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Tiivistelmä: Kone-, syvä- ja vahvistusoppimista käyttävät tietokoneohjelmat ovat mah-
dollistaneet monimutkaisemmaskin ympäristöissä toimivien agenttien luomisen. Eri-
tyisesti peleille luodut agentit ovat voittaneet parhaimpia ihmispelaajia. Näihin pelei-
hin kuuluu klassisia mutta vaikeita pelejä kuten shakki, Go ja Pokeri. Yksinkertaisem-
matkin videopelit voivat tarjota haastetta näille agenteille johtuen niiden visuaalisen
monimuotoisuudesta ja osittain havaittavasti tiloista, esim. shakissa pelaaja näkee koko
laudan, video pelissä ei välttämättä. Esimerkiksi ihmispelaajaa parempi agentti Atari
pelejä varten kehitettiin vasta n. 30 vuotta varsinaisten pelien julkaisun jälkeen.Syvän
vahvistusoppimisen agentit voivat käyttää raakaa harmaasävykuvaa pelistä, samaa mitä
ihmispelaaja näkee, toimiakseen ympäristössä. Tämä ei vaadi erillistä piirteiden irroit-
tamista ja on täten helppo tapa antaa syötettä agentille. Tämän tutkielman tarkoitus on
tutkia onko kyseinen harmaasävykuva myös tehokkain syöte, eli antaako se agentille
mahdollisuuden oppia parempia toimintatapoja kuin mm. erikseen irrotetut piirteet.
Harmaasävykuva yksinään voi tarjota tietoa joka ei ole relevanttia ongelman ratkaisun
kannalta (mm. pienet yksityiskohdat seinässä), mutta kehittyneempi piirteiden irrotus
voi hävittää tietoa joka olisi hyödyllistä agentin oppimisen kannalta. Tämä on osit-
tain seurausta siitä miten piirteet usein ovat datamäärältään pienempiä kuin raaka data,
mutta on mahdollista että agentti voisi oppia raa’asta syötteestä jotain mitä kehittäjät
eivät ole huomanneet.
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Jaśkowski
May 2017

Abstract: Machine, deep and reinforcement learning have made it possible to create
artificial agents that can function in a complex environments to complete a given task.
Especially agents created for different games have been able to win the best human
players. This includes classical but computationally difficult games such as chess, go
and poker, but recently there has been similar achievements with video games. Simple
video games also offer challenge for artificial agents due to their relatively complex
visuals and partially observable states, e.g. in chess a player can see the whole board,
but in first-person shooter player only sees virtual avatar’s point-of-view. For example,
a super-human agent for a set of Atari was created circa 30 years after release of the
games. Deep reinforcement learning agents are able to use same visual input human
player would perceive, which can be gray-scale or color image of the screen. This
avoids the issue of feature extraction in favor of learning representations, and is an easy
way to provide input features for the agent. The purpose of this thesis is to study if the
raw input is also the highest performing way of providing input features, compared to
using feature extraction. Gray-scale image can provide information that is not directly
apparent while designing feature extraction method, and thus is lost during feature
extraction as features require less space. It is possible that agent’s neural network is
able to learn something unforeseen and useful from the raw input, which increases the
performance of the agent.

Keywords: reinforcement learning, deep learning, feature extraction, learning repre-
sentations, machine learning, neural networks, video game

CR Categories (ACM Computing Classification System, 2012 version): A.m, K.3.2

• Computing methodologies ~Reinforcement learning

• Computing methodologies ~Feature selection

• Computing methodologies ~Neural networks

• Computing methodologies ~Artificial intelligence

ii



List of abbreviations

w.r.t "with respect to"

SGD Stochastic gradient descent

MDP Markov decision processes

POMDP Partially observable Markov decision processes

DQN Deep Q network

CNN Convolutional neural network

RNN Recurrent neural network

LSTM Long-short term memory

TD Temporal difference

CPU Central processing unit

GPU Graphical processing unit

A3C Asynchronous advantage actor-critic

GA3C GPU asynchronous advantage actor-critic
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List of common symbols

Scalar-valued variables are written in small letters (e.g. x). Vectors are written in small

letters and bold-faced (xxx), and matrices are in capital letters and bold faced (AAA). Unless

otherwise mentioned, vectors are column-vectors and matrices have row-vectors,

i.e. rows of matrix are observations and columns are feature components. Subscript

notion either means indexing of vector/matrix or different versions of same variable,

e.g. at different time steps.
t ∈ N Time step.

T ∈ N Final time step, time step of the terminal state.

S Set of all possible states.

A Set of all possible actions.

s ∈ S State provided by an environment.

a ∈ A An action to be executed in an environment.

P (st+1 | st, at) Model of state transitions in the environment.

R(st, at, st+1) Reward function, returns rewards rt for given state transition.

r ∈ R Reward from executing action in an environment.

e An experience. Equals to (st, at, rt, st+1) at given t.

π(st) Policy function, returns an action at given a state.

π∗(st) Optimal policy function.

Vπ(st) Value function under given policy.

Qπ(st, at) State-action value function under given policy.

γ ∈ R Discount factor, controls how far-sighted reinforcement learning is.

N ∈ N Number of observations / feature vectors.

d ∈ N Number of components in feature vectors (dimension).

θ , w Model parameters/weights.

x Input feature(s).

y True output(s) (also called "ground truth", "target").

ŷ Estimated output.

η ∈ R Learning rate (often a small constant, e.g. [10−8, 10−1]).
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1 Introduction

Creating agents that interact with an environment to solve a problem have been studied

for years by using different methods, including algorithms (e.g. tree search), genetic

algorithms [13] and reinforcement learning (e.g. [41]) . The appearance of so called

deep learning (e.g. [15]) has had an impact on creating intelligent agents, one of the

examples being recently proposed Deep Q Network (DQN) [27] which was able to beat

human players in number of Atari games by only using the same inputs human would

receive.

The key aspect of deep learning is to avoid manual feature crafting by letting computer

learn representations from the raw, possibly noisy and flawed input data. Images can

be fed into system directly instead of first extracting expert features for the image,

for example. This is proven to be effective method in many tasks [15], for example in

detecting and captioning objects from an image [50], recognizing what is being spoken

[16] and chatting with a human in a natural manner [47].

If the task is to build a system that acts in an environment optimally by some met-

ric, reinforcement learning [41] provides a framework build systems for deciding ac-

tions given inputs. These methods are mostly illustrated and tested with toy examples

where the environment can be represented with small set of discrete values in tabu-

lar format. For example [41] uses simple boards and theoretical games like n-armed

bandit problem, and [14] describes relatively simple pole-balancing problem. Com-

bining reinforcement learning with methods from area of deep learning, Deep Q Net-

work (DQN) [27] was able to use raw image data from an Atari game without manual

feature extraction and beat human player in most of the tested Atari games. Since

publication of DQN a number of improvements to original DQN have been proposed

(e.g. [48, 32, 46]) including a number of different reinforcement learning methods for

similar video game based environments.

Number of platforms for creating and/or evaluating reinforcement learning agents in

richer environments has been also published, like OpenAI Gym [7], ViZDOom [22],

DeepMind Lab [3], Minecraft [20] and OpenAI Universe [31]. Mentioned platforms

use video games designed for human players as a platform for AI agents.. One

could argue this signs of an improvement in such decision-making agents as we can

start to apply them to increasingly challenging tasks, especially to ones that are origi-
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nally created for humans.

However, while reinforcement learning systems using deep learning with raw sensory

inputs with success, like DQN with Atari games [27], there is little research on the

subject if raw information such as images is beneficial over higher level features (e.g.

[5]). Arguably both approaches have their cons and pros: Using deep learning and raw

image is straight forward "plug-and-play" and can yield good performance, as long as

the model itself is large enough and one gives enough time and data to train the sys-

tem. However, using manually defined features can incorporate researcher’s domain

knowledge to the system and the crafted feature vectors can be smaller, allowing faster

training. Then again, process of extracting features can discard some essential infor-

mation that could be beneficial to the machine learning system, while deep learning

receives most if not all of the information available.

This thesis aims to find some answers to whether raw data and deep learning is a better

approach than manually crafted features. Specifically, the research question is "Do
reinforcement learning agents benefit from using raw image data compared to
using other features?" Hypothesis is that using raw information allows reinforcement

learning agent to perform better than using higher level features. This thesis studies this

with experiments with reinforcement learning agents in a 3D environment ViZDoom

[22]. This thesis first introduces general machine learning and reinforcement learning

basics, including terms and methods. Next is introduction to deep learning and how it

can be combined with reinforcement learning (more precisely, neural networks were

combined with reinforcement learning). After theoretical background thesis describes

experimental setup to approach the research question and reports the results along with

a discussion of the results.

1.1 Video games for artificial intelligence research

Developing decision systems, such as the reinforcement learning agents, requires an

environment and a task to work on. This can be provided by simulations for a specific

task (e.g. locomotion), board games (e.g. Go, Chess) or lower level toy tasks (e.g. pole-

balancing task described in [14]). By implementing the environment for a specific task

researchers are able to obtain necessary values from the software interface which is

then fed to the decision agent. However, with the development of deep learning we can
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also use raw sensory input such as RGB or gray-scale images. This allows extending

set of possible environments to video games which do not provide the direct values, but

instead provide an image and audio. This is utilized in the experiments of this thesis

by using video game "Doom" [18] as the environment with different tasks.

Some video games have been built to emulate physical world in terms of visual fidelity

(e.g. lighting, shadows, colors) and interaction (e.g. modeling physics). For this reason

they provide rich and complex set of environments which were originally designed for

human players. They are also convenient to use compared to real life measurements

and robotics because they offer a mostly noiseless, controllable environment. This is

especially useful with deep reinforcement learning (see Chapter 4) which can require

hundreds of hours of interaction with the environment to optimize parameters of a

neural network. This can be sped up by running the video game at a faster rate or

by running multiple instances of the game in parallel, which is less feasible for the

physical world. While current video games do not provide as complex environment as

our physical world, modern games published by big companies are approaching photo-

realistic levels in terms of visual fidelity. For example, popular video game "Grand

Theft Auto V" [30] has been utilized to produce a dataset of images for training neural

networks [35].

Video games and simulations also provide platforms for creating different tasks

very similar to what we could create in physical world. Previously mentioned

"Grand Theft Auto V" could also be used to create a setup for a self-driving car.

Since the game includes simulation of traffic and detailed roads, researchers could

try out their methods in this simulated environment first to get a rough idea how

their methods could work in a physical world scenario. If the video game is

rich in features, one could experiment with general artificial intelligence that could

solve multiple different problems, such as completing game’s missions without pre-

defined help. Outside academic publications, there are videos of "Grand Theft

Auto V" being used for training a self-driving car [34] (links to the DeepDrive

videos: https://www.youtube.com/watch?v=1uURlRKfLqY and https:

//www.youtube.com/watch?v=X4u2DCOLoIg).

Video games also provide a connection between humans and artificial agents. The

previously mentioned "Grand Theft Auto V" provide multiplayer feature that allows

multiple human players to play in same world. We could replace some of these players

with artificial agents and directly interact with the agents this way. Sharing similar plat-
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form also supports measuring performance of an artificial intelligence against human

players, like in case of Deep Q Network [27] where researchers were able to gather per-

formance scores of professional human players and the built artificial system. Some

games, like "Starcraft 2" [11] and "Dota 2" [8], are used in professional, competitive

tournaments akin to sports ("e-sports"). Similarly to sports, e-sports have a number of

professional players who can provide good basis for measuring super-human perfor-

mance, as they are proven to be most capable human players in the game via official

tournaments.

While competing against human players in modern (between 2010 and 2017) is inter-

esting, executing said games requires a lot of computing power and technical setup to

be achievable. Instead, video game "Doom" [18] provides a first-person shooter style

of setup with first-person view and a 3D environment (see Figure 1). VizDoom [22] is

built on-top of Doom to provide means to train and evaluate artificial agents by running

the game at high thousands of frames per second or even in parallel. This thesis will

use VizDoom for empericial experiments.
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Figure 1: An image of Doom [18] video game (via ViZDoom [22]). The generic goal
is to kill enemies and stay alive using available pickups and weapons. Player can
move around in 3D space and turn left and right (ViZDoom also allows looking up and
down). While game is visually simple it still provides challenging task for bots to use
as a visual input as of writing this thesis. Image source: http://vizdoom.cs.
put.edu.pl/
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2 Reinforcement learning

Reinforcement learning [41] is about learning to make actions in an environment which

maximizes a numerical reward. It encompasses methods, definitions and framework to

work on natural decision problems. "Natural", because this is what we humans and

other animate entities do all the time in our physical world. We constantly have to

make decisions, larger and smaller, which somehow benefit us in a longer or shorter

term. Humans eat when they are hungry to satisfy the hunger, spend time at a job to

gain wealth to ease live in future and study for new subjects to possibly get a paying

job later in future [citation needed].

We can recreate some of this artificially. For rough examples: A hypothetical vacuum-

cleaner robot has to decide in which order to clean the rooms/areas to minimize dis-

tance traveled. An artificial video game player (bot) decides where to go next to find

possible enemies or do other objectives defined by the game. A self-driving car must

constantly make small but crucial decisions while driving based on its surroundings to

avoid hitting pedestrians or other vehicles in the traffic.

Some of the tasks for bots can have simple solutions. For example, since we know

all the rules of the chess, and the gaming board is strict grid of known pawns, we can

program computer to go through all possible states and moves made by them and their

enemy. By going through all possible states till game ends, algorithm can compute

which action in current state is the most likely to lead to a victory (or which action is

least likely to result to defeat). In theory this works well, but the number of computa-

tions required to go through all states might be simply too high for any computer solve

in a meaningful time.

Another approaches exist for such decision problems. For example genetic algorithms

[13] use fitness function to evaluate slightly mutated versions of some system and select

the highest performing systems for the next generation [13]. One can also remove

learning part completely and use methods like tree-search, where algorithms searches

tree made of states (nodes) and actions (edges) to find a way to reach a good state. One

recent example of this was AlphaGO [39] which used Monte-Carlo tree-search to find

good actions, and managed to beat world-master in game of Go.

For the purpose of this thesis we focus on reinforcement learning. While there is no
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clear, best-performing approach currently, recent advances like Deep Q Network [27],

AlphaGo [39], Asynchronous reinforcement learning [26] provide empirically good

basis to work on, especially in video games in a end-to-end setting (raw image in,

action out).

2.1 Core concepts

We require few concepts before we can properly define the problem. First, we call

our decision making system an agent [41]. Agent encompasses the means to make

decisions of actions it wants to take in the environment. Second, we need a space

which can include our agent and define our task. We call this an environment [41].

According to [41] environment is everything that is outside of an agent. I.e. even if

environment in reality has other "agents" (e.g. opponent player), they are included in

the environment our agent is interacting with. Finally we can include our task. The

task defines what is agent’s mission in the provided environment, and agents job is

the start making decisions and executing actions to complete the provided task. More

formal definitions will be presented in Chapter 2.2

Instead of using predefined dataset with known or unknown targets like in machine

learning (see Chapter 3), reinforcement learning approaches task by learning from in-

teraction with the environment [41]. Supervised learning uses given set of data to

optimize the parameters with respect to some loss/target function, while reinforcement

learning has to gather this data via interaction and learn itself what is desired output

given some input. Instead of known targets/outputs the reinforcement learning uses

reward [41] to optimize the parameters of the agent to generate optimal outputs in the

future. Reward is a scalar value given by the environment after executing an action

from the agent which tells how good the executed action was. It should be noted that

the reward function might not explicitly model the final goal of the task. For example,

we can give reward for sub-objectives that benefit reaching to final goal.

Finally, the task for an agent is quite simple: Interact with the environment so that
sum of obtained reward is maximized. The formulation of this task the agent also

accounts for the possible future situations and rewards instead of just considering the

very next actions, which would be very short-sighted. In our example of game of

chess, we could give agent positive reward for each pawn they eat from opponent
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(or from winning the game). The agent would learn to eat opponent’s pawns since it

grants immediate reward, but it would also learn to plan long-term actions to maximize

amount of pawns agent eats. One has to adjust rewards correctly to allow reinforcement

learning system to learn to solve correct task, which can be a challenging task.

2.2 Mathematical framework

Reinforcement learning uses Markov decision processes (MDP) [4] as a mathematical

framework. More precisely, reinforcement learning tasks that satisfy Markov property

are called MDPs. A process satisfies Markov property if its possible successive states

are only dependent on the current state. A number of variations for MDP exist, but

this thesis will focus on finite-MDPs. Finite-MDP has finite and countable number of

possible states. MDP can also have infinite number of states, e.g. in case of continuous

states like object’s coordinates in real valued space. Another variation is partially

observable Markov decision processes (POMDP) (e.g. [28]) which allows states to

be partially observed (e.g. in poker, agent can’t see opponent’s cards). In the case of

finite POMDP, one can express the POMDP as a MDP but with uncountable number

of states [28].

Finite MDP can be seen as a finite state machine which consists of state nodes S, action

nodes A, connections S to A and connections A to S (note how state only leads to new

state via an action). Each state s ∈ S connects to available actions a ∈ A, which then

connect to new states which can happen after selecting said action in the given state.

Time step t separates states from each other, and successive states have successive time

steps. E.g. at is the action taken in st, and st+1 is the state proceeding the action. Since

the process/environment can be stochastic, these connections from actions to states can

be non-deterministic. Function P (st+1 | st, at) ∈ R determines transition probabilities

between states and actions. A reward function R(st, at, st+1) ∈ R [41] assigns reward

rt ∈ R to every state transition via an action, which is used to determine which actions

are wanted and which are not. Agent will advance in this graph of states and actions

in a cycle of receiving a state, executing an action and receiving a reward from the

environment. Before agent receives the reward the environment proceeds to the next

state which can include interaction of other entities (e.g. other players). This cycle is

illustrated in Figure 2.
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Environment

Agent

3. Execute

    action

1. Get

    state

5. Get

    reward

2. Decide action 

4. Process action

    Proceed to next state

    Compute reward

(6.) Learn from interaction 

Figure 2: Interaction step between reinforcement learning agent and environment. This
is not a strict model for all reinforcement learning models, e.g. environment can ad-
vance multiple steps from one action. Learning can be done after each step or in
batches after certain amount of actions.
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For interacting with the environment need to define a policy π(st) [41] which returns an

action at to execute given a state, defining how the agent behaves in the environment.

We try to find the optimal policy π∗(st) which provides best possible action given

any state. Given a policy, we can define value function Vπ(st) [41] which returns

value of a given state. The value describes how good the given state in terms of the

given policy and foreseeable future. A similar function is a state-action value function

Q(st, at) ∈ R [41] that returns value for an action in a given state. Some reinforcement

learning systems also utilize a model of the system which estimates how MDP will

transition from given state and action to a next state (i.e. predict next state given current

state and action).

Term "good" is used to describe an action or state that is expected to return a high

cumulative sum of rewards in future. A bad action or state would in turn return low

cumulative reward. We can also express the "goodness" of a state or action with value.

If we assume we have optimal policy π∗ and correct values for state/state-action value

functions, value of state st under policy π∗ is defined as [41]

Vπ∗(st) = E
[
rt + γVπ∗(st+1)

]
. (1)

That is: The value of a given state is expected sum of immediate reward and weighted

value of the next state. The state-action value Qπ∗(st, at) is defined similarly:

Qπ∗(st, at) = E
[
rt + γmax

a
Qπ∗(st+1, a)

]
. (2)

Both (1) and (2) include recursive relationship by using values from successor states,

which allows these values to also include information from possible future. In case

of state-action value, we optimistically select highest value we could reach from state

st+1.

These equations included a new variable discount factor γ [41]. One could count

reward from all future states as they are, but we might want to emphasize for higher

close-future rewards instead of long-term rewards. With γ = 0, value of a state only

includes the next reward (very short-sighted, akin to a greedy algorithm). With γ ≈ 1,

value of a state includes very long term rewards and might choose bad actions (in short

term) to reach a very good state in longer term.

10



While above applies for most states and actions, sometimes there might not always be a

next state available. This happens when e.g. game of chess has ended (state st was one

step away from either player winning). This state without proceeding state is called

a terminal state, and an episode is sequence of actions and states starting from some

initial state and ending to a terminal state, e.g. one full game of chess. In practice

these terminal states break the bootstrapping, and practical implementations need to

treat them appropriately to avoid connecting terminal states to initial state (e.g. player

dying suddenly leads to him being alive again, which could be interpreted as a good

thing). In case of terminal states, the value function is simply defined

Vπ∗(sT ) = E
[
rT

]
. (3)

We use T to represent the terminal time-step, after which no more steps will happen

and new episode will start from t = 0.

To sum this all up with an example of game of chess: A state s would be one of the

pawn setups in the board, an action a would be agent moving a pawn, and transition

probability P (st+1 | st, at) models how opponent could react to agent’s action. Reward

function R(st, at, st+1) returns positive rewards when an opponent pawn was eaten or

game was won, depending on how it is defined. Agent’s policy π(st) provides the

(hopefully optimal) actions given a state, and value function Vπ(st) provides estimation

on how good the current state is for the agent (e.g. if agent is close to victory the value

of such state is high, and if agent is about to lose the value is low). Optional model

of this environment would attempt to estimate what action opponent takes given a

state and agent’s action. A state right before either of players winning the game is the

terminal state.

2.3 Value based learning

We can now approach solving our reinforcement learning problem and find the optimal

policy. One of the ways to do is by approximating the value and/or state-action value

functions and using them to create our policy. This is referred as action-value methods

[41] (with terms of this thesis, state-action value methods) or just value methods.

Following methods assume number of states and actions per state are small enough to
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form a sensible matrix of all state-action pairs. This helps understanding the methods

and is also used in practice in some situations (e.g. chess could be represented with

this). For large state or action-spaces, linear approximations of this table may be used.

More on this in Chapter 4.

2.3.1 Policy iteration

Policy iteration using dynamic programming is the first method described in [41] Chap-

ter 4. Assuming we know all possible states S, actions A, transition probabilities

P (st+1 | st, at) and immediate rewards R(st, at, st+1), we can find the optimal policy

in a finite number of steps. This solution consists of iterations of two phases: Policy

evaluation phase calculates new estimate of the value function V (st) using the current

policy πt. Then, policy improvement phase uses this new value function to estimate

the new version of the policy πt+1. This method converges to π∗ when iteration count

approaches infinity [41]. We have to repeat this iteration many times, because at first

iteration policy only knows states’ immediate rewards rt of states, at second iteration it

knows states’ value two states ahead of time rt + γrt+1, at third step three steps ahead

rt + γrt+2 + γ2rt+3 and so on. The more iterations, the further in future the agent sees

when deciding actions. Detailed algorithm is included in Algorithm 1.

A similar approach value iteration [41] does not use policy function to update itself,

instead operations are truncated in updating value function alone. Instead of taking

expected value of future state to be the value of a state, we take maximum of the values

of future states plus the immediate reward.

Both of these iterative schemes have been shown to give better policy than the original

policy on each iteration unless the original policy is already optimal ([41], pages 89-

90).

2.3.2 Monte Carlo and temporal difference learning

One problem of dynamic programming in reinforcement learning is the assumption of

complete knowledge of the environment (the model, i.e. transitions P (st+1 | st, at)).

These are very rarely known in practical applications and thus we can not rely on hav-

ing this oracle knowledge. Monte Carlo methods for reinforcement learning avoid this

issue by using experiences instead of explicit model of the environment [41]. An ex-

perience e consists of a state, an action, gained reward and a next state. Monte Carlo

method runs a large number of games (episodes) in the environment, gathering experi-
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Assume known P (st+1 | st, at) and R(st, at, st+1) for all st ∈ S and at ∈ A;
V (s)← arbritrary R for all states;
π(s)← arbritrary valid action for all states;
γ ← discount factor;
while Policy function not converged do

Update value function (policy evaluation);
while Changes in value function significant (not converged) do

for st ∈ S do

V (st)←
∑

st+1

Weight based on policy︷ ︸︸ ︷
P (st+1 | st, π(st))

Expected value of going to state st+1︷ ︸︸ ︷[
R(st, π(st), st+1) + γV (st+1)

]
;

end
end
Update policy function (policy iteration);
for st ∈ S do

π(st)← arg maxa

Expected value of taking action a︷ ︸︸ ︷∑
st+1

P (st+1 | st, a)
[
R(st, a, st+1) + γV (st+1)

]
end

end
Algorithm 1: Pseudo code of policy iteration [41]. By knowing all transition prob-
abilities and immediate rewards, we can update the value function to include future
horizon of rewards. We can then use this value function to determine best actions
per state. Note that for practical implementation more convergence checks must be
added, especially if there are more than one optimal policies.

ences and then using these experiences to run policy/value iterations instead of a strict

knowledge of environment. After an episode we can update our value and/or state-

action value functions with the gathered knowledge, since we know future rewards in

every state till the terminal state. Essentially we are sampling the environment with a

number of episodes.

Even with Monte Carlo approach, policy/value iteration is tedious to update: We re-

quire large number of samples and finished episodes before we can run a single update

on the policy and the value functions. Temporal difference (TD) (Chapter 6. [41])

learning avoids this problem by updating the value/policy function on each time step.

With Monte Carlo methods we required to know the return of the whole episode (play-

ing from the start to terminal state and gathering the true sum of rewards), but in tem-

poral difference learning we update the value function with the immediate reward and

value of the next state. The sampled immediate reward provides more information

about the value of the previous state, while bootstrapping to the known information
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of the value of the next state provides information about future state values. Simplest

temporal learning method, TD(0) [41], updates value of a state as follows:

V (st) = V (st) + η[rt + γV (st+1)− V (st)], (4)

where η is the learning rate, preferably a small constant 0 < η < 1 [41]. This defines

how much of a weight one sample has on our estimate of value function. Without

this parameter learning would only focus on the observed experience, instead of recall-

ing the past experiences. While this greedy-looking way of bootstrapping only to the

next state first seems suspicious, it has been shown to converge to a optimal policy if

learning rate is small enough and tabular value functions are used [41].

Q-learning [49] is a temporal difference method that has very similar structure to (4),

only with the action values instead of the state values:

Q(st, at) = Q(st, at) + η[rt + γmax
a
Q(st+1, a)−Q(st, at)]. (5)

2.3.3 N -step temporal difference learning

A mix between temporal difference and Monte Carlo methods is to have multiple steps

in temporal difference algorithm. The presented Q-learning update (5) includes only

one step (next state). We can have the same equation with, say, three steps. We read

the states, execute actions and receive rewards of three steps ahead before updating our

t state value:

Q(st, at) = Q(st, at) + η
[
rt + γrt+1 + γ2rt+2 + γ3 max

a
Q(st+3, a)−Q(st, at)

]
.

(6)

This is called n-step Q-learning (more generally just n-step TD learning) [41]. The

discounted sum of successive rewards is called return, which here was G3 = rt +

γrt+1 + γ2rt+2. With this we may require less visits to state-action pair st and at to

approximate the true value. This is especially useful with large state and action spaces

where we might rarely visit a certain state, e.g. reaching winning check-mate in chess.
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2.3.4 Eligibility traces

Eligibility traces [41] further generalizes this idea by taking discounted sum of n-step

learning values with different n. E.g. With three steps, we would take take discounted

sum of 1-step, 2-step and 3-step returns. The λ variable in TD(λ) determines the

strength of this discount. Let Gn be return of n steps at some state. The λ-return [41]

is then defined by

rλ = (1− λ)
∞∑
n=1

λn−1Gn , (7)

where λ ∈ (0, 1). This is similar to reward discounting, except we are taking a

weighted average over different n-step returns instead of just summing them. With

smaller λ the temporally closer states have higher weight. Previously mentioned TD(0)

only includes reward from the very next state. TD(1) learning would include all re-

wards till the terminal state, essentially making it a Monte Carlo learning.

2.3.5 Defining policy function and exploration

So far we have only approximated value and/or state-action value functions but we

have not defined our policy function yet. Some of the equations above use greedy

action [41] by selecting action which has the highest value according to our current

state-action value function:

πθ(st) = arg max
a

Q(st, a) . (8)

This method is very intuitive. After all, we wish to maximize our expect reward for the

future. However, it has some problems: If we use this policy to select actions while

learning, i.e. do on-policy learning [41], we might never visit some states. For example:

In a game of chess, if our agent eats enemy pawn with the king it will experience that

action as a good experience. However, after this parameter update it will always use

king to eat the enemy pawn in that same situation, and will not try any other actions in

that state. This is problem of exploitation vs. exploration [41]: How we should balance

between exploiting current knowledge and exploring new, unseen actions?

One simple approach to this is to use ε-greedy policy [41]. Instead of always choosing
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the action with highest expected reward, we choose a random action at some probabil-

ity ε:

πθ(st) =

arg maxaQ(st, a) at probability 1− ε

random available a at probability ε
. (9)

This way we have the advantage of not getting with same action every time. Another

exploration technique is to use exploring starts [41], where each episode starts from a

random state. However, this is not always practical (e.g. You only have one initial state

in a game of chess).

Using ε-greedy policy has very short sighted exploring. If certain sequence of actions is

required to reach reward, this random action selection may take very long to randomly

pick this sequence. In some cases some actions might even cancel each other out. In

VizDoom [22] agent can chose to turn left or right certain amount of degrees. If policy

randomly alternates between these two, these turning actions will cancel each other out

and agent does not really move anywhere.

More sophisticated exploration methods exist (e.g. [32]), but these are outside of the

scope of this thesis. Following policy based methods partly avoid this issue by having

stochastic policy, randomizing the actions we take automatically.

2.4 Policy based learning and actor-critic

Previously described value based learning does not explicitly optimize policy itself

and requires an implementation for policy using state-action function (e.g. greedy,

ε-greedy). It also might be computationally infeasible to implement state-action pairs,

even via a function approximator like a neural network if the number of actions and

states is too large. In the case of continuous actions we can not estimate values for each

possible action without some ad-hoc solutions like quantizing .

Policy approximation [41] avoids this problem by attempting to learn policy function

itself. One way to do this is to use actor-critic methods [41]. An actor-critic system

has two parts: A critic and an actor. The actor (policy) chooses which actions to take

and critic gives reward based on how good the action was. We have two separate sets
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of parameters, one for actor and one for critic, which we optimize at the same time.

Our policy estimator, the critic, now outputs a distribution over actions instead of one

explicit action.

We can train our critic with value based learning methods like above, like TD(0). For

actor we simply need to increase or decrease the probability of the taken action based

on critic’s output. One simple way is to use TD error [41]

c = rt + γV (st+1)− V (st) , (10)

where V (s) is the critic / value function we also approximate. If our policy is a table

of state-action pairs, we can update the critic

π(st, at) = π(st, at) + ηc , (11)

where η is the learning rate and policy π(st, at) returns a probability of given action at

given state. Note that output of the policy should be a distribution which requires addi-

tional calculations in this case, but this is only one of the ways to implement actor-critic

system. Policy gradients [42] use gradients of the expected/average reward function to

know which way policy’s parameters should move to increase the expected reward,

which is very similar to gradient descent used for machine learning (see Chapter 3.2).

2.5 Evaluating reinforcement learning methods

Normally in machine learning (and other prediction, pattern recognition and similar

tasks) running experiments have at least two distinct parts [15]: Training and eval-

uation of the model. In a classification task, training phase consists of optimizing

parameters of the model with a given training set. Evaluation phase then uses separate

samples/data to test how good the trained model is at classifying new, unseen samples.

For reinforcement learning such datasets rarely if ever exists. Some tasks would re-

quire a very large number of stored states/actions to define a reasonable dataset, and

the general idea of actions leading to different states may require observing all the

’paths’ states can go. Instead of datasets we can use environments and rules which set

a baseline for comparing systems. For example, ViZDoom [22] defines set of environ-
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ments and reward functions with different tasks one can use.

Reinforcement learning systems are often evaluated on how well they perform in a

given task and on how much computational resources it took to reach such perfor-

mance. Especially figures plotting time trained versus performance are often shown

in studies (e.g. [26, 22] to visualize how performance increases during training. With

most recent studies and advances in the field, some studies compare their systems

against humans (e.g. [27, 39]) to see if we can obtain so called "super-human" perfor-

mance on a given tasks. While analyzing the performance, one should note that reward
function may not represent ultimate goal of a video game or task. Reward function

can be coded to reward for winning game, but also to reward from intermediate steps

like killing one enemy.

If provided environment is a complex one (e.g. video game, physical world), separate

episodes may include completely different set of observed states and available actions.

A game of chess always has the same starting position but unknown actions of the op-

ponent player are likely to create different path of states for each match. This variance

can be mitigated by taking an average of measurements over multiple training and eval-

uation runs with new set of parameters, since training procedure can be affected by the

same stochastic behavior of the environment and model’s initial parameters. Examples

of reward vs. training graphs can be seen in Figure 3, Figure 2 in [27] and Figure 1 in

[26]. Note the number of experiments ran to obtain one curve used for comparing, e.g.

"average over the best 5 models from 50 experiments" [26].

A common problem of overfitting might also exhibit in reinforcement learning systems.

However, since states, actions and task(s) might not be easily separable the overlap

between training and evaluation scenarios might be hard to detect, even with proper

domain knowledge. Depending on the research question this is not a problem (e.g.

overfitting to the provided scenario is exactly what we are after), but if one wants to

train more generalized system the simplest path is to provide more different training

scenarios and switching between them during training.
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Figure 3: Plot of a reinforcement-learning agent learning to play Doom via ViZDoom
[22]. Reward of individual episodes (epoch) varies considerably and even a moving
average with window of 10 epochs produces a noisy signal. Multiple evaluation runs,
or even training runs, are required for confident evaluation score.
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3 Neural networks and deep learning

To understand many of the methods and challenges of reinforcement learning it is good

to know some general machine learning (or pattern recognition) terminology and meth-

ods. While machine learning can be used to solve number of different types of tasks

in practice they all boil down to finding dependencies, correlations and connections in

the provided data, inferring or predicting new information from the given input.

Machine learning can be divided into different groups by different metrics, but one

way to split them is by their task. This list of tasks [15] has high number of items but

we focus on two common ones: Regression and classification. Regression task aims

to predict a real-valued scalar from given input, while classification focuses on finding

a correct label for the input (select one label from given set of labels). These two are

not the only major topics in machine learning but this thesis will focus on them as an

basic example of what machine learning can do. Later we will combine these with

reinforcement learning in Chapter 4.

Generic structure of machine learning and pattern recognition is to gather data we

want to predict or analyze, build a model and a loss function around this data and then

train model’s parameters using the gathered data [15]. Models often include unknown

parameters and weights which allow them to adjust to different types of data, but this

requires finding optimal parameters for this specific data in question.

While the general idea of finding model that predicts the data as accurately as possi-

ble sounds similar to a look-up table or a recall task, there is one distinct difference:

Machine learning aims to generalize on the data, meaning it tries to produce accurate

outputs for inputs it was not trained for [15]. Since physical world measurements al-

ways include noise and unwanted interference, correct machine learning model can

ignore this noise component while finding the generalized solution for the samples.

3.1 Model

As machine learning and pattern recognition can be used for several different tasks,

naturally there are several different models and approaches included in this area. E.g.

Classification can use probabilities and terms like "Sigmoid function" and "softmax"
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are common, but regression often wants other values than just [0, 1], and sometimes

multiple outputs are required (e.g. noise removal, sequence-to-sequence prediction).

Not only tasks differ but the structure of available data differs: We might only have

few observations with few dimensions, or millions of samples with few dimensions or

millions of samples with thousands of dimensions, the underlying manifold of the data

might be linear or something more complicated, there might or might not be strong

correlations or even linear dependencies between components and so on. This thesis

will only mention fraction of available models with focus on what has been used along

with reinforcement learning.

3.1.1 Starting simple: Linear and logistic regression

One of the models is the linear regression model [6] that fits a straight line ŷ = www1 +

www2x, where x is an input variable, www2 is the weight for input variable, www1 bias term

(or intercept term) and ŷ is the estimated output. An extension to this is a polynomial

regression which allows fitting different order model in to the data, e.g. second order

model would be ŷ = www1 + www2x + www3x
2. This transformation on vector of inputs xxx

is called feature mapping [6], where we can also use different transformations (e.g.

different powers, logarithms). We can also have multiple input variables, and with

matrix multiplication we can express it as

ŷ = b+wwwTxxx . (12)

xxx ∈ RN is now column vector of inputs with N elements, and www ∈ RN is a column

vector of weights. The term b is called an intercept or a bias term which offsets the

fitted curve. Without this term the fitted line would always pass through origin, which

would limit model’s ability to model some data. One can also include b in the weights

w by appending a constant 1 to the input vector, so we can write (12) as ŷ = wwwTxxx.

Note that now xxx,www ∈ RN+1.

Regression model [6] can also be transformed to suit classification tasks: logistic re-

gression is defined by

ŷ =
1

1 + e−(b+wwwTxxx)
= σ(b+wwwTxxx) , (13)
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where σ(x) = 1
1+e−x is the logistic function [6]. Logistic function limits the value

of ŷ in interval (0, 1) which can be interpreted as a probability for a classification

task. Without further modifications this can be seen as fitting a hyper-plane in the data

that separates two classes. Note that while the model seems very similar to normal

regression it requires different optimization techniques.

3.1.2 Towards neural networks

With these two models we can already get to artificial neural networks [6] (or just

"neural networks"). Neural networks can be thought as a number of neurons (or nodes,

units) connected to each other to form an output, but one can also think it as an ex-

tension to previously seen regressions: Lets take a single linear regression that takes

column vector xxx ∈ R2 with two variables as an input. We can visualize it as a compu-

tational graph:

x[0]

x[1]

Input

sum

Output

y

mul

mul

w[0]

w[1]

b[1]

The computational process starts from left (input) and ends to output. Squares are

variables or inputs, circles are operations executed and arrows indicate inputs for oper-

ations.

To simplify our future graphs let each edge include a weight parameter w and each

node include a bias term b. A node then sums up inputs and bias term, weighting

inputs by weights in their respective edges. Note that bias term is not a single vector,

but we separate constants from each other with subscript. Our linear regression can

then be visualized as:
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x[0]
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Input

y

Output
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Bias term in node

We can fit multiple linear regressions with same inputs, weight their outputs and sum

them together. Let a1 and a2 be coefficients of the linear combination of the linear

regressions, and we get:

ŷ = b3 + a1(b1 +wwwT1xxx) + a2(b2 +wwwT2xxx) . (14)

Herewww1 andwww2 are weight vectors for the two nodes, separated by the subscript num-

ber. The bias terms are also scalars, also separated by the subscript.

As for the simplified computational graph we get:

Output
x[0]

x[1]

Input

y

While this might first seem beneficial for a regression task, it will still end up being a

linear combination of inputs, which will be shown later. We will later add non-linear

functions after dot products to approximate wide variety of functions.

We can also add more nodes in terms of "depth": We feed the output of our linear

regression models to yet another linear regression. Let o1 = wwwT1xxx and o2 = wwwT2xxx
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(outputs of the middle nodes in last graph), and thus we can write our two-layer model

as

ŷ = b5 + a1(b3 +www31o1 +www32o2) + a2(b4 +www41o1 +www42o2) , (15)

wherewww31 is the first element of vectorwww3 and so on. For the graph we get

Outputx[0]

x[1]

Input

y

This is the basic structure of the neural networks: You have one or multiple levels of

hidden layers, each of which contain one or more nodes which do a linear combination

of the outputs from the previous layer. The weights used in the linear combination are

unknown parameters, which will be modified to solve the task (see Chapter 3.2)

However, as this is a essentially a linear combination of linear combinations and the

result is still a larger linear combination (with an added bias): Let xxx ∈ Rn be the

input features, WWW 0 ∈ Rm×n and bbb0 ∈ Rm be weights and biasses of the first layer and

WWW 1 ∈ Rk×m and bbb1 ∈ Rk weights and biasses of the second layer. The output of the

second layer is then:

bbb1 +WWW 1(bbb0 +WWW 0xxx) | AAA(BBB +CCC) = ABABAB +ACACAC

= bbb1 +WWW 1bbb0 +WWW 1WWW 0xxx |WWW 2 = WWW 1WWW 0, bbb2 = bbb1 +WWW 1bbb0

= bbb2 +WWW 2xxx ,

(16)

where bbb2 = bbb1 + WWW 1bbb0 ∈ Rk and WWW 2 = WWW 1WWW 0 ∈ Rk×n. Since we end up with

the same equation we started with, we can apply it recursively to any number of fully

connected layers.

Thus output of a neural network like this is linear combination of inputs. Such neural
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network can not, for example, learn to predict XOR function with this setup due to

XOR’s requirement for non-linearity. Imagine plot where x-axis and y-axis are the

inputs to a XOR function, outputs 1 are the first class and outputs 2 the second class.

You can not draw a single, straight line separating these two classes from each other.

You need a curving line to be able to do it, i.e. requires non-linearity.

3.1.3 Activation functions

To address this issue we can include non-linearity to the network with activation func-

tions (or non-linearity functions) [6]. An activation function g(·) transforms the input

in some non-linear way. In the past, logistic function σ(x) and similar hyperbolic

tangent ("tanh") tanh(x) has been used as the activation function. Logistic function

outputs values in (0, 1), making it a suitable function for binary classification and

producing probabilities (this was also used in logistic regression earlier). However,

gradients of these functions saturate (approach zero) when input either increases or

decreases. For this reasons using learning with gradients is slow with logistic units,

especially through multiple layers of logistic units [15].

In modern neural networks, rectified linear units (ReLU) g(x) = max(0, x) have been

used with increased performance. ReLU activation behaves well during optimization

because of its linear nature [15] while still allowing modeling non-linear functions

when number of nodes his high. ReLU also has convenient gradients of zero when

unit did not active (i.e. x < 0) and one when it did activate. However, when unit does

not activate no learning will happen as we do not have direction for lower error. This

can result to dead nodes that never activate. A simple modification to cope with this is

leaky ReLU g(x) = max(α, x) where α can be a small constant or even a learn-able

parameter (Parametric Rectified Linear Unit, PReLU [17]) . Leaky ReLU prevents

creation of dead nodes and guarantees non-zero gradient everywhere.

Output layer of the network uses activation function most suitable for the task at hand.

For regression we might want to have unbounded values, the whole R, thus we use

linear units. In binary classification tasks a logistic unit allows interpreting the output

as a probability. If we have multi-class classification, we can use softmax function [6]

which provides a probability distribution over the output variables. Let xxx ∈ RN , the
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softmax function is defined as

softmax(xxx)i =
exxxi∑N
j=1 e

xxxj
, (17)

after which summing over
∑

i softmax(xxx)i will result to one. This is similar to e.g.

normalizing vector to unit length, but with exponent specifically selected to be e.

Nodes in the network do not need to share same activation function. In addition to

final layer we can have e.g. logistic functions in between ReLU functions to limit

the interval of values or just use linear units to have simple weighting and possibly

faster training due to simpler functions. We can even have softmax layers in between

hidden nodes, intuitively turning values flowing through network into proper probabil-

ities that sum to one. A large number of activation functions exist, but according to

[15] many differentiable functions perform well for this task and researchers try out

different functions for their research to see which works best.

Combining all these ingredients we can now express a single layer of a network withm

nodes. Let oooi ∈ Rk be outputs of the previous nodes (or inputs), WWW ∈ Rm×k a matrix

of weights, bbb ∈ Rm a vector of bias terms and g(·) the activation function. Output of

our layer i+ 1 is then

oooi+1 = g(bbb+WWWoooi) ∈ Rm . (18)

This is often called a fully connected layer because all nodes of previous layer are con-

nected to all nodes of next layer. Layers do not specifically have to be fully connected,

and in some cases it is beneficial to use e.g. skip connections [15] where multiple pre-

vious layers connect directly to one layer, not just the previous layer. These type of

networks where values only flow to one direction is also called feed-forward network

[6]. We can also have loops in the graph, creating so called recurrent neural network

(RNN) [15].

3.1.4 Recurrent neural networks

Fully connected layers can handle data that has fixed size, but some data like natural

language or audio has a varying sequence of elements along with some temporal de-
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pendency between elements. The data could be limited to certain size and/or padded

with zeros to match the fixed size of the network, but more elegant solutions exist, such

as recurrent neural networks [15].

Recurrent neural networks are a family of network architectures with loop-like con-

nections in their computational graph. Having loops in the computational graph allows

neural network to have an inner state based on previous inputs which can be seen as a

type of memory between network activations. A recurrent network would thus produce

a hidden state hhh in addition to regular when given parameter xxx:

hhht+1, ŷt = f(hhht,xxxt | θ) . (19)

With the recursive structure we can see the modeling of the dependency between ele-

ments in a sequence, as the hidden state (and thus output of the network) is dependent

on all inputs and states previous to it. In practice we unfold this function only by set

amount to control the computational cost.

Recurrent neural networks can create hidden states by number of ways, e.g. by having

nodes that connect to themselves or outputs connecting directly to the input. With a

layer of nodes which connect to themselves exist in a network, its output can be defined

as

yyy, ĥt = g(bbb+WWW hhhht−1 +WWW xxxx) , (20)

where xxx is input or output of last layer, WWW h weights for hidden states, wwwo weights for

inputs, bbb biasses and g(·) activation unit. This network can be then unrolled in time by

a set amount, and then use regular back-propagation algorithm (see Chapter 3.2). This

is called back-propagation through time [15].

However, unrolling the network and multiplying values multiple times with the same

weight matrix WWW h causes the norm of the gradient to decrease or increase, same as

multiplying value with many < 1 values or > 1 values. Most of the time gradient will

vanish (approach zero) but it can also sometimes explode (approach infinity), both of

which will hurt the optimization [15]. For this reason other types of RNN methods are

required for efficient training. Currently gated RNNs [15] like Long-Short term mem-
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Name Definition Description

Linear
g(x) = x

In (−∞,+∞). Does not change the output or
add non-linearity. Can be used as a activation
function of the final layer for an unbounded re-
gression output.

Sigmoid g(x) =
1

1 + e−x

In (0, 1). Commonly used in the past with suc-
cess but can not be used with larger nets due
to saturation if x is too positive or negative
(derivate approaches zero).

Tanh g(x) = tanh(x)

In (−1, 1). Very similar to Sigmoid unit with
same saturation problems. Generally performs
better than sigmoid units in neural networks
[15].

ReLU g(x) = max(0, x)

Rectified linear unit. In (0,+∞). Common in
deep learning and modern nets due to perfor-
mance vs. Sigmoid/Tanh unit. Can have "dead"
nodes if x < 0 for all inputs (always outputs 0).

Softmax g(xi) =
exi∑K
k=1 e

xk

In (0, 1) and g(xi) sums to 1. Often used as a
final layer to produce probabilities, can also be
used in hidden layers.

Table 1: List of common non-linearity functions (or activation functions) used with
neural networks.

ory (LSTM) and gated recurrent units are used for sequential data modeling. These

may also allow having input sequences of varying size.

3.2 Optimizing model parameters

Models alone often is not enough to do machine learning due to unknown parameters

which are required to model work correctly. A set of models exist which do not have

parameters modeling the data but rather control the complexity of the model, called

nonparametric methods [6]. These can also exhibit high performance but also have

some drawbacks, e.g. K-Nearest Neighbors (KNN) [6] does not require any training

phase but requires storing all the training data, which can be very space consuming and

computationally expensive later on (optimization structures can be used though).
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3.2.1 Training and testing

Finding the correct parameters or good approximations is called training phase or

learning phase [6] of the model which uses training dataset [6]. This training dataset is

a set of observations (feature vectors) of event we want to model, and is accompanied

by training labels (also called targets or ground truth). In such case the machine learn-

ing is of supervised learning where we know what our outputs yyy should correspond

when given inputsXXX . The goal is to find parameters θ so that our model’s estimations

ŷ̂ŷy are as close as possible to labels yyy. Additionally, the point is not to make perfect

recall of samples and remember which output corresponds to which input, instead we

try to generalize learned information from training data to unseen samples [6]. For

example, learning individually a + b = c a, b, c ∈ N could require large amount

of memory (e.g. a look-up table). Instead we learn the abstract concept of summing

natural numbers, which we can apply for any set natural numbers without knowing

beforehand the results.

To know how well our model truly performs to unseen data, we also have test dataset

and test labels (or evaluation set) which does not overlap with the training dataset.

Point is to find approximated parameters with training dataset and then try trained pa-

rameters on test dataset to see model’s performance against unseen data. Test dataset

should represent real situation where system is used, so test data should now be used
to tweak model parameters because we can not do that during practical use of the sys-

tem. Sometimes third dataset called validation set is used for tuning hyper-parameters

of the system and attempting different training methods. None of the design decision

should be based on the results obtained from test set, otherwise there is a chance of

overfitting to the obtained data (more in Chapter 3.4).

Correct parameters such that ŷ̂ŷy = yyy) rarely exist. For example, linear regression model

can not have 100% accuracy in data where samples form something else than solid

line. Because of this we need to find best compromise between results, which can even

be better than finding 100% accuracy in the training set (see Chapter 3.4).

3.2.2 Loss function

To find good parameters for our task we need a way to compare different parameters

against each other in terms of their performance, so we define a loss function L [6]

(also cost function, or the opposite objective function). Loss function returns a scalar
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representing how bad the current model with current parameters is at predicting labels,

and thus now our goal is to minimize loss:

arg min
θ
L(XXX,yyy | θ) . (21)

For a practical example lets look at the simple linear regression. We can use least

squares loss function, which attempts to minimize squared error between predicted

and true outputs. Least squares is defined by

L =
N∑
i=1

(ŷyyi − yyyi)2 , (22)

which can also be written in matrix form L = ‖ŷ̂ŷy − yyy‖2. When ŷ̂ŷy matches exactly yyy

the loss will be zero. To minimize this loss we take a partial derivative with respect to

weights www and finding where slope is zero, which corresponds to minimum of the loss

function. Finally we end up to solution a closed form solution [6]

www = (XXXTXXX)−1XXXyyy , (23)

thus we can directly compute the weights that produce least squared error between

estimates. This same equation also applies to polynomial regression where we replace

feature vectors XXX with modified vectors that include cross-products and higher order

transforms.

However, this is one of the rare cases where optimization is this easy, and more than

often we will not have closed form solution (i.e. we can not compute it in finite steps

on a computer). This is especially case with the neural networks and their activation

functions.

3.2.3 Gradient descent

This is where we get to iterative methods of optimization, namely gradient descent [6]

(also called "gradient search"). The core idea of gradient descent is to use the gradient

of the loss to find the direction towards smaller loss, and taking small steps towards that

direction. Let xxx ∈ RN be a vector of variables and f(·) function (e.g. loss function).
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The gradient of f(xxx) w.r.t xxx is defined as:

∇xxxf(xxx) =

(
∂f(xxx)

∂xxx1
,
∂f(xxx)

∂xxx2
· · · ∂f(xxx)

∂xxxN

)T
. (24)

When calculating gradient of a loss we usually calculate gradient w.r.t model param-

eters θ. This way we know which way each parameter should move to decrease (or

increase) the loss.

An extension to this is using second-order partial derivatives, creating a Hessian ma-

trix. Hessian is calculated by taking gradients of first-degree gradient. Using the def-

initions from earlier equation we can compute the Hessian matrix HHH(f)(XXX) (notation

∇∇xxxf(xxx) is also used) [6]

HHH(f)(XXX) =



∂2f(xxx)
∂xxx1∂xxx1

∂2f(xxx)
∂xxx1∂xxx2

· · · ∂2f(xxx)
∂xxx1∂xxxN

∂2f(xxx)
∂xxx2∂xxx1

∂2f(xxx)
∂xxx2∂xxx2

· · · ∂2f(xxx)
∂xxx2∂xxxN

... ... . . . ...
∂2f(xxx)
∂xxxN∂xxx1

∂2f(xxx)
∂xxxN∂xxx2

· · · ∂2f(xxx)
∂xxxN∂xxxN


. (25)

Using Hessian along with gradient is same as taking Taylor series with two degrees,

creating more accurate representation of the points around xxx and thus allows taking

more accurate steps towards minimums. Hessian matrix requires squared amount of

space with regards to parameters in the function. In case of neural network loss func-

tion this requirement can be too high to be computationally feasible [6]. Despite this

it sometimes used in optimization tasks (e.g. Newton’s method uses Hessian), and

a number of approximations with lower time complexity exist that can be used with

neural networks [6].

Minimizing the loss means we want to find the minimum of the loss function, and this

can be done with gradient by taking small steps towards the decreasing direction. For

this we have to take the gradient with respect to the parameters θ, basically computing

a vector with a derivative for each parameter. The gradient descent itself is defined as

θt+1 = θt − η∇θL(XXX,yyy | θ) , (26)
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where θ is the model’s parameters, and η is a small constant controlling the step size

we take. Too large and we may oscillate around minimum, too small and we may

take unnecessary long to reach our goal. We subtract the gradient from parameters as

derivative tells which way loss increases.

Because single data-point rarely represents the distribution of the data, we have to

include multiple sample points from training data while calculating gradient to reduce

variance between parameter updates:

θt+1 = θt − η
1

N

N∑
i=1

∇θL(XXX i, yyyi | θ) . (27)

This is called batch-learning [6] as we go through all the samples to compute the loss.

One can continue iterations fixed amount of steps, or until the loss does not change

enough. A good thing about gradient descent is that one only needs the gradient of the

loss to start optimizing weights, thus you can apply it to many different models and

loss functions. Figure 4 illustrates gradient descent of a one-dimensional loss function

with two different learning rates.

3.2.4 Back-propagation and the chain-rule

Since neural networks consist of multiple layers of multiple smaller functions, opti-

mizing the parameters is not as straight forward, but we can still use e.g. the gradient

descent method described earlier. Major difference is computing the gradient of the

weights/parameters, but it can be effectively solved by using high-school math chain-

rule [6] for computing derivatives of functions composed of two functions. We can

apply chain-rule along with sum-rule and product-rule of calculus over again to de-

compose all parameters in network into trivial mathematical operations.

This procedure of flowing information from cost, computed by a forward pass, and

computing the gradient for each parameter is called back-propagation algorithm [9].

Note that only calculation of gradients is included in back-propagation algorithm, the

update of parameters using these gradients is explained in following chapters.

Chain-rule allows us to split a more complicated equation into smaller pieces, differ-

entiating those and combining the results by use of the chain-rule. Let f(x) and g(x)

be some functions and y(x) = f(g(x)). Derivative for y with chain rule is then defined
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Loss function

Appropiate η

High η

Figure 4: An illustration of the gradient descent where the loss function is one-
dimensional. Two gradient descents were started from gray dots, proceeding along the
dashed and dotted lines. Dashed (left) has an appropriate learning rate and steadily
descents into a local minimum. Dotted line (right) has too high of a learning rate,
causing it to jump back and worth and not descending into the pit. Dashed line gets
stuck in a local minimum which is not a global minimum (next minimum).
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as

y′(x) = f ′(g(x)) · g′(x) , (28)

which is same as

dy

dx
=

dy

dg(x)
· dg
dx

. (29)

By applying chain-rule recursively we can break down an arbitrary equation into trivial

mathematical operations which have trivial derivatives, and then combine these parts

back into derivative of the original equation. However, when applying this approach to

a more complex equation (say, neural network) this tends to repeat some expressions

multiple times and especially in larger equations can result to exponentially expensive

to compute with respect to number of expressions [15]. Python Theano library [43]

uses this approach while calculating gradient but with a large number of optimiza-

tions to make computing such graph feasible. Theano (and TensorFlow [1]) create an

additional graph for computed gradient, making it symbolic differentiation, which au-

tomatically gives us gradients for each parameter and results to a new computational

graph that can be handled as a regular graph (we can take another gradient et cetera).

3.3 Parameter updates

With calculated gradient we can apply update rule like gradient descent (see equation

(26)). This works even with larger neural networks, until number of observations in

your data starts getting very high, which is required for e.g. high dimensional data,

sparse data and/or large neural networks. Since we might require millions of steps to

reach good minimum in loss, we would like to keep gradient computation relatively

fast. Unfortunately with increasing number of samples one iteration can take too long

as we need to loop over whole dataset always, and whole computation slows down.

Luckily there is an simple, but effective, solution for this: Stochastic gradient descent

(SGD). Instead of using all of the feature vectors of XXX , select one randomly per it-

eration and do the weight update. With this the computation of loss is constant w.r.t

number of samples but converge requires more steps. However, this allows monitor-
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ing learning without long waits between iterations and it is still able to converge to a

minimum [15]. SGD does not have to take only one sample at a time, instead it can

take a mini-batch of K samples to average over. This way each the update is a rough

estimation of using whole population and can be parallelized during update step.

3.3.1 Momentum

While theoretically sound, SGD can be slow to converge to the optimal solution due

to small learning rate. One solution for this is to use momentum [33] to update the

parameters. Similar to position and velocity in physics, we update the exponentially

decaying momentum (velocity) of the parameter updates and use said momentum to

update the actual parameters. This speeds up the convergence but can overshoot the

optimal point due to momentum. Nesterov momentum [40] is an improved version

of momentum with lower theoretical upper bound for error, where the parameters are

changed twice per update: First based on the momentum and then based on normal gra-

dient in that new spot. However, Nesterov momentum does not improve convergence

rate in stochastic learning [15]. Momentum and Nesterov-momentum algorithms are

detailed in Table 2.

3.3.2 AdaGrad

Even with momentum we still have to select learning rate. The learning rate can be

annealed from a higher value closer to zero to start off with faster moving and the

gradually getting more precise during training process. However, we can also dynam-

ically adjust the learning rate per step to an appropriate value based on previous gra-

dients and value sizes. AdaGrad [10] algorithm accumulates sum of squared gradients

of previous updates per parameter. The step size per parameter is then calculated by

dividing learning rate by square root of the accumulator value. Essentially, parameters

with large gradients have smaller step sizes and vice versa, balancing the velocity in

parameter space between parameters. This convergences faster in low-gradient areas

but the initial accumulation of gradients can throw parameters away from optimal point

and hinder the whole training process [15]. Algorithm of AdaGrad is shown in Table

2.

3.3.3 RMSProp

Similar to AdaGrad, RMSProp [44] accumulates sum of squared gradients per param-

eter, but also includes a exponentially decaying factor for the accumulator. Essentially
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this limits knowledge of the gradient sizes to the more local area of parameter space in-

stead of accounting also the gradients at the very beginning of the training. Empirically

this has been shown to be perform better than AdaGrad [15], and is one of the common

update rules used in deep learning related research [15]. Algorithm for RMSProp is

shown in Table 2.

3.3.4 AdaDelta

Another modification to AdaGrad is AdaDelta [51] algorithm. In addition to accumu-

lating gradients, AdaDelta also accumulates squares of updates. Both accumulators

also accumulate mean square instead of just squared values. Final learning rate is then

ratio between accumulated root mean square of updates and root mean square of gra-

dients. This method allows preserving information about unitness of the parameters

by Hessian approximation, which is expected to improve performance ([51], Chapter

3.2). Empirically AdaDelta performs better than AdaGrad [51]. Interestingly this al-

gorithm only requires global learning for the first, unlike AdaGrad and RMSProp who

use global learning rate for all updates. Algorithm for AdaDelta is shown in Table 2.

3.3.5 Adam

Adam [23] algorithm combines the benefits for these accumulators and momentum.

Adam accumulates first and second-order (power of two) momentums of the gradients,

does exponential decay to discard temporally distant information and uses bias correc-

tion. Final step size per parameter is ratio between first and second order accumulators.

Compared to RMSProp, Adam does not have the same high bias at the beginning of

training and is seen as a very robust update rule [15].

While the methods used to improve step size vary between these algorithms, empirical

experiments show that there is no clear winner among all these update rules [37]. Con-

sidering how easy it is to swap between update rules while using modern deep learning

frameworks (e.g. Theano [43], TensorFlow [1]), trying different update rules should be

done especially if one expects performance gain. Images 5 and 6 in [36] offer a good

illustration of how different update rules behave and why we can do better than regular

stochastic gradient-descent.
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Name Algorithm
Stochastic
gradient
descent
(SGD)

Update parameters: θ ← θ − ηg

Momentum
[33] Update momentum: v ← αv − ηg

Update parameters: θ ← θ + v

Nesterov-
momentum
[40]

Update momentum: v ← αv − η∇L(XXX,yyy | θ + αv)

Update parameters: θ ← θ + v

AdaGrad
[10] Accumulate squared gradient: a← a+ g · g

Update parameters: θ ← θ − η√
ε+ a

g

RMSProp
[44] Accumulate decayed gradient: a← αa+ (1− α)(g · g)

Update parameters: θ ← θ − η√
ε+ a

g

AdaDelta
[51] Counter: n← n+ 1

Calculate update: ∆θ ←
√
b√
a
g

Accumulate mean-squared gradient: a← a+
g · g
n

Accumulate mean-squared updates: b← b+
∆θ2

n
Update parameters: θ ← θ −∆θ

Adam [23]
Counter: n← n+ 1

Accumulate 1st order g: a← α1a+ (1− α1)g

Accumulate 2nd order g: b← α2b+ (1− α2)g · g

Bias correction: ab ←
a

1− αn1
Bias correction: bb ←

b

1− αn2
Update parameters: θ ← θ − η ab

ε+
√
bb

Table 2: List of common update rules for updating weights in gradient descent per
parameter. g is the computed gradient, η is the global learning rate, θ parameters to be
updated, ε is a small constant used for numerical stability and α is used for exponential
decays. Note that computed gradient can be either mean gradient of whole training
batch, a mean of smaller set (mini-batch) or a gradient of a single training sample.
Mini-batch training is often used for increased parallelism over using one sample at a
time.
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3.4 Overfitting and regularization

One commonly rising issue with machine learning methods is so called overfitting [6].

Machine learning methods aim to generalize for the given data which means being

able to predict labels for unseen data correctly [6], i.e. find the underlying structure

and dependencies between variables based on given data. Without need for generaliza-

tion we could simply store all the samples and labels from the training set and check

correct labels when new data arrives, but this very rarely is useful for any practical

purpose (e.g. we do not have all possible input features available). Collected data can

also include noise, especially if we are dealing with a physical world measurements.

Modeling such noise should be avoided as it does not represent the true structure of the

data.

Especially with larger models like neural networks the overfitting may be a cause of too

high capacity of the model. Capacity does not have formal definition but it can be used

to describe how well model can model different functions [15]. Low capacity means it

can only model functions composed of low amount of functions, while higher capacity

allows model to arbitrarily complex functions. However, with too high capacity model

might start to approximate noise and other random variations we do not want to model.

Hence it is not always optimal to go with the largest model available. See Figure 5 of

an example of this behavior in case of a polynomial regression.

This is where previously mentioned evaluation and test dataset come into the picture:

We can use the training data (used to optimize parameters) to evaluate the performance

of current parameters but this does not represent current generalization of the model

on unseen samples, since we are essentially doing recall task. Hence we define a

non-overlapping test dataset which is used for the evaluation. The validation dataset

(also called development set) is not used for actual parameter optimization but for e.g.

optimizing hyper-parameters and other non-parameter-optimization methods. Idea is

that test set is not used in training phase in any way to obtain as realistic performance

results as possible. High unbalance in performances between different sets indicate of

either overfitting to the training data or bad training/testing data (sets are from different

distributions).
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3.4.1 Cross validation

Instead of a separate evaluation set a common practice is to use cross-validation [6]. In

cross-validation, training data is split into different, same-sized chunks one of which is

used for evaluation of trained parameters and rest is used for training. One example is

k-fold cross-validation where data is split into k chunks and training is done k times,

each time using different chunk for evaluation and rest for training. Taking average of

results of using different evaluation sets should also reduce amount of hyper-parameter

overfitting to a single, static dataset. Having only a training and an evaluation set is also

a two-fold cross-validation method. Like with validation set, we can detect overfitting

from performance with different folds performance varies considerably between folds.

3.4.2 Regularization

There are also approaches to prevent overfitting outside searching for best model and

hyper-parameters. A simple heuristic method is to do early stopping [6] when using

iterative methods. Early stopping stops iterative parameter update loop when minimal

error in validation set has been reached or when certain number of steps has been

reached. This way we make sure error is minimized for the unforeseen samples. More

sophisticated approach is to introduce a regularization term [6] into the loss function.

There are number of different regularization terms, common of which are L1 and L2

norms. For least-squares the regularized loss function [6] is

L =
N∑
i=1

(ŷyyi − yyyi)2 +
α

2
‖www‖2 , (30)

which conveniently also has a closed form solution similar to the normal least-squares

solution [6]:

www = (XXXTXXX + αIIId)
−1XXXyyy , (31)

where α is called a regularization coefficient which is used to control the strength of

the regularization. By introducing regularization term ‖www‖2 in the loss function the

optimization of said function will balance the minimization between squared errors

and this regularization term. In this case the term aims to keep all weight parameters

low so that they are more evenly distributed instead of having large spikes, i.e. "all
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weight components contribute to the fit and none of them should have too much of

total weight". Results of using this regularization can be seen in Figure 5 where regu-

larization caused originally overfitted model to generalize to the data by having similar

quadratic shape, which was the underlaying shape of the data".

3.5 Feature crafting and learning representations

There are numerous models to choose from and parameter optimization methods to

use, but we still have not discussed about the actual input for the machine learning

methods. As defined before,XXX withN samples is the input that is fed to the model and

depending on the task it is used along with yyy to optimize the parameters. In some cases

the inputs are called feature vectors or just features [6] which are used to represent the

observation in a informative but a compact form. In cases where data is representable

in a table form with observations on rows and variables on columns, we can feed this

directly to almost any of these models. Example of such dataset is Iris-dataset [12]

which is an example of classifying flowers based on petal length and other related

values. Features include the human intuition about what is good to know for a task and

possible domain knowledge on the problem. For example, for audio signal processing

computing the Fourier transform could provide good information, or that flower color

is good way to distinguish one flower species from another.

However, some data types are not as straight forward to handle, like audio-signal,

text documents and images: The number of components per observation might be too

large for computations, the number of components varies (e.g. time series) and there

may be some crucial dependencies between values. In natural language the context is

important (dependency to surrounding words), and in case of images single pixel alone

does not tell much (dependency on surrounding pixels). Even then there can be more

problems, such as with images where represented object can be at any location of the

image. Previous methods would have to learn same object-detection for each location

of the image separately.

3.5.1 Manual way: Feature crafting

This is where feature extraction happens. We aim to develop algorithms and methods

to extract informative feature vectors from original observation using some manually

defined procedures. For images this can be detection of corners and computing some
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2nd order

8th order

Regularized

Data points

Figure 5: An example of overfitting. A sample of ten points was taken from a quadratic
equation with some uniform noise (gray circles), and two polynomial regressions were
fitted. The 8th order model (dotted line) almost perfectly fits to the data but does
not have quadratic shape and thus does not generalize well. Meanwhile 2nd order
model (solid line) is able to fit into underlying quadratic function. Using regularization
(dashed line) with 8th order model and regularization coefficient α = 0.0001 results
to a function similar to the original quadratic equation.
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descriptions for them, and for audio signal a selected amount of frequency compo-

nents. However, manual feature extraction might discard some information that could

be useful for solving the task at hand (e.g. Fourier transform with large windows lacks

temporal detail). This is beneficial in terms of computational resources, but arguably

we might lose information that could be necessary for the machine learning task at

hand.

Using feature extraction in the task requires selection of feature extraction method

and possibly comparing multiple different feature extraction methods to find the one

providing highest performance. The methods can also include hyper-parameters which

can have significant effect on the results. For example in speech processing, one can

compute Fourier-transformation of the signal or mel-frequency cepstrum coefficients

or any of its variants. One can drop unnecessary frequencies from these results to

save space, and/or perform high/low-pass filtering depending on the task. Figures 6

illustrates a task of gender detection from speech using system with feature extraction.

3.5.2 Automatic way: Learning representations

This is where deep learning differs from classical machine learning: Instead of crafting

the features manually we let the machine learning method learn to extract the meaning-

ful features [15]. Idea is to give raw images and raw audio as an input to the model and

let it figure out the proper parameters for handling it. That is, we use the optimization

of the parameters to learn the representations for the input data in such a way it benefits

solving the task at hand.

Figures 6 and 7 represent a system that has same function, classifying speaker’s gen-

der based on their speech, but Figure 6 represents a system using feature extraction

and well studied features, clustering, pre-processing and scoring functions. Figure 7

represents a deep-learning variant of this same system. The classical system includes

a number of separable steps each of which modify the data in some way beneficial

for classifying. The deep learning version includes only few components and it can

be reduced to only one major component, the neural network. Systems like these are

sometimes referred as end-to-end systems, where all processing happens in the ma-

jor component and no other interference is required (e.g. you give network raw audio

signal and it outputs the score you want).

At the first sight the classical system might seem more intuitive and better suited for a
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job. After all, it consists of mostly independent parts and research is able to tweak each

of them, or even replace them with another blocks to see its effects on results. Indeed

this approach can be desired, e.g. in software engineering where separate blocks should

only communicate via given channels to minimize complications during development.

In machine learning we want to know which algorithms and methods provide best re-

sult, and effects of one single part can be hard to confirm when there are multiple

different parts with dependencies between each other. For example: K-means algo-

rithm [25] (not called k-means in the publication) clusters data-points to one cluster

each. There can be data-samples that are on the very edge of being classified to cluster

2 but are classified to cluster 1. We might want to capture this uncertainty and use

something like Gaussian Mixture Models [6] that produces probabilities of belonging

to cluster instead of hard labels, which might improve the performance of the system.

This "era" of deep learning grew popularity from 2007 when Geoffrey Hinton and

his student used Restricted Boltzman Machines (RBM) to successfully train a large

neural network. Similar research has been done in the past as well, e.g. multiple layers

of regressions in 1971 [19], but not with such general popularity. The exponential

increase of computing resources and available data ("Big Data") are the key parts that

made modern deep learning possible [15].

3.5.3 Convolutional neural network

Deep learning systems manifest as a large neural network models with some specific

methods and topology that allow neural network to learn handle data at multiple levels

of dependency. Instead of modifying separate, distinct parts of the system we mod-

ify architecture of the network. One common deep learning method used in image

processing tasks is a convolutional neural network (CNN) [24]. CNN trains multiple

different filters which are used with convolution to process incoming data (see illus-

tration of convolution in Figure 8). These filters are also called "kernels" or "feature

maps" [15]. For example, a filter representing a horizontal line will activate (produce

higher value) when it is applied on part of image with a horizontal line.

During implementation/usage of CNN layers, the coder specifies number of hyper pa-

rameters for the layer, main of which are: Number of kernels, size of the kernels, the

stride and the padding style. The output of a CNN layer can be understood as an image

with number of kernel channels and height/width depending on the kernel size, stride

and padding style. Stride specifies how many steps kernel is moved per one output
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(e.g. Figure 8 has stride of 1), and padding style specifies how edges of the images

are handled. CNN layers can have very large number of parameters which makes them

slower to train, but due to the nature of CNNs they can be run efficiently on GPUs, as

they are originally designed for similar image processing.

By applying multiple layers of CNN in a row layers, the later layers will learn higher

level representations of the data. For example: the first layer detects simple edges,

second layer detects trivial shapes (lines, corners, curves) and further layers combine

these trivial shapes into meaningful objects (e.g. a face). Remarkable improvement

in image classification and other image related machine learning tasks has been made

with networks based on CNN and is a common solution for handling images in neural

network models [15].
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Figure 8: Illustration of convolution operation in one dimension. This same idea also
generalizes to multiple dimensions (e.g. images). In practice one can adjust the number
of steps moved (stride) and how convolution behaves at the edges. The illustration
shows convolution without padding and only calculates the output for the points where
there is an element in signal for each filter element (this is sometimes called "valid"
padding). Padding signal from the end with zeros for the length of filter will result to
output with same size as input ("same"). Padding signal from start and end will result
to output larger than input ("full").
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4 Deep reinforcement learning

Now that we have had a brief look into reinforcement learning, general machine

learning and deep learning we can combine them into one. Reinforcement learn-

ing algorithms presented in Chapter 2.3 assume and use tabular representation of the

state/action values (e.g. a matrix, one element for one state-action pair). This makes

designing and analysis of the algorithms easier but such discrete representation is not

practical if the number of states/actions is very high. States may also have different

representation numerically but underlying information is the same, so it would be use-

ful to have these two states have similar state/action values. e.g. In a game that uses

coordinates to define object’s position, being in position (5, 0) is likely to be identical

to being in position (5.0001, 0),

This can be dealt with by replacing the tabular representation of values with a function

approximation, such as a neural network. It has been shown that under certain con-

ditions, linear function approximator converges to an optimal solution under temporal

difference learning [45]. Recently a team from Google DeepMind presented a Deep Q

Network (DQN) [27] which used non-linear approximator, a deep neural network, and

successfully learned to play number of Atari video games only based on raw visual

input. Since this original publication a great deal of research has been done in area,

which some publications call deep reinforcement learning (e.g. [27, 26, 22, 39, 29])

4.1 Deep Q Network

Publication presenting deep Q network [27] outlined two problems with replacing tab-

ular state/action value representation with neural networks: Correlations between suc-

cessive samples and non-stationary network targets/labels. In a video game setting, and

in physical world, successive states and frames are very similar and changes between

them are minimal which later build up to large changes. This high correlation breaks

approximators typically used in pattern recognition, which is to assume data is inde-

pendent and identically distributed. Non-stationary targets are result of agent’s policy

changing after each update, which can result to significantly different target value next

time same input is seen. Normally machine learning algorithms have similar output

for the same input, but here the output can be different each time it is fed through the
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network and it can constantly change.

4.1.1 Replay memory

First major modification to Q-learning presented in [27] is replay memory. Instead

of using recorded experiences et = {st, at, rt, st+1} for training in obtained order, we

store experiences to a replay memory U = {e1, e2, ...en} and take uniform samples of

experiences for training the network. This breaks the correlations between successive

frames and allows higher memory efficiency where same experience is likely to be

trained on network a number of times instead of just one. Prioritized replay memory

[38] improves this replay memory weighting the sampling based on how much was

learned from the experience by using the temporal difference error as a weight, yielding

higher performance and faster training with DQN in Atari games.

4.1.2 Target network

Second major modification was use of a target network (or parameter freezing). Target

network is same as the network used to predict the state-action value, but its parame-

ters are only updated at certain intervals. Q-learning requires computing of state-action

values maxaQ(st+1, a). If we used normal approach, this would cause problems with

target changing on each iteration. DQN takes a copy Q′ ← Q of this network every

N:th frame (N = 10 000 in original DQN) and uses Q′ to evaluate the value of next

state maxaQ
′(st+1, a). This way the target of network stays mostly same over time

and stabilizes the learning. This updating of target network can also be done by an-

nealing parameters of target network Q′ towards Q on each step by slightly updating

the parameters.

For more minor modifications, DQN used reward clipping which clipped the rewards to

[−1, 1] to allow DQN to play number of different Atari games without manual reward

tweaking, since games can have different orders of magnitude for scores (e.g. number

of lives left vs. time survived in seconds). The network consisted of convolution layers

which allowed receiving raw image from the Atari’s screen, same what human would

see, and as a output were all possible actions human player could execute on Atari

console. Algorithm 2 includes a rough pseudo code of the DQN system.

As a result, DQN was able to play more than half of the 41 Atari games tested at

human-level or above [27] and outperforming best linear learners in all of the games

except two. The general conclusion of the publication was that DQN was able to learn
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human-like control with minimal amount of per-game manual tweaking. DQN has also

received number of improvements like "Dueling Q Network" [48] and "Bootstrapped
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DQN" [32] which further increase the performance.

θ ← Parameters of the neural network Q(st, at);

θ′ ← Parameters of the target neural network Q(st, at);

M ← Replay memory. Holds experiences et = (st, at, rt, st+1);

l← Training rate (how many steps per parameter update);

f ← Target parameter update rate (how many steps per frozen parameter sync);

ε← Probability of selecting random action (ε-greedy policy);

st−1, at−1, rt−1 ← Stores previous states, actions and rewards ;

γ ← Discount factor ;

t← 0;

while learning do
Get state st from the environment (raw image pixels);

Select action at ←

random action at probability ε

arg maxaQ(st, a) at probability (1− ε)
;

Execute action and recieve clipped reward rt ← max(−1,min(1, rt));

if st−1, at−1 and rt−1 available then
Store experience to replay memory: M .push(st−1, at−1, rt−1, st);

end
if if enough samples in replay memory and mod (t, l) == 0 then

Sample a mini-batch of experiences from the replay memory;

Compute targets for each sampled experience

yi = ri + γmaxaQ(si+1, a | θ′);

Update network parameters θ with loss L = E
[
(yi −Q(si, ai | θ))2

]
;

end
if mod (t, f) = 0 then

Synchronize target network parameters θ′ ← θ ;

end
Update holders st−1, at−1, rt−1 ← st, at, rt;

Proceed to next time step t← t+ 1;

end
Algorithm 2: Rough pseudocode of the Deep Q Network [27] used to play Atari

games. Note that frozen parameters are used for calculating targets instead of cur-

rent network parameters. Excluding replay memory and frozen parameters, this al-

gorithm is very similar to normal Q-learning. Note that this function does not handle

terminal states correctly. Function mod (x, y) is the modulo.
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4.2 Asynchronous deep reinforcement learning

While original DQN performed well in the Atari setup it still required training the net-

work on each game separately. Since the training itself can not be parallelized due

to iterative steps, most speedup is gained by using a graphical processing unit (GPU)

instead of central processing unit (CPU) to compute extensive matrix computations of

a neural network. For example, quick experiments with a dueling DQN [48] agent in

ViZDoom [22] show that learning speed is ≈ 20 − 40× faster on a Nvidia GeForce

GTX 760 GPU than on a Intel i7-3770k CPU when using Python with Theano [43].

However, the training itself is still happening on one process core, and bigger compa-

nies and laboratories can have hundreds of cores and machines available.

4.2.1 Computer-level parallelization

General Reinforcement Learning Architecture (Gorila) [29] allows parallelizing rein-

forcement learning on multiple computers connected via network connection. Learner

nodes have a separate DQN instance running where they compute gradients from their

local or global replay memories, parameter server combines gradients from multiple

learners into one and learners synchronize their model parameters with the parameter

server at fixed interval. This approach further improved DQN performance in most

Atari games [29] and was used for training AlphaGo [39] which was able to win world

champion in game of Go.

4.2.2 Core-level parallelization

A study by DeepMind [26] focused on similar parallelization but for processor cores in-

stead of multiple computers. The study presents an asynchronous version of previously

discussed DQN but more known contribution of this publication was asynchronous ad-

vantage actor-critic (A3C). A3C uses differences between states’ values (increase of

state value when moving from state st to st+1) instead of raw state-action values, up-

dating policy by using estimated advantage of each action. A3C uses policy gradient

[42] to update the policy. Policy gradient uses the gradient of the loss to update the pol-

icy, knowing which way to move parameters to decrease loss, basically using gradient

descent (see Chapter 3.2).

The asynchronous part is similar to Gorila, where multiple instances of the same en-

vironment and agents were executed. However, only one of the instances performed
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parameter updates, while others explored environment, gathered experiences and cal-

culated gradients which were sent to the updater instance. This removes the bottleneck

of network connection and allows utilizing computer’s cores more efficiently. Figure 9

illustrates this structure and how different parts of A3C communicate with each other,

and algorithm 3 outlines the core procedure of A3C learning.

Study of asynchronous deep reinforcement learning methods [26] also include n-step

versions of the asynchronous algorithms and a comparison. N-step learning was men-

tioned in Chapter 2.3 while discussing about temporal difference learning. Instead of

bootstrapping to learned value on each time step, we run fixed amount of steps and

store experience consisting of observed states, executed actions and received rewards.

After running certain amount of steps or reaching a terminal state (e.g. game over) we

iterate over the stored experiences starting from the latest experience. This way we

know what the reward can be in distant future than instead of just one step ahead and

support our learning, since with one-step learning we would have to experience visited

states multiple times to move learned information backwards in MDP graph. This also

reduces the number of computationally expensive updates on global parameters, where

many threads access the same memory. Algorithm 3 illustrates n-step learning by us-

ing maximum of tmax steps per update, stack a to store the experiences and R to store

cumulative reward.

Compared to an improved DQN, A3C outperformed DQN in terms of performance

and time it took to train to obtain said performance, even when A3C did not utilize a

GPU for speeding up the computation [26]. Asynchronous version of DQN was even

able to achieve super-linear performance, performance increased faster than number

of threads, which can not be explained only by computational speedups [26]. Study

suggests that this is result of parallel, and more efficient, exploration of the environment

and different options that reduce the bias of update parameters.
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Figure 9: Graph of an A3C system [26]. Each block runs asynchronously in separate
threads. N amount of actor-learner threads interact with separate instances of the en-
vironment, accumulate the gradients, update global model parameters asynchronously
and finally synchronize local parameters with the global parameters. Compared to
single-threaded Q-learning this system learns from more varying experiences (multi-
ple different environments running) which speed up learning super-linearly compared
to number of threads used in some cases [26].
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θ, θV ← global policy and value estimator parameters;

θ′, θ′V ← local policy and value estimator parameters;

tmax ← Number of steps included in N-step learning;

while learning do
Sync parameters θ′ ← θ and θ′V ← θV ;

Initialize stack of experiences a← [];

Get state st from environment;

for tmax steps or until state st is terminal do
Perform action at according to current policy π(at | st, θ′) by sampling;

Receive reward rt from environment;

Push experience (st, at, rt) to stack a;

Advance by one step t← t+ 1;

Read next state st;

end
Initialize cumulative reward R← 0;

if st is not terminal then
Bootstrap to learned value of current state R← V (st | θ′V );

end
Initialize update gradients for policy dθ and value dθV ;

for length of a do
Pop latest experience e← a.pop();

Update cumulative reward R← er +Rγ;

Accumulate gradient for policy with local params.:

dθ ← dθ +∇θ′ log π(ea | es, θ′)(R− V (es | θ′V ));

Accumulate gradient for value with local params.:

dθV ← dθV +∇θ′V
(R− V (es | θ′V ))2;

end
Update global parameters: θ ← θ + dθ and θV ← θV + dθV ;

end
Algorithm 3: Pseudo code outlining actor-learner thread of an asynchronous ad-

vantage actor-critic system (A3C) [26]. Multiple actor-learners continuously update

and fetch same global parameters at fixed interval, but run separate instances of

environment where they apply said parameters.
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4.2.3 Optimizing for graphical processing units

While asynchronous methods like A3C and ADQN presented in [26] train reinforce-

ment learning agents faster and with higher performance in terms of reward gained, the

publication only uses processor cores for the A3C experiments. While still being faster

than DQN trained on a CPU supported by a GPU, A3C leaves the GPU underutilized.

Without replay memory like in DQN, each actor-learner thread uses the shared GPU

resources in small tasks which not optimal for GPU computations [2].

GA3C [2] modifies the original A3C to utilize performance of GPUs. GA3C only

includes one copy of the model(s) used to predict actions instead of multiple copies

like in A3C. GA3C consists of three components:

Actors, which are similar to A3C’s actor-learners, each of which own a separate en-

vironment they interact with. To predict an action, actors submit their states to a pre-

diction queue and wait for a corresponding prediction from a predictor. Actors also

submit their experiences to a training queue which are used to update the parameters.

Predictors, which take states from the prediction queue and compute the policy/value

predictions using the models on the GPU. Predictors batch multiple samples together

before computing the predictions to make use of GPU’s capability to handle such paral-

lel tasks well. After computing policy/value predictions, predictor submits these results

back to corresponding actor.

Trainers, which take experiences from the training queue, compute gradients and up-

date the models’ parameters accordingly. Like predictors, trainers batch multiple ex-

periences together to utilize GPU’s parallelization capabilities and to stabilize learning

(mini-batch learning).

GA3C can include varying number of each of these components running in parallel

on separate CPU cores, which is illustrated in Figure 10 (slightly modified version).

Different number of each of these components can result to different performance in

terms of predictions per second (PPS), depending on the environment, task, model used

and hardware setup [2]. By using high-end GPUs, GA3C can achieve four to 40 times

higher PPS than original A3C with same level of performance in the environment [2].
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5 Comparing different input features

With deep reinforcement learning handled we can now approach the research question

of this thesis: Do reinforcement learning agents benefit from using raw image data
compared to using other features? Specifically, does using deep learning to handle

raw data such as gray-scale images lead to higher performance compared to high level

features like direct object locations? Hypothesis is that using raw information leads to

higher performance while using reinforcement learning.

This thesis approaches this question by setting up experiments where different types

of input features are compared. Same deep reinforcement learning model is used with

different input features, their performance is recorded and then compared against each-

other.

5.1 Experimental setup

5.1.1 Environment: VizDoom

VizDoom [22] was used as an environment for the experiments. VizDoom provides

convenient tools for an artificial agent to interact with the underlaying video game

"Doom" [18]. VizDoom is also very lightweight and can be executed ran in parallel

in high numbers to speed up the training. VizDoom provides human-like input and

outputs for the agent: The default input (state) for the agent is the frame human player

would see while playing the game, and outputs (actions) are set of buttons which to

press per each frame.

For further details, VizDoom works in ticks or frames. By default each tick represents

1/35 seconds of game time (Doom runs at 35 frames-per-second). Depending on how

VizDoom is configured, the game is ran as fast as computationally possible which can

reach thousands of ticks-per-second [22]. However with default settings, VizDoom

waits for the agent select an action at each step before continuing the game. VizDoom

can also be ran in asynchronous mode where the game is constantly ran at given tickrate

and VizDoom does not wait for the agent to select actions, which is closer to e.g.

human playing the game.

A step can be composed of any number of successive ticks, which represents the rate at
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which agent receives a state and selects an action. The selected action is then executed

till next step. While ticks-per-step can be determined on each action executed, these

experiments will use 4 ticks-per-second which represents≈ 114ms of game time. This

value is good balance between computations required to play the game and rate at

which agent is provided with information to make efficient decisions. At each step

agent can read the state and select the next action to be executed (and how long it

should be executed). After executing the action agent receives the reward.

An episode is similar to episodes in reinforcement learning, like a single game of chess.

A single episode starts from an initial state and ends to a terminal state, e.g. starts from

player spawning in the field and ends when player dies. The episode can end to a

certain event or when certain amount of ticks have been played. In these experiments

we measure performance in terms of episodes. By default VizDoom returns score per

episode as the sum of rewards obtained during that episode but we can also define our

own score metrics.

VizDoom allows implementing different scenarios including different maps, which de-

fine what is the precise task. It also sets which buttons are available for the agent, e.g.

VizDoom comes with some predefined scenarios such as "Health gathering" where

agent has to gather health giving pickups ("medikits") and survive till end of the

episode, or "defend the center" where agent has to shoot incoming enemy soldiers

which try to kill the player. Experiments in this thesis use modified versions of two

scenarios provided by VizDoom:

Health gathering supreme, where task is to navigate in a maze and survive as long

as possible. Player’s health reduces constantly and to reach maximum score player has

to collect medkits that give more health, but also avoid "poison" pickups which hurt

player. The original reward scheme gave agent reward for each tick player was alive

and lots of minus reward when player died. This proved to be too difficult for agent

system to learn, so reward scheme was modified to give reward based on how health

changed: If amount of health increased the agent received a positive reward and vice

versa. Score per episode is defined as ticks_survived + health_left. This way agents

can be compared against each other even if they do not survive an episode and when

they survive an episode. Allowed buttons consisted of moving forward, turning left,

turning right and all of their combinations. Map layout is shown in Figure 11.

Deathmatch, where player is spawned in an arena along with a number of Doom
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enemies (same player would meet in the original game). Goal here is to kill as many

enemy soldiers as possible, each kill being a positive reward. The player starts with a

pistol but there are also stronger weapons available at map’s sides, as well as medkits

and armor pickups. The layout of the map stays the same so the agent can learn to

navigate to certain area of the map to get a strong weapon, but the starting position of

the player and the enemies are randomly chosen. Score per episode for this scenario is

the number of enemies killed. Allowed buttons consisted of moving forward, turning

left, turning right, firing the weapon and all of their combinations. Map layout is shown

in Figure 11.

(a) Health gathering, map layout (b) Deathmatch, map layout

Figure 11: Top-down view of the scenarios’ maps. Health gathering supreme sce-
nario has a static maze player takes constant damage, and thus has to collect ran-
domly spawning medkits to survive longer. Deathmatch scenario has a large arena
where enemies constantly spawn, and smaller rooms at each side with different pick-
ups (weapons, medkits, armor and so on).

5.1.2 Agent: Asynchronous advantage actor-critic for GPUs

The agent of the experiment uses GPU asynchronous advantage actor-critic (see Chap-

ter 4.2) for learning and selecting optimal actions. The implementation is based on

open-source implementation of GA3C 1 provided by the authors [2] which was then

modified to run VizDoom instead of OpenAI Gym. Dynamic balancer for optimal

performance was disabled and each experiment is ran with 32 instances of VizDoom

running parallel with three trainer threads and a single predictor thread.

1https://github.com/NVlabs/GA3C
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For approximating policy and value functions the agent uses neural network with fol-

lowing architecture, starting from the layer which receives the input:

1. Convolutional layer. Kernel size 8, 16 kernels, stride of 4, ReLU activation.

2. Convolutional layer. Kernel size 4, 32 kernels, stride of 2, ReLU activation.

3. Fully connected layer, 1024 nodes, ReLU activation.

4. Layer for outputs. One linear output for the value function and one softmax

output for each action.

All inputs and rewards were normalized to roughly [0, 1] (see following chapter). This

network structure is similar to the one described in [26] where A3C was able to nav-

igate in a 3D maze, except number of nodes of the fully connected layer has been

increased to 1024 from 256. The original publication also included A3C using LSTM

layers, but this was not implemented in the current state of the GA3C. Since GA3C

network receives states from multiple environments in an uncertain order, each state

would have to be accompanied with the hidden state obtained from last state, which

can be really ineffective without an appropriate implementation.

Network parameters were trained using Adam [23] (see Chapter 3.2) with learning rate

η = 7 · 10−4, β1 = 0.95, β2 = 0.999 and ε = 10−6. For entropy regularization term

βreg = 10−2 was used. Both learning rate and entropy term were linearly decreased

over training with lowest value at η = 10−5 and βreg = 10−4 at the end of training

(1M training steps).

Experiments were ran on a single server computer with Intel i7-3770k CPU, Nvidia

GTX 760 GPU, Ubuntu LTS 16.04, CUDA 8.0 (with CuDNN 5), Python 3.5, Tensor-

Flow 1.0 and VizDoom 1.1.0.

5.1.3 Input features to compare

Four different input feature schemes were implemented to compare the performance

between raw and more refined input features. VizDoom provides means to implement

all of these efficiently. For example pictures see Figure 12.

Gray image, which represents the most raw form of visual input. This is the image

human player would see while normally playing the game, except converted into a
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gray-scale image and resized to size of 64 × 48. This image size provides enough

information for agents to function in the game, albeit items at longer distance will be

hard to detect.

Depth map, which is also a gray-scale image with size of 64 × 48. However in this

case each pixel represents the distance to the object drawn in the pixel. This input

feature is slightly more refined compared to the gray image as it is not what humans

would see, but a robot with depth sensors could receive similar input.

Label map, which is a 64× 48 image with two channels. VizDoom provides a buffer

which assigns each visible object with an ID and a name, and this is further refined by

assigning these objects in one of two channels depending on the scenario. In health

gathering supreme, medkits are assigned in channel 1 and poison pickups are assigned

to channel 2. In deathmatch scenario the enemies are assigned in channel 1 and all

pickups are assigned to channel 2. VizDoom does not provide labeling for walls and

ground. This input type is similar to pixel-level labeling done for some machine learn-

ing tasks, e.g. dataset for self-driving cars [35]. In practice providing something like

this would have an error rate, and thus the flawless information provided here can be

considered oracle information (something we are not supposed to have).

Direct features, which differ from other input features by not being an image. Instead

this is a combination of horizontal depth scan and location of objects. Horizontal scan

line is the midmost horizontal line in the depth image, and location of objects is fed

by giving the distance to the object and angle versus player’s aim direction. This is the

most feature crafted way of giving state to the agent out of all tested input features.

An input feature like this could be a result of using computer vision to detect different

objects and estimating their location and distance, plus using a sensor that scans the

distance in one horizontal line. In this experiment this info would be flawless, and

hence could be considered an oracle information.

The experiments also include combinations of two of the first three input features (i.e.

gray+depth, gray+label and depth+label). Figure 12 shows example images of the

three first input features in same states in both scenarios.

All values were normalized to roughly [0, 1] or [−1, 1] range. All values in gray images

and depth maps were divided by 255 as they were represented by unsigned 8-bit integer.

Label maps did not require normalizing as values were in {0, 1}. For direct features
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the distance from object to player was limited to 1200 game units and then normalized

by dividing with 2. Angle between player aim direction and objects was in interval

[−1, 1]. For health gathering supreme scenario, reward was ∆health/20 (max health

is 100, player heals roughly 10 − 20 health per medkit). In deathmatch scenario no

reward normalizing is required, as one kill equals 1 reward.

Gray, depth and label input features are all processed with network described earlier by

using convolutional layers. Direct features are separated into two inputs: Horizontal

scanline and list of objects. Horizontal scanline is fed through a fully connected layer.

Objects array is constructed of max 30 valid visible objects (e.g. pickups, enemies).

Each object is represented by a one-hot encoded vector representing object’s type, the

distance to the player and the angle between player’s view direction and object-player

vector. These arrays were combined into an 30×D matrix, which was then processed

row-by-row with an convolutional layer with 16 filters. The whole network consisted

of the input layer and one fully connected layer of 1024 units, essentially only replacing

the convolutional layers of the network used with other direct features.

5.2 Results

For each scenario and input feature the experiment was ran five times due to variance

between runs. Each experiment lasted for 1M parameter update operations, and per-

formance of the agent was evaluated every 20 000th parameter update. An evaluation

consisted of 200 episodes without training operations, and final score per evaluation

was the average of the score metric of the scenario over these episodes. This average

will be referred as "evaluation score". During evaluation the action was sampled from

the action distribution like during training. We also experimented by using the action

with highest probability, but the end results did not change.

In total there is 48 evaluations per training run instead of logical 1 000 000/20 000 =

50 evaluations: The initial state (training step 0) is not evaluated, and last evaluation

did not always occur due to asynchronous nature of the GA3C (server quit before

evaluation was done). This was noticed late in experiment regimen, and there was no

time to redo experiments.

Figure 13 shows medians of the evaluation scores versus number of training steps done.

Standalone input features and combinations are plotted in separate plots.
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(a) Health gathering, gray-scale image (b) Deathmatch, gray-scale image

(c) Health gathering, depth map (d) Deathmatch, depth map

(e) Health gathering, label map (f) Deathmatch, label map

Figure 12: Images of the two different scenario with three input-feature types. HUD
elements (e.g. hand and gun) are not visible to the agent.
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Figure 13: Experiment results in both scenarios. Each line represent the median of the
five runs done per input feature. The variance of score between runs is discussed in the
text. Highlighted horizontal line at score 525 in "health gathering supreme" scenario
indicates the point where agent survived an episode.
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In "health gathering supreme" scenario gray-scale image stays above other options

during whole training, managing to keep agent alive after ≈ 70% of the training (score

525). Label map achieves around half of the score of gray-scale image (≈ 350), and

depth and direct features are not able to collect many medikits during episode (be-

low 200). Using combinations of input-features, gray+label and depth+label inputs

both quickly survive the episode and also keep above 25 health-points (score ≈ 550).

Gray+depth input does not manage to survive episodes, and stays below the perfor-

mance of using gray image alone. Most experiments had low variance, except depth

map and gray+depth (See Appendix B). Gray map could reach higher score during

experiments, and gray+depth often has median score but can also have very low score.

In "deathmatch" scenario direct features and label map achieved highest score con-

stantly with small variance (virtually same results on each run), with gray and depth

images not improving over time. Depth map reached score closer to label map but only

in one of the five runs. In combined inputs, depth+label and gray+label were able to

obtain score of 7 at the end of training, while gray+label did not improve over time.

All input features have small variance, except for depth map (see Appendix B).

5.2.1 Discussion of the results

Based on these results, using gray image alone is not the most robust or highest per-

forming input feature which is against the original hypothesis. In "health gathering

supreme" scenario, gray-scale image performed above all other input features across

all training runs. However in "deathmatch" scenario, higher level features such as the

pixel-labeled image and direct features provide highest performance robustly during

different training runs, while agents with low level features do not manage to improve

over time.

Low performance of higher level features in health gathering supreme could be partly

explained by feature crafting: Created features did not include some information that

was required for agent to learn optimal behavior. It should also be noted that these

high level features are perfect and akin to oracle information (something we should not

be able to have): Perfect pixel labeling would be very difficult to do without provided

information, and extraction of object locations in image could be even harder. Nev-

ertheless, these results show that agents are able to achieve higher performance if the

provided information is noiseless.
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These results align with existing studies. SLAM-augmented deep reinforcement learn-

ing [5] reported similar results, where higher level features did improve the perfor-

mance of the agent but these higher level features had to be flawless and thus oracle

information. By adding noise to the oracle information the performance dropped to the

baseline level of using gray-scale image with DQN and dueling-DQN.

Outside objective results the convenience of using low level features can also be ac-

counted for. During these experiments, implementing model for gray and depth map

was straightforward. Label map required additional processing of information, and

direct features required completely new network model. Input features also required

different amount of computational resources to train. Experiments with gray or depth

map took around 5 hours, labeled took 6− 8 hours and direct features took 7− 9 hours

(due to size of the input). Other features than gray and depth maps might also be hard

to obtain in other than simulated environments. Gray image can be obtained with a

regular RGB camera, and depth map can be obtained with multiple cameras and/or

laser sensors. Label map requires additional processing of assigning pixels in differ-

ent classes, and direct features would require robust detection of objects in the scene

as well depth sensor. However these results are highly dependent on implementation,

software and hardware.
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6 Conclusion

This work presents introduction to deep reinforcement learning and required fields,

namely machine and deep learning. Specifically this thesis focused on using refined,

high level input features versus using raw information from sensors while training deep

reinforcement learning agents. In the past high level features were used for their small

size, but in present day methods exist for efficient use of raw information such as RGB

and gray-scale images (deep learning). In this thesis these two types of input features

were compared in a classical video game "Doom".

During experiments two different scenarios/tasks were used, and four different input

features were defined ranging from low level gray image to high level direct features

(object locations). The experiments show that there is no single input feature that

would allow high, constant performance in all situations. Using gray-scale image in

one scenario led to stable, high scoring results while using pixel-labeling and object

locations resulted to high scores in another scenario.

Higher level features used here included included oracle-level information as they were

flawless object locations in 3D space and their labels. Based on this, results and a

related study [5], higher level features provide higher performance while training deep

reinforcement learning agents, but this information has to be very accurate which can

be difficult to obtain. There are also cases where the higher level features might not

reach high performance compared to low level features. Lower level features are also

more convenient to use, as they do not require additional designing and be obtained

easily (RGB-camera, laser for depth, et cetera).

To further confirm the results of this work additional experiments could be run with

different setups: The network size was relatively small in these experiments, and large

network could have higher capacity for processing raw input like gray image. Other

type of reinforcement learning methods could be tried other than A3C. Additional sce-

narios and environments could be tried, like DeepMind Lab, especially something with

more visual complexity such as lighting. Additional input features should also be tried,

as only one non-image type of input was tried. For future work, adding random noise

to the high level features could be tried to see how robust these reinforcement learning

methods are against noisy inputs.
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Appendices

A Hyperparameters used in the experiments

Parameter Value Description
Experiments

Experiment repeats 5 Number of repeats per scenario × input.

Experiment length 1 000 000 Number of parameter updates per experiment.

Evaluation rate 20 000 Number of parameter updates between evaluations.

Evaluation length 200 Number of episodes to play per evaluation.

VizDoom
Frames per action 4 Number of in-game frames (ticks) per action.

GA3C (model)
Discount factor γ 0.99 Discount factor of rewards (see Chatpter 2.3)

Input image size 64× 48 Size of the images given to the GA3C agent.

Mini-batch size 32 Number of experiences used per parameter update oper-

ation (see Chapter 3.3).

n-step lookahead 5 Number of steps per experience (see Chapter 2.3)

Reward clipping [−1, 1] Interval for reward, clipped if outside this.

Number of components 32/1/3 Number of agents, predictors and trainers (in same or-

der).

βreg [10−4, 10−2] Interval of entropy regularization term, annealed linearly

towards lower end.

Adam (network optimizer)
Learning rate η [10−5, 7 ·10−4] Interval of global learning rate, annealed linearly towards

lower end.

β1 0.95 β1 (α1 in Table 2) parameter of the Adam optimizer.

β2 0.999 β2 (α2 in Table 2) parameter of the Adam optimizer.

ε 10−6 Small constant for stabilizing division in Adam.

Different hyperparameters used during the experiments as well values related to ex-
periment setup.
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B Variance in experiment results

(a) Health gathering supreme, individual inputs (b) Health gathering supreme, combined inputs

(c) Deathmatch, individual inputs (d) Deatchmatch, combined inputs

Experiment results and their variance in color. Line represents the median of the re-
sults, and opaque area represents interval between minimum and maximum average
score over all experiments.
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