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ABSTRACT

This work contains several theoretical and numerical studies on

data clustering. The total squared error (TSE) between the data

points and the nearest centroids is expressed as an analytic func-

tion, the gradient of that function is calculated, and the gradient

descent method is used to minimize the TSE.

In balance-constrained clustering, we optimize TSE, but so that

the number of points in clusters are equal. In balance-driven clus-

tering, balance is an aim but is not mandatory. We use a cost func-

tion summing all squared pairwise distances and show that it can

be expressed as a function which has factors for both balance and

TSE. In Balanced k-Means, we use the Hungarian algorithm to find

the minimum TSE, subject to the constraint that the clusters are of

equal size.

In traditional clustering, one fits the model to the data. We

present also a clustering method, that takes an opposite approach.

We fit the data to an artificial model and make a gradual inverse

transform to move the data its original locations and perform k-

means at every step.

We apply the divide-and-conquer method for quickly calculate

an approximate minimum spanning tree. In the method, we divide

the dataset into clusters and calculate a minimum spanning tree

of each cluster. To complete the minimum spanning tree, we then

combine the clusters.

Universal Decimal Classification: 004.93, 517.547.3, 519.237.8

AMS Mathematics Subject Classification: 30G25, 62H30, 68T10

INSPEC Thesaurus: pattern clustering; classification; functions; gradient

methods; mean square error methods; nonlinear programming; optimiza-

tion; data analysis

Yleinen suomalainen asiasanasto: data; klusterit; järjestäminen; luokitus;

analyyttiset funktiot; virheanalyysi; optimointi; algoritmit
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1 Introduction

We are living the middle of a digital revolution. ”Digital revolu-

tion” means that most of the information content we store and

transmit will be coded in digital form, that is, in bits. The digi-

tal revolution could be considered to have started, when Shannon

introduced the term bit in the 1940’s. One term that has become

popular the last years, is ”Big data”. This means that datasets are

becoming bigger in number and size.

1.1 CLUSTERING IS AN NP-HARD PROBLEM

Clustering is an important tool in data mining and machine learn-

ing. It aims at partitioning the objects of a dataset so that simi-

lar objects will be put into the same clusters and different objects

in different clusters. Sum-of-squares clustering, which is the most

commonly used clustering approach, and which this thesis mostly

discusses, is an NP-hard problem [1]. This means that an opti-

mal clustering solution cannot be achieved except for very small

datasets. When the number of clusters k is constant, Euclidean sum-

of-squares clustering can be done in polynomial O(nkd+1) time [2],

where d is the number of dimensions. This is slow in practice, since

the power kd + 1 is high, and thus, suboptimal algorithms are used.

1.2 THE AIMS OF CLUSTERING

Clustering aims at assigning similar objects into the same groups

and dissimilar objects into different groups. Similarity is typically

measured by the distance between the objects. The most typical

criterion for the goodness of a clustering is the mean squared error

(MSE) or total squared error (TSE), which are related: they dif-

fer only by a constant factor. The goodness of clustering can be

also measured by cluster validity indices, but these are typically

Dissertations in Forestry and Natural Sciences No 178 1
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not used as a cost function, because of the more complicated op-

timization entailed. Widely used external validity indices are the

Adjusted Rand index [3], the Van Dongen index [4], and the Nor-

malized mutual information index [5]. MSE or TSE is the most

common cost function in clustering. It is often called the k-means

method, which means the MSE cost function.

The time complexity of clustering varies from O(n) in grid-

based clustering to O(n3) in the PNN algorithm [6]. The most com-

mon clustering algorithm k-means takes time

T(n) = O(I · k · n), (1.1)

where k is the number of clusters and I is the number of iterations.

The k-means algorithm is fast in practice, but in worst case, it can

be slow when the number of iterations is large. An upper bound

for the number of iterations is O(nkd) [7].

In balanced clustering, we need to balance the clusters in addi-

tion to optimize the MSE. Sometimes balance is an aim, but not a

mandatory requirement, as in the Scut method in paper III, where

we have both MSE and balance affecting the cost function. Some-

times, the balance is a mandatory requirement, and the MSE opti-

mization is a secondary criterion, as in paper IV.

1.3 DISTANCE MEASURE AND CLUSTERING CRITERION

Clustering requires two choices to be made: how to measure the

distance between two points, and how to measure the error of the

clustering. One distance measure is the L1 norm, i. e., the Manhat-

tan distance

d1(x̄, c̄) =
d

∑
i=1

||x{i} − c{i}||, (1.2)

where (x̄, c̄) are vectors

x̄ = (x{1}, x{2}, ..., x{d}) and c̄ = (c{1}, c{2}, ..., c{d}) (1.3)

2 Dissertations in Forestry and Natural Sciences No 178



Introduction

and by x{i} and c{i} we mean the i:th component (feature) of vectors

(points) x̄ and c̄, respectively. Another commonly used distance

measure is the L2 norm, the Euclidean distance

d2(x̄, c̄) =

√√√√ d

∑
i=1

(x{i} − c{i})2. (1.4)

The Minkowski norm Lp can also be used with freely chosen p:

dp(x̄, c̄) = (
d

∑
i=1

(x{i} − c{i})p)1/p. (1.5)

The L∞ norm can also be used

d∞(x̄, c̄) = max(x{i} − c{i}). (1.6)

In this thesis, we use Euclidean distance, but in paper I we also tell

how the L∞-norm could be used in practice.

The clustering criterion determines how the distances affect the

error measure. Some error measures are sum-of-squares, that is,

the total squared error, mean squared error, infinite norm error and

mean absolute error. The total squared error of the clustering is

calculated as

TSE = ∑
Xi∈Pj

||Xi − Cj||2, (1.7)

where Xi is the data point, Cj is the centroid, and Pj is the partition

of cluster j. The mean squared error MSE is defined as

MSE = TSE/n, (1.8)

where n is the number of points in the dataset. MSE is the most

widely used criterion, and minimizing MSE leads to the same re-

sult as minimizing TSE. Some other criteria are the mean absolute

error and the infinite norm error. The mean absolute error leads

to a clustering which gives less weight to outliers, which are sin-

gle points outside the dense regions of the dataset. Outliers often

follow from incorrect measurements in data collecting.

Dissertations in Forestry and Natural Sciences No 178 3
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2 Solving Clustering

2.1 THE NUMBER OF CLUSTERS

Most clustering algorithms require the user to give the number of

clusters as an input to the algorithm. Some algorithms determine

the number of clusters at run time. Often the user has no a pri-

ori information about the proper number of clusters, and then the

calculation of a validity index may be needed to obtain this infor-

mation.

Two widely used validity indices for this purpose are the Sil-

houette coefficient [8] and the F-ratio (WB-index) [9]. Also, a way

to determine the number of clusters is the minimum description

length (MDL) principle [10] by Rissanen. In MDL for clustering

one calculates the length of the code needed to describe the data

plus code length to describe the model. This sum varies when the

number of clusters changes. The first term decreases and the second

term increases when the number of clusters increase. The minimum

description length is the minimum of this sum. It is one of the few

connections between information theory and clustering. The prin-

ciple is written here formally in its general form [10], which is most

useful in a short introduction like this:

Find a model with which the observed data and the model can be encoded

with the shortest code length

min
θ,k

[log
1

f (X; θ, k)
+ L(θ, k)], (2.1)

where f is the maximum likelihood of the model, θ and k are the

parameters defining the model, and L(θ, k) denotes the code length

for the parameters defining the model.

Dissertations in Forestry and Natural Sciences No 178 5
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2.2 CLUSTERING ALGORITHMS

When the cost function has been defined the clustering problem

becomes an algorithmic problem.

2.2.1 k-Means

The k-means algorithm [11] starts by initializing the k centroids.

Typically, a random selection among the data points is made, but

other techniques are discussed in [12–14]. Then k-means consists of

two repeatedly executed steps [15]:

Assignment step: Assign each data point Xi to clusters specified

by the nearest centroid:

P
(t)
j = {Xi : ‖Xi − C

(t)
j ‖ ≤ ‖Xi − C

(t)
j∗ ‖

for all j∗ = 1, ..., k}.

Update step: Calculate the mean of each cluster:

C
(t+1)
j =

1

|P(t)
j | ∑

Xi∈P
(t)
j

Xi.

These steps are repeated until the centroid locations do not change

anymore. The k-means assignment step and update step are op-

timal with respect to MSE in the sense that the partitioning step

minimizes the MSE for a given set of centroids and the update

step minimizes MSE for a given partitioning. The solution con-

verges to a local optimum but without a guarantee of global op-

timality. To get better results than k-means, slower agglomerative

algorithms [6, 16, 17] or more complex k-means variants [14, 18–20]

are sometimes used. Gaussian mixture models can also be used

(Expectation-Maximization algorithm) [21, 22].

2.2.2 Random Swap

To overcome the low accuracy of k-means, the randomized local search

(RLS) algorithm [18] has been developed. It is often called the

6 Dissertations in Forestry and Natural Sciences No 178
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random swap algorithm. Once a clustering result is available, one

centroid is randomly swapped to another location and k-means is

performed. If the result gets better, it is saved. The swapping is

continued until the desired number of iterations is done. With a

large enough number of iterations, often 5000, it gives good results,

making it one of the best clustering algorithms available. For a

pseudocode of random swap see Algorithm 1.

Algorithm 1 Random Swap

C ← SelectRandomDataObjects(k)

P ← OptimalPartition(C)

repeat

Cnew ← RandomSwap(C)

Pnew ← LocalRepartition(P, Cnew)

k-Means(Pnew, Cnew)

if MSE(Pnew, Cnew) < MSE(P, C) then

(P, C) ← (Pnew, Cnew)

end if

until T times

2.2.3 Other Hierarchical and Partitional Algorithms

The pairwise nearest neighbor (PNN) algorithm [6] gives good ac-

curacy, but with a high time complexity: T = O(n3). It starts with

all points in their own clusters. It finds the point pair which has the

lowest merge cost and merges it. This merging is continued until

the number of clusters is the desired k. A faster version of PNN [16]

runs with a time complexity O(τn2), where τ is a data-dependent

variable expressing the size of the neighborhood.

k-Means++ [14], which is based on k-means, emphasizes a good

choice of initial centroids, see Algorithm 2. Let D(Xi) denote the

distance from a data point Xi to its closest centroid. C1 is initialized

as Xrand(1..n). The variable i is selected by the function

Dissertations in Forestry and Natural Sciences No 178 7
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Algorithm 2 k-means++

C1 ← RandomInit()

j ← 2

repeat

i ← RandomWeightedBySquaredDistance()

Cj ← Xi

j ← j + 1

until j > k

C ← kmeans(C, k)

output C

RandomWeightedBySquaredDistance() =

min i

s.t.
D(X1)

2 + D(X2)2 + ... + D(Xi)
2

D(X1)2 + D(X2)2 + ... + D(Xn)2
> rand([0, 1[). (2.2)

As a result, new centers are added, most likely to the areas lacking

centroids. k-Means++ also has a performance guarantee [14]

E[TSE] ≤ 8(ln k + 2)TSEOPT. (2.3)

X-means [19] splits clusters as long as the Bayesian information

criterion (BIC) gives a lower value for the slit than for the non-slit

cluster.

Global k-means [20] tries all points as candidate initial centroid

locations, and performs k-means. It gives good results, but with

slow speed.

For a comparison of results of several clustering algorithms, see

the summary Chapter 9 of this thesis or [17].

8 Dissertations in Forestry and Natural Sciences No 178



3 Clustering by Analytic

Functions

Data clustering is a combinatorial optimization problem. The pub-

lication I shows that clustering is also an optimization problem for

an analytic function. The mean squared error, or in this case, the

total squared error can be expressed as an analytic function. With

an analytic function we benefit from the existence of standard op-

timization methods: the gradient of this function is calculated and

the descent method is used to minimize the function.

The MSE and TSE values can be calculated when the data points

and centroid locations are known. The process involves finding the

nearest centroid for each data point. We write cij for the feature j of

the centroid of cluster i. The squared error function can be written

as

f (c̄) = ∑
u

min
i
{∑

j

(cij − xuj)
2}. (3.1)

The min operation forces one to choose the nearest centroid for each

data point. This function is not analytic because of the min oper-

ations. A question is whether we can express f (c̄) as an analytic

function which then could be given as input to a gradient-based

optimization method. The answer is given in the following section.

3.1 FORMULATION OF THE METHOD

We write the p-norm as

‖x̄‖p = (
d

∑
i=1

|xi|p)1/p. (3.2)

The maximum value of the xi’s can be expressed as

max(|xi|) = lim
p→∞

‖x̄‖p = lim
p→∞

(
n

∑
i=1

|xi|p)1/p. (3.3)

Dissertations in Forestry and Natural Sciences No 178 9
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Since we are interested in the minimum value, we take the inverses
1
xi

and find their maximum. Then another inverse is taken to obtain

the minimum of the xi:

min(|xi|) = lim
p→∞

(
d

∑
i=1

1

|xi|p )
−1/p. (3.4)

3.2 ESTIMATION OF INFINITE POWER

Although calculations of the infinity norm (p = ∞) without com-

parison operations are not possible, we can estimate the exact value

by setting p to a high value. The error of the estimate is

ε = (
d

∑
i=1

1

|xi|p )
−1/p − lim

p2→∞
(

d

∑
i=1

1

|xi|p2
)−1/p2 . (3.5)

The estimation can be made up to any accuracy, the estimation error

being

|ε| ≥ 0.

To see how close we can come in practice, a mathematical software

package Matlab run was made:

1/nthroot((1/x1)∧p + (1/x2)∧p, p).

For example, with the values x1, x2 = 500, p = 100 we got the result

496.54. When the values of x1 and x2 are far from each other, we

get an accurate estimate, but when the numbers are close to each

other, an approximation error is present.

3.3 ANALYTIC FORMULATION OF TSE

Combining (3.1) and (3.4) yields

f (c̄) = ∑
u

[ lim
p→∞

((∑
i

1

| ∑j(cij − xuj)2 |p )
−1/p)]. (3.6)

10 Dissertations in Forestry and Natural Sciences No 178
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Proceeding from (3.6) by removing lim, we can now write f̂ (c̄) as

an estimator for f (c̄):

f̂ (c̄) = ∑
u

[(∑
i

(∑
j

(cij − xuj)
2)−p)−

1
p ]. (3.7)

This is an analytic estimator, although the exact f (c̄) cannot be writ-

ten as an analytic function when the data points lie in the middle

of cluster centroids in a certain way.

The partial derivatives and the gradient can also be calculated.

The formula for partial derivatives is calculated using the chain

rule:

∂ f̂ (c̄)

∂cst
=∑

u

[− 1

p
· (∑

i

(∑
j

(cij − xuj)
2)−p)−

p+1
p

·∑
i

(−p · (∑
j

(cij − xuj)
2)−(p+1)) · 2 · (cst − xut)].

(3.8)

3.4 TIME COMPLEXITY

The time complexity for calculating the estimator of the total squared

error has been derived in paper I as

T( f̂ (c̄)) = O(n · d · k · p). (3.9)

The time complexity of calculating f̂ (c̄) grows linearly with the

number of data points n, dimensionality d, number of centroids k,

and power p. The time complexity of calculating a partial deriva-

tive is

T(partial derivative) = O(n · d · k · p).

The time complexity for calculating all partial derivatives, which is

the same as the gradient, is

T(all partial derivatives) = O(n · d · k · p).

Dissertations in Forestry and Natural Sciences No 178 11



Mikko Malinen: New Alternatives for k-Means Clustering

This differs only by the factor p from one iteration time complexity

of the k-means O(k · n · d). In these time complexity calculations a

result concerning the time complexity of calculation of the nth root

is used [23].

3.5 ANALYTIC OPTIMIZATION OF TSE

Since we can calculate the values of f̂ (c̄) and the gradient, we can

find a (local) minimum of f̂ (c̄) by the gradient descent method.

In the gradient descent method, the solution points converge itera-

tively to a minimum:

c̄i+1 = c̄i −∇ f̂ (c̄i) · l, (3.10)

where l is the step length. The value of l can be calculated at every

iteration, starting from some lmax and halving it recursively until

f̂ (c̄i+1) < f̂ (c̄i).

Equation (3.8) for the partial derivatives depends on p. For any

p ≥ 0, either a local or the global minimum of (3.7) is found. Setting

p large enough, we get a satisfactory estimator f̂ (c̄), although there

is often some bias in this estimator and a p that is too small may

lead to a different clustering result.

The analytic clustering method presented here corresponds to

the k-means algorithm [11]. It can be used to obtain a local mini-

mum of the squared error function similarly to k-means, or to sim-

ulate the random swap algorithm [18] by changing one cluster cen-

troid randomly. In the random swap algorithm, a centroid and a

datapoint are chosen randomly, and a trial movement of this cen-

troid to this datapoint is made. If the k-means with the new centroid

provide better results than the earlier solution, the centroid remains

swapped. Such trial swaps are then repeated for a fixed number of

times.
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Analytic clustering and k-means work in the same way, although

their implementations differ. Their step length is different. The dif-

ference in the clustering result also originates from the approxima-

tion of the ∞-norm by the p-norm.

We have used an approximation to the infinity norm to find the

nearest centroids for the datapoints, and used the sum-of-squares

for the distance metric. The infinity norm, on the other hand, could

be used to cluster with the infinity norm distance metric. The Eu-

clidean norm (p = 2) is normally used in the literature, but exper-

iments with other norms are also published. For example, p = 1

gives the k-medians clustering, e.g. [24], and p → 0 gives the cat-

egorical k-modes clustering. Papers on the k-midrange clustering

(e.g. [25,26]) employ the infinity norm (p = ∞) in finding the range

of a cluster. In [27] a p = ∞ formulation has been given for the more

general fuzzy case. A description and comparison of different for-

mulations has been given in [28]. With the infinity norm distance

metric, the distance of a data point from a centroid is calculated

by taking the dominant feature of the difference vector between

the data point and the centroid. Our contribution in this regard is

that we can form an analytic estimator for the cost function even

if the distance metric were the infinity norm. This would make

the formula for f̂ (c̄) and the formula for the partial derivatives a

somewhat more complicated but nevertheless possible.

The experimental results are illustrated in Table 3.1 and show

that analytic clustering and k-means clustering provide comparable

results.
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Table 3.1: Averages of TSE values of 30 runs of analytic and traditional methods. The TSE

values are divided by 1013 or 106 (wine set) or 104 (breast set) or 1 (yeast set). Processing

times in seconds for different datasets and methods.

Dataset Total squared error Processing time

K-means Random swap K-means Random swap

Anal. Trad. Anal. Trad. Anal. Trad. Anal. Trad.

s1 1.93 1.91 1.37 1.39 4.73 0.04 52.46 0.36

s2 2.04 2.03 1.52 1.62 6.97 0.08 51.55 0.61

s3 1.89 1.91 1.76 1.78 4.59 0.06 59.03 0.58

s4 1.70 1.68 1.58 1.60 5.43 0.23 49.12 1.13

iris 22.22 22.22 22.22 22.22 0.12 0.01 0.48 0.03

thyroid 74.86 74.80 73.91 73.91 0.22 0.02 0.72 0.04

wine 2.41 2.43 2.37 2.37 0.44 0.02 4.39 0.04

breast 1.97 1.97 1.97 1.97 0.15 0.02 1.07 0.04

yeast 48.87 48.79 45.83 46.06 5.15 0.12 50.00 0.91
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4 Clustering by Gradual

Data Transformation

The traditional approach to clustering is to fit a model (partition

or prototypes) to the given data. In publication II we propose a

completely opposite approach: fitting the data to a given clustering

model that is optimal for similar pathological (not normal) data of

equal size and dimensions. We then perform an inverse transform

from this pathological data back to the original data while refin-

ing the optimal clustering structure during the process. The key

idea is that we do not need to find an optimal global allocation of

the prototypes. Instead, we only need to perform local fine-tuning

of the clustering prototypes during the transformation in order to

preserve the already optimal clustering structure.

We first generate an artificial data X∗ of the same size (n) and

dimension (d) as the input data, so that the data vectors are divided

into k perfectly separated clusters without any variation. We then

perform a one-to-one bijective mapping of the input data to the

artificial data (X → X∗).

The key point is that we already have a clustering that is op-

timal for the artificial data, but not for the real data. In the next

step, we perform an inverse transform of the artificial data back to

the original data by a sequence of gradual changes. While doing

this, the clustering model is updated after each change by k-means.

If the changes are small, the data vectors will gradually move to

their original position without breaking the clustering structure.

The details of the algorithm including the pseudocode are given

in Section 4.1. An online animator demonstrating the progress of

the algorithm is available at http://cs.uef.fi/sipu/clustering/

animator/. The animation starts when “Gradual k-means” is cho-

sen from the menu.
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The main design problems of this approach are to find a suit-

able artificial data structure, how to perform the mapping, and how

to control the inverse transformation. We will demonstrate next

that the proposed approach works with simple design choices, and

overcomes the locality problem of k-means. It cannot be proven to

provide optimal results every time, as there are bad cases where

it fails to find the optimal solution. Nevertheless, we show by ex-

periments that the method is significantly better than k-means and

k-means++, and competes equally with repeated k-means. Also, it

is rare that it ends up with a bad solution as is typical to k-means.

Experiments will show that only a few transformation steps are

needed to obtain a good quality clustering.

4.1 DATA INITIALIZATION

In the following subsections, we will go through the phases of the

algorithm. For the pseudocode, see Algorithm 3. We call this algo-

rithm k-means*, because of the repeated use of k-means. However,

instead of applying k-means to the original data points, we create

another artificial data set which is prearranged into k clearly sepa-

rated zero-variance clusters.

The algorithm starts by choosing the artificial clustering struc-

ture and then dividing the artificial data points among these equally.

We do this by creating a new dataset X2 and by assigning each data

point in the original dataset X1 to a corresponding data point in X2.

We consider seven different structures for the initialization:

• line

• diagonal

• random

• random with optimal partition

• initialization used in k-means++

• line with uneven clusters

• point.
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Figure 4.1: Original dataset and line init (left) or random init (right) with sample map-

pings shown by arrows.

In the line structure, the clusters are arranged along a line. The

k locations are set as the middle value of the range in each dimen-

sion, except the last dimension where the k clusters are distributed

uniformly along the line, see Figure 4.1 (left) and the animator

http://cs.uef.fi/sipu/clustering/animator/. The range of 10%

nearest to the borders are left without clusters.

In the diagonal structure, the k locations are set uniformly to the

diagonal of the range of the dataset.

In the random structure, the initial clusters are selected randomly

from among the data point locations in the original dataset, see Fig-

ure 4.1 (right). In these structuring strategies, data point locations

are initialized randomly to these cluster locations. Even distribu-

tion among the clusters is a natural choice. To further justify this,

lower cardinality clusters could more easily become empty later,

which was an undesirable situation.

The fourth structure is random locations but using optimal parti-

tions for the mapping. This means assigning the data points to the

nearest clusters.

The fifth structure corresponds to the initialization strategy used

in k-means++ [14].

The sixth structure is the line with uneven clusters, in which we
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place twice as many points at the most centrally located half of the

cluster locations than at the other locations.

The seventh structure is the point. It is like the line structure

but we put the clusters in a very short line, which, in a larger scale,

looks like a single point. In this way, the dataset “explodes” from a

single point during the inverse transform. This structure is useful

mainly for the visualization purposes in the web-animator.

The k-means++-style structure with evenly distributed data points

is the recommended structure because it works best in practice, and

therefore we use it inthe further experiments. In choosing the struc-

ture, good results are achieved when there is a notable separation

between the clusters and evenly distributed data points in the clus-

ters.

Once the initial structure has been chosen, each data point in

the original data set is assigned to a corresponding data point in

the initial structure. The data points in this manually created data

set are randomly but evenly located.

4.2 INVERSE TRANSFORMATION STEPS

The algorithm proceeds by executing a given number (> 1) of in-

verse transformation steps given as a user-set integer parameter.

The default value for steps is 20. At each step, all data points are

transformed towards their original location by the amount

1

steps
· (X1,i − X2,i), (4.1)

where X1,i is the location of the ith datapoint in the original data

and X2,i is its location in the artificial structure. After every trans-

form, k-means is executed given the previous centroids along with

the modified dataset as input. After all the steps have been com-

pleted, the resulting set of centroids C is output.

It is possible that two points that belong to the same cluster in

the final dataset will be put into different clusters in the artificially

created dataset. Then they smoothly move to their final locations

during the inverse transform.
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Table 4.1: Time complexity of the k-means* algorithm.

Theoretical

k free k = O(n) k = O(
√

n) k = O(1)

Initialization O(n) O(n) O(n) O(n)

Data set transform O(n) O(n) O(n) O(n)

Empty clusters

removal O(kn) O(n2) O(n1.5) O(n)

k-means O(knkd+1) O(nO(n)·d+2) O(nO(
√

nd+ 3
2 )) O(nkd+1)

Algorithm total O(knkd+1) O(nO(n)·d+2) O(nO(
√

nd+ 3
2 )) O(nkd+1)

Fixed k-means

k free k = O(n) k = O(
√

n) k = O(1)

Initialization O(n) O(n) O(n) O(n)

Data set transform O(n) O(n) O(n) O(n)

Empty clusters

removal O(kn) O(n2) O(n1.5) O(n)

k-means O(kn) O(n2) O(n1.5) O(n)

Algorithm total O(kn) O(n2) O(n1.5) O(n)

4.3 TIME COMPLEXITY

The worst case complexities of the phases are listed in Table 4.1.

The overall time complexity is not more than for the k-means, see

Table 4.1.

4.4 EXPERIMENTAL RESULTS

We ran the algorithm with different values of steps and for several

data sets. For the MSE calculation we use the formula

MSE =
∑

k
j=1 ∑Xi∈Cj

|| Xi − Cj ||2
n · d

,

where MSE is normalized by the number of features in the data.

All the datasets can be found on the SIPU web page [29].
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Algorithm 3 k-means*

Input: data set X1, number of clusters k, steps,

Output: Codebook C.

n ← size(X1)

[X2, C] ← Initialize()

for repeats = 1 to steps do

for i = 1 to n do

X3,i ← X2,i + (repeats/steps) ∗ (X1,i − X2,i)

end for

C ← kmeans(X3, k, C)

end for

output C

The sets s1, s2, s3 and s4 are artificial datasets consisting of

Gaussian clusters with same variance but increasing overlap. Given

15 seeds, data points are randomly generated around them. In a1

and DIM sets, the clusters are clearly separated, whereas in s1-s4

they are overlap more. These sets are chosen because they are still

easy enough for a good algorithm to find the clusters correctly but

hard enough for a bad algorithm to fail. The results for the number

of steps 2-20 are plotted in Figure 4.2.

We observe that 20 steps is enough for k-means* (Figure 4.2).

Many clustering results of these data sets stabilize at around 6 steps.

More steps give only a marginal additional benefit, but at the cost

of a longer execution time. For some of the data sets, even just

one step gives the best result. In these cases, initial positions for

centroids just happened to be good.

20 Dissertations in Forestry and Natural Sciences No 178



Clustering by Gradual Data Transformation

2 4 6 8 10 12 14 16 18 20
0.8

1

1.2

1.4

1.6

1.8

2
x 109

Steps

M
ea

n 
sq

ua
re

 e
rro

r K−means

Repeated k−means

Proposed
Best known

s1

2 4 6 8 10 12 14 16 18 20
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 109

Steps

M
ea

n 
sq

ua
re

 e
rro

r s2

Repeated k−means

Proposed

Best known

K−means

2 4 6 8 10 12 14 16 18 20
1.65

1.75

1.85

1.95

2
x 109

Steps

M
ea

n 
sq

ua
re

 e
rro

r s3
K−means

Repeated k−means
Best known

Proposed

2 4 6 8 10 12 14 16 18 20
1.55

1.6

1.65

1.7
x 109

Steps

M
ea

n 
sq

ua
re

 e
rro

r

s4K−means

Repeated k−means

Proposed

Best known

2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8
x 1011

Steps

M
ea

n 
sq

ua
re

 e
rro

r Repeated k−means

Best known

thyroid

K−means Proposed

2 4 6 8 10 12 14 16 18 20
800

1000

1200

1400

1600

1800

2000

2200

Steps

M
ea

n 
sq

ua
re

 e
rro

r

wine

Proposed K−means

Repeated k−means

Best known

2 4 6 8 10 12 14 16 18 20
2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 106

Steps

M
ea

n 
sq

ua
re

 e
rro

r

a1

K−means

Repeated k−means

Proposed

Best known
2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

350

400

450

Steps

M
ea

n 
sq

ua
re

 e
rro

r

DIM32

Repeated k−means

K−means

Best knownProposed

Figure 4.2: Results of k-means* (average over 200 runs) for datasets s1, s2, s3, s4, thyroid,

wine, a1 and DIM32 with different numbers of steps. For repeated k-means there are an

equal number of repeats as there are steps in the proposed algorithm. For s1 and s4, the

75% error bounds are also shown. We observe that 20 steps is enough for this algorithm.
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5 All-Pairwise Squared Dis-

tances as Cost

All-pairwise squared distances has been used as a cost function in

clustering [30, 31]. In publication III, we showed that it leads to

more balanced clustering than centroid-based distance functions as

in k-means. Clustering by all-pairwise squared distances is formu-

lated as a cut-based method, and it is closely related to the MAX

k-CUT method. We introduce two algorithms for the problem, both

of which are faster than the existing one based on l2
2-Stirling approx-

imation. The first algorithm uses semidefinite programming as in

MAX k-CUT. The second algorithm is an on-line variant of classi-

cal k-means. We show by experiments that the proposed approach

provides better overall joint optimization of the mean squared error

and cluster balance than the compared methods.

5.1 BALANCED CLUSTERING

A balanced clustering is defined as a clustering where the points are

evenly distributed into the clusters. In other words, every cluster in-

cludes either �n/k
 or �n/k� points. We define balanced clustering

as a problem which aims at maximizing the balance and minimiz-

ing some other cost function, such as MSE. Balanced clustering is

desirable in workload-balancing algorithms. For example, one algo-

rithm for the multiple traveling salesman problem [32] clusters the

cities so that each cluster is solved by one salesman. It is desirable

that each salesman has an equal workload.

Balanced clustering, in general, is a 2-objective optimization

problem, in which two aims contradict each other: to minimize

a cost function such as MSE, and to balance cluster sizes at the

same time. Traditional clustering aims at minimizing MSE com-

pletely without considering cluster size balance. Balancing, on the

Dissertations in Forestry and Natural Sciences No 178 23



Mikko Malinen: New Alternatives for k-Means Clustering

Table 5.1: Classification of some balanced clustering algorithms.

Balance-constrained Type

Balanced k-means (publication IV) k-means

Constrained k-means [33] k-means

Size constrained [34] integer linear programming

Balance-driven Type

Scut (publication III) on-line k-means

FSCL [35] assignment

FSCL additive bias [36] assignment

Cluster sampled data [37] k-means

Ratio cut [38] divisive

Ncut [39] divisive

Mcut [40] divisive

SRcut [41] divisive

Submodular fractional submodular fractional

programming [42] programming

other hand, would be trivial if we did not care about MSE: Then we

would simply divide the vectors into equal size clusters randomly.

For optimizing both, there are two approaches: balance-constrained

and balance-driven clustering.

In balance-constrained clustering, cluster size balance is a manda-

tory requirement that must be met, and minimizing MSE is a sec-

ondary criterion. In balance-driven clustering, balanced clustering

is an aim, but it is not mandatory. It is a compromise between

the two goals: balance and the MSE. The solution is a weighted

cost function between MSE and the balance, or it is a heuristic, that

aims at minimizing MSE but indirectly creates a more balanced re-

sult than optimizing MSE alone.

Existing algorithms for balanced clustering are grouped into

these two classes in Table 5.1. As more application-specific ap-

proaches, networking uses balanced clustering to obtain some de-

sirable goals [43, 44].
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5.2 CUT-BASED METHODS

Cut-based clustering is a process where the dataset is cut into smaller

parts based on the similarity S(Xl , Xs) or the cost d(Xl , Xs) between

pairs of points. By cut(A, B) one means partitioning a dataset into

two parts A and B, and the value of cut(A, B) is the total weight

between all pairs of points between the sets A and B:

cut(A, B) = ∑
Xl∈A,Xs∈B

wls. (5.1)

The weights w can be defined either as distances or similarities be-

tween the two points. Unless otherwise noted, we use (squared)

Euclidean distances in publication III. The cut(A, B) equals the to-

tal pairwise weights of A ∪ B subtracted by the pairwise weights

within the parts A and B:

cut(A, B) = W − W(A)− W(B), (5.2)

where

W =
n

∑
l=1

n

∑
s=1

wls, (5.3)

and

W(A) = ∑
Xl∈A,Xs∈A

wls, (5.4)

and W(B) is defined respectively. In cut-based clustering, two

common objective functions are Ratio cut [38] and Normalized cut

(Ncut, for short) [39]. Both of these methods favor balanced clus-

tering [45]. In practice, one approximates these problems by relax-

ation, i.e., solving a nearby easier problem. Relaxing Ncut leads to

normalised spectral clustering, while relaxing RatioCut leads to un-

normalised spectral clustering [45]. There exists also a semidefinite-

programming based relaxation for Ncut [46].

5.3 MAX K-CUT METHOD

In the weighted MAX k-CUT problem [47], one partitions a graph

into k subgraphs so that the sum of the weights of the edges be-

tween the subgraphs is maximised. The weights are distances.
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cut(P1, P̄1) = 12

cut(P2, P̄2) = 12

cut(P3, P̄3) = 13

cut(P4, P̄4) = 17

∑ = 54.

1/2 · 54 = 27

Figure 5.1: An example of MAX k-CUT, when k = 4.

MAX k-CUT aims at partitioning the data into k clusters P1, ..., Pk.

Following the notation of Section 5.2 and inserting a factor 1/2 in

order to avoid summing the weights twice, the MAX k-CUT prob-

lem is defined as

max
Pj,1≤j≤k

1

2

k

∑
j=1

cut(Pj, P̄j). (5.5)

There is an example of MAX k-CUT in Figure 5.1. MAX k-CUT is

an NP-hard problem [48] for general weights.

If we use Euclidean distance for the weights of the edges be-

tween every pair of points, then taking optimal weighted MAX k-

CUT results in the minimum intra-cluster pairwise distances among

any k-CUT. If we use squared distances as weights of the edges, we

end up with minimum intra-cluster pairwise squared distances. If

we use squared Euclidean distances as weights, the problem is ex-

pected to remain NP-hard.

5.4 SQUARED CUT (SCUT)

Publication III deals with the Squared cut, Scut method, which uses

all pairwise squared distances as the cost function. This cost func-

tion has been presented in [49], where it is called l2
2 k-clustering.

However, we formulate it by using the TSE’s of the clusters and

show that the method leads to a more balanced clustering prob-

lem than TSE itself. It is formulated as a cut-based method and

it resembles the MAX k-CUT method [30]. We present two algo-
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rithms for the problem; both more practical than the exhaustive

search proposed in [31] for l2
2 k-clustering. The first algorithm is

based on semidefinite programming, similar to MAX k-CUT, and the

second one is an on-line k-means algorithm directly optimizing the

cost function.

A general k-clustering problem by Sahni and Gonzales [30] de-

fines the cost by calculating all pairwise distances within the clus-

ters for any arbitrary weighted graphs. Guttmann-Beck and Has-

sin [50] studies the problem when the distances satisfy the triangle

inequality. Schulman [49] gives probabilistic algorithms for l2
2 k-

clustering [30]. The running time is linear if the dimension d is of

the order o(log n/ log log n) but, otherwise, it is nO(log log n). De la

Vega et al. [31] improved and extended Schulman’s result, giving

a true polynomial time approximation algorithm for arbitrary di-

mension. However, even their algorithm is slow in practice. We

therefore present faster algorithms for the Scut method.

In Scut, we form the graph by assigning squared Euclidean dis-

tances as the weights of the edges between every pair of points. In

a single cluster j, the intra-cluster pairwise squared distances are

of the form nj · TSEj, where nj is the number of points in cluster

j [51], p. 52. The generalisation of this to all clusters is known as

Huygens’s theorem, which states that the total squared error (TSE)

equals the sum over all clusters, over all squared distances between

pairs of entities within that cluster divided by its cardinality:

W(Aj) = nAj
· TSE(Aj) for all j.

Huygens’s theorem is crucial for our method, because it relates the

pairwise distances to the intra-cluster TSE, and thus, to the Scut

cost function:

Scut = n1 · TSE1 + n2 · TSE2 + ... + nk · TSEk, (5.6)

where nj is the number of points and TSEj is the total squared error

of the jth cluster. Based on (1.8), this may also be written as

Scut = n2
1 · MSE1 + n2

2 · MSE2 + ... + n2
k · MSEk, (5.7)
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Algorithm 4 Scut

Input: dataset X, number of clusters k

Output: partitioning of points P

for each edge of the graph do

Weight of edge wij ← Euclidean distance(Xi, Xj)
2

end for

Approximate MAX k-CUT.

Output partitioning of points P.

�� �� ��� ��

Figure 5.2: Two different sized clusters with the same MSE.

where MSEj is the mean squared error of the jth cluster. In cut-

notation the cost function is total pairwise weights minus the value

of MAX k-CUT:

Scut = W − max
Pj,1≤j≤k

1

2

k

∑
i=1

cut(Pj, P̄j). (5.8)

From this we conclude that using squared distances and optimizing

MAX k-CUT results in the optimization of the Scut cost function

(5.6). For approximating Scut, the Algorithm 4 can be used. Our

cut-based method has an MSE-based cost function and it tends to

balance the clusters because of the n2
j factors in (5.7). This can be

seen by the following simple example where two clusters have the

same squared error: MSE1 = MSE2 = MSE (Figure 5.2). The

total errors of these are 22 · MSE1 = 4 · MSE, and 102 · MSE2 =

100 · MSE. Adding one more point would increase the error by
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(n + 1)2 · MSE − n2 · MSE = (2n + 1) · MSE. In the example in

Figure 5.2, the cost would increase by 5 · MSE (cluster 1) and 21 ·
MSE (cluster 2). The cost function therefore always favors putting

points into a smaller cluster, and therefore, it tends to make more

balanced clusters. Figure 5.3 demonstrates the calculation of the

cost.

Figure 5.3: Calculation of the cost. Edge weights are squared Euclidean distances.

5.5 APPROXIMATING SCUT

5.5.1 Approximation algorithms

Weighted MAX k-CUT is an NP-hard problem but it can be solved

by an approximation algorithm based on semidefinite programming

(SDP) in polynomial time [47]. Although polynomial, the algo-

rithm is slow. According to our experiments, it can only be used

for datasets with just over 150 points. A faster approximation al-

gorithm has been presented by Zhu and Guo [48]. It begins with

an arbitrary partitioning of the points, and moves a point from one

subset to another if the sum of the weights of edges across different

subsets decreases. The algorithm stops when no further improve-

ments can be attained. In subection 5.5.2, we will propose an even

faster algorithm, which instead of maximising MAX k-CUT mini-

mizes the Scut cost function (5.6). Nevertheless, the result will be

the same.
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Algorithm 5 Fast approximation algorithm (on-line k-means) for

Scut

Input: dataset X, number of clusters k, number of points n

Output: partitioning of points P

Create some initial partitioning P.

changed ← TRUE

while changed do

changed ← FALSE

for i = 1 to n do

for l = 1 to k do

if ΔScut < 0 then

move point i to the cluster l

update centroids and TSE’s of previous cluster and clus-

ter l

changed ← TRUE

end if

end for

end for

end while

Output partitioning of points P.

5.5.2 Fast Approximation Algorithm for Scut

We next define an on-line k-means variant of the Scut method. In

the algorithm, the points are repeatedly re-partitioned to the cluster

which provides the lowest value for the Scut cost function. The

partition of the points is done one-by-one, and a change of cluster

will cause an immediate update of the two clusters affected (their

centroid and size). We use the fact that calculating the pairwise

total squared distance within clusters is the same as calculating the

Scut cost function in TSE form (5.6). We next derive a fast O(1)

update formula which calculates the cost function change when a

point is moved from one cluster to another. We keep on moving

points to other clusters as long as the cost function decreases, see

Algorithm 5. The approximation ratio derived in publication III, is

30 Dissertations in Forestry and Natural Sciences No 178



All-Pairwise Squared Distances as Cost

nB = 7

TSEB = 24

ΔTSEremove = −18.67
� �

�����	��
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nA = 3

TSEA = 3

ΔTSEadd = 3.00

Figure 5.4: Changing point from cluster B to A decreasing cost by 121.02.

εk =
W − w(P(k))

W − w(P(k)∗)

=
W − w(P(k))

max(0, W − 1
αk
· w(P(k)))

, (5.9)

where W is all pairwise weights, w(P(k)) is cut by the approxi-

mation algorithm, w(P(k)∗) is optimal cut and αk > 1 − k−1. The

update formula follows the merge cost in the agglomerative clus-

tering algorithm [6]. It includes the change in TSE when adding a

point, the change in TSE when removing a point, and the overall

cost in terms of the cost function (5.6). The costs are obtained as

follows:

Addition:

ΔTSEadd =
nA

nA + 1
· ||CA − Xi||2. (5.10)

Removal:

ΔTSEremove = −nB − 1

nB
· || nB

nB − 1
· CB − 1

nB − 1
· Xi − Xi||2

= −nB − 1

nB
|| nB

nB − 1
· CB − nB

nB − 1
· Xi||2

= − nB

nB − 1
· ||CB − Xi||2. (5.11)

The total cost of clusters A and B before the move is

Scutbe f ore = nA · TSEA + nB · TSEB, (5.12)

where nA and nB are the number of points in the clusters A and B

before the operation, CA and CB are the centroid locations before
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the tentative move operation and Xi is the data point involved in

the operation. The total cost after the move is

Scuta f ter = (nA + 1) · (TSEA + ΔTSEadd)

+ (nB − 1) · (TSEB + ΔTSEremove). (5.13)

From these we get the change in cost

ΔScut = Scuta f ter − Scutbe f ore (5.14)

= TSEA − TSEB + (nA + 1) · ΔTSEadd + (nB − 1) · ΔTSEremove,

(5.15)

= TSEA − TSEB + (nA + 1) · nA

nA + 1
· ||CA − Xi||2 (5.16)

+ (nB − 1) · − nB

nB − 1
· ||CB − Xi||2. (5.17)

See an example of a point changing its cluster in Figure 5.4, where

the changes in the TSEs are the following: ΔTSEadd = 3/4 · 22 =

3.00 and ΔTSEremove = −7/6 · 42 = −18.67. In Figure 5.4, the change

in cost function is ΔScut = 3 − 24 + (3 + 1) · 3 + (7 − 1) · −18.67 =

−121.02.

5.6 EXPERIMENTS

To solve the semidefinite program instances, we use the SeDuMi

solver [52] and the Yalmip modelling language [53]. We use datasets

from SIPU [29]. To compare how close the obtained clustering

is to balance-constrained clustering (an equal distribution of sizes

�n/k�), we measure the balance by calculating the difference in the

cluster sizes and a balanced n/k distribution, calculated by

2 · ∑
j

max(nj − �n

k
�, 0). (5.18)

. We first compare Scut with the SDP algorithm against repeated k-

means. The best results of 100 repeats (lowest distances) are chosen.

In the SDP algorithm we repeat only the point assignment phase.
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Table 5.2: Balances and execution times of the proposed Scut method with the SDP algo-

rithm and k-means clustering. 100 repeats, in the SDP algorithm only the point assign-

ment phase is repeated.

Dataset n k balance time

repeated repeated repeated repeated

Scut k-means Scut k-means

iris 150 3 2 6 8h 25min 0.50s

SUBSAMPLES:

s1 150 15 42 30 9h 35min 0.70s

s1 50 3 2 6 34s 0.44s

s1 50 2 0 8 28s 0.34s

s2 150 15 48 24 6h 50min 0.76s

s2 50 3 2 4 27s 0.40s

s2 50 2 0 4 32s 0.38s

s3 150 15 44 28 7h 46min 0.89s

s3 50 3 2 6 31s 0.43s

s3 50 2 0 2 26s 0.41s

s4 150 15 40 30 7h 01min 0.93s

s4 50 3 0 6 28s 0.42s

s4 50 2 0 0 30s 0.36s

a1 50 20 4 4 11s 0.45s

DIM32 50 16 0 6 8s 0.46s

iris 50 3 0 10 33s 0.44s

thyroid 50 2 0 28 28s 0.38s

wine 50 3 2 6 30s 0.40s

breast 50 2 2 34 18s 0.35s

yeast times100 50 10 8 8 10s 0.48s

glass 50 7 6 6 9s 0.44s

wdbc 50 2 0 20 11s 0.28s

best 14 times 4 times
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Table 5.3: Best balances and total execution times of the proposed Scut with the fast ap-

proximation algorithm and k-means clustering for 100 runs.

Dataset n k balance time

Scut- repeated Scut- repeated

fast k-means fast k-means

s1 5000 15 180 184 4min 2.3s

s2 5000 15 160 172 4min 4.0s

s3 5000 15 260 338 5min 3.6s

s4 5000 15 392 458 6min 7.0s

a1 3000 20 36 40 5min 3.2s

DIM32 1024 16 0 0 42s 2.6s

iris 150 3 4 6 0.9s 0.4s

thyroid 215 2 126 168 1.0s 0.3s

wine 178 3 22 22 0.8s 0.3s

breast 699 2 216 230 1.3s 0.3s

yeast times100 1484 10 298 362 1min 21s 4.2s

glass 214 7 110 106 4.6s 1.1s

wdbc 569 2 546 546 0.9s 0.4s
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The results in Table 5.2 show that 64% of the clustering results

are more balanced with the proposed method than with the re-

peated k-means method. They were equally balanced in 18% of

the cases, and in the remaining 18% of the cases a k-means result

was more balanced. Optimization works well with small datasets

(systematically better than k-means) but with bigger datasets the

benefit is smaller. The time complexity is polynomial, but the com-

puting time increases quickly when the number of points increases.

With 50 points, the computing time is approximately 20 s, but with

150 points it is approximately 7 hours. The memory requirement

for 150 points is 4.4 GB. The results in Table 5.3 are for the fast on-

line k-means algorithm, for which we can use bigger datasets. In 9

cases the repeated Scut gave better result than repeated k-means, in

3 cases it was equal and in 1 case it was worse.
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6 Balance-constrained Clus-

tering

Table 5.1 lists some balance-constrained clustering algorithms. We

review them here.

Bradley et al. [33] and Demiriz et al. [54] present a constrained

k-means algorithm, which is like k-means, but the assignment step is

implemented as a linear program, in which the minimum number

of points τh of clusters can be set as parameters. Setting τh = �n/k

gives balance-constrained clustering. The constrained k-means clus-

tering algorithm works as follows:

Given m points in R
n, minimum cluster membership values τh ≥

0, h = 1, ..., k and cluster centers C
(t)
1 , C

(t)
2 , ..., C

(t)
k at iteration t, com-

pute C
(t+1)
1 , C

(t+1)
2 , ..., C

(t+1)
k at iteration t + 1 using the following

two steps:

Cluster Assignment. Let Tt
i,h be a solution to the following lin-

ear program with C
(t)
h fixed:
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minimizeT

m

∑
i=1

k

∑
h=1

Ti,h · (1

2
||Xi − C

(t)
h ||22) (6.1)

subject to
m

∑
i=1

Ti,h ≥ τh, h = 1, ..., k (6.2)

k

∑
h=1

Ti,h = 1, i = 1, ..., m (6.3)

Ti,h ≥ 0, i = 1, ..., m, h = 1, ..., k. (6.4)

Cluster Update.

C
(t+1)
h =

⎧⎪⎨
⎪⎩

∑
m
i=1 T

(t)
i,h Xi

∑
m
i=1 T

(t)
i,h

if ∑
m
i=1 T

(t)
i,h > 0,

C
(t)
h otherwise.

These steps are repeated until C
(t+1)
h = C

(t)
h , for all h = 1, ..., k.

The algorithm terminates in a finite number of iterations at a

partitioning that is locally optimal [33]. At each iteration, the clus-

ter assignment step cannot increase the objective function of con-

strained k-means (3) in [33]. The cluster update step either strictly

decreases the value of the objective function or the algorithm ter-

minates. Since there are a finite number of ways to assign m points

to k clusters such that cluster h has at least τh points, constrained

k-means algorithm does not permit repeated assignments, and the

objective of constrained k-means (3) in [33] is strictly nonincreasing

and bounded below by zero, the algorithm must terminate at some

cluster assignment that is locally optimal.

Zhu et al. [34] try to find a partition close to the given partition,

but such that the cluster size constraints are fulfilled.

In publication IV, we formulate balanced k-means algorithm; it

belongs to the balance-constrained clustering category. It is oth-

erwise the same as standard k-means but it guarantees balanced

cluster sizes. It is also a special case of constrained k-means, where
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cluster sizes are set equal. However, instead of using linear pro-

gramming in the assignment phase, we formulate the partitioning

as a pairing problem [55], which can be solved optimally by the

Hungarian algorithm in O(n3) time.

6.1 BALANCED K-MEANS

To describe the balanced k-means algorithm, we need to define

what is an assignment problem. The formal definition of an as-

signment problem (or linear assignment problem) is as follows.

Suppose given two sets (A and S), of equal size, and a weight

wa,i, a ∈ A, i ∈ S, the goal is to find a bijection f : A → S so

that the cost function

Cost = ∑
a∈A

wa, f (a)

is minimized. In the proposed algorithm, A corresponds to the

cluster slots and S to the data points, see Figure 6.1.

In balanced k-means, we proceed as in the common k-means,

but the assignment phase is different: instead of selecting the near-

est centroids, we have n pre-allocated slots (n/k slots per clus-

ter), and datapoints can be assigned only to these slots, see Fig-

ure 6.1. This will force all clusters to be of same size, assuming that

�n/k� = �n/k
 = n/k. Otherwise, there will be (n mod k) clusters

of size �n/k�, and k − (n mod k) clusters of size �n/k
.

To find an assignment that minimizes the MSE, we use the Hun-

garian algorithm [55]. First we construct a bipartite graph consist-

ing of n datapoints and n cluster slots, see Figure 6.2. We then

partition the cluster slots into clusters of as even number of slots as

possible.

We generate centroid locations to the partitioned cluster slots,

one centroid to each cluster. The initial centroid locations can be

drawn randomly from all data points. The edge weight is the

squared distance from the point to the cluster centroid it is assigned

to. Unlike the standard assignment problem with fixed weights,

here the weights dynamically change after each k-means iteration
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Figure 6.1: Assigning points to centroids via cluster slots.

Figure 6.2: Minimum MSE calculation with balanced clusters. Modeling with bipartite

graph.
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according to the newly calculated centroids. After this, we perform

the Hungarian algorithm to get the minimal weight pairing. The

squared distances are stored in an n × n matrix, for the needs of

the Hungarian algorithm. The update step is similar to that of k-

means, where the new centroids are calculated as the means of the

data points assigned to each cluster:

C
(t+1)
j =

1

nj
· ∑

Xi∈C
(t)
j

Xi. (6.5)

The weights of the edges are updated immediately after the up-

date step. The pseudocode is in Algorithm 6. In the calculation of

the edge weights, the index of the cluster slot is denoted by a and

mod is used to calculate to which cluster a slot belongs (index = a

mod k). The edge weights are calculated by

wa,i = dist(Xi , Ct
(a mod k)+1)

2, (6.6)

for each cluster slot a and point i. The resulting partition of points

Xi, i ∈ [1, n], is

X f (a) ∈ P(a mod k)+1. (6.7)
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Algorithm 6 Balanced k-means

Input: dataset X, number of clusters k

Output: partitioning of dataset.

Initialize centroid locations C0.

t ← 0

repeat

Assignment step:

Calculate edge weights.

Solve an assignment problem.

Update step:

Calculate new centroid locations Ct+1

t ← t + 1

until centroid locations do not change.

Output partitioning.

The convergence result for the constrained k-means in the begin-

ning of this chapter applies to balanced k-means as well, since the

linear programming in constrained k-means and the pairing in bal-

anced k-means do essentially the same thing when the parameters

are suitably set. We can express the convergence result principle as

follows.

1. The result never gets worse

2. The algorithm ends when the result does not get better.

We consider the assignment step to be optimal with respect to

MSE because of pairing and the update step to be optimal, because

MSE is clusterwise minimized as is in k-means.

6.2 TIME COMPLEXITY

The time complexity of the assignment step in k-means is O(k · n).

Constrained k-means involves linear programming. It takes O(v3.5)

time, where v is the number of variables, by Karmarkar’s projec-
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tive algorithm [56, 57], which is the fastest interior point algorithm

known to the authors. Since v = k · n, the time complexity is

O(k3.5n3.5). The assignment step of the proposed balanced k-means

algorithm can be solved in O(n3) time with the Hungarian algo-

rithm, because the number of points and cluster slots (k · (n/k)) is

equal to n. This makes it much faster than in the constrained k-

means, and therefore allows therefore significantly bigger datasets

to be clustered.

Table 6.1: MSE, and time/run of 100 runs of Balanced k-means and Constrained k-means.

Dataset n k Algorithm Best Mean Time

s2 5000 15 Bal. k-means 2.86 (one run) 1h 40min

Constr. k-means − − -

s1 1000 15 Bal. k-means 2.89 (one run) 47s

subset Constr. k-means 2.61 (one run) 26min

s1 500 15 Bal. k-means 3.48 3.73 8s

subset Constr. k-means 3.34 3.36 30s

k-means 2.54 4.21 0.01s

s1 500 7 Bal. k-means 14.2 15.7 10s

subset Constr. k-means 14.1 15.6 8s

s2 500 15 Bal. k-means 3.60 3.77 8s

subset Constr. k-means 3.42 3.43 29s

s3 500 15 Bal. k-means 3.60 3.69 9s

subset Constr. k-means 3.55 3.57 35s

s4 500 15 Bal. k-means 3.46 3.61 12s

subset Constr. k-means 3.42 3.53 45s

thyroid 215 2 Bal. k-means 4.00 4.00 2.5s

Constr. k-means 4.00 4.00 0.25s

wine 178 3 Bal. k-means 3.31 3.33 0.36s

Constr. k-means 3.31 3.31 0.12s

iris 150 3 Bal. k-means 9.35 9.39 0.34s

Constr. k-means 9.35 9.35 0.14s
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Figure 6.3: Running time with different-sized subsets of s1 dataset.

6.3 EXPERIMENTS

In the experiments we use artificial datasets s1–s4, which have Gaus-

sian clusters with increasing overlap, and the real-world datasets

thyroid, wine and iris. The source of the datasets is [29]. As a

platform, Intel Core i5-3470 3.20GHz processor was used. We have

been able to cluster datasets of 5000 points. A comparison of the

MSE values of the constrained k-means with that of the balanced k-

means is shown in Table 6.1, and the corresponding running times

in Figure 6.3. The results indicate that constrained k-means gives

slightly better MSE in many cases, but that balanced k-means is

significantly faster when the size of the dataset increases. For a

dataset with a size of 5000, constrained k-means could no longer

provide the result within one day. The difference in the MSE is

most likely due to the fact that balanced k-means strictly forces bal-

ance within ±1 points, but constrained k-means does not. It may

happen that constrained k-means has many clusters of size �n/k
,

but some smaller amount of clusters of size bigger than �n/k�.
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7 Clustering Based on Mini-

mum Spanning Trees

Constructing a minimum spanning tree (MST) is needed in some

clustering algorithms. We review here path-based clustering, for

which constructing a minimum spanning tree quickly is beneficial.

Path-based clustering is used when the shapes of the clusters are

expected to be non-spherical, as manifolds.

7.1 CLUSTERING ALGORITHM

Path-based clustering employs the minimax distance to measure the

dissimilarities of the data points [58, 59]. For a pair of data points

Xi, Xj, the minimax distance Dij is defined as:

Dij = min
P k

ij

{ max
(Xp,Xp+1)∈P k

ij

d(Xp, Xp+1)} (7.1)

where P k
ij denotes all possible paths between Xi and Xj, k is an

index that enumerates the paths, and d(Xp, Xp+1) is the Euclidean

distance between two neighboring points Xp and Xp+1.

The minimax distance can be computed by an all-pair shortest

path algorithm, such as the Floyd Warshall algorithm. However,

this algorithm runs in time O(n3). An MST is used to compute the

minimax distance more efficiently by Kim and Choi [60]. To make

the path-based clustering robust to outliers, Chang and Yeung [61]

improved the minimax distance and incorporated it into spectral

clustering.

7.2 FAST APPROXIMATE MINIMUM SPANNING TREE

The paper V presents the fast minimum spanning tree (FMST) algo-

rithm. It divides the dataset into clusters by k-means and calculates
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the MSTs of the individual clusters by an exact algorithm. Then

it combines these sub-MSTs. Figure 7.1 shows the phases of the

construction.

(a) Data set (b) Partitions by K-means (c) MSTs of the subsets (d) Connected MSTs

(e) Partitions on borders (f) MSTs of the subsets (g) Connected MSTs (h) Approximate MST 

Divide-and-conquer stage:

Refinement stage:

Figure 7.1: Phases of FMST algorithm.

7.3 ACCURACY AND TIME COMPLEXITY

The MST of a dataset can be constructed in O(n2) time with Prim’s

algorithm (we deal with complete graph). The exponent is too high

for big datasets, so a faster variant of the algorithm is needed. We

propose the FMST algorithm, which theoretically can achieve a time

complexity of O(n1.5). To get an estimate on its time complexity in

practice, runs were made with different sizes of subsets of data and

curves T = aNb were fitted to that data to find the exponent b. The

running time in practice was found to be near an1.5, see Table 7.1.

The difference between theoretical and practical time complexity is

due to the fact that the theoretical analysis makes the assumption

that the cluster sizes are equal. This binds the publication V to

balanced clustering.
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Table 7.1: The exponent b obtained by fitting T = aNb. FMST denotes the proposed

method.

b

t4.8k MNIST ConfLongDemo MiniBooNE

n 8000 10000 164,860 130,065

d 2 748 3 50

FMST 1.57 1.62 1.54 1.44

Prim’s Alg. 1.88 2.01 1.99 2.00

The resulting MST is not necessarily correct, but there may be

some erroneous edges, the error rate being circa 2%–17% of the

edges according to experiments.

The accuracy of the algorithm was tested on a clustering appli-

cation. We tested the FMST within the path-based method on three

synthetic datasets (Pathbased, Compound and S1) [29].

For computing the minimax distances, Prim’s algorithm and

FMST are used. In Fig. 7.2, one can see that the clustering results

on the three datasets are almost equal. Quantitative measures are

given in Table 7.2, which contains two validity indexes [3]. They in-

dicate that the results of using Prim’s algorithm on the first dataset

are slightly better than the FMST, but the difference is insignificant.
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Prim’s algorithm Proposed FMST
pathbased

compound

s1

Figure 7.2: Prim’s algorithm (left) and the proposed FMST based (right) clustering results

for datasets pathbased (top), compound (middle) and s1 (bottom).
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Table 7.2: The quantitative measures of clustering results (Rand and Adjusted Rand in-

dices). FMST denotes the proposed method.

Datasets
Rand AR

Prim FMST Prim FMST

Pathbased 0.94 0.94 0.87 0.86

Compound 0.99 0.99 0.98 0.98

S1 0.995 0.995 0.96 0.96
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8 Summary of Contributions

In this chapter we summarize the contributions of the original pub-

lications I–V. The publications I–IV introduce new clustering al-

gorithms and the publication V introduces a heuristic minimum

spanning tree calculation.

I: Data clustering is a combinatorial optimization problem. This

publication shows that the clustering problem can be also consid-

ered as an optimization problem for an analytic function. The mean

squared error can be written approximately as an analytic function.

The gradient of this analytic function can be calculated and stan-

dard descent methods can be used to minimize this function. This

analytic function formulation is a novel finding.

II: A model in clustering means the representatives of clusters.

Traditionally, clustering works by fitting a model to the data. In this

publication, we use the opposite starting point: we fit the data to

an existing cluster model. We then gradually move the data points

towards the original dataset, refining the centroid locations by k-

means at every step. This is a novel approach and the quality of the

clustering competes with the repeated k-means algorithm, where

we set the number of repeats to be the same as the number of steps

in our algorithm.

III: In this publication, we show that a clustering method where

the total squared errors of the individual clusters are weighted by

the number of points in the clusters, provides more balanced clus-

tering than the unweighted TSE criterion. We also present a fast

on-line algorithm for this problem. Balanced clustering is needed

in some applications of workload balancing.

IV: This publication introduces a new balance-contrained clus-

tering algorithm. In balance-constrained clustering, the sizes of the

clusters are equal (+/- one point). The algorithm is based on k-

means, but it differs in the assignment step, which is defined as

a pairing problem and solved by the Hungarian algorithm. This
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makes the algorithm significantly faster than constrained k-means,

and allows datasets of over 5000 points to be clustered.

V: We apply a divide-and-conquer technique to the calculation

of an approximate minimum spanning tree. We do the divide step

with the k-means algorithm. The theoretical analysis is based on

the assumption that the clusters are balanced after the divide step,

which binds this publication to balanced clustering. A minimum

spanning tree can be part of a clustering algorithm. This makes the

quick computation of the minimum spanning tree desirable.
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9 Summary of Results

We show the details of the datasets used throughout this thesis

in Table 9.1. The main results for all the proposed algorithms are

shown in Tables 9.2 and 9.3. The methods of MSE vs. balance plots

are listed in Table 9.4 and the MSE vs. balance plots are in Fig-

ures 9.1 and 9.2. In these plots the datsets s1 150 and s4 150 are

subsets of 150 points of datasets s1 and s4.

In Figures 9.1 and 9.2 we see that constrained k-means and bal-

anced k-means have perfect balance (values 0), and Scut performs

well with regard to both MSE and balance.
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Table 9.1: Details of the used datasets.

dataset type n k d used in publication

I II III IV V

s1 synthetic 5000 15 2 x x x x

s2 synthetic 5000 15 2 x x x x

s3 synthetic 5000 15 2 x x x

s4 synthetic 5000 15 2 x x x

a1 synthetic 3000 20 2 x x

DIM32 high-dim. 1024 16 32 x x

DIM64 high-dim. 1024 16 64 x

DIM128 high-dim. 1024 16 128 x

DIM256 high-dim. 1024 16 256 x

Bridge image 4096 256 16 x

Missa image 6480 256 16 x

House image 34112 256 3 x

Glass real 214 7 9 x x

Wdbc real 569 2 32 x x

Yeast real 1484 10 8 x x x

Wine real 178 3 13 x x x x

Thyroid real 215 2 5 x x x x

Iris real 150 3 4 x x x x

Breast real 699 2 9 x x x

Pathbased shape 300 3 2 x

Compound shape 399 6 2 x
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Table 9.2: Averages of MSE/d values of 10–200 runs of methods. *) Best known values

are among all the methods or by 2 hours run of random swap algorithm [18] or by GA [17].
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Table 9.3: Processing time in seconds for different datasets and methods.
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Summary of Results

Table 9.4: Methods compared in Figures 9.1–9.2.

Method Reference Abbreviation

Analytic clustering publication I Analyt

k-means* publication II k-means*

Scut publication III Scut

Balanced k-means publication IV Bal km

Constrained k-means [33, 54], publication IV Constr

k-means [11] k-means

Genetic algorithm [62] GA

Ncut [39, 63] Ncut
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Figure 9.1: MSE vs. balance for different methods. Means of 100 runs.
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Figure 9.2: MSE vs. balance for different methods. Means of 100 runs.
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10 Conclusions

In the publication I we have formulated the TSE as an analytic func-

tion and shown that the optimization of TSE can be made by gra-

dient descent method. The results of the algorithm are comparable

to k-means. As future work, the same technique could be used to

produce clustering with infinity norm distance function.

In publication II we have introduced a completely new approach

for optimizing MSE. The results are better than those of k-means++

and are comparable to repeated k-means.

In publication III we formulate l2
2 k-clustering cost function us-

ing TSE and show that it leads to more balanced clusters than tra-

ditional clustering methods. The algorithm can be used when both

good MSE and good balance are needed.

In publication IV, we introduce a balance-constrained cluster-

ing method, balanced k-means. The algorithm provides MSE opti-

mization with the constraint that cluster sizes are balanced. The

algorithm is fast compared to constrained k-means, and it provides

clustering of datasets as big as over 5000 points. The algorithm can

be used, for example, in workload balancing. As future work, a

faster variant of balanced k-means could be produced. It should be

fast enough to be used in the context of the publication V to achieve

the theoretical result in practice.

In publication V, approximate MST is obtained theoretically in

O(n1.5) time compared to O(n2) of Prim’s exact algorithm. The

resulting MST was used in path-based clustering.

Overall, this thesis provides new alternatives to k-means clus-

tering, either comparable to k-means, as in publications I and II, or

having some special purpose, such as in publications III and IV.
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