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Abstract

In this work, we formulate a quantum–mechanical description of interference of elec-

tromagnetic fields in Young’s interference experiment, thereby taking into account

the polarization properties of the field and describing them in terms of quantum

analogs of classical Stokes parameters. Commencing with the classical theory of

interference of scalar fields, we proceed to a relatively advanced approach to elec-

tromagnetic interference, bringing into the equation cross–spectral density tensor,

polarization matrix and Stokes parameters to analyze the polarization properties.

Subsequently, the same phenomenon is analyzed in the domain of quantum optics,

thereby expressing the fields as operators and observables as the expectation values.

Firstly, an outline of the scalar approach of the operators in the interference exper-

iment is presented to establish the foundation to base the electromagnetic approach

on, followed by a full description of quantum analog of electromagnetic interference

in Young’s experiment. In particular, Stokes parameters are adopted to calculate the

polarization effects in quantum theory.
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Chapter I

Introduction

From classical optics, light can be considered as an electromagnetic field with its con-

stituents, electric field and magnetic field propagating in unison through a medium.

For the sake of convenience, we reasonably assume the field to be deterministic, i.e.,

the disturbance caused by the field is predictable at any point in space and time.

However, in reality any field has an inherent randomness in it, which could be at-

tributed to random fluctuations of light sources or the medium through which light

propagates [1]. Essentially, generation of light occurs due to the atomic emissions; as

the electrons undergo quantum jumps, with the transition occuring after a minuscule

duration of about 10 ns, they emit spontaneously a wavetrain and superposition of

these wavetrains emanating independently at different frequencies and phases from

a very large number of atoms results in the randomness of light [2]. In addition,

the randomness may also be variations to the optical wavefront caused by scattering

from a rough surface, diffused glass, or turbulent fluids. This study of the random

fluctuation of light and its effects falls under the theory of optical coherence [1].

Conventionally, the study of coherence was limited to the scalar approximations

of the light field, however, interests towards the electromagnetic coherence theory

increased with the development of subwavelength nanostructures. Such structures

give rise to near-field coherence phenomena, e.g., surface plasmons, that the scalar

coherence theory is generally unable to model rigorously.

The interference experiment typified by Young’s interference experiment has

played a central role to understand the coherence of the field. Classical theory,

which is based on the wave nature of light, could conveniently describe the interfer-

ence pattern, however the first study of interference based on the quantum nature
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of light was done by Dirac [3]; his work took into account the scalar description of

the fields and in this thesis, we extend the concepts to electromagnetic fields.

In this thesis, we present the quantum analysis of interference of electromagnetic

fields. Beginning with the preliminary knowledge of correlation and polarization in

Chapter II, which may prove useful to understand the forthcoming concepts, we move

on to lay out the classical scalar theory of interference and introduce the coherence

concepts in Chapter III, followed with the electromagnetic approach in the classical

domain in Chapter IV. In the following chapters, we redirect our attention towards

the quantum domain, introducing the quantum–mechanical first–order coherence

functions and presenting a quantum formulation of Young’s experiment for scalar

fields in Chapter V and extending these concepts to incorporate electromagnetic

fields to formulate the quantum interference law in Chapter VI. Finally in Chapter

VII, we summarize and discuss about the results.
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Chapter II

Preliminaries

In this chapter, we cover the fundamental concepts needed to reasonably understand

the theories involving the optical coherence and the interference of the waves and

the quantum description of the relevant phenomena.

2.1 Statistical concepts

Real waves are never completely coherent or incoherent; these conditions are more of

conceptual idealizations than physical reality. In fact, any wave suffers from random-

ness, accounted to the random emission of the wavetrain itself and the fluctuations

of the transmitting media. As a consequence, the phase and amplitude of the wave

fluctuate randomly in space and time. However, some meaningful properties could

be extracted from the randomness by performing statistical analysis of the field,

which characterizes and distinguishes it from the other fields. In the following sta-

tistical approach, we assume scalar description of light, i.e., the lightwaves propagate

paraxially and are elliptically polarized [1,2].

2.1.1 Probability density, expectation value, and time averages

Although all the field quantities are real-valued, it is customary to employ the com-

plex field representation to ease the mathematical analysis. For the sake of con-

venience, we ignore here the position dependence of the wave by considering its

disturbance with time at a certain point in space, thereby denoting the wave by

its complex analytic signal U(t) [1]. Since U(t) is a random function in time, its

values form a distribution in the complex plane; the distribution is governed by the

probability distribution p1(U, t) where the subscript 1 denotes one-fold probability.
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The probability density is time-dependent and since there is always some value at

every instant t, we have ∫
C

p1(U, t) dU = 1, (2.1)

where the integration is performed over the complex plane C [4]. The expectation

value of U(t) at time t is defined by

⟨U(t)⟩ =
∫
C

p1(U, t)U dU. (2.2)

The expectation value of U(t) can also be expressed in terms of ensemble average;

the random function U(t) can have infinite set of possible values, called realizations

U1, U2, . . . known as statistical ensemble whose average is given by

⟨U(t)⟩ = lim
N→∞

1

N

N∑
n=1

Un(t). (2.3)

Though one-fold probability density is very helpful to determine the expectation

value of a function at any arbitrary time, it manifests no information about the

possible correlations between the functions at two different times t1 and t2. The

information about this connection is described by the joint or two–fold probability

density p2(U1, t1;U2, t2) where the subscript 2 denotes two–fold probability density.

Analogously to the one–fold probability density, p2 obeys the normalization property

[4] ∫
C

∫
C

p2(U1, t1;U2, t2) dU1dU2 = 1. (2.4)

Thus, there exists an infinite hierarchy of probability densities, p1, p2, p3, . . . each

containing all the information contained in the previous ones. [4]

2.1.2 Correlation functions

Despite the randomness of the field, the fields at two instants of time, space or both

may fluctuate in complete harmony or have no relation whatsoever, depending upon

how close in space or time domain the measurements are taken [1]. This means

of comparing the signals to determine the degree of similarity falls on the realm of

correlation analysis, classified as autocorrelation or cross–correlation functions. [2].
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The (two-time) autocorrelation function of U(t) at two instants of time, t1 and

t2 is given by [2]

Γ(t1, t2) = ⟨U∗(t1)U(t2)⟩ =
∫
C

∫
C

U∗
1U2p2(U1, t1;U2, t2) dU1dU2. (2.5)

There also exists higher-order correlation functions following higher probability den-

sities that contain more information than the previous ones, for instance, a fourth-

order correlation function could reveal the information about the intensity correla-

tions. However, we limit ourselves to second–order correlation functions to examine

the coherence in Young’s experiment. Autocorrelation function is Hermitian, i.e.,

Γ(t1, t2) = Γ∗(t2, t1). (2.6)

Often we are interested in the spatiotemporal behaviour of a random field U(r , t).

The correlation properties of such a field are described by the cross–correlation

function [4]

Γ(r 1, r 2, t1, t2) = ⟨U∗(r 1, t1)U(r 2, t2)⟩. (2.7)

2.1.3 Stationarity and ergodicity

Though the field is time–dependent, its statistical properties may well be invariant

of time, i.e., the character of fluctuations remains the same. In other words, all the

probability densities p1, p2,. . . remain invariant under arbitrary translation of the

origin of time and consequently the expectation value. Furthermore the measurable

property of the field intensity, given by the ensemble average of the absolute square

of the field also remains constant with time. Therefore, [4]

pn(Un, tn;Un−1, tn−1...;U1, t1) = pn(Un, tn + T ;Un−1, tn−1 + T, ...U1, t1 + T ), (2.8)

⟨U(t1), U(t2), ...⟩ = ⟨U(t1 + T ), U(t2 + T ), ...⟩, (2.9)

where T is an arbitrary time interval. Such a field is called statistically stationary

field. Clearly, stationarity should not be mistaken for constancy in the field but

constancy in the average properties of the field. Examples of stationary field in-

clude thermal light, continuous lasers beams, etc [1]. In classical coherence theory,

higher–order correlation functions are uncommon and therefore, we define a field

with stationarity to the mean value and second–order correlation functions as sta-

tionary in the wide sense. For a stationary field, the time average for a particular
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realization Un(t) is determined by averaging the field over infinitely long interval,

given by [1]

Un = lim
T→∞

1

T

∫ t+T/2

t−T/2

Un(t) dt, (2.10)

which is independent of T or t but depends on the particular realization n of the

ensemble.

Ergodicity describes a statistical property of a random function when all re-

alizations have the same statistical parameters [5], thus the time averages of the

realizations are equal and same as the ensemble average. Often when the field is

stationary, it exhibits ergodicity. Therefore, for an ergodic field the averaging could

be performed over realizations or over time, with the same result. We assume the

field to be statistically stationary and ergodic throughout this thesis. As the time

dependence vanishes for statistically stationary ergodic fields, the correlation anal-

ysis remains indifferent to the time instants taken but depend solely on the time

delay between them, τ = t2 − t1 and is defined as

Γ(t1, t2) = Γ(τ), (2.11)

Γ(r 1, r 2, t1, t2) = Γ(r 1, r 2, τ). (2.12)

2.2 Coherence concepts

The coherence properties of a field are usually described in terms of second–order

correlation functions [4]. In the language of optical coherence theory, the autocor-

relation function of a random stationary ergodic function Γ(τ), Eq. (2.10) is called

the temporal coherence function, which equals the intensity I when τ = 0, i.e.,

Γ(0) = ⟨U∗(t)U(t)⟩ = I (2.13)

A measure of coherence of the field without carrying information about the in-

tensity is given by the normalized version of the temporal coherence function, called

the complex degree of temporal coherence.

γ(τ) =
Γ(τ)

Γ(0)
=

⟨U∗(t)U(t+ τ)⟩
⟨U∗(t)U(t)⟩

(2.14)

From Schwarz inequality, it can be shown that the absolute value lies between 0 and

1, i.e., 0 ≤ γ(τ) ≤ 1 where γ(τ) = 1 stands for complete correlation and vice versa.
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Likewise, the cross-correlation, which describes the relation between the temporal

and spatial fluctuations of a random function U(t) is called the mutual coherence

function whereas its normalized version is called the complex degree of coherence

γ(r 1, r 2, τ). For a stationary field, we can write from Eq. (2.12) [1,2]

Γ(r 1, r 2, τ) = ⟨U∗(r 1, t)U(r 2, t+ τ)⟩ (2.15)

γ(r 1, r 2, τ) =
Γ(r 1, r 2, τ)

[Γ(r 1, r 1, 0)Γ(r 2, r 2, 0)]1/2
(2.16)

Analogously to the complex degree of temporal coherence, complex degree of

coherence also has its absolute value in the limit 0 ≤ |γ(r 1, r 2, τ)| ≤ 1 such that

|γ(r 1, r 2, τ)| takes the value 0 or 1 when the fluctuations at r 1 and r 2 at a time

delay of τ are completely uncorrelated or completely correlated respectively, i.e.,

completely incoherent or coherent field respectively. The domain of partial coherence

exists in the region of 0 < |γ(r 1, r 2, τ)| < 1 [1]. It should be noted however that

|γ(r 1, r 2, τ)| equals 1 for all values of τ and for all pair of spatial points only if

the field is perfectly monochromatic, an idealization of the practical field. Likewise,

|γ(r 1, r 2, τ)| = 0 for all pair of points with any time delay τ cannot exist for a non–

zero radiation field either, which conclude essentially that the real fields are always

partially coherent, rather than being the extremes at each end [2].

An alternative approach to the space–time domain for examining the coherence

effects is the space–frequency domain, which is more desirable since most materials

are strongly dispersive in the optical frequencies.

The power spectral density, or spectral density, or simply the spectrum S(ω) is

defined as the Fourier transform of the temporal coherence function: [4]

S(ω) =
1

2π

∫ ∞

−∞
Γ(τ) exp(iωτ) dτ, (2.17)

whereas

Γ(τ) =

∫ ∞

0

S(ω) exp(−iωt) dω. (2.18)

This relation is known as Wiener–Khintchine theorem [1, 2]. Likewise, the Fourier

transform of the mutual coherence function Γ(r 1, r 2, τ), called the cross spectral

densityW (r 1, r 2, ω), which should not be mistaken as a measure of spatial coherence

between points r 1 and r 2 at the angular frequency ω; it turns out to be a correlation
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between complex random functions, discussed further in the next chapter. Thus, the

function becomes

W (r 1, r 2, ω) =
1

2π

∫ ∞

−∞
Γ(r 1, r 2, τ) exp(iωτ) dτ. (2.19)

Analogously to Eq. (2.16), the normalized version of cross spectral density is written

as

µ(r 1, r 2, ω) =
W (r 1, r 2, ω)

[S(r 1, ω) · S(r 2, ω)]1/2
(2.20)

where the absolute value, |µ(r 1, r 2, ω)| lies within 0 and 1, i.e., 0 ≤ µ(r 1, r 2, ω) ≤ 1.

Here S(r , ω) = W (r , r , ω) is the spectral density at position r and at frequency ω.

The correlation between the fluctuations of a random function U(t) at two in-

stants of time is described by the complex degree of coherence γ(τ), which usually

decreases as τ increases. If |γ(τ)| decreases monotonically, then the width of the

distribution at which |γ(τ)| lowers to a certain value is called the coherence time of

the field τc. Likewise, the coherence length lc is defined as [1]

lc = cτc. (2.21)

The spectral width, or bandwidth ∆ω is defined as the width of the spectral density.

Since the spectral density and the temporal coherence function are Fourier trans-

forms of each other, the bandwidth is inversely proportional to the coherence time.

However, the fundamental definition of the width could be established in several

ways depending on the spectral profile. [1]

An important parameter that characterizes the random light is the coherence

area Ac. Essentially, it is the cross-sectional area of the |γ(r 1, r 2, 0)| distribution
about any point r taken at the height when |γ(r 1, r 2, 0)| drops to a prescribed value

as |r 1 − r 2| increases [1]. The coherent area of the field is of considerable interest

when it interacts with optical system with apertures; if the area is larger than the

size of the aperture, the transmitted field may be regarded as coherent.

Coherence can be, conveniently, classified as spatial or temporal coherence based

on whether the correlation is investigated between points in space or instants of

time. Spatial coherence is a measure of correlation between fluctuations at two

points in space; it relates directly to the finite spatial extent of ordinary light source

in space. Temporal coherence relates directly to the finite bandwidth, and therefore,

finite coherence time of the source. It describes the correlation between fluctuations
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of a point in space at any two instants in time; the fluctuations would be highly

correlated if the time interval is less than the coherence time [2].

2.3 Polarization concepts

Polarization is a property associated with waves that can oscillate in more than one

direction. In optics, polarization of the field refers specifically to the direction of the

electric field [1,2]. Polarization of light is a crucial parameter in some measurement

techniques and has found ever–increasing applications in the field of engineering,

geology, ellipsometry, and astronomy. Some common applications involve polarized

sunglasses, 3D glasses, radio transmission, or display technologies.

A deterministic monochromatic field is always elliptically polarized; the electric

field changes its direction or magnitude, or both in a predictable way, either in a

linear, circular, or elliptical fashion with the first two being specific cases of the

elliptical polarization. The shape and orientation of the ellipse, also referred to

as the polarization ellipse defines the polarization state of the field, that could be

parameterized in terms of the phase difference ε = εy−εx and the amplitude ratio r =

ay/ax or more commonly in terms of the orientation angle φ and the ellipticity angle

χ, where the Cartesian components of the field E propagating in the z−direction

are defined as

Ex = ax exp[i(kz − ωt+ εx)], (2.22)

Ey = ay exp[i(kz − ωt+ εy)]. (2.23)

The orientation angle φ and the ellipticity angle χ, as illustrated in Figure 2.1,

are defined in terms of the phase difference ε and the amplitude ratio r as [1]

tan 2φ =
2r

1− r2
cos ε, (2.24)

sin 2χ =
2r

1 + r2
sin ε. (2.25)

An alternative convenient way to express the polarization properties of a field is

the Stokes parameters, a set of four values that describe the polarization in terms

of intensity, degree of polarization, and angles of the polarization ellipse. They are
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Ey

Ex

ax

ay

E

φ

Χ

Figure 2.1: Parameterizations of elliptical light. [1]

written as

S0 = I = ⟨|Ex|2⟩+ ⟨|Ey|2⟩,
S1 = pI cos 2φ cos 2χ = ⟨|Ex|2⟩ − ⟨|Ey|2⟩,
S2 = pI sin 2φ cos 2χ = 2Re{⟨ExE

∗
y⟩},

S3 = pI sin 2χ = −2Im{⟨ExE
∗
y⟩}, (2.26)

where I is the total intensity and p is the degree of polarization that describes the

polarized portion of the total field. In the physical sense, the Stokes parameters could

be interpreted as follows: the first parameter S0 simply describes the total intensity;

the second parameter S1 describes the superiority of linearly horizontally polarized

(LHP) light over linearly vertically polarized light (LVP); the third parameter S2

describes the superiority of linearly polarized light at +45◦ over linearly polarized

light at −45◦ and the last value S3 describes the superiority of right circularly

polarized light (RCP) over left circularly polarized (LCP) part [6].

Throughout this thesis, we will employ Stokes parameters to describe the polar-

ization of light since it relies on operational concepts and therefore, could be adopted

in quantum physics [7].
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Chapter III

Classical scalar theory of coherence

3.1 Coherence in the space–time domain

Based on the assumption that light propagates in the form of waves, classical optics

has been successful in explaining different phenomena such as interference, reflection,

diffraction and so on, with some exceptions where a quantum description is sought.

In the scalar approach, we, however, consider that the lightwaves are uniformly

polarized and travel along the same direction so that the they can be treated as

scalar waves. Accordingly, the polarization state of the field is obviously overlooked

throughout this approach which would require a full electromagnetic approach oth-

erwise.

In the classical Young’s interference experiment, we have a broad, statistically

stationary light source generating a complex field U(r , t) that propagates along

the z−axis and illuminates an opaque screen A with two pinholes with centers at

point S1 and S2, placed orthogonally to the propagation direction as illustrated in

Figure 3.1. The pinholes are assumed to be large enough that the diffraction effects

inside a pinhole can be neglected yet so small that the field in each can be treated as

uniform. The lightwaves emerging from the pinholes interfere as they propagate and

fall on the screen B located far away from A. Let U(S 1, t) and U(S 2, t) represent the

fields at pinholes at S1 and S2 as the original field propagate to them respectively.

Intuitively the resultant field at point r on the screen is the superposition of fields

emerging from the pinholes and is given by [1,2]

U(r , t) = K1U(S 1, t− t1) +K2U(S 2, t− t2), (3.1)

where t1 = r1/c, t2 = r2/c, and K1 and K2 are complex constants called the propa-
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Figure 3.1: Young’s two-pinhole interference experiment.

gation factors that depend on the properties of the pinholes and their geometry [4,8].

Mathematically, they alter the field as it emerges out of the pinholes, a phase shift

for instance [2]. Since the field is assumed to be stationary and ergodic, the intensity

of the resultant field at screen B takes on the form

I(r) = I1 + I2 + 2
√
I1I2 Re{γ(S 1,S 2, τ)}, (3.2)

where I1 and I2 are the intensities at P when only hole at S1 or S2 is open

respectively, and γ(S 1,S 2, τ) is the complex degree of coherence between the fields

at S1 and S2 at a delay of τ = t2 − t1. Since γ(S 1,S 2, τ) is complex in nature,

Eq. (3.2) could be simplified as

I(r) = I1 + I2 + 2
√
I1I2 |γ(S 1,S 2, τ)| cosφ, (3.3)

where φ = arg{γ(S 1,S 2, τ)} is the phase of γ(S 1,S 2, τ), which accounts for the

transverse locations of maxima and minima of the interference fringes due to vari-

ation in the time difference τ . This is the general interference law for partially

coherent light. The strength of the interference pattern is described by the visibil-

ity, also called the contrast of the interference pattern and given by:

V =
Imax(r)− Imin(r)

Imax(r) + Imin(r)
. (3.4)
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The maximum and minimum values are obtained by putting cosφ as −1 and 1 in

Eq. (3.3). Therefore, the visibility can be expressed as

V =
2
√
I1I2

I1 + I2
|γ(S 1,S 2, τ)|. (3.5)

If the intensities of the field from pinholes are equal, i.e., I1 = I2, we get

V = |γ(S 1,S 2, τ)|. (3.6)

Thus, the ability of the wave to interfere is governed by the modulus of the complex

degree of coherence at from the pinholes with a time delay equal to the difference

in propagation times from the pinholes to a particular point, under a condition that

the intensities are equal [1, 2].

3.2 Coherence in the space–frequency domain

Alternatively, the concepts of coherence and interference can also be investigated in

the space–frequency domain. In this case, we take into account the spectral density

of the field at a particular point for a particular frequency, S(r , ω) rather than the

mean intensity at that point, which brings into question the temporal coherence of

the field, Γ(τ). Following the analysis in the space–time domain, if τ ′ be an arbitrary

time difference between the resultant field at point r at screen B, given by Eq. (3.1),

then the self–coherence function of the field can be written as

Γ(r , r , τ ′) = ⟨U∗(r , t)U(r , t+ τ ′)⟩. (3.7)

Substituting Eq. (3.1) into the above equation and taking Fourier transform on both

sides of the result, we get, with the help of Eq. (2.19),

S(r , ω) =|K1|2W (S 1,S 1, ω) + |K2|2W (S 2,S 2, ω) (3.8)

+ 2|K1||K2|Re{W (S 1,S 2, ω) exp (−iωτ)},
=S1(r , ω) + S2(r , ω) + 2

√
S1(r , ω)S2(r , ω) Re{µ(S 1,S 2, ω) exp (−iωτ)},

(3.9)

where S1(r , ω) and S2(r , ω) are the spectral densities when hole 1 or 2 is open at a

time and µ(S 1,S 2, ω) is the spectral degree of coherence, as defined by Eq. (2.20).

This is the spectral interference law, analogous to the general interference law in
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Eq. (3.3) with the intensities replaced by the spectral densities and the temporal

coherence by the spectral degree of coherence. Likewise, the spectral visibility at the

examined frequency is described by |µ(S 1,S 2, ω)| provided that S1(r , ω) = S2(r , ω).

If we consider the interference from an extended quasi–monochromatic light

source with θs as the angle subtended by the source at the pinhole plane, then

the interference fringes are visible given θs < λ̄/L where λ̄ stands for the mean

wavelength of light and L is the distance between the pinholes. With larger angles,

the interference pattern washes out thus implying that the complex degree of coher-

ence µ(r 1, r 2) is very small. Therefore, the distance lt ≈ λ̄/θs is called the transverse

coherence length in the plane of screen and the coherence area at the corresponding

plane must be given by [1,4]

Ac ≈
(
λ̄

θs

)2

. (3.10)

It should be emphasized that the cross–spectral density function does not rep-

resent the correlation of the Fourier transform of the random field U(r , t) but

the correlation of random complex–amplitudes V (r , ω) of the monochromatic field

V (r , ω) exp(−iωt), despite the Fourier transform relation between cross spectral

density W (r 1, r 2, ω) and the mutual coherence function Γ(r 1, r 2, τ). Therefore, it

can be written as [9, 10]

W (r 1, r 2, ω) = ⟨V ∗(r 1, ω)V (r 2, ω)⟩. (3.11)

For the special case of complete coherence in a volume, the correlation function

can be expressed as its spatial factorization [4, 11]. In the space–time domain, it

would mean if |γ(r 1, r 2, τ)| = 1 for all τ and r 1, r 2 ∈ D where D is some volume,

then the mutual coherence function factors as

Γ(r 1, r 2, τ) = V ∗(r 1)V (r 2) exp(−iω0τ), (3.12)

where V (r) =
√
I1 exp [−iα(r)] is a position dependent function with α(r) =

arg{γ(r 3, r , τ)}, r3 being a fixed point, and ω0 is a constant. Likewise, in space

frequency domain, complete coherence at a frequency ω in a certain volume assumes

|µ(r 1, r 2, ω)| = 1 and ensures the cross–spectral density function as [4]

W (r 1, r 2, ω) = F ∗(r 1, ω)F (r 2, ω), (3.13)
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where F (r , ω) =
√
S(r , ω) exp [−iβ(r , ω)] is a function of the power density at r

with β(r , ω) = arg{µ(r 1, r 2, ω)}. The function F (r , ω) satisfies the Helmholtz equa-

tion in free space and thus, can be treated as an electromagnetic field component.

Therefore, a field coherent in a certain volume can be treated as a deterministic field,

however, a field that is completely coherent at all frequencies for all points r 1 and

r 2 in certain volume does not necessitate the coherence of the field in general; the

field is still random and may not be completely coherent in the space–time domain.
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Chapter IV

Electromagnetic coherence theory

So far, we have assumed that the optical field has scalar nature, i.e., it is well

directional and completely polarized in nature, which tremendously simplifies the

characterization and analysis of the fields. However, the field is electromagnetic

with the electric and magnetic components satisfying the Maxwell’s equations [1]

and propagating with a set of polarization properties and therefore, it is necessary

to take on electromagnetic approach to fully understand its optical properties. At

optical frequencies light–matter interaction does not involve magnetic fields, and

hence it suffices to study properties of the electric field only. Furthermore, the study

of partial coherence of general electromagnetic fields would be performed in the

space–frequency domain, since it is a more convenient choice in optics due to its

usefulness in analyzing broadband light.

Polarization is an important parameter of an optical field especially in laser, wire-

less and optical fibre telecommunications and radar. Polarization of light is a crucial

parameter in several measurement techniques and has found ever-increasing appli-

cations in the field of engineering, geology, ellipsometry, and astronomy [12]. Some

common applications involve polarized sunglasses, 3D glasses, radio transmission,

or display technologies. Polarization is a property associated with waves that can

oscillate in more than one direction. In optics, polarization of the field describes the

direction in which the electric field oscillates with time [1, 2]. A perfectly polarized

light, nonetheless, is an idealization of the real field. In practice, the polarization of

the field at a point in space changes rapidly in a random manner, a consequence of

superposition of polarized wavetrains generated randomly and independently from

a large number of atomic emitters. Nevertheless, there is a certain degree of corre-
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lation between the randomness in the polarization and hence, light whether natural

or artificial is partially polarized in nature. [2] In this chapter, we study the prop-

erties of partially polarized light for 2D-fields before we proceed to examine the

interference for electromagnetic fields in Young’s two-pinhole experiment.

4.1 Electromagnetic cross-spectral density tensors

In the space–frequency domain, the coherence properties of a stationary electro-

magnetic field are described by correlation tensors [4]. Though we would be mainly

focusing on the electric field, the correlation tensors discussed here are equally appli-

cable to other vector fields as well. Let Ei(r, t) be any of the Cartesian components

of the electric vector appearing in Maxwell’s equations, then the mutual coherence

tensor between the components is written as

Γij(r1, r2, τ) = ⟨E∗
i (r1, t)Ej(r2, t+ τ)⟩, i = j = (x, y, z). (4.1)

Also, the correlation–tensor functions follow the Hermiticity relation between the

components:

[Γij(r1, r2, τ)
∗ = Γji(r2, r1, τ). (4.2)

Analogously to the scalar approach, the electromagnetic cross–spectral density ten-

sors Wij(r1, r2, ω) can be expressed as the Fourier transforms of the correlation-

tensor functions, where Γij(r1, r2, τ) is assumed to be square integrable function.

Therefore, we have

Wij(r1, r2, ω) =
1

2π

∫ ∞

−∞
Γij(r1, r2, τ) exp(iωτ) dτ, (4.3)

whereas

Γij(r1, r2, τ) =

∫ ∞

0

Wij(r1, r2, ω) exp(−iωt) dω. (4.4)

It is easily seen that the cross spectral density tensor is a Hermitian tensor as well,

i.e., Wij(r1, r2, τ)
∗ = Wji(r2, r1, τ) and therefore it can be written in the matrix

form as

W†(r1, r2, ω) = W(r2, r1, ω), (4.5)

where † denotes the conjugate transpose of the cross-spectral density tensor. It

can also be deduced that the cross spectral density tensor can be understood as
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the correlation between the vector complex amplitude Fij(r , ω) of an ensemble of

monochromatic vector fields {F(r , ω) exp (−iωt)}, analogous to the scalar fields [13,

14] and since F(r , ω) also obeys the Helmholtz equation, it can be interpreted as

an electric field component in space–frequency domain. Hence, the cross spectral

density tensor can be written as

Wij(r1, r2, ω) = ⟨F ∗
i (r1, ω)Fj(r2, ω)⟩ or, (4.6)

W(r1, r2, ω) = ⟨F∗(r1, ω)F
T(r2, ω)⟩. (4.7)

4.2 Partial polarization

Any field at a point r and frequency ω is fully polarized if its realization F(r , ω) =

α(r, ω)V(r, ω) where α(r, ω) is a complex random number and V(r, ω) is a deter-

ministic complex vector. On the contrary, an unpolarized field has no correlation

between its components and the spectral densities in all directions are the same. The

polarization property of a field in space–frequency domain is given by the second–

order statistical entity, called the polarization matrix defined as [15,16]

J(r, ω) = W(r, r, ω) = ⟨F∗(r, ω)FT(r, ω)⟩. (4.8)

Like the cross–spectral density matrix, the polarization matrix is also Hermitian

and non–negative definite [14]. If the field is well–directional, we may assume the

propagation direction be one of the co–ordinate axis, supposedly z−axis, thereby

resulting in a two–dimensional field. The polarization matrix of a two–dimensional

field can hence be written as

J(r, ω) =

[
Jxx(r, ω) Jxy(r, ω)

Jyx(r, ω) Jyy(r, ω)

]
, (4.9)

where Jij(r, ω) = ⟨Wij(r, r, ω)⟩, (i, j) = (x, y). If the field is fully polarized, the

polarization matrix takes on the form

Jp(r, ω) = ⟨|α(r, ω)|2⟩

[
|Vx(r, ω)|2 V ∗

x (r, ω)Vy(r, ω)

V ∗
y (r, ω)Vx(r, ω) |Vy(r, ω)|2

]
, (4.10)

where the subscript p stands for the polarized field. On the contrary, for unpolarized

field, the correlation between the fields are defined as

⟨Fi(r, ω)Fj(r, ω)⟩ = δijA(r, ω), (4.11)
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where A(r, ω) > 0, and thus the polarization matrix from Eq. (4.9) results in

Ju(r, ω) = A(r, ω)

[
1 0

0 1

]
. (4.12)

As any random partially polarized field can be envisioned as a superposition of

fully polarized and unpolarized fields, the polarization matrix of any arbitrary two-

dimensional field can be broken into the factorized form:

J(r, ω) = Jp(r, ω) + Ju(r, ω). (4.13)

The polarization state of the field can alternatively be defined in terms of Stokes

parameter for two-dimensional fields as [4,17]

S0(r, ω) = Jxx(r, ω) + Jyy(r, ω),

S1(r, ω) = Jxx(r, ω)− Jyy(r, ω),

S2(r, ω) = Jyx(r, ω) + Jxy(r, ω),

S3(r, ω) = i[Jyx(r, ω)− Jxy(r, ω)], (4.14)

where Sj(r, ω), j = 0 . . . 3 are purely real, the zeroth parameter representing the

average spectral density of the field and others giving information about the polariza-

tion properties. Thus, the polarization matrix completely contains the information

about the spectral density and the state of polarization [18]. The degree of polariza-

tion P (r, ω), on the other hand, is a measure of the polarized field in any arbitrary

field, given by the ratio of the spectral density of the polarized light to the total

spectral density [8,16], i.e.,

P (r, ω) =
tr Jp(r, ω)

tr J(r, ω)
=

[
1− 4

det J(r, ω)

tr2 J(r, ω)

]1/2
(4.15)

where tr and det denote the trace and determinant of the matrix, respectively.

Naturally, the degree of polarization has values in 0 ≤ P (r, ω) ≤ 1 where the values

0 or 1 stands for completely unpolarized or completely polarized fields, respectively.

4.3 Young’s interference experiment

In the previous chapter, we studied the interference of scalar fields in view of Young’s

two-pinhole experiment. Now we consider the light to be partially polarized and the
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polarization properties be modulated in the transverse direction, and we study their

effects in the experiment. Further, the field is assumed to be well–directional which

justifies a two–dimensional description of light. Following the same setup, illustrated

in Figure 3.1, the field at any point r on the screen B for a frequency ω is expressed

as [18,19]

E(r, ω) = L1E(S1, ω)
exp (ikr1)

r1
+ L2E(S2, ω)

exp (ikr2)

r2
(4.16)

where E(S1, ω) and E(S2, ω) are the realizations of the fields at S1 and S2 respec-

tively, k is the wavenumber, r1 and r2 hold the same meaning as in the scalar case,

and L1 and L2 are purely imaginary numbers that depends on the area of the pin-

holes. The polarization matrix at the observation screen J(r, ω), as defined in the

previous section, can be derived from Eq. (4.16), resulting in [19]

J(r, ω) = J(1)(r, ω) + J(2)(r, ω) +

√
S
(1)
0 (r, ω)S

(2)
0 (r, ω)

×
{
µ(S1,S2, ω) exp [ik(R2 −R1)] + µ(S2,S1, ω) exp [ik(R1 −R2)]

}
,

(4.17)

where J(j)(r, ω) and S
(j)
0 (r, ω), j = (1, 2) are the polarization matrix and the zeroth

Stokes parameter respectively at the screen B, under the case when only pinhole at

Sj is open and

µ(S1,S2, ω) =
W(S1,S2, ω)√
S0(S1, ω)S0(S2, ω)

, (4.18)

is the normalized cross–spectral density matrix whose elements characterize the field

correlations at the pinholes. To define the degree of coherence in the electromagnetic

domain, one cannot simply extend the concept of complex degree of coherence from

the scalar theory of partial coherence since the latter approach was essentially based

on the scalar description of light. Karczewski [20, 21] and Wolf [22] defined the de-

gree of coherence for electromagnetic fields in the space–time and space–frequency

domains as the visibility of the interference fringes in Young’s experiment, equiva-

lently to the scalar case. From Eq. (4.17), we can write the spectral density at the
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screen as

S0(r, ω) = S
(1)
0 (r, ω) + S

(2)
0 (r, ω)

+ 2

√
S
(1)
0 (r, ω)S

(2)
0 (r, ω)|η(S1,S2, ω)| cos[ik(R2 −R1) + iα(S1,S2, ω)]

(4.19)

where η(S1,S2, ω) = tr[µ(S1,S2, ω)] is the complex degree of coherence, as suggested

by Wolf and α(S1,S2, ω) = arg[η(S1,S2, ω)] is its phase. This definition of degree of

coherence is flawed, considering the fact that it bears no relation to the correlation

between the fields, and does not remain invariant upon co–ordinate transformations.

Therefore, alternative definitions of measure of coherence were suggested by Tervo,

Setälä and Friberg as [14,23]

µEM(S1,S2, ω) = ∥µ(S1,S2, ω)∥F, (4.20)

where ∥.∥F is the Euclidian norm. It is a real quantity having its value between 0 and

1, where 0 implies no correlations between the any field components at position S1

and S2 and 1 gives complete correlation. This definition of the degree of coherence for

the electromagnetic fields remains invariant in unitary transformations, reduces to

the magnitude of spectral degree of coherence under scalar case, i.e., |µ(S1,S2, ω)|
[23] and is consistent with Glauber’s definition of complete coherence [11]. The

degree of coherence relates back to the 2D–degree of polarization for identical values

of fields, i.e., E(r1, ω) = E(r2, ω) as [23]

µ2
EM(r1, r2, ω) =

1

2
+

1

2
P 2(r1, ω), (4.21)

where P is the 2D–degree of polarization as defined in Section 4.2. Equation (4.21)

reveals that degree of coherence has dependence on the degree of polarization and

may not be unity even for identical values of fields and specifically, the self–coherence

of the fields is not satisfied; these properties has triggered an intense discussions for

its validity [24–27].

A complete description of the spectral density as well as the polarization states

of the resultant field at the screen is given by the so-called electromagnetic spectral
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interference law [18,28]:

Sj(r, ω) =S
(1)
j (r, ω) + S

(2)
j (r, ω)

+ 2

√
S
(1)
0 (r, ω)S

(2)
0 (r, ω)|ηj(S1,S2, ω)| cos[ik(R2 −R1) + iαj(S1,S2, ω)],

(4.22)

where Sj(r, ω), j = 0, ...3 are the classic Stokes parameters at point r at frequency

ω and the superscripts (1) and (2) hold the same meaning as in Eq. (4.17) and

ηj(S1,S2, ω) are the normalized two-point Stokes parameters defined as [18,29,30]:

η0(S1,S2, ω) = [Wxx(S1,S2, ω) +Wyy(S1,S2, ω)]/[S0(S1, ω)S0(S2, ω)]
1/2,

η1(S1,S2, ω) = [Wxx(S1,S2, ω)−Wyy(S1,S2, ω)]/[S0(S1, ω)S0(S2, ω)]
1/2,

η2(S1,S2, ω) = [Wyx(S1,S2, ω) +Wxy(S1,S2, ω)]/[S0(S1, ω)S0(S2, ω)]
1/2,

η3(S1,S2, ω) = i[Wyx(S1,S2, ω)−Wxy(S1,S2, ω)]/[S0(S1, ω)S0(S2, ω)]
1/2. (4.23)

and αj(S1,S2, ω) = arg[ηj(S1,S2, ω)]. Eq. (4.22) suggests that the interference in

electromagnetic field includes not only the modulation of the intensities but also

the modulation of the polarization properties, represented by the zeroth and the

higher order Stokes parameter, respectively the latter being more important, at

times, than the intensity itself [31]. Since the screen B is located far away from

screen A, S
(1)
j (r, ω) and S

(2)
j (r, ω) vary very slowly with r and thus can be assumed

as constants; consequently Sj(r, ω) is modulated sinusoidally in a transverse fashion

due to the term k(R2 − R1) [18]. The contrast of modulation (or visibilities) for

Stokes parameters on the screen B, defined as

Cj =
Sj(r, ω)max − Sj(r, ω)min

S0(r, ω)max − S0(r, ω)min

(4.24)

is related to the normalized Stokes parameter |ηj(S1,S2, ω)| and has its maximum

value when the spectral densities at the screen are equal S
(1)
0 (r, ω) = S

(2)
0 (r, ω):

Cj = |ηj(S1,S2, ω)|. (4.25)

This suggests that the contrast of modulation for the Stokes parameters on the

screen is directly related to the correlation of the field components at the pinholes

[18]. Under these circumstances, the electromagnetic degree of coherence and the
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degree of polarization of the field at the pinholes can very well be determined from

the modulation contrasts of the Stokes parameters. Therefore, we have [28,32,33]

µ2
EM(S1,S2, ω) =

1

2

3∑
j=0

|ηj(S1,S2, ω)|2 =
1

2

3∑
j=0

C2
j , (4.26)

P 2(r1, ω) =
3∑

j=0

sj
2 =

3∑
j=0

C2
j (4.27)

where sj, j = 0 . . . 3 are the normalized Stokes parameters. Equation (4.26) implies

that the electromagnetic degree of coherence can be physically interpreted as a direct

measure of the contrasts of modulation of Stokes parameter, analogous to the scalar

coherence whereas Eq. (4.27) shows that the degree of polarization of the field can

be determined from the modulation contrasts when the beam interferes with itself.

Other propositions for the suitable measure of electromagnetic coherence include

the work by Réfrégier and Goudail in 2005 [34,35] and Luis in 2007 [36,37].
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Chapter V

Quantum-field theory of coherence

In this chapter, we discuss the quantum theory of coherence for scalar fields, i.e.,

in quantum–mechanical sense, the photons are polarized along a particular direc-

tion. Beginning with field correlations and quantum-mechanical first-order coher-

ence functions, we finally give a quantum-mechanical description of Young’s inter-

ference experiment. Therefore, this approach does not take into account the po-

larization properties of a full electromagnetic field, its relation with the correlation

functions or its effect on Young’s interference experiment. A full general treatment

of photon polarization shall be discussed in Chapter 6.

5.1 Quantum optics

One of the most dominant and most researched fields of physics at present, quan-

tum optics focusses on the light properties and its interaction with matter. With

the discovery of light quanta, photons, several works were laid out by Schrödinger,

Heisenberg, Bohr and Dirac that formed the foundations of quantum mechanics. In-

terest in quantum optics rose with more emphasis on the theory of photon statistics

and photon counting. The first quantum description of interference was presented

by Dirac [3], who explained the intensity pattern as a consequence of interference

between the probability amplitudes of a photon to travel in either of the two paths

and also concluded that a photon interferes only with itself, that conforms with the

interference pattern emerging from one–photon interference experiment. Following

the work of Dirac in quantum theory, Glauber, Wolf, Mandel, and many others

contributed to the development of quantum theory of coherence. There are remark-

able concepts of quantum optics such as quantum entanglement, that are actively
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researched upon to realize quantum teleportation, quantum cryptography, quantum

computation, long–distance quantum communication, etc [38].

5.2 Elements of the field theory

In quantum optics, we mainly work with observable quantities of the electromagnetic

field, such as momentum, electric or magnetic field, among others. Throughout this

paper, we will be focussing specifically on the electric field, which is represented by a

Hermitian operator Ê(r , t) upon quantization of the field. Furthermore, the electric

field operator and the magnetic field operator satisfies Maxwell’s equations [39]. The

electric field operator can be decomposed into positive and negative frequency parts,

i.e.,

Ê(r , t) = Ê
(+)

(r , t) + Ê
(−)

(r , t), (5.1)

where Ê
(+)

(r , t) = [Ê
(−)

(r , t)]†. For a multimode field, the positive and negative

frequency parts may be expanded as a superposition of modes and thus [40]

Ê
(+)

(r , t) = i
∑
ks

(
~ωk

2ε0V

)1/2

âksuks(r) exp (iωkt), (5.2)

Ê
(−)

(r , t) = −i
∑
ks

(
~ωk

2ε0V

)1/2

â†ksuks(r) exp (−iωkt), (5.3)

where k is the wave vector, s = (1, 2) are two orthogonal polarizations, ks is the

normal mode of the field, uks(r) is the mode function, and âks and â†ks are the

annihilation operator and the creation operator in the mode ks respectively. As

it is evident from equations, each component is intrinsically complex, where the

positive frequency part Ê
(+)

(r , t) is essentially a collective annihilation operator

and hence associated with photon absorption, whereas its adjoint Ê
(−)

(r , t) with

photon emission.

The annihilation operator âks and the creation operator â†ks follow the boson

commutation relations,

[âks, âk′s′ ] = 0 = [â†ks, â
†
k′s′

], (5.4)

[âks, â
†
k′s′

] = δkk′δss′ . (5.5)

The number operator defined as n̂ks = â†ksâks operates on a state as

n̂ks|nks⟩ = nks|nks⟩, (5.6)
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where nks is the number of photons in |nks⟩. The multimode number state of the

field is simply the product of the number states of all modes and may be written

as [40]

|{nj}⟩ = |n1, n2, n3, . . . ⟩ =
∞∏
j=1

|nj⟩, (5.7)

where j = kjsj denotes the normal mode of the field. These number states follow

the orthonormality relation, i.e.,

⟨n1, n2, n3, . . . |n′
1, n

′
2, n

′
3, . . . ⟩ = δn1n′1δn2n′2, . . . (5.8)

and interacts with the annihilation operator and creation operator as follows:

âj|nj⟩ =
√
nj |nj − 1⟩, (5.9)

â†j|nj⟩ =
√
nj + 1 |nj + 1⟩. (5.10)

These number states satisfy the Schrödinger equation such that

Ĥ|{nj}⟩ = En|{nj}⟩, (5.11)

where Ĥ and En denotes the Hamiltonian operator and the energy eigenvalue of the

field at state n, given by

Ĥ =
∑
ks

~ωk

(
â†ksâks +

1

2

)
, (5.12)

En =
∑
ks

~ωk

(
nks +

1

2

)
. (5.13)

The electromagnetic field may be expressed in terms of coherent states, which form

the eigenstates of the annihilation operator. Thus, we have [38]

â|α⟩ = α|α⟩, (5.14)

where α is a complex number. The coherent state may be generated from the vacuum

state when operated with displacement operator D̂(α) and could be expanded in

terms of the number states as

|α⟩ = D̂(α)|0⟩, (5.15)

|α⟩ = exp
[
− (1/2)|α|2

] ∞∑
n=0

αn

(n!)1/2
|n⟩. (5.16)
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It may be worth emphasizing that the quantum–mechanical analog of the detec-

tion process usually differs from its classical counterpart. In discussions of classical

theory, one experimentally measures the classical field strength E(r , t) that involves

summing up the absorption and emission process. On the contrary, the quantum

detection involves absorption of photons through photoionization or other means

and therefore, only the positive frequency complex part plays a role in the coupling

of the field to the matter [39]. If a field makes a transition from |i⟩ to |f⟩ upon

absorption of photons, then the matrix element for the transition is given by [38,39]

⟨f |Ê
(+)

(r , t)|i⟩, (5.17)

and the probability rate for photons to be absorbed at point r and time t for an

ideal photodetector is proportional to [39]∑
f

|⟨f |Ê
(+)

(r , t)|i⟩|2 = ⟨i|Ê
(−)

(r , t) · Ê
(+)

(r , t)|i⟩. (5.18)

This gives the average counting rate of the detector for a field initially in a pure

state. Nevertheless in practice, a field is more likely to be in mixed state and hence

is described as an average over the ensemble states {|ψi⟩}, given by the density

operator

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|, (5.19)

where pi is the probability of the field being in ith state of the ensemble {|ψi⟩} and∑
i

pi = 1. From the definition, it can be seen that the operator is Hermitian.

The expectation value of an operator Ô for a mixed state is expressed as

⟨Ô⟩ = tr(ρ̂Ô), (5.20)

where tr stands for the trace of the matrix. Therefore, the average counting rate

Eq. (5.18) can be rewritten as tr{ρ̂Ê
(−)

(r , t) · Ê
(+)

(r , t)}.

5.3 Field correlations

A quantum theory of coherence can be formulated based on the observables, anal-

ogously to the classical theory. A quantum theory of photon detection shows that

the intensity of a light beam is determined by measuring responses of the detecting
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system that react by absorbing photons. Upon absorption of radiation, the states

of both the atom and the field change and therefore the field intensity measured

by an ideal photon detector at point r and time t can be described in terms of the

transition probability of the field, resulting in [38,40]

I(r, t) = tr

{
ρ̂Ê

(−)
(r , t) · Ê

(+)
(r , t)

}
, (5.21)

where ρ̂ is the density operator describing the state of the field and the dot product

denotes the scalar product. Equation (5.21) is a special form of a general function of

considerable interest. When evaluated at any two arbitrary space–time points, the

function furnishes a measure of the correlation between the respective fields, defined

as the first–order correlation function

G(1)(x1, x2) = tr

{
ρ̂Ê

(−)
(x1) · Ê

(+)
(x2)

}
, (5.22)

where xi = (r i, ti), i = (1, 2). In the same manner, nth-order correlation function

can be defined as [39]

G(n)(x1, . . . xn, xn+1, . . . x2n) = tr

{
ρ̂Ê

(−)
(x1), . . . Ê

(−)
(xn)·Ê

(+)
(xn+1), . . . Ê

(+)
(x2n)

}
.

(5.23)

Analogously to the classical theory, the first-order correlation function can be

normalized to yield the normalized first-order quantum coherence function defined

as

g(1)(x1, x2) =
G(1)(x1, x2)

[G(1)(x1, x1)G
(1)(x2, x2)]1/2

, (5.24)

where 0 ≤ |g(1)(x1, x2)| ≤ 1. At this point, it seems justified to re-establish the

concept of coherence and the necessary conditions, as we shall see shortly after the

fields we have described previously as coherent do not even approximately obey the

requirements. A fully coherent field has the normalized correlation functions all

satisfying

|g(n)(x1, . . . x2n)| = 1, n = 1, 2, . . . (5.25)

where the normalized correlation functions are defined as

g(n)(x1, . . . x2n) =
G(n)(x1, . . . x2n)∏2n
j=1[G

(1)(xj, xj)]1/2
. (5.26)
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Thus, a field to be nth-order coherent requires |g(j)| = 1 for j ≤ n. In the

discussions up to date about the optical studies, we have linked coherence to the

first–order coherence and therefore, a classical field may be assumed to be first–order

coherent, |g(1)| = 1 but fails to show higher order coherence. A field is completely

first–order coherent, given the numerator could be factorized as [38]

G(1)(x1, x2) =
⟨
Ê

(−)
(x1) · Ê

(+)
(x2)

⟩
=
⟨
Ê

(−)
(x1)

⟩
·
⟨
Ê

(+)
(x2)

⟩
. (5.27)

5.4 Young’s interference experiment

Now we proceed to formulate the quantum description of the interference in Young’s

experiment. The experimental setup follows the same outline as presented earlier,

and we assume that the fields are uniformly polarized and hence, may as well be

treated as scalar fields. Following the same approach as in the classical scalar theory,

we can rewrite the positive-frequency part of the electric field operator at any point

r on the screen as the superposition of the corresponding parts of the fields from

the two slits, i.e.,

Ê(+)(r , t) = K1Ê
(+)(S 1, t1) +K2Ê

(+)(S 2, t2), (5.28)

where, given i = (1, 2), Ki is an imaginary number, Ê(+)(S i, ti) is the respective

field operator at the slit at Si and ti = t − ri/c, ri being the distance from the slit

to the point r on the screen. From Eq. (5.21), upon substitution of the electric field

operators, the intensity becomes [38]

I(r , t) = |K1|2G(1)(x1, x1) + |K2|2G(1)(x2, x2)

+ 2
√

|K1|2|K2|2G(1)(x1, x1)G(1)(x2, x2)Re{g(1)(x1, x2)},

= I1 + I2 + 2
√
I1I2|g(1)(x1, x2)| cos β, (5.29)

where xi = (S i, ti) and β = arg{g(1)(x1, x2)}. The first two terms describe the

intensities on the screen when only slit at S1 or S2 is open whereas the last term

gives the quantum interference term. Comparing with the classical interference law

for partially incoherent fields, Eq. (3.3), we find a striking resemblance between

them where the complex degree of coherence is replaced with the normalized first–

order quantum coherence function, whose properties were discussed in the previous

section. It also confirms that the intensity at the screen is critically affected by
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the correlation of the fields at the slits, an intuitive notion that conforms with the

classical theory.

Now we take on a special case where the incoming field is assumed to be monochro-

matic. With the dimensions of the pinholes of the order of wavelength of light, the

pinholes act as secondary sources of spherical radiations. The mode function uk(r)

for spherical radiation takes the form [40]

uk(r) = ek
exp(ikr)

r(4πR)1/2
, (5.30)

where ek is the unit polarization vector, R is the radius of the normalization volume,

r = |r| and k = |k|. Also, the unit polarization vector and the wave vector satisfies

the transversality condition k · ek = 0. As in the classical approach, the field at a

point r and time t is the superposition of the spherical modes from the two pinholes.

Substituting Eq. (5.30) into Eq. (5.2), we get

Ê(+)(r, t) = f(r, t)
[
â1 exp (ikr1) + â2 exp (ikr2)

]
, (5.31)

where â1 and â2 are the annihilation operators associated with the radial modes

from pinholes 1 and 2 [38], r1 and r2 are the distances from the pinholes to the point

r respectively and the funtion f(r, t) is given by

f(r, t) = i
(~ω)
2ε0

1/2 ek
r(4πR)1/2

exp (iωt), (5.32)

where we have approximated r1 ≈ r2 ≈ r in the denominators since the detecting

screen is located far away from the pinholes. Substituting these values in Eq. (5.21),

we have

I(r, t) = tr

{
ρ̂Ê(−)(r, t)Ê(+)(r, t)

}
,

= |f(r, t)|2
{
tr
(
ρ̂â†1â1

)
+ tr

(
ρ̂â†2â2

)
+ 2|tr

(
ρ̂â†1â2

)
| cosΦ

}
, (5.33)

Using Eq. (5.24), we can write the interference equation in a similar way as in

classical theory. Thus, we get

I(r, t) = |f(r, t)|2
{
tr
(
ρ̂â†1â1

)
+ tr

(
ρ̂â†2â2

)
+ 2
√

tr
(
ρ̂â†1â1

)
tr
(
ρ̂â†2â2

)
|g(1)| cosΦ

}
,

(5.34)
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where g(1) = |g(1)| exp (iϕ) is the normalized first–order coherence function, defined

in Eq. (5.24), specifically between the modes â1 and â2 and Φ = k(r1 − r2) + ϕ.

The values of |g(1)| is constrained within the limit 0 ≤ |g(1)| ≤ 1 where the extremes

0 or 1 correspond to incoherence or first–order coherence respectively [41]. It is

obvious that the interference fringes will be visible as long as there exists some

correlation between the modes, i.e., |g(1)| ̸= 0. As we move the observation point

about the screen, the phase relation between the fields changes, causing maxima in

some and minima in others. The maximum intensity occurs when Φ = 2πn where

n = 0, 1, 2, . . . . Furthermore, it could be noted that the maximum intensity reduces

by a factor 1/r2 as it moves away from the central fringe [38,40].

The fringe visibility, as defined earlier, takes the form [40]

V =
2
√
I1I2

I1 + I2
|g(1)|, (5.35)

where Ii = |f(r, t)|2tr
(
ρ̂â†i âi

)
, i = (1, 2), are the intensities of the radial modes âi.

It could be realized that the contrast of the fringes will be maximum, V = 1, for

fields having equal intensities for each mode and possessing first-order coherence,

i.e., |g(1)| = 1.

Next, we investigate the interference of some special fields, which are initially in

a pure state |ψ⟩. A pure state could be generated from a single-mode excitation of

the vacuum states [40], and therefore we may write

|ψ⟩ = h(â†)|0⟩, (5.36)

where h is any function and â† is the creation operator for a single mode of the

radiation field. In Young’s experiment, the incident field can be assumed as a single–

mode plane wave with the annihilation operator â that may be expressed as a linear

combination of operators of the radial modes â1 and â2, i.e.,

â = â1 cos θ + â2 sin θ, (5.37)

where θ is a measure of the amplitudes of the modes. If the pinholes are of equal

size and given each slit has a detector behind it, then a photon has equal probability

of passing through either of them and therefore, the single–mode operator becomes

â =
1√
2

(
â1 + â2

)
, (5.38)

31



where the operators of the modes are supposed to satisfy the boson commutation

relations

[âi, â
†
j] = δij, [âi, âj] = 0 = [â†i , â

†
j], [â, â†] = 1, (i, j = 1, 2) (5.39)

but upon substitution of the radial mode’s operators, we see that the first relation

can not be satisfied. Thus, we introduce a fictitious mode b which always exist in the

vacuum state and whose operator is defined as b̂ = (â1 − â2)/
√
2 where [b̂, b̂†] = 1;

this satisfies the unitary transformation between the input and the output values

too. In general, n−photon state of mode a can be related to the vacuum state at

modes 1 and 2 as [38]

|n⟩a|0⟩b =
1√
n!
â†n|0⟩a|0⟩b =

1√
n!

(
1√
2

)n

(â†1 + â†2)
n|0⟩1|0⟩2 (5.40)

One–photon field can be decomposed in terms of the vacuum states of the radial

modes as

|1⟩a|0⟩b =
(

1√
2

)
(|1, 0⟩+ |0, 1⟩), (5.41)

where the notation |m,n⟩ meansm photons in mode 1 and n photons in mode 2; this

equation illustrates that a single photon incident at the screen has an equal proba-

bility of passing through each pinholes and the interference actually occurs between

the probabilities of the photon to pass through different pinholes. Substituting this

initial state in Eq. (5.34) and simplifying, we get [40]

I(r, t) = |f(r, t)|2(1 + cosΦ), (5.42)

Evidently, the intensity fringes develop on the screen with the succession of one–

photon interference, which supports the theory that a photon interferes with it-

self. Furthermore, we see that one–photon field exhibits first–order coherence since

|g(1)| = 1. In the same manner, a two–photon field can be expressed as

|2⟩a|0⟩b =
1

2

(
|2, 0⟩+

√
2|1, 1⟩+ |0, 2⟩

)
, (5.43)

which results in the intensity as

I(r, t) = 2|f(r, t)|2
(
1 + cosΦ

)
, (5.44)
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and thus generalizing for a n−photon field gives [38]

I(r, t) = n|f(r, t)|2(1 + cosΦ) (5.45)

If the incident field is in coherent state |α⟩, then using the displacement operator,

defined previously and the operators relation, we get

|α⟩a|0⟩b =
∣∣∣∣ α√2

⟩
1

∣∣∣∣ α√2

⟩
2

, (5.46)

where each mode is in coherent states as well and gives the intensity pattern as

I(r, t) = |α|2|f(r, t)|2
(
1 + cosΦ

)
, (5.47)

The two interfering modes in all these cases are first–order coherent, except in case

of coherent states where they possess coherence of all states, and produces the same

interference pattern that agrees with the classical interference result for field with

equal intensities at the pinholes. Nevertheless, the strength of the fringes depends

on the photons incident on the screen and therefore, varies with the field. It is worth

noting that the interference between independent light beams is only possible for

certain states, for example coherent states where the modes in the coherent states

be |α1⟩|α2⟩ can arise from independent laser beams. If the modes are independent

and in Fock states, then the product number state |n1⟩|n2⟩ yields a zero correlation

function and thus no interference fringes [38,40].
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Chapter VI

Quantum analysis of electromagnetic field

In the previous chapter, we investigated the quantum analysis of coherence of scalar

fields, where the field was projected parallel along a single unit vector ek. To account

for the full electromagnetic nature of radiation, the polarization property of the field

must be addressed. In this chapter, we present the polarization of an arbitrary field

and study its interference in Young’s experiment from a quantum-mechanical point

of view.

6.1 Polarization property of a field

The correlation functions for the components of the field is defined as [42]

G
(1)
ij (x1, x2) = Tr

{
ρ̂Ê

(−)
i (x1)Ê

(+)
j (x2)

}
, (6.1)

where (i, j) = (x, y, z) are the Cartesian components of the vector field and xk =

(rk, tk), k = (1, 2), a simple generalization of the scalar correlation defined previ-

ously. These functions satisfy the symmetry relation and obey the inequalities [39]

G
(1)
ij (x1, x2) = {G(1)

ji (x2, x1)}∗, (6.2)

G
(1)
ii (x1, x1) ≥ 0, (6.3)

G
(1)
ii (x1, x1)G

(1)
jj (x2, x2) ≥ |G(1)

ij (x1, x2)|. (6.4)

The first-order correlation functions of the field, which correspond to the second-

order in the classical theory, can be summarized in terms of the 3 × 3 correlation

tensor G(1)(x1, x2) (which takes 2× 2 form for a beamlike field) such that

G(1)(x1, x2) = {G(1)
ij (x1, x2)} (6.5)
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A special kind of such matrix is the quantum polarization matrix G(1)(x, x), de-

fined as the correlation matrix for equal points in space–time, x1 = x2 = x, which

contribute to photon counting rate. From Cauchy–Schwarz inequality, it follows

that the quantum polarization matrix is non–negative definite and its elements for

a polarized field can be written as [39,42]

G(1)
xx (x, x) = I(x)θ=0,α=0, (6.6)

G(1)
yy (x, x) = I(x)θ=π/2,α=0, (6.7)

G(1)
xy (x, x) =

1

2
[I(x)θ=π/4,α=0 − I(x)θ=3π/4,α=0] +

i

2
[I(x)θ=π/4,α=π/2 − I(x)θ=3π/4,α=π/2],

(6.8)

G(1)
yx (x, x) =

1

2
[I(x)θ=π/4,α=0 − I(x)θ=3π/4,α=0]−

i

2
[I(x)θ=π/4,α=π/2 − I(x)θ=3π/4,α=π/2],

(6.9)

where I(x) denotes the average photon counting rate at point x, θ stands for the

polarization angle of the field with x−axis and α = αy−αx gives the phase difference

between the x and y components. In the above formulation and henceforth, we will

assume a field propagating along zaxis and hence the tensor reduces to a 2 × 2

matrix. The photon counting rate of a photodetector can also be written as the

trace of the quantum polarization matrix [42], analogous to the relation between

intensity and polarization matrix in classical theory

I(x) = Tr{G(1)(x, x)}. (6.10)

It is convenient to use the normalized correlation function g
(1)
ij (x), defined as

g
(1)
ij (x) =

G
(1)
ij (x, x)√

G
(1)
ii (x, x)G

(1)
jj (x, x)

= |g(1)ij (x)| exp [iβij(x)] (6.11)

where it obeys 0 ≤ |g(1)xy (x)| ≤ 1, for (i, j) = (x, y). For an unpolarized beam,

|g(1)xy (x)| = 0 and the quantum polarization matrix becomes proportional to the unit

matrix, expressed as [42]

G
(1)
(u)(x, x) = A(x)

(
1 0

0 1

)
, (6.12)
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where A(x) = G(1)
xx (x, x) = G(1)

yy (x, x) is a real function of space and time and the

subscript (u) denotes the unpolarized field. On the other hand, when the field is

completely polarized, i.e., |g(1)xy (x)| = 1, then from Eq. (6.11), it can be deduced that

the elements of the quantum polarization matrix be written in the factorized form

as [42]

{G(1)
(p)(x, x)}ij = Fi

∗(x)Fj(x), (i, j) = (x, y), (6.13)

where Fi(x) = [G
(1)
ii (x, x)]

1/2 exp{iϕii(x)} where ϕyy(x) − ϕxx(x) = βxy(x) is the

phase of g
(1)
xy (x), as mentioned above. It follows from the equations above that for

a completely polarized beam, the determinant of the quantum polarization matrix

becomes zero, i.e., det[G(p)(x, x)] = 0. Analogously to the classical concept, the

quantum polarization matrix of a partially polarized field can be decomposed into

the matrices of the polarized part and the unpolarized part of the field [42]

G(1)(x, x) = G
(1)
(p)(x, x) +G

(1)
(u)(x, x) (6.14)

and as a consequence, the average photon counting rate of the photodetector from

Eq. (6.10) follows a similar relation. With analogy to the classical theory, the degree

of polarization can be defined as the ratio of the photon counting rate of the polarized

part to the total counting rate, which upon simplification takes the form, [42]

P (x) =
tr{G(1)

(p)(x, x)}
tr{G(1)(x, x)}

=

√
1− 4 det{G(1)(x, x)}

tr{G(1)(x, x)}
(6.15)

wherefrom one can see that P (x) = 0 for unpolarized light and P (x) = 1 for com-

pletely polarized light. It also occurs that the quantum degree of polarization bears

peculiar resemblance to the classical degree of polarization, as discussed earlier.

6.2 Stokes parameters in quantum mechanics

We will build the Stokes parameters from the quantum polarization matrix, in a

manner similar to classical theory. Thus, the quantum Stokes parameter are defined

as

S0(r, t) = G(1)
xx (r, t; r, t) + G(1)

yy (r, t; r, t), (6.16a)

S1(r, t) = G(1)
xx (r, t; r, t)−G(1)

yy (r, t; r, t), (6.16b)

S2(r, t) = G(1)
yx (r, t; r, t) + G(1)

xy (r, t; r, t), (6.16c)

S3(r, t) = i[G(1)
yx (r, t; r, t) + G(1)

xy (r, t; r, t)]. (6.16d)
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Figure 6.1: The quantum-mechanical depiction of input and output fields in

Young’s experiment.

Coming back to the interference experiment, let us consider a non-polarizing 50 : 50

beam splitter is placed ahead of the screen with the pinholes such that the first exit

leads to the pinhole 1 and the second exit leads to the pinhole 2. The construc-

tion of the beam splitter determines the phase difference between the reflected and

transmitted beams and we shall assume here that the reflected beam suffers a phase

shift of π/2. Thefore, we introduce a −π/2 compensator at the second arm, as il-

lustrated in Figure 6.1. In the figure, b̂1 represents the annihilation operator of the

incident mode whereas b̂2 assumes the fictitious mode; the annihilation operators of

the output radial modes are denoted by â1 and â2. The input-output relations of

the beam splitter along with the compensator are given by

â1 =
1√
2
(b̂1 + ib̂2), â2 =

1√
2
(b̂1 − ib̂2), (6.17)

whereas the operators of the input modes are written as

b̂1 =
1√
2
(â1 + â2), b̂2 = − i√

2
(â1 − â2). (6.18)

With electromagnetic approach, the operators can be decomposed into their Carte-

sian components, i.e., x and y components, each of which satisfies Eq. (6.17) and
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Eq. (6.18). Therefore, we have

â1x =
1√
2
(b̂1x + ib̂2x), â2x =

1√
2
(b̂1x − ib̂2x),

â1y =
1√
2
(b̂1y + ib̂2y), â2y =

1√
2
(b̂1y − ib̂2y), (6.19)

and

b̂1x =
1√
2
(â1x + â2x), b̂2x = − i√

2
(â1x − â2x),

b̂1y =
1√
2
(â1y + â2y), b̂2y = − i√

2
(â1y − â2y). (6.20)

To investigate the Stokes parameters at the screen, we assume that the incident

field is monochromatic and the transmitted field at any point on the screen as the

superposition of the spherical modes from the pinholes, as we did in the quantum

approach to scalar field. Using Eq. (5.31) and Eq. (6.1) into Eq. (6.16), the Stokes

parameters take the forms

S0(r, t) = |f(r , t)|2
[
Tr
(
ρ̂â†1xâ1x

)
+ Tr

(
ρ̂â†2xâ2x

)
+ Tr

(
ρ̂â†1yâ1y

)
+ Tr

(
ρ̂â†2yâ2y

)
+ 2|Tr

(
ρ̂â†1xâ2x

)
| cosΦxx + 2|Tr

(
ρ̂â†1yâ2y

)
| cosΦyy

]
, (6.21a)

S1(r, t) = |f(r , t)|2
[
Tr
(
ρ̂â†1xâ1x

)
+ Tr

(
ρ̂â†2xâ2x

)
− Tr

(
ρ̂â†1yâ1y

)
− Tr

(
ρ̂â†2yâ2y

)
+ 2|Tr

(
ρ̂â†1xâ2x

)
| cosΦxx − 2|Tr

(
ρ̂â†1yâ2y

)
| cosΦyy

]
, (6.21b)

S2(r, t) = 2|f(r , t)|2
{[

Tr
(
ρ̂â†1xâ1y

)]
+Re

[
Tr
(
ρ̂â†2xâ2y

)]
+ |Tr

(
ρ̂â†1xâ2y

)
| cosΦxy + |Tr

(
ρ̂â†1yâ2x

)
| cosΦyx

}
, (6.21c)

S3(r, t) = 2|f(r , t)|2
{[

Im
(
ρ̂â†1xâ1y

)]
+ Im

[
Tr
(
ρ̂â†2xâ2y

)]
− |Tr

(
ρ̂â†1yâ2x

)
| sinΦyx + |Tr

(
ρ̂â†1xâ2y

)
| sinΦxy

}
, (6.21d)

where Re and Im denotes the real and imaginary parts, respectively, and

Φij = k(r2 − r1) + arg
[
Tr
(
ρ̂â†1iâ2j

)]
, (i, j) = (x, y). (6.22)

In order to obtain the explicit expressions for the Stokes parameters, the traces must

be evaluated which requires us to define the state of the incident field. A one-photon

field can be treated as a scalar field since the polarization of photon does not change;

the polarization effects come into effect for higher-order photon field and therefore,

we shall present a specific case of a two-photon field.
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6.3 A two-photon field interference

We consider a general form of a pure two-photon field given in terms of entangled

photon pairs

|ψ⟩′ = α|2, 0, 0, 0⟩′ + β|1, 1, 0, 0⟩′ + γ|0, 2, 0, 0⟩′, (6.23)

where |m⟩1x|n⟩1y|p⟩2x|q⟩2y = |m,n, p, q⟩ and the prime indicates the input state. The

amplitudes of the states serves as a measure of their probabilities and obeys

|α|2 + |β|2 + |γ|2 = 1. (6.24)

Substituting the relations from Eq . (6.20) into the Eq. (6.23), we find entangled

output states as

|ψ⟩′ BS−→α

2

[
|2, 0, 0, 0⟩+ |0, 0, 2, 0⟩+

√
2|1, 0, 1, 0⟩

]
+
β

2

[
|1, 1, 0, 0⟩+ |1, 0, 0, 1⟩+ |0, 1, 1, 0⟩+ |0, 0, 1, 1⟩

]
+
γ

2

[
|0, 2, 0, 0⟩+ |0, 0, 0, 2⟩+

√
2|0, 1, 0, 1⟩

]
. (6.25)

Operating on the state |φ⟩′ defined in Eq. (6.25), we obtain the trace terms of

Eq. (6.21) as

Tr(ρ̂â†1xâ1x) = |α|2 + β2

2
, Tr(ρ̂â†1yâ1y) = |γ|2 + β2

2
, (6.26a)

Tr(ρ̂â†2xâ2x) = |α|2 + β2

2
, Tr(ρ̂â†2yâ2y) = |γ|2 + β2

2
, (6.26b)

Tr(ρ̂â†1xâ1y) =
β√
2
(α∗ + γ), Tr(ρ̂â†1yâ1x) =

β√
2
(α + γ∗), (6.26c)

Tr(ρ̂â†2xâ2y) =
β√
2
(α∗ + γ), Tr(ρ̂â†2yâ2x) =

β√
2
(α + γ∗), (6.26d)

Tr(ρ̂â†1xâ2x) = |α|2 + β2

2
, Tr(ρ̂â†1yâ2y) = |γ|2 + β2

2
, (6.26e)

Tr(ρ̂â†1xâ2y) =
β√
2
(α∗ + γ), Tr(ρ̂â†1yâ2x) =

β√
2
(α + γ∗), (6.26f)
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where we have assumed that β is real. Substituting these in Eq. (6.21) and using

relation Eq. (6.24), we get the Stokes parameter as

S0(r, t) = 2|f(r , t)|2(1 + cosΦ), (6.27a)

S1(r, t) = 2|f(r , t)|2(|α|2 − |γ| 2)(1 + cosΦ), (6.27b)

S2(r, t) = 2
√
2|f(r , t)|2β|α∗ + γ| cos ξ(1 + cosΦ), (6.27c)

S3(r, t) = 2
√
2|f(r , t)|2β|α∗ + γ| sin ξ(1 + cosΦ), (6.27d)

where Φ = k(r2− r1) and ξ = arg(α∗+γ). The first Stokes parameter S0(r, t) gives

the intensity of the field at a given point and is parallel to the derivation in scalar case

Eq. (5.44) whereas the higher Stokes parameters describe the polarization properties.

The Stokes parameters of the input state |ψ⟩′ can be found out by operating the

state by the creation and annihilation operators of the incident mode b̂1. Therefore,

we have

b̂x|ψ⟩′ = α
√
2|1, 0⟩′ + β|0, 1⟩′, (6.28)

b̂y|ψ⟩′ = β
√
2|1, 0⟩′ + γ

√
2|0, 1⟩′. (6.29)

Employing these values in Eq. (6.16), we get

S ′
0 = ⟨ψ|b̂†xb̂x|⟩′ + ⟨ψ|b̂†y b̂y|⟩′ = 2, (6.30a)

S ′
1 = ⟨ψ|b̂†xb̂x|⟩′ − ⟨ψ|b̂†y b̂y|⟩′ = 2(|α|2 − |γ|2), (6.30b)

S ′
2 = ⟨ψ|b̂†xb̂y|⟩′ − ⟨ψ|b̂†y b̂x|⟩′ = 2

√
2β|α∗ − γ| cos ξ, (6.30c)

S ′
3 = i(⟨ψ|b̂†y b̂x|⟩′ − ⟨ψ|b̂†xb̂y|⟩′) = 2

√
2β|α∗ − γ| sin ξ. (6.30d)

Hence, the Stokes parameters on the screen can be explained in terms of Stokes

parameters of the incident field as

S0(r, t) = S ′
0|f(r , t)|2(1 + cosΦ), (6.31a)

S1(r, t) = S ′
1|f(r , t)|2(1 + cosΦ), (6.31b)

S2(r, t) = S ′
2|f(r , t)|2(1 + cosΦ), (6.31c)

S3(r, t) = S ′
3|f(r , t)|2(1 + cosΦ). (6.31d)

which agrees with the classical result Eq. (4.22) when the intensities are equal at

the pinholes. Thus, we have derived the Stokes parameters of the field and used
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them to demonstrate the interference of electromagnetic field in view of quantum-

dynamics. We also showed that the quantum Stokes parameters at the screen can

be expressed in terms of Stokes parameters of the incident field, which suggests that

Young’s interference experiment is essentially a classical experiment.
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Chapter VII

Conclusion

In this thesis, the coherence and the polarization of the fields have been analyzed

from classical as well as quantum-mechanical point of view, with a special em-

phasis on the interference phenomenon in Young’s interference experiment. The

long-established classical theory easily explains the field coherence and polarizations

with field correlation functions and Stokes parameters, which could be employed to

investigate the interference between any random fields. Till date, the concept of

quantum-mechanical analysis of interference has been limited to scalar fields and we

try to extend the concept to encompass a full electromagnetic field.

In analogy to the classical theory, we defined the quantum counterpart of the

Stokes parameters in terms of quantum polarization matrix G(1)(r, t; r, t) which are

expressed in terms of expectation values of the field components. Since the interfer-

ence results from the superposition of radial modes, we exploited it to determine the

Stokes parameters at any point r at time t on the screen, that describes the inten-

sity as well the polarization properties of the field. In particular, a two-photon field

interference was investigated that showed results parallel to the classical theory; the

intensity fringes for a pure state field has distribution similar to one in the classical

case, as well as the Stokes parameters of the field on the screen could be explained

in terms of the Stokes parameters of the incident field.
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[26] J. Tervo, T. Setälä, and A. T. Friberg, “Reply to comment on ’Complete

electromagnetic coherence in the space-frequency domain’,”Opt. Lett. 29, 1713–

1714 (2004).

[27] T. Saastomoinen, J. Tervo, and J. Turunen, “Reply to comment on ’Radiation

from arbitrarily polarized spatially incoherent planar sources’,”Opt. Commun.

242, 323–325 (2004).

[28] A. T. Friberg, J. Tervo, and T. Setälä, “Young’s interference experiment
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