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Location-based games and trip planning 
applications are gaining popularity worldwide. 

In several cases, they include the path 
optimisation problem.  People need to know 

the characteristics of such a problem and 
planning strategies to solve them. O-Mopsi 

is one of such location-based games that 
contains small scale path optimisation 

problems. In this thesis, we study the problems 
contained in O-Mopsi and how human 

perform in solving those. We present methods 
to estimate their difficulty and algorithms to 

solve them. 
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ABSTRACT 

 
The number of available location-based games and applications increases every 

day. Providing motivations to use such an application is expected to be the key to its 
success. This research evaluates the challenges of a location-based game, O-Mopsi. 
We also study the players’ performance in playing the game. 

 
O-Mopsi is a mobile-based orienteering game where players need to visit several 

real-world targets in the fastest possible way. Therefore, it includes a real-world 
open-loop travelling salesman problem as a part of the game-playing. Players need 
navigational skills and path optimisation skills during play. Before beginning the 
play, players need to optimise their starting location as a good starting location helps 
to optimise the path. In this research, we study and compare different strategies for 
finding a better starting location for O-Mopsi. The results show that players’ 
performance improved when they followed a strategy.   

 
Finding an optimised path for every game instance is not equally difficult for 

players. We examined the characteristics of the game instances. Our results show that 
the number of targets and the structure of the minimum spanning tree are two crucial 
parameters to determine the difficulty of the game instance. We found that the 
difficulty increases with the number of targets. Similarly, as the number of branches 
in the minimum spanning tree increases, the difficulty increases. 

 
 This study provides a simple local search algorithm for path optimisation to 

deliver a fast and real-time reference solution to the players. This thesis also studies 
the quality, efficiency, and limitation of four local search operators of which two are 
existing (relocate and 2-opt) and two are new (3-permute and link swap).  Our results 
show that one of the new operators, link swap outperforms the other operators.  

 
Universal Decimal Classification: 004.382.745, 004.9, 519.83, 795  
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1 INTRODUCTION 

A global navigation satellite system (GNSS) can provide the location information of 
a GNSS receiver. Among several such systems, Global Positioning System (GPS) 
advanced significantly and gained enormous popularity in recent years. This results 
in the current availability of a multitude of location-based applications. The 
entertainment and tourism industry underwent a radical change with the 
introduction of these applications. While computer games are generally popular 
among people of all ages, the development of location-based games (LBG), which 
include location as a part of the games, has made computer games more attractive.  

 
1.1 LOCATION-BASED GAMES 
 
Location-based games are mobile or computer games that record the location of the 
player for the purposes of the game-playing. The location of the player is recorded 
mainly by GPS, Bluetooth, Wi-Fi, or near-field communication technologies. LBGs 
are kind of pervasive games, which include real-world to the virtual game 
environment. Magerkurth et al. (2005) reviewed pervasive games based on their 
genres and included location-aware games as one of the types of pervasive games. 
Kasapakis and Gavalas (2015) surveyed 18 pervasive games, which are mostly 
location-based games. They studied the challenges, design principles, and 
implementation guidelines for this kind of games. One of the oldest LBG is Can you 
see me now? [Benford et al., 2006]. Geocaching is another old game which is still 
popular. CityExplorer [Matyas et al., 2008], Monopoly [Li et al., 2008], Quake 
[Piekarski and Thomas, 2002], Human Pacman [Cheok et al., 2004], Tic-Tac-Toe 
[Schlieder et al., 2005], Chase and Catch [Misund et al., 2009], Snake [Chittaro and 
Sioni, 2012], and Invisible City: Rebels vs. Spies [Sintoris et al., 2013] are some 
examples of old board games or computer games that have been converted by game 
developers into real-life location-based games. SoundPacman [Chatzidimitris et al., 
2016] is another modified version of Pacman that includes 3D sound to augment the 
physical world to the game environment.  
 
In [I], we reviewed location-based games based on these parameters: game-playing 
mode, how to use location, how to verify location, games including exercise, and 
games with educational goals. Most people prefer games with a simple setup that are 
easy to learn and play and that can be played in a short period of time. The possibility 
of playing a game offline also increases its popularity. In these games, location 
verification is mostly done through GPS. Radio-frequency identification (RFID), quick 
response (QR) code, Bluetooth, and other near-field communication technologies are 
less popular due to their instability and the cost of building extra setup. Sometimes 
manual verification occurs by authentication of a photograph. 
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Traditional computer games force people to sit idle for a long time, which can cause 
serious health issues in the long term. LBGs can overcome this situation and make 
people active. In several cases, these games aim to teach something, which adds extra 
benefits and motivation, in addition to physical exercise. Avouris and Yiannoutsou 
[2012] reviewed mobile location-based games based on their objectives. The first type 
of games is mainly aimed at entertainment, and learning is its secondary purpose. 
Learning is the main objective of the second type of game. The last type is hybrid, 
which means that it combines entertainment and learning. Educational LBGs can 
help players to learn about a zoo and animal behaviour [Sánchez et al., 2006, Facer et 
al., 2004, Veenhof et al., 2012], a museum [Sintoris et al., 2012], a specific historical 
place, or a cultural site [Vassilakis et al., 2017, La Guardia et al., 2012, Ballagas et al., 
2007]. They can improve people’s navigational skills by providing a treasure hunt 
platform [Wetzel et al., 2012, Ceipidor et al., 2009] and increase their ability to play 
puzzle games [Sedano et al., 2012, Moore et al., 2009] and solve mysteries [Spikol and 
Milrad]. Giannakas et al. [2018] reviewed educational location-based mobile games 
published during the period 2004–2016. With the advancement of augmented reality 
technology, mobile games start to combine location-based applications and 
augmented reality. Ingress1, PokemonGo2, and the very recent Harry Potter: Wizards 
Unite3 are the most popular examples of such a combination. 
 
1.2 ISSUES WITH LOCATION-BASED GAMES 
 
Although LBGs have been available for the last 20 years and have achieved local 
popularity, only a few, such as PokemonGo, which was released in 2016, have gained 
worldwide popularity. Certain issues have prevented these games from achieving 
wide recognition. Early location-based games had to deal with a limited internet 
connection, which made it difficult for people to play online games. Furthermore, 
smartphone technology was not so advanced, which resulted in low battery life, low 
processing power, small screen sizes, limited storage, and low graphics capability, 
all of which made playing these games more challenging [Jacob and Coelho, 2011, 
Lynch, 2012]. Recently, we have overcome almost all of these issues with advanced 
GPS and smartphone technology. Therefore, location-based games are becoming 
more popular. However, safety is now the main issue with playing these games. 
While playing these games, people have to look at and concentrate on their 
smartphones, which distracts them from the real world surrounding them. However, 
games that use real-world targets rather than augmented reality targets draw the 
attention of players to the surrounding world. 
 

                                                      
1 https://www.ingress.com/ 
2 https://www.pokemongo.com/en-us/ 
3 https://www.harrypotterwizardsunite.com/ 



 

1.3 TRIP PLANNING 
 

Trip planning is another location-based application that is also very popular in recent 
days. The tourism industry is changing every day with the help of GPS and 
smartphone technology. In the past, people used to follow travel books, paper maps, 
and suggestions from experienced people. However, today, there are numerous 
travel advisory websites and mobile applications even for remote places. All these 
applications display the locations of places of interest (POI) on an online map. They 
help people to make customised trip plans throughout the world Similar to LBGs. 
Trip planning applications also need real-world information that has to be 
embedded. Figure 1 shows an example of a map showing the locations of museums 
and historic buildings around Helsinki. 
 

 

 
Figure 1: Museums and historic buildings in and around Helsinki 
(Map source: https://www.helsinkicard.com/) 
 
With the boom in sharing personal content on the web or mobile-based social media, 
research on personalised recommendation systems has increased. Surveys by Borràs 
et al. (2014), Gavalas et al. (2014 a), Haruna et al. (2017), and Lim et al. (2018) affirm 
that research and development on tourism recommendation systems have also 
increased. The problem of tour planning and optimisation, which forms a part of 
tourism recommender systems, is called the tourist trip design problem (TTDP). 
Gavalas et al.’s (2014 b) survey presents various algorithms to solve the TTDP, and 
De Choudhury et al. (2010), Gionis et al. (2014), Bolzoni et al. (2014), Mor and Dalyot 
(2018), and Agarwal et al. (2018) have proposed several approaches for planning and 
optimising tours. In this thesis, we present a location-based game that can also be 
used as a trip advisory application. 
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1.4 O-MOPSI 

 
Mopsi Orienteering (O-Mopsi) is a location-based mobile game, in which a player 
has to find a set of targets around a city area (Figure 2). O-Mopsi targets are always 
clearly visible outdoor targets, which can be reached by walking. There are 8 targets 
in SciFest 2018 game (example in Figure 2), which are easily noticeable objects near 
Joensuu Areena. Hence, it can be used as a city-tour advisory application or an 
educational game for students. The benefit of O-Mopsi is that it encourages physical 
activity as players need to walk to reach the targets. O-Mopsi includes sound 
navigation, a feature that means players are not forced to look at their phone screens 
all the time. In the next chapter, we discuss the features and playing methods in 
detail. 
 

 

 
Figure 2: An O-Mopsi game layout. 
 
The O-Mopsi application contains 158 game instances (as on 10th September 2019). 
Each game instance has a specific name based on mainly the area where the game is 
created or the event when the game is created. For example, the game shown in 
Figure 2 was created during a festival called SciFest in 2018. Therefore, the name of 
the game is SciFest 2018. Players can start and finish any game anytime. O-Mopsi 
keeps record per each game that enables the player to check the statistics of all players 



 

for each game. O-Mopsi also preserves statistics of each individual player and shows 
a ranking chart of top players. This feature also accumulates badges and points for 
every player.  Thus players get more engaged and competitive. 
  
Additionally, searching for the location of targets is similar to solve a puzzle. 
Although targets are clearly visible, however, they might not be easily accessible. 
Even if a target is very easy to navigate, then also people might get confused with the 
presence of similar objects next to it. From the feedback of players as mentioned in 
[I], we find that players mostly enjoy finding targets. Hence, O-Mopsi might be more 
motivating if the games provide a diversity in the number of targets, total length, and 
difficulty of finding targets. 

 
1.5 RESEARCH CHALLENGES 

 
O-Mopsi was mainly introduced to make people exercising, to provide a sightseeing 
guide, and to provide an outdoor educational puzzle game. However, we find that 
the application has several aspects and challenges need to be answered to make it 
more useful. Similar to this, there are several design parameters, which are needed 
to be considered for any LBG or a trip planning application.  
 
For this thesis, we choose to study O-Mopsi game and the challenges it involves. We 
study different ways of evaluating game instances and human players’ performance. 
We mainly focus on the following three aspects: 
 
- Playing strategy 
- The difficulty of game instances 
- Human performance 
 
The rest of the thesis is organised as follows. In chapter 2, we explain all the features 
of O-Mopsi game. We also describe the motivations and challenges of O-Mopsi. In 
chapter 3, we explain strategies to play O-Mopsi game, especially, strategies to select 
a good starting point for this game. We present the players’ performance to evaluate 
the necessity of a strategy. In the following chapter, we determine the difficulty of a 
game instance for human solvers and computer algorithms. In chapter 5, we propose 
a simple and fast local search algorithm to optimise the visiting order of targets of an 
O-Mopsi instance. Additionally, we study and compare the quality of several local 
search operators. In chapter 6, we summarise the contributions of this study. Lastly, 
we conclude the findings of this study in chapter 7. The individual publications 
appear at the end of the thesis. 
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2 O-MOPSI AND ITS CHALLENGES 

2.1 CLASSICAL ORIENTEERING AND O-MOPSI 
 
In classical orienteering, organisers place specially designed flags throughout a forest 
or a hilly place as targets. Players need to visit those targets in a certain order with 
the help of a paper map and a compass (Figure 3). O-Mopsi replicates this activity by 
replacing the paper map with an online map and the compass with GPS on the 
player’s phone. The first significant difference between classical orienteering and O-
Mopsi is that the O-Mopsi targets are real-world objects (Figure 4), such as buildings, 
statues, and other pieces of architecture, which seem easier to find than the targets 
generally are being used in classical orienteering. O-Mopsi targets are not visible on 
the application screen before the player starts playing. When play starts, all targets 
become visible in the default zoom level and the player has to visit all targets to finish 
the game.  
 
Another significant difference is that players of O-Mopsi can individually start 
playing at anytime and choose the order in which they visit the targets. As the order 
in which targets should be visited is predefined in classical orienteering, the task is 
relatively easy. In O-Mopsi, players have to plan the order and find the target 
concurrently. Therefore, it requires the use of both route planning and navigational 
skills on the fly. 
 

 

 
Figure 3: Setup of a classical orienteering game. 
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Figure 4: Real-world targets of an O-Mopsi game. 
 
2.2 GAME PLAYING 
 
The O-Mopsi application is available for Symbian, Windows, iPhone, and Android 
phones. Wan (2014) provided a detailed explanation of the game-playing rules, a 
description of the O-Mopsi website, and delivered game creation tips and techniques. 
At the time of writing (10th September 2019), the application contained 158 different 
game instances involving various places around the world. On average, each game 
contains 12 targets within a locality. Players have to walk around that locality and 
visit all the targets in the game. The player who visits all targets of a game in the 
shortest time is the winner of the game. O-Mopsi games mostly involve short 
distances, so players have only to walk an average of 3 to 4 km per game. O-Mopsi 
does not show the locations of the game’s targets until the play mode is on and the 
timer starts (Figure 5). When the play mode is on, the application reveals the names 
and pictures of the targets on a map and the GPS on the phone records the location 
of the player. 
 



 

 

 
Figure 5: Screen display of an O-Mopsi game before and after play starts. 

 
O-Mopsi also shows the distance to the nearest target and indicates when this 
distance is reduced to 500 metres. Additional audio guidance indicates that the 
player is approaching a target. The frequency and pitch of the sound increases as the 
player nears the target. When the distance from a target is less than 20 metres, the 
application automatically removes the target from the map and a Ta-da sound notifies 
the player’s accomplishment. 
 
Generally, playing time and distance are proportional in O-Mopsi game playing. 
Hence, if players want to visit all the targets as quickly as possible, they generally 
may have to shorten their travelling distance. This makes O-Mopsi a game in which 
a player needs to visit a set of targets using the shortest possible path. 
 
The travelling salesman problem (TSP) is a computationally hard problem where one 
has to visit a set of predefined targets using the shortest possible way without visiting 
a target more than once. For a closed-loop TSP, one has to return to the starting target; 
however, for the open-loop case, no return is necessary. Thus, O-Mopsi produces an 
open-loop TSP (Figure 6). 
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Figure 6: O-Mopsi as an open-loop TSP. 
 
2.3 MOTIVATIONS 
 
According to the game’s rules, the player who completes the game in the shortest 
time is the winner. This competition is what motivates many people to play the game. 
We found that a player played a single game several times to improve his or her 
result, especially if others have completed the game in lesser time. Figure 7 shows 
that players are ranked by their time. 
 

 

 
Figure 7: Completing the game in the shortest time as a motivating factor for players.  
 



 

Players hardly find (one out of five players on average) the optimum solution to the 
TSP of O-Mopsi games. However, O-Mopsi allows for non-optimum solutions. 
Therefore, players can complete a game after choosing non-optimal links between 
targets, which we call mismatches. Along with the time, we also test players’ skill in 
solving the TSP. Those players who have fewer mismatches are more skilled at 
solving the TSP. However, even by reducing the path length, a player might not win 
due to low speed. Therefore, analysis based on time is not always motivating for 
slower players. Competition based on TSP solving is more motivating for a certain 
group of people. Figure 8 shows that the rankings based on time are not the same as 
the rankings based on solving the TSP. Therefore, the slowest player can rank first 
with regard to another deciding parameter. 
 

 

 
Figure 8: The fastest player might not always be the most skilful player. 
 
Lastly, learning from the targets is also motivating. People might not always be 
competing. They might want to enjoy roaming around a city and getting to know 
places around the city. O-Mopsi targets can reflect the historical, cultural, and 
scientific aspects of a place. These types of targets could contribute significantly to 
the educational gaming industry. Figure 9 shows examples of O-Mopsi games 
designed as city tours. 
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Figure 9: O-Mopsi games as city tours. 
 
2.4 CHALLENGES IN O-MOPSI 
 

According to the O-Mopsi game rules, players have to visit all the targets, but 
they do not have to return to the starting point. Hence, the TSP behind O-Mopsi is 
an open-loop TSP (Figure 10). The solution to a closed-loop TSP is a tour, whereas 
the solution to an open-loop TSP is a path with terminal targets. 

 

 

 
Figure 10: O-Mopsi as an open-loop TSP. 
 
Selecting the starting point in a closed-loop TSP is irrelevant for its solution. Any 
random choice works as it is the order that is vital, not the starting point. Different 
choices do not produce different solutions in a closed-loop TSP. In contrast, the 



 

starting point of an open-loop TSP can be crucial for finding its solution as the 
solution changes depending on the starting point (Figure 11). In the first example, 
the open-loop optimum solution has a path length of 1.4 km. However, if we force 
the algorithm to find the optimum solution starting from a specific target, the output 
changes. The path length increases in this case (1.5 km in the example). In the second 
example, the path length increases by 200 m (0.9 km to 1.1 km) when a less adequate 
starting point is chosen. Hence, selecting the best starting point is important. 

 

 

 

 

 
Figure 11: Different optimum paths starting from different targets 
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Before a game starts, the O-Mopsi application shows only the bounding box over the 
targets (Figure 5) instead of the exact locations of the targets. This box is a rectangle 
placed over the targets spanning most longitudes from left to right and most latitudes 
from north to south. Therefore, at least two targets locate over the edges of the box 
and the rest are inside the box. We call this the game area. When a player starts 
playing, targets become visible. Therefore, before starting a game, players cannot 
plan the order in which they will visit the targets. They can use some strategy to 
guess the good starting position from the game area. In most cases, players start from 
a random location and sometimes that random location could be the luckiest choice; 
hence, next to the good starting position. It could be reversed; that means players can 
choose to start from the most unlucky position. Hence, educated guesses might 
enhance performance. In [II], we evaluated the optimum start position for algorithms 
and human players. 
 
The O-Mopsi playing record shows that a single player plays multiple games. For 
example, Figure 12 shows that Jukka played two games (Rantakylä Tour and Autumn 
Moon). The skill level of a particular player might be always the same. Therefore, it 
seems logical that a player’s performance should be similar for all the games he or 
she plays. However, the example of Figure 12 shows that Jukka’s path has seven links 
that differ from the optimum in the first game and no links that differ from the 
optimum in the second game. The obvious question is why his performance is 
inconsistent. The probable answer is that the two games have different levels of 
difficulty. 

 



 

 

 
Figure 12: Difficulty levels affect human performance. Here, the player Jukka chose seven 
sub-optimal links in the first game but made no error in the second game. 
 
SciFest is a festival that is held annually in Joensuu, Finland to promote discoveries 
in science, technology, and the environment. Usually, the workshop takes place 
inside a large hall. Research groups from local universities, other research 
organisations, local companies, and start-up ventures can set up stalls and 
demonstrate new inventions. Mainly students and teachers of most schools in 
Joensuu and near-by municipals attend to gain knowledge. Several O-Mopsi games 
have been created for SciFest every year. School students play these games every 
year. Figure 13 shows O-Mopsi stands at SciFest 2016 and 2018. 
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Figure 13: O-Mopsi demonstrations at SciFest 2016 and 2018. Usually, school students 
come and learn to play. After playing, they provide feedback about the game. Teachers and 
other interested people come and try to learn the scientific aspects of the application. 
 
It is worth studying SciFest games to analyse human performance as these games 
have a lot of players. We found that some players attend the festival to play in 
consecutive years. Table 1 shows the performances of O-Mopsi players at SciFest 
from 2011 to 2018. 

 
Table 1: Players’ performances in SciFest games during the period 2011–18 

 

Year 

Game statistics Player statistics 

Targets Length 
(km) Started Finished Solved Avg. mis-

match 
Avg. 
gap 

2018 8 1.4 35 12 (34%) 1 0.6 6.7% 

2017 14 1.4 30 18 (60%) 0 6.9 22.2% 

2016 13 1.5 67 19 (28%) 0 3.3 16.2% 

2015 14 1.2 45 15 (33%) 0 5.5 16.4% 

2014 10 1.0 64 28 (44%) 7 3.9 16.3% 

2013 16 1.1 6 2 (33%) 0 8.0 23.2% 

2012 7 0.5 72 25 (35%) 7 1.4 11.2% 

2011 5 0.6 33 9 (27%) 5 0.8 1.8% 

Avg. 10.9 1.1 44 16 (36%) 2.5 3.8 14.3% 
 

Table 1 lists the SciFest games from 2011 to 2018. We show the number of targets 
(Targets) and the optimum length of the games (Length) as the game features. To 
demonstrate players’ performance, we note the number of players who started the 



 

game (Started), the number of players who finished the game (Finished), the number 
of players who found the optimum solution (Solved), the average number of errors 
in selecting optimum links (Average mismatch), and the average route length 
difference from the optimum (Average gap). We find that, along with the game 
statistics, players’ performance also varies from one game to another. This raises the 
need to assess the difficulty of a game instance, which is another challenging aspect 
of O-Mopsi. Being able to estimate the difficulty level of a game instance can guide 
both game creators and players in choosing which game to play. In [III] we discuss 
difficulty levels and how to measure them further. 

 
Figure 14 shows a typical example of two different players’ paths for a single game. 
The paths are different for these two players. To be able to compare the quality of the 
order in which these two players visited the targets, we need a reference solution. 
Either the overall optimum solution or the optimum solution from a player’s starting 
target can be used as the reference solution. A reference solution can provide players 
with an estimation of the length of the path of the game before playing. Solving the 
open-loop TSP to find the optimum path is another challenging task in O-Mopsi. 

 

 

 
Figure 14: To compare different paths of different players we need a reference solution. 
 
Players usually find non-optimal solutions, and the optimum tour can be used to 
analyse the number of mismatches of a player. A player’s travel distance can also be 
compared with the optimum path length. The percentage difference between these 
two distances, which we call the gap, is another measure that can be used to study 
the player’s performance. In the example shown in Figure 14, the first player had 
three mismatches with a 10% gap from the optimum, and the second player had two 
mismatches with only a 1% gap from the optimum. Based on the gap values, player 
2 performed better. 
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The solution to a closed-loop TSP is a tour; however, the solution to an open-loop 
TSP is an open path. Hence, a TSP of size N contains N links in its closed-loop solution 
and N-1 in its open-loop solution (Figure 15). However, the optimum solution to an 
open-loop TSP is not usually achievable by removing the largest link from the 
optimum solution of the closed-loop TSP (Figure 15). 
 

 
 
Figure 15: Difference between the open- and closed-loop TSP. 
 
The size of O-Mopsi games varies from 4 to 27 targets. Smaller games can easily be 
solved with a simple branch-and-bound algorithm, although larger games are more 
challenging and can take hours to solve with a simple branch-and-bound method. 
The nearest neighbour algorithm produces solutions with an average gap of 25%. In 
[IV] we introduce a simple algorithm for solving the TSP. 
 
Individual four studies ([I], [II], [III], and [IV]) collectively form this thesis. Figure 
16 briefly illustrates the objectives of individual studies. In [I], we studied the 
research challenges present in O-Mopsi. In [II], [III], and [IV] we thoroughly 
discussed those research challenges sequentially.   
 



 

 

 
Figure 16: Interconnection between individual studies presented in this thesis. 
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3 PLAYING STRATEGIES FOR SOLVING THE 
OPEN-LOOP TSP 

The solution to a closed-loop TSP is a cycle; in contrast, the solution to an open-loop 
TSP is a path with two terminal points (Figure 17). For a human solver, choosing the 
correct terminal points, especially the starting point, is very important. Unlike a 
closed-loop TSP, the shortest path in an open-loop TSP depends on the starting point. 
Either of the terminal points produces the optimum result. Hence, these are the best 
starting points. For this study, all points other than the best starting points are defined 
as inferior points. 
 

 

 
Figure 17: Optimum solutions to the closed- and open-loop TSP 
 
Starting from an inferior point will lead to a sub-optimal solution, henceforth, costs 
extra path length. The potential of an inferior point is measured by how much extra 
path length it concedes. In the example shown in Figure 18, the first player started 
from a better position than the second player, so the first player’s path is 50% shorter 
than the second player’s path. 
 
Selecting the best starting point is more difficult in O-Mopsi as the application hides 
the targets and restricts the player from planning beforehand. The player has to plan 
it in real-time when the game-playing mode is on. Although finding the optimum is 
not mandatory in O-Mopsi, players aim for the optimum path to reduce the path 
length. 
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Figure 18: Starting from an inferior position can increase the path length by more than 50%. 
 
Several studies [De Choudhury et al., 2010, Gionis et al., 2014, Bolzoni et al., 2014, 
Mor and Dalyot, 2018, and Agarwal et al., 2018] have discussed how to plan and 
optimise a tourist’s tour. Mostly these studies modelled the optimisation problem for 
tour planning as an orienteering problem [Vansteenwagen et al., 2011]. For orienteering 
problem, people need to visit as many targets possible within a limited time. Hence, 
it is not mandatory to visit all the targets. Besides, the terminal targets are fixed 
beforehand in this case. However, our problem needs a solution to find out the best 
starting point. eCOMPASS [Gavalas et al., 2015], a tour planner that provides an 
optimised tour for tourists adds tourist’s current location as the starting location in 
the optimised path. Still, it does not give the solution to find out the best starting 
point of a tourist’s tour. In [II] we study how an exact algorithm can be used to select 
the starting point based on the boundary box of the instance. 
 
Researchers have studied human performance in solving the TSP and modelled 
algorithms based on the approaches humans use to solve a TSP. Graham et al. (2000) 
showed that the time needed by a human to solve a TSP is linearly or near-linearly 
proportional to the problem size of the instance. They proposed a hierarchical 
algorithm that closely simulates a human solving approach. This was later refined 
by Pizlo et al. (2006). 
 
Several researchers have claimed that humans prefers to solve a TSP using a global 
to local approach, such as first generating a convex hull with nodes and then 
modifying that convex hull curve to generate the solution [MacGregor and Ormerod, 
1996, MacGregor et al., 1999, Macgregor et al., 2000, MacGregor et al., 2004, 



 

MacGregor et al., 2006]. Although O-Mopsi contains open-loop problems, players 
still start from a point on the convex hull polygon in more than 50% of cases. 
 
Other studies have found that humans prefer a local to a global approach to solving 
a TSP; this correlates to nearest neighbour technique [Vickers et al., 2003a, Vickers et al., 
2003b]. O-Mopsi suggests the nearest neighbour path between targets during 
playing. However, this hypothesis might not be so effective for open-loop cases as 
the nearest neighbour technique can produce solutions that are significantly larger 
than the optimum. Figure 19 shows that the nearest target (neighbour) strategy 
results in a path that is 25% longer than the optimum. 
 

 

 
Figure 19: Following the nearest target strategy can add 25% extra length to the path. 
 
Van Rooij et al. (2003) proposed the crossing avoidance hypothesis as the nearest match 
to human performance. This approach is not easy to follow in O-Mopsi. During play, 
especially in the outdoors, keeping track of whether the path crosses itself becomes 
difficult as O-Mopsi does not show the already travelled route on the map.  
 
Although these studies address how humans solve a TSP, we do not know how 
humans select a starting point for an open-loop TSP. In [II], we collected a set of data 
of selected starting points in open-loop TSPs by a group of computer science 
students. 
 
Targets of O-Mopsi games are not visible before the game begins. For our calculations 
in [II], we considered the game area, which is the game bounding box containing all 
the targets. MacGregor (2012) classified the nodes of problem instances into two 
classes: boundary nodes and interior nodes. He also claimed that human prefers to 
start from a boundary node. To obtain a more detailed classification, we divided the 
bounding box, which we referred to as the game area, into a 5 x 5 regular square grid 
and categorised the grid cells into four regions (corner, long edge, short edge, and 
middle) as shown in Figure 20. 
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Figure 20: A grid of 25 cells making up the corner, long edge, short edge, and middle seg-
ments of the game area 
 
3.1 HOW AN ALGORITHM STARTS 
 
An exact solver always gives the optimum path. To find the optimum path, we used 
Concorde solver [Applegate et al., 2011]. However, Concorde is only for closed-loop 
cases. Following Papadimitriou (1977), in [II], we add a phantom node to the open-
loop instance and solve the closed-loop problem using Concorde. Thereafter, we 
remove the phantom node from the solution to recover the open-loop solution. We 
use the game instances of the O-Mopsi dataset,4 which consists of 147 open-loop TSP 
instances with sizes varying from 4 to 27. Thus, for each game, we calculated the 
optimum path. We then determine the specific regions where the terminal points of 
each optimum path belong to. We found that corners are the most likely regions for 
terminal points (Table 2).  
 
In Table 2, we compare our observation with the a priori probabilities of the grid cell 
regions. The a priori probabilities of a region are computed by calculating the ratio 
of the number of grid cells in that category to the total number of grid cells. Table 2 
also shows that although the middle region has the most number of cells, optimum 
paths do not usually start or end there. Therefore, we can conclude that the larger the 
area of the region does not help to fit more terminal points.  The results also show 
that optimum paths also start from boundary points, which are the points from 
which humans prefer to start [MacGregor’s (2012)]. 
 
 
 
 

                                                      
4 http://cs.uef.fi/o-mopsi/datasets/o-mopsi/ 



 

 
 
 
Table 2: A priori and observed probabilities of a given cell containing a terminal point 
 

 Cells Probability 
A priori Observed 

Any corner 4 16% 46% 
Any short edge 6 24% 30% 

Middle 9 36% 7% 
 
O-Mopsi players can start a game individually at any time. They can only see the 
game area and they can move freely any places of the game area before starting a 
game. Therefore, they might start from any random location in the game area instead 
of a target. Therefore, an extra distance from the starting position to the first visited 
target adds to the total path length (Figure 21). 
 

 

 
Figure 21: Players can start from any location. However, the distance from the starting point 
to the first target he or she visits must be added to the total path length. We add this extra 
distance to the optimum length from the player’s starting point. 
 
We analysed the probability of each region of the grid being the best location to start. 
We fixed the centre point of each category as the start point and find the optimum 
solution. Here again, we modified the Concorde solver to find the fixed-start 
optimum solution. As shown in Figure 22, in this case, we first identify the fixed 
starting point and add a large constant length to that target. This increase its distance 
from all other points. We then add the phantom node to make it a closed instance. 
We solve the instance using Concorde, remove the phantom node, and, finally, 
restore the start point to its original position. This enables us to find the open-loop 
optimum solution with a fixed-start using Concorde in all cases. 
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Figure 22: Finding the optimum order from a fixed starting point using Concorde (the green 
dot is the start location selected by the player, and the red dot is the phantom node that con-
nects the two terminal nodes). [II] 
 
The shortest of all fixed-start solutions for each of the four grid cell regions is defined 
as the best, and the longest is defined as the worst. In this case, our results again show 
that the corners are the most efficient cells to start with as starting in these cells offers 
the highest probability (32%) of finding the optimum (Table 3). However, corners are 
also risky choices as they are highly probable (45%) to produce the worst fixed-start 
solution. In a particular game, one corner can provide the best fixed-start solution, 
while another corner might produce the worst fixed-start solution. Therefore, corners 
are risky choices. Among all four categories, the least risky region to start in is the 
short edge, with a 23% probability of finding the best solution and only a 6% 
probability of finding the worst solution. 
 
We also evaluated the potential of a random point in the game area. Table 3 shows 
that the probability of finding the optimum solution from a random point (3%) was 
even worse than the probability of finding the optimum by starting in the middle 
region (9%). Therefore, following a strategy is always better than selecting a random 
point to start. 
 
 
 
 
 
 



 

Table 3: Comparison of different starting point selection strategies 
 

Region The probability of finding the best so-
lution from the region 

Random 3% 
Middle 9% 

Any corner 32% 
Any short edge 23% 

 
The Concorde solver produces the visiting order; however, to provide a path, the 
algorithm needs a routing technique. The provided path should simulate a human 
path as much as possible. We studied the bird’s path using Haversine distance and 
the distance of the walking-road path using Open Street Map (OSM). The bird’s 
distance would be much different from the actual walking distance when the game 
is designed in an urban area. In contrast, when a game is designed in a park or 
campus area, players can follow the shortcut path that does not consist in the road 
path. Therefore, neither of these is a perfect approach (Figure 23), our method uses 
the bird’s path as it correlates slightly higher (bird’s path: 0.95, walking path: 0.93) 
than the walking path of a human. 
 

 

 
Figure 23: Cases when the bird’s path gives a more realistic estimation (above) and when 
the road network gives more realistic estimation (below) of the distance travelled in real life. 
 
3.2 HOW A HUMAN STARTS 

 
A set of student volunteers helped us to collect results to study human performance. 
We collected human results for two types of setups for a set of TSP instances. In the 
first setup, all targets are visible to the volunteers, whereas in the second one, the 
targets are hidden and only the bounding box is visible to the volunteers during the 
selection of the starting point (Figure 24). 
 



46 
 

 

 
Figure 24: Screenshots of visible and blind setups 
 
For the visible setup,5 volunteers anticipated and selected the most appropriate 
starting target. The optimum path from that target was then generated and drew by 
the computer using the Concorde solver. The gap (%) between the overall optimum 
length and the optimum length starting from the volunteer-selected target was 
recorded, as shown in Figure 24, and shown to the volunteer. 
 
We call the other setup, in which the bounding box is given but the targets are 
invisible, blind.6 This setup replicates the exact condition of an O-Mopsi game. Here, 
volunteers anticipated and selected the most appropriate point inside the bounding 
box to start. Then the computer found and drew the optimum path using the 
Concorde solver from the nearest target to the selected point and calculated the gap 
(%) from the overall optimum. 
 
Most volunteers achieved a gap of less than 1% in the visible setup. The average gap 
for the blind setup was 3.3%, which is worse than the visible setup (Figure 25). 
Therefore, we can conclude the blind setup requires different skills than the visible 
setup. We found that some volunteers performed abnormally, i.e. as if they did not 
understand the objective. They are categorised as the bottom group in Figure 25. 
 

                                                      
5 http://cs.uef.fi/~radum/StartPoint/ 
6 http://cs.uef.fi/~radum/Blind/ 



 

 

 
Figure 25: Human performance (gap) in the selection of a start point. 
 
We further investigated volunteers’ strategies for choosing the starting location. By 
volunteers’ strategies, we imply to indicate that volunteers choose to start from a 
specific location instead of starting from a random location. For example, from Figure 
26 we notice that in the visible setup, volunteers frequently preferred to start from a 
point on the convex hull and the furthest point from the centre. For a typical problem 
instance, if a volunteer chooses such a starting point, which is also a terminal point 
of the optimum path, then the gap value becomes zero. It indicates that the volunteer 
is able to find out the optimum starting point for that instance. We represent this as 
the volunteer has solved the problem.  Here, we evaluate the performance of a 
volunteer by the number (%) of instances solved in total. In Figure 26, we refer to this 
measure as the amount solved (%). We provided 90 instances each for the visible and 
blind setup to volunteers. From the statistics of each volunteer, we calculate the 
number (%) of instances where that volunteer chose the furthest point from the centre 
and a point on the convex hull as the starting point for the visible setup. From Figure 
26, we found a distinct descent in performance from the case when a strategy was 
chosen to the case when a strategy was not chosen. Furthermore, for the blind setup, 
volunteers chose to start mostly from a corner (Figure 26). However, for the blind 
case, the performance difference between following a strategy and not following a 
strategy was not as significant as the visible setup. Still, Figure 26 shows that the 
volunteers achieved better results when they followed a strategy in the blind setup. 
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Figure 26: Human performance and strategies for visible and blind setups. 
 
 



 

4 PREDICTING THE DIFFICULTY OF A TSP 

The execution time for solving the TSP using a straightforward exact solver, such as 
a brute force algorithm, increases exponentially as the number of nodes increases. 
However, solving the TSP is also difficult for a human. Humans need visual-spatial 
abilities to solve a two-dimensional TSP instance [Vicker et al., 2004, Dry et al., 2012]. 
The O-Mopsi application contains 158 different games as on 10th September 2019. 
Several players start to play each game and some of them finish. The number of 
playing instances of a game is the number of finished game-playings by players. We 
calculate the total number of playing instances for all games and found only 18% of 
them achieved the optimum solution during play [III]. The TSP that O-Mopsi 
represents is a real-world problem. Hence, it is not only players’ TSP solving skills 
but also their navigational skills that affect their ability to find the solution.  
 
We have another dataset of computer-generated open-loop TSPs named Dots 
games.7 Dots games are two-dimensional computer-based puzzles, which do not 
require navigational skills. Even so, only 15% of all playing instances found the 
optimum solution at their first trial. Therefore, what makes an open-loop TSP 
difficult is an open question. For exact computer solvers, increasing size of the 
instances is particularly problematic. However, not all instances of the same size 
present the same difficulties. For instance, the three instances shown in Figure 27 do 
not seem equally difficult. The first one (‘Otsola’) is straightforward, while the second 
one (‘Hukanhauta 3km’) is comparatively complex, and the third one (‘Christmas 
Star’) is the most complicated. These three instances show that problems of similar 
sizes are not equally difficult for humans. Hence, for human solvers, size is not the 
only factor. 
 
 
 

                                                      
7 http://cs.uef.fi/o-mopsi/datasets/dots/ 
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Figure 27: Problem size is not the only factor affecting the difficulty for human solvers of the 
TSP. 
 
Many researchers have studied human performance in solving the TSP. Graham et 
al. (2000) and Dry et al. (2006) found that the time required by a human to solve the 
TSP increases linearly or almost linearly as the problem size increases. A significant 
amount of research has found that a greater number of points on the convex hull 
makes instances easier for human solvers [Macgregor and Ormerod, 1996, 
Macgregor et al., 1999, Macgregor et al., 2000, Graham et al., 2000, Macgregor et al., 
2004]. However, contradictory results have also been reported [Vickers et al., 2003 a, 
Dry & Fontaine, 2014]. 
 
4.1 KNOTS IN A MINIMUM SPANNING TREE (MST) 

 
A minimum spanning tree (MST) is another graph problem, the aim of which is to 
connect all the points of the problem instance into a tree structure with the shortest 
possible length (Figure 28). It is a relatively easy problem for computers, and 
polynomial-time algorithms developed by Prim (1957) and Kruskal (1956) can solve 
it. 
 



 

 

 
Figure 28: A problem instance and its MST solution 
 
The open-loop TSP and the MST for a given problem instance share some similarities. 
First, they have the same number of links. The open-loop TSP is a spanning tree as it 
is a connected graph and does not have any cycle. However, it is not the MST until 
both have the same structure. Therefore, the second similarity is that the Euclidean-
length of the MST is always equal to or less than the Euclidean-length of the open-
loop TSP. Therefore, for a particular problem instance, the MST solution and open-
loop TSP solution might be identical (Figure 29). 
 

 

 
Figure 29: Two instances with MST and open-loop TSP solutions. 
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The MST is a tree structure so it can have nodes with more than two links associated. 
We call these nodes the MST knots (Figure 30). There are 0 to N/2-1 possible knots in 
an MST of size N. 
 

 

 
Figure 30: Examples of one, two, and three MST knots in problem sets 
 
Vickers et al. (2004) showed that human performance in solving the TSP and the MST 
correlates well (0.66). In [III] we discovered that a greater number of knots in the 
MST solution makes the TSP more difficult for a human. We confirm this in Figure 
31 by finding MST knots for the three instances shown in Figure 27 earlier. Figure 31 
demonstrates that an increased number of MST knots correlates with an increased 
level of difficulty. We then studied relationships between the number of MST knots 
and human performance in solving the TSP. 
 

 

 
Figure 31: The number of MST knots predicts the difficulty of TSP instances. 



 

 
We used Prim’s (1957) algorithm to compute the MST solution in our algorithm of 
[III]. During the creation of the MST solution, our algorithm keeps track of the 
number of links being added to each node. If this number exceeds two, we mark it as 
a knot. 
 
We used the number of MST knots and the normalised number of MST knots in [III]. 
The normalised number of MST knots is the number of MST knots normalised with 
respect to the problem size to reduce the effect of the problem size (Figure 32). 
 

 

Figure 32: The number of MST knots and the normalised knot 
 
4.2 HUMAN MISTAKES 

 
To evaluate human performance, in [III], we considered human mistakes and human 
playing time. O-Mopsi allows for non-optimal solutions. Therefore, players can have 
errors with respect to both order and length. Increased difficulty results in an 
increased number of errors. Hence, we considered playing error to be a measure of 
human performance. To avoid GPS errors, instead of working with the players’ 
original route, we noted the order in which players visited targets and computed the 
Euclidean or bird’s paths from these orders. To measure playing error with respect 
to order, we considered the number of mismatches, which is the number of link 
differences between the optimum and the visiting order of the player (Figure 33). 
 



54 
 

 

Figure 33: A playing instance in which the player’s visiting order contains two mismatches. 
 
However, this measure counts a single fault twice. In the example shown in Figure 
33, after making the first mismatch, the player is compelled to visit the rest of the 
targets in a particular order, which automatically counts as another mismatch. 
Therefore, we introduced another measure, the mistake, which dynamically computes 
the optimum order along with the unvisited targets after every fault occurs (Figure 
34). This measure is more logical for assessing human performance. 
 



 

 

 
Figure 34: Player’s visiting order contains one mistake in the same playing instance of Figure 
33. 
 
The human gap is a measure of human performance in terms of the difference in path 
length. It is calculated as the percentage difference between the length of the player’s 
visiting order and the optimum order. We consider this measure because the number 
of mistakes sometimes conveys incomplete or wrong information. Figure 35 shows 
two examples of game playing with almost the same number of mistakes. This might 
imply that both games are almost equally difficult. However, the gap shows that the 
effect of mistakes is significantly different in these two examples. 
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Figure 35: The number of mistakes does not always reveal the significance of the faults. The 
first example contains only one mistake, but the solution is rather poor (22% gap). The sec-
ond example contains two mistakes, but the solution is still very close to the optimum (0.5% 
gap). 
 
4.3 HUMAN PLAYING TIME 
 
Dots games do not allow sub-optimal solutions; therefore, players need to solve these 
games in one or more trials. More difficult games require more trials; consequently, 
they require more time to solve. Hence, we considered the playing time of dots games 
as another measure of human performance. For our experiments, we considered only 
instances with a playing time of less than 5 minutes. 
 
4.4 EVALUATION OF COMPUTER PERFORMANCE 
 
We added a phantom node to turn our open-loop cases into closed-loop cases and 
used the Concorde algorithm [Appelgate et al., 2011] to solve it as explained in [II]. 
We measured the execution time for all O-Mopsi and dots games. 
 
4.5 RESULTS 
 
We tested human and computer performance and considered both problem size and 
the number of MST knots. Table 4 shows that the Pearson correlation between both 
human and computer performances and problem size is substantial for O-Mopsi (252 
playing instances) and dots cases (12124 playing instances). Furthermore, the number 
of MST knots is also significantly correlated with both human and computer 
performances. 
 
 



 

 
Table 4: Correlation between problem size and MST knots with human and computer perfor-
mance. 
  

 

O-Mopsi8 Dots9 

Human 
mistake 

Human 
gap 

Concorde  
time 

Human 
time 

Concorde 
time 

Problem size (N) 0.46 0.06 0.75 0.38 0.61 

MST Knots 0.54 0.16 0.68 0.35 0.56 
Normalised Knots 0.44 0.11 0.48 0.13 0.22 

 
Table 5 compares the game and player statistics for SciFest games. We list the number 
of targets, optimum length, and the number of MST knots as game statistics. For the 
players’ performance, we report average mismatch, average mistake, and average 
gap. We observe that the number of targets and the number of MST knots explain 
human performance satisfactorily. 
 
Table 5: Comparison of players’ performances with the number of MST knots for SciFest 
games in the period 2011–2018 
 

Year 

Game statistics Player statistics 

Targets Length 
(km) 

MST 
knots 

Avg. mis-
match 

Avg. 
mistake 

Avg. 
gap 

2018 8 1.4 1 0.6 1.1 6.7% 

2017 14 1.4 3 6.9 6.0 22.2% 

2016 13 1.5 2 3.3 3.2 16.2% 

2015 14 1.2 2 5.5 3.8 16.4% 

2014 10 1.0 1 3.9 3.1 16.3% 

2013 16 1.1 5 8.0 5.5 23.2% 

2012 7 0.5 0 1.4 1.1 11.2% 

2011 5 0.6 1 0.8 0.6 1.8% 

Avg. 10.9 1.1 1.9 3.8 3.1 14.3% 
 
Human mistakes increase linearly as the problem size increases, as shown in Figure 
36. Therefore, our results support the findings of Graham et al. (2000) and Dry et al., 

                                                      
8 http://cs.uef.fi/o-mopsi/datasets/o-mopsi/ 
9 http://cs.uef.fi/o-mopsi/datasets/dots/ 
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(2006). Human mistakes also increase linearly as the number of MST knots increases. 
Hence, a greater number of MST knots forces players to make more mistakes. 
Therefore, the number of MST knots can predict the difficulty of a TSP instance for a 
human player. However, neither the problem size nor the MST knots can predict the 
difficulty of the problem instances with respect to the human gap. Computer running 
time also increases linearly as the problem size and the number of MST knots increase 
(Figure 36). Therefore, the number of MST knots can estimate the difficulty of a TSP 
instance for a computer algorithm. 

 

 
Figure 36: Human and algorithm performance for games of varying problem sizes and the 
number of MST knots. 
 



 

5 SOLVING THE OPEN-LOOP TSP 

Papadimitriou (1977) showed that both closed and open-loop variants are NP-hard 
problems. Therefore, the time required to find exact solutions increases exponentially 
as the number of targets increases [Cormen et al., 2009]. Despite knowing this fact, 
researchers have been working on exact solvers for the TSP since 1950. As a result, 
we have several exact algorithms [Dantzig, Fulkerson and Johnson, 1954, Held and 
Karp, 1972, Padberg & Rinaldi, 1991, Grötschel and Holland, 1991, Laporte, 1992a, 
Applegate et. al., 1998, Laporte, 2010, Gutin and Punnen, 2006, Applegate et al., 2011] 
mostly for closed-loop TSPs. 
 
Other researchers have focused on heuristics, which can provide near-optimum 
solutions in a relatively short time. Local search is one of the simplest yet one of the 
most powerful heuristic approaches to optimisation. Exact solvers check all possible 
combinations and finally either produce the best solution or prune the search space 
efficiently using various criteria. In contrast, local search first constructs a far-from-
optimum initial solution and then improves the initial solution iteratively using 
certain local optimisation techniques. The methods for constructing and improving 
have been extensively studied resulting in several algorithms for solving the TSP, the 
vehicle routing problem, and other related combinatorial problems [Laporte, 1992a, 
Laporte, 1992b, Laporte 2010, Jünger et al.,1995, Johnson and McGoech, 1997, 
Johnson and McGoech, 2007, Ahuja et. al., 2002, Rego et. al., 2011, Vidal et al., 2013]. 
The Lin-Kernighan heuristic [Lin and Kernighan, 1973] is the most popular and 
effective local search algorithm for large TSPs [Rego & Glover, 2007]. Lawler et al. 
(1985) explored the performance guarantees of local search algorithms, Aarts et al. 
(2003) discussed the advantages and disadvantages of local search, Johnson and 
McGoech, (2007) conducted an experimental analysis of symmetric TSPs, Johnson et 
al. (1988) discussed the characteristics of local search problems, Okano et al. (1999) 
and Englert et al. (2007) analysed the performance of the 2-opt algorithm, and Funke 
et al. (2005) examined local search for vehicle routing problems. However, which 
operators are effective for open-loop cases is still not known with certainty. 
Furthermore, a detailed study of the performances of various local search operators 
is lacking. Therefore, in [IV], we studied two existing methods, the relocate [Gendreau 
et al., 1992] and the 2-opt [Croes, 1958] local search operators, and two new methods, 
the 3-permute and link swap local search operators, for solving open-loop cases. 
Moreover, we proposed a random mixed local search algorithm using these operators. 
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5.1 RANDOM MIXED LOCAL SEARCH 
 

 
5.1.1 Local search operators 
 
Local search operators define the way to improve the current solution. Such 
improvements create a set of new solutions called neighbourhood solutions. The 
search strategy of the algorithm finds the improved solution from the neighbourhood 
solutions. Figure 37 shows an example of how the relocate local search operator 
works. As the name indicates, the relocate operator changes the location of a target 
or node in the solution, which changes the order. Here, we call the node as the target 
that changes its location. We also call the new location for the target as its destination. 
The relocation of each node can give an improved solution. For a problem with N 
nodes (here, we assume N>2), we can relocate each node to N-2 locations. Therefore, 
in a single relocation, we could get a particular solution out of N(N-2) possible 
solutions. Hence, the neighbourhood search size is O(N2). 
 
 

 

 
Figure 37: The relocate method and an example of it shortens the tour in an O-Mopsi game 
by 8 metres. 
 
The 2-opt method developed by Croes [1958] is a popular link exchange method. 
Figure 38 shows how changing the connections between two subsequent pairs of 
nodes produces an improved solution. Here, the size of the neighbourhood is also 
O(N2). 



 

 

 

 

 
Figure 38: Examples of the 2-opt method. 
 
In [IV], we studied two new methods: the 3-permute and the link swap methods. The 
3-permute method creates neighbourhood solutions by considering all permutations 
of three consecutive nodes (Figure 39). Link swap exchanges the location of a link, as 
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shown in Figure 40. The neighbourhood size for both 3-permute and link swap is 
O(N). 
 

 

 
Figure 39: All six combinations of the 3-permute and an O-Mopsi game example that is im-
proved by 170 m using this method. 

 

 

Figure 40: Original tour and three alternatives created by link swap (left) (in each case, the 
link x is replaced by a new link connected to one or both terminal nodes). An O-Mopsi exam-
ple (right), in which the tour is improved by 137m using this method. 



 

 
From the definition of relocate, we can observe that 2-opt and link swap can achieve 
the same solution if the destination of the target is next to it. Even if the destination 
is within three nodes of the target, then 3-permute can achieve the same solutions. 
However, when the destination is more than three nodes away from the target, only 
relocate can provide such solutions. These are unique solutions for relocate. Figure 
41 shows relocate has such unique solutions in its neighbourhood. 
 
From the arrows of Figure 38, we can notice that the 2-opt method reverses the order 
of a sub-set of nodes. A single operation of 2-opt can reverse only one sub-set of nodes 
of an instance. When this sub-set is more than three-nodes long and does not contain 
any terminal node, then the 2-opt operation gives a unique solution. If this sub-set 
contains only two nodes, relocate can achieve that solution. 3-permute can provide 
the same solution if the sub-set contains only three nodes. Again if this sub-set 
contains any terminal node, link swap can also achieve that solution. Figure 41 shows 
the unique solutions of 2-opt. 
 
Figure 40 shows link swap can only reverse two sub-sets of nodes of an instance. 
However, both sub-sets must contain terminal nodes. Hence, an instance with close 
terminal nodes can only be improved by link swap. Figure 41 shows such an 
example.   
 
3-permute does not provide any such unique solution as all six combinations of three 
consecutive nodes are always achievable by anyone of relocate, 2-opt, and link swap. 
If we consider permuting the locations of A, B, C of the example of Figure 39, Table 
6 shows that other operators are able to achieve all five permutations from A, B, C.  
 
Table 6: Solutions provided by 3-permute can be achieved by other operators.  
 

1. T1, A, B, C, T2 Starting order 

2. T1, A, B, C, T2 -> T1, A, C, B, T2 At least relocate can find when the target is 
C and it moves between A and B 

3. T1, A, B, C, T2 -> T1, B, A, C, T2 
At least relocate can find when the target is 

B and it moves between T1 and A 

4. T1, A, B, C, T2 -> T1, B, C, A, T2 At least relocate can find when the target is 
A and it moves between C and T2 

5. T1, A, B, C, T2 -> T1, C, A, B, T2 At least relocate can find when the target is 
C and it moves between T1 and A 

6. T1, A, B, C, T2 -> T1, C, B, A, T2 
2-opt can find as the A, B, C sub-set can be 

reversed to C, B, A 
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Figure 41: Relocate generates three unique solutions, 2-opt generates two unique solutions, 
and link swap generates one unique solution; 3-permute does not generate any unique solu-
tion. 
 
Therefore, all operators except 3-permute generate complementary neighbourhoods 
(Figure 42). Consequently, relocate, 2-opt, and link swap are not redundant when 
used in a combination, but the neighbourhood of 3-permute does not generate a 
unique solution. Hence, in [IV], we studied all possible ordered combinations of 
relocate, 2-opt, and link swap. Although, our proposed random mixed local search 
algorithm uses random mixing of these operators instead of any ordered 
combination as randomisation might benefit more.  
 
 



 

 

 
Figure 42: Operators balance each other’s limitations. 
 
When a single operator stops improving the solution, another operator may continue 
to improve it; therefore, a combination of operators improves the result further. It is 
also possible that an operator that has stopped working can start to work again when 
other operators have made further improvements. Hence, the works of other 
operators can reactivate the first operator. Figure 43 shows that three such examples 
where the first operator becomes trapped within a local optimum. Other operators 
then recover the process from the local optimum. The solution continues improving 
and the first operator starts working again later in the process. 
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Figure 43: A single operator can start working after becoming stuck when other operators 
have made improvements. 
 
Although all three operators are complementary, the question of whether the 
improvement rates of all three operators remain equal. To address this question, we 
counted the number of improvements found by each operator during the execution 
of the random mixed local search algorithm. We tested our algorithm on two open-
loop datasets, O-Mopsi10 and Dots11. We also tested our algorithm on 12 closed-loop 
instances from the TSPLIB [Reinelt, 1991] dataset. As a closed-loop instance does not 
have an open link to swap its position, the link swap operator is designed for open-
loop cases only. Therefore, for TSPLIB instances, we used the relocate and 2-opt 
operators. Figure 44 shows that 2-opt and relocate were almost equally productive in 
all cases. However, the situation of the closed-loop cases differed from that of the 
open-loop cases. While 2-opt and relocate both accounted for about 50% of the total 
improvement in length in the closed-loop cases (TSPLIB), they were weaker than the 
new link swap operator in the open-loop cases (O-Mopsi and Dots). The link swap 
                                                      
10 http://cs.uef.fi/o-mopsi/datasets/o-mopsi/ 
11 http://cs.uef.fi/o-mopsi/datasets/dots/ 



 

operator dominated in both open-loop cases by accounting for almost 50% of the total 
improvement in length while 2-opt and relocate each only accounted for 
approximately 25% of the total improvement in length. Relocate was also slightly 
more productive than 2-opt in the open-loop cases. 
 
 

 

 
Figure 44: Share of improvements achieved by each of the three methods. 
 
 
5.1.2 Initialization 

 
Apart from the operators, there are two other aspects of local search to consider. One 
is the construction of the initial solution and the other is the search among the 
neighbourhood solutions. Our random mixed local search algorithm computes a 
randomly selected path through all targets, hence, it uses a random initialization 
strategy. 
 
5.1.3 Search strategy 
 
There could be several improved solutions in the neighbourhood. However, the 
algorithm chooses only one of them using the search strategy. The algorithm can 
select the best of the improved solutions, the first available improved solution, or a 
random improved solution. We studied all three strategies in [IV]. However, for the 
random mixed local search, we used the random improvement method. 
 
Local search algorithms can easily become trapped within local optimum points 
(Figure 45). To avoid local optimum points, the random mixed local search uses the 
multi-start mechanism. Thus, the algorithm starts from several random initial 
solutions and repeats the whole process for each. Finally, it provides the best result 
out of all repeats. 
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Figure 45: Examples of local optima that are overcome by repeats. 
 
5.2 EVALUATION 
 
The time complexity of an algorithm is an essential factor to consider for its 
evaluation. As the search strategy is random, the time complexity of our random 
mixed local search does not depend on the size of the neighbourhood of each local 
operator. Instead, its time complexity depends on the number of iterations required 
for the tour improvement process and the number of repetitions necessary for the 
multi-start. Each iteration is a trial; it can be successful, in which case improvement 
is found, or it can be unsuccessful, in which case no improvement is found. A 
successful iteration contributes to the path update process, which is dependent on 
the number of targets. Sometimes, the effect of improvement in a successful iteration 
is significant enough to limit the number of these iterations relatively small (0.002) 
concerning the total number of iterations. Even being dependent on the number of 
targets, henceforth the update process has very little effect on the total time. 
Therefore, the number of iterations and the number of repetitions are the only crucial 
parameters here.  
 
In [IV], we empirically calculated the time complexity of an exact solver, Concorde 
that is exponential (1.5e^(0.004N)). This algorithm is expected to be fast for instances 
with a few thousands of targets. However, for larger instances, the running time 
increases significantly. 
 
As instances in the O-Mopsi and Dots datasets are small in size (N < 50), just 10,000 
iterations and 25 repeats per each instance were enough to find optimum solutions 
for almost all instances. Since TSPLIB [Reinelt, 1991] instances are significantly larger 
(N = 52 to 3,795), we used 108 iterations and 25 repeats. 



 

 
Random mixed local search did not perform better if metaheuristics, such as tabu 
search or simulated annealing, were added to it. We executed tabu search and 
simulated annealing on more than 4000 open-loop TSP instances of O-Mopsi and 
Dots datasets.  Table 7 shows the comparative results of random mixed local search, 
tabu search, and simulated annealing. The results of the tabu search and simulated 
annealing are not significantly better. Even the productivity of the operators was 
similar. 
 
Table 7: Summary of overall results (mean). The execution time is calculated on a 2.7 GHz 
processor. 
 

Results 

Random mixed local 
search Tabu SA 

Gap Execution 
time Gap Execution 

time Gap Execution 
time 

O-
Mopsi 0% 16 ms 0% 1.3 s 0% 25 ms 

Dots 0.001% 16 ms 0.0003% 1.3 s 0.007% 20 ms 
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6 SUMMARY OF CONTRIBUTIONS 

This chapter summarises the contributions of our four publications. In publication 
[I], we study the features of the O-Mopsi game and the research challenges it poses. 
Publication [II] studies the appropriate start positions for both computer algorithms 
and humans when solving an open-loop TSP. In [III], we measure the difficulty of 
open-loop TSPs using MST structures. Publication [IV] studies several local search 
operators and presented the random mixed local search algorithm for open-loop 
TSPs of small sizes.  
 
In [I], we present a review of location-based games. We explain the characteristics of 
O-Mopsi, a location-based mobile game. We analyse the main motivations to play 
this game. We study the average performance of players of a particular game and 
compare it to the features of that game. Thus, we reveal the challenges of the game 
and the type of skills required by a player. 
 
In [II], we investigate various strategies for selecting start positions for both 
computers and humans to solve the open-loop TSP. We construct a grid over the area 
of the problem. We find that corners of such a grid are the most probable regions to 
have a starting point for an optimised path computed by an exact algorithm. By 
contrast, humans prefer to start from a point on the convex hull of the problem or the 
target that is furthest away. The conclusions from this study can be applied in any 
tour-planning or tour-optimisation application where the starting point is not 
determined beforehand.  
 
In [III], we show that the MST structure can estimate the difficulty of an open-loop 
TSP. We call the nodes with more than two links MST knots. We find that human 
performance and execution time for the computer are linearly dependent on the 
number of MST knots. Hence, this number measures the difficulty of the problem. 
This measure is useful as it might help people to select a suitable game to play.  
 
In [IV], we study ways of solving open-loop TSPs, which is one of the challenges of 
O-Mopsi. We consider the local search technique for solving the TSP and study two 
existing local search operators (relocate and 2-opt) and introduce two new operators 
(3-permute and link swap). The link swap operator is found to be the most 
productive operator for improving the path. We also find it to be rather influential 
as, without this operator, the productivity of the relocate operator diminishes. We 
develop random mixed local search algorithm for solving open-loop TSPs using 
relocate, 2-opt, and link swap. This algorithm randomly mixes these three operators 
and iteratively tries to optimise a path. The whole process repeatedly starts from 
scratch to avoid local optima. Similar to this algorithm, these operators can be used 
for computer-based TSP games or in a tour planning application. 
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7 CONCLUSIONS 

Although O-Mopsi is an orienteering game, it offers players to choose their ways to 
visit targets. Similarly, most tour planning applications provide POIs but no fixed 
path. Hence, these types of applications represent relatively small open-loop TSPs. 
We show that choosing an appropriate starting position is crucial. We also show that 
the difficulty level of a problem is a significant factor that affects a human’s ability to 
solve the problem. 
 
The particularly challenging task of finding the appropriate starting point applies 
solely in the open-loop case. A significant amount of research has been devoted to 
analysing human performance in solving TSPs. Several algorithms have been 
developed based on human strategies for solving a TSP. However, studies of the 
optimum start location for open-loop cases are lacking. Our study shows that corners 
are the most probable regions to have a starting point for the optimised path.  We 
also show that humans prefer to choose a target on the convex hull or the target that 
is located furthest away from the centre as a starting point.  
 
Researchers have discovered a correlation between the problem size and human 
performance in solving TSPs. The convex hulls of the problems have also been found 
to be related to human performance. We show that, for the open-loop TSP, apart from 
the problem size, the MST structure is also an important factor for both human and 
computer solvers. Our proposed method of measuring the difficulty of an open-loop 
TSP using the MST structure is a simple, polynomial-time algorithm, which does not 
require the optimum solution to determine the difficulty. 
 
Many studies have used local search algorithms to solve TSPs. However, very few 
have studied local search operators in detail. Furthermore, most existing studies 
focus on closed-loop cases, while open-loop cases remain relatively unexplored. We 
introduce a new local search operator, link swap, which is specially designed for 
open-loop cases. Our experiments show that link swap is the most productive 
operator in a local search. Our proposed random mix local search algorithm works 
efficiently for small-sized problems. The speed of the algorithm is almost 
independent of the problem size. 
 
In the future, it would be useful to study the playing strategy of the total game 
instead of only the starting point. The frequency of choosing the nearest neighbour 
as the next target by the players would be also interesting. This would enable us to 
determine the effect of using the nearest neighbour strategy on performance. In the 
future, we can as well analyse comparative performance of several players based on 
their routes. This might act as another performance determiner. We can conclude 
more on the difficulty by studying players’ performance more analytically. Apart 
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from the TSP difficulty, finding other playability issues, accessibility issues to the 
targets would make the application more practical.  
 
Additionally, content creation for any LBG is another topic that needs to be studied 
thoroughly. There is a large amount of geotagged multimedia content available. 
However, they need to be structured and filtered according to the needs of the 
location-based application. Besides, several multimedia contents lack the location 
information within them for several reasons. Therefore, we can explore all possible 
sources thoroughly for comprehensive content or can develop a location-estimator 
system that can provide the location information to the non-geotagged content.     
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Location-based games and trip planning 
applications are gaining popularity worldwide. 

In several cases, they include the path 
optimisation problem.  People need to know 

the characteristics of such a problem and 
planning strategies to solve them. O-Mopsi 

is one of such location-based games that 
contains small scale path optimisation 

problems. In this thesis, we study the problems 
contained in O-Mopsi and how human 

perform in solving those. We present methods 
to estimate their difficulty and algorithms to 
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