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Abstract

The drug discovery pipeline is time consuming and expensive for both industry and academia.

Molecular docking, is an efficient method which succeeds when generating reasonable binding

poses. However, conventional scoring functions are limited when predicting binding energies or

classifying molecules as actives or inactives. To address the latter, herein three machine learning

models were implemented to predict the pKi of the ChEMBL benchmark for protein kinase A

catalytic subunit α (PKACA) and Aurora Kinase A (AURKA).The classification performance

of the models was assessed together with XP GlideScore from Maestro software. Multiple con-

formational states of PKACA and AURKA were selected as docking targets. In average for

all the studied conformations, the ML model predictions showed up to 17 and 35 % enhance-

ment in the ROC AUC (receiver operator characteristic, area under the curve) when compared

to the XP Scores reported for PKACA and AURKA, respectively. Also, it was found that ML

models built for the inhibitor bound conformations of both kinase targets reported an enhanced

regression and classification performance compared to the other states.



Introduction

Drug development has actively evolved throughout history. 60,000 years old fossil records show

the burial of a Neanderthal individual alongside herbs with medicinal properties (Lietava 1992).

These archaic records are not only of anthropological interest, as they pinpoint the first evidence

of herb usage for medicinal purposes. Traditional medicine originated independently in every

corner of the world. This is a consequence of the verbal transfer of knowledge gathered from

observations made after the consumption or appliance of substances derived from plant, animal

or mineral source.

Until the 19th century the pharmaceutical era is known as the age of botanicals and it is char-

acterized by the elaboration of drugs starting from plant extracts (Schmidt et al. 2008). Even

though most of these antique therapies could not be validated by the modern definition of drug,

this era provided the cornerstone for the understanding of the biological activities of substances

found in nature.

The development of novel analytical chemistry techniques during the Industrial Revolution

allowed the isolation and purification of plant secondary metabolites such as morphine by

Setürner and papaverine by Merck (Drews 2000). Moreover, coal tar, a byproduct of early indus-

trialization became of high interest for chemists as it contains a plethora of aromatic molecules

like aniline, benzene, naphthalene. Bayer company succeed developing the first synthetic an-

tipyretic Antifebrin (acetanilide) derived from aniline and afterward turned its focus on the hunt

for new molecules found in this industrial waste product (Jones 2011).

During late 19th century and the first half of the 20th century, advances in the fields of biochem-

istry and chemistry led to the sophistication of the drug discovery process. The introduction

of key concepts such as receptor by Langley and quantitative structure-property relationship

(QSPR) by Crum-Brown started the transition to a more rational drug discovery process (Fraser,

& Crum Brown 1868). This latter idea of QSPR was refined and adapted to the needs of medic-

inal chemists mainly due to the research of Corwin Hansch in early 60’s. Nowadays, QSAR

is part of the medicinal chemist toolbox for relating physical characteristics with biological

activities for a set of molecules with high structural similarity (Hansch et al. 1962).
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In 1981 the Fortune magazine cover highlighted “Next Industrial Revolution: Designing Drugs

by Computer at Merck” (Van Drie 2007). This was the beginning of the interest in computer

aided drug design (CADD). Parallel to this, the development of the first version of high through-

put screening (HTS), an automated robotic system that tests a large number of compounds

against potential targets was developed.

Later, in 1982 the molecular docking technique was developed in order to geometrically fit a

ligand into the binding site of a protein aiming to simulate a protein-ligand complex (Kuntz

et al. 1982). Docking can be divided in two independent stages: the fitting of ligand in the

receptor binding site (pose generation) and the scoring of this pose based on the protein-ligand

interactions. Docking scoring is a mathematical function which aims to predict the binding

affinity of a small-molecule to its drug target. Existing scoring functions can be divided in four

classes: force field based, empirical, knowledge-based and machine-learning (ML) based. The

latter type performs better than classical scoring functions when predicting binding affinities

(H. Li et al. 2015; Ain et al. 2015; Kundu et al. 2018; Fergus et al. 2019).

Moreover, the docking technique is implemented in the drug discovery pipeline mainly due to

its capacity to virtually screen and rank up to millions of compounds from chemical libraries

at a relatively low computational cost. The previous is particularly useful at the moment of hit

finding, the process of identifying promising active molecules that can be further modified to

generate lead molecules (Enyedy, & Egan 2008).

In order to achieve high efficiency, molecular docking technique applies many simplifications

in its methodology. These restrictions involve mainly the neglection of protein and solvent

motions during the binding process together with a poor description of H-bonding. As a result of

these limitations, the docking method is computationally efficient but not optimal for accurately

predicting binding affinities (Pantsar, & Poso 2018).

On the contrary, free energy calculation methods (i.e. thermodynamic integration, free energy

perturbations) provide a more accurate but less efficient prediction towards binding energies

of ligands (Reddy et al. 2014). However, due to their computational expense, as it is needed

to perform short molecular dynamic simulations, its applicability is greatly reduced. Thus,

nowadays there is an existing need for developing efficient methods that can outperform docking
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scoring when predicting drug candidates.

Last year 2019, Nature journal published an article titled "Rethinking drug design in the artifi-

cial intelligence era" concluding the positive boost that new technologies will have in the drug

discovery process. For example, ML is a branch of artificial intelligence where a computer

could be programmed to predict physical and biological activities of a drug candidate (Schnei-

der et al. 2019). Nonetheless, there are still limitations to machine learning (ML) applications

in drug discovery as the experimental error present in public large data sets might affect the

utility of build models. Also, the lack of standardized measurements due to the heterogeneity

in the experimental procedures makes a challenge to develop high-input ML models with any

application (Shepperd et al. 2019).

In this thesis, the need for developing efficient methods for identifying promising drug can-

didates is addressed. Furthermore, the classification performance of docking scoring and its

sensitivity towards different protein conformation is evaluated. Mainly, as this technique is

considered unreliable for its ability to differentiate between active and inactive molecules, and

as its performance is sensitive to protein conformation (Enyedy, & Egan 2008; Pagadala et al.

2017). Hence, it is hypothesized that by using molecular and docking descriptors as inputs for

ML models, it could possible to achieve scoring functions with an increased diagnosis perfor-

mance when compared to commercial tools like extra precision (XP) Docking from Schrödinger

Maestro software.

The degree of separation (between active and decoys) of XP Glide Score and ML regression

models is assessed by calculating the area under the curve (AUC) of the receiver operating

characteristics (ROC) curve. This ROC curve plots the sensitivity and specificity performance

at several cut-off values obtained from the distribution of the given scores. The idea of ROC

curves is to identify the cut-off point where a desired sensitivity and specificity is achieved,

minimizing undesired failed predictions.

Interestingly, ROC curves were developed by British radar engineers during the World War II

to differentiate between enemy aircraft and signal noise derived from birds (Lusted 1971). The

diagnostic virtues of this plot are reflected by the diverse fields including psychology, meteorol-

ogy and radiology that include it as an analysis tool for different methodologies (Swets 1973).
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In summary, molecular docking techniques succeed when enriching huge data sets of chemi-

cals with high efficiency, successfully generating reasonable binding poses and identifying key

residues for ligand interaction (Pinzi, & Rastelli 2019). Nonetheless, several well-documented

reports point out the fact that docking methods fail to predict accurately binding energies of

ligands, generally due to poor scoring functions (Ramírez, & Caballero 2016; Ramírez, & Ca-

ballero 2018; Pagadala et al. 2017). The latter is addressed in this thesis, using ML regression

aiming to improve the docking scoring in the context of two relevant protein kinase targets.

Kinases are considered a major drug target as protein phosphorylation regulates vast aspects

of cell physiology and signalling (Cohen 2002). A correct balance between kinase and phos-

phatase activity is essential for a proper homeostasis. A considerable amount of types of cancers

(Cicenas et al. 2018), neurodegenerative (Tenreiro et al. 2014; Gong et al. 2006), autoimmune

and inflammatory diseases (Szilveszter et al. 2019) are due to an imbalance in the phosphory-

lation states, often due to deregulated kinase activity. In this thesis we focus on two kinases:

Protein kinase A catalytic subunit α (PKACA) and Aurora kinase A (AURKA).

αC-helix

R-spine

Activation
    loop

C-spine

Glycine 
rich loop

ATP

Figure 1: Kinase structural hallmarks
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Kinases structure can be summarized in two major lobes (N-terminal and C-terminal) connected

by a peptide hinge region where ATP binds. N-terminal lobe consists of five stranded β sheets,

the αC-helix and the glycine rich loop (GRL). C-terminal lobe is comprised principally by six

α-helices. After the hinge region, inside the C-terminal lobe is located the activation loop,

containing a phosphorylation site and the highly conserved DFG motif, responsible of coordi-

nating two magnesium ions and ATP’s γ phosphate needed for kinase substrate phosphorylation

(Modi, & Dunbrack 2019; Treiber, & Shah 2013; Zheng et al. 1993).

Moreover, the research team lead by Susan Taylor identified two conserved major structural fea-

tures common to the kinase family. These kinase hallmarks are known as the regulatory R-spine

and the catalytic C-spine containing hydrophobic residues of both major lobes from the kinases.

In the one hand, R-spine consists of four residues including two aliphatic residues in β4-strand

and αC-helix in the N-lobe, phenyalanine from the DFG motif and histidine residue from the

HRD motif in the C-lobe. On the other hand, the C-spine is completed after ATP binding, al-

lowing communication between the two major lobes enabling the closure of the binding pocket

(A. Kornev et al. 2008; Taylor, & A. P. Kornev 2011).

Protein kinase A (PKA), a member of AGC kinase family, was firstly studied by pioneer scien-

tists Edmond Fischer and Edwin Krebs for its role in glycogen metabolism. After reporting the

existence of a cAMP dependent protein kinase which triggers glycogen phosphorylase activ-

ity these researchers were awarded with Nobel Prize in Physiology in 1992 (Turnham, & J. D.

Scott 2016). Their studies concluded that PKA is involved in a plethora of signalling pathways

dependent upon cellular compartment elevating highly the interest towards this enzyme (Sim,

& J. Scott 1999; Carnegie et al. 2009).

Further research performed by Edwin Krebs and Susan Taylor was aimed to identify the sto-

ichiometric ratio and the proteins partners involved in the PKA complex. It was found that

PKA exists as a tetramer between a pair of inactive catalytic subunits (C) and a pair regulatory

subunits (R). Moreover, upon the increase cAMP concentration, two molecules of this second

messenger bind into each R subunit, leading to the release of the of the C subunits (Ringheim,

& Taylor 1990; Rannels, & Corbin 1980). Later on, it was understood that at the same time,

PKA is found docked to cellular organelles through A-kinase anchoring protein (AKAP).
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Once the C subunits are released from the PKACA holoenzyme complex, they can be activated

by phosphorylation in the activation loop by upstream PDK1. As a consequence of this acti-

vation and upon ATP binding, a conserved glutamate (Glu) within the αC-helix repositions to

form a salt bridge with the ceiling lysine (Lys) in the β3-strand from the N-lobe (Kannan et al.

2008). While this lysine coordinates the α and β phosphates from ATP, the Asp from the DFG

motifs aids in the γ phosphate transfer to downstream protein substrates (Johnson et al. 2001).

Figure 2: Inactive (top) and active (bottom) forms of PKACA (pink) (RCSB PDB 2012)

Interestingly, this phosphotransfer mechanism is regulated by a small 20 amino acid termostable

peptide (PKI) which induces the recruitment of PKACA to the nuclear export complex and in-

hibits protein substrates from binding into PKACA. Moreover, energy landscape studies lead by

Susan Taylor point out that PKI binding has a greater contribution towards complex stabilization

compared to ATP (Walker et al. 2019)). In the line of the previous, it is believed that similar

to the regulatory subunit of PKA, PKI is involved modulating the catalytic subunit effect by

influencing its cellular localization and disrupting is kinase activity (Dalton, & Dewey 2006).
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Regarding the second target of study, AURKA plays a major physiological role in the regulation

of centrosome maturation, spindle formation (Fu et al. 2007; Lukasiewicz, & Lingle 2009) and

aiding in the cellular migration process (Nikonova et al. 2013). Importantly, AURKA is the

center of an array of oncological studies as it is found overexpressed in a wide range of tumors

(Tsuchiya et al. 2020). Moreover, AURKA is activated by two means: phosphorylation in the

activation loop or microtubule associated TPX2 protein binding. This latter mechanism, induces

the localization of AURKA towards the spindle microtubules (Bayliss, Sardon, et al. 2003).

AURKA kinase, another member of the AGC family, has low enzymatic activity but upon

phoshorylation of Thr288 member of the activation loop, this catalysis rate is bolstered. More-

over, it is known that activation via TPX2 binding induces AURKA autophosphorylation and as

well protects from dephosphorylation by PP1 phosphatase. Studies point out that the effect of

these two activation steps can combine forming an abnormally active kinase (Bayliss, Burgess,

et al. 2017).

Furthermore, by comparing many unbound and bound structures of AURKA, several structural

differences can be found. For instance, CD532-bound AURKA (PDB ID: 4J8M) exhibits the ac-

tivation loop in the inactive conformation consistent with the fact that the urea moiety of CD532

ligand induces the inactive "in" conformation of the DFG motif for AURKA. Additionally, in-

hibitor bound crystal structures display structural rearrangements when compared to unbound

structures. These structural changes include the tilting of the N-lobe in reference to C-lobe, the

increase of glycine rich loop (GRL) angle and an outward motion of the αC-helix relative to the

ATP binding site (Gustafson et al. 2014).

There is a growing need to provide the pharmaceutical industry and academia with improved

computational methods to accelerate the drug discovery pipeline. Popular tools like molecular

docking are computationally efficient but its scoring are unable to accurately predict binding

affinities for drug candidates. Here, the previous is addressed by developing a ML based scor-

ing function, specifically evaluating the classification performance (between active and inactive

molecules) via ROC curves and comparing it to XP Glide Score from Schrödinger software.

Also, the regression performance of the training and test procedures part of the ML are assessed

with typical metrics such as R2 and RMSE.
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Materials and Methods

Compilation of the protein/ligand sets

Crystal structures from representative biological conformations for PKACA and AURKA were

retrieved from the RCSB PDB (Berman 2000) with the following IDs: (PKACA: 1J3H, 1BKX,

4UJB, 3L9L, 3FJQ, 1YDR; AURKA: 4J8N, 4JBQ, 1OL5, 1OL7, 4C3P, 4C3R and 3H10).

Known ligand and decoy sets for each target were downloaded from ChEMBL database (Bento

et al. 2013), filtering was based on the respective Uniprot entry code for each target and only

ligands with a stored Ki value were selected. Both protein and ligand sets were downloaded on

December 2019.

Ligand preparation

We initially obtained the ligands as a list of SMILES (simplified molecular-input line-entry

system) which consist of a one-dimensional array of strings without any 3D topology informa-

tion for a molecule. We processed the SMILES using open-source version of OpenBabel 3.0.0

(O’Boyle et al. 2011) having as an output 2D structures in .sdf format. As a final step, Lig-

prep from Schrödinger 2019-2 release was configured to generate possible 3D tautomers and

protomers at pH 7.0 ± 2.0 using OPLS3e force field and Epik. For each ligand the most likely

conformer was chosen.

Protein preparation

The chosen PDB crystal structures were processed with the Protein Preparation Wizard (Sas-

try et al. 2013) from the Schrödinger 2019-2 release. Bond orders were adjusted for both

co-crystallized ligands and amino acid residues using CCD database. Hydrogen atoms were

added followed by the deletion of water molecules beyond 5 Å of any het group including ions.

Protonation states for co-crystallized ligands, co-factors and metals was performed with Epik

at pH 7.0 ± 2.0. Sampling of hydrogen-bond network was carried out with PROPKA at pH

7.0. Finally, in order to refine the geometry of the protein models they were subjected to a re-

strained minimization using OPLS3e force field with a stopping threshold set to a convergence
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of heavy atoms of 0.3 Å between successive iterations. All water molecules, ions and metals

were deleted.

Receptor grid generation

Grid generation for docking was carried on with the receptor grid generation tool from Glide

package using Schrödinger 2019-2 release. For the grid generation, OPLS3e force field was

chosen, Van der Waals radius scaling default settings were maintained. For holo-structures we

defined the receptor box by picking the co-crystallized ligand and for apo structures annotated

residues (5 Å from the co-crystalized ligand) from holo structures were used.

Molecular docking

Extra Precision (XP) docking (Friesner, Murphy, et al. 2006) was performed with Glide package

(Friesner, Banks, et al. 2004) using Schrödinger 2019-2 release. Default settings for scaling of

the van der Waals radii of non-polar ligand moieties were kept. Expanded sampling was chosen

for the selection of initial poses prior to Glide screening and the number of poses per ligand

to include for post-docking minimization was set to 20. Docking was performed with OPLS3e

force field writing per-residue interaction scores for amino acids 12 Å away of the grid centre.

Building the machine learning models

The ML models used molecular descriptors obtained with the chemoinformatics toolkit RDKit

(https://www.rdkit.org/, accessed March 2020), ChEMBL (Gaulton et al. 2011) and docking

features from Maestro software. Thus, the descriptors used herein are based on topological,

physical and chemical properties of the data set molecules and the predicted ligand-protein

complex by docking XP.

We implemented random forest regression and ridge regression models part of the Python ML

library scikit-learn (Pedregosa et al. 2011), also a neural network model built with TensorFlow

library (Abadi et al. 2016). The models were trained to predict the pKi of each ligand estimated

as the -log10Ki. Ligands were classified as active using a threshold of 1 µM based on their
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inhibition (Ki) values, molecules not satisfying this threshold were classified as decoys. Strat-

ified training and test set splitting was performed to achieve same proportion of inhibitors and

decoys in training and testing sets.

Unbiased estimates of the regression performance of the models were gathered by using k-

fold cross validation (k=10), were at each iteration one fold is used for validation while the

remaining k-1 are used for training. Testing was performed on 20% of the data set. The previous

process was repeated five times in order to generate a distribution of the regression metrics. The

predictions of the models were evaluated with (R2 and RMSE), maximum enrichment factor

and their diagnostic performance was assessed by analysis of receiver operator characteristic

(ROC) curves.
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Figure 3: Master Thesis pipeline

Illustration of the pipeline implemented for the development of the ML models. A) Target selection,
followed by PDB and ligand retrieval with their preparation steps prior to docking. B) Molecular docking
using XP, subsequently the raw data is created by putting together the XP descriptors, interaction scores
and the molecular descriptors obtained from ChEMBL and RDKit. The features are scaled, ligands are
labeled and data is shuffled. C) The processed data is split in a stratified fashion so the same proportion
of ligands and decoys is in training and test sets. Hyperparameter tuning and feature selection is done
prior to gathering unbiased estimates of the performance with k-fold = 10. D) ML models are assessed
by its regression, classification and database enrichment.
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Results

Each ML model had as an input the ChEMBL and RDKit molecular features, the estimated XP

descriptors and the per residue interaction scores for each ligand. This data was gathered for

each docking at a specific conformation of either PKACA or AURKA. After splitting the data

into training and testing sets, unbiased estimates of the regression performance were gathered

with k-fold (k=10) in order to evaluate the performance of the model against unseen data. Sub-

sequently, models were tested against 20% of the data set. R2 and RMSE were the selected

metrics for evaluating the regression performance and the diagnostic capability of the models

was evaluated by ROC curves.

PKA-Cα and AURKA protein structure evaluation

Protein structures reflecting the ligand binding process or different physiological states were

chosen for docking. Most protein kinases depict structural rearrangement upon substrate or in-

hibitor binding. To tackle this issue, we included bound and unbound kinase structures depicting

evident differences at kinase structural hallmarks such as the G-rich loop (GRL), activation loop,

DFG motif and αC-helix. For the chosen structures, G-rich loop and activation loop hallmarks

are responsible for main structural dissimilarities in the active site of the chosen models.

Angle measurements and crystal structure features were gathered from KLIFS database (Koois-

tra et al. 2016) (Table 1). PKACA structures differ in the opening angle of the G-rich loop

and are generally found at the conformationally active “DFG-in” state. AURKA models main

differences relay on different phosphorylation states and the binding of TPX2 factor for spindle

assembly (Zorba et al. 2014).

12



Table 1: Summary of crystal structure features

Regression and diagnostic performance of PKACA based ML models

Three representative stages of PKACA catalytic cycle, open (1J3H), intermediate (1BKX) and

closed (4UJB, 3L9L, 1YDR, 3FJQ) conformations were used for molecular docking. 1157

ligands withdrawn from ChEMBL database were docked using extra precision (XP) docking to

the conformations of interest.

Figures 4 and 5 reflect the performance of the ML models during five repetitions of the training

and testing processes. The violin plots depict the probability density of the gathered unbiased

estimates of the regression metrics in both training and test sets. It can be appreciated how

the distribution of the regression metric values for the testing process lies within the training

distribution values.
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Figure 4: R2 scores distribution for training and testing procedures for PKACA models

Figure 5: RMSE distributions for training and testing procedures for PKACA models
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The predictions obtained with random forest and neural network models achieve the highest

accuracy in terms of RMSE (Fig.4). Moreover, the neural network scores obtained the highest

explanation of the variance found in the target pKi values in terms of R2 (Fig. 5). Interestingly,

for all three built models, the inhibitor bound conformation (PDB 1YDR) achieved a better

performance compared to the other studied conformations.

Table 2: Sensitivity and Specificity for PKACA models

Table 2 reports the classification performance in terms of sensitivity and specificity at the chosen

threshold for each ML model including XP scoring. The threshold for each model was selected

using the Youden’s J statistic in order that the sum between the true positive rate (TPR) and 1

- false positive rate (FPR) was maximized. That is, for all thresholds, the maximum value for

TPR − 1 + FPR. Based on the selected thresholds, in average, for all the PKACA confor-

mations the predictions of the ML models achieve an improvement of 20 and 9% in terms of

sensitivity and specificity, compared to XP scoring.
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Table 3: AUC and Max enrichment factor for PKACA models

Table 3 reports the database enrichment performance of the scoring methods and the measure

of separability in conformity with the AUC values. ML scoring functions slightly outperform

XP scoring in regard to the enrichment of the docked ligands. This Emax does not represents the

enrichment of the whole data set, but rather the testing set. Moreover, the neural network model,

in average, is able to enhance up to 17% the classification of actives and decoys compared to

XP scoring.

Docking at apoenzyme with open conformation (1J3H)

The apoform of PKACA represents the first step in the dynamic catalytic cycle of this enzyme.

During this stage, the GRL angle and the distance between C-terminal and N-terminal lobes

is the maximum. It is believed the latter can enable the entrance of the substrate and solvent

to the active site (Akamine et al. 2003). Moreover, this unbound state conformation exhibits a

preformed substrate binding site inherent of ligand binding process.
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A B

Phe54

Ser53

Thr183

Val123

Figure 6: Example of docking poses and ROC curve for 1J3H model

A) Representative docking poses for active ligand CHEMBL509632 (yellow) and decoy

CHEMBL2007138 (pink) can be seen in Fig. 6. Active ligand makes a pi-pi interaction with

Phe54 (teal dashes) and decoy makes a halogen bond with Thr183. While the XP scores are

-3.99 and -6.63, neural network is able to establish a score where the both molecules rank in

accordance to their biological activity with 6.20 and 4.40, respectively. B) ROC curve for the

assessed scoring methods, each colored line represents a different scoring function. Moreover,

it can be seen how the ML models, specially the neural network and ridge regression, outper-

form XP docking in the classification of the data set. Numbers in the legend represent the AUC

for each model.

Docking at intermediate conformation (1BKX)

1BKX is the first crystal structure of the catalytic subunit of PKACA in absence of PKI binding.

Moreover, after comparing intermediate state bound to AMP (1BKX) and closed conformation

bound to ATP and PKI (3FJQ) an 8° decrease in the GRL angle is evidence of the conformational

changes undergone prior to catalysis of the transferable γ phosphate of ATP. This conformation

reflects the transitory intermediary stage in the catalytic cycle of PKACA between closed and

open conformations (Narayana et al. 1997).
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A B

Glu127

Glu121

Thr51

Figure 7: Example of docking poses and ROC curve for 1BKX model

A) Fig. 7 depicts the docking poses for active ligand CHEMBL1997846 (yellow) and decoy

CHEMBL1975208 (pink). The shown poses of both molecules share a hydrogen bond with

Thr51 from the GRL, besides additional hydrogen bonds with Glu121 and Glu127 for the decoy

and Thr183 for the active ligand (yellow dashes). While XP scores -4.88 for active and -8.04

for decoy, the neural network scores 6.84 for active and 4.95 for decoy. B) ROC curve for the

evaluated methods, each colored line represents a different scoring function. Numbers in the

legend represent the AUC for each model.
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Docking at closed conformation (4UJB, 3L9L, 1YDR and 3FJQ)

Closed conformations can be further divided into ATP-induced and inhibitor-induced closed

states. Interestingly, upon nucleotide binding into PKACA (3FJQ), the distance between the

major and minor lobe shrinks which can be appreciated as a decrease in the GRL angle, as

reported in Table 1. Also, as a result of the rearrangement of the lobes, the GRL buries into

the active site in order to relocate the non-transferable α and β phosphates (Lauber et al. 2016;

Terasawa et al. 2006).

Moreover, both ATP and inhibitor induced conformations are characterized by the binding of

the PKI peptide which acts as a pseudo-substrate that modulates PKACA catalytic activity,

prevents the access of substrates and induces the nuclear transport of the protein (Taylor, Ilouz,

et al. 2012).

A BA B

Glu121

Val123
Arg18

Figure 8: Example of docking poses and ROC curve for 1YDR model

A) Docking poses for active ligand CHEMBL1975927 (yellow) and decoy CHEMBL2007138

(pink) can be appreciated in Fig. 8. Both ligand poses share a hydrogen bond with either Glu121

or Val123 from the hinge region. Also, it can be appreciated how pseudo-substrate PKI invades

the cleft of PKACA modifying the chemical environment in the binding site and restricting the

entrance towards the catalytic site. While XP scores -4.97 for active and -7.9 for decoy, the

neural network scores 6.0 for active and 4.7 for decoy. Numbers in the legend represent the

AUC for each model.
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Regression and diagnostic performance of AURKA based ML models

Multiple crystal structures of AURKA depicting four physiological states were selected for

docking. Apoenzyme (4J8N), dephosphorilated (4C3P, 4C3R), phosphorilated (1OL5, 1OL7)

and inhibitor bound (3H10) were docked with 1129 ligands withdrawn from ChEMBL database

using extra precision (XP) docking.

Figure 9: R2 score for train and test procedures for AURKA models

Figure 10: RMSE for training and test procedures for AURKA models
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Figures 9 and 10 reflect the performance of the ML models during five repetitions of the training

and testing processes for all the selected AURKA conformations. Interestingly, it can be appre-

ciated in Figs. 9 and 10, how models built with the output data from the docking at apoform

(4J8N) and inhibitor bound (3H10) conformations, achieve a higher regression performance

with smaller errors in term of RMSE.

Table 4: Sensitivity and Specificity for AURKA models

The diagnostic performance in terms of sensitivity and specificity at the chosen threshold using

Youden’s J statistic for each ML model including XP docking is reported in Table 4. In average,

for all the selected AURKA conformations, the ML models achieved an enhancement of up to

22 and 32% in terms of sensitivity and specificity, respectively, when compared to Maestro’s

XP score.
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Table 5: AUC and Max enrichment factor for AURKA models

Table 5 reports the classification performance based on the AUC of the ROC curve and the

database enrichment efficiency for the testing set for the evaluated scoring methods. Interest-

ingly, in average for all the AURKA conformations, XP scoring achieves no improvement in

the classification of ligands compared to chance. In contrast, ML models reach at least 29%

improvement compared to chance in terms of ROC AUC. Moreover, all the scoring methods

achieve similar enrichment properties for the ligands in the testing set.
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Docking at AURKA apoenzyme (4J8N)

Upon ligand binding AURKA undergoes major structural rearrangement at kinase structural

hallmarks such as the activation loop, GRL and αC-helix. For instance, when comparing AU-

RKA apoenzyme (4J8N) to bound state with inhibitor CD532 (4J8M), the activation loop is

twisted 180° away from the active site and the GRL and αC-helix are packed towards the bind-

ing pocket (Gustafson et al. 2014).

A B

Phe275

Lys162

Glu181Ala213

Figure 11: Example of docking poses and ROC curve for 4J8N model

A) Fig. 11 depicts the docking poses for active ligand CHEMBL2001987 (yellow) and decoy

CHEMBL1976090 (pink). The conserved salt bridge between Lys162 and αC-helix Glu181

can be appreciated together with the Phe275 from DFG motif tilted outwards from the binding

site. While XP scores with -4.95 (ac

random forest scores are 6.04 (active) and 5.02 (decoy), XP scores are -6.15 (active) and -

7.98 (decoy). B) ROC curve for the evaluated scoring functions, each colored line represent a

different scoring function. Docking scoring for this particular conformation is slightly better

than chance diagnosing the ligands. Numbers in the legend represents the AUC for each model.
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Docking at dephosphorilated AURKA (4C3R and 4C3P)

Catalytic activation of AURKA can be achieved in two ways, either TPX2 binding or adding

a phosphate group to the activation loop. Additionally, TPX2 binding protects from PP1 phos-

phatase activity. Thus, 4C3R represents the inactive version of AURKA, as it is unphosphori-

lated and in abscence of TPX2. This state of AURKA is characterized for the insertion of the

Phe275 between the salt bridge formed by Glu181 and Lys162, this leads to a distorted active

site with the αC-helix leaning out from the active site (Bayliss, Sardon, et al. 2003).

A B

Lys143

Asn261Ala213

Figure 12: Example of docking poses and ROC curve for 4C3R model

A) Docking poses for active ligand CHEMBL1993722 (yellow) and decoy CHEMBL1972934

(pink) (Fig. 12). Both example poses have a hydrogen bond with either Glu211 and Ala 213

from the hinge region. Moreover, active CHEMBL1777842 also donates two hydrogens from

its urea moiety towards Asn261. While XP scores are -5.43 for active and -6.82 for decoy,

neural network scores with 6.51 and 3.74, respectively. B) ROC curve for the assessed scor-

ing methods, each colored line represents a different scoring function. Numbers in the legend

represent the AUC for each model.
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Docking at phosphorilated AURKA (1OL7 and 1OL5)

Similar to other kinases, AURKA undergoes autophosphorilation in Thr288 of the activation

loop in order to compensate its low catalytic activity rate. The mechanism of this process

is still not clear. It is not understood whether one single AURKA, adds a phosphate to its own

activation loop or whether AURKA gets activated by a second one. Interestingly, phosphorilated

and TPX2 bound AURKA (1OL5) has a conformational state similar to PKACA (RMSD 1.3Å)

with conserved active site residues oriented for catalysis. This residues, involved in coordination

of the ATP phosphates include PKACA’s positively charged Lys72, DFG motif Asp274 and

Asp166 (Bayliss, Sardon, et al. 2003).

A B

Asp274

Lys162

Glu211

Figure 13: Example of docking poses and ROC curve for 1OL7 model

A) Representative docking poses for active ligand CHEMBL562157 (yellow) and decoy

CHEMBL2007479 (pink). Both active and decoy ligands have a hydrogen bond with Ala213

or Glu 211 (yellow dashes). While XP scores are -5.3 for active and -7.07 for decoy, neural

network model scores with 6.51 and 4.96, respectively. B) ROC curve for the evaluated scoring

functions, each colored line represents a different scoring function. Additionally, neural net-

work and random forest achieve similar AUC values. Numbers in the legend represent the AUC

for each model.
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Docking at inhibitor induced conformation (3H10)

In comparison to unbound AURKA state (4J8N), inhibitor bound conformation depicts major

structural rearrangement induced after inhibitor binding. Mainly, it can be appreciated the trans-

formation of the protein surface after 180◦ twist of the activation loop towards the catalytic site.

Moreover, other bound AURKA structures are found with a 6Åtilt of the N-terminal domain

in respect to the C-terminal domain (Gustafson et al. 2014; Aliagas-Martin et al. 2009). The

conformational changes described previously are also translated to the GRL angle difference

for 3H10 reported in Table 1.

A B

Ala213

Lys141

Glu260

Figure 14: Example of docking poses and ROC curve for 3H10 model

A) Representative docking poses for active ligand CHEMBL3298376(yellow) and decoy

CHEMBL482538 (pink) can be appreciated (Fig. 14). Decoy pose have two hydrogen bonds

with Glu211 and Ala213 (dashed yellow lines). Active binding pose has a halogen bond with

Ala213, donates two hydrogen bonds to Lys141 and one to Glu260 backbone carbonyl. XP

scores are .6 and 4.87, respectively. B) ROC curve for the assessed scoring methods, each col-

ored line represents a different scoring function. Additionally, neural networkand random forest

achieve similar AUC values. Numbers in the legend represent the AUC for each model.
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Discussion

This thesis is an attempt to address the need for developing efficient methods for identifying

promising drug candidates. Herein, three ML models were developed aiming to predict the pKi

of the molecules in the ChEMBL benchmark sets for PKACA and AURKA protein targets. In

the line of the formulated hypothesis, the results support the idea that molecular and docking

descriptors provide useful information which, when included in ML regression models lead to

an improved diagnosis (whether active or inactive) of drug candidates.

Principally, the results indicate that for both protein targets and their different studied confor-

mations, the ML scoring functions were able to establish a higher degree of separation between

the scores of active and inactive molecules when compared to the XP score from Maestro soft-

ware. For all the studied conformations of the two target kinases, an enhancement of at least

9% for PKACA and 30% of AURKA was achieved in terms of the AUC of the ROC curve.

Surprisingly, in the case of AURKA, XP score was not better than chance classifying between

active and decoy molecules based on their score (Table 5).

Additionally, the specificity and sensitivity of the scoring methods was assessed for the chosen

thresholds according to the Youden’s J statistic. For both protein targets, in average XP score

displayed a decreased specificity and sensitivity when compared to the ML scoring functions

(Tables 2 and 3). This finding indicates that for both protein targets of study, XP score had an

increased number of both false positive and negatives when compared to the implemented ML

models.

The Emax measures the maximum enrichment of active molecules upon the top scoring positions

of a data set. As a consequence, this is dependent on the sensitivity of the scoring method and

its capacity to accurately rank the binding affinities for the top scoring ligands. ML models

slightly outperformed docking when enriching training set ( 200 ligands) based on the scores

and showed similar Emax values for AURKA.

The previous results support the idea that ML scoring functions are better than XP score when

classifying molecules as active or inactives. This statement goes in accordance to a study that

analyzes docking scoring capacity for hit-to-lead optimization (Enyedy, & Egan 2008). This
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study concludes that there are no significant differences observed when using XP score at the

moment of differentiating between active and inactive molecules. Similarly, the results reported

in this thesis support the same conclusion, specially for all the evaluated conformations of AU-

RKA (Table 5). Furthermore, it is interesting the fact that the ML models trained with the

output data of the docking at the inhibitor bound conformations reported the highest perfor-

mance among all the studied conformations. This observation was found for both PKACA and

AURKA.

Another study tried to assess the classification between active and decoys using a molecular

dynamics and the evaluation of ligand-protein complex stability across the simulation. This

study involving 56 different protein targets reported an improvement of 22% in terms of ROC

AUC compared to AutoDock Vina score (Guterres, & Im 2020). In this thesis, although only two

protein targets are evaluated, we reported up to 17 and 35% of improvement in the classification

task compared to XP scoring for PKACA and AURKA, respectively. Nonetheless, despite

having promising results, in order to achieve a stronger validation of the developed ML models

herein, further analysis should be performed in a wider array of protein targets belonging to

different families aiming to ensure a robust performance.

Among the conclusions of a comprehensive review on ML scoring functions, it is highlighted

the fact ML scoring functions outperform a wide range of classical scoring functions when

predicting binding affinities (Ain et al. 2015). For instance, ML scoring functions build upon

200 ligand-based molecular descriptors achieved up to 0.82 pearson correlation towards binding

affinity prediction in the PDBbind 2016 core sets (Fergus et al. 2019).

In this thesis, the performance of random forest and neural network models during the testing

in terms of R2 lies within 0.2-0.65 (Figures 5 and 9) and for RMSE is distributed in the 0.7-0.55

range (Figures 4 and 10). This suggests a good agreement with the experimental pKi of the

training set ligands obtained from the large ChEMBL database.

In the line with the previous, the increasing amount of chemical and biological data publicly

available, together with the growing evidence that ML regression provides an accurate predic-

tion of binding affinities and inhibition profiles of prospective drug candidates, fuels the exist-

ing optimism of improving the performance of ML regression models as long as the amount of
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available data continues growing (Ain et al. 2015; H. Li et al. 2015). Nonetheless, the exist-

ing experimental error in the publicly available data, the lack of standardized pharmacological

measurements and the tendency of ML models to over fit the training data establish a barrier to

be surpassed for prospective ML models (Shepperd et al. 2019; Cao, & L. Li 2014).

Regarding over fitting, the implemented ML models performance was comparable between

training and testing sets. Nonetheless, the fact that the violin plots displayed a wider distribution

of the regression metrics compared to the testing, might be related k-fold splitting into folds with

different proportions of active and decoy molecules.

Additionally, it is important to consider that most of the features used in the ML models built

in this thesis were derived from the results from molecular docking (per residue interaction

scores and XP descriptors) and molecular features obtained from RDKit. The latter, not only

facilitates the possibility of reproducing the results here reported for third parties, but also,

opens the door to implementing ML regression as an scoring post-processing alternative without

loosing docking high efficiency and capacity for enriching chemical libraries. This would be

advantageous in processes of hit finding and hit-to-lead in drug discovery projects.

Finally, XP docking poor performance in identifying active and inactives based on their score

is mainly due to the simplifications in the method, introduced to make the process highly ef-

ficient, as stated by Pantsar et al. Docking scoring failure when accurately predicting ligand

binding energies has been assessed in several studies and it is widely acknowledged (Ramírez,

& Caballero 2016; Ramírez, & Caballero 2018; Pagadala et al. 2017).

However, the molecular docking tool is already providing both industry and scientist the pos-

sibility to virtually screen up to millions of compounds in early stages of the drug discovery

pipeline. Also, it has the virtue of predicting the preferred geometries of a ligand and its moi-

eties inside a given binding site. Fortunately, the emerging popularity of ML scoring functions

together with the computationally expensive free energy calculation methods (i.e. thermody-

namic integration and free energy perturbations) provide feasible alternatives to compensate

docking inaccuracy, specially at the late stages of the drug discovery process.
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