
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PARTICLE AND GASEOUS EMISSIONS FROM MODERN 

MASONRY HEATER 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Konsta Kulmala 

Particle and gaseous emissions from modern masonry heater 

Master of Science thesis 

Environmental Science Major 

University of Eastern Finland, Department of Environmental Science 

January 2014  



UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry 

Environmental Science Major 

Konsta Kulmala: Particle and gaseous emissions from modern masonry heater 

Master of Science thesis 59 pages, 2 appendices (3 pages) 

Supervisors:  Jarkko Tissari, PhD, University of Eastern Finland 

 Heikki Lamberg, MSc, University of Eastern Finland 

January, 2014 

___________________________________________________________________________ 

Keywords: combustion, particle, emission, measurement, wood 

 

ABSTRACT 
 

The aim of this thesis was to investigate particle and gaseous emissions from modern masonry 

heater during the batch combustion of wood. Different continuous devices and filter 

collection methods were applied in the experiments. The applicability of a novel sampling 

method for measuring particle mass concentration was tested. The obtained results were 

compared to each other and to the proposed limit values in the upcoming legislation of the 

European Union. 

 

In Finland wood combustion has long traditions and it is still popular. In fact, during the last 

ten years the popularity of it has even increased. Wood fuel is easy to access and it is cheap 

compared to other heat sources. One possible contribution to the increased wood combustion 

has been the new energy policy of the EU which supports the use of renewable energy. 

 

Measuring the particle emissions from residential wood combustion (RWC) is important 

because of the health effects of the particles. In addition, atmospheric particles affect the 

Earth’s radiation balance. RWC is a significant source of particle emissions. Unlike in power 

plants, in RWC appliances the flue gases are rarely purified and emissions are usually easily 

transported to the human breathing zone. EU is about to set emission limits for the RWC 

appliances. In EU a common method for measuring the emissions from small-scale biomass 

combustion is still missing and this is why it is important to develop and test different 

methods. 

 

Majority of the emissions were formed during the first batch. Fine particles (particles below 

2.5 µm in aerodynamic diameter) dominated the particle mass emissions. The share of light 

absorbing carbon (BC, i.e. soot) in the fine particles was very high when compared to other 

previously studied small-scale appliances. The main reason to this was most likely too small 

furnace. The flame temperature probably decreased when it was in contact to the window and 

to the walls of the furnace which led to incomplete combustion of the soot particles. 

 

The gaseous emissions from the studied masonry heater were very low. All of the gaseous 

emissions which will be regulated in the future (carbon monoxide, organic carbon, oxides of 

nitrogen) were below the limit values. Fulfilling the particle emission limit depended on the 

applied method. Particle mass concentration in the hot and undiluted flue gas fulfilled the 

requirements but the concentration in the diluted sample was about 1.5-fold to the emission 

limit. 

 

Keeping the dilution stable in the novel sampling method required plenty of monitoring and 

adjusting. The filter collection itself was fluent to execute. To make the system more 

transportable the structure of it could be reconsidered.  
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TIIVISTELMÄ 

 

Tutkielman tavoitteena oli selvittää modernin varaavan takan hiukkas- ja kaasupäästöt puun 

panospolton aikana. Työssä käytettiin erilaisia jatkuvatoimisia mittalaitteita ja kerääviä 

näytteenottomenetelmiä. Lisäksi testattiin uuden näytteenottomenetelmän soveltuvuutta 

hiukkasmassapitoisuuden määrittämiseen. Eri mittaustekniikoiden tuloksia verrattiin toisiinsa 

sekä tuleviin Euroopan unionin lainsäädännössä ehdotettuihin raja-arvoihin. 

 

Pienpoltolla on Suomessa pitkät perinteet ja puuta poltetaan yhä paljon, viimeisen kymmenen 

vuoden aikana jopa lisääntyvissä määrin. Syitä tähän ovat polttopuun helppo saatavuus ja 

edullisuus suhteessa muihin lämmönlähteisiin. Euroopan unionin uusiutuvaa energiaa 

suosivan energiapolitiikan myötä puun pienpolton ei ainakaan odoteta vähenevän. 

 

Pienpolton hiukkasia mitataan niiden terveysvaikutusten takia. Lisäksi hiukkaset vaikuttavat 

erilaisin tavoin maapallon säteilytasapainoon. Puun pienpoltto on merkittävä hiukkasten 

päästölähde. Toisin kuin suurissa polttolaitoksissa, pienpolton päästöjä ei juurikaan hallita 

puhdistimilla ja ne kulkeutuvat usein nopeasti ihmisten hengitysvyöhykkeelle. EU:ssa ollaan 

asettamassa uusille pienpolttolaitteille päästörajoituksia. Yhtenäistä EU:n laajuista 

mittausmenetelmää biomassan pienpolton hiukkaspäästöille ei kuitenkaan ole vielä olemassa, 

ja siksi eri menetelmien kehittäminen ja testaus on tärkeää. 

 

Valtaosa puun panospolton päästöistä muodostui ensimmäisen panoksen aikana. Valtaosa 

muodostuneiden hiukkasten massasta koostui pienhiukkasista (aerodynaamiselta 

halkaisijaltaan alle 2.5 µm hiukkaset). Työssä tutkittu takka poikkesi muista aikaisemmin 

tutkituista pienpolttolaitteista siten, että valtaosa pienhiukkasista koostui valoa absorboivasta 

mustasta hiilestä, eli noesta. Suurin syy tähän oli todennäköisesti pieni tulipesä. Liekin 

lämpötila luultavasti aleni sen ollessa kosketuksissa tulipesän luukun lasiin sekä seinämiin, 

minkä seurauksena nokihiukkaset paloivat epätäydellisesti. 

 

Takasta mitatut kaasumaiset päästöt olivat erittäin alhaiset. Tulevat päästövaatimukset 

täyttyivätkin kaikkien säädeltyjen kaasumaisten päästöjen (häkä, orgaaninen hiili, typen 

oksidit) osalta, mutta hiukkaspäästörajan täyttyminen riippui käytetystä menetelmästä. 

Mitattaessa kuumasta laimentamattomasta savukaasusta hiukkasmassapitoisuus oli alle 

päästörajan, laimennetun näytteen pitoisuus ylitti päästörajan noin 1.5-kertaisesti. 

 

Testattu uusi hiukkasmittausmenetelmä vaati paljon monitorointia ja säätöä savukaasun 

laimennuksen osalta. Suodatinkeräyksen toteuttaminen oli sujuvaa. Mikäli laitteistoa on 

tarkoitus siirtää mittauspaikalta toiselle, sen liikuteltavuutta on syytä parantaa.  
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ABBREVIATIONS AND SYMBOLS 
 

BC Black carbon 

dp Particle diameter 

CMH Conventional masonry heater 

DR Dilution ratio 

EC Elemental carbon 

ED Ejector diluter 

FID Flame ionization detector 

FTIR Fourier transform infrared spectroscopy 

GMD Geometric mean diameter 

HC Hydrocarbon 

MMH Modern masonry heater 

OC Organic carbon 

OGC Organic gaseous compounds as measured with FID 

PAH Polycyclic aromatic hydrocarbon 

PB Pellet boiler 

PM Particulate matter 

PMx Mass of particles below aerodynamic diameter of x µm 

POM Particulate organic matter 

PRD Porous tube diluter 

RWC Residential wood combustion 

SOA Secondary organic aerosol 

SS Sauna stove 

TS-MMH This study-modern masonry heater 

TSP Total suspended particles 

VOC Volatile organic compound 

WS Wood stove 

λ, lambda Air-to-fuel ratio, the ratio between actual oxygen demand and stoichiometric 

oxygen demand 
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1. INTRODUCTION 
 

The sources of fossil fuels (e.g. oil, coal, natural gas) are limited and strengthening of the 

greenhouse effect is a well-recognized fact among the scientific community. Therefore, 

European Union has given a renewable energy -directive (2009/28/EC) to increase the use of 

renewable energy sources in the energy production and to diminish greenhouse gas emissions. 

According to the directive 20 % of the total European Union energy demand has to be met by 

renewable sources by the year 2020, for Finland the target is 38 %. This has increased the 

combustion of biomass, such as wood fuels. Globally, in the year 2005 utilizing biomass was 

estimated to cover over 10 % of the annual primary energy use (≈ 470 EJ), utilizing fossil 

fuels around 80 %. The remaining 10 % was attributed to nuclear power and renewables other 

than biomass (Sims et al., 2007). 

 

Human exposure to increased concentrations of particulate matter (PM) in the respiratory air 

has been associated to damaging health effects such as cardiopulmonary and respiratory 

illnesses (Pope & Dockery, 2006; WHO, 2006). Epidemiological evidence shows that adverse 

health effects occur due to both short-term and long-term PM-exposure. A threshold, below 

which no health effects occur, cannot yet be determined or the evidence of it is weak. (WHO, 

2006). Statistically, in the European Union region, exposure to PM caused almost 350,000 

premature deaths and resulted in direct and indirect economic consequences equivalent to 

approximately 270 billion euros in the year 2000 (European Commission, 2005). In addition, 

PM affects the Earth’s radiation balance by scattering (primarily sulphate, nitrate, mineral 

dust) and absorbing (black carbon, BC) the straight radiation coming from the Sun. BC 

weakens the Earth’s surface albedo when it deposits on snow and ice. The most complicated 

climate effect of particles is that they modify the optical properties and the lifetime of clouds. 

According to the current state of scientific knowledge the net effect of PM on climate is 

estimated to be cooling but all the effect mechanisms are not yet clearly understood. (Forster 

et al., 2007.) 

 

Residential wood combustion (RWC) is a great contribution to the levels of fine particle 

(PM2.5, particle mass below aerodynamic size of 2.5 µm) and gaseous emissions in the 

outdoor air (Szidat et al., 2007; Hellén et al., 2008). Glasius et al. (2006) noticed that PM2.5 

levels measured in a residential heating area were comparable to the levels measured at a busy 

street with plenty of traffic. The main source of PM2.5 in Finland is long-range transport which 
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is estimated to account for 64-76 % of the PM2.5 concentration in Helsinki urban air 

(Karppinen et al., 2004). However, of the national primary PM2.5 emissions RWC accounted 

for 25 % in the year 2000 (Karvosenoja et al., 2008). What makes RWC so special is that the 

combustion takes place in the centers of population and stack heights are low. Consequently, 

the emissions are easily transported to the human breathing zone. Variety of different 

combustion appliances and fuels is large, appliances often lack the control of combustion 

conditions and flue gases are rarely purified. In addition, appliances are sometimes 

inappropriately operated. This is why emissions from RWC can be very versatile. 

 

The energy efficiency -directive (2009/125/EC) is setting new requirements for energy-related 

products, also for RWC appliances. In relation to the directive the EuP Lot 15 -working group 

is contemplating emission standards for the appliances. In fact, some proposals have already 

been made (European Commission, 2013). Due to this manufacturers are more and more 

interested in developing their products for them to meet the upcoming standards. 

 

In this thesis the particle and gaseous emissions from wood combustion in batch-wise 

operated masonry heater are measured. Measurements are executed in laboratory 

circumstances from a real RWC appliance used in Finland. The main attention in the literature 

review is in the formation of emissions and in the emission measurements. 
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2. LITERATURE REVIEW 
 

2.1 RESIDENTIAL WOOD COMBUSTION 

 

2.1.1 Relevance in residential energy production 

 

The total energy consumption of residences in Finland in the year 2011 was approximately 62 

gigawatt hours (GWh) of which heating of households covered 84 % (52 GWh) and 

household appliances 16 % (10 GWh). The most common source of residential heat was 

district heating (33 %), followed up by wood fuel (27 %) and electricity (23 %). (Statistics 

Finland, 2012.) 

 

In RWC, batch combustion (e.g. masonry heaters, wood stoves, wood log boilers) and 

continuous combustion appliances (e.g. pellet burners and boilers, stoker burners) are in use 

(Tissari, 2008). The total amount of wood combusted in Finnish households and summer 

cottages in 2010 was estimated to be 8 million m3. Popularity of RWC has grown 49 % (from 

40 to 60 PJ a-1) between the years 2000-2010. Of all the RWC-based energy in Finland 26 % 

was produced in boilers, 24 % in masonry heaters, 18 % in baking and other ovens, 15 % in 

sauna stoves, 11 % in other stoves and 6 % in fireplaces. (Karvosenoja et al., 2012.) 

 

RWC is popular in Finland because it has long traditions and wood fuel is easy to access. The 

prices of some principal fossil fuels, excluding coal, have gone up which surely favors the use 

of wood fuel (Statistics Finland, 2013). Furthermore the European energy and climate policy 

supports RWC. Nowadays it is possible for Finnish citizens to get governmental funding if 

they want to invest in renewable energy or to improve the energy efficiency of the residence. 

In the year 2013 the amount of governmental funding for residential renovation alone was 2 

million euros. (ARA, 2013). 

 

2.1.2 Composition of wood fuel 

 

In general, wood contains considerable amount of volatile species, 80-90 % by dry weight. 

Water content is high, typically 40-60 % by dry weight so the wood fuel must be dried before 

combustion to water content of approximately 15-20 %. The most common elements of wood 

are carbon (C), hydrogen (H) and oxygen (O) which altogether account for 99 % of wood’s 
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dry weight. The shares of nitrogen (N) and sulphur (S) are less than 0.2 % and 0.05 %, 

respectively. The inorganic mineral content (i.e. ash) is less than 0.5 % which is low in 

contrast to other solid fuels, like peat (5 %) or charcoal (15 %). Typical minerals and trace 

elements are phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese 

(Mn), iron (Fe), zinc (Zn), boron (B), copper (Cu) and chlorine (Cl). In spite of low ash 

content, volatile ash compounds (K, S, Cl, Zn) are important regarding emissions since they 

take part to the formation of fine fly ash (see section 2.2.4). (FINE, 2013; VTT, 2000.) 

 

The structural composition of wood is cellulose (40-45 %), hemicellulose (25-40 %) and 

lignin (16-33 %). Lignin is essential for the structure since it bonds the fibers together and 

makes the overall structure strong. Lignin also contains plenty of carbon and hydrogen which 

produce a lot of heat during the combustion process. Less than 5 % of the structure consists of 

different extracts, like terpenes, fats and phenols. The shares of different components can 

differ between tree species and parts of the tree, for instance, between bark and stem wood. 

(VTT, 2000.) 

 

2.1.3 Combustion process 

 

In combustion fuel reacts with oxygen and heat energy is produced. The combustion reaction 

to be possible three conditions must be available: fuel, sufficient rate of heat and oxygen. The 

combustion of solid fuel is actually a combination of gasification of the fuel and oxidation of 

gaseous compounds. The process can be divided into energy consuming (drying and 

pyrolysis) and energy producing (combustion of pyrolysis products and char) stages. After the 

ignition the fuel particle heats up and water evaporates from the particle. Pyrolysis is the 

gasification of volatile compounds caused by the heat. As a result of pyrolysis the solid fuel 

particle is transformed into gaseous and tar-like substances. Next step is the homogeneous 

combustion of pyrolysis products. Final stage is the combustion of char which is the remains 

of fuel after pyrolysis. The char combustion is heterogeneous because reactions happen 

between gaseous oxygen and solid char. In practice the combustion stages overlap, i.e. 

combustion can take place at the surface while the core of the fuel particle is still drying. 

(FINE, 2013; Kilpinen, 2002a; Saastamoinen, 2002.) 

 

In the combustion of solid fuels the transfer of reactants and air in and out the combustion 

reaction happen with diffusion. This means that the mixing of fuel and air occur in the flame. 
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Outside the flame is an air-rich, inside the flame a fuel-rich zone. Hence, combustion air 

diffuses in and fuel diffuses out which causes the mixing. This type of flame is called 

diffusion flame. When the fuel and air are mixed prior to combustion (e.g. in combustion 

engines) the flame is called premixed flame. (Flagan and Seinfeld, 1988.) 

 

An ideal combustion produces only carbon dioxide (CO2) and water vapour (H2O). In real 

life, combustion is never ideal. This is the case especially with the batch combustion of wood. 

Particle and gaseous emissions are always formed. The most important conditions resulting in 

a good combustion are high combustion temperature, sufficient air supply and efficient 

mixing of combustion air and pyrolysis products. High temperature and sufficient air supply 

together make combustion reactions more complete and faster. However, these two are related 

to each other. To ensure adequate air supply in RWC, one is forced to feed more air than it is 

actually needed according to stoichiometry (λ > 1). This lowers the combustion temperature 

since warming up the inert N2 in the air consumes plenty of heat energy. Modern RWC 

appliances are made to achieve high temperatures. For instance, the furnace is well isolated 

and the material reflects all the heat into the combustion process. The optimum mixing of flue 

gases and air is achieved with advanced air staging. Air is staged in two, sometimes in three 

sections. Primary air flows in under the grate which induces a powerful pyrolysis. Secondary 

and possibly tertiary airs are fed into the pyrolysis products and the combustion becomes 

more complete. The ratio between primary air and secondary air is crucial when it comes to 

emissions. If it is too high, pyrolysis is too strong and gases do not have time to go through 

combustion. The overall too low air supply can cause smouldering combustion with high 

emissions. Extremely high emissions form when the ratio of primary air and secondary air is 

wrong, batch size is big and log size is small. (FINE, 2013.) 

 

2.2 FORMATION OF EMISSIONS 

 

Flue gas contains gases, vapours and particulate matter. Together they form combustion 

aerosol. The main components of flue gas are gaseous N2, O2, CO2 and vaporous H2O. 

(Jokiniemi and Kauppinen, 2002; Tissari 2008.) 
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2.2.1 Carbon oxides 

 

CO2 is the strongest contributor to the climate change out of all the anthropogenic greenhouse 

gas emissions (Forster et al., 2007). Complete combustion of any carbon containing matter 

produces CO2. The level of atmospheric CO2 in September 2013 was 393.9 ppm molar (Cape 

Grim Greenhouse Gas Data, 2013). 

 

Carbon monoxide (CO) is a product and a good indicator of incomplete combustion. It is 

formed mainly in the course of incomplete combustion during the ignition and heterogenic 

char combustion. CO being quite unstable molecule is eventually oxidized to CO2 in a 

reaction with O2 or with free radicals, like hydroxyl radical (OH-), an important radical in the 

atmosphere. (FINE, 2013; Flagan and Seinfeld, 1988.) 

 

2.2.2 Nitrogen oxides 

 

Nitrogen oxides (NOx) cause acidification, respiratory symptoms and they take part to 

photochemical reactions leading to forming of smog and tropospheric ozone (O3) (Kilpinen, 

2002b.) Jucks et al. (1996) state that in stratosphere, catalytic cycles of NOx dominate the O3-

loss for altitudes between 24 and 38 km. 

 

The sources of nitric oxide (NO) and nitrogen dioxide (NO2), together referred as NOx, are 

atmospheric N2 or N-containing compounds in the fuel. In combustion a vast majority of NOx 

is NO and the share of NO2 is less than 5 %. Later in the atmosphere NO is effectively 

oxidized to NO2. (Kilpinen, 2002b.) 

 

Three main pathways leading to NOx emissions can be distinguished. Thermal NOx is formed 

when atmospheric N2 breaks down and oxidizes in high temperatures (T > 1400 °C), so the 

role of it is negligible in RWC. The key to thermal NOx formation are the reactions of N2 with 

O- and OH-radicals. The formation of it speeds up drastically when 1600 °C is reached. 

Thermal NOx formation is also known as Zeldovich mechanism. (Kilpinen, 2002b.) 

 

A lot faster pathway is oxidation of N2 with the catalytic help of fuel hydrocarbons (HC), 

especially hydrogen cyanide (HCN). Required temperatures are significantly lower than with 
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thermal NOx. This process is called prompt NO, or the Fenimore mechanism. (Kilpinen, 

2002b.) 

 

In RWC almost all of the NOx is originated from organic fuel-N which is highly reactive. The 

nitrogen in fuels is present predominantly in pyridine, pyrrole and amino groups. The 

formation is fast and not so dependent on temperature. RWC produces also minimal amounts 

of nitrous oxide (N2O, laughing gas). A portion of N2O is oxidized to NOx. (Kilpinen, 2002b.) 

 

2.2.3 Gaseous hydrocarbons and sulphur oxides 

 

HC emissions originate from the volatile organic compounds (VOC) of the wood during 

pyrolysis. The number of different HCs is vast. They can be separated to aliphatic (CxHy) and 

aromatic compounds which contain a benzene ring (C6H6). The most common aliphatic HC is 

methane (CH4) which is a strong greenhouse gas. Polycyclic aromatic hydrocarbons (PAHs) 

contain several benzene rings and are under a particular interest because some of them (like 

benzo[a]pyrene, C20H12) are proven to be carcinogenic. HCs are very reactive and can form 

new compounds with other elements, such as chlorine benzene (C6H5Cl) and furan (C4H4O), 

respectively. Other common HCs are aldehydes, ketones and different organic acids. (FINE, 

2013; Huotari and Vesterinen, 2002.) 

 

Like NOx sulphur dioxide (SO2) and sulphur trioxide (SO3), together referred as SOx, cause 

acidification and respiratory illnesses. Most of the primary emission is SO2 and all of it 

originates from fuel-S. Because of the low sulphur content in wood the SOx emissions from 

RWC are low compared to coal and oil. Natural gas is practically sulphur-free. In power 

plants SOx is problematic because together with water it forms sulphuric acid (H2SO4) which 

causes damaging corrosion. (Iisa et al., 2002.) 

 

2.2.4 Particulate matter 

 

Particulate matter i.e. aerosol particles are solid or liquid airborne particles with a size range 

more than one nanometer (= 10-9 m) to 100 µm. Over 100 µm particles are rarely discovered 

or the atmospheric lifetime of them is short because of the gravitational settling. (Jokiniemi 

and Kauppinen, 2002). According to Salonen and Pennanen (2007) particles can be divided 

into ultrafine particles (dp < 0.1 µm), fine particles (dp < 2.5 µm) and thoracic particles (dp < 
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10 µm). Particles with dp > 10 µm are super coarse particles. It appears to be that in 

combustion aerosol particles with dp < 1 µm are fine particles and dp 1-10 µm are coarse 

particles (Hytönen et al., 2008; Tissari, 2008). 

 

Fine particle emissions can be divided into organic particles (POM, particulate organic 

matter), soot and ash particles. POM forms when flue gas cools down and unburned HCs 

condense into existing particles or form new particles by nucleation. POM emissions are 

exceptionally high during incomplete combustion. Soot is also referred to as elemental carbon 

(EC) or black carbon (BC). It is a product of a complicated reaction chain taking place in the 

diffusion flame where PAH compounds polymerize and form soot nuclei, which start to 

coagulate. Combustion of soot produces plenty of heat – problem is the unburned fraction. 

(FINE, 2013; Tissari, 2008.) BC has the greatest climate effect of all PM and Ramanathan and 

Carmichael (2008) claim that it is the strongest contribution to global warming after CO2 

emissions. 

 

Ash is the incombustible inorganic mineral content of the wood fuel. Because it is not an 

actual product of combustion the formation of it cannot be prevented. In the cooling flue gas 

volatilized ash compounds go through gas-to-particle conversion (homogenous nucleation) 

and form fine fly ash particles which grow by coagulation and condensation. Typical fine fly 

ash compounds are different potassium-compounds, such as potassium sulphate (K2SO4), 

potassium hydroxide (KOH), potassium chloride (KCl) and potassium carbonate (K2CO3). In 

a good combustion even 90 % of PM1 emissions is fine fly ash. (FINE, 2013; Tissari, 2008.) 

The release and composition of fine fly ash is dependent on temperature and amounts of 

different ash-forming elements. For example, Cl affects greatly on the release of K. (Knudsen 

et al., 2004.) 

 

Coarse and super coarse particles from RWC are formed from non-volatilized ash which 

agglomerates. This so called bottom ash can also contain unburned char. Depending on the 

draught conditions and the structure of the combustion appliance coarse particles can eject 

into the flue gas and form the coarse fly ash fraction. (FINE, 2013; Tissari, 2008.) 

 

The different particle formation mechanisms are put together in Figure 1. 
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Figure 1. Formation of soot, particulate organic matter (POM), fine fly ash and coarse 

particles in residential wood combustion. (Tissari, 2008). 

 

2.3 PARTICLE MEASUREMENTS FROM RWC 

 

Measuring emissions from RWC is a challenge. Inside the furnace and stack the temperature 

is high and the amount of different vapours and gases varies. Particle size range is large and 

particles are different of a kind. If sample is diluted the flue gas eventually cools down. 

Organic compounds can occur in the gas phase or particle phase depending on the 

temperature which affects the saturation vapour pressure. This affects the PM concentration. 

Usually more than one measurement device is needed depending on what is measured: 
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particle concentration (number, size, mass), particle number and mass size distribution, 

particle chemical composition, particle morphology or gases and vapours. (Tissari, 2008.) 

 

2.3.1 Sampling 

 

When RWC flue gas is sampled, only a part of the flue gas (i.e. partial flow sampling) or all 

of the flue gas (i.e. whole flow sampling) is withdrawn from the stack usually via a 

probe/sampling tunnel. Sample is then transported to a measuring device (filter, collection 

plate or continuous electrical measuring device). (Hytönen et al., 2008.) 

 

In the flue gas sampling PM losses on the walls of the tunnel are inevitable. Losses happen 

mostly due to electric forces, gravitation, thermophoresis, diffusion and inertial impaction. 

(Hytönen et al., 2008.) Thermophoresis is the movement of a particle to the direction of 

decreasing temperature and impaction happens in the curves of the tunnel because (large) 

particles are unable to follow the flow of the flue gas and thus, collide on the walls and attach 

to it (Hinds, 1999). 

 

Isokinetic sampling is an important principle to follow in emission measurements, particularly 

when measuring total suspended particles (TSP). When sampling is isokinetic the flue gas 

velocity in the stack equals the flue gas velocity in the sampling tunnel and the gas flow 

directions are parallel. If sampling is not isokinetic it affects the particle sizes by increasing 

(sub-isokinetic, too low sampling velocity) or decreasing (super-isokinetic, too high sampling 

velocity) the share of large particles (in general dp > 1 µm) in the sample. Isokinetic sampling 

is not a necessity when measuring RWC. In RWC PM1 clearly dominate the PM emissions 

although combustion conditions vary this (Tissari, 2008). PM1 practically behaves like a gas 

(i.e. the effect of inertia on it is small) and hence, isokinetic sampling is not needed for a PM 

sample to be representative. Furthermore, in batch combustion the flue gas velocity is overall 

quite slow and it varies according to the combustion cycle which would make isokinetic 

sampling difficult to execute. Finally, the loss of larger particles is not that big of a problem 

because smaller particle fractions (PM2.5 and PM1) are the main objects of interest anyway. 

(Hytönen et al., 2008.) 
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2.3.2 Sample treatment 

 

PM measurements can be done without sample treatment, which means measuring TSP in the 

hot flue gas, or sample can be diluted with air. Dilution is needed because many PM 

measuring devices are sensitive to hot and humid flue gases with great PM concentrations. 

Dilution lowers flue gas temperature and partial pressures of vapours and gases drastically. 

This affects the concentration, size distribution and composition of PM especially in the 

beginning of combustion and during poor combustion when emissions of gaseous HCs are 

high. In other words dilution makes sample more representative for atmospheric conditions 

compared to primary emissions because of the condensation of organic species. Thus, the 

estimation of health and climate effects becomes more reliable. According to the engine 

standard ISO 8178 the condensation of organics is ensured when temperature below 52 °C is 

reached. In RWC this value should be treated with caution, however, because of numerous 

types of different organic species with different vapour pressures in the flue gas. The 

emissions of the most significant gaseous compounds (O2, CO2, CO, NOx and gaseous HCs) 

are measured from hot and undiluted flue gas. Important factors in the dilution are the dilution 

ratio (DR) and effective mixing of the flue gases and the dilution air. (Hytönen et al., 2008.) 

 

The effect of dilution on PM emissions is not entirely clear. Too small DR can potentially 

lead to overestimating the PM emissions and too high DR to underestimating them. In low 

dilutions (DR ≈ 20:1) PM mass concentration has been observed to increase but when the 

temperature of the sample has reached ambient levels (DR ≈ 350:1) the PM concentrations 

have dramatically reduced. The explanation to this is the evaporation of organic material in 

PM back to gas phase in order to maintain phase equilibrium. (Lipsky & Robinson, 2006.) In 

addition, the volatile species undergo several photochemical processes and oxidation in the 

atmosphere and result in the formation of secondary organic aerosol (SOA) and PM 

concentrations are increased again (Volkamer et al., 2006). Hereby, according to Lipsky & 

Robinson (2006), atmospheric levels of dilution (DR ≈ 10,000:1) should be applied if SOA 

formation is taken into account. In practice, sensitivity of measuring devices sets the limit for 

applied DR (Hytönen et al., 2008). 

 

Dilution methods used in this thesis are presented in the section 4.3.1. 
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2.3.3 Measuring 

 

In some European countries measuring standards for emissions from biomass combustion 

exist only for determining TSP. Standards are not available for dilution-based methods. 

(Hytönen et al., 2008.) 

 

The desired particle property under interest defines the measurement method. Methods can be 

divided into off-line and on-line. In off-line the flue gas sample is collected to a sampling 

substrate, whether it is a filter, a collection plate in a conventional low-pressure impactor or a 

cyclone. The particle mass concentration or mass size distribution is then determined by 

weighing the substrate in question (gravimetric analysis). Afterwards it is possible to do 

different chemical and morphology analysis for the collected particles. Common sampling 

substrate materials are quartz filters, quartz wool, glass fiber filters, PTFE 

(polytetrafluoroethylene) i.e. Teflon filters, polycarbonate film and aluminium foils. The key 

to succeed in off-line methods is accurate weighing in controlled conditions where 

temperature and humidity can be adjusted. Sample storage should be done in dark and cold, 

for example, in a fridge. (Hytönen et al., 2008.) 

 

On-line methods are comprised of different electrical continuous measuring devices, which 

utilize the physical properties of the particles and convert it into concentration (number, size, 

mass) or corresponding size distributions. The main benefit of the on-line methods is the 

possibility to find out how the emissions behave and develop during the combustion which is 

not possible with the off-line methods. (Hytönen et al., 2008.) 

 

The sample treatment for chemical characterization is defined by the analysis in question. 

Different extraction treatments are common. In chemical analysis PM can be divided into 

carbonaceous and inorganic matter. Carbonaceous can be divided further into OC (organic 

carbon) and EC i.e. soot or BC which is the light-absorbing fraction of carbon. OC contains 

numerous of different organic compounds and can be separated into water-soluble and water-

insoluble fractions. Inorganic matter contains all the non-carbonaceous compounds like 

different alkali salts and trace metals. (Hytönen et al., 2008.) 
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3. THE AIMS OF THE WORK 

 

The aims of the thesis were to characterize the PM and gaseous emissions formed in batch-

wise operated Finnish modern masonry heater and to test a novel sampling method for PM. 

The obtained results of the continuous measurement devices, filter collections and three 

different PM sampling methods (reference sampling method, novel sampling method and 

TSP) were compared between each other and legislation. Also the usability of the novel 

sampling method was evaluated. 
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4. MATERIALS AND METHODS 

 

4.1 COMBUSTION APPLIANCE AND COMBUSTION SETTINGS 

 

The combustion appliance used in the measurements was a modern masonry heater (MMH) 

made of soapstone (weight 1280 kg, dimensions 0.85 × 0.61 × 1.44 m3). Primary air is fed 

under the grate and comprises 10 % of the total combustion air flow. Other air stages are 

window flushing air and secondary air which comprise 40 % and 50 % of the total 

combustion air, respectively. The location of the window flushing air feed is on the front edge 

of the furnace, secondary air on the top of the furnace. The nominal energy output of the 

MMH is 1.6 kW. In the result section the appliance is abbreviated to TS-MMH. 

 

The operating of the MMH was standardized throughout the measurements. The wood fuel 

was Finnish birch with moisture content approximately 10-15 % by weight. Batches were 

weighed with Sartorius CP 34001P High Capacity Digital Weighing scale and each batch was 

3.0 kg ± 0.010 kg. The ignition batch had 10 pcs of medium sized logs (0.25 and 0.30 m) and 

4-6 pcs of smaller pieces of wood and birch bark which were used to ignite the batch. Ignition 

was done from the top of the batch and external metal rack was used to keep the batch from 

collapsing. New batches were added when CO2 concentration in the undiluted flue gas 

dropped to 4.0 %. Each additional batch had 6 slightly larger logs in it. Before adding the 

batch the char bed was gently shuffled and spread on the grate evenly. The draught was 

always maintained stable (12 ± 2 Pa) with the flue gas fan. If measurements were carried out 

on consecutive days the MMH was cooled down overnight with fans to ambient temperature. 
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Figure 2. The wood fuel batches. On the right is the ignition batch placed into the furnace. 

 

The mass of the bottom ash was determined in experiments 5, 13 and 14. Ash was collected 

from the ash dump to small plastic bags and weighed with Sartorius CP 34001P High 

Capacity Digital Weighing scale. The ash content of the wood fuel was approximately 0.7 % 

by dry weight but this is not entirely accurate because the ash contained also small amounts of 

unburned char. 

 

4.2 GAS AND TEMPERATURE MEASUREMENTS 

 

Gaseous samples of the raw flue gas were taken straight from the stack with an insulated 

sample line which was heated up to 180 °C to prevent the condensation of the compounds. 

Sample line had a ceramic filter which was used to remove the particles. 

 

Two gas analyzing systems were used in parallel. The gas analyzing rack (ABB Hartman & 

Braun) had a combination of different measurement technologies in it. O2 was measured 

based on paramagnetism, CO and CO2 on infrared spectroscopy, NOx on UV-spectrometry 

and organic gaseous compounds (OGC) were measured with flame ionization detector (FID). 

The data was collected with data acquisition system. In addition, GasmetTM DX-4000 

Multicomponent fourier transform infrared spectroscopy (FTIR) Gas Analyzer was used. The 

main compounds of interest were O2, CO2, CO, NOx and vaporous H2O but device was also 

calibrated for 28 different HCs. Concentration of O2 was measured using a separate ZrO2 cell 

integrated into the device. Otherwise the function of DX-4000 rested on FTIR spectroscopy. 

Sample analyses and data logging was done with an external computer with CALCMET-

software. 
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In FTIR spectroscopy sample continues from stack to the device through a heated line. 

Infrared radiation is passed through the gas sample where part of the radiation is absorbed, 

part of it passes through the sample to the detector. Each component absorbs radiation on 

specific frequencies and the composition and quantity of different compounds can be solved 

from the resulting spectrum. The Fourier transform is needed for decoding the individual 

frequencies and it is performed by the computer. (Thermo Nicolet Corp., 2001.) 

 

FID is a sensitive gas chromatographic detector. Sample is delivered to a H2 flame with N2 or 

some other inert carrier gas. In the flame charged particles (ions and electrons) are created 

from carbonaceous compounds in the sample. The amount of particles produced in the H2 

flame itself is minor. Particles continue to two electrodes where an electric potential is 

applied. With the help of particles this potential creates an electric current which is measured 

by an electrometer. The intensity of the current is directly proportional to the amount of 

created particles and finally, to the mass flow of carbon. (Zachowski and Paleologos, 2009.) 

 

In the reference sampling method (section 4.3) the hot flue gas temperature was measured 

with K-type thermocouple in the stack before the porous tube diluter (PRD). Data collection 

was done with National Instruments cDAQ-9172 data acquisition system (input models NI 

9211 and NI 9203). System was connected to a computer and data was logged with NI 

LabVIEW SignalExpress software. For calculating the dilution ratio and making the 

temperature correction (section 4.8) the CO2 concentration and the temperature in the diluted 

sample were measured after ED using Vaisala CARBOCAP® Carbon Dioxide Probe 

GMP343 which was connected to a computer. 

 

In the novel sampling method (section 4.4) the CO2 in the diluted sample was measured after 

the mass flow meter using ABB A02040 Uras 14 Gas Analyzer. K- and S-type thermocouples 

were used to measure temperature from the dilution air, flue gas, PRD (2 pcs inside, 2 pcs 

outside) and from the sampling line before and after filter. CO2 and temperature data was 

collected with National Instruments cDAQ-9172 data acquisition system (input models NI 

9211 and NI 9203) and logged with NI LabVIEW SignalExpress software. 

 

4.3 REFERENCE SAMPLING METHOD 
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4.3.1 Particle sampling and dilution 

 

The partial flow sample was diluted in two stages. The sample was taken from the stack 

straight through PRD followed by ejector diluter (ED) which, in addition to dilution, ensured 

the proper mixing of the flue gas with dilution air. Dilution air was in room temperature, dried 

and filtered in the pressure station (TSI Inc.). The flow of the dilution air (18 lpm for PRD, 50 

lpm for ED) was adjusted with GFM mass flow controller (Aalborg Instruments & Controls, 

Inc.). After ED the sample flow continued to a metal probe and was separated to continuous 

measurement devices and filters. The sample flow was maintained with vacuum pumps. The 

goal was to sustain the DR between 40-50. This sampling arrangement was developed by 

Tissari et al. (2007) and is presented in Figure 3. 

 

 
Figure 3. Schematics of the reference sampling method measurement arrangement. MFC, 

mass flow controller; TFG, flue gas thermocouple; DAS, data acquisition system; TF, teflon 

filter; QF, quartz filter. 
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In Figure 4 is a schematic picture of a combination of PRD and ED. In PRD dilution air flows 

through pores with a diameter of approximately 20 µm which exist throughout the inner side. 

In ED the dilution air flows in with pressure around the ejector nozzle causing a pressure 

drop, which drags the sample through the nozzle and mixes it effectively with the dilution air. 

 

 
Figure 4. Combination of porous tube diluter (PRD) and ejector diluter (ED). (From Hytönen 

et al., 2008.) 

 

4.3.2 Particle number and number size distribution measurements 

 

The total real-time particle number concentration measurements were carried out with 

Condensation Particle Counter (CPC), TSI Model 3775. The smallest detectable particle for 

this model is 4 nm in diameter and maximum particle concentration is 107 cm-3. The idea with 

CPC is to grow the particles so they can be observed optically. In the Model 3775 the 

particles are grown with butanol vapour. The sample stream is led through heated saturator 

(39 ° C) where butanol vaporizes and diffuses into sample stream. This mixture flows through 

cooled condenser (14 °C) where butanol vapour becomes supersaturated and condenses on the 

surface of the particles. The sample stream is then introduced to light and the grown particles 

are counted with an optical detector. The particle concentration determines which operation 

mode is in use. Single particle counting, when individual pulses are counted, is utilized when 

particle number concentration is smaller than 50,000 cm-3. When concentration exceeds this 

the photometric operation mode switches on. In this case the total light scattered is detected 

and the intensity is compared with calibration levels. Sample flow is created with an internal 

pump. In these measurements the flow rate was 1.5 lpm to minimize the transport losses and 

to have a shorter response time (4 s). Inside the device was an internal critical orifice 

controlling the sample flow. Time resolution for each measurement was 1 second. CPC was 
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connected to an external computer and data was logged with Aerosol Instrument Manager -

software. 

 

Electrical Low Pressure Impactor (ELPITM, Dekati Ltd.) was used to determine the real-time 

particle number size distribution. ELPI consists of an unipolar corona charger, low pressure 

cascade impactor and multi-channel electrometer. The size range of ELPI is 30 nm to 10 µm, 

with filter stage 7 nm to 10 µm. In this study the filter stage was in use, the sample flow rate 

was 10 lpm and measurement time resolution was both 5 and 10 seconds. External computer 

with ELPIVI 4.0 -software was used for data logging. 

 

The sample stream flows through the inlet into the 5 kV corona charger which produces ion 

flow of 1 µA. This flow charges particles into known unipolar charge level. Inside the corona 

exists a static trap field which is formed with a voltage of 400 V. Trap field removes the 

charged molecule groups and particles smaller than the cutoff diameter of the lowest stage. 

When the filter stage is used, the trap field must be turned off. Field removes also some larger 

particles but this loss is compensated with the charger efficiency function. After the charger 

the sample stream enters the low pressure (100 mbar) impactor with 13 electrically insulated 

stages and sintered collection plates coated with 1 µl of vacuum oil. Stages are connected to 

an electrometer current amplifier. The structure of the impactor assembly is such that the 

sample stream accelerates and makes sharper turns towards the end. Larger particles are 

unable to follow the flow and are collected to the impactor stages according to their 

aerodynamic diameter while smaller particles continue in the stream. The collected particles 

donate their charges and induce an electrical current which is detected by a sensitive multi-

channel electrometer. The value of the current in each channel is directly proportional to the 

number of particles. 

 

4.3.3 Particle mass measurements 

 

TEOM (tapered element oscillating microbalance) is a device for measuring real-time particle 

mass concentration. The particle sample is collected on a filter which is located in the free end 

of a shallow and narrowing tube whereas the other end of the tube is rigid and attached to the 

device. The free end of the tube is oscillated at its resonance frequency which is strongly 

dependent on tube’s mass. As the particles deposit on the filter, its mass increases and the 
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oscillating frequency decreases. The change in the frequency combined with the sample 

volume is converted to particle mass concentration. (Patashnick et al., 2002.) 

 

The tapered element device used in this study was Thermo ScientificTM TEOM Series 1405 

Ambient Particulate Monitor which is a common device when measuring ambient outdoor air. 

Applied filters were 13 mm Pallflex TX40. Device can be adjusted to measure PM10, PM2.5, 

PM1 or TSP. The maximum concentration for Series 1405 is 1 g m-3, measurement resolution 

0.1 µg m-3 and sample temperature operating range from -40 °C to 60 °C. In this study the 

total PM was measured although losses surely occurred in the sampling line. The flow rate 

used was 1.0 lpm and maintained with an external pump. Measurement time resolution was 

10 seconds and the temperature of the tapered element was 35 °C on average. The device had 

an internal data logging system and data was collected later via USB port. 

 

The filter samples were collected using a cascade pre-impactor with two stages. First stage cut 

out the particles larger than 10 µm, second particles with the diameter of 2.5-10 µm. The pre-

impactor stages had aluminium foils as collection plates with a diameter of 25 mm. The foils 

were coated with a mixture of Apiezon-L grease and toluene to minimize the particle bounce. 

The pre-impactor was sized for the flow rate of 20 lpm. After the pre-impactor the PM2.5 

samples were collected on two parallel lines in a filter holder. Samples for gravimetric 

analyzes were collected on 47 mm PTFE-filters and samples for OC and EC analyzes were 

collected on 47 mm quartz fiber filters. Both lines had a quartz fiber backup filter for 

collecting gaseous OC. Purpose of this was to get correct particle mass by subtracting the 

mass of gaseous OC after the PTFE-filter from the mass of total carbon on the front quartz 

filter. Both sampling lines had their own pump with a flow rate of 10 lpm. After the sampling 

the filters were placed in a Petri dish sealed with PARAFILM® and stored in a fridge. 

 

The filters were weighed before and after sampling with Mettler Toledo MT5 Micro Balance 

with accuracy of 1 µg. Before each weighing the filters were stabilized in the weighing room 

for 24 hours. During experiments 11 and 13 weighed aluminium foils were used in the pre-

impactor for measuring the mass concentration of larger particles. 

 

4.3.4 Particle chemical composition 
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Particle OC and EC concentrations were determined using thermal-optical method. Analyzes 

were done using Sunset Laboratories Inc. carbon analyzer. The separation of OC and EC is 

based on the different optical properties of the carbon fractions: EC absorbs light, OC does 

not. 

 

The quartz filter is placed in the oven of the thermal-optical device. First the filter is heated to 

850 °C in a completely oxygen-free and inert helium atmosphere which causes desorption of 

OC from the filter. Next the vaporous OC flows through MnO2 oven and is catalytically 

oxidized to gaseous CO2 and then reduced to CH4. Helium stream transports this CH4 to FID 

where the amount of it is measured. EC goes through same process with the exception that the 

desorption takes place in oxidizing He/O2 atmosphere and in lower temperature. Later 

temperature is again raised to about 940 °C. During the first heating of the filter some of the 

OC is pyrolytically converted to EC which could lead to overestimating the share of EC. This 

is corrected by continuously observing the OC-to-EC -conversion with laser light passed 

through the filter and measuring changes in the laser’s absorbance. (NIOSH, 1999.) 

 

4.4 NOVEL SAMPLING METHOD 

 

4.4.1 Particle sampling and dilution 

 

The partial sample was taken with PRD attached to the stack. The dilution air came from the 

pressure station (TSI Inc.). Applied DR was 20. Needle valve was used to adjust the dilution 

and pressure over the valve was monitored with Keller LEO 2 digital manometer (Serpens 

Inc.). In addition, critical orifice was positioned before PRD and in the end of the sampling 

line to keep the sample flow steady. The arrangement schematics can be found from Figure 5. 
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Figure 5. Schematics of the novel sampling method. TDA, dilution air thermocouple; TFG, flue 

gas thermocouple; TIB; inside back thermocouple; TSB, surface back thermocouple; TIF, inside 

front thermocouple; TSF, surface front thermocouple; TBF, before filter thermocouple; TF, 

teflon filter; TAF, after filter thermocouple; MFM, mass flow meter; DAS, data acquisition 

system. 

 

4.4.2 Particle mass measurements 

 

The samples were collected to 90 mm Zefluor® PTFE Membrane Filter placed in a filter 

holder. Larger particles were removed with EPA WINS PM2.5 separator with 37 mm glass 

fiber filter in it (Figure 6). Sample flow rate (16.7 lpm) was created with an air pump and 

monitored with TSI Inc. 4100 Series mass flow meter. The increased particle load on filter 

caused a pressure drop and because of this a valve was positioned in the end of the sampling 

line in order to adjust the flow. Monitoring of the pressure difference before and after filter 

was done with Thommen HM 35 Digital Manometer. After the sampling the filters were 

placed in a plastic Petri dish sealed with PARAFILM® and stored in a fridge. 
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The 90 mm filters were weighed before and after sampling with Sartorius CPA1245 with 

accuracy of 0.1 mg. The stabilizing time before each weighing was 24 hours. Weighed glass 

fiber filters were used in the PM2.5 separator for measuring the mass of larger particles only in 

experiments 10 and 11 (section 4.6). The scale used was Mettler Toledo MT5 Micro Balance. 

 

 
Figure 6. Filter holder and PM2.5 separator used in the novel sampling method. 

 

4.5 TOTAL SUSPENDED PARTICLES 

 

TSP measurements were conducted according to European Standard EN 13284-1. Method is 

primarily developed for measuring PM emissions in power plants where flue gas velocities 

are higher. A specific sampling probe heated to 160 °C was used to take the partial sample 

form the stack. On the other end of the probe was a 47 mm quartz filter where the samples 

were collected. Flow rate varied between 3-10 lpm. Filters were weighed by Symo Inc., 

Kuopio. 

 

4.6 MEASUREMENT MATRIX 

 

The measurement matrix for filter collections is presented in Table 1. Continuous devices 

measured the whole combustion in every experiment. In experiments 1-9 the first filter 

collection was done during the first batch. After the collection (CO2 < 4 %) new filters were 

placed, new batch was added and sampling of the second and the third batch was done on the 

same filter. 
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Table 1. Measurement matrix for filter collections in the novel sampling method, reference 

sampling method and TSP method. 

Experiment 

number 

Sampling target Novel 

sampling 

Novel 

sampling 

DR 

Reference 

sampling 

TSP 

1 1. batch, 2. + 3. batch   x  

2 1. batch, 2. + 3. batch   x  

3 1. batch, 2. + 3. batch   x  

4 1. batch, 2. + 3. batch   x  

5 1. batch, 2. + 3. batch   x  

6 1. batch, 2. + 3. batch   x  

7 1. batch, 2. + 3. batch   x  

8 1. batch, 2. + 3. batch   x  

9 1. batch, 2. + 3. batch   x  

10 2. batch x 20 x x 

11 2. batch x 20 x x 

12 2. batch x 20 x x 

13 the whole combustion   x x 

14 the whole combustion   x x 

15 the whole combustion   x x 

 

4.8 CALCULATION OF DR AND EMISSION FACTORS 

 

4.8.1 Dilution ratio 

 

All the nominal particle emission values were multiplied with DR which was monitored 

continuously by measuring the concentrations of CO2 from both undiluted and diluted flue 

gas. DR was calculated with Equation 1 (Tissari, 2008). 

 

BGD

BGFG

COCO

COCO
DR

,2,2

,2,2




  (1) 

 

where 

 

CO2,FG = CO2 concentration in dry and undiluted flue gas 

CO2,D = CO2 concentration in the diluted flue gas 

CO2,BG = CO2 concentration in the background dilution air (400 ppm = 0.04 %) 

 

4.8.2 Air-to-fuel ratio 

 

Air-to-fuel ratio (λ) describes how much extra air was present in the combustion. It was 

calculated with Equation 2 according to SFS 5624. 
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ME


96.20

96.20
  (2) 

 

where 

 

EM = dry and undiluted flue gas O2 concentration (%) 

20.96 = ambient air O2 concentration (%)  

 

4.8.3 Temperature correction 

 

Temperature affects the volume of the flue gas and thus, the concentration of emissions. To 

make the results comparable all the results were presented in normalized cubic meter (Nm3). 

The measured emission values were normalized according to the reference temperature with 

Equation 3. 

 

RT

M
MRT

T

T
cc   (3) 

 

where 

 

cRT = concentration in reference temperature 

cM = measured concentration value in dry flue gas (mg m-3 or # cm-3) 

TM = measured temperature of the diluted sample (K) 

TRT = reference temperature (0 °C = 273.15 K) 

 

4.8.4 Nominal emission value in relation to a volume of flue gas 

 

Emission values in a certain volume of dry flue gas were normalized into 13 % O2 

concentration which is a long-time average value in the batch combustion of wood. 

Normalization was done according to SFS 5624 by multiplying the measured emission values 

(cm) with oxygen reduction factor r (Equation 4). 

 

2

,2

96.20

96.20

O

O
r

N




  (4) 

 

where 

 

20.96 = ambient air O2 concentration (%) 

O2,N = O2 concentration in dry flue gas used in the normalization (13 %) 

O2 = dry and undiluted flue gas O2 concentration (%) 
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4.8.5 Nominal emission value in relation to energy input 

 

Calculations of the nominal emission values (mg MJ-1) were done according to Equation 5 

(SFS 5624). 

 

sMe Qkcq    (5) 

 

where 

qe = nominal emission value (mg MJ-1) 

cM = measured emission value in dry flue gas (mg m-3 or # cm-3) 

λ = air-to-fuel ratio 

k = fuel moisture factor (1.02 in all calculations) 

Qs = volume of dry flue gas in the reference conditions in relation to energy unit in the 

combustion of dry fuel (0.25 m3 MJ-1 in all calculations) 

 

4.8.6 Fuel moisture factor 

 

The fuel moisture content lowers the heating value of the wood fuel because the evaporation 

of water consumes heat energy. This latent heat lowers the combustion temperature which 

leads to lower combustion temperatures and increased emissions. This is why fuel moisture 

factor (k) needs to be applied in the Equation 5. It was calculated according to SFS 5624 as 

follows. 

 

wu

u

HH

H
k


  (6) 

 

where 

 

k = fuel moisture factor 

Hu = the net heating value of dry fuel (18.5 MJ kg-1 for wood) 

Hw = the amount of heat consumed in water evaporation (MJ kg-1) 
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Hw (approximately 0.38 MJ kg-1) was calculated with Equation 7 (SFS 5624). 

 

v

v

v
vvw llwH 








1
 (7) 

 

where 

 

wv = the mass ratio of water and dry substance 

lv = the evaporation heat of water (2.5 MJ kg-1 in 0 °C) 

γv = the mass ratio of water and wet fuel (0.132)  
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5. RESULTS AND DISCUSSION 

 

5.1 GASEOUS EMISSIONS 

 

Gaseous compounds were measured simultaneously with two gas analyzers. The main 

compounds of interest were O2, CO2, CO, NOx, vaporous H2O and different gaseous HCs. 

The detailed average emissions are presented in Appendix I. The standard deviations describe 

the deviation between the experiments. 

 

The time series of O2, CO2 and CO concentrations can be seen in Figure 7. The cyclic process 

is typical for batch combustion. When the new batch was added the CO2 concentrations rose 

and O2 concentrations went down. 

 

 
Figure 7. Experiment 2 time series of oxygen and carbon dioxide as flue gas volume 

percentages as measured with ABB gas analyzing rack and concentration of carbon monoxide 

as measured with FTIR. 

 

The average CO concentrations were highest during the first batch whereas emissions of NOx 

were quite stable throughout the combustion (Figures 7 and 8). Usually the adding of the 

second batch caused a high and short peak in the CO emissions (Figure 7). The variations of 

CO and NOx emissions from the first batch were 688-1505 mg m-3 and 84-356 mg m-3, 

respectively. During the beginning of char burnout the emissions of CO started to go up again 
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(Figure 7). This was due to the low diffusion rate of O2 to the char bed and the cooling of the 

furnace which was caused by the high volume of excess combustion air (Tissari, 2008). 

 

 
Figure 8. Average concentrations of carbon monoxide and nitrogen oxides in different 

combustion phases as measured with FTIR. 

 

OGC and CH4 emissions were high only during the first batch (Figures 9 and 10) with 

variations of 22-208 mg m-3 and 10-55 mg m-3 in the first batch, respectively. A clear but 

short peak occurred commonly in both, the OGC and the CH4 emissions, when the second 

batch was added and combustion conditions became temporarily poor (Figure 10). 
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Figure 9. Average concentrations of organic gaseous compounds and methane in different 

combustion phases. OGC measured with FID, methane with FTIR. 

 

 
Figure 10. Experiment 6 time series of organic gaseous carbon, nitrogen oxides and methane 

concentrations. OGC measured with FID, NOx and CH4 with FTIR. 
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Figure 11. Average concentrations of hydrocarbons in different combustion phases as 

measured with FTIR. 

 

Eight most common hydrocarbons were chosen to further analysis (Figure 11). Acetic acid 

had the highest concentration peak but concentrations were significant only during the first 

batch. Toluene, instead, kept forming throughout the combustion and the concentrations of it 

increased towards the end. 

 

OGC emissions from TS-MMH were practically same than the ones from MMH in Tissari et 

al. (2008a) and clearly lower compared to other appliances (Table 2). In addition of low OGC 

emissions the best quality of TS-MMH was very low CO emissions. NOx emissions from TS-

MMH were quite similar to those from other appliances. 

 

Table 2. Comparison of the whole combustion average OGC, CO and NOx emission factors 

between different studies and combustion appliances. MMH, modern masonry heater; CMH, 

conventional masonry heater; SS, sauna stove; PB, pellet boiler. 
Emission 

parameter 

This 

study 

Tissari et al. (2008a) Tissari et 

al. (2008b) 

Tissari et al. 

(2007) 

Lamberg et 

al. (2011) 

MMH MMH CMH SS CMH MMH CMH PB 

OGC (mg MJ-1) 21 22 148 546 120 nda 126 nda 

CO (mg MJ-1) 240 765 1202 3005 2295 1530 2022 63 

NOx (mg MJ-1) 61 nda nda nda 77 49 55 81 

nda, no data available. 

 

Very low HC emissions are clearly an advantage of TS-MMH (Table 3) but it has to be kept 

in mind that applied measurement methods differ between the studies and might have affected 

the results. 
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Table 3. Comparison of the whole combustion average gaseous hydrocarbon emission factors 

(mg MJ-1) between this study, Tissari et al. (2007) and Hedberg et al. (2002). MMH, modern 

masonry heater; CMH, conventional masonry heater; SS, sauna stove; WS, wood stove. 

Hydrocarbon This study Tissari et al. (2007) Hedberg et al. (2002) 

MMH CMH SS WS 

CH4 6c 25c 218c nda 

Acetylene 2c 7c 96c nda 

Benzene 1c 25c 137c 82a 

Toluene 3c 7c 32c 40a 

Formic acid 1c nda nda nda 

Acetic acid 9c 39c 22c nda 

Formaldehyde 5c 20c 39c 23b 

Acetaldehyde 2c 12c 12c 5b 

Methanol 5c 16c 9c nda 

nda, no data available 
a measured using BTX-monitor 
b sampled using DNPH-Silica Cartridges, measured with HPL-chromatography 
c measured using FTIR 

 

5.2 PARTICLE EMISSIONS 

 

Particle mass concentrations, particle number concentrations and particle number size 

distributions were measured with different continuous on-line measuring devices and off-line 

sampling methods. Particle chemical composition was determined later from collected filter 

samples. The detailed average emissions are presented in Appendix II. The standard 

deviations describe the deviation between the experiments. 

 

The PM2.5 concentrations varied significantly between the combustion phases. The highest 

particle mass concentrations were formed during the first batch most likely due to the cold 

furnace which consumed heat to warm up. The results of the reference sampling filter 

collections in experiments 1-9 can be found from Figure 12. The average PM2.5 concentration 

of the first batch (184 mg m-3) was about 2.5-fold higher than the average concentration 

during the second and the third batch (75 mg m-3). The average PM2.5 concentrations during 

the second batch and the whole combustion were 79 mg m-3 and 113 mg m-3, respectively 

(Figures 13 and 14). The high concentrations during the first batch cannot be seen in the 

whole combustion average concentrations so the separate sampling of the first batch was 

certainly necessary. Even though the sampling was carried out in the same way in every 

experiment and operating of the MMH was standardized some variation can be seen in the 
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results. For example, the concentration during the second and the third batch in the 

experiment 7 is about 2.3-fold to the one in the experiment 6. 

 

 
Figure 12. PM2.5 concentration during the first batch (variation 141-231 mg m-3) and during 

the second and the third batch (variation 46-104 mg m-3) as measured with reference sampling 

filter collection. 

 

 
Figure 13. PM2.5 concentration of the second batch as measured with reference sampling filter 

collection (variation 60-93 mg m-3), novel sampling filter collection (variation 59-105 mg m-

3) and total suspended particles as measured with TSP filter collection (variation 14-48 mg m-

3). 
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The sampling methods were compared in the experiments 10 to 15. The average PM2.5 

concentrations of the reference and the novel sampling (Figure 13) were close to each other 

during the second batch. The maximum difference (experiment 11) was 19 %. The DR in 

reference sampling varied from 38 to 48 and in novel sampling from 25 to 34 and this 

difference did not seem to have great effect on the particle mass concentration. 

 

The share of coarse particles (particles larger than 2.5 µm) in the total particle mass during the 

second batch was 8.8 % and 7.9 % as measured with the novel sampling. In the reference 

sampling the share of PM2.5-10 was 3.6 % in the second batch and 2.2 % in the whole 

combustion. The share of particles larger than 10 µm was 2.3 % in the second batch and 0.5 

% in the whole combustion. It can be concluded that the particle mass concentrations were 

clearly dominated by the fine particles. One has to remember, though, that the sampling was 

not isokinetic which surely caused loss of the larger particles. These losses were not 

measured. 

 

In every experiment the TSP method gave significantly lower concentrations than the 

reference sampling method and the novel sampling method as can be seen from Figures 13 

and 14. On average, the results of reference sampling were 2.7-fold higher in the second batch 

and 3.5-fold higher in the whole combustion. This can mainly be attributed to the treatment of 

the quartz filter in the TSP method. Before and after the sample collection the filter is heated 

before weighing to ensure the complete vaporization of water from the filter. Besides water, 

the heating probably causes vaporization and loss of some HCs which lowers the mass of the 

sample. In addition, the TSP method is developed to measure particle concentrations from 

large scale power plants where the flue gas velocities are higher and flows are quite laminar. 

In small-scale combustion appliances the flue gas flow is slower and more turbulent. 

 



42 

 

 
Figure 14. PM2.5 concentration of the whole combustion (three batches) as measured with 

reference sampling filter collection (variation 93-128 mg m-3) and total suspended particles as 

measured with TSP filter collection (variation 19-50 mg m-3). 

 

The reference sampling PM2.5 concentration correlated well with the other indicators of 

incomplete combustion, OGC and CO, as the coefficients of determination (R2) were 0.72 and 

0.86, respectively. 

 

The TEOM data processing is illustrated in Figure 15. The exceptionally high concentrations 

in the beginning (about 700-2000 mg m-3) were removed from the 30 second average data. 

This was done because the high concentrations affected the average concentrations 

significantly and TEOM 30 second data was not comparable with the reference sampling 

filter collection. In 5 minute average data the same problem did not exist because the average 

was calculated over a longer time period where lower concentrations were already included. 

The same removal of exceptionally high concentrations was repeated with TEOM data in 

every experiment. 
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Figure 15. Illustration of TEOM data processing in experiment 8. Dashed vertical line is the 

start and the end point of the filter collection in reference sampling, solid vertical line is the 

start and the end point of calculation of the TEOM 30 sec particle mass average. SP1, start 

point of the first filter collection; EP1, end point of the first filter collection; SP2, start point 

of the second filter collection; EP2, end point of the second filter collection; TEOM-S, start 

point TEOM calculation; TEOM-E, end point of TEOM calculation. 

 

Results of the TEOM PM mass concentration (the ones corresponding the filter collections) 

are presented in Figures 16 and 17. In all experiments 30 second and 5 minute averages gave 

almost equal concentrations. During the first batch 30 second average was 200 mg m-3 and 5 

minute average was 208 mg m-3. The time averages during the sampling of the second and the 

third batch were same, 102 mg m-3. The average concentrations in the second batch (30 

second 131 mg m-3, 5 minute 128 mg m-3), were close to the whole combustion averages (30 

second 133 mg m-3, 5 minute 130 mg m-3). Concentrations measured with TEOM were 

slightly higher than the ones measured with the sampling which is logical since no pre-

impactor was in use with TEOM. The difference was most evident in the concentrations of the 

second batch as TEOM concentration was 1.6-fold to reference sampling. The minimal 

differences between the results suggest that the measurements with TEOM were reliable and 

operating of the MMH was repeatable. In addition, TEOM 5 minute average particle mass 

correlated well with the PM2.5 as measured with reference sampling filter collection (R2 = 

0.93). (Figure 18). Both methods seemed to be suitable for particle mass measurements.  
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Figure 16. PM mass concentration during the first batch and during the second and the third 

batch presented as TEOM 30 seconds and 5 minute averages. Variations: 30 seconds 1. batch 

(163-238 mg m-3), 5 minute 1. batch (159-244 mg m-3), 30 seconds 2. + 3. batch (65-123 mg 

m-3), 5 minute 2. + 3. batch (64-122 mg m-3). 

 

 
Figure 17. PM mass concentration of the second batch (experiments 10-11) and the whole 

combustion (experiments 13-14) presented as TEOM 30 seconds and 5 minute averages. 
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Figure 18. Reference sampling filter collection PM2.5 concentration as a function of TEOM 5 

min PM mass concentration. 

 

The time series of the TEOM particle mass concentration, ELPI and CPC particle number 

concentrations and ELPI particle GMD from experiment 6 are presented in Figure 19. The 

CPC number concentrations were highest in the first batch (about 1.5-fold to second and third 

batch) but difference was not as great as it was in the particle mass concentrations (filter 

collections and TEOM) discussed earlier. In CPC clear peaks could be seen when a new batch 

was added. This was probably a result of accelerated pyrolysis caused by the hot furnace 

(Tissari, 2008a). ELPI number concentration was nearly stable during the whole combustion. 

The CPC average number concentration in the whole combustion varied from 2.9 × 107 to 4.6 

× 107 # cm-3. The particle GMD measured with ELPI remained quite stable through the 

combustion and the average in experiment 6 was 55 nm. TEOM 30 second and 5 minute 

averages are in line with each other. The whole combustion variations were 95-161 mg m-3 

for 30 second and 97-159 mg m-3 for 5 minute averages. 

 

ELPI particle number concentration was clearly higher than CPC number concentration, about 

3.3-fold on average during the whole combustion. This might be due to an error which is 

caused by ELPI particle charging: larger particles are easily charged multiple times which 

results in too high particle number concentration. CPC, on the other hand, is considered to be 

reliable in particle number measurements. (Hämeri and Mäkelä, 2005.) This explanation 

could be too straightforward, though. Leskinen et al. (2012) investigated eight different 

measurement devices with synthetic test particles. They pointed out that differences between 
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the results of the devices might arise not only from different operation principles of the 

devices but also from different properties of the particles in question. Regardless of the 

different results between the devices the results were usually at an acceptable level. 

 

The ELPI particle number size distributions from every experiment are collected to Figure 20. 

Distributions are unimodal and majority of the particles were in the ultrafine size fraction (dp 

< 100 nm). 
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Figure 19. Experiment 6 time series of TEOM particle mass concentration, ELPI particle 

number concentration and geometric mean diameter and CPC particle number concentration. 
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Figure 20. ELPI particle number size distributions of the first, the second and the third batch. 
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In Table 4 is a comparison of the particle emission factors between TS-MMH and MMH, 

conventional masonry heater (CMH) and sauna stove (SS) (Tissari et al., 2007; 2008a; 2008b) 

and continuous pellet burner (PB) (Lamberg et al., 2011). 

 

The fine particle mass emissions from TS-MMH were 2-fold higher than the emissions from 

other studied MMHs (Tissari et al. 2007 and 2008a) and from CMH (Tissari et al. 2008a). 

Mass emissions from CMH studied by Tissari et al. (2008b) were slightly higher than TS-

MMH. Emissions from sauna stove (SS) are known to be high. Particle mass emission was 

clearly higher in SS, about 3.5-fold to TS-MMH. The benefits of continuous pellet 

combustion are obvious when it comes to reducing emissions. The difference in particle 

number emissions was not that great between appliances and according to Tissari (2008) 

number emission alone is not a good indicator to estimate how complete the combustion is. 

 

The greater GMD in Tissari et al. (2008a) could be explained with different collection plates 

applied in ELPI. Greased aluminium foils seemed to collect bigger particles than sintered 

collection plates. One reason to this could be particle bounce (Hinds, 1999) when particles do 

not attach to the collection plates in question but tend to bounce back to the sample stream. 

With greased aluminium foils the goal has been to diminish this phenomenon. According to 

Marjamäki and Keskinen (2004) increased roughness in collection plate leads to less steep 

collection efficiency curve and because of this, the impactor should be recalibrated if 

collection plates are changed. 

 

Results of ELPI particle GMD have be interpreted with care, however. Leskinen et al. (2012) 

tested ELPI with three different collection plates: greased aluminium foils, sintered and bare 

steel. The differences in measured particle size with different collection plates increased as 

the complexity of the particle morphology increased via agglomeration. The conclusion was 

that the different results could mainly be attributed to nature of the test particles, not with 

applied collection plates. 
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Table 4. Comparison of the whole combustion average particle mass emission factors (filter collection), ELPI particle number emission factors 

and ELPI particle GMD between different studies and combustion appliances. In Tissari et al. (2007, 2008a and 2008b) and in Lamberg et al. 

(2011) the PM size is PM1. MMH, modern masonry heater; CMH, conventional masonry heater; SS, sauna stove; PB, pellet boiler. 
Emission 

parameter 

This 

study 

Tissari et al. (2008a) Tissari et al. 

(2008b) 

Tissari et al. (2007) Lamberg et al. (2011) 

MMH MMH CMH SS CMH MMH CMH PB 

PM (mg MJ-1) 76 38 38 273 98 38 44 12.2 

ELPI N (# MJ-1) 8.2E+13 3.2E+13 1.7E+13 9.8E+13 2.1E+14 4.4E+13 1.7E+14 1.6E+13 

ELPI GMD (nm) 66b 130a 150a 110a 65b 83b 64b 69b 

Fuel Birch Birch Birch Birch Birch Birch Birch Pine 
a 9 out of 11 experiments had aluminum foils as collection plates. 
b sintered collection plates in all experiments
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5.3 PARTICLE CHEMICAL COMPOSITION 

 

The results of the thermal-optical carbon analysis are presented in Figure 21. Fine particles 

consisted mainly of EC which comprised 62-94 % of the particle mass while the shares of OC 

were much lower (0-27 %). In Figure 21 the non-carbonaceous components are referred to as 

“Other”. The negative shares of OC and other components in some experiments resulted from 

the uncertainty of the thermal-optical method. 

 

 
Figure 21. Organic carbon and elemental carbon of PM2.5 in the first batch (experiments 1a-

3a), in 2.+3. batch (experiments 1b-3b), in the second batch (experiments 10-12) and in the 

whole combustion (experiments 13-15) as measured with thermal-optical method. 

 

In PM emissions from TS-MMH the share of EC was much higher compared to previous 

studies. Tissari et al. (2007 and 2008b) measured EC shares of 30 % and 32 %, respectively. 

The results of Frey et al. (2009) were similar to these as the share of EC was 32 %. In 

Schmidl et al. (2008) the portions of EC varied between wood species but were still lower 

than in this study; 19-31 %. 

 

High share of EC means that the combustion conditions were poor in some way. One reason 

might have been that the TS-MMH had a quite small furnace (width 0.295 m, depth 0.4 m). 

Probably because of this the residence time of soot particles in the combustion zone was not 

long enough. In addition, during the combustion the flame was often in contact with the 

furnace window or the back wall of the furnace. This caused deposition of the particles on the 
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furnace surfaces which was quite visible. The contact with the window may have caused the 

flame temperature to drop which, together with possibly short residence time, resulted in 

insufficient combustion of the soot particles. The secondary air feed from the top of the 

furnace could have cooled the flame even further. Apart from this, the deposited soot particles 

may have later been ejected into the flue gas without going through proper combustion. 

 

5.4 COMPARISON WITH DIRECTIVE 2009/125/EC 

 

Specific requirements for emissions from local space heaters are presented in a draft prepared 

by European Commission (2013). The draft concerns the implementation of the energy 

efficiency -directive (2009/125/EC) and the new appliances have to meet the requirements by 

1st of January 2018. 

 

The emission limits are given in concentration averages. For the gaseous emissions the 

proposed limits are: 80 mg m-3 for OGC, 1500 mg m-3 for CO, 200 mg m-3 for NOx. The PM 

emission limits depend on the applied sampling method. For TSP (or “PM measurement by 

sampling a partial flue gas sample over a heated filter”) the limit is 40 mg m-3 and for diluted 

sample (filter at ambient temperature) the limit is 73.6 mg m-3. All of the gaseous emissions 

from TS-MMH fulfill the emission requirements as the concentrations were 31 mg m-3 

(OGC), 142 mg m-3 (NOx), and 444 mg m-3 (CO). PM concentration measured using TSP 

method (32 mg m-3) was below the limit but the concentration in the diluted sample (113 mg 

m-3 as measured with the reference sampling method) exceeded the limit. The TEOM average 

whole combustion PM concentrations exceeded the limit as well as the results were 127 mg 

m-3 (TEOM 30 sec) and 127 mg m-3 (TEOM 5 min). 

 

5.5 USABILITY OF THE NOVEL SAMPLING METHOD 

 

Altogether, the novel sampling method required quite a lot of monitoring. The importance of 

critical orifices remained a little vague because dilution had to be continuously monitored by 

following the CO2 concentrations and if necessary, adjusted with the needle valve. The ball 

valve in the end of the sampling line used for adjusting the sample stream was very 

responsive – already a small adjustment had a big effect on the sample flow. Replacing it with 

a less-responsive valve would make the adjustment easier. 
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The DR of the novel sampling increased towards the end of the combustion. This was due to 

increased temperature which increased the sample volume and diluted it even further. Increase 

in the DR was more evident in the reference sampling. The difference might result simply 

from continuous monitoring and adjustment of the novel sampling DR. Yet, unexplainable 

oscillations of the DR occurred from time to time (Figure 24). In Figure 24 the reference 

sampling was in use from the beginning of the combustion but the novel sampling was used 

only to measure the second batch (start time 10:22). This is why DR is exceptionally high 

when the sampling begins. It could be possible to stabilize the DR by stabilizing the flue gas 

temperature by heating the sampling line before the diluters.  

 

The filter collection itself was pretty easy to execute. PARAFILM® was needed to seal the 

PM2.5 separator and also some parts of the sampling line which was not a problem. The 

assembling of the sampling line itself could be reconsidered. Replacing some of the rigid 

metal parts with elastic hoses could make the sampling line easier to transport from one 

measuring site to another. Of course the filter holder -part needs to be robust but assembling 

the whole sampling line rigidly made the whole system little unstable. 

 

 
Figure 24. Dilution ratios of reference sampling and novel sampling in experiment 11.  
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6. CONCLUSIONS 
 

In this study particle and gaseous emissions were measured from batch-wise operated modern 

masonry heater. Measurements were done with different continuous devices and filter 

collections. Obtained results were compared between the applied methods and legislation. 

 

Clearly the highest mass emissions of particulate matter (PM), carbon monoxide (CO) and 

gaseous hydrocarbons (HCs) formed during the first batch. The main reason to this was 

probably the cold furnace which lowered the burnout temperature. When a new batch was 

added the emissions increased temporarily due to accelerated pyrolysis caused by the hot 

furnace. Vast majority of the particle mass emission consisted of particles smaller than 2.5 µm 

in aerodynamic diameter (PM2.5). Small changes in the dilution ratio did not seem to affect the 

PM2.5 concentration. Particle number emissions were also highest during the first batch and 

majority of the particles were ultrafine (smaller than 100 nm in aerodynamic diameter). 

 

The curiosity was that the share of elemental carbon (EC) in PM2.5 was very high when 

compared to other studied appliances in the literature. The reason to this was probably a 

decrease in the flame temperature due to its contact to the hatch window. Also, the secondary 

air feed probably lowered the flame temperature even further. 

 

The best qualities of the studied appliance were low emissions of CO and gaseous HCs. 

Emissions of nitrogen oxides (NOx) were similar to other studies and maintained quite stable 

throughout the combustion. Masonry heater fulfills the requirements of the upcoming EU 

emission requirements in the gaseous emissions and in the PM emissions measured from the 

hot flue gas. The PM concentrations measured from the diluted sample exceeded the limits. 

 

The tested novel sampling system required quite a lot of monitoring and adjustment as the 

goal was to maintain the dilution ratio steady. The filter collection of the novel sampling was 

fluent to execute but the transportability of the sampling system could be improved by 

replacing some of the metal parts with elastic hoses. 
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  APPENDIX I 1(2) 

Tables of gaseous emissions 

 

Table 1. Concentrations (average ± standard deviation) of CO2 and O2 in volume percentages 

and concentrations of OGC, CO and NOx per combustion phase in mg m-3 normalized into 13 

% O2. 

Combustion phase CO2 % O2 % OGC  CO NOx 

1. batch 7.5 ± 1.2 13.5 ± 1.2 97 ± 53 1070 ± 265 181 ± 81 

2. + 3. batch 8.5 ± 0.6 12.3 ± 0.6 5.3 ± 1.3 184 ± 35 85 ± 29 

2. batch 7.2 ± 0.5 13.8 ± 0.6 4.9 ± 1.3 271 ± 56 167 ± 77 

3. batch 8.2 ± 0.3 12.6 ± 0.4 3.1 ± 0.91 174 ± 80 227 ± 46 

Whole combustion 8.1 ± 0.7 12.8 ± 0.7 31 ± 13 444 ± 102 142 ± 78 

 

Table 2. Emission factors (average ± standard deviation) of OGC, CO and NOx per 

combustion phase in mg MJ-1. 

Combustion phase OGC CO NOx 

1. batch 66 ± 36 580 ± 144 79 ± 21 

2. + 3. batch 3.5 ± 0.89 99 ± 19 52 ± 8.7 

2. batch 3.3 ± 0.85 146 ± 31 56 ± 12 

3. batch 2.1 ± 0.61 94 ± 43 57 ± 12 

Whole combustion 21 ± 8.6 240 ± 55 61 ± 10.4 

 

Table 3. Emission factors (average ± standard deviation) of gaseous hydrocarbons per 

combustion phase in mg MJ-1. 

Combustion phase CH4 Acetylene Benzene Toluene 

1. batch 18 ± 7.3 5.7 ± 2.7 3.3 ± 1.4 3.5 ± 0.79 

2. + 3. batch 1.8 ± 0.25 0.84 ± 0.17 0.088 ± 0.061 2.04 ± 0.31 

2. batch 1.9 ± 0.35 1.06 ± 0.25 0.25 ± 0.13 2.9 ± 0.77 

3. batch 1.6 ± 0.49 0.88 ± 0.12 0.089 ± 0.047 2.4 ± 0.708 

Whole combustion 6.5 ± 2.04 2.3 ± 0.67 1.03 ± 0.49 2.6 ± 0.65 

 

Table 4. Emission factors (average ± standard deviation) of gaseous hydrocarbons per 

combustion phase in mg MJ-1. 

Combustion 

phase 

Formic 

acid 

Acetic  

acid 

Formalde-

hyde 

Acetalde- 

hyde 

Methanol 

1. batch 2.4 ± 1.1 28 ± 17 15 ± 7.3 5.2 ± 3.5 17 ± 12 

2. + 3. batch 0.57 ± 0.26 0.69 ± 0.29 0.46 ± 0.16 0.109 ± 0.084 0.039 ± 0.035 

2. batch 0.69 ± 0.33 0.59 ± 0.39 0.53 ± 0.28 0.11 ± 0.12 0.041 ± 0.049 

3. batch 0.38 ± 0.44 0.54 ± 0.39 0.36 ± 0.203 0.13 ± 0.12 0.056 ± 0.063 

Whole 

combustion 

1.1 ± 0.39 9.1 ± 5.4 4.8 ± 2.3 1.7 ± 1.07 5.5 ± 3.6 
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Table 5. Concentrations (average ± standard deviation) of gaseous hydrocarbons per 

combustion phase in mg m-3 normalized into 13 % O2. 

Combustion phase CH4 Acetylene Benzene Toluene 

1. batch 29 ± 13 10.4 ± 4.9 8.5 ± 6.7 10.1 ± 7.9 

2. + 3. batch 2.8 ± 0.603 1.3 ± 0.39 0.15 ± 0.064 3.8 ± 1.4 

2. batch 2.8 ± 0.82 1.9 ± 0.44 0.77 ± 0.39 12 ± 8.6 

3. batch 1.7 ± 0.52 1.5 ± 0.205 0.46 ± 0.24 15 ± 4.3 

Whole combustion 9.5 ± 3.09 3.8 ± 1.03 2.8 ± 2.6 8.4 ± 7.4 

 

 

Table 6. Concentrations (average ± standard deviation) of gaseous hydrocarbons per 

combustion phase in mg m-3 normalized into 13 % O2. 

Combustion 

phase 

Formic acid Acetic acid Formalde-

hyde 

Acetalde-

hyde 

Methanol 

1. batch 4.5 ± 2.1 67 ± 53 27 ± 14 11 ± 8.3 33 ± 23 

2. + 3. batch 0.94 ± 0.55 1.1 ± 0.47 0.704 ± 0.19 0.19 ± 0.18 0.055 ± 0.047 

2. batch 1.3 ± 0.64 1.9 ± 1.6 1.03 ± 0.57 0.26 ± 0.29 0.085 ± 0.104 

3. batch 0.75 ± 0.87 2.1 ± 1.5 0.72 ± 0.405 0.38 ± 0.34 0.12 ± 0.13 

Whole 

combustion 

1.9 ± 0.78 22 ± 19 8.4 ± 4.4 3.6 ± 2.7 9.8 ± 6.9 
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Tables of particle emissions 

 

Table 1. Particle mass concentrations normalized into 13 % O2 (average ± standard deviation) 

measured with TEOM and filter collections. RS, reference sampling; NS, novel sampling. 

Combustion phase TEOM mg m-3 RS PM2.5 NS PM2.5 TSP 

30 sec 5 min mg m-3 mg m-3 mg m-3 

1. batch 190 ± 27 190 ± 33 184 ± 27   

2. + 3. batch 105 ± 23 105 ± 23 75 ± 19   

2. batch 130 ± 11 127 ± 12 79 ± 17 87 ± 25 29 ± 17 

3. batch 119 ± 11 119 ± 11    

Whole combustion 127 ± 21 127 ± 20 113 ± 18  32 ± 16 

 

Table 2. Particle mass emission factors (average ± standard deviation) measured with TEOM 

and filter collections. RS, reference sampling; NS, novel sampling. 

Combustion phase TEOM mg MJ-1 RS PM2.5 NS PM2.5 TSP 

30 sec 5 min mg MJ-1 mg MJ-1 mg MJ-1 

1. batch 128 ± 19 129 ± 22 126 ± 19   

2. + 3. batch 71 ± 15 71 ± 15 51 ± 13   

2. batch 87 ± 8 86 ± 9 53 ± 11 59 ± 17 19 ± 12 

3. batch 80 ± 8 80 ± 8    

Whole combustion 86 ± 14 86 ± 14 76 ± 12  21 ± 11 

 

Table 3. Particle GMD (average ± standard deviation) per combustion phase as measured with 

ELPI, particle number concentrations and particle number emission factors as measured with 

ELPI and CPC per combustion phase. p (%) = precision percentage (= standard deviation / 

average × 100) . 

Combustion 

phase 

GMD 

nm 

ELPI 

# cm-3 

p. 

(%) 

ELPI 

# MJ-1 

p. 

(%) 

CPC 

# cm-3 

p. 

(%) 

CPC 

# MJ-1 

p. 

(%) 

1. batch 66 ± 5 1.7E+8 15 1.1E+14 16 3.9E+7 20 2.6E+13 20 

2. + 3. batch 64 ± 4 1.1E+8 12 7.1E+13 12 3.7E+7 16 2.5E+13 16 

2. batch 69 ± 5 1.1E+8 24 7.2E+13 25 3.0E+7 10 2.0E+13 10 

3. batch 75 ± 10 1.0E+8 18 6.9E+13 18 3.0E+7 3 2.0E+13 3 

Whole 

combustion 

66 ± 5 1.2E+8 10 8.2E+13 11 3.7E+7 13 2.5E+13 13 

 


