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Semi-volatile organic compounds (SVOCs) are 
synthesized and emitted by many plant species 

and are produced by atmospheric oxidation 
of volatile organic compounds (VOCs). Due to 
their low volatility, SVOCs tend to adhere to 
plant surfaces at low temperatures and may 
affect a plant’s ecological interactions. This 

thesis explores the effects of foliar deposition 
of SVOCs and their oxidation products on 
plant volatile emissions and plant defence 

against herbivores. The results contribute to 
our knowledge of the sources, foliar behaviour 

and ecological effects of SVOCs.
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ABSTRACT 

Plants synthesize and emit a plethora of volatile and semi-volatile organic 

compounds (VOCs and SVOCs) as a means of interacting and adapting to 

their environment. These compounds play important roles in plant defence 

against biotic and abiotic stressors, plant interactions with other plants, 

pathogens and arthropods as well as atmospheric chemistry. Plants emit 

VOCs constitutively and in response to biotic and abiotic stressors. Once 

released, VOCs may serve as signalling molecules to other plant parts or 

neighbouring plants. They may also be used by plant pests and other insects 

as host location cues and by pollinators as foraging signals. In the 

atmosphere, VOCs serve as precursors for the formation of tropospheric 

ozone (O3) – a secondary atmospheric pollutant – and may be oxidized by 

atmospheric pollutants to form secondary organic aerosol (SOA).  

This thesis explores volatile-mediated plant-to-plant interactions in 

nature, it also considers the effect of tropospheric O3 on volatile-mediated 

interactions. Additionally, it considers the effects of the products of reactions 

of VOCs with O3 and other atmospheric oxidants on plant VOC emissions 

and their interactions with arthropods. 

 To address the question of volatile-mediated plant-to-plant interactions in 

nature, mountain birch, Betula pubescens, trees in a Finnish subarctic forest 

were grouped based on the density of naturally occurring Rhododendron 

tomentosum shrubs in their understorey. It was observed that VOCs and 

SVOCs emitted by R. tomentosum were passively adsorbed and re-emitted by 

B. pubescens branches growing above them. The density of R. tomentosum 

growing in the understorey as well as foliar glandular trichome density of 

both R. tomentosum and B. pubescens, affected their volatile emissions. To test 

the effects of O3 on volatile-mediated interactions between plants and other 

organisms, a system comprising R. tomentosum as an emitter plant, white 

cabbage, Brassica oleracea, as a receiver plant and the specialist cruciferous 



 

pest Plutella xylostella as a herbivore was utilised. VOCs and SVOCs emitted 

by R. tomentosum were passed through air with elevated ozone levels that 

reached a concentration of 100ppb before being exposed to the receiver B. 

oleracea plants. Ozone degraded some compounds, which resulted in the 

formation of reaction products and thus changed the blend of R. tomentosum 

VOCs. Ozone degradation also affected the blend of R. tomentosum volatiles 

adsorbed by cabbage, but did not alter the resistance to P. xylostella 

oviposition conferred on B. oleracea plants by exposure to R. tomentosum 

volatiles.  

 The degradation of VOCs by atmospheric oxidants leads to the formation 

of less volatile reaction products and SOA that may be deposited on plant 

surfaces, subsequently affecting plant chemistry and plant-insect 

interactions. To test the effects of VOC oxidation products and SOA on plant 

chemistry and plant-herbivore interactions, α-pinene, a ubiquitous 

monoterpene emitted by a wide range of plants was oxidized by O3 and OH 

radicals in a  flow tube and chamber system. The reaction products and SOA 

from these O3- and OH-induced α-pinene oxidation were then passed into a 

99L glass chamber containing cabbage, B. oleracea, plants. Exposure to α-

pinene oxidation products and SOA altered the VOC emission of cabbage 

plants; exposed cabbage plants adsorbed and re-emitted gas-phase α-pinene 

oxidation products as part of their volatile bouquet. Exposure to SOA and α-

pinene oxidation products also affected P. xylostella oviposition and reduced 

feeding by the polyphagous Indian stick insect, Carausius morosus on cabbage 

plants. 

In conclusion, this thesis highlights the phenomenon of passive 

adsorption and re-emission of VOCs, SVOCs and VOC oxidation products 

by plants and their implications for plant-herbivore interactions. 
 

Universal Decimal Classification: 574.2, 581.116, 581.573, 582.622.2, 582.683.211, 632.7  
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1 INTRODUCTION 

1.1 BACKGROUND 

Plants interact and adapt to their natural environment by physical and 

chemical means; physical adaptation may involve leaf and flower 

colouration, leaf toughness as well as leaf surface properties such as 

epicuticular waxes and trichomes (Jetter et al., 2000; Werker, 2000; Hamilton 

and Brown, 2001; Lev‐Yadun et al., 2004). Leaf colouration is important for 

light adsorption during photosynthesis as well as relieving light-related 

environmental stresses (Chalker-Scott, 1999; Nishio 2000). Floral colouration 

mainly serves in pollinator attraction (Chittka and Menzel 1992; Dyer et al., 

2006). Leaf toughness and surface waxes and trichomes help protect plants 

against mechanical injury, insect movement and feeding as well as water loss 

and plant desiccation (Schoonhoven et al., 2005). Chemical adaptation on the 

other hand, involves the synthesis and use of plant primary and secondary 

metabolites. Plant secondary metabolites are products of plant primary 

metabolism that are not directly involved in plant growth, development and 

reproduction but rather in plant defence against biotic and abiotic stresses as 

well as plant signalling (Wink, 2003; Schoonhoven et al., 2005). Volatile 

organic compounds (VOCs) represent a distinct group of plant secondary 

metabolites synthesized and released by plants. VOCs are a diverse group of 

lipophilic compounds marked by high vapour pressure (above 0.01kPa) at 

ambient temperature (20 ℃) (European VOC Solvents Directive 1999/13/EC; 

Dudareva et al., 2013). 

 Plant VOCs play important roles in atmospheric chemistry and plant 

ecology; their synthesis and emission may be constitutive or induced by 

biotic and abiotic stress factors (Holopainen, 2004; Dicke and Baldwin, 2010). 

In the atmosphere, plant VOCs along with oxides of nitrogen(NOx) serve as 

precursors in the formation of tropospheric ozone (Holopainen and Blande, 

2013). VOCs may also react with ozone (O3), hydroxyl (OH) and nitrate (NO3) 

radicals in the atmosphere to form secondary organic aerosol (SOA) particles 

(Hallquist et al., 2009; Seinfield and Pandis, 2012). VOC oxidation in the 

atmosphere also play important roles in new particle formation (NPF). 

Atmospheric oxidation  of monoterpenes such as alpha-pine via 

autooxidation processes lead to the formation of highly oxygenated 

molecules (HOMs) and extremely low-volatility organic compounds 

(ELVOCs) (Crounse et al., 2013; Ehn et al, 2014). These HOMs and ELVOCs 
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may nucleate and intiate NPF and also contribute to particle growth (Kulmala 

et al., 2013a; Kirkby et al., 2016). Atmospheric transformation of biogenic 

VOCs are critical for atmospheric processes including cloud formation, 

radiation absorbance and scattering, processes that potentially have 

important climatic effects (Virtanen et al., 2010; Kulmala et al., 2013b; Dunne 

et al., 2016).  

 Ecologically, plant VOCs function as plant defence compounds as well as 

mediators of plant interactions across trophic levels (Holopainen, 2004; Dicke 

and Baldwin, 2010). VOCs are released by plants in response to herbivore 

feeding or oviposition and may subsequently deter feeding and oviposition 

by herbivores (Kessler and Baldwin, 2001; Heil, 2004) in a process known as 

direct defence. In indirect defence, these compounds attract herbivore 

enemies in forms of predators and parasitoids that attack and reduce 

herbivore populations (Turlings et al., 1990; Kessler and Baldwin, 2001). 

Apart from their role in plant defence, VOCs also function as host location 

cues for foraging insects, pollinators and gravid female insects looking for 

oviposition sites (Bruce et al., 2005; Schiestl, 2010; Tasin et al., 2011). Abiotic 

stresses like temperature increase, altered light intensity, drought and 

oxidative stress may also induce or reduce VOC emissions in plants 

(Holopainen and Gershenzon, 2010; Loreto and Schnitzler, 2010). 

 Another ecological process mediated by VOCs is plant-to-plant 

interactions. These interactions may be between different parts of the same 

individual plant (within-plant signalling) or two individual plants (between 

plant signalling) (Heil and Karban, 2010). Volatile-mediated plant-to-plant 

interactions are marked by the release of a volatile or blend of volatile 

compounds by a damaged (Girón-Calva et al., 2014) or intact emitter plant 

(Glinwood et al., 2004, 2011) that is subsequently sensed by a neighbouring 

plant or different plant part and elicits a response (Heil and Karban, 2010). 

Between and within plant signalling may result in increased herbivore 

resistance in receiver plants or plant parts. This resistance may be marked by 

priming – an increased physiological preparedness to resist future biotic and 

abiotic stresses or the release of extra floral nectar (EFN) to attract natural 

herbivore enemies (Heil and Kost, 2006; Frost et al., 2008; Heil and Karban, 

2010). The mechanisms of volatile-mediated plant-to-plant interactions may 

be either active or passive. In active plant-to-plant interactions, volatiles 

released by the emitter plant elicit a physiological response in the receiver 

(Heil and Kost, 2006; Kost and Heil, 2006), while passive interactions involve 

the adsorption of volatile compounds released by the emitter plant to the 
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surface of receiver plants (Himanen et al., 2010; Li and Blande, 2015). Both 

these processes may alter the receiver plants’ response to herbivory (Choh et 

al., 2004).  

 Once released into the atmosphere, VOCs are subject to atmospheric 

conditions that may undermine the success of their ecological functions 

(Pinto et al., 2007a, 2010). VOCs  also serve as precursors for the formation of 

secondary atmospheric pollutants like O3 (Holopainen and Blande, 2013).  In 

the atmosphere, VOCs are subject to dilution, air turbulence and wind 

direction (Koehl, 2005). They may also react with atmospheric oxidants, 

which results in the degradation of reactive compounds and a change of the 

VOC blend  (Pinto et al., 2010).  These reactions between VOCs and 

atmospheric oxidants produce less volatile or semi-volatile reaction products, 

which are further oxidized and condensed to form SOA particles that play 

important roles in atmospheric chemistry (Seinfield and Pandis, 2012) and 

possibly in plant ecology (Holopainen et al., 2017). 

 Semi-volatile compounds typically have lower vapour pressures (< 0.005 

kPa at 25 ℃) and higher boiling points (240 – 400 ℃) compared to VOCs 

(Copolovici and Niinenmets 2015; Lucattini et al., 2018). A common group of 

semi-volatile organic compounds (SVOCs) emitted by plants are 

sesquiterpenes (Copolovici and Niinenmets, 2015) and their emission by 

plants may be stress induced (Niinemets, 2010; Li and Blande 2015) or 

constitutive (Himanen et al., 2010, 2015). Semivolatile compounds may also 

be formed as the less volatile reaction products of VOC oxidation (Presto and 

Donahue, 2006). In spite of their relatively low volatility, some SVOCs are 

very reactive and are degraded easily upon release into the atmosphere 

(Atkinson and Arey, 2003a); however, other saturated semivolatile 

compounds are less prone to atmospheric oxidation and may persist on leaf 

surfaces (Helmig et al., 2004; Himanen et al., 2010, 2015). In the atmosphere, 

semivolatile compounds condense to form SOA particles (Helmig et al., 2006; 

Seinfield and Pandis, 2012; Holopainen et al., 2017). These SOA particles and 

other reaction products of VOC and SVOC oxidation in the atmosphere are 

readily redeposited on vegetation (Karl et al., 2005, 2010; Holopainen et al., 

2017).  

 This thesis discusses volatile-mediated passive plant-to-plant interactions 

mediated by VOCs and SVOCs emitted by the perennial evergreen shrub, 

Rhododendron tomentosum. It examines the phenomenon of passive volatile 

adsorption between naturally occurring R. tomentosum and Betula pubescens 

trees in a subarctic climate. It also considers the effects of ozone on the process 

of passive volatile adsorption and the herbivore resistance it may confer. 
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Finally, the effects of the deposition of SOA and reaction products of VOC 

oxidation on plant surfaces and their corresponding effects on insect feeding 

and oviposition were tested and discussed.  
 

1.2 BIOGENIC VOLATILE ORGANIC COMPOUNDS 

1.2.1 Biosynthesis of volatile organic compounds 

 

Plant VOCs can be broadly categorized as terpenoids, benzenoids and 

phenylpropanoids, fatty acid derivatives and nitrogen and sulphur 

containing compounds. Terpenoids are the largest and most diverse group of 

plant secondary metabolites. Originating from a five carbon (C5) precursor, 

they  include hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), 

diterpenes (C20) and homoterpenes (C11 and C16) (Dudareva et al., 2004). 

 All terpenoids are derived from the universal C5 precursors isopentenyl 

diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). These precursors 

are formed from acetyl-CoA, pyruvate and glyceraldehyde-3-phosphate via 

the mevalonic acid (MVA) pathway in the cytosol and the methyerythritol 

phosphate (MEP) pathway in the plastids (Dudareva et al., 2013). The MEP 

pathway provides C5 units for the synthesis of hemiterpenes, monoterpenes 

and diterpenes while the MVA pathway results mostly in sesquiterpene and 

homoterpene synthesis. The huge diversity of terpenoids is due to the actions 

of terpene synthase enzymes that are able to synthesize multiple products 

from a single substrate (Dudareva et al., 2004). Other chemical reactions, such 

as oxidation, dehydrogenation and acylation may also result in the formation 

of terpenes without the use of terpene synthases (Dudareva et al., 2006; 

Maffei, 2010). Homoterpenes are irregular acyclic terpenoids such as the 

(C11), 4,8-dimethylnona-l,3,7-triene (DMNT) and (C16), 4,8,12-

trimethyltrideca-1,3,7,11-tetraene (TMTT), they are typically derived from 

the oxidative degradation of a (C15) and (C20) compound respectively 

(Dudareva et al., 2006). 

 Another large group of plant VOCs are the fatty acid derivatives; they are 

generally termed oxylipins and include green leaf volatiles and jasmonic acid 

and its derivatives (Mwenda and Matsui 2014). Oxylipins are synthesised 

from C18 fatty acids that undergo dioxygenation catalysed by the 

lipoxygenase (LOX) enzyme (Dudareva et al., 2006). These oxidation 

reactions may occur at the C9 or C13 positions and produce two compound 

groups – the 9-hydroperoxy and the 13-hydroperoxy derivatives of polyenoic 

fatty acids (Gigot et al., 2010). Subsequent reactions catalysed by the allene 
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oxidase synthase results in the synthesis of jasmonic acid and methyl 

jasmonate. Another enzyme, the hydroperoxide lyase (HPL) leads to the 

formation of C6 and C9 aldehydes, which are often reduced to alcohols and 

esters that make up plant green leaf volatiles (GLVs) (Dudareva et al., 2013; 

Maffei, 2010). Benzenoids, phenylpropanoids and sulphur and nitrogen 

containing compounds are typically derived from plant amino acids and 

synthesized in the plastids (Dudareva et al., 2006; Pichersky et al., 2006). 

 VOC synthesis and emission may be de novo in damaged or undamaged 

tissues, where the processes may be spatially, temporally and 

developmentally regulated. They may also be accumulated in storage organs 

like resin ducts and glandular trichomes from where they can be released 

upon disturbance (Dudareva et al., 2006; Maffei, 2010). Biotic and abiotic 

stressors may also trigger the synthesis and emission of VOCs (Holopainen 

and Gershenzon, 2010; Loreto and Schnitzler, 2010). 
 

1.2.2 Plant semi-volatile organic compounds (SVOCs) 

 

Plant semi-volatile organic compounds (SVOCs) are secondary metabolites 

marked by relatively low volatility compared to other plant VOC groups 

such as monoterpenes and GLVs; they have a vapour pressure lower than 

0.005 kPa at 25 ℃, and include sesquiterpenoids and diterpenoids emitted by 

plants (Hoskovec et al., 2005; Copolovici and Niinemets, 2015; Jud et al., 

2016). They are constitutively emitted by flowers and some aromatic plants 

and can be induced in other plants by abiotic and biotic stresses (Klimankova 

et al., 2008; Holopainen and Gershenzon, 2010; Muhlemann et al., 2014). They 

play important ecological roles in pollinator attraction due to their long 

distance signalling capacity (Muhlemann et al., 2014). The synthesis and 

emission as well as the physicochemical state of plant SVOCs are temperature 

dependent (Copolovici and Niinemets, 2015). In nature, SVOCs emitted by a 

plant species have the capacity to condensate on the surfaces of neighbouring 

plants at low night-time temperatures (Holopainen et al., 2017). Plant emitted 

semi-volatile sesquiterpenes have been shown to be mediators of passive 

plant-to-plant interactions (Himanen et al., 2010; Li and Blande, 2015). SVOCs 

may also react with oxidants in the atmosphere and play appreciable roles in 

secondary organic aerosol (SOA) formation and atmospheric chemistry 

(Helmig et al., 2006; Holopainen et al., 2017).  

 VOC and SVOC reactions with atmospheric oxidants lead to the formation 

of highly oxidized compounds with different volatility classes. Donahue et 

al, (2003) classsified reaction products based on their decreasing saturation 
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vapour pressures as intermediate volatility organic compounds (IVOC), 

SVOC, low volatility organic compounds (LVOC) and extremely low 

volatility organic compounds (ELVOC). The less volatile ELVOC and LVOC 

classes tend to condense easily to form organic aerosols compared SVOCs, 

IVOCs and VOCs (Donahue et al., 2003) 

 

1.3 ECOLOGICAL ROLES OF VOLATILE ORGANIC COMPOUNDS 

1.3.1 Plant defence against abiotic stress 

 

Plant VOCs play important ecological roles in plant defence against abiotic 

stresses. Changes in temperature and light intensity as well as drought and 

oxidative stress alter plant VOC emission (Holopainen and Gershenzon, 

2010; Loreto and Schnitzler, 2010). Abiotic stresses may reduce or induce 

plant VOC emissions depending on the intensity and duration of the stress 

(Loreto and Schnitzler, 2010). Within plant tissues, VOCs move from their site 

of synthesis through subcellular barriers and are released via the stomata. 

They may also be released due to mechanical disturbance or via the cuticle 

(Niinemets et al., 2002; Widhalm et al., 2015). Abiotic stresses may inhibit 

photosynthesis and subsequently reduce photosynthetically fixed carbon 

that may be required for VOC synthesis (Loreto et al., 1996; Loreto and 

Schnitzler, 2010), thus resulting in reduced VOC emissions. Alternatively, 

plants may synthesize and increase emission of VOCs in response to abiotic 

stresses (Loreto and Schnitzler, 2010). In the case that photosynthetic carbon 

is absent or reduced in abundance, VOCs may be synthesized from 

alternative carbon sources, such as starch from leaf internal carbon pools and 

extra-chloroplastic sources, such as xylem-transported carbohydrates (Karl et 

al., 2002; Kreuzwieser et al., 2002; Schnitzler et al., 2004).  

 An increase in temperature generally tends to increase the emission of 

terpenes emitted from storage structures and via de novo synthesis by 

increasing diffusion and enzymatic activity, respectively (Loreto and 

Schnitzler, 2010; Copolovici and Niinemets, 2016). Plants release isoprene 

and monoterpenes in response to short term and longer-term temperature 

increase (Niinemets, 2010; Copolovici and Niinemets, 2016). Sesquiterpene 

and GLV emissions were also increased by long term temperature increase 

(Hartikainen et al., 2012;  Kivimäenpää et al., 2016). In cases where 

temperature goes above the optimum for enzymatic activity, terpene 

emissions are reduced  due to the denaturation of enzymes, whereas the 
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emission of VOCs like GLVs and methanol, which are related to cell 

membrane and cell wall damage, increase (Loreto et al., 2006). There is 

evidence that emissions of isoprene and monoterpenes protect plant 

photosynthetic apparatus against damage caused by high temperature 

(Loreto and Schnitzler, 2010; Niinemets and Keenan, 2014). The increased 

concentration of monoterpenes in leaf tissues protects foliage from heat flecks 

(Niinemets et al., 2010; Copolovici and Niinemets, 2016). Plants fumigated 

with isoprene and other monoterpenes prior to exposure to heat stress 

showed a quicker recovery time compared to controls in terms of the 

restoration of photosynthesis rate (Copolovici et al., 2005). 

 VOC emissions from stressed plants may also be associated with stress-

induced stomatal action; high temperatures may affect stomatal behaviour as 

a single stress or in association with drought (Loreto and Schnitzler, 2010). 

Severe drought stress may inhibit or increase terpene emissions due to 

reduced photosynthesis or increased enzyme activity in association with 

increasing temperature (Llusià and Peñuelas, 1998, 2000). The increased 

emissions of terpenes as a response to drought stress may help plants to 

maintain membrane fluidity and stability (Peñuelas and Llusià 2002). Volatile 

terpene emissions, especially by emitters without VOC-storage organs, is 

light dependent and linked to photosynthesis (Staudt and Seufert, 1995). 

However, high light intensities may lead to the emission of C-6 compounds 

that are linked to extensive membrane damage (Loreto et al., 2006).  

 Some plant VOCs, especially isoprene and monoterpenes, are highly 

reactive with ozone and have been suggested to serve as ozone-quenching 

compounds within the leaves, and consequently reducing oxidative stress to 

the plants (Loreto and Velikova, 2001; Loreto et al., 2001, 2004). However, the 

ozone-quenching properties of isoprene are debatable due to their high 

volatility and high atmospheric lifetime (Atkinson et al, 2000). Monoterpenes 

and sesquiterpenes of shorter atmospheric lifetimes and lower volatility 

compared to isoprene (Atkinson et al., 2000) are physicochemically more 

likely compounds to be involved in ozone quenching within leaves (Loreto 

et al., 2004; Palmer-Young et al., 2015). These foliar ozone-scavenging 

reactions could also occur as a result of reaction with semivolatile compounds 

at leaf surfaces (Jud et al., 2016; Acton et al., 2018). These surface semi-

volatile-mediated ozone quenching reactions may however not always 

reduce oxidative stress or improve plant fitness (Palmer-Young et al., 2015). 

Taken together, endogenously synthesized as well as exogenously acquired 

terpenes can be useful for plants in the resistance to various abiotic stresses. 
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1.3.2 Plant defence against biotic stress 

Plant VOC emissions elicited by pathogen infection, herbivore-feeding and 

oviposition play important roles in plant defence; the mechanism of defence 

may be by direct repellence or deterrence or by indirect recruitment of natural 

enemies (Holopainen, 2004; Maffei, 2010). The blend of GLVs and terpenes 

produced by tomato, Lycopersicon esculentum, plants upon infestation by 

Botrytis cinerea showed strong inhibitory effects against the pathogen (He et 

al., 2006). Exposing Arabidopsis plants to (Z)-3-hexenal also effectively 

reduced the lesions of B. cinerea infection on the plant (Shiojiri et al., 2006). 

VOCs emitted by tobacco, Nicotiana tabacum, plants upon damage by the 

tobacco budworm, Heliothis virescens, larvae were repellent to gravid H. 

virescens female adults searching for oviposition sites (De Moraes et al., 2001). 

Kessler and Baldwin (2001) also showed that herbivore-induced VOCs of 

Nicotiana attenuata plants repelled ovipositing Manduca sexta females. The 

volatile blend released by herbivore damaged N. attenuata in this case also 

served in recruiting predators that fed on M. sexta eggs in a case of indirect 

defence across multiple trophic levels. Lima bean, Phaseolus lunatus, plants 

infested by spider mites release a VOC blend that attracts the predatory mites 

that prey on spider mites (Takabayashi and Dicke, 1996). Volatile-mediated 

indirect defence is not limited to combatting larval feeding; egg deposition 

by the pine sawfly, Diprion pini, on twigs of Scots pine, Pinus sylvetris, induces 

VOC emissions that attract the egg parasitoid Chrysonotomyia ruforum (Hilker 

et al., 2002). The recruitment of natural enemies and egg parasitoids as a 

result of volatiles induced by egg deposition has been reported in a number 

of plant species (Fatouros et al., 2016 and references therein). 
 

1.3.3 Plant-arthropod interactions 

VOCs emitted by flowering parts of plants provide species-specific cues for 

pollinator attraction. Although pollinators also use flower shape and colour 

in plant selection, the large diversity of VOCs mean that floral scents can be 

specific to a plant species (Schiestl, 2010; Muhlemann et al., 2014; Maffei, 

2010). Constitutively emitted VOCs by plant vegetative parts are used by 

herbivores as host selection cues (Bruce et al., 2005). Feeding by herbivores 

may increase plant VOC emissions or induce the emission of new herbivore-

induced plant volatiles (HIPVs). These compounds may serve as herbivore 

deterrents or recruit natural herbivore enemies (Holopainen and 
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Gershenzon, 2010; Schuman and Baldwin, 2012). HIPVs may also increase the 

apparency of plants to generalist herbivores and non-beneficial natural 

enemies. Application of methyl salicylate, an HIPV, increased the population 

of the leaf mining pest Scaptomyza flava on Brassica rapa plants (Orre et al., 

2010). Small potato plants infested by larvae of the beet armyworm, 

Spodoptera exigua, release VOCs that are attractive to the Colorado potato 

beetle, Leptinotarsa decemlineata (Bolter et al., 1997). Finally, VOCs can also 

mediate interactions with the third trophic level by attracting parasitoids and 

predators of herbivores as part of an indirect defence mechanism (Kessler 

and Baldwin, 2001).  

 

1.3.4 Plant-to-plant interactions 

The earliest evidence of volatile mediated plant-to-plant interactions came in 

the 1980s, when Baldwin and Schultz (1983) proposed that airborne signals 

from damaged sugar maple, Acer saccharum, and Poplar, Populus 

euroamericana, caused an increased level of resistance-related compounds in 

undamaged neighbouring conspecifics. Another study by Rhoades (1983) 

proposed that the increased level of herbivore resistance expressed by 

willow, Salix sitchensis, trees growing close to herbivore-damaged neighbours 

was due to airborne volatiles. Although both these experiments were 

criticized for flaws in statistical design and unsatisfactory evidence (Fowler 

and Lawton, 1985), there is a substantial body of work today to support the 

phenomenon of volatile-mediated plant-to-plant interactions (e.g. Farmer 

and Ryan, 1990; Arimura et al., 2000; Karban et al., 2000). The phenomenon 

of volatile mediated interactions between plants has been referred to as 

communication (De Moraes and Mescher, 2006), signalling (Kost and Heil, 

2006) and eavesdropping (Karban et al., 2004). Ideally, the term ‘plant 

communication’ should convey a two-way benefit for both emitter and 

receiver plants, however the weight of evidence from much of the study of 

the phenomenon has shown benefits for the receiver with little known on the 

effects on the emitter (Heil and Karban, 2010). This gave rise to the term 

‘eavesdropping’, which connotes the duplicitous use  of a signal evolved to 

elicit a response in an alternative recipient (Heil and Karban, 2010). Thirdly, 

‘plant-to-plant signalling’ has been used widely because it refers to the plastic 

emission of a VOC signal that elicits quick responses in a receiver plant (Heil 

and Karban, 2010). All of these terms however only cover cases of active 

plant-to-plant interactions, when there are physiological changes in a 

receiver plant, marked by induction or a primed response due to exposure to 
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induced plant volatiles. In cases where exogenous volatiles adhere to the 

surface of neighbouring plants without necessarily triggering a physiological 

response, the interactions cannot be said to be signalling or eavesdropping. 

Consequently, the term “passive” plant-to-plant interactions has been used 

(Choh et al., 2004; Himanen et al., 2010; Li and Blande 2015). In this thesis, all 

plant VOC-mediated interactions and the effects they elicit are broadly 

termed plant volatile-mediated interactions. 

 To demonstrate the signalling role of VOCs between parts of the same 

individual plant, Heil and Silva-Bueno (2007) exposed undamaged leaves of 

Lima bean, P. lunatus, to induced VOCs from damaged leaves of the same 

plant, this increased the secretion of EFN in the undamaged receiver leaves. 

Similarly, Frost et al. (2007) showed that undamaged leaves of hybrid poplar, 

Populus deltoides x nigra, exposed to HIPVs from damaged leaves of the same 

individual had increased defences against feeding by gypsy moth larvae, 

Lymantria dispar, compared to leaves that did not receive the VOCs. Exposure 

to herbivore-damaged leaf volatiles led to a systemic induction of 

sesquiterpenes and priming for GLV emissions in undamaged leaves of silver 

birch, Betula pendula (Girón-Calva et al., 2014). The use of plant volatiles for 

signalling within plants may be faster than vascular signals, especially 

between parts with limited vascular connections (Heil and Karban, 2010). 

Indeed, it has been proposed that signalling between plants arose from 

within-plant signalling, in which VOCs are emitted to prepare the not yet 

attacked organs of a plant for the upcoming attack (Heil and Karban, 2010). 

 In between-plant interactions, VOCs emitted by a damaged plant may 

prime neighbouring undamaged plants; preparing them for a stronger and 

quicker response if attacked. Lima bean plants exposed to herbivore-induced 

VOCs from insect-damaged conspecifics, responded to subsequent damage 

by increased secretion of EFN (Heil and Kost, 2006). Undamaged 

neighbouring silver birch seedlings exposed to volatiles from insect damaged 

neighbours were also primed for increased terpenoid and GLV emissions 

during subsequent feeding damage (Girón-Calva et al., 2014). Passive plant-

to-plant interactions have been shown to be mediated by sesquiterpenes, 

their semivolatile property enables the compounds to adhere to and be re-

emitted from neighbouring plant surfaces (Himanen et al., 2010, 2015; Li and 

Blande 2015). Birch seedlings growing close to Rhododendron tomentosum 

shrubs in a boreal ecosystem adsorbed and re-emitted R. tomentosum 

sesquiterpenoids; compared to unexposed controls, the exposed birch trees 

were repellent tothe green leaf weevil, Polydrusus flavipes (Himanen et al., 
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2010). Broccoli, Brassica oleracea, plants also showed increased resistance to 

Plutella xylostella oviposition after a 24-hour exposure to R. tomentosum plants 

(Himanen et al., 2015). Sesquiterpenes induced by herbivore-feeding on 

broccoli plants have also been shown to be passively adsorbed on 

neighbouring plant surfaces, subsequently increasing their susceptibility to 

oviposition by P. xylostella (Li and Blande, 2015). Both active and passive 

processes mediate plant-to-plant interactions and may have effects on plant 

herbivores and herbivore natural enemies (Choh et al., 2004). However, in 

cases where both emitter and receiver plants synthesize and emit the 

compounds that mediate passive interactions in nature, it becomes difficult 

to determine which compounds are adsorbed and re-emitted and which the 

receiver plants synthesize and emit themselves.  
 

1.3.5 Foliar uptake and adsorption of VOCs and SVOCs 

Volatile mediated plant-to-plant interactions are dependent on receiver plant 

foliage being exposed to emitter-plant volatiles; exposure to volatiles may 

result in uptake through the stomata and/or the adsorption of the VOCs 

within the cuticle. These processes have far-reaching consequences for plant 

chemistry and herbivore responses (Niinemets et al., 2014). Foliar uptake of 

VOCs from the atmosphere by plants is dependent on the concentration of 

the compound in the atmosphere and follows a diffusion flux pattern (Noe et 

al., 2007; Niinemets et al., 2014). Uptake occurs when ambient air 

concentration is higher than within leaf concentration until a compensation 

point is reached when both concentrations are in equilibrium. When 

atmospheric concentrations drop, VOCs are emitted back into the 

atmosphere (Niinemets et al., 2004; Niinemets et al., 2014).  

 The distance between emitter and receiver plants as well as wind speed 

and direction also affect foliar volatile uptake (Müller and Riederer, 2005). 

VOCs are dispersed in the air via diffusion and turbulent motion and may be 

diluted and rendered ineffective over longer distances. Induced resistance in 

N. attenuata plants via exposure to clipped sagebrush, Artemisia tridentata 

volatiles was observed only within a 15 cm distance and up to 60 cm between 

paired sagebrush plants (Karban, 2001; Karban et al., 2006). The presence of 

secondary organic pollutants in the atmosphere may further decrease VOC 

atmospheric lifetimes and shorten the effective distances for volatile 

mediated plant-to-plant interactions (Blande et al., 2010; Li et al., 2016). Due 

to their low vapour pressure and lipophilicity, semivolatile sesquiterpenoids 

are typical mediators of passive plant-to-plant interactions (Himanen et al., 



26 

 

2010; Himanen et al., 2015, Li and Blande 2015). Oxygenated 

sesquiterpenoids are less prone to oxidation reactions in the atmosphere 

compared to sesquiterpenes and monoterpenes and may persist for a longer 

period in the atmosphere or on plant surfaces (Pinto et al., 2007b; Helmig et 

al., 2004; Himanen et al., 2010). Highly volatile monoterpenes not taken up 

through the stomata may also be adsorbed on plant surface from surrounding 

air. Thirteen emitting and non-emitting plant species fumigated with 

limonene, adsorbed and re-emitted the monoterpene (Noe et al., 2007). 

 Within plants, VOCs taken up from the atmosphere may undergo 

hydrolysis or glycosylation where they are converted to other compounds 

that may be protective to the plant (Sugimoto et al., 2016). Exogenously 

applied methyl jasmonate was hydrolysed within tobacco, N. attenuata, 

plants and later released as jasmonic acid (Wu et al., 2008). Intact Arabidopsis 

thaliana plants exposed to a labelled GLV, (Z)-3-hexenal, re-emitted labelled 

(Z)-3-hexenol and (Z)-3-hexenyl acetate, confirming the conversion of the 

compound within the plant and subsequent re-emission (Matsui et al., 2012). 

 Field examples of volatile monoterpene and GLV uptake and re-emission 

are difficult to measure due to the high vapour pressures of the compounds 

as well as their proneness to atmospheric oxidation (Atkinson and Arey, 

1998). In addition, the ubiquity of GLVs and monoterpene emissions among 

many plants may also mask passive adsorption and re-emission of VOCs and 

SVOCs in nature. VOCs and SVOCs collected from plants in nature may 

originate from neighbouring plants, but this may prove difficult to assess in 

scenarios when both the neighbouring and sampled plants synthesize similar 

compounds. 
 

1.4 PLANT SURFACES 

1.4.1 Plant cuticular waxes 
 

Plant surfaces represent the first point of physical contact in volatile-

mediated plant-to-plant and plant-insect interactions and as such, the 

physical and chemical properties of plant surfaces are important for these 

interactions. Plant cuticles are typically composed of a cutin matrix and a wax 

layer (Müller and Riederer, 2005). The cutin is composed of hydroxy- and 

hydroxyepoxy fatty acids derived from cellular fatty acids and C16 saturated 

and C18 unsaturated fatty acids (Müller and Riederer, 2005). Cuticular waxes 

on the other hand are esters of long chain fatty acids. Wax layers are typically 
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lipophilic and serve plants in protection against water loss, insect herbivory 

and pathogen attack (Schoonhoven et al., 2005). External factors such as 

season, temperature, light, CO2 and ozone, and internal factors such as 

developmental stage and organ-specific regulation may affect the 

quantitative and qualitative composition of plant waxes (Müller and 

Riederer, 2005).  

 The process of volatile-mediated plant-arthropod interactions may be 

broadly divided into 3 phases: searching, selection and acceptance 

(Schoonhoven et al., 2005). Searching involves the use of airborne VOCs to 

determine host location, selection of a host plant involves physical contact 

between the plant and arthropod, after which the leaf surface characteristics, 

both physical and chemical, modifies the insect’s behaviour and acceptance 

of a host (Schoonhoven et al., 2005). Waxy surfaces, for example, may prevent 

adherence of herbivores on leaf surfaces, which may be necessary for their 

feeding (Eigenbrode, 2004). P. xylostella preferred to oviposit on glossy 

surfaced Brassica spp. compared to waxy surfaced cabbage (Badenes-Perez et 

al., 2004). The presence of epicuticular waxes also increased the slipperiness 

and reduced the survival rates of herbivorous psyllids on Eucalyptus globulus 

(Brennan and Weinbaum, 2001). The wax surface structure may also 

determine optical properties of a plant leaf, which in turn may affect 

herbivore foraging (Schoonhoven et al., 2005).  

 The chemical properties of plant cuticular waxes are also important as 

they determine whether the plant is accepted or not by an herbivore. VOCs 

exiting plant tissues or taken up from the atmosphere accumulate in the 

cuticular wax layer (Himanen et al., 2010; Joensuu et al., 2016), where they 

are sensed by visiting arthropods and may either stimulate or deter herbivory 

and oviposition (Eigenbrode and Espelie 1995; Eigenbrode, 2004). The 

hydrophobic nature of plant leaf surfaces due to their wax layer makes for 

the possibility of adsorption of lipophilic VOCs from the atmosphere within 

the cuticle. The presence of exogenous volatile compounds within a plant’s 

cuticle affects herbivore feeding and oviposition (Himanen et al., 2010; 2015). 

 

1.4.2 Plant trichomes 

Plant surfaces may also have unicellular or multicellular appendages 

emerging from epidermal cells on stems and leaves called trichomes. 

Trichomes can act as physical and chemical barriers against abiotic and biotic 

stresses. Plant trichomes show a large diversity and can be broadly divided 

into non-glandular and glandular trichomes (Schoonhoven et al., 2005; 
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Werker, 2000). Non-glandular trichomes do not produce or secrete plant 

chemicals, but serve in plant resistance by restricting herbivore movement, 

oviposition and feeding on plant surfaces (Schoonhoven et al., 2005; Li et al., 

2018). For example, the number of eggs deposited on a natural population of 

A. thaliana plants by P. xylostella decreased with increasing leaf trichome 

density (Handley et al., 2005). Genetically increasing trichome production in 

Brassica napus seedlings decreased feeding by the crucifer leaf beetle, 

Phyllotreta cruciferae (Soroka et al., 2011). However, increasing trichome 

production may disrupt indirect defence by inhibiting the mobility of 

herbivore natural enemies (Van Lenteren et al., 1995; Dalin et al., 2008). Plants 

may also produce trichomes as a response to abiotic and biotic stresses (Dalin 

et al., 2008; Harada et al., 2010).  

 Glandular trichomes serve as storage structures for a number of plant 

secondary metabolites including volatile and non-volatile terpenoids 

(Gershenzon and Dudareva, 2007) and phenylpropanoids (Xie et al., 2008). 

They may also contain and exude non-volatile natural products including 

phenolics, flavonoids, acyl sugars and glycerides (Levin, 1973; Werker, 2000; 

Liu et al., 2019). These compounds may be exuded directly onto the plant 

surface or into the atmosphere upon mechanical or insect damage and may 

deter or repel insects or attract their natural enemies (Levin, 1973; Romero et 

al., 2008; Luo et al., 2010).  The secreted compounds may also be sticky, gluing 

smaller arthropod species to plant surfaces (Krimmel and Pearse, 2013). 

Secretions from glandular trichomes may also play a role in plant defence 

against oxidative stress. Jud et al (2016) reported that cis-abienol, and other 

foliar surface semivolatiles of N. tabacum plants react with ozone, reducing 

stomatal uptake and oxidative stress. Release of volatile and non-volatile 

glandular trichome exudates is also dependent on temperature. Increasing 

temperature may lead to the release of volatile exudates into the atmosphere 

via diffusion, from where they may be oxidized or condensate on foliage of 

the emitting plant and surrounding plants as temperatures decrease 

(Holopainen and Blande, 2013; Niinemets et al., 2014). 

 
1.5 TROPOSPHERIC OZONE 

1.5.1 Formation and distribution 

Ozone (O3) is a reactive gas that exists in two layers of the atmosphere – 

stratospheric and tropospheric ozone. In the stratosphere, ozone is a 

naturally occurring constituent formed by the photolysis of molecular 
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oxygen by UV-radiation, this layer of ozone serves in the protection of the 

Earth’s surface against lethal UV-radiation from the sun (Fowler et al., 2008). 

In the troposphere, however, ozone is a secondary pollutant formed from 

complex photochemical reactions involving oxides of nitrogen (NOx), 

methane (CH4), and VOCs (Liu et al., 1980; Fowler et al., 2008). The process 

of tropospheric ozone formation involves the oxidation of VOCs by hydroxyl 

(OH) radicals to form alkyl peroxy (RO2) and hydroperoxy (HO2) radicals. 

Nitric oxide (NO) is oxidized to nitrogen dioxide (NO2) by these radicals and 

sunlight separates NO2 into NO and oxygen atoms (O), which bind to 

naturally occurring oxygen (O2) to form tropospheric ozone (O3) (Pinto et al., 

2010; Holopainen and Blande 2013). A range of anthropogenic and natural 

sources release ozone precursors. VOCs are largely from biogenic sources like 

vegetation, while oxides of nitrogen (NOx) and methane (CH4) are mostly 

anthropogenic in their origin (Amann, 2008; Fenger, 2009). Tropospheric 

ozone shows strong seasonal and diurnal variations in urban areas; 

concentrations are usually highest in the summer and during afternoons. 

Availability of ozone precursors coupled with high temperatures and intense 

solar radiation results in peak ozone concentrations (Amann, 2008; Stocker et 

al., 2013). Global ozone distribution is dependent on local concentrations of 

precursors and long-range transport of ozone; the long atmospheric lifetimes 

of many ozone precursors allow them to be transported over long distances 

(Amann, 2008).  

 Global tropospheric ozone levels have increased since pre-industrial times 

due to increase in human population and expansion of anthropogenic 

activities that result in ozone precursor emissions. In rural Europe, 

tropospheric ozone concentrations increased from about 10-15ppb at the end 

of the 19th century to 20-30ppb in the 1980s (Volz and Kley, 1988). 

Background ozone levels currently range between 35 – 45 ppb in the northern 

hemisphere, there are however occurrences of peak emissions of up to 

100ppb (Mills et al., 2018). In general, due to the reduction in anthropogenic 

emissions of ozone precursors, ozone levels in the United states and Europe 

have decreased (Simpson et al., 2014; Lin et al., 2017). Precursor emissions 

have largely shifted from Europe and North America to Asia since the 

beginning of the 1990s (Zhang et al., 2016; Mills et al., 2018). Global average 

ozone concentrations are expected to decrease, largely remain the same or 

slightly increase in the coming years according to various models (Cionni et 

al., 2011; Kim et al., 2015), however, it is still expected that daily averages of 

up to 80 ppb will be experienced in some areas (Xu et al., 2016; Chang et al., 

2017) . 
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1.5.2 Impact of ozone on plants 

Ozone is a phytotoxic air pollutant and the severity of its damage on plants 

depends on the concentration and duration of exposure (Runeckles and 

Krupa 1994; Sandermann, 1996). Chronic exposure to background levels of 

ozone over a long period may lead to symptoms similar to premature 

senescence due to inhibition of photosynthesis, alteration of sugar 

metabolism and production of reactive oxygen species (ROS) (Schraudner et 

al., 1997; Kangasjärvi et al., 2005). Exposure to high concentrations over a 

short period (acute exposure) leads to the formation of chlorotic flecks, 

foliage bronzing and cell death (Saitanis and Karandinos, 2002). In exposed 

plants, ozone may directly interact with surface tissues or be taken up by the 

plant into the mesophyll layer through the stomata where they cause 

oxidative stress and eventually cell death (Kerstiens and Lendzian, 1989; 

Baier et al., 2005). In agricultural plants, the physiological effects of elevated 

ozone exposure may lead to a decrease in yield and quality in ozone-sensitive 

crops (Aunan et al., 2000; Soja et al., 2004; Piikki et al., 2007). 

 Ozone uptake through the plant cuticle is thought to be negligible; 

however, a number of reactions involving ozone may occur on the leaf 

surface. Recently, plant surface semivolatiles have been shown to react with 

ozone and may play a role in ozone quenching at the surface thereby 

reducing uptake by plants (Jud et al., 2016). In addition, monoterpenes 

(Loreto et al., 2004) and sesquiterpenes (Palmer-Young et al., 2015) present 

within the leaf or leaf boundary layer may also serve as ozone quenchers. 

Chronic ozone exposure may also lead to increased production of leaf wax 

compounds as an acclimation response (Kontunen‐Soppela et al., 2007). 

 Once taken in through the stomata into the mesophyll cells, ozone is 

degraded into reactive oxygen species (ROS) which at high levels may trigger 

signalling pathways (Jaspers and Kangasjärvi, 2010) and activation of 

defence mechanisms (Baier et al., 2005), including the emission of VOCs. 

Plants may emit VOCs as a response to ozone stress. Vuorinen et al. (2004) 

reported that acute exposure to ozone induced the emission of a GLV and 

DMNT, compounds that are also induced by herbivory in Lima bean plants. 

Chronic exposure to non-damaging levels of ozone also increased 

monoterpene and GLV emissions in Scots pine (Kivimäenpää et al., 2016).  

Exposure to ozone may also reduce terpene emission rates because of 

reduced photosynthesis, which may coincide with the emission of GLVs and 
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other compounds related to ozone-induced membrane damage (Loreto and 

Schnitzler, 2010).   

 
1.5.3 Effects of ozone on volatile mediated interactions 

Ozone affects plant volatile-mediated interactions in a number of ways. 

Firstly, on the emitter plant; ozone exposure may alter the volatile signal of 

the emitter plant by inducing, increasing or decreasing their VOC emissions 

(Vuorinen et al., 2004; Loreto and Schnitzler, 2010).  

 Secondly, within the air transport medium, the presence of high ozone 

levels in the atmosphere may degrade VOCs and subsequently disrupt their 

ecological functions. Once VOCs are released into the air, they are subject to 

dilution and degradation especially in ozone-polluted air (Pinto et al., 2010). 

Plant VOCs have varying atmospheric lifetimes ranging from less than two 

minutes to many years, and atmospheric lifetimes of some reactive VOCs are 

dependent on the concentration of oxidants in the atmosphere (Atkinson and 

Arey, 2003a; Kim et al., 2010). Terpenes with one or more C ═ C bonds are 

especially susceptible to degradation by ozone while saturated or oxygenated 

compounds are less prone (Calogirou et al., 1996; Pinto et al., 2010). Ozone 

degradation of plant volatiles in the air changes the composition of the VOC 

blend, which may in turn alter their signalling efficacy (Mc Frederick et al., 

2009; Pinto et al., 2010). Elevated ozone regimes degraded some constituents 

of B. oleracea VOCs, thus changing the blend and disrupting the fidelity of the 

signal and ability of P. xylostella to use the plant VOCs as cues for host 

location (Li et al., 2016). Pollinator attraction by black mustard, Brassica nigra, 

VOCs was also reduced over a distance gradient when their volatiles were 

passed through air with elevated ozone levels (Farré‐Armengol et al., 2016). 

Elevated ozone may also reduce effective distances in plant-to-plant 

interactions. The effective distance for volatile-mediated plant-to-plant 

interactions between herbivore-damaged Lima bean plants and their intact 

neighbours was reduced from 70cm to 20cm under elevated ozone regimes 

(Blande et al., 2010). The effect of ozone on volatile degradation in passive 

plant-to-plant interactions is still largely understudied, although there is 

evidence that ozone may degrade sesquiterpenes adsorbed to neighbouring 

plant surfaces (Li and Blande, 2016). 

 Finally, ozone exposure may affect plant-to-plant interactions by altering 

the ability of the receiver organism to access the signal. In receiver plants, 

ozone may trigger stomatal closure by increasing cytosolic calcium in guard 

cells (Vainonen and Kangsjärvi, 2015); ozone may also induce stomatal 

sluggishness in different plant species (Paoletti and Grulke, 2010). Stomatal 
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uptake is an important medium of VOC-mediated plant-to-plant interaction 

(Sugimoto et al., 2016), and ozone induced-stomatal responses may affect this 

process. Elevated ozone may also react with passively adsorbed SVOC 

compounds present on leaf surfaces (Li and Blande 2015) and disrupt the 

susceptibility or resistance they confer. Increasing ozone may also affect an 

insect’s ability to perceive volatiles: western honeybees (Apis mellifera) 

exposed to ozone showed a reduced antennal response to (Z)-3-hexenyl 

acetate, a widespread GLV usually perceived by bees (Dötterl et al., 2016). 
 

1.5.4 Atmospheric transformation of plant volatile organic compounds 

Once released into the atmosphere, many plant VOCs react with atmospheric 

oxidants such as ozone (O3), hydroxyl (OH) and nitrate radicals (NO3) 

(Atkinson and Arey, 2003b); these reactions as well as the deposition of their 

reaction products on vegetation remove VOCs from the atmosphere (Karl et 

al., 2005, 2010). For example, canopy scale air measurements of tree 

plantations typically contain methyl vinyl ketone (MVK) and methacrolein 

(MAC), which amount to about 80% of the carbon from the first stage of 

isoprene oxidation (Calogirou et al., 1999; Karl et al., 2005). These compounds 

show a bidirectional flux and may be deposited on vegetation or be 

transformed into other compounds in the atmosphere (Karl et al., 2005; Brilli 

et al., 2016).  

 Unsaturated terpenes and GLVs are particularly prone to ozonolysis and 

NO3-induced oxidation in the atmosphere because of the number of C ═ C 

bonds (Calogirou et al 1999; Atkinson and Arey, 2003a). These reactions are 

usually by addition to a C ═ C bond to produce a primary ozonide and 

organic peroxy radical that may react further to form a variety of stabilised 

oxygenated compounds including carbonyls, alcohols and carboxylic acids 

(Calogirou et al., 1999; Atkinson and Arey 2003a; Palm et al., 2017). NO3 

radicals photolyse rapidly in the daytime and are more important for night 

time reactions (Atkinson and Arey 2003b). OH radicals in the atmosphere, as 

well as those produced from VOC ozonolysis (Atkinson and Arey, 2003b), 

also react with VOCs via H abstraction as well as addition to a C ═ C bond to 

form reaction products and SOA (Atkinson and Arey, 2003b; Palm et al., 

2017).  

 Oxidation products of VOCs in the atmosphere are typically less volatile 

than their precursors and upon further oxidation may partition into the 

particle phase or be adsorbed by pre-existing aerosol particles (Hallquist et 

al., 2009; Seinfield and Pandis, 2012). A significant amount of plant emitted 
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VOCs end up in SOA particles, which act as cloud condensation nuclei (CCN) 

that scatter radiation and influence the radiation balance of the earth and 

climate (Virtanen et al., 2010; Riipinen et al., 2011; Scott et al., 2014). The 

chemical structure of plant VOCs along with other factors such as the 

concentration of atmospheric oxidants determine their atmospheric fate 

(Atkinson and Arey, 2003a; Kim et al., 2010). Volatile compounds with 

multiple C ═ C bonds, such as limonene, can potentially form more particles 

compared to open chain hydrocarbons such as ocimene and linalool 

compounds (Hoffmann et al., 1997). The oxidation of limonene by ozone has 

been shown to produce more than 1000 different organic compounds (Kundu 

et al., 2012). Semivolatile sesquiterpenes are very reactive with oxidants in 

the atmosphere and their reaction products can be efficiently transformed 

into SOA. For example, β-nocaryophyllone aldehyde, a reaction product of 

β-caryophyllene has been identified and quantified in ambient SOA samples 

(Parshintsev et al., 2008). The presence of products originating from induced 

emissions in aerosol samples suggests that herbivory as well as abiotic 

stressors may enhance SOA formation (Joutsensaari et al., 2015; Zhao et al., 

2017). 

 VOC oxidation products as well as SOA particles may be present and 

emitted from leaf surfaces either by atmospheric deposition or by leaf surface 

reactions (Karl et al., 2005; Holopainen et al., 2017; Acton et al., 2018). The 

ecological implications of the presence of these compounds on plant surfaces 

have not been adequately elucidated.  
 

1.6 STUDY SYSTEMS 

1.6.1 Rhododendon tomentosum 

Marsh Labrador tea, Rhododendron tomentosum Harmaja is a perennial woody 

evergreen shrub distributed widely through boreal ecosystems of northern 

America, Asia and northern and central Europe (Dampc and Luczkiewicz, 

2013). They can grow up to 150 cm tall and have a characteristic fragrance 

owing to the high terpenoid and secondary compound content present in 

their essential oils. The terpenoid content in the plant may vary with habitat, 

age, vegetation phase and plant part (Zhao et al., 2016). Historically, R. 

tomentosum extracts have been used in ethno-medicine due to their anti-

inflammatory, antimicrobial, analgesic and antioxidant properties (Dampc 

and Luczkiewicz, 2013). The plant extract also has insect repellent properties, 

which have been effective against bedbugs, cloth moths, as well as pests of 
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forest trees and agricultural crops (Sõukand et al., 2010; Egigu et al., 2011; 

Himanen et al., 2010; 2015). In 2010, Himanen et al. reported the adsorption 

and re-emission of R. tomentosum VOCs by neighbouring silver birch 

seedlings in a boreal forest and that this passive adsorption subsequently 

increased the resistance of the exposed plants to herbivores. R. tomentosum is 

a model plant for the study of passive plant-to-plant interactions due to it 

being a constitutive emitter of large quantities and varieties of sesquiterpenes 

that are typically adsorbed on neighbouring plant surfaces and have been 

shown to mediate passive plant-to-plant interactions. In addition, R. 

tomentosum plants emit species-specific sesquiterpenoid compounds such as 

palustrol, ledene and ledol that are not common to many other plant species. 

Consequently, adsorption and re-emission of these compounds by 

neighbouring plants in nature can be measured. 
 

1.6.2 Mountain birch 

Mountain birch, Betula pubescens ssp. czerepanovii, is a clonal tree species with 

a wide distribution in central and northern Europe as well as Asia: in north-

western Europe, mountain birch trees form the latitudinal and altitudinal tree 

line (Macdonald et al., 1984; Sveinbjörnsson et al., 1996; Haukioja, 2003). In 

nature, birch trees commonly co-exist with R. tomentosum shrubs (Urcelay et 

al., 2003). In northern Finland, mountain birch trees are short and slow 

growing and have R. tomentosum and other shrubs growing in the 

understorey. In this thesis, the process of volatile-mediated passive plant-to-

plant interactions between Rhododendron tomentosum and B. pubescens in a 

natural subarctic forest is explored.  

 

1.6.3 Brassica spp, Plutella xylostella and Carausius morosus 

Brassica plants as well as their lepidopteran pest, the diamondback moth, 

Plutella xylostella L. have proved a successful model system for studying plant 

volatile-mediated interactions (Giron-Calva et al., 2016, 2017). Brassicaceous 

plants including vegetables and oilseeds are of great global economic 

significance. According to the FAO, global production of brassica plants was 

over 71 million tons in 2016. However, the production of these crops is 

hampered by the presence of a variety of insect pests leading to economic 

losses. In this thesis, white cabbage, Brassica oleracea var. capitata L. was used 
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as a receiver plant for the adsorption of R. tomentosum volatiles and 

deposition of α-pinene reaction products. The effects of these adsorption and 

deposition processes on herbivores were tested with the specialist brassica 

pest, P. xylostella and the generalist Indian stick insect, Carausius morosus.  

 P. xylostella is an important pest of brassicaceous species, estimated to 

contribute to global economic losses of between 4 – 5 billion dollars annually 

(Zalucki et al., 2012). P. xylostella owe their widespread distribution to their 

ability to migrate over long distances of over 3000 km (Talekar and Shelton, 

1993). They use a combination of visual and olfactory cues in foraging and 

host selection (Badenes-Perez et al., 2004). Upon plant landing, the chemical 

composition of plant surfaces determines oviposition (Badenes-perez et al., 

2004; Schoonhoven et al., 2005). In this thesis, the system of Brassica spp. and 

P. xylostella was used to study the effect of ozone on passive plant-to-plant 

interactions and the effects of deposition of SOA particles and VOC oxidation 

products on plant VOC emissions and interactions with herbivores. 

 The Indian stick insect, Carausius morosus, order Phasmida, is a nocturnal, 

stick-like, slender, wingless, generalist herbivore species (Carlberg, 1987). 

Originally local to southern India, the insects became the subject of scientific 

inquiry in the early 20th century, when their life history and habits were 

described by Meissner (1909) and their colour variability by Macbride and 

Jackson (1915). Populations mostly consist of parthenogenetic females, with 

a few males sometimes found (Clark, 1976). They have been used to test the 

palatability of herbicide treated crops (Holopainen et al., 1991) and can be 

representative generalist feeders in insect feeding studies due to their 

polyphagous nature. The stick insects used in this thesis were reared on 

Brassica spp. and were selected as generalist feeders in tests to determine the 

effects of the deposition of SOA and VOC oxidation products on plant 

surfaces on generalist insect feeding.  

 
1.7 OBJECTIVES AND HYPOTHESES 

This thesis explores the phenomenon of volatile mediated passive plant-to-

plant interactions and the protective functions of plant VOCs and their 

degradation products on plant surfaces. It involved field and laboratory 

measurements of VOCs and exposure of plants to VOCs from neighbouring 

plants as well as VOC oxidation products. The role of glandular trichomes in 

VOC emissions and plant-to-plant interactions was also explored. The effects 

of elevated ozone on passive plant-to-plant interactions was tested and 

discussed and the effects of the deposition of SOA and reaction products of 
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VOC oxidation on plant VOC emission and herbivore responses were also 

explored. A summary of the objectives, hypotheses and main questions of 

this thesis is presented in Table 1.  

 The phenomenon of passive adsorption of R. tomentosum volatiles to the 

surface of neighbouring plants was tested in a natural setting (Chapter 2). 

Earlier observations of the phenomenon had been studied in nature with 

potted seedlings and in the laboratory (Himanen et al., 2010, 2015). Here, I 

studied the phenomenon with naturally occurring R. tomentosum growing in 

the understorey of mountain birch trees in the Finnish subarctic. I also 

explored the effects of R. tomentosum density, glandular trichomes and 

growing season on the passive adsorption and re-emission process. 

 Secondly, the effects of ozone on volatile mediated plant-to-plant 

interactions was tested (Chapter 3); earlier studies have tested the effects of 

ozone on active plant-to-plant interactions. Studies of ozone effects on 

passive plant-to-plant interactions have focused on reactions occurring on the 

receiver surfaces (Li and Blande, 2015). The effects of the degradation of 

volatiles under elevated ozone regimes in the air on the quality and quantity 

of VOCs adsorbed by the receiver plant and the corresponding effect on 

herbivore resistance conferred by adsorption was tested. 

 Thirdly, the effects of VOC oxidation products on Brassica plant VOC 

emissions and herbivore responses was tested (Chapter 4).  α-Pinene, a 

ubiquitous monoterpene which accounts for more than 30% of global 

monoterpene emissions (Sindelarova et al., 2014) was oxidized by ozone and 

hydroxyl OH radicals to produce SOA and other oxidation products. The 

products of these oxidation reactions were passed into a chamber containing 

Brassica plants. The effects of exposure to SOA and oxidation products on 

Brassica VOC emissions and herbivore responses were tested.
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6 CONCLUSION AND FUTURE DIRECTIONS 

This thesis demonstrates passive adsorption of R. tomentosum VOCs and 

SVOCs to the surface of neighbouring plants and the herbivore resistance that 

passive volatile adsorption may confer on the receiver plants. In this thesis, 

evidence for monoterpene and sesquiterpene adsorption from ambient air in 

nature is provided, which may have far-reaching implications in a number of 

scenarios. Firstly, in field measurements of VOCs, it raises the possibility that 

VOCs collected from a plant species may originate from neighbouring plants 

especially in dense vegetation. Furthermore, the ecological effects of 

adsorption or uptake of neighbouring plant VOCs could be significant. As 

has been shown, adsorption of R. tomentosum VOCs increases the receiver 

plant’s resistance to herbivory. Monoterpene uptake and sesquiterpenes on 

foliar surfaces could also have important roles in the receiver plant’s response 

to abiotic stresses such as increased temperature and oxidative stress, which 

is exemplified by exogenously applied monoterpenes and plant surface 

sesquiterpenes having been shown to help plants cope with heat and 

oxidative stress respectively. Finally, the adsorption of neighbouring plant 

volatiles may potentially be useful in agriculture by providing an extra layer 

to volatile-based intercropping systems. So far, volatile-based intercropping 

systems have relied on repulsive “push” crops and attractive “pull” crops 

based on the volatiles emitted by the plants. R. tomentosum VOCs may 

provide repellence against pests in the air as well as on the surfaces of the 

focal plants. 

 The deposition and re-emission of VOC oxidation products reiterates the 

importance of atmospheric conditions and reactions in plant chemical 

ecology. In this thesis, the phenomenon was tested with agricultural plants, 

however forests are important emitters of VOCs for SOA formation, hence 

the effects of SOA deposition on forest species and the corresponding effects 

on pests of forest species should be the subject of future enquiry. Using 

constitutive or induced emissions from forest species, for example conifers, 

will also be more representative of natural scenarios. 

 In conclusion, the presence of VOCs, SVOCs and their reaction products 

on plant surfaces may be endogenous from within the plant or exogenous 

from the atmosphere, and these compounds may have important 

implications for plant chemistry and plant interactions with herbivores. 
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