claims. Feature extraction component provides an input 
for modeling both in enrollment and recognition modes. During 
enrollment, a speaker model is trained from the input feature 
vectors, whereas in recognition, an input sample is matched 
against the stored speaker model(s). In a speaker verification 
system a decision is made by comparing the match score against 
a decision threshold. The match score is usually further 
normalized using other speakers’ models to reduce the effects of 
speaker and environmental variations. In speaker identification 
system decision is made based on the match scores of all 
models. Usually, the speaker model with the best score is 
selected as the identification output. 

Desirable attributes of a speaker modeling technique are 
[Reyn02]: 
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- Well-defined mathematical background that allows 
extensions and improvements 

- Able to match new data not present at the enrollment 
step, i.e., does not over-fit to the enrollment data 

- Practical representation both in storage size and 
computational performance 

 
In speaker recognition research, modeling techniques are 

traditionally divided into template models and stochastic models 
[Camp97]. These two differ in the way pattern matching is 
carried out. In template models, it is assumed that feature 
vectors are inexact replicas of the template and, therefore, the 
training and test vectors are directly compared against each 
other by measuring the distance between them. Examples of 
these techniques are dynamic time warping (DWT) [Soong87] and 
vector quantization (VQ) [Furui81]. In stochastic models, in turn, 
speaker voice is assumed to be a probabilistic source with a 
fixed probability density function. Training vectors are used for 
estimating the parameters of this function. In the recognition 
step, the conditional probability or likelihood of the test vectors, 
given the model, is evaluated. The Gaussian mixture model 

(GMM) [Reyn95] and hidden Markov model (HMM) [Naik89] are 
the most well-known examples of stochastic models.  

However, in recent years several new modeling techniques 
have evolved and started to get significant attention by the 
speaker recognition community.  These are so called 
discriminative models that model the boundaries between speakers 
as opposed to generative models (template and stochastic models 
described above) that estimate the feature distribution within 
speakers [Kinn10]. Sound examples of discriminative modeling 
methods are artificial neural networks (ANNs) [Farrell94] and 
support vector machines (SVMs) [Camp06a]. 

In the following sub-sections we review the commonly used 
speaker modeling techniques, namely vector quantization and 
Gaussian mixture models. We will also pay special attention to 
match score normalization methods as they have become a 
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crucial part of any modern speaker verification system and give 
short overview of emerging new modeling methods. 

2.2.1 Vector quantization 

 
Vector quantization (VQ) modeling was first introduced as a data 
compression technique [Ger91] and later used in speaker 
recognition as well [Burton87, Furui91]. Speaker model in VQ is 
created by partitioning the training data set into a finite, usually 
a predefined number of non-overlapping regions that are 
represented by their mean vectors or centroids. A set of such 
centroids is called a codebook, which represents a model of the 
training data. Partitioning process is called clustering and is 
performed by minimizing the average distortion between 
centroids and training vectors over the whole training data. This 
process is schematically represented in Figure 2.4. 

 
Figure 2.4 Vector quantization of two speakers 

 
Several algorithms exist for codebook generation. The 

following is a list of several example methods [ Kinn11]: 
 
- Generalized Lloyd algorithm (GLA) [Linde80] 
- Self-organizing maps (SOM) [Nasr88] 
- Pairwise nearest neighbor (PNN) [Equitz94] 
- Iterative splitting technique (SPLIT) [Fränti97] 
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- Randomized local search (RLS) [Fränti00] 
 

In a recent study [Kinn11], the authors compare these 
algorithms for codebook generation in VQ-based speaker 
recognition. According to the authors, the choice of the method 
is not as important as the codebook size. Theoretically, it is 
possible to use all the training vectors as a model directly 
without any clustering but it is not efficient from a 
computational point of view and leads to over fitting for the 
training data. 

Matching in VQ is done by combining minimum distances 
from test vectors to the codebook centroids. There are several 
techniques for computing the match score, with mean square 

error (MSE) being the most popular. It is computed as the sum of 
the squared distances between the vector and nearest centroid 
divided by the number of test vectors,  
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where X is a set of N extracted feature vectors, C is a speaker 
codebook, xi are the feature vectors of the test utterance, cj are 
codebook centroids and d is a vector distance function. Even 
though MSE is a very common method to compute the match 
score for VQ-based system, a search for a better metric is still an 
ongoing topic in speaker recognition [Hanilci11]. 

Although vector quantization is a relatively simple and 
lightweight technique that is well suited for practical 
applications on embedded devices it also provides competitive 
accuracy compared to other techniques [P3]. VQ is a natural 
choice while selecting a modeling method for application that is 
supposed to run on a device with limited hardware capabilities. 
We will discuss optimization strategies for VQ in more detail in 
Chapter 3. 
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2.2.2 Gaussian mixture model 

 
The most popular modeling method in text-independent 
speaker recognition is Gaussian mixture model (GMM) [Reyn95]. 
While more advanced likelihood estimation methods like the 
hidden Markov model (HMM) have also been used they have not 
proved significant improvement over GMM [Reyn02, Bimbot04] 
since that HMM cannot be easily applied to text-independent 
speaker recognition. In fact, GMM can be considered to be single 
state hidden Markov Model. It can also be seen as an improved 
version of the VQ model with overlapping clusters [Kinn10]. 

In GMM, the speaker model consists of a finite mixture of 
multivariate Gaussian components. The model characteristics 
are defined by its Gaussian mixture density function which is a 
weighted sum of component densities, 
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where M is the number of Gaussian components, x is a multi-

dimensional feature vector, bi(x) are the components densities 
and pi are the mixture weights or prior probabilities. To ensure 
that the mixture is a proper density mixture, the weights should 
sum up to unity. Each component density function is given by 
the following equation: 
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where N is the dimensionality of the feature vector x, μi is the 

mean vector and Σi is the covariance matrix for i-th component 
[Reyn95]. 

Each GMM speaker model is parameterized by the mean 
vectors, covariance matrices and mixture weights from all the 
component densities. Estimation of these parameters is not 
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possible in closed form, and is computationally demanding if 
full covariance matrices are used. However, complexity is 
greatly reduced if one uses diagonal covariance matrices 
instead. One popular algorithm for estimating the GMM 
parameters is expectation-maximization (EM) [Bishop06]. In EM, 
an initial solution is required which is iteratively improved. 
Iterations are stopped when there is no significant improvement 
in the model likelihood for training data. Initial solution can be 
selected, for example, by clustering the training data set. 
Another modeling approach is to train one large universal 
GMM model from large amount of speech and estimate 
individual speaker models from it by maximum a posteriori 
(MAP) adaptation technique [Kinn10, Reyn00]. 

Feature vectors are assumed to be independent and match 
score in GMM is therefore computed simply by multiplying the 
individual vector likelihoods. To avoid numerical problems 
with very low likelihoods, usually a log-likelihood is used in 
practical implementations that result in the match score being a 
sum of the log-likelihoods of individual vectors. 

Gaussian mixture modeling as such is a computationally 
demanding task. It involves several costly operations like square 
roots, exponents and logarithms. Many of these operations can 
be pre-computed at the enrollment step and using GMM model 
quantization computational load can therefore be greatly 
reduced [P6]. We will return to GMM optimization methods in 
Chapter 3. 

2.2.3 Recent advances 

 
In the previous subsections we have presented two major 
modeling techniques that dominate in speaker recognition 
systems. However, in recent years there has been significant 
progress in this area and several modern methods have evolved. 
The practical properties of these methods from mobile device 
environment point of view are yet to be seen in future but, for 
completeness, we present a short overview of the most 
promising techniques. 
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Speaker modeling using the EM algorithm in GMM-based 
systems requires significant amount of training data which is 
not always available. To tackle this data insufficiency problem, 
several authors have proposed training single large model from 
a development set and later adapting speaker specific models 
from it using maximum a posteriori (MAP) adaptation [Kinn10, 
Reyn00]. For simplicity, only the mean vectors are adapted. 
Stacking these adapted mean vectors together leads to so-called 
GMM supervectors [Camp06a]. Such vectors can also arise, for 
example, from polynomially expended vectors [Camp06b]. 

Several new speaker modeling methods have evolved based 
on the supervector concept. Using support vector machines (SVM) 
back-end to classify these supervectors has proven to be an 
effective speaker recognition method [Camp02, Camp06b]. The 
main idea of SVM is to perform a mapping from an input space 
to SVM space where linear classification techniques can be 
applied. Such matching function is a key design element of any 
SVM-based system [Camp06b]. For more details of SVM system 
based on supervector concept, we refer to [Camp06b]. 

Another promising technique that has been recently 
proposed is joint actor analysis (JFA) [Kenny07, Matr07]. JFA 
takes advantage of the correlations between Gaussians during 
speaker modeling to decompose the speaker model into three 
components: a speaker and session-independent component, a 
speaker-dependent component and a session-dependent 
component [Kenny07, Matr07]. However, as the original authors 
state, this method is computationally demanding and requires a 
well-balanced training set recorded under a variety of channel 
conditions [Kenny07]. The idea of JFA has later been extended 
in [Dehak09] where the authors proposed a novel method that, 
instead of modeling between-speaker and within-speaker 
variability in a high dimensional supervectors space, finds a 
low-dimensional supervector subspace that represents both the 
channel and speaker variabilities [Dehak09]. Accordingly, this 
space has been named total variability space [Dehak09], which is 
also known as i-vector method [Sen10] and front-end factor 

analysis [Dehak11]. 
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2.2.4 Match score normalization 

 
The main task of speaker verification system is to make a 
decision whether the speaker is the person he or she claims to be 
based on a given speech sample. In simple cases, a match score 
can be tested against a predefined threshold. However, such an 
approach is not reliable in practice since speaker modeling 
methods do not produce probabilities but, rather, a biased 
match score that depends on various conditions, such as 
channel, environment and speaking style. To tackle this 
problem, match score normalization has been introduced [Auck00, 
Reyn02]. 

In modern systems, the most common method for making 
the decision is to compute the likelihood that the input speech 
sample has been produced by the claimed speaker and compare 
it with the likelihood that it has not been produced by that 
speaker (so-called impostor score). In other words, given the 
claimed speaker identity, S, and input speech sample, Y, the 
verification task is a statistical hypothesis test between: 

 
         H0: Y originates from the hypothesized speaker S 
and  
         H1: Y does not originate from the hypothesized speaker S. 

 
Assuming that the likelihood functions for both hypotheses are 
known, the optimal decision in Bayes sense is a likelihood ratio 
test: 
 ���|������|���      
  � �           ����� ��� �            ������ �� � (2.5) 

 
where p(Y|Hi), i=0,1, are the likelihood functions for the two 
hypotheses Hi evaluated on speech segment Y, and θ is the 
decision threshold [Reyn00]. 

Estimating the null hypothesis likelihood p(Y|H0) is usually 
straightforward and is based on the speech sample match score 
against the claimant’s model. However, estimating the 
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alternative hypothesis likelihood p(Y|H1) is significantly harder 
[P2]. There are two dominant approaches in speaker 
verification, world or universal background model (UBM) and 
cohort set normalization [Auck00, Reyn02]. 

The world model approach uses a single speaker 
independent model trained from a large amount of speech data 
from a variety of speakers. The idea of this method is to model 
all the possible speakers and speaking contexts of the “world” 
and therefore it represents a general speech model. Match score 
normalization in this method is accomplished by a likelihood 
ratio test between claimant and world models likelihood’s. 

Cohort set normalization or modeling, on the other hand, 
uses a collection of other speakers, either enrolled to the system 
or coming from some other set, to estimate alternative 
hypothesis likelihood. Individual scores from cohort models are 
obtained and combined usually by averaging or selecting the 
maximum. 

There is no preferred method in the speaker verification 
community as both methods have performed well in different 
studies [Bimbot00, Reyn02, P2]. The advantage of world model 
approach is that it is simpler as only one model has to be trained 
and scored [Reyn02]. However, the cohort approach provides a 
possibility for individual selection of impostor models for any 
enrolled speaker and therefore decreases the false acceptance 
rate making the overall system more secure [P2]. 
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3 Optimization techniques 

for mobile devices 

By mobile device in this work we refer to a generic pocket size 
handheld device that is battery powered. The hardware design 
for such a device involves many different factors with power 
consumption, component size and price being the most 
important. These limitations lead to significantly less powerful 
hardware that is available for speaker recognition system 
designer. On the other hand, speaker recognition, as any other 
pattern recognition technique, requires a lot of complex 
mathematical computations that are very demanding for the 
system resources. The challenge for the system designer here is 
how to reduce the amount of computations and required 
memory size while retaining recognition accuracy and usability 
on acceptable levels.  

Before doing any optimizations, the so called “80-20 rule” 
(also known as the Pareto principle) has to be considered. The 
rule states that 80% of device resource like CPU time or memory 
is used by 20% of the system. While not being exactly true, it 
stresses the importance of finding the most time consuming 
places inside the system – the bottlenecks - and spend the most 
effort on optimizing them. These places can be reliably found 
only while running benchmarking tests on the target hardware. 
The well known author of algorithm design books Donald 
Knuth has stated: “We should forget about small efficiencies, say 

about 97% of the time: premature optimization is the root of all evil. 

Yet we should not pass up our opportunities in that critical 3%. A 

good programmer will not be lulled into complacency by such 

reasoning, he will be wise to look carefully at the critical code; but only 

after that code has been identified” [Knuth74]. 
From the author’s personal experience, speaker recognition 

system front-end (feature extraction), if implemented right, can 
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be executed in 3 to 4 times real-time, on average, in mobile 
device. In other words, 1 second of speech can be processed in 
0.3-0.2 seconds. This is because the front-end utilizes techniques 
that have been developed for decades in digital signal 
processing community. Speaker model matching, on the other 
hand, is a much less studied problem and therefore requires 
more attention for seeking the bottlenecks. Performance of 
speaker enrollment into speaker recognition system is usually 
not that important either, as it can be done once and delays are 
normally more tolerated there. Speaker model adaption can also 
be done in the background and therefore it does not require a 
very efficient execution. 

The best optimization is, in fact, no computation at all. While 
sounding absurd there are many places in a speaker recognition 
system where this can be achieved. Time consuming operations 
can be analyzed in real-time and decision can be made whether 
they have to be executed or not. Non speech segments removal 
in the front-end is the most obvious example of such strategy. 
Removing useless data at an early stage saves a significant 
amount of computations later. As a variation of this method, the 
relevance of input data can be analyzed in speaker model 
components to prune out the majority of them early and 
complete final precise computations for only a few [P1, P6]. 
Sometimes there are operations in algorithms that do not change 
much or have only a few possible results during the execution. 
Such places should be analyzed and replaced by pre-computed 
results.  

One novel approach that is becoming more and more 
popular in modern systems is to split operations into two 
groups from which one runs on the device itself (e.g., front-end) 
and the other is executed on a remote server (e.g., back-end) that 
is connected to the device over a network. This approach has its 
own advantages and disadvantages that are beyond of the topic 
of this thesis. An example system based on such an approach 
has been reported in [Chow10].  

Even though there are many limitations imposed by the 
mobile device, speaker recognition systems that are running 
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entirely on an embedded device are starting to appear [Tyd07, 
Rao10, Roy11]. In the rest of this chapter, we will first discuss 
generic strategies to attack mobile device limitations, including 
the absence of a floating point unit. We also give a few 
guidelines on how to efficiently implement algorithms with 
focus on low-resource devices. After that we review methods for 
optimizing different parts of a typical speaker recognition 
system paying more attention to algorithm design rather than to 
its implementation. 

3.1 MOBILE DEVICE LIMITATIONS  

While designing a speaker recognition system for a mobile 
device many factors have to be addressed. At the forefront are 
certainly the device’s limited hardware resources like CPU 
speed and a significantly lower amount of available memory 
both for algorithm execution and model storage. But there are 
also other less frequently considered limitations like absence of 
a floating point co-processor or signal pre-processing by device 
audio recording hardware. The mobile device is assumed to be 
operated in much more noisier and varying acoustic conditions 
compared to traditional desktop computer systems. Any mobile 
device is truly mobile only when it is powered by a battery. 
Therefore, its life time has to be preserved as much as possible 
for convenient usage, and as a result, all unnecessary 
computations have to be minimized. Development environment 
for mobile devices might be clumsy and programming 
languages may have limitations that have to be addressed 
during algorithm design or adaptation. In the following sub-
sections, we will discuss generic strategies for designing 
algorithms focusing on mobile device applications.  

3.1.1 Optimizing for device hardware 

 
Any theoretically efficient algorithm can be ruined by an 
inefficient implementation. The same also concerns algorithms 
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that are designed without hardware limitations in mind. Certain 
operations like memory access may look constant when the 
method is theoretically analyzed but, in reality, its execution 
time may vary significantly depending on different conditions 
and details of the target hardware design. In this sub-section, we 
give an overview of the most common issues that may be faced 
during algorithm optimization for mobile devices. 

Most modern hardware designs for mobile devices have a 
layered memory structure in regards to access speed. The fastest 
memory is the most expensive and therefore there is less of such 
memory available. Processor register is the fastest memory type 
and the only type that a CPU can access to perform any 
operation. When there is not enough space in the registers, data 
is saved to slower memory that in turn will save its data to even 
slower memory when full and so on. This so called memory 

pyramid is represented in Figure 3.1. 
 

 
Figure 3.1 Memory pyramid 

 
When some data is needed by CPU it has to be loaded to 

registers first. Loading process works in the opposite way so 
that data from one layer can be loaded only to the higher layer. 
For example, when some data is needed that is stored on disk 
memory it has to be loaded first to RAM, then to memory cache 
and only after that it can be loaded to processor registers. For 
efficiency reasons, data is never loaded from one layer to 
another as single byte but in data blocks called cache lines whose 

CPU registers

Fast memory (cache)

Slow memory (RAM)

Static memory (Disk, Memory Card)



  25 
 

size varies depending on architecture but is usually smaller for 
higher levels [Henn06, Hoxey96]. 

This complicated process is transparent to the program 
running on a mobile device. However, if these issues are not 
taken into account while designing and implementing an 
algorithm, its performance may not be as expected. The main 
design principle to address these concerns is to utilize so called 
data locality or locality of reference principle when all data is 
processed in small chunks that are stored in a contiguous buffer. 
By designing algorithms in this way data transfer between 
memory layers will be minimized. The same concerns the 
application binary as it is loaded to memory in the same way. 
The less branches and variables there are in the algorithm 
implementation the faster it will work in regard of memory 
access speed. 

Data structures used in the algorithm design should also be 
reconsidered from the memory access performance point of 
view. Linear data structures utilize a better data locality 
principle, and therefore, algorithms may be modified to use 
them. The data model format should be designed so that it may 
be loaded as one data block and used immediately without 
parsing it first. This may allow storing data models into read only 

memory (ROM) so those models will not be required to be loaded 
to the main memory at all. 

Most hardware designs of mobile devices already contain 
dedicated units for signal processing and coding. As speaker 
recognition includes many signal processing algorithms these 
hardware modules can be utilized to share computation load of 
signal processing operations. Moreover, speech coding 
parameters can be directly utilized in speaker recognition. Work 
in this direction has been reported for speech recognition in 
[Huer98] and speaker recognition in [Quat00]. 

An ideal algorithm would be just a set of lookup tables 
combined with decision logic. In practice this is not always 
possible but such ideas have been applied to at least HMM-
based speech recognition [P6, Vasila00], and they can be applied 
to speaker recognition as well. We have presented here only a 
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few main principles of optimization directions, and recommend 
the studies of [Henn06, Hoxey96] for an interested reader. 

3.1.2 Fixed point arithmetic 

 
Even nowadays, many modern mobile devices still do not have 
a floating point unit (FPU) included due to their higher price and 
power consumption because of the larger silicon area required. 
This is in strong contrast with traditional desktop computer 
environment where FPUs are integrated by all major 
manufactures. In mobile devices, floating point is often 
emulated by software libraries or operating system. But without 
hardware support for floating point operations, this executes 
significantly slower and therefore, converting algorithms to run 
in fixed point is highly desired.  

Fixed point number representation has a fixed number of bits 
reserved for the integer and fractional parts of a number. The 
value is basically an integer that is scaled by a predefined factor. 
For example, 12.345 may be represented as integer 12345 with 
scaling factor 1/1000. The scaling factor is fixed and does not 
change during computation, in contrast to floating point 
representations where radix point (also called decimal point) 
position may vary (hence the name - floating) depending on the 
value it holds. The main advantage of floating point 
representation over fixed point is the much wider range of 
values it can hold. For example, if 5 digits were reserved for the 
integer part and 2 for the fractional part, such number can hold 
values like 12345.12 or 0.01 but not any bigger or more accurate. 
Floating point representation, on the other hand, allows storing 
for example values like 1234567 or 0.12345. Therefore, it is 
important to analyze the data range before converting the 
algorithm to fixed point. If too few bits are allocated for the 
integer parts, the algorithm may overflow, but on the other 
hand, if too few bits allocated for the fractional part it may lose 
precision. 

Arithmetic operations in fixed point are slightly different 
from the conventional integer operations. While addition and 
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subtraction can be done in the normal way, care should be taken 
that numbers have the same scale. Multiplication and division 
are more complicated. When two fixed point integers are 
multiplied the resulting scale doubles and it has to be scaled 
back to the original precision. Particular care should be taken 
that multiplication does not overflow as there is only a fixed 
amount of bits for storing the integer part but number of bits for 
the fractional part in the result will be twice as big. To give an 
example, let us multiply 1.23 by 4.56 (stored as 123 and 456, 
respectively, with scale factor 1/100). The result will be an 
integer value 56088 with scale factor 1/10000, or 5.6088. To get 
back to the original precision, we need to scale it back to 5.60 
with scale factor 1/100. To avoid overflow, a value can be scaled 
down to a lower fractional part before multiplication but this 
would result in loss of precision. Division works the opposite 
way as scale factor in result will be subtraction of dividend and 
divisor scale factors. This also means that if the dividend and 
divisor have the same scaling factor, the fractional part will be 
lost completely in the result. To attack this problem, the scaling 
factor for the dividend should be increased before division so as 
to retain the precision of the fractional part of the result.  

Algorithm conversion to fixed point arithmetic is not an easy 
task. In our work, we have done this for a speaker recognition 
system in [P5] where the most tedious part was implementation 
of the fast Fourier transform (FFT). FFT turned out to be the most 
critical part of the entire system regarding recognition accuracy 
whereas errors in the other components such as speaker 
matching had no significant effect on the result. From our 
experience, careful numerical analysis is a crucial part of 
successful fixed point algorithm implementation [P5]. For more 
discussion on fixed point arithmetic error analysis in speaker 
recognition we refer to [Tyd07]. 
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3.2 OPTIMIZING FRONT-END 

Most of the computation time in a typical speaker recognition 
system is spent in matching the incoming feature vectors to 
speaker models. With a careful implementation of the front-end, 
the matching step is significantly more computationally 
expensive than feature extraction [P3, Karpov03]. Standard 
spectral feature extraction methods are also well studied over 
the past decades and there is not much space for further speed 
improvement. Some optimizations can still be done in the front-
end to improve the overall system performance. Reducing the 
number of feature vectors is a simple example. In this sub-
section, we will review the two most common feature vector 
reduction techniques, voice activity detection and quantization of 

input samples. Time complexity analysis of the most typical 
feature extraction techniques and their experimental 
performance evaluations can be found in [Karpov03]. 

3.2.1 Voice activity detection 

 
Speech signal does not always contain relevant information for 
speaker recognition system but also includes silent or noisy 
regions where the speaker is not saying anything. Such 
segments should be discarded from the input signal for 
improving overall system performance. Voice activity detection 
(VAD) is a technique that aims at partitioning a given audio 
sample to speech and non-speech segments. Occasionally, it is 
also called silence removal, but VAD may also remove non-silent 
noise regions. While the problem of detecting and removing 
non-useful audio segments is a relatively long studied task, it is 
still unsolved in adverse acoustic conditions, especially at very 
low signal-to-noise ratios (SNRs), and there is still room for new 
research [Furui05]. VAD plays an important role in signal 
processing applications, especially in telecommunications where 
it can save a considerable amount of traffic and energy [Kond69].  
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Simple methods for voice activity detection make decision 
based on the measured value of signal characteristics such as 
[Marks88]: 

 
- relative energy level, 
- first autocorrelation coefficient, 
- first LPC linear predictor coefficient, 
- first mel-frequency cepstrum coefficient, 
- normalized prediction error. 
 
Some methods use output from feature extraction algorithms 

[Haigh93, Martin01] and some operate on non-processed signal 
[Buril00]. More advanced methods involve modeling of 
background noise to distinguish whether signal frame contains 
speech or not. The model is updated real-time to reflect 
changing background noise characteristics.  

One representative example of such approaches is the long-

term spectral divergence (LTSD) method [Ram04]. It compares the 
long-term spectral envelope to the average noise spectrum. The 
decision logic is adapted to the measured noise energy and 
hangover scheme is activated in low signal-to-noise ratio 
regions. While LTSD works well in noisy conditions, its main 
drawback is the initialization of the algorithm which requires a 
sample of the background noise before it can start operating. If, 
for some reason, the noise model was initialized with signal that 
contains speech this method will perform poorly. Also hangover 
scheme is less important in speaker recognition because speech 
regions do not have to be contiguous as is required by speech 
recognition.  

Many VAD algorithms can be found in telecommunication 
industry, including standards such as ITU G729B [ITU96], ETSI 
AMR option 1 and 2 [ETSI99], ETSI AFE [ETSI00] and emerging 
Silk codec [Silk09] used in the popular Skype communication 
program. We have compared these algorithms in [P7] and found 
that all of them suffer from adverse acoustic conditions. VAD is 
certainly not a solved problem and more research is required in 
this area before acceptable methods will be found. 
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3.2.2 Quantization of input samples 

 
Speech signal is slowly varying so that the feature vectors 
extracted from adjacent frames are highly correlated. The idea of 
input sample quantization or pre-quantization (PQ) is to replace a 
group of feature vectors with only a few representatives that can 
be matched against speaker model, and in this way to reduce 
the computation time needed for matching. This process is 
schematically represented in Figure 3.2. 

 
Figure 3.2 Quantization of input samples 

 
This idea has been originally introduced in [McLa99] where 

the authors reported a compression ratio of the input vectors at 
20:1 without compromising system accuracy. In [P3] we 
proposed three novel quantization techniques and compared the 
results to the decimation method of [McLa99]. The compared 
variants in [P3] include the following methods: 

 
- random subsampling, 
- averaging, 
- decimation, 
- clustering-based PQ. 
 
In random subsampling and averaging, we replace a consecutive 

sequence of feature vectors with only one randomly selected, or 
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average vector of the sequence, respectively. In the decimation 
method, we simply take every Mth vector from the feature vector 
stream (here, M is a control parameter of the algorithm). In the 
clustering-based method, we partition the input sequence using 
K-means clustering algorithm. In [P3], we have evaluated 
different parameters for quantization on different data sets and 
found that all of them work quite well, while the clustering-
based method performs the best. Quantization of input samples 
gives approximately 50% time reduction in the matching step 
with only minor (less than 1%) increase in error rate [P3]. 

Quantization of feature vectors has also been applied to 
speech recognition domain. In our system presented in [P6] we 
combined it with quantization of HMM model. In this approach, 
we can construct pre-computed tables and use them to calculate 
distances from feature vectors to the model mixtures just by a 
few table look-ups and additions. We will review this important 
optimization technique in more detail in the following sub-
section. 

3.3 OPTIMIZING BACK-END 

Speaker recognition back-end is usually the most time 
consuming part of the recognizer. There are different speaker 
modeling techniques such as vector quantization and Gaussian 
mixture modeling and different methods for score 
normalization such as universal background modeling and 
cohort normalization. All these methods include a large number 
of distance computations to score the input feature vectors 
against speaker models. If the input is long and the speaker 
model has many parameters this will take a significant amount 
of time. Therefore, it is crucial to have optimized back-end for 
speaker recognition when targeted to run on a mobile device. 

There have been a large number of methods proposed for 
speeding up back-end performance in speaker and speech 
recognition. The majority of them target either reducing or 
speeding up distance computations (scoring) between feature 
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vectors and the acoustic or speaker models. As Gaussian 
mixture modeling (GMM) and vector quantization (VQ) are the 
most common modeling methods we will focus on them.  

For GMM-based systems that utilize universal background 
model efficient scoring method was proposed in [Reyn00]. In 
the GMM-UBM approach, a single background model is trained 
first from a large amount of data from different speakers. 
Individual speaker models are later added by adapting the large 
background model. During the matching step, in the adapted 
GMMs, only those components are scored that are in the UBM 
top-list. This way one avoids most of the Gaussian density 
computations. Usually one scores only top-5 Gaussians, which 
leads to significant speed-ups without degradation in accuracy 
[Reyn00]. For GMM scoring there have also been various 
optimizations based on hierarchical models [Xiang03, Liu02, 
Sun03]. The authors in [Xiang03] reported a speed-up factor of 
17:1 with a 5% relative increase in equal error rate. Similar 
approach was proposed in [Auck01] by using UBM-like hash 

model, which gained a speed-up factor of about 10:1 with a 
minor degradation in system accuracy.  

An efficient scoring algorithm has been proposed in 
[Pellom98] with a reported speed-up factor of 6:1 relative to the 
baseline beam search. In [Tyd07] authors proposed GMM-based 
system targeted at embedded devices. Another efficient method 
for scoring Gaussian mixtures has been proposed in [Vasila00] 
that substantially reduces both memory consumption and 
computational load while retaining high recognition accuracy. 
Combined with feature quantization it leads to an efficient 
mixture scoring method [Vasila04]. Although this method was 
introduced for speech recognition, in principle it can also be 
applied to GMM-based speaker recognition as distance 
calculations are required in both tasks. We have used the same 
technique in [P6] and will review this method in more detail 
later. 

Vector quantization optimization has received less attention 
than GMM mainly because GMM is already quite simple and 
efficient. However, we have found that VQ provides 
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comparable performance, in terms of identification accuracy, to 
GMM [P3] and is even simpler to implement and runs efficiently 
in a mobile device. We have thoroughly investigated 
improvement areas for VQ based matching in speaker 
identification and verification [P1, P2, P3] and found several 
promising techniques such as metric space indexing [Chav01, 
Uhlm91] and speaker pruning.  

In the following sections we will review the most promising 
methods that can significantly improve back-end performance 
in GMM and VQ based systems. We will also review the 
speaker pruning technique that was originally developed for the 
speaker identification task but was later adapted for the efficient 
online cohort model selection for score normalization [P1, P2] in 
speaker verification systems. For detailed complexity analysis 
for VQ and GMM matching we refer to [Karpov03]. 

3.3.1 Efficient search in vector space 

 
The problem of finding the nearest vectors in metric space has 
been studied for decades [Chav01]. In general, these methods 
utilize the properties of metric space to build a search tree for a 
discrete set of vectors. This search tree allows finding the nearest 
vector quickly without computing all the distances. 
Surprisingly, such techniques have not been used in speaker 
recognition much, even though these techniques are 
mathematically proven to always find the nearest vector using 
less or, in worst case, the same amount of distance 
computations. In [P3], we applied vantage point tree [Uhlm91] for 
indexing speaker codebooks and found it to improve matching 
in VQ-based system without any degradation of accuracy.  

Vantage point tree (VPT) or the “metric tree” was introduced 
in [Uhlm91] and later refined in [Yian93, Chiu94]. VPT is built 
recursively by taking one random vector as the root and 
computing median distance to all the rest. Those elements that 
have distance to root less than the median are grouped into the 
left sub-tree and those with larger distance into the right sub-
tree. This process is repeated recursively on each sub-tree until 
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all the elements have their place. Search for the nearest vector is 
started by computing distance to the root and, if it is smaller 
than the median, the search continues to the left sub-tree, 
otherwise to the right (if distance is equal we enter into both 
sub-trees). By traversing the tree in this way we report a set of 
vectors from which we select the one with smallest distance, 
which will be the nearest vector. Construction of VPT is 
illustrated in Figure 3.3. 

 

 
Figure 3.3 VPT construction 

 
A serious drawback of such indexing methods is that they 

require a proper metric to construct such indexes, i.e., a distance 
function that satisfies the triangle inequality (which states that 
the sum of distances between vectors a and b and vectors a and 
c is always bigger or the same as the distance between vectors c 
and b). As the likelihood scoring function in GMM is not a 
metric, metric space indexing cannot be applied to speed up its 
computation, and thus, this technique is limited only to VQ-
based systems. We attempt to generalize this idea one level 
higher in [P4] by indexing the entire speaker space but did not 
find a good metric to measure the distance between speaker 
models that would allow us to construct such an index.  
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3.3.2 Quantized HMM 

 
Since its introduction, GMM-based speaker recognition systems 
[Reyn95] have received significant attention and represent the 
mainstream modeling technique. However, in comparison to 
VQ, GMM is computationally more demanding. The majority of 
the load originates from the computation of Gaussian mixture 
densities. In the simplest case, when using diagonal covariance 
matrix mixtures [Vasila00]: 
 

���� � � ω�
K

���
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N
$�� / ,        (3.1) 

 
where K is the number of Gaussian densities in a mixture, 

and N is the dimensionality of the feature vectors. In this 
formula, the mixture weights ωk and Gaussian normalization 
factor values are known beforehand and can be pre-computed 
and stored with the model. The only time consuming part 
remaining is computing the Mahalanobis distance [Mah36], that 
is, the argument of the exponential term in (3.1). 

To attack this problem, quantization of mean µ and variance 
σ has been proposed in [Vasila00] for all Gaussian components. 
The authors suggest using two global quantizers, one for means 
and one for variances, to effectively compress their values into 
two codebooks with 5 bits for mean index and 3 bits for variance 
index (per each feature vector component). This requires storing 
only N (where N is feature vector dimension) bytes plus the pre-
computed weight and normalization factor for each Gaussian 
density. After the means and variances have been quantized, 
they can only have predefined values for each feature 
component and a look-up table can be constructed for every 
feature vector for fast Gaussian density computation [Vasila00]. 
The authors reported a speedup factor of 4:1 in [Vasila00] with 
only minor degradation in accuracy. 

This idea has been further extended in [Vasila04] by 
quantizing the feature vector space as well. If features are also 



36   
 

quantized the helper tables described above can be pre-
computed for each Gaussian during model training. By doing 
so, Gaussian density computation can efficiently be 
implemented using simple table look-ups and summations with 
only a negligible effect on accuracy but significant savings both 
in storage and computational load. For a detailed description of 
the method, we refer to [Vasila04]. 

The method described in this section has been used in a 
speech recognition system in [Vasila04] and it has also shown to 
be efficient to run on a mobile device [P6]. Based on the fact that 
GMM can be seen as single state HMM,  this method can also be 
applied to GMM-based speaker recognition as well. 

3.3.3 Speaker pruning 

 
Speaker pruning [P1] is a method to speed up the matching step 
when distance or likelihood computations are required for 
several speaker models. This is the case in open-set speaker 
identification or efficient real-time selection of cohort speakers 
for score normalization [P2]. 

The idea of pruning is to monitor how the match scores for 
each speaker model develop over time when more speech data 
is processed. When a model score saturates we can compare it 
with others and decide if we continue updating this score or 
prune it out from further computation and save resources. In 
[P3], we experimented with four pruning methods: 

 
- Static pruning, 
- Hierarchical pruning, 
- Adaptive pruning, 
- Confidence-based pruning. 
 
These methods differ mainly in how and when the decision is 

made to prune speaker models from computation. In static 

pruning (SP), we use a fixed interval at which we sort the 
speaker models and prune out a fixed amount of those having 
the lowest scores. Hierarchical pruning (HP) uses two sets of 
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models for each speaker, one for coarse speaker representation 
and another for more detailed modeling. Scores for the coarse 
model are computed first and speaker models with lowest 
scores are pruned out. Only a few detailed models are retained 
for the final decision. In adaptive pruning (AP), based on 
Gaussian assumption on the match score distribution, we prune 
models that are far from score distribution according to a pre-
defined threshold. In confidence-based pruning (AP), the idea is 
similar to static method but, instead of pruning a fixed amount 
of models at each iteration, we prune only those models whose 
scores have been saturated with higher confidence. According to 
our experiments, the adaptive pruning method gives the best 
trade-off between accuracy and computational savings while the 
static method performed worst. In general, pruning algorithm 
can provide 2-5 times speed-up for match score computations. 
For detailed descriptions and results, we refer to [P3]. 

While the pruning method is most naturally suited for 
speaker identification from large speaker populations, it can also 
be used for certain tasks in speaker verification [P2]. We have 
conducted extensive experiments with different pruning 
methods and, in general, have found it to be a very efficient 
technique [Karpov03, P1 and P3]. 
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4 Summary of contributions 

In this chapter we summarize results and contributions of the 
original publications [P1-P7] and their role in a general speaker 
recognition system. The majority of the contributions are 
focused on speeding up system performance and lowering 
resource usage. [P1] and [P2] contribute to methods for efficient 
scoring of speaker models, [P5] analyzes device limitation 
effects in feature extraction, and [P3] proposes a series of 
methods for a full speaker recognition system. Efficient 
matching methods are discussed in [P4] and [P6] and voice 
activity detection in [P7]. 
 

In the first paper [P1], we discovered that, in speaker 
identification, most of the speakers are correctly identified well 
before the full sample utterance is used. Based on this 
observation, we propose a novel speaker pruning algorithm. 
The main idea in this approach is to continuously monitor the 
difference between match scores for all stored models and prune 
out clear outsiders to avoid unnecessary computations.  The 
challenge was to find a good heuristic to prune out “weak” 
models. In the paper, we introduce two variants, static and 
adaptive pruning, based on how the pruning threshold is 
selected. The static algorithm has a predefined parameter setup 
and works well in most conditions. The adaptive variant is 
slightly more complicated to implement but it is able to achieve 
better tradeoff between computing time and identification error 
rate.  

Experiments on TIMIT corpus indicated that, using the best 
parameter choices for the adaptive algorithm achieves 0.46% 
error rate with just 24 seconds of speech sample whereas full 
matching took 230 seconds to reach 0.15% error rate. Even 
though TIMIT has only noise free speech samples we expect that 
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especially the adaptive pruning algorithm can be tuned to cope 
well with adverse acoustic conditions as well. 
 
In the second paper [P2], we propose a computationally 
efficient algorithm for adaptive selection of cohort speaker 
models for score normalization in speaker verification. Most 
speaker verification systems use a pre-defined set of cohort 
speakers for score normalization. Rather than using a fixed 
cohort, the proposed pre-quantization based cohort search (PQS) 
selects the most similar cohort models to the given test utterance. 
Computational load is reduced by quantizing the input vector 
sequence using the LBG clustering algorithm. Only the 
quantized data is used in scoring both the target speaker and the 
impostors.  

In our experiments we compare the proposed PQS method 
to a static cohort selection that uses a pre-defined number of 
cohort speakers. Results on the NIST-1999 corpus show speed-
up factors of 23:1 and 9:1 for the GMM- and VQ-based systems, 
respectively. Furthermore, the equal error rates (EERs) are 
slightly decreased from those of a full search. For GMM-based 
system with static cohort selection, EER is 7.51 %, while for the 
proposed method it is 7.37 %. VQ-based system equal error rate 
is the same for static and proposed variants. 
 
In the third paper [P3], we combine and extend our previous 
work on speaker pruning [P1] and cohort score normalization 
[P2] with additional optimization techniques. We propose 
methods for optimizing speaker identification and verification 
systems where the input stream is processed in short frames that 
are first tested against a voice activity detector (VAD) to avoid 
matching non-speech parts. We then extract features from these 
frames which are further pre-quantized to a smaller 
representative sequence. Speaker models are indexed using 
search trees for efficient nearest neighbor search. To reduce the 
complexity of speaker matching, we propose several speaker 
pruning algorithms. We focus on optimizing vector quantization 
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(VQ) based speaker identification but also extend the same 
methods to Gaussian mixture modeling (GMM).  

We extend the work of [P1] with two novel pruning 
algorithms: hierarchical and confidence-based pruning. The idea in 
hierarchical pruning is to use “coarse” and “detail” models to 
represent each speaker. Both are generated from the same 
training data, but the size of the coarse model is much smaller 
than the size of the detail model. Test vectors are first scored 
against the coarse models, and a number of speakers are pruned 
out. The match scores of the remaining speakers are then re-
computed using the detail models. In the confidence-based 
pruning variant, only speakers whose match scores have 
stabilized are considered for pruning. If the match score is low 
but oscillates, the speaker can still change its rank and become 
selected later. Thus, we remove only speakers that have both 
stabilized and whose match score (average distortion) exceeds 
the pruning threshold. 

TIMIT corpus was used for parameter tuning and the 
results were then validated using the NIST 1999 SRE corpus. 
Speaker model indexing using the vantage point tree (VPT) 
method improves matching time for models of size more than 
32 vectors in VQ-based system. For codebooks of size 256 
vectors it gives about 20 % improvement in identification time 
without any change in error rate. With the optimized VAD 
threshold, about 12% of the frames were classified as non-
speech, and the identification time improved by about 10 % 
without degradation in accuracy. Pre-quantization of the feature 
vectors reduces the running time to about 50 % of the full search 
with only a minor degradation in the accuracy. Combination of 
VAD, feature vector pre-quantization and speaker pruning 
gives the best speed-up factor of 16:1 increasing identification 
error rate from 17.3 % to 18.2 %. For the GMM system, 
corresponding speed-up factor of 34:1 is obtained with increase 
of error rate from 16.9 % to 18.5 %. An equal error rate of 7% 
was reached in 0.84s on average when the length of test 
utterance is 30.4 s. 
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In the fourth paper [P4], we study novel symmetrization 
strategies for match score computation in speaker recognition 
tasks. Usually, the match score in VQ- and GMM-based systems 
is computed by measuring the distance or log-likelihood of each 
test utterance vector to the speaker model(s), i.e., data-to-model 
type of matching. But in speaker recognition, the fundamental 
question is whether two given utterances are produced by the 
same or different speaker. Therefore, the roles of the test 
utterance and speaker models should be, in principle, 
exchangeable. This study was also motivated by the success of 
vector space indexing in [P3]. If a proper distance measure in 
the speaker model space can be defined, an index can be 
constructed for fast search from very large speaker databases. 
 We study an alternative strategy for comparing two 
speech utterances represented by their corresponding 
codebooks. Computing the match score is mathematically 
formulated as measuring distance between two codebooks. We 
study four symmetric functions for a VQ-based speaker 
identification system based on traditional quantization 
distortion measure: minimum, maximum, sum and product. We 
study their theoretical properties with respect to the axioms for 
a proper distance measure and perform recognition experiments 
on NIST 1999 SRE corpus. 

We found that sum and maximum metrics perform the best 
with error rates close to the baseline system. Unfortunately, 
error rates increase with codebook size. For codebook of size 64, 
the baseline error rate is 16.8% and corresponding sum and 
maximum rates are 16.9% and 16.8%, respectively. For codebook 
size of 256, the baseline system error rate is 14.9% while for sum 
and maximum distances they are 17.9% and 16.5%, respectively.  

One reason for the unexpected behavior might be that the 
training and test segments are not of equal duration in our 
experiments. In particular, the test utterances are much shorter 
than the training utterances. The proposed approach may 
benefit in other situations where the same amount of data 
would be available both for training and testing. 
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In the fifth paper [P5], we focus on feature extraction 
algorithms used in speaker recognition. While MFCC feature 
extraction is fast enough on modern PCs with a floating point 
unit, they become a bottleneck of the whole system on mobile 
devices with fixed point arithmetics. We study all the steps in 
MFCC feature extraction, namely signal preprocessing, fast 
Fourier transform, filterbank and discrete cosine transform. We 
carefully analyze how these components can be ported to fixed 
point arithmetic and derive techniques to avoid information loss 
when a floating-point algorithm is replaced by a fixed-point 
version. We analyze the preservation of discrimination 
information with tests made on algorithms that are identical 
except for the different arithmetic used. The Fourier transform is 
found as the most critical component affecting overall system 
accuracy. Its efficiency is based on the layer structure. However, 
fixed point implementations introduce significant round-off 
errors. These errors accumulate in the repeatedly applied 
butterfly layers. We propose to reduce the representation 
accuracy in order to increase the amount of preserved signal 
information in Fourier transform. 

In the experiments, we utilized two corpora, TIMIT and 
self-collected corpus containing dual recordings on mobile 
phone and desktop PC. We compare accuracy of conventional 
desktop PC based speaker identification system to the proposed 
fixed point arithmetic methods. The results indicate that we are 
able to mostly preserve accuracy also in fixed point variant, with 
a maximum degradation of 5% in identification rate.  

We also analyzed the effect of signal pre-processing in an 
actual mobile device by utilizing the self-collected corpus. While 
both fixed and floating point variants give 100 % identification 
rate for data recorded in PC environment, the same system 
performs much worse on the data recorded on mobile device. 
Floating point system achieves 83% identification rate while the 
fixed point version gives only a 76% identification rate. This 
clearly indicates that signal pre-processing on the mobile device 
affects speaker specific information. 
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In the sixth paper [P6], we present an embedded speech 
recognition system for short message (SMS) dictation in US 
English.  The system has been implemented on Nokia Series 60 
mobile phones such as 6630, N70 and E60 using the Symbian 
operating system. In the paper, we describe the architecture and 
design of the system, and illustrate its performance both in off-
line database simulations and in on-line usability tests. While 
this study does not address speaker recognition, it has a 
collection of best performing signal processing methods 
optimized for embedded systems over that might also be 
utilized in speaker recognition systems. Both speaker 
recognition and ASR methods share similar underlying front-
end component, namely, extraction of MFCC features using 
similar signal processing operations. In both applications, these 
features are modeled using similar acoustic models involving 
Gaussian mixtures. Thus, despite the opposite goals in these two 
recognition tasks, good practices in feature extraction in either 
one are often useful in both tasks. In particular, robustness to 
environmental noise and transmission channel variability is 
required in both applications. We concentrate on practical 
aspects - execution time and used device memory - while 
preserving overall system accuracy. We reduce input data with 
long-term spectral divergence (LTSD) voice activity detector and 
optimize HMM-based acoustic modeling using model and input 
data quantization. 

For the experiments we have used self-collected Personal 

Communication (PCOM) data that covers 12 topics representative 
of typical messaging communications, submitted by 23 users 
aged between 15 to 51 years. The text database was divided into 
disjoint training and test sets. The training set consisted of about 
two million words while the test set had approximately 4 
thousand messages. Our system reaches 90.43 % word accuracy 
for density-tied biphones (2k) and 91.20 % word accuracy for 
biphones (5k). Even though our system vocabulary contains 23 
thousand words, it is compact and efficient; it’s Flash and RAM 
memory footprints are only 2 and 2.5 megabytes, respectively. 
After a short enrollment session, most native speakers can 
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achieve a word accuracy of over 90% when dictating short 
messages in quiet or moderately noisy environments.  
 
In the last paper [P7], we are in search of a robust voice activity 
detector (VAD) method. While VAD is a relatively well studied 
problem, acceptable solutions that work consistently across 
different acoustic conditions are yet to be found. Motivated by 
success of classifier fusion techniques in pattern recognition, we 
propose to use the decision fusion technique to combine decisions 
from multiple different VADs for improving speech/non-speech 
segmentation accuracy.  We evaluate different 
combinations of four well known industrial VADs, namely G729, 
AMR, AFE and Silk, and compare it with standalone detection 
accuracy of respective methods. We combine VAD decisions by 
using two basic strategies: majority voting and temporal context 

voting. In majority voting, we classify each frame as majority of 
methods report while in temporal context voting we utilize a 
hangover scheme to correct possible erroneous frame decisions 
of the individual VADs. 

For evaluations we used three datasets, NIST 2005 SRE, Bus 
stop and Lab. NIST 2005 SRE is a telephone-quality speaker 
recognition corpus, Bus stop contains data recorded from bus 
timetable search speech interface application and Lab is a very 
low signal-to-noise ratio recording recorded in our university 
facilities. First, we ran our tests on NIST 2005 to select best 
performing combinations and fusion techniques. These were 
then validated on the remaining two datasets. We found that 
combining G729, AMR2 and SILK using a context of 11 frames 
produces the best miss rate of 7.24% while having relatively 
high 77.4% false alarm rate. Combining G729, AMR1 and AMR2 
with a simple majority voting (context size of 1) produces the 
smallest false alarm rate of 38.2% with reasonable 23.5% miss 
rate. However, only the latter combination generalizes on the 
other datasets, giving comparable or higher accuracy compared 
to the standard VADs. The best results were obtained on the 
most challenging Lab dataset, with low false alarm rate and 
comparable miss rate.  
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A summary of the main achievements is shown in Table 4.1 
 
Table 4-1 Summary of the main results 

 Contribution Corpus Results 

[P1] 

A novel speaker pruning 

algorithm: static and adaptive 

variants 

TIMIT 

10:1 speed-up in VQ 

system without affecting 

identification accuracy. 

[P2] 

Efficient algorithm for cohort 

normalization: pre-

quantization based cohort 

search (PQS) 

NIST-

1999 

23:1 speed-up in GMM 

system with improved 

EER from 7.51 % to 7.37 

%. 

[P3] 

Extended speaker pruning 

algorithms: hierarchical and 

confidence-based pruning, 

pre-quantization of the feature 

vectors, efficient matching 

using vector space indexing, 

silence detection, and 

combinations of the above 

methods 

TIMIT and 

NIST-

1999  

34:1 speed-up in GMM 

speaker identification 

system (with minor error 

rate degradation from 

16.9 % to 18.5 %), 

 

36:1 real-time factor in 

GMM speaker verification 

(EER = 7 %). 

[P4] 

Symmetric measures with 

comparable error rates based 

on traditional quantization 

distortion measure: minimum, 

maximum, sum and product.  

NIST-

1999 

With minor degradation 

in error rate from 

baseline 14.9 % to 

17.9 %  

[P5] 

Porting speaker recognition 

system to run on limited 

hardware that lacks floating 

point unit with special focus 

on preserving accuracy of 

feature extraction methods. 

TIMIT and 

self 

collected 

corpus  

Fixed-point 

implementation with 5% 

relative degradation in 

accuracy. 

[P6] 

Embedded speech recognition 

system for short message 

(SMS) dictation in US English 

with 23 thousand words in 

vocabulary 

PCOM 

self-

collected 

acoustic 

corpus 

90.43% word accuracy 

for density-tied biphones 

(2k) and 91.20% word 

accuracy for biphones 

(5k) with less than 2 and 

2.5 megabytes in Flash 

and RAM memory, 

respectively. 

[P7] 

Classifier fusion techniques to 

combine decisions from 

standalone voice activity 

detectors (VAD) for better 

detection accuracy 

NIST2005

Bus stop 

and Lab 

Miss and false alarm 

rates of 7.24 % and 38.3 

% respectively 
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For the practical system running on a mobile device we propose 
to use quantized GMMs as a modeling technique as they 
produce more accurate error rates and most of the modern 
systems nowadays are based on GMM and therefore such a 
system will be easier to extend with new methods. However, for 
a really resource constrained devices we recommend the use of 
VQ as it can still perform reasonably good and is very efficient 
with vector space indexing enabled. For front-end MFCCs are 
still state of the art technique and there are efficient fixed point 
implementations available. We also propose to use simple 
energy based VAD to prune out silence vectors and feature pre-
quantization to reduce the amount of input data. For speaker 
recognition systems we also propose to include speaker pruning 
as it significantly speeds-up performance. All the parameters of 
the algorithms have to be adjusted based on the real data from 
operational environment. 
 

The contributions of the author of this thesis can be briefly 
summarized as follows. In [P1-P4] the author was involved in 
the design and implementation of the methods, planning and 
execution of evaluation tests and contributed to the text writing. 
Also in [P4] author was one of the key contributors. In [P5] the 
author contributed to method implementation concentrating on 
mobile device side and also helped with text writing. In [P3] 
author contributed to method design and implemented and 
evaluated all the proposed methods. In [P6] the author 
contributed to dictation system optimization on the mobile 
phone and helped with text writing. The user interface of the 
demonstrator was also implemented by the author. In [P7] 
author contributed to paper writing and algorithm design.  
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5 Conclusions 

Today, speaker recognition systems are getting closer to much 
wider acceptance as the technology matures. Nevertheless, it is 
important to realize that in embedded systems domain many 
technical limitations may affect overall system performance. In 
this thesis we have studied the problems that practical speaker 
recognition system may face when ported on mobile device and 
proposed several methods to tackle the algorithmic and device 
limitations. 

Any typical embedded system or mobile device has a priori 
significantly lower resources than average desktop computer 
can offer to the scientist and so many algorithms have to be re-
considered from this angle. Performance of system components 
has to be analyzed with mobile device limitations in mind. Not 
only limited CPU and power considerations have to be taken 
into account but also device limited support for mathematical 
operations and typical signal disturbances that are common 
when the device is used in real life. All those limitations may 
render any well working system to completely useless on a 
mobile platform.  

We have touched nearly all the parts of a typical speaker 
recognition system. For feature extraction, we have analyzed 
methods to reduce the computational load and numerical errors 
from porting algorithms to fixed point arithmetic. However, as 
feature extraction is not the main contributor to system 
performance, the majority of our efforts were targeted on 
pattern matching. We have proposed several novel methods for 
speeding up distance computations for vector quantization and 
Gaussian mixture models.  

From the author’s personal experience, even if a system is 
performing well in a simulation mode in close to real device 
conditions, the only way to discover its real capabilities is to 
implement the entire system on mobile or embedded device and 
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verify its performance by hands-on experiments. Most of the 
optimization methods that have been presented in this thesis 
have been implemented into practical systems running entirely 
on a mobile device. 

Despite the presented optimization methods there is still a 
need for further improvements. Speaker recognition is likely to 
continue for several decades still but focus is nowadays clearly 
shifting from conventional desktop PC based system to more 
optimized embedded system solutions. In author’s personal 
view, the most challenging problem that is not solved yet is the 
environmental noise effect that may significantly reduce speaker 
recognition accuracy. Even though tackling environmental 
differences is very important for any practical speaker 
recognition system this topic has not received enough attention 
in this work and continues to be a direction for future research. 
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