
 

       

     

      

 

 

 

 

   

            Distances in MOPSI   
 

   

                                 Hatim Oulad Arifi  

 

 
  

   

       Master’s Thesis   

  

   
   
   
 

 

                                   

                                       School of Computing  

                                             Computer Science   

                                                       May 2020  

  
  
  
  
 



i 

  

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, Joensuu School 

of Computing, Computer Science  

  

Hatim Oulad Arifi: Distance in MOPSI  

Master’s Thesis, 43 p.,    

Supervisors of the master’s Thesis: Professor Mr. Pasi Fränti and Dr. Radu Mariescu-Istodor.  

April 2020  

  

Abstract: Nowadays, our smartphones can do many useful things for facilitating our life as it 

proved in the several applications of distances that exist in web stores [23].  

 

In this study, we will try to find an optimal solution for travelling salesman problem that asks to 

give a list of cities and the distances between each pair of cities, and finding the shortest possible 

route that visits each city and returns to the origin city using a different classification of distances.   

 

A minimum spanning tree (MST) or minimum weight spanning tree may be a subset of the 

perimeters of a connected, edge-weighted undirected graph that connects all the vertices 

together, with none cycles and with the minimum possible total edge weight. It is a spanning tree 

whose sum of edge weights is as small as possible.  

 

More generally, an edge-weighted undirected graph (not necessarily connected) contains a 

minimum spanning forest, which can be a union of the minimum spanning trees for its connected 

components. 

 

The solution for MST contains plenty of information useful for solving TSP still. By modifying 

the Kruskal algorithm to seek out a heuristic solution for TSP using the geographical distances 

[24]. 

 

Another, solution based on Evolutionary programming can be used for finding the solution to TSP 

by evolving the numerical value of tours and computing the similarity between them using the 

concept of distance sequences.  

  

Keywords: Applications of distances travelling salesman problem TSP, minimum spanning tree,       

                                       Kruskal algorithm, Evolutionary programming   

   

  

CR Categories (ACM Computing Classification System, 1998 version):



ii 

 

  

Foreword 
 

  

This thesis was done at the School of Computing, University of Eastern Finland during the period 

of my study in Master of Science and computer science.  

I would like to give my sincere thanks to University of Eastern Finland for accepting me to the 

program.  

 

I would also like to thank all the professors who helped my gain knowledge in different areas of 

computer science.  

I would also like to give my deepest gratitude my supervisor, Mr. Pasi Fränti for his guidance 

during my study.   

 I would also like to express my deepest gratitude to Dr. Radu Mariescu-Istodor who helps me to 

make a table of contents and for presenting several technical solutions.   

 

Also, I want to extend my gratitude to the colleagues Himat shah and Lahari Sengupta for 

answering my questions.  

 As well, I want to thank my parents and my brother and for the rest of my family for moral 

support. And Mrs. Olli Kohonen the coordinator of my study for her help and advices.



iii 

List of abbreviations   

UEF University of Eastern Finland  

MOPSI Mobile location-based platform for collecting photos and routes 

O-MOPSI Orienteering Mopsi  

C-SIM Cell similarity  

RSP Route Similarity Ranking  

OSM Open street Map  

OSRM Open Source Routing Machine  

API Application programming interface  

LCS Longest common subsequence  

TSP Travelling salesman problem  

MST Minimum spanning tree  

MTA Multiple Tours Alignments   

BLAST Basic local alignment search tool



iv 

 

Table of Contents 
 

 

1.Introduction .................................................................................................................................. 1 

2. Geographical distances ...............................................................................................................  4 

2.1.1 LP Minkowski distance measures ..................................................................................  4 

2.1.2 Bhattacharyya distance ................................................................................................. 6 

2.1.3 Harversine distance calculation .....................................................................................  7 

2.2 Travel distances ................................................................................................................... 10 

2.2.1 Road network (OSM / OSRM)..................................................................................... 10 

2.2.2 Similarity of routes ......................................................................................................  11 

2.2.2.1 C-SIM algorithm ..................................................................................................  11 

2.2.2.2 Route Similarity Ranking (RSR) algorithm .........................................................  12 

2.2.2.3 Similarity and inclusion .......................................................................................  13 

2.2.2.4 Examples ..............................................................................................................  14 

2.2.3 Tour length in Mopsi ................................................... ……………………......... ….. 16 

3.String distances .........................................................................................................................  19 

3.1 Distance between two strings .............................................................................................  19 

3.1.1 Strings of the same length ...........................................................................................  19 

3.1.2 Strings of different lengths ........................................................................................... 20 

3.1.2.1 Levenshtein distance ............................................................................................. 20 

3.1.2.2 Damerau–Levenshtein distance............................................................................  21 

3.2. Distances between sets of strings ....................................................................................... 22 

3.2.1 Longest common subsequence problem ...................................................................... 22 

3.3.2 String segmentation .....................................................................................................  22 

3.3.3 Bag-of-tokens ..............................................................................................................  23 

4. Other distances ........................................................................................................................   25 

4.1. Multidimensional distances ...............................................................................................  25 

4.2. Pairwise distance (Alignment) ..........................................................................................  26 

4.2.1 Dynamic time wraping ................................................................................................  26 

4.2.2 Matrix distance and construction of the wraping path ................................................  28 

4.3 Multiple Tours Alignment and Tours similarity ................................................................  29 

5. Conclusion ................................................................................................................................. 40 

References ..................................................................................................................................... 41 



1 

1 Introduction    

Distance is a numerical measurement of how far apart objects or points are. For computing the 

geographical distance, we need to know the start location and the end location. The location is used 

to identify a point or an area somewhere. There are two types of location. Relative location describes 

a displacement of the point from another site. It is called distance. An example is "3 kilometers 

northeast from Joensuu”, see Figure 1. Absolute geo-location is defined by exact latitude and 

longitude ,see Figure 2.   

   
 

 Figure 1. Relative location 3 kilometers northeast from Joensuu [27]     

   

 

   
  

 Figure 2. Absolute distance 3 kilometres northwest from Joensuu [27]      

  

Distance can also be given via a sequence of intermediate points. In Figure2, is an example bus 

route where bus stops define the intermediate points. The concept of distance can be generalized to 

calculate how much two trajectories differ from each other [1]. However, instead of distance, the 

concept of similarity is more often used. The shorter the distance between the two objects, the more 

similar they are. 



2 

The similarity measure between two roads is high when the distance is small between the 

trajectories and the lowest similarity where the distance large. Also, we can consider that two routes 

are similar if the overlapping happens between them, see Figure 3. 

  

  
      

 Figure 3. Displacement and distance between locations A and B    

 

Figure 4 shows Mopsi users Pasi, Radu, and Andrei haveing many similar trajectories in Joensuu 

and Liperi following a cycling route with dofferent speeds [1], see Figure 4. In Mopsi, trajectory 

similarity is used to find trajectories that can be compared. Another application of trajectory 

similarity is to optimize the traffic using a distance function in density-based clustering of segments 

in order to identify the congestion areas [1]. As well, the applications of the shortest path or the 

nearest distance and extension to traveling salesman problem and finding the shortest tour.   

   
 

Figure 4. Similarity between two routes [1] 

We use the term distance also to measure non-physical entities. For instance, the theoretical distance 

between two strings where the words may vary by only one letter. For example, "dog" and "dot", 

differ by only one letter, are closer than "dog" and "cat", see Figure 5.  So, if you give the value of 



3 

1 for any matching alphabet between the two Sequence a and Sequence b. The string distance 

between "dog" and "dot" is d(Sa,Sb) = 2 and between “dot” and “cat” d(Sa,Sb) =1.   

 

 
 

Figure 5. String distance    

   

  

  



4 

2. Geographical distances    
   

A physical distance means several different things such as distance travelled on a specific path 

travelled between two points, or the distance walked while navigating a maze.    

2.1 Point distances      

There are many methods to calculate the distance between points. The distance between points can 

be interpreted as the extent of spacing between them.   

   

2.1.1 LP Minkowski distance measures    

In general, the formula of Minkowski distance [8] has a square root that may have nice properties 

in the distance function. 

 

We consider the distance between two points A and B where A=(XA, YA), B=(XB, YB) and 

C=(XC, YC) is their crossing point along the green longitude line. A and C are locations belonging 

to the red North-south line in Figure 6, it can be called longitude line. 

 

                  
Figure 6. Example of distances from A to B, and A to C. 

 

If p=2, we will get the Euclidean distance AB =  [8]. In this case, we have squared 

displacement along the redline and along the green latitude line.   



5 

If p=1, we will get the Manhattan distance. AB=AC+CB [8]. In this case, we have displacement 

using the redline and along the green line longitude or latitude but the distance is the sum of the two 

without squaring.   

If p→ ∞, we will get the Chebyshev distance [8] AB=Max (|𝑋𝐵 − 𝑋𝐴|, |𝑌𝐵 − 𝑌𝐴|) the distance is 

only the bigger displacement of the two directions. In this case, for all the lines longitude and 

latitude in additions Northeast-southeast and Northwest-southwest.   

So:  the three distances are summarized in Figure 7. 

 

       
Figure 7. Summary of the three distance measures [8] 

  

Let us consider visited locations A, B and D from the user Pasi so that C is a location near to the 

users Pasi and Radu. It will be interesting to see different values of p for B and D because those two 

locations are the same as Radu’s location but far away to the user Pasi. See figure 8. 

               
   

Figure 8. Representation of Minkowski distance between MOPSI users [28] 

 

   



6 

2.1.2  Bhattacharyya distance   

Bhattacharyya distance [8] is used to calculate the similarity of two probability distributions, or the 

amount of overlap between two statistical samples or populations. Bhattacharyya distance is 

symmetrical or being invariant to scale in the case of two Gaussian probability density distributions. 

The mathematical formula of Bhattacharyya distance is:  

 

 

We consider 3 users and count the number of visits they did to those points shown in Figure 9 to 

study similarities between their visit history.  The computation of relative frequencies, for example, 

of the user Julia is done by dividing the number of visits at the location of Science Park (shown 

with text “Impit” on the map) by the total number of her visits . This results in relative frequency 

of 1/7 = 0.14. 

Relative frequencies of three users’ visits are shown in Figure 10. Using these statistics, user 

similarities are shown in Figure 11 with three different distance measures. All measures show that 

Pekka and Bartek are more similar (bigger distance) than Julia and Bartek. 

 

 
 

Figure 9.  Count visit statistics [9]   



7 

 
Figure 10.  Figure 10. Frequencies and relative frequencies of users [9] 

 

            Bhattacharyya distance               Manhattan distance          Euclidean distance     

   

   
   

  Figure 11. Comparison between three different distance measures [9]   

  

2.1.3  Harversine distance calculation    

 To show how far (in meters) a target is from the user, we use the haversine distance to calculate 

the great circle distance on the surface of the earth. The points are given via their coordinates: 

longitude and latitude.   

MOPSI application provides many options for the user. Using the distance to services and photos, 

the distance to the service recommended for the user can be shown. The nearest distance to Pizza 

Master is 423 meters (see Figure 12). If we recommend data from users’ photo collection rather 

than services, the nearest photo location is at Uuro Shell and is 5 km, as shown in Figure 13.   

 

https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Longitude
https://en.wikipedia.org/wiki/Latitude


8 

   
 

  Figure 12. MOPSI options, distance to service [27]      

   

    

   
   

        Figure 13. MOPSI options, distance to photos [27]     

   

In the next example, we try to find the distance between Joensuu and Kuopio. Assuming Earth 

radius is R = 6371 km, we define d as the haversine distance between Joensuu and Kuopio where: 

φ1, φ2 are latitudes of Joensuu and Kuopio (in radians), λ1, λ2 longitude of Joensuu and Kuopio 

(in radians). The distance is:   

     
 



9 

So, the distance is d=139 km using the Haversine distance between Kuopio and Joensuu where 

Joensuu city is located at latitude 62.6010°, longitude 29.7636° East of Greenwich and North of the 

Equator, and Kuopio city is located at latitude 62.8980°, longitude 27.6782° East of Greenwich and 

North of the Equator.  

In general, the factors that impact the travel distance between two cities are the latitude and 

longitude but also the road network. Another factor that impacts on the distance is transportation: 

walk, bike, car, train, or even boat. To show a more realistic distance in an urban environment, we 

selected 4078 routes travelled by three Mopsi users, Pasi, Andrei, and Radu as stored in Mopsi. 

Knowing the transportation mode, we got the results shown in Figure 14 by comparing the average 

length, speed, and duration for each movement type (walking, running, biking, skiing, driving).  

   
   

 Figure 14. Distance travelled via tracking in Mopsi [10] 

   

 

The distance is used as a feature when predicting which destination the user is traveling to [10] 

given a transportation mode. The transportation mode is important as it impacts the traveled 

distance. If the user started driving a car, the destination candidate is unlikely to be nearby, whereas 

if the user is walking, the destination cannot be too far away. Here µ and σ are the mean travel 

distance and standard deviation. The direction is important when users move optimally towards the 

destination. The candidates in the opposite direction of the user’s movement should receive lower 

scores.      

   
 



10 

 

2.2  Travel distances 
   
2.2.1  Road network (OSM / OSRM)   
 

Application Programming Interface (API) are used for software components to communicate with 

each other. Mopsi uses APIs to implement various functions, see Figure 15 

The Open Source Routing Machine (OSRM) is an open-source router designed to be used with road 

network data. In Mopsi, we use data from Open Street Map (OSM), which is a collaborative project 

to create a free editable map of the world. The shortest path is calculated using multilevel Dijkstra's 

algorithm.  

   
Figure 15. API between MOPSI and OSRM [27]     

   

Overpass API provides query functionality to OSM data. The client sends a query to the API and 

gets back the data set that is a subset of OSM map data. The selection of the search criteria is like 

location, type of objects, tag properties, proximity, or combinations of them. It acts as a database 

backend for various services, see Figure 16.     

 

  



11 

   
 
Figure 16.  MOPSI´s database shown the entire data collection of the user Pasi in Joensuu [27] 

  

 

2.2.2  Similarity of routes   

 There are many methods for computing route similarity. They are classified according to their 

robustness towards noise caused by sensor devices or irregularities in sampling or transcription 

errors. We can use the Jaccard similarity coefficient and compute the similarity between two routes 

by dividing the size of their intersection by the size of their union [1].  

The method dilates each of the two routes separately for computing the intersections.  We denote 

by 𝐶𝑑 the extra cells from a separate set. It is considered as a buffer region when comparing two 

routes [1].  

                   
 

     
     

     
   

2.2.2.1  C-SIM algorithm   

C-SIM algorithm [1] computes the similarity between two given routes in linear time 

complexity,see Figure 17. 

O (𝑁𝐴 + 𝑁𝐵 + |𝐶𝐴| + |𝐶𝐵|) 

   



12 

     
 

                     Figure 17. C-SIM algorithm between Route A and B [1] 

  

 

2.2.2.2  Route Similarity Ranking (RSR) algorithm   

The algorithm finds all similar routes in the database for a given input. The algorithm is used in 

Mopsi to searching among jogging, cycling, and cross-country skiing, and was tested on over 6,700 

routes. This service is available for Mopsi users to see their statistics and compare with past attempts 

or other users that completed similar routes and analyze progress over time. In Figure 18, two routes 

of user Radu are shown having 70% similarity. One route takes a 1km shorter, off-road path. The 

other route is quicker, despite the extra kilometer.   

   
   

Figure 18. Radu’s trajectories similarity [1] 

  



13 

2.2.2.3  Similarity and inclusion  

The inclusion measure calculates what proportion of a given route is contained in another. Using 

the grid, we compute the inclusion between two routes, 𝐶𝐴 and 𝐶𝐵, as [1]:   

 

Inclusion and similarity have different mathematical formula. The inclusion is not symmetric and 

rarely gives the same result if we dilate the second route and normalize the result with respect to 

the original route.    

The preliminary version of the inclusion measure was presented in [1]. Algorithm INC has the same 

time complexity as C-SIM. In Figure 19, 61% of A is included in B and 96% of B is included in A.  

   
 

Figure 19. Inclusion between Routes A and B [1] 

   

2.2.2.4  Examples     

 For calculating the similarity, we consider that every trajectory on the Earth is represented as a 

linked list of cells represented by their center (x=latitude, y=longitude). Radu and Pasi divide the 

space by generating cells if two consecutively generated cells are not adjacent, we fill the gap by 

using linear interpolation with the equation: 



14 

   
 

Figure 20. Location defined  by latitude and longitude  [1] 

  

 The highlighted cell in Figure 20 is in the center of a small park in Joensuu. The easting and 

northing values of the two cells inside a 100km square are 25 × 25-meter cells in Joensuu. The 

procedure of searching most similar routes happens by creating a database that stores many routes. 

The familiarity feature measures if the user has recorded a similar trajectory in the past and if there 

is a reoccurring pattern [3]. It is used in a system shown in Figure 21, which tries to predict where 

the user is moving.   

     

4 



15 

   
 

Figure 21. System predicting the destination based on familiar movement patterns [3] 
   

In (Mariescu-Istodor et al, 2019) the overwhelming number of candidates is reduced to the top-

ranking candidates by clustering using the inclusion values and keeping only the top cluster. The 

mathematical equation defines the familiarity feature      

   

𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦(𝑑) = 𝑝 (𝑑, 𝑆)   

S is the set of trajectories which include the current trajectory. To obtain S, in the inclusion measure 

presented (Mariescu-Istodor and Fränti, 2017) the query of the Mopsi trajectory database and rank 

trajectories happens. An example is given in Figure 22. 

 



16 

   
Figure 22. Radu’s familiar patterns in movement  [3]   

   

2.2.3  Tour length in Mopsi   

In Mopsi orienteering game called O-Mopsi, the player visits several targets, mainly in a city area. 

There is no pre-defined order of visiting targets and the game ends immediately after all targets 

have been reached. Thus, the game playing implicitly includes the open-loop travelling salesman 

problem (TSP). It seems a bit easy to find the best order in the places that connected to each other 

linearly or near-linearly, as the Otsola example in Figure 23, but is much more difficult in other 

examples like Hukanhauta and Christmas Star [11].    

   

   
          

            Figure 23.  TSP problem with difficulty level increasing from left to right [11]   

   

 So, we can say that TSP has different levels of difficulties related to the form of the network that 

connects the different places to each other, as well as the number of places visited impacting to 

problem difficulty to find the shortest path [11]. In closed loop TSP, the goal is to go to all the 

nodes and to return to the beginning while minimizing the length of the tour. The problem in O-

Mopsi is open loop TSP where player do not need to return to the starting node. 

   



17 

      
Figure 24. Examples of MST and open loop TSP solutions [11] 

 

It is possible to use the minimum spanning tree (MST) to help find the linear or near linear 

connections that minimize the total distance during the tour [24]. In general, the minimum spanning 

tree is shorter or equal to the optimum solution for the open-loop TSP because |MST| ≤ |TSP| ≤ |SP|. 

The solution of the open-loop TSP is also spanning tree but not necessarily the minimum one, see 

Figure 24.   

Kruskal algorithm operates on a spanning forest by greedily merging two spanning trees to 

extend the entire cost of the spanning forest least. In [24], Kruskal algorithm is modified with the 

constraint that allows merging two sub-solutions using only by their endpoints. This not only 

prevents branches to appear within the tree but it also reduces the number of possible links to be 

considered for the merge. Thus, it enforces the ultimate result to be an answer for the open-

loop TSP. It allows potentially more efficient implementation than standard Kruskal for MST. 

Although this is often still rather far from the optimum, it is useful to provide an affordable estimate 

for the TSP solution.  

The sole limitation we would like to feature is to permit the merges to be made using only the 

endpoints of the two chains. In the beginning, every node is assigned to its own set. The links are 

sorted and processed from the shortest to the longest. Every link that connects two distinct sets from 

their endpoints are merged: thus, avoiding cycles and branches. Merges are continued until only 

one set remains. The effect of the modification is shown in Figure 25. The positive side is that the 

number of choices to be considered for the following merge is significantly reduced from standard 

Kruskal but the negative effect is that the optimality cannot be anymore guaranteed.  



18 

The open and closed loops are closely related. However, it is an uphill task to convert the 

answer from one to the other. For instance, removing the longest link from the closed-loop system 

solution does not necessarily provide the optimum solution for the open loop case, as proven by 

counter-example in Figure 26. It is also possible to modify the open loop problem instance to create 

a closed loop problem instance. One can then solve the problem using algorithm for the closed loop 

solution. This also indicates that the open loop case is a special case of the closed loop [24]. 

 
 Figure 25. Merging operations [24]   

 

  
 

Figure 26. Open and closed loop for travelling salesman problem [24]   



19 

   

3. String distances    

String distance is a metric that measures the distance between two text strings. Syntactic measures 

operate on the words and their characters without any assumption of the language or the meaning 

of the content and it focuses mainly on specific tasks such as names of people, places, institutions 

or companies. They point out that the performance of the similarity measures is affected by text 

length, spelling accuracy, abbreviations, and language [6].   

   

3.1 Distance between two strings    

3.1.1  Strings of the same length   

Hamming and Lee distances are used in case the strings have the same length.  The Lee distance 

between two strings 𝑥1𝑥2 … 𝑥𝑛 and 𝑦1𝑦2 … 𝑦𝑛 of equal length n over the q-ary    𝑍𝑞= {0, 1, ..., q-1} 

of size q  2 is a metric defined in [12].       

 

If q > 3 this is not metric anymore, as the Lee distance can become bigger than 1. For example, 

when q = 6, then the Lee distance between 3140 and 2543 is 1 + 2 + 0 + 3 = 6.                                                                          

If q = 2 or q = 3 the Lee distance coincides with the Hamming distance, because both distances are 

0 for two single equal symbols and 1 for two single non-equal symbols.   

Hamming distance between two strings is the number of mismatches at the same position. It only 

applies to strings of the same length. For example, the Hamming distance between the strings 

“point” and “paint” is 1, see Figure 27.  Hamming distance can also be defined as the difference 

between the size of the string and the number of matches.    

   
Figure 27. Hamming distance between two strings     

   

 

 



20 

3.1.2 Strings of different lengths   

 

The family of distances used for the strings of different lengths, and it still available for the strings 

of the same length.   

  

3.1.2.1  Levenshtein distance   

 Levenshtein distance is a string metric for measuring the difference between two sequences and 

has many applications in strings matching, and in spelling checking. Levenshtein distance between 

two words is the minimum number of single-character edits (insertions, deletions or substitutions) 

to convert the strings to become equal, see Figure 28. For example, the Levenshtein distance 

between “SPORT” and “SPORTS” is 1, since the following inserts one into the other by adding 

character “S”. As well, between “JOENSUU” and “SUU” is 4, since we delete four characters.     

 

 
 

The Levenshtein distance is 5 operations to transform the string “ELÄIMISTÖ” to “ELÄMÄ” and 

the string “ELÄMÄ” to “ELÄIMISTÖ” so Levenshtein distance is symmetric, see Figure 29. It 

called also Edit distance as it calculates the least number of edit operations that are necessary to 

modify one string to obtain another string, i.e. minimum edit distance.  

   

E   L   Ä   I   M   I  S   T   Ö   

E   L   Ä      M   Ä            

   
Figure 29.  Levenshtein distance operations between two strings is 5 consisting of one delection, three additions 

and one substitution.         

 

We obtain the Levenshtein distance using dynamic approaches or dynamic programming. We use 

the Levenshtein matrix that can be filled from the upper left to the lower right corner. Each jump 

horizontally or vertically corresponds to an insert or a delete.  Respectively, the cost is normally set 

to 1 for each of the operations and we call this method also the diagonal jump can cost either one 

of the two characters in the row and the column does not match else 0 if they match. Each cell 

always minimizes the cost locally [13] .   

  

Insertion       

Substitut   on  i     

Deletion     

    

       
     Figure 28.  Levenshtein distance operations [6] 

       



21 

The mechanism how to fill Levenshtein matrix is explained in Figure 30 and Figure 31.  We obtain 

the Levenshtein Matrix where the intersection of last column value with the last row value 

represents the Levenshtein distance described in Figure 32.   

 
 

Figure 30. Levenshtein distance If column character and row character have different values 

   

 
Figure 31. Levenshtein distance If column character and row character have equal values 

 

   

      E   L   Ä   I   M   I  S   T   Ö   

   0   1   2   3   4   5   6   7   8   9   

E   1   0   1   2   3   4   5   6   7   8   

L   2   1   0   1   2   3   4   5   6   7   

Ä   3   2   1   0   1   2   3   4   5   6   

M   4   3   2   1   1   2   3   4   5   6   

Ä   5   4   3   2   3   2   3   4   5   6   

                   
Figure 32. Levenshtein Matrix. 

 

3.1.2.2  Damerau–Levenshtein distance    

 Damerau–Levenshtein distance is a string metric for measuring the edit distance between two 

sequences. It uses all the operations used in the Levenshtein distance like substitution, insertion, 

deletion. In addition, the transposition of two adjacent characters that require the change one word 

into the other. for example, "MARTHA", and "MARHTA" where the transposition happens 

between "T" and "H". [14]       

 

 

  

    
ion value Substitut     

    

                      Insertion value     

    
n value Deletio     

    
Substitution value      

    

    



22 

3.2 Distances between sets of strings    

3.2.1 Longest common subsequence problem    

Longest common subsequence (LCS) problem is the problem of finding the longest subsequence 

common to all sequences in a set of sequences (often just two sequences). For example, consider 

the sequences in Figure 33. So, “c d g i” is the longest common subsequence between sequence 1 

and sequence 2. So, “c d g i” is the longest common subsequence between sequence 1 and sequence 

2. 

 
 

 
  

Figure 33. Longest common subsequence between two sequences  

   

3.3.2 String segmentation  

 Two approaches exist to segment the string: q-grams and tokenization [6]. Examples of them are 

shown in Figure 34.The first approach q-grams divides a string s into substrings of length q  and 

obtains a sliding window of length q over the string to consider also substrings of length q − 1 and 

to recognize prefixes and suffixes of the string.  So-called padding characters (#% $) are appended 

to the beginning and end of the string.  The similarity is calculated as follows: 

  

 Where Qs1 and Qs2 are the multi-sets of q-grams from s1 and s2, respectively, n = |Qs1  Qs2|, and 

match(qi, Qs1) is the number of times the q-gram qi appears in Qs1. In [6], q-grams with paddings 

is used to consider tokens having fewer than q characters, such as the determiners “a” and “an”.  

Tokenization divides a string into units called token using whitespaces and punctuation characters. 

The rationale behind tokenization is to utilize the data at the token level and to beat problems of 

token swap and missing tokens.There are two solutions to unravel the token ordering issue were 

introduced: sorting heuristic and permuting heuristic [6]. 



23 

In sorting heuristic, each string is tokenized, tokens alphabetically ordered, rejoined again, then edit 

distance is applied to the modified strings. In permuting heuristic, all token permutations are 

obtained from the primary string and a comparison between all the permuted strings and the second 

string is performed; the best similarity value is chosen. However, these heuristic solutions are 

inefficient for other sorts of mismatching like missing tokens, especially when the length of the 

absent token is taken into account like “Rosso” and “Rosso restaurant”. a much better solution is 

therefore needed in such cases. 

 

  
  Figure34. The segmentation of String” The club at the Ivy” [6] 

  

3.3.3  Bag-of-tokens   

Bag of tokens or words is used for information retrieval from texts in [6]. Here, a text (such as a 

sentence or a document) is represented as the bag (multiset) of its words, disregarding grammar and 

even word order but keeping multiplicity. The selection of suitable matching techniques (set, 

sequences, bag of tokens) impacts the result of similarity more than the string distances. An example 

is given in Figure 35.  

 
                                      

Figure 35. Strings matching techniques [6] 

  



24 

  

 The solution with Set finds the matching using any set-matching method. It can then be applied to 

measure the overlap between the sets using like Braun-Banquet, Simpson coefficient, Jaccard index, 

and Dice coefficient, which divide the cardinality of the intersection by the cardinality of the largest 

set and the smallest set [6]. Sequence matching uses the principle of the operations like insertion, 

deletion, and substitution at the word level.  

 

 

  



25 

4. Other distances    

4.1 Multidimensional distances   

 A space-filling curve is a way of mapping a discrete multidimensional space into one dimensional 

space. It imposes a linear order for points in multidimensional space [7].  Hilbert curve [15] is a 

useful curve because it gives a mapping between 1D and 2D space that preserves locality well [8].                     

In O-Mopsi, user movement provides trajectory that fills the space but the difference is that space-

filling curves fill every single position in space but O-Mopsi user only the part needed to find the 

goals. When reaching each goal, the game plays a sound that is represented by a frequency. The 

closer the player is to the next goal, the higher the frequency value played as shown in Figure 36. 

Examples of space-filling curves are shown in Figures 37 and 38. 

   
Figure 36. Distance and sound frequency used in O-Mopsi [5] 

   
 

Figure37.  Hilbert curve for covering the entire planet in 2 D projection.      

       

   



26 

   
 

Figure 38. world map in Z-order curve and other curves [16]   

 

4.2  Pairwise distance (Alignment)  

Pairwise distance measured between each pair of variables leaves out some of the information in 

the data matrix M, reducing it to a simple table of pairwise distances. However, it seems that in 

many cases most of the evolutionary information is conveyed in these distances [17].  

 

4.2.1  Dynamic time wraping    
 

Dynamic time warping (DTW) is used for measuring the similarity between two temporal 

sequences, which may vary in speed. For instance, similarities in Radu's activities could be detected 

using DTW based on the shape of different routes even if there were accelerations and decelerations 

during the process of observation.  

 

We consider the foremost interesting activities of the user Radu that is mostly walking, cycling, 

and skiing, see Figure 39. The activities show the speed and distance traveled by the user Radu. 

There are several patterns. On the highest right, there is a long-distance cycling cluster with varying 

speeds. The shorter distance (40 km) corresponds to typical training and the longer (60–70 km) 

corresponds to long runs, which appear less often. The skiing cluster contains many observations 

with about 15–20 km long including few spurious long-distance ones. 

  



27 

The bottom clusters are commuting  by walking and bicycle. Let us now consider two events: one 

is 55-km cycling at 23 km/h, and another 35 km skiing at 14 km/h. Moving activities of user Radu 

plotted as a function of the typical speed and total distance (left). His most common activities are 

skiing, bicycle, and walking, which is emphasized using borders. Two forthcoming events are then 

shown as red and blue circles with their target speed and distance (right) from Radu’s activity data. 

The forthcoming cycling event is suitable for Radu, but the skiing event is not because its speed is 

higher than what Radu is capable of [18]. 

 

   
                  

Figure 39. Radu’s Activities [18]  

 

  

  
                  

Figure 40. Comparison between Euclidean distance and DTW [19]. 

  



28 

 

4.2.2  Matrix distance and construction of the warping path 

The distance matrix is a square matrix (two-dimensional array) containing the distances, taken 

pairwise, between the elements of a set, which in this case contains the distances travelled by Radu 

and his speed. Depending on the application, the distance used to define this matrix may or may not 

be a metric. We construct the warping path using backtracking and greedy search is constructed to 

minimize the distance between the speed and length. We start from the intersection of the biggest 

value of the distance travelled by Radu and his speed. After, we select the minimum distance from 

the three values adjacent of distances. We consider, the pair of sequences are distance and speed 

for finding the warping path selected by green color on the matrix described in Figure 41.  

This is the principle of Dynamic Time Warping (DTW) that finds a mapping between positions and 

minimizes the total distance. Using, the equation of DTW that defined recursively by:                                                                                                 

 

 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑋= <𝑋(1), 𝑋,(2) 𝑋(3), … , 𝑋(𝑖)> and Speed 𝑆=<𝑆(1), 𝑆(2), 𝑆(3), … , 𝑆(𝑗)> .   

 

80  320  285  250  220  210  165  

70  245  215  185  160  155  115  

60  180  155  130  110  140  75  

50  125  105  85  70  55  45  

40  80   65  50  40  30  25  

30  45  35  25  20  15  15  

20  20  15  10  10  15  25  

10  5  5  10  20  35  55  

0  5  10  15  20  25  30  

  
                                               Figure 41. Matrix distance with the wraping path. 

  

  



29 

4.3 Multiple Tours Alignment and Tours similarity 

Multiple tours alignment is basically an alignment of more than 2 tours, and finding the similarity 

among the multiple tours. As the model of multiple tour alignment we will zdwconsider it computes 

the pairwise distances in first after it uses order-based evolutionary algorithm [20].  

The objective of single traveling salesman is to find the shortest path that visits all cities (26 cities) 

in a partial map of Finland map showed in Figure 42, given a collection of cities and the cost of 

travel between each pair. This problem has the following restrictions. The salesman must visit each 

city one time and must return to the starting city.  We consider a tour that connects all the cities.  

Given a set of k Tours T = {𝑡1 ,..., 𝑡𝑘} represents a salesman tour, and a multiple tour alignment             

A = {𝑎1 ,..., 𝑎𝑘} consists in inserting gaps “-” into the original strings of S to make them all the same 

length. We define the score of a pair denoted as score (𝑎𝑖[m], 𝑎𝑗[m]) where 𝑎𝑖 and 𝑎𝑗 be a pair of 

tours from a multiple tour alignment A and defined for each column m as: 

 

  

We consider, C𝑥 usually takes the following values: C𝑚𝑎𝑡𝑐ℎ=+5,  C𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ= -1, C𝑔𝑎𝑝𝑝𝑒𝑑= -2  , C𝑛𝑢𝑙𝑙=0. 

The total score of the pair 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑖, 𝑎𝑗) is the cumulative score for all columns: 

                 

To model the MTA problem such as a TSP problem, a pair of tours (𝑡𝑖, 𝑡𝑗) is seen as two cities                    

(𝑐𝑖, 𝑐𝑗) and the distance between each pair of cities is associated to the score of the aligned pair                 

(𝑎𝑖, 𝑎𝑗). Scores for all aligned pairs form a triangular matrix T = {𝑡𝑖𝑗} and using T, a distance matrix 

D = {𝑑𝑖𝑗}, with 𝑑𝑖𝑗 > 0,  i, j where tmax is the maximum score in matrix T, is computed by:  

𝑑𝑖𝑗 = tmax − 𝑡𝑖𝑗 + 1 

 



30 

  

   Figure 42. Graph on a Finland Map [25]      

 All pairs (𝑡𝑖 ,𝑡𝑗) are aligned using the Needleman-Wunsch algorithm and build the matrix T using 

the scores. In the considered case, we will take two tours of salesman as shown in Figure 43. The 

first sequence (tour) represented by green color and the second sequence represented by yellow 

color in a partial map of Finland. The tours are of the same length so we will not need to use gap 

operation for computing the score Matrix described in Figure 44.  

Needleman–Wunsch algorithm is used to find the best alignment of a two salesman tours using the 

Substitution matrix. We fill the substitution matrix using the matching, mismatching, and gapping 

coefficients and the value of the next cell C(i,j) by comparing the values of C(i-1,j-1), C (i-1,j) and 

C(i,j-1) and selecting the maximum value of those cell and copied for C(i,j) as shown in Figure 44. 

 



31 

  

Figure 43. Two tours of a salesman [25] 

 

  

Figure 44. Substitution matrix 

   

If the tour i matches with tour j then:  

                          C(i,j)=Max[(C(i,j-1), C(i-1,j))+ 𝑐𝑔𝑎𝑝𝑝𝑒𝑑 ,C(i-1,j-1)+𝑐𝑚𝑎𝑡𝑐ℎ]  

If the  tour i mismatches with tour j, then:  

                           C(i,j)=Max [(C(i,j-1), C(i-1,j))+ 𝑐𝑔𝑎𝑝𝑝𝑒𝑑,C(i-1,j-1)+ 𝑐𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ]  

The substitution matrix 𝑡𝑖𝑗 is used for tour similarities showed a different scores values for 

Needleman Wunch algorithm based on the global alignments and smith Waterman based on local 

alignments [20]  

 



32 

   Rovaniemi  kemi  Oulu  kuusamo  kajaani  Kuopio  Joensuu   Lappeenranta  Kouvola  Hamina  kotka  Helsinki  Salo  Turku  Rauma  Pori  Vaasa  Seinäjoki  Kokkola  Jyväskylä  Tampere  Hämeenlinna  Hyvinkää  Lahti  Mikkeli  Varkaus  

  0  -2  -4  -6  -8  -10  -12  -14  -16  -18  -20  -22  -24  -26  -28  -30  -32  -34  -36  -38  -40  -42  -44  -46  -48  -50  -52  

Rovaniemi  -2  5  3  1  -1  -3  -5  -7  -9  -11  -13  -15  -17  -19  -21  -23  -25  -27  -29  -31  -33  -35  -37  -39  -41  -43  -45  

kemi  -4  3  4  2  0  -2  -4  -6  -8  -10  -12  -14  -16  -18  -20  -22  -24  -26  -28  -30  -32  -34  -36  -38  -40  -42  -44  

Oulu  -6  1  2  9  7  5  3  1  -1  -3  -5  -7  -9  -11  -13  -15  -17  -19  -21  -23  -25  -27  -29  -31  -33  -35  -37  

kuusamo  -8  -1  0  7  14  12  10  8  6  4  2  0  -2  -4  -6  -8  -10  -12  -14  -16  -18  -20  -22  -24  -26  -28  -30  

kaajani  -10  -3  -2  5  12  19  17  15  13  11  9  7  5  3  1  -1  -3  -5  -7  -9  -11  -13  -15  -17  -19  -21  -23  

Kuopio  -12  -5  -4  3  10  17  18  16  14  12  10  8  6  4  2  0  -2  -4  -6  -8  -10  -12  -14  -16  -18  -20  -22  

Kokkola  -14  -7  -6  1  8  15  16  17  15  13  11  9  7  5  3  1  -1  -3  -5  -1  -3  -5  -7  -9  -11  -13  -15  

Vaasa  -16  -5  -3  -1  6  13  14  15  16  14  12  10  8  6  4  2  0  4  2  0  -2  -4  -6  -8  -10  -12  -14  

Seinäjoki  -18  -7  -5  -3  4  11  12  13  14  15  13  11  9  7  5  3  1  -1  9  7  5  3  1  -1  -3  -5  -7  

Jvyäskylä  -20  -9  -11  -13  2  9  10  11  12  13  11  9  10  8  6  4  2  0  -2  -4  11  9  7  5  3  1  -1  

Varkaus  -22  -7  -9  -11  0  7  8  9  10  11  12  10  8  9  7  5  3  1  -1  -3  -5  -7  -9  -11  -13  -15  6  

Joensuu  -24  -9  -11  -13  -2  5  6  13  11  9  7  5  3  1  -1  -3  -5  -7  -9  -11  -13  -15  -17  -19  -21  -23  -25  

Lappeeranta  -26  -7  -9  -11  -4  3  4  5  18  16  14  12  10  8  6  4  2  0  -2  -4  -6  -8  -10  -12  -14  -16  -18  

Mikkeli  -28  -5  -7  -9  -2  1  2  3  4  5  6  7  9  9  7  5  3  1  -1  0  -2  -4  -6  -8  -10  -9  -7  

Lahti  -30  -3  -9  -8  -4      -1       0       1            2       3        4      5       7       8     8  6  4  2  0  -2  -2  -4  -6  -8  -3  -2  -4  

kouvola  -32  -5  -4  -6  -6  -3  -2  -1  0  7  8  9  10  12  13  13  11  9  7  5  3  1  -1  -3  -5  -7  -9  

Hamina  -34  -3  -5  -5  -7  -5  -4  -3  -2  5  12  13  14  15  17  18  18  16  14  12  10  8  6  4  2  0  -2  

kotka  -36  -1  -3  -5  -7  -7  -6  -5  -4  3  10  17  15  13  14  16  17  17  15  13  11  9  7  5  3  1  -1  

Helsinki  -38  -3  -2  -1  -3  -5  -7  -7  -6  1  8  15  22  20  18  16  15  15  16  14  12  10  8  6  4  2  0  

Salo  -40  -5  -4  -3  -2  -4  -6  -8  -8  -1  6  13  19  28  26  24  22  20  18  16  14  12  10  8  6  4  2  

Turku  -42  -7  -6  -5  -4  -3  -5  -2  0  -3  4  11  17  26  33  31  29  27  25  23  21  19  17  15  13  11  9  

Rauma  -44  -9  -8  -7  -6  -1  -3  -4  -2  -1  2  9  15  24  31  38  36  34  32  30  28  26  24  22  20  18  16  

Pori  -46  -11  -10  -9  -8  -3  -2  -4  -4  -3  0  7  13  22  29  36  43  41  39  37  35  33  31  29  27  25  23  

Tampere  -48  -13  -12  -11  -10  -5  -4  -3  -5  -5  -2  5  11  20  27  34  41  42  40  38  36  40  29  30  28  26  24  

Hämeenlinna  -50  -15  -14  -13  -12  -7  -6  -5  -4  -6  -8  3  9  18  25  32  39  40  41  39  37  35  45  43  41  39  37  

Hyvinkää  -52  -13  -16  -15  -14  -9  -8  -7  -6  -8  -10  1  7  16  23  30  37  38  39  40  38  36  43  50  48  46  44  

    

            Figure 45. Substitution matrix for travelling salesman problem using Needleman Wunsch Algorithm  



33 

   Rovaniemi  kemi  Oulu  kuusamo  kajaani  Kuopio  Joensuu   Lappeenranta  Kouvola  Hamina  kotka  Helsinki  Salo  Turku  Rauma  Pori  Vaasa  Seinäjoki  Kokkola  Jyväskylä  Tampere  Hämeenlinna  Hyvinkää  Lahti  Mikkeli  Varkaus  

      0  0  0  0  0  0  0  0         0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

Rovaniemi      0        5   3  1       0  0  0        0           0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0      0  0  0  

kemi  0        3   10  8  6     4  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0      0  0  0      0  0  0  

Oulu  0  1  8  15  13  11  9  7  5  3  1  0  0  0  0  0  0  0  0  0  0  0          0        0  0         0  0  

kuusamo      0        0  6  13      20     18  16  14  12  10  8      6  4  2  0  0     0      0  0  0  0  0  0        0       0  0  0  

kaajani  0        0  4  11  18      25  23  21  19  17  15  13      11         9  7  5     3  1  0  0  0  0           0  0  0  0  0  

Kuopio      0        0  2  9  16    23      30  28           26      24  22  20  18       16  14  12    10  8  6  4  2  0  0  0      0  0        0  

Kokkola  0  0  0  7  14     21      28     29           27       25  24  22  20  18  16  14  12     10  8  6  4  2  0  0  0  0        0  

Vaasa      0         0  0  5  12     19  26  27  28  26  24  23  21  19  17  15  13  17  15  13  11  9           7  5  3  1  0  

Seinäjoki  0  0    0  3  10  17      24     25  26  27  25  23  22  20  18  16   14  15         22  20       18      16  14  12    10  8  6  

Jvyäskylä  0  0  0  1  8  15  22     23  24      25      26  24      22  20  18  16  14  13  20  21  25  23         21  19    17  15      13  

Varkaus      0  0  0  0  6  13  20  21  22  23      24  22  23  21  19  17  15  13  18  19       23  24  22  20  18  16      20  

Joensuu      0         0  0  0  4  11  18  25  23  21  22  23  21  22  20  18  16    14  16  17  21  22  20  21  19  17  18  

Lappeeranta  0  0  0  0  2  9  16  23  30  28      26  24      22  20  21  19  17  15  14  15  19  20  21  19  20  18  16  

Mikkeli  0        0  0    0  0  7  14  21  28  29  27  25  23  21  19  20  18  16  14  13  17  18  19  20  18  25  23  

Lahti      0  0   0    0  0      5       12      19            26       27       28      26       24       22     20  18    19  17  15  13       15  16  17        18  25  23  21  

kouvola      0  0  0  0  0  3  10  17     24  31  29  27  25  23     21      19    17  18  16  14  12  14  15  16  23  24      22  

Hamina      0  0    0     0  0       1  8  15     22  29      36  34  32  30  28  26    24     22  20         18       16  14  13  14  21  22  23  

kotka  0  0  0  0       0  0  6  13    20  27  34  41      39        37     35  33    31  29         27     25  23  21  19  17  15  13  11  

Helsinki  0  0     0  0  0  0  4  11            18  25      32  39  46  44    42  40    38  36  34    32        30  28  26  24  22  20  18  

Salo  0  0  0  0  0  0  2        9            16  23  30    37       44  51    49  47  45  43  41         39  37  35         33  31  29  27  25  

Turku  0  0    0  0  0  0  0  7     14      21  28    35  42  49  56      54  52  50  48    46  44      42  40  38     36       34  32  

Rauma  0  0  0  0  0  0  0  5    12  19  26  33      40      47    54      61   59  57  55         53        51      49          47  45  43       41      39  

Pori  0  0  0  0  0  0  0  3    10  17  24  31      39      45  52  59   66  64         62         60        58  56           54  52  50       48  46  

Tampere  0  0  0  0  0  0  0  1  8  15  22  29  37      43     50  57  64    62  60         58  59      63      61  59  57  55  53  

Hämeenlinna  0  0  0  0  0  0  0  0  6  13  20  27  35  41     48      55  62   63         61         59       57  61           68        66    64        62  60  

Hyvinkää  0  0  0  0        0       0  0  0  4       11  18     25  33        39      46  53  60   61         62    60  58  59      66  73  71        69  67  

 

Figure 46. Substitution matrix for travelling salesman problem using Smith and waterman Algorithm



34 

 

From Figure 45, we conclude that the scores value tmax=44 corresponds to the intersection of the 

last cell of the tour i with the last cell tour j using Needleman Wunsch algorithm. In Needleman 

Wunsch algorithm the first row and column are subject to gap penalty and the score can be negative 

and we consider the traceback from the beginning of the cell at the lower right of the matrix to the 

ending at the top left of the cell 

 

Needleman Wunsch algorithm also uses the concept of the global alignment between the two tours 

travelled by the salesman and finds the similarity between the two tours. However, in Smith 

Waterman algorithm the value 0 is set for the first column and row and as shown in (Equation 1) 

during the initialization. The negative score is set to 0 and we identify the traceback using from the 

beginning with the highest score and ending when 0 is encountered.  

 

From Figure 46, we conclude that the scores value tmax =73 corresponds to the highest score in Smith 

Waterman algorithm. By following the traceback we found that there are 5 similar local alignments. 

We will consider only two local alignment:    

 

- First local alignment   

           

 
           

- Second local alignment   

  

 
 

Figure 47. local alignments similarities 

 

Another algorithm called BLAST (basic local alignment search tool) is used for finding how 

similarity the salesman tours have by searching and comparing with a query tour with those in the 

databases [22]. For finding the best query tour we will try to discover the longest common way 

travelled by the salesman during the tours.  

   

Joensuu   Lappeenranta   kouvola   

Joensuu   Varkaus   Jyväskylä   

Joensuu   Lappeenranta   Kouvola   

kokkola   Vaasa   Seinäjoki   



35 

 

While BLAST is faster than any Smith-Waterman implementation for most cases, it cannot 

"guarantee the optimal alignments of the query and database sequences" as the Smith-Waterman 

algorithm does according to [22]. The optimality of Smith-Waterman also "ensured the best 

performance on accuracy and the most precise results" at the expense of time and computer power 

[22]. 

 

We will try to find the longest common tour followed by salesman during his tours for finding a 

suitable query tour that we will compare it with the other tours. The both tours are matching in the 

cities: 

   

                                  Rovaniemi -Kemi- Oulu-Kuusamo- Kajaani-Kuopio  

 

We symbolize to the matching cities of sub tour by k-mers algorithm [22]. It grows exponentially 

with the value of k [22]. The idea of the algorithm is to find the salesman tours similarity by looking 

for database similarity and searching between the tours by scanning the most matching sub tours 

[26]. The algorithm pseudo code is below.  

1: PROCEDURE k-mers(tour,integer k)is 

2: L ← length(tour) 

3:     arr ← new array of L-k+1 

4://iterate over the number of k-mers in tour  

5://storing the nth k-mer in the output array for 

6: n ← 0 to L-K+1 exclusive do  

  7: arr[n] ← sub tour of tour from city n inclusive to city n + k 

     exclusive 

    8: Return arr; 

  9://LOCAL SEARCH  

  10:GENERATE QUERY TOUR 

  11:REPEAT  

  12:GENERATE A SET OF NEW QUERY TOURS 

  13:EVALUATE THE NEW QUERY TOURS  

  14:SELECT THE BEST QUERY TOUR  

  15:UNTIL finding the shortest path  

                         

The most known operators for an order-based evolutionary algorithm are the following:  



36 

 

 Let us consider a set of the tours travelled by salesman where n represents the total number of 

salesman tours Tt = {ti}𝑛𝑖=1 = {ti(1), ... , ti(n)}. We consider t1 the first tour travelled by a salesman. 

We consider many operations as selection, crossover, mutation for finding the best order between 

the cities visited by the salesman. 

 

  

Figure 48.  Order-based evolutionary algorithm for travelling salesman problem 

  

The representation of a TSP problem is straightforwardly represented by an order-based 

evolutionary algorithm. It must be noted the absence of distance between the starting and departure 

city Ci(n) Ci(1) since the alignment of first and last tours is not required.  

  
Figure 49.   Crossover is performed based on single dividing point. 

   

The selection and other evolutionary operators use to find the best tour found and where the elitist 

approach using zigzag scanning among the best solutions for permuting the pairs in cross over 

between cities [26] .  

1: Select next pair(Ci,Cj): 

2: REPEAT 

3:   IF (Ci+Cj)MOD=2 

4:   THEN I max(1,i-1);j j+1; 

5:   ELSE THEN j max(1,j-1);i i+1; 

6: UNTIL Ci≠Cj 

7: RETURN (Ci+Cj);      

 

 



37 

 

 

                         

                                             Figure 50. Zigzag scanning  between the cities [26] 

 

The transformation probabilities  are called log-odds scores. Here Mi,j is the probability that the first 

tour ti transforms into the second tour tj and Pi and Pj are the frequencies of the first and second 

tour. The base of the logarithm is not important, and the same substitution matrix is often expressed 

in different bases. For converting the probabilities to the expectation value the following 

relationship is used in the Equation 2 [22]:  

 
  

                                          E-value  m.n. 𝑃  m.n. 2−𝑠′                                        Equation 2 
 

In the expectation value between the tour similarity m represents the query tour length, n the 

database size, P the probability and S´ the score bit. S' is derived from the raw alignment score 

defined in [22]. We consider S is a raw scoring matrix of alignment. Parametes λ and k depend on 

the size of tours visited by the salesman. So, the expectation value or expect value between tours 

similarity is more significant in lower values. 

 
 

  

 

 

 

 

 

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Score_(statistics)
https://en.wikipedia.org/wiki/Score_(statistics)
https://www.ncbi.nlm.nih.gov/books/NBK62051/def-item/alignment/
https://www.ncbi.nlm.nih.gov/books/NBK62051/def-item/alignment/
https://www.ncbi.nlm.nih.gov/books/NBK62051/def-item/alignment/


38 

 

Table 1. E-value interpolation [22]. 

 

E-values  Tours similarity  

E-values< 10−4  Significant homology  

10−4 < E-values < 10−2  Maybe not homologous  

10−2 < E-values < 1  Do not indicate good homology  

 

 

There is a clear relationship between tours similarity, number of local alignments and scores of 

Smith-Waterman Matrix. I noticed that a high tours similarity has the lowest numbers of local 

alignments, the minimum value of local alignments is 2 and is never less than 2 for not coinciding 

with global alignments as shown in Figure 51. 

  
  

Figure 51.  Local alignments property [22].  

  

  

  

  



39 

 

  

Figure 52.  . Tours similarity of different local alignments [10] 

 

 

  

  

  



40 

 

 

5.  Conclusion       
 

 The objective of the thesis was to study the different kinds of distances to classify several families 

for the different applications in MOPSI.  

  

We classified the kinds of families of distances to: geographical distances and sequential distances. 

This classification helps to solve different problems as the distances among words during the 

navigation between the web pages and text editing. Benefits of this classification showed clearly 

when we are studying travelling salesman problem by finding the approximation solution using 

different kinds of distances.  

  

Using the geographical distances, we found that the minimum spanning tree can be used to find a 

heuristic solution to TSP. In travelling salesman problem, Kruskal algorithm is modified to merge 

two spanning trees to increase the total cost of the spanning.  

  

As well, in linear or near-linear graphs it is better to use Manhattan distance than Euclidean distance 

and Chebyshev distance because the Lp spaces are function spaces defined using a natural 

generalization of the p-norm for finitedimensional vector spaces. It will therefore reduce the time 

complexity of the algorithm designed.   

  

Using the distance between sequence, or what we call in the thesis: multiple tours alignments we 

can find an approximative solution to the travelling salesman problem by order-based evolutionary 

algorithm. Based on the operations like selection, crossover, and mutations, we can update the query 

tours of the salesman for finding an approximate of the shortest path that provides heuristics solution 

to the problem.  

  

For future work, I am interested to work about the programming of the evolutionary algorithm for 

finding an optimal tour for travelling of the salesman using O-MOPSI database. 

 

 

  



41 

 

References 
            

   

[1] Radu Mariescu-Istodor and Pasi Fränti. 2017. “Grid-Based Method for GPS Route Analysis for 

Retrieval”, ACM Trans. Spatial Algorithms Syst. 3, 3, Article 8 (September 2017), 28 pages.              

To link to this article: http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf (27.2.2020).   

   

[2]  Radu Mariescu-Istodor and Pasi Fränti, “CellNet: Inferring Road Networks from GPS 

Trajectories.” ACM Trans. Spatial Algorithms Syst. 4, 3, Article 8 (September 2018), 22 pages.   

To link to this article:  http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf (27.2.2020).   

[3]  Radu Mariescu-Istodor, Roxana Ungureanu and Pasi Fränti, “Real-time destination prediction 

for mobile users.” International Cartographic Association. 15th International Conference on 

Location Based Services, 11–13 November 2019  

To link to this article:        

          https://www.researchgate.net/publication/337068715_Realtime_destination_prediction_for_mobile_users         

                                                                                             (27.2.2020)   

[4] Radu Mariescu-Istodor and Pasi Fränti, “Gesture Input for GPS Route Search.” Springer 

International Publishing AG 2016 pp. 439–449, 2016.     

          To link to this article:   http://cs.uef.fi/sipu/pub/GestureSearch.pdf  (27.2.2020)   

    

[5] Pasi Fränti, Radu Mariescu-Istodor, and Lahari Sengupta,“O-Mopsi: Mobile orienteering game 

for sightseeing, exercising, and education.” ACM Trans. Multimedia Comput. Commun.  

Appl. 13, 4, Article 56 (August 2017), 25 pages 

To link to this article:   http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf  (27.2.2020)   

   

[6]  Najlah Gali , Radu Mariescu-Istodor, Damien Hostettler, Pasi Fränti, “Framework for syntactic 

string similarity measure.” Expert Systems with Applications Volume 129, 1 September 2019, 

Pages 169-185 

        To link to this article:  http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf  (27.2.2020)   

   

[7]  Sami Sieranoja and Pasi Fränti. 2018. “Constructing a High-Dimensional kNN-Graph Using a 

Z-Order Curve.” J. Exp. Algorithmics 23, 1, Article 1.9 (October 2018), 21 pages.                               

To link to this article:  http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf (27.2.2020)   

   

[8] Haneen Arafat Abu Alfeilat, Ahmad B.A. Hassanat, Omar Lasassmeh, Ahmad S. Tarawneh, 

Mahmoud Bashir Alhasanat, Hamzeh S. Eyal Salman, and V.B. Surya Prasath, ”Effects of 

Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review” 

Big Data Data science and training Vol. 7, No. 4, 221-248, Dec 2019    

           To link to this article:  http://doi.org/10.1089/big.2018.0175(27.2.2020)   

   

[9] Pasi Fränti, Radu Mariescu-Istodor and Karol Waga, ”Similarity of mobile users based on sparse 
location history” Int. Conf. Artificial Intelligence and Soft Computing (ICAISC) Zakopane, Poland, 
593-603, June 2018.  

To link to this article:  http://cs.uef.fi/sipu/pub/LocationSimilarity.pdf (27.2.2020)   

 

http://cs.uef.fi/sipu/pub/Gri
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
http://cs.uef.fi/sipu/pub/Grid-ACM-TSAS-2017.pdf
%20
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
http://cs.uef.fi/sipu/pub/CellNet-ACM-2018.pdf
https://www.researchgate.net/publication/337068715_Realtime_destination_prediction_for_mobile_user
https://www.researchgate.net/publication/337068715_Realtime_destination_prediction_for_mobile_users
https://www.researchgate.net/publication/337068715_Realtime_destination_prediction_for_mobile_users
http://cs.uef.fi/sipu/pub/GestureSearch.pdf
http://cs.uef.fi/sipu/pub/GestureSearch.pdf
http://cs.uef.fi/sipu/pub/GestureSearch.pdf
http://cs.uef.fi/sipu/pub/GestureSearch.pdf
%20
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
http://cs.uef.fi/sipu/pub/O-Mopsi-TOMM.pdf
https://www.sciencedirect.com/science/journal/09574174
https://www.sciencedirect.com/science/journal/09574174/129/supp/C
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/StringSimilarity-ESWA-2019.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
http://cs.uef.fi/sipu/pub/Z-order-KNN-2018.pdf
https://www.liebertpub.com/doi/full/10.1089/big.2018.0175
https://www.liebertpub.com/doi/full/10.1089/big.2018.0175
https://www.liebertpub.com/journal/big
https://www.liebertpub.com/toc/big/7/4
http://doi.org/10.1089/big.2018.0175
http://doi.org/10.1089/big.2018.0175
http://doi.org/10.1089/big.2018.0175
http://doi.org/10.1089/big.2018.0175
http://doi.org/10.1089/big.2018.0175
http://cs.uef.fi/sipu/pub/LocationSimilarity.pdf
http://cs.uef.fi/sipu/pub/LocationSimilarity.pdf
http://cs.uef.fi/sipu/pub/LocationSimilarity.pdf
http://cs.uef.fi/sipu/pub/LocationSimilarity.pdf


42 

 

[10]  Radu Mariescu-Istodor, Abu S.M. Sayem and Pasi Fränti, “Active event recommendation and 
attendance prediction”, Journal of Location Based Services, 13 (4), 201   To link to this 

article:http://cs.uef.fi/sipu/pub/ActivityEventRecommendation.pdf(27.2.2020)   

   

[11]  Lahari Sengupta and Pasi Fränti, “Predicting the difficulty of TSP instances using MST” IEEE 
International Conference on    Industrial Informatics , INDIN’19, 847-852, Helsinki 2019.                                                                                                                                                                                

            To link to this article: http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf (27.2.2020)   
 
[12] Michel-Marie Deza Elena Deza. “Dictionary of Distances” 1st Edition 3rd October 2006. 

.         

[13] Nikhil Baba , Big Data Zone “The Levenshtein Distance Algorithm”  2 nd October2018 · 

[14] Gregory V. Bard “Spelling-error tolerant, order-independent passphrases via the damerau-

levenshtein string-edit distance metric ACSW'07”: Proceedings of the fifth Australasian 

symposium on ACSW frontiers - Volume 68 January 2007 Pages 117–124                         

 To link to this article: https://dl.acm.org/doi/10.5555/1274531.1274545 (27.2.2020)   

   

[15] Eric Robertson and Derek Yeager, Geowave, “How Space Filling curves accelerate ingest and 

query of geospatial data”    

         To link to the Presentation: https://slideplayer.com/slide/9477723/ (27.2.2020)   

  

[16] Andrew Hulbert , “Scaling Spatio-Temporal Analytics with GeoMesa”.  

 To link to the course: 

 https://www.geomesa.org/assets/outreach/md_datascience_final.pdf (14.4.2020)   

  

[17] Peer Itsik, “pairwise distance” 01-01-2001  

URL:http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec08/node17.html#lec08: 

Fig:DistTree(14.4.2020)  

  

[18]  Radu Mariescu-Istodor, Abu S. M. Sayem & Pasi Fränti (2019): “Activity event recommendation 

and attendance prediction”, Journal of Location Based Services, Pages 293-319 Published 

online: 16 Sep 2019  

  To link to this article: https://doi.org/10.1080/17489725.2019.1660423 (14.4.2020)  

  

[19] C.W. Tan, G.I. Webb, F. Petitjean, P. Reichl (September 2017): “Machine learning approaches 

for tamping effectiveness prediction” Faculty of Information Technology and Institute of 

Railway Technology Monash University, Melbourne, Australia , Conference: 2017 International 

Heavy Haul Association Conference (IHHA) At: Cape Town, South Africa 

 

To link to this article: https://www.researchgate.net/figure/A-comparison-of-Euclideandistance-a-

with-  dynamic-time-warping-b-for-time-series_fig1_317662829 (14.4.2020)  

  

[20] July Diana Banda Tapia, Yván Jesús Túpac Valdivia, Juan Herbert Chuctaya Humari   

“Optimizing Multiple Sequence Alignments using Traveling Salesman Problem and Order-based 

Evolutionary Algorithms” School of Computer Science, San Pablo Catholic University and 

Cátedra Concytec en TICs, San Agustín National University Arequipa, Peru, Proceedings of CIBB 

2012 

To link to this article: http://rics.ucsp.edu.pe/publicaciones/20120008.pdf (14.4.2020)  

 

http://cs.uef.fi/sipu/pub/ActivityEventRecommendation.pdf
http://cs.uef.fi/sipu/pub/MSc_AbuSayem.pdf
http://cs.uef.fi/sipu/pub/MS
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
http://cs.uef.fi/sipu/pub/MST-knots-INDIN-2019.pdf%20(27.2.2020)
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dzone.com/users/3612207/nikhilbabar-1.html
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/proceedings/10.5555/1274531
https://dl.acm.org/doi/10.5555/1274531.1274545
https://dl.acm.org/doi/10.5555/1274531.127454
https://dl.acm.org/doi/10.5555/1274531.1274545
https://dl.acm.org/doi/10.5555/1274531.1274545
https://dl.acm.org/doi/10.5555/1274531.1274545
https://slideplayer.com/slide/9477723/
https://slideplayer.com/slide/9477723/
https://slideplayer.com/slide/9477723/
https://slideplayer.com/slide/9477723/
https://slideplayer.com/slide/9477723/
https://www.ccri.com/
https://www.ccri.com/
https://www.geomesa.org/assets/outreach/md_datascience_final.pdf
http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec08/node17.html#lec08:Fig:DistTree
http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec08/node17.html#lec08:Fig:DistTree
http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec08/node17.html#lec08:Fig:DistTree
http://www.cs.tau.ac.il/~rshamir/algmb/00/scribe00/html/lec08/node17.html#lec08:Fig:DistTree
https://doi.org/10.1080/17489725.2019.1660423
https://doi.org/10.1080/17489725.2019.1660423
https://doi.org/10.1080/17489725.2019.1660423
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
https://www.researchgate.net/figure/A-comparison-of-Euclidean-distance-a-with-%20%20dynamic-time-warping-b-for-time-series_fig1_317662829
http://rics.ucsp.edu.pe/publicaciones/20120008.pdf
http://rics.ucsp.edu.pe/publicaciones/20120008.pdf


43 

 

[21] Pinky Vincent “Global Alignment algorithm with example and application” Published on 

July17,2012  

            To link to the course page: https://www.slideshare.net/sheetalvincent/global-alignment            
                                                                                                                                                                (14.4.2020)  

 
[22] Tom Madden “BLAST help NCBI help manual” National Center for Biotechnology                                           

Information January 28, 2011  

           The book online :https://www.ncbi.nlm.nih.gov/books/NBK62051/(14.4.2020)  

  

[23] Free Apps For me, 15 Best Measure Distance Apps for Android & iOS Internet    

URL: https://freeappsforme.com/measure-distance-apps/ (14.4.2020)  

  

[24] Pasi Fränti, Henrik Nenonen “Modifying Kruskal algorithm to solve open loop TSP”, 9th 

Multidisciplinary International Conference on Scheduling: Theory and Applications, (MISTA 

2019) 12-15 December 2019 Ningbo, China   

            To link to this article:  http://cs.uef.fi/sipu/pub/Kruskal-TSP.pdf (14.4.2020)  

 

[25] Pasi Fränti, Dynamic programming ,Design and analysis of algorithm, 29.10.2018  

              To link to the course page:  http://cs.uef.fi/pages/franti/asa/notes.html (14.4.2020)  

  

[26] Pasi Fränti,  Genetic algorithms ,Advanced Topics in Algorithms ,  7.4.2016  

            To link to the course page:   http://cs.uef.fi/pages/franti/daa++/ (14.4.2020)  

 

[27]    Machine learning group, O-MOPSI data platform, university of eastern Finland, School of                 

           Computing Joensuu campus. 

          URL: http://cs.uef.fi/mopsi/ (27.4.2020)   

 
[28]   Victor Lavrenko and Nigel Goddard , Introductory Applied in Machine Learning course Nearest  

          Neighbour Methods ,School of Informatics, University of Edinburgh, United Kingdom 

          URL: http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/knn-2x2.pdf (11.5.2020)   

https://www.slideshare.net/sheetalvincent/global
https://www.slideshare.net/sheetalvincent/global-alignment
https://www.slideshare.net/sheetalvincent/global-alignment
https://www.ncbi.nlm.nih.gov/books/NBK62051/
https://www.ncbi.nlm.nih.gov/books/NBK62051/
https://www.ncbi.nlm.nih.gov/books/NBK62051/
https://freeappsforme.com/measure
https://freeappsforme.com/measure-distance-apps/
https://freeappsforme.com/measure-distance-apps/
https://freeappsforme.com/measure-distance-apps/
https://freeappsforme.com/measure-distance-apps/
https://freeappsforme.com/measure-distance-apps/
http://cs.uef.fi/sipu/pub/Kruskal-TSP.pdf
http://cs.uef.fi/sipu/pub/Kruskal-TSP.pdf
http://cs.uef.fi/sipu/pub/Kruskal-TSP.pdf
http://cs.uef.fi/sipu/pub/Kruskal-TSP.pdf
http://cs.uef.fi/sipu/pub/Kruskal-TSP.pdf
http://cs.uef.fi/pages/franti/asa/notes.html
http://cs.uef.fi/pages/franti/asa/notes.html
http://cs.uef.fi/pages/franti/asa/notes.html
http://cs.uef.fi/pages/franti/daa++/GeneticAlgorithmsClustering.ppt
http://cs.uef.fi/pages/franti/daa++/GeneticAlgorithmsClustering.ppt
http://cs.uef.fi/pages/franti/daa+l
http://cs.uef.fi/pages/franti/daa+l
http://cs.uef.fi/pages/franti/daa+l
http://cs.uef.fi/pages/franti/daa+l
Machine%20learning
http://cs.uef.fi/mopsi/
http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/knn-2x2.pdf

