
Transfer Learning in Speech Synthesis
Exploring Pretrained Weights Adaptation and Usage of

Speaker Embeddings in Neural End-to-End Speech
Synthesis

Georgios Roussos

Master’s Thesis

Philosophical Faculty

May 2020

ITÄ-SUOMEN YLIOPISTO – UNIVERSITY OF EASTERN FINLAND

Tiedekunta – Faculty
Philosophical Faculty

Osasto – School
School of Humanities

Tekijät – Author
Georgios Roussos
Työn nimi – Title
Transfer Learning in Speech Synthesis: Exploring Pretrained Weights Adaptation and Usage of Speaker
Embeddings in Neural End-to-End Speech Synthesis
 Pääaine – Main subject Työn laji – Level Päivämäärä –

Date
Sivumäärä – Number of
pages

MDP in Linguistic Sciences

Pro gradu -tutkielma x
08.06.2020

43 pages + Appendix of 2
pages

Sivuainetutkielma
Kandidaatin tutkielma
Aineopintojen
tutkielma

Tiivistelmä – Abstract

This paper is an attempt to work towards a unified neural network approach for the issue of speaker
adaptation. In recent years, machine learning advances have afforded the field of Speech Synthesis a great leap
towards solutions that are human-sounding and more flexible; however, more research remains to be done on
speaker adaptation. The goal of this thesis project is to examine whether few-shot adaptation techniques are
able to produce speech that resembles a target speaker, by either fine-tuning a previously trained neural
network on a different speaker’s voice, or using the target speaker’s voice embeddings on a multi-speaker Text
to Speech pipeline. Experiments with different attention mechanisms, as also different sound attributes are
performed and show that, using transfer learning, one is able to achieve production of intelligible speech,
when finetuning a pretrained model, on only 30 minutes of spoken speech from a speaker of a different
gender; the same amount of data yields expectedly disappointing results, when the model is trained from
scratch, while testing a TTS engine conditioned on neural speaker embeddings shows that speaker modeling
only using vector representation is possible. The paper ends on conclusions, with thoughts and suggestions
for further research.

Avainsanat – Keywords
speech synthesis, text to speech, neural networks, transfer learning, speaker adaptation, embeddings

ITÄ-SUOMEN YLIOPISTO – UNIVERSITY OF EASTERN FINLAND

Tiedekunta – Faculty
Filosofinen tiedekunta

Osasto – School
Humanistinen osasto

Tekijät – Author
Georgios Roussos
Työn nimi – Title
Transfer Learning in Speech Synthesis: Exploring Pretrained Weights Adaptation and Usage of Speaker
Embeddings in Neural End-to-End Speech Synthesis
 Pääaine – Main subject Työn laji – Level Päivämäärä –

Date
Sivumäärä – Number of
pages

MDP in Linguistic Sciences

Pro gradu -tutkielma x
08.06.2020

43 sivua + 2 liitettä (2 s.) Sivuainetutkielma

Kandidaatin tutkielma
Aineopintojen
tutkielma

Tiivistelmä – Abstract

Tämä tutkielma pyrkii kohti keinotekoisiin hermoverkkoihin perustuvaa lähestymistapaa puhuja-adaptaatioon.
Viime vuosina koneenoppimisen edistys on suuresti auttanut myös puhesynteesin kehitystä joustavissa ja
entistä luonnollisemmalta kuulostavissa ratkaisuissa; lisää tutkimusta kuitenkin tarvitaan. Tutkielman
tavoitteena on selvittää, pystyvätkö ns. few shot -adaptointimenetelmät tuottamaan kohdepuhujan kaltaista
puhetta joko hienosäätämällä toisen puhujan tuotosten perusteella opetettua hermoverkkoa tai käyttämällä
kohdepuhujan monipuhuja-TTS-järjestelmään upotettua ääntä. Erilaisten attentiomekanismien ja
ääniominaisuuksien kokeilut osoittavat, että siirto-oppimisella saavutetaan ymmärrettävää puhetta, jos 30
minuutilla toisen sukupuolen puhujan puhetta esiopetettua mallia hienosäädetään; samalla datamäärällä
saadaan odotetun huonoja tuloksia, jos mallin opetus aloitetaan tyhjästä. Säätelemällä tekstistä puheeksi -
moottoria hermoverkkoon upotetuilla puhujaäänillä voidaan osoittaa, että pelkän vektorirepresentaation käyttö
on mahdollista. Tutkielman päätelmissä pohditaan tarpeellisia jatkotutkimuksia.

Avainsanat – Keywords
puhesynteesi, TTS, hermoverkot, siirto-oppiminen, puhuja-adaptaatio, upotus

Foreword

Transitioning into Natural Language Processing has been one of the biggest challenges

I have ever taken up on. Completing this thesis and acquiring a degree in the field

of Language Technology comes with a relief and a reasonable sense of pride. I, of

course, did not do this alone and there are a lot of people I must extend my gratitude to,

starting with my supervisor, Stefan Werner: words cannot express how lucky I feel that

you granted me the opportunity to write my thesis in the university of Eastern Finland,

on an objective that is of intriguing interest to me. Thank you for being patient with

me, while I tried to balance work and writing and for letting me work independently,

along with all of your input and humor, which has been nothing short of valuable. A

model supervisor and without your feedback, this thesis would not have been pretty.

To my absolutely loving colleagues at Storytel: you are all the best and you inspire

me. Thank you for listening to the numerous TTS voices I try to produce, especially

the ones that sound like HAL97 and cannot say the Swedish version of “hello”. A

big thank you to the open source community, which is always there to answer any

questions I have and issues I may be facing when I try to make computers speak. To

my mother and to my father; thank you both for providing me a big part of the financial

backend needed during my education years and for saying “alright“ when I announced

I decided I wanted to branch out of my original field of studies. To my sister and

each and everyone of my friends: thank you for being there, yesterday and today. You

believe in me when I do not and your friendship is one of the greatest gifts this life has

given me. To my friends, Stina and Jenny; thank you for always being family to me,

supporting me and encouraging me. To my friend Jakob: you have been an incredible

mentor to me and a great friend; this thesis is for you, as much as it is for me. To

my partner, Neil: thank you, Neil, for always trusting me and my abilities, as well as

putting up with all of my strange ways and my self-shaming. I love you.

Finally, to myself, a pat in the back: Good job! Take the day off.

iii

List of Abbreviations

CNN Convolutional Neural Networks

CSV Comma Separated Values

E2E End To End

GAN Generative Adversarial Network

GL Griffin - Lim

NLP Natural Language Processing

RNN Recurrent Neural Networks

SEQ2SEQ Sequence To Sequence

SSRN Spectogram Super Resolution Network

STFT Short Time Fourier Transform

TTS Text To Speech

VAD Voice Activity Detection

UEF University of Eastern Finland

WAV Waveform Audio File Format

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Related Work 3
2.1 Few shot: Finetuning existing models 3

2.2 Zero shot: Using neural speaker embeddings 4

3 Neural Speech Synthesis 6
3.1 Tacotron . 6

3.2 Tacotron2 . 7

3.3 WaveNet . 8

3.4 WaveRNN . 9

3.5 Griffin - Lim Algorithm and Vocoder 10

3.6 Goals and Hypotheses . 11

4 Methodology 12
4.1 Data Preparation . 12

4.2 Speech Dataset . 13

4.3 The VoxCeleb Dataset . 14

4.4 Sentence - Level Segmentation . 14

4.5 Preprocessing . 16

4.6 Tacotron and Tacotron2: A seq2seq approach to neural speech synthesis 17

4.7 Mozilla TTS . 18

4.8 Hyperparameters . 18

4.9 Training Environment . 20

4.10 Evaluation Method . 21

5 Results 21
5.1 Transfer Learning using Pretrained Weights 21

5.2 Training a new model on 30 minutes of speech 24

5.3 Speaker Embeddings . 27

6 Discussion 27

v

6.1 Hypothesis Outcomes . 27

6.2 Individual Models . 28

6.3 Overall . 30

6.4 Considerations when evaluating . 31

6.5 Data criticality: what makes a good TTS dataset? 33

6.6 The issue of underwhelming speech: prosody modelling 34

6.7 High quality synthesis using a CPU: GAN vocoders 35

7 Conclusions and Future Work 37

8 References 39

Appendix A Mozilla TTS github repository 44

Appendix B Samples used for Mean Opinion Scoring 45

vi

List of Figures

1 A proposed multi-speaker TTS system, which is conditioned on speaker

embeddings (Cooper et al., 2019). The embeddings are concatenated

to the speaker encoder outputs during inference time, before synthesiz-

ing the Mel spectrograms. 2

2 The Tacotron system architecture (Wang et al., 2017). It consists of a

seq2seq model with attention, an encoder, an attention-based decoder,

and a post-processing net. 7

3 The Tacotron2 system architecture (Shen et al., 2017). The architecture

is much simpler than Tacotron, while the model has more trainable

parameters, allowing for better quality of speech synthesis. 8

4 Griffin - Lim pseudocode (Perraudin et al., 2013). The algorithm con-

sists of many iterations and at times produces low-quality signals ow-

ing to the lack of prior knowledge of the target signal. 11

5 A neural network with a robust alignment. Here, diagonal aligning

may be observed, which shows no trouble in inferring the text and stop

token. 12

6 Alignments during evaluation time. The blurred parts show that the

model has trouble in predicting the ground truth spectrogram, attribut-

ing to either noise or bad phoneme alignments learning. 23

7 Decoder loss during evaluation time; the increase is attributed to the

small amounts of data Tacotron2 is provided with. 23

8 Ground truth and prediction of evaluation sentence. L2 loss function is

applied during evaluation time. 24

9 Sentence 1 alignments and spectrogram prediction. 24

10 Sentence 2 alignments and spectrogram prediction. The network is

having trouble predicting the correct spectrogram and knowing when

to stop inferring. 24

11 Sentence 3 alignments and spectrogram prediction. 25

12 Sentence 4 alignments and spectrogram prediction. 25

13 Decoder loss when training the model from scratch; the high rates and

the plateuing make it clear that the data is not enough. 26

14 Alignments of model during evaluation time, which showcase an in-

ability to learn phoneme representations. 26

vii

15 Ground truth and prediction of model during evaluation time; here, the

predicted spectrogram is noise. 27

16 Visualization of a clustering algorithm, using a speaker encoder net-

work. The model is able to distinguish between genders and can form

different clusters for male and female voices. 30

List of Tables

1 Results obtained when transfer learning. 22

2 Results obtained when training a new model. 25

3 Mean Opinion Scores acquired on the test sentences. On a scale from

1 to 5, 1 is bad and 5 is excellent, almost wholly resembling of the

source speaker. 31

viii

1 Introduction

Speaker Adaptation is the process of adapting an existing speech synthesis neural net-

work, which has been trained on a source speaker different than the target. This is

usually executed as means to producing speech that resembles the voice of a speaker,

for which access to available data is limited. By leveraging pre-trained weights (al-

ready trained neural networks), the task of training a new machine learning model

from scratch may merely be elevated to only adjusting parameters of the pre-existing

neural network. In the present day, with voice assistants being very readily available

and services like content streaming in the form of audiobooks or podcasts emerging

much faster than before, there exists a need for personalized solutions, an objective

which is further magnified by accessibility purposes, such as helping people that have

lost their voice, or individuals that have translation needs. Thus, speaker adaptation is

proving to be a pertinent issue in the field of Natural Language Processing (NLP) and

is one that has recently been met with more in-depth studies (Luong and Yamagishi,

2019; Tits et al., 2019; Jia et al., 2018).

Up until recently, the majority of research on speaker adaptation had been done on

transfer learning, within the domain of finetuning pre-existing speech synthesis neu-

ral networks; however, the usual setting of the latter dictates a learning environment,

where at least a small amount of data is available, which at times may prove impractical

and a situation not possible to meet (Arik et al., 2018); to this end, speaker adaptation

using neural speaker embeddings is, instead, proposed, which involves mapping char-

acteristics of the voice of the speaker to vectors of real numbers (Cooper et al., 2019).

With the aid of a speaker verification task, an objective which usually requires data

of sub-par quality compared to text-to-speech initiatives, a vector representation of a

speaker’s vocal identity may be extracted, with the representation being robust and in-

dependent of target speaker data. In recent years, speech recognition is another domain

which has seen great advances and is, thus, able to aid speech synthesis with neural net-

works that can provide with good quality voice embeddings (Chiu et al., 2018). These

speaker embeddings can then be used to condition multispeaker TTS systems, with-

out finetuning the entire model (Cooper et al., 2019) (Figure 1). This proves to be

more challenging, when an unseen speaker that the multispeaker TTS has never been

trained on, is involved, since the model is called to generalize and both similarity and

quality greatly depend on the architecture of the model, since it dictates the number of

1

trainable parameters and how easy it is to train the model.

Figure 1: A proposed multi-speaker TTS system, which is conditioned on speaker
embeddings (Cooper et al., 2019). The embeddings are concatenated to the speaker
encoder outputs during inference time, before synthesizing the Mel spectrograms.

In this thesis, there is an attempt to study the process of speaker adaptation, both from a

few-shot (finetuning a pre-trained model) and a zero-shot (neural speaker embeddings)

perspective, in order to determine whether the latter can be considered as a good alter-

native when data for the target speaker is not available. For the objective of this paper,

open source text to speech code is leveraged and built on, which is written by Mozilla

and can be found on GitHub 1. The pre-trained model used for the finetuning part of

the experiment is trained on an open source dataset; the dataset used for the finetuning

part of the experiment is publicly available and consists of speech, which is extracted

off an open source dataset. Of specific focus is training neural networks that are indus-

try oriented, that is, the data that is used is clean and of high quality. This serves an

emerging need in the commercial field, which calls for adaptable TTS systems, which

are fit for many applications.

The rest of the paper is structured as follows; the second section touches on related

work, on the domains of speech synthesis by training a neural network from scratch,

finetuning an existing model and relying solely on neural speaker embeddings. Chapter

three introduces data collection and preparation (preprocessing). Following, in the

fourth chapter, the architecture of a neural TTS system is further analysed. Chapter
1https://github.com/mozilla/TTS

2

five presents with the experimental setup followed to satisfy the needs of the paper,

as well as training of the models, while chapter six includes the results acquired. A

discussion of these may be in found in chapter seven, along with reasoning for specific

experiment choices. Chapter eight concludes the paper on future research suggestions.

2 Related Work

2.1 Few shot: Finetuning existing models

The aim of speaker adaptation is defined as the objective of adapting voice models to

arbitrary new speakers using a small amount of data (Cooper et al., 2019). This usually

calls for a setting where a pre-trained speech synthesis model is available, or alterna-

tively, sufficient amounts of data of the voice of a different speaker than the one the

modeling is attempted on, are present. Where speaker recognition is involved, speaker

adaptation enables the model to perform better on data of unseen speakers, while when

speech synthesis is the aim, speaker adaptation enables a model to produce speech in

the voice of new speakers. Tits et al. (2019), explore transfer learning with finetuning

an existing TTS, when the available data for the target speaker is of low amount. They

are particularly interested in discovering whether finetuning a pre-trained model is also

a viable option when it comes to producing emotional speech, since most neural end to

end (E2E from now on) TTS networks are able to learn both character and style repre-

sentations (Pan and Yang, 2010). They choose DCTTS for their experiments, which is

a system that models a sequence-to-sequence problem using an encoder-decoder struc-

ture, combined with an Attention Mechanism, but is based on a Convolutional Neural

Network (CNN) architecture and not a RNN one. In this pipeline, a Text2Mel mod-

ule is responsible for mapping character embeddings to the output of Mel Filter Banks

that are applied to a mel spectrogram, which is used alongside a spectrogram Super

Resolution Network (SSRN) and consists of a Text Encoder, an Audio Encoder, an At-

tention Mechanism and an Audio Decoder. These two modules are trained separately

and a Griffin Lim vocoder takes care of producing the end spectrograms. An emotional

speech dataset is used, which contains utterances from both male and female speakers,

recorded in a contained and professional environment. The authors note the importance

of good data pre-processing, which includes frequency sampling, silence trimming and

removal of non verbal expressions. In the case of fine-tuning a pretrained model, the

3

same sample rate must be used on the smaller, to-be used dataset. The silence trimming

enables the model’s attention mechanism to perform better. The authors want to see

how the Spectrogram Super Resolution Network (SSRN from now on) may perform

when generalizing the mapping to other speaking styles, since there is the possibil-

ity of the model overfitting to the speaking style of the initial speaker; they choose

to train the entire Text2Mel module, in order to overcome rhythm problems in syn-

thesized speech. They discover that speech synthesis produces unintelligible speech

when the training parameters are randomly initialised, given that the amount of data

is small; however, using a pre-trained TTS model and finetuning on the layers of the

former, they are able to get the model to produce intelligible speech on the new voice.

Additionally, they are able to get speech that is correctly perceived as emotional, after

finetuning the pretrained model on the new dataset. As future research, they suggest

training multispeaker TTS models, in order to acquire a better vector representation of

speaker characteristics.

However, transfer learning does not only include the usage of pretrained speech syn-

thesis models. Fang et al. (2019), attempt to tackle the issue of a TTS model needing

huge amounts of high-quality data; to this end, they follow an approach which de-

pends on the use of Google’s Bidirectional Encoder Representations from Transform-

ers (BERT) (Vig, 2019). They hypothesize that, by providing a TTS system with tex-

tual knowledge which is extracted by pre-trained neural networks using BERT (which

has shown to perform extremely well, seen in Tenney et al. (2019), the TTS system’s

reliance on high-quality data may be reduced. The authors look into assisting a neu-

ral speech synthesis model training based on the Tacotron2 architecture (Shen et al.,

2017) with BERT representations, by concatenating the representations extracted from

both branches in each step. They notice better inference stopping and faster conver-

gence during training. As future research, they mention the usage of a pre-trained

auto-regressive predictive coding model.

2.2 Zero shot: Using neural speaker embeddings

Zero shot speaker adaptation has only recently begun to be researched into more ex-

tensively. In their recent work, Cooper et al. (2019), explore the usage of state-of-the

art neural speaker embeddings, in a zero-shot speaker adaptation objective, similar

to Louppe (2019), by leveraging multi-speaker speech synthesis, a speaker verifica-

4

tion task and neural speaker embeddings. The hypothesis posits that, by conducting

transfer learning by training the speaker embedding network separately, robust speaker

representations can be obtained, which may then be used with E2E speech synthesis

models, in order to adapt to a speaker’s voice in zero-shot manner, thus avoiding fine-

tuning of the entire model. Cooper’s research is the first to investigate many different

types of speaker embeddings, in order to find the best fitting ones, when it comes to

modeling voices of unseen speakers. The authors make use of a modified version of

Tacotron, which is modified to accept external speaker embeddings. Phoneme input is

used, together with normalization and a self-attention block. A speaker embedding is

extracted for each training utterance and is averaged per speaker. This is then projected

to 64 dimensions using a dense layer, before being input anywhere in the model. The

same process is used for unseen speakers. The VCTK is the dataset used, while the

authors use different kinds of embeddings, in order to determine the best one. It is

shown that Learnable Dictionary Encoding embeddings prove to work the best (specif-

ically LDE-3), similarity wise; for seen speakers, scores are very close to vocoded

speech. For unseen speakers, the scores are lower, as expected. For future research,

the authors suggest exploring ways to reduce overfitting, by experimenting on speaker

augmentation, and also working on dialect and speaking styles.

Louppe (2019), experiment on speaker adaptation, by proposing a three-stage pipeline,

which involves a speaker encoder for extracting the speaker embedding of the speaker,

in order to capture the voice characteristics, a synthesizer which produces the spectro-

grams and a vocoder, which turns the spectrograms to waveforms. A modified Tacotron

architecture accepts, once again, external speaker embeddings, while the vocoder is

based on WaveNet (Shen et al., 2017). The author notes that, due to time constraints,

they cannot comment on new experiments, however, they mention good results in gen-

eral, and present with some arbitrary results that show good adaptation metrics and

some artifacts during the vocoding stage.

Luong (2019), presents with a unified speaker adaptation method, using transcribed

and untranscribed speech, along with backpropagation. They posit that, by having a

single fixed-length vector as output when representing speaker characteristics, a neural

multi-speaker speech synthesis model can be conditioned, in order to produce speech

using the characteristics it is fed. While this technique may also apply to unseen speak-

ers when the transcribed text is not available, performance is sub-par, since the speaker

component is a single bias vector. Luong proposes a novel speech synthesis model,

5

which splits the acoustic model into a speaker-independent linguistic encoder and a

speaker-adaptive acoustic decoder. The encoder is, then, trained, in order for it to be

used whenever linguistic features are not available to model. The author conducts a

study on whether scaling and bias may improve model performance and finds that,

while they do, they also do not help if more data is available. To combat this, addi-

tional adaptable parameters are introduced, which allow for each layer to have its own

scaling and bias. Further, the author proposes a new approach which uses different

speaker components when modeling speaker characteristics, in place of assuming a

single fixed-length vector. They discover that, in both supervised and unsupervised

speaker adaptation, results are better when the entire acoustic decoder is finetuned,

however, the performance of the adapted model varies greatly from speaker to speaker.

As future research, they propose working on their approach, in order to improve it, by

using General Adversarial Networks that, given a training set, can learn to generate

new data with the same statistics as the training set (Hong et al., 2019).

3 Neural Speech Synthesis

3.1 Tacotron

With the progress in deep recurrent neural networks, speech synthesis has, since 2017,

been seeing a tremendous development as well (Wang et al., 2017). With concatena-

tive speech generation having been the go-to technique for developing TTS solutions

for years and neural approaches fast replacing the former with the emergence of re-

current deep neural networks (Li et al., 2019), speech synthesis is beginning to be

much more interesting to work on, which has in turn seen an increase in research on it.

This comes after neural networks like Tacotron (Wang et al., 2017), Tacotron2 (Shen

et al., 2017), WaveNet (van den Oord et al., 2016a) and WaveRNN (Kalchbrenner

et al., 2018), have proven to be able to produce high-quality speech, which resem-

bles that of a human and does away with concatenative speech synthesis hindrances,

which are, most usually, lack of adaptation and the requirement that a large database

be present for the task of unit selection (Hunt and Black, 1996). Tacotron consists

of a sequence-to-sequence (seq2seq) model with attention, an encoder, an attention-

based decoder, and a post-processing net; the architecture takes characters as input

and, produces spectrogram frames, which are to be converted into waveforms (Figure

6

2). This can be achieved by either using algorithms like GL (Griffin-Lim) (Wang et al.,

2017; Masuyama et al., 2019), or Generative Adversarial Networks (GAN) (Neekhara

et al., 2019). GL and GAN provide a solution to the problem of vocoding, which

for TTS systems translates to GL spectrogram representations discarding useful sig-

nal and phase information derived from the short-time Fourier Transform (STFT), and

compressing the linearly-scaled frequency axis of the STFT magnitude spectrogram

into a logarithmically-scaled one (Neekhara et al., 2019).

Figure 2: The Tacotron system architecture (Wang et al., 2017). It consists of a seq2seq
model with attention, an encoder, an attention-based decoder, and a post-processing
net.

Wang et al. (2017) mention that the encoder aims to extract robust sequential text rep-

resentations, while the goal of the decoder is to produce the corresponding sequence at

each step. The decoder target is predicted using a simple fully-connected output layer.

Here, convergence speed is increased by predicting r frames. The post-processing net-

work is, then, initialised, in order to convert the seq2seq target to waveform.

3.2 Tacotron2

Shen et al. (2017) build on Tacotron and propose Tacotron2, a unified architecture

which consists of a recurrent seq2seq prediction network predicting the mel spectro-

gram frames for any input character sequence, and a modified version of WaveNet

(van den Oord et al., 2016a) as the vocoder, which aims to produce waveforms, which

are difficult to distinguish from human speech. The difference with Tacotron is that,

the Tacotron2 model uses simpler building blocks, which consist of vanilla LSTM lay-

ers and convolutional layers in the encoder and decoder, instead of “CBHG” stacks

7

and GRU recurrent layers (Wang et al., 2017) (Figure 3). As in Tacotron, mel spec-

trograms are computed through a STFT, using a 50 ms frame size, 12.5 ms frame hop

and a Hann window function. The STFT magnitude is converted to the mel scale us-

ing an 80 channel mel filterbank and a log dynamic range compression. The encoder

converts the input sequence into a fixed-length context vector for each decoder output

step, while a location-sensitive attention mechanism accounts for all the previous de-

coder time steps; this provides the model with better consistency when producing mel

spectrograms, which are predicted by the decoder part of the network, one frame at a

time. A small pre-net layer preprocesses the prediction from the previous time step,

and the output of it is concatenated to the attention context vector. The concatenated

output is projected down to a scalar and passed through a sigmoid activation to predict

the probability that the model should stop inferring (referred to as the stopnet). All the

convolutional layers in the network are regularised using dropout, with a probability

of 0.5, while on LSTM layers, zoneout (randomly preserving hidden activations of the

network) is used with a probability of 0.1.

Figure 3: The Tacotron2 system architecture (Shen et al., 2017). The architecture is
much simpler than Tacotron, while the model has more trainable parameters, allowing
for better quality of speech synthesis.

3.3 WaveNet

With Tacotron and Tacotron2 being used to produce high-quality spectrograms, there

arises the problem of generating high-quality waveforms, as well, since the GL algo-

rithm both Tacotron and Tacotron2 may use, leaves a lot to be desired, in terms of sound

8

fidelity. To this end, van den Oord et al. (2016a) propose WaveNet, which is an audio

generative model based on the PixelCNN (van den Oord et al., 2016b) architecture and

is, thus, able to generate raw speech signals based on the spectrograms synthesized by

the Tacotron or Tacotron2 backends. WaveNet’s versatility lies in its ability to produce

waveforms for different voices, when conditioned on speaker identity, while it can also

be used for neural music generation. The joint probability of a waveform x = {x1, . . .

, xT} is factorised as a product of conditional probabilities as follows:

p(x) =
T∏︂
t=1

p(xt|x1, ..., xt-1) (1)

Here, each audio sample xt is conditioned on the samples at all previous timesteps

(van den Oord et al., 2016a; p. 2), which is also what Shen et al. (2017) leverage,

when building their Tacotron2 implementation. Their modified version of WaveNet

includes 30 dilated convolution layers, grouped into 3 dilation cycles, however, in-

stead of predicting bucket with a softmax in a discrete nature, they use the PixelCNN

(van den Oord et al., 2016b) architecture, as also Parallel WaveNet (van den Oord et al.,

2017) and use a 10-component mixture of logistic distributions (MoL) to generate 16-

bit samples at 24 kHz. The WaveNet stack output is passed through a ReLU activation

followed by a linear projection, in order to predict parameters (mean, log scale, mix-

ture weight) for each mixture component; the final loss is the negative log-likelihood

of the ground truth sample.

3.4 WaveRNN

To combat inefficient vocoding times that usually occur when sequential vocoders

are implemented in speech synthesis, Kalchbrenner et al. (2018) propose WaveRNN,

which is a single-layer RNN, equipped with a dual softmax layer, that is able to match

WaveNet in quality, while generating 24 kHz 16-bit audio four times faster than the for-

mer. Size reduction of the model is achieved by applying weight pruning; the technique

yields the discovery that for a constant number of parameters, large sparse networks

perform better than small dense networks and this relationship holds for sparsity levels

beyond 96% (Kalchbrenner et al., 2018). The efficiency of the WaveRNN vocoder is

further showcased with the authors claiming that high-fidelity audio synthesis can be

achieved on a smartphone CPU in real-time. Since a sequential model learns the joint

9

probability of data by producing conditional probabilities over each sample and then

factorizing them, the sampling process is a serial one, which may also be slow during

inference time. The efficiency may be improved, by decomposing the time required to

produce each sample into computational time and overhead, for each one of the layers

of the network, as:

T (u) = |u|
N∑︂
i=1

(c(opi + (d(opi)) (2)

Here, the value of T(u) can grow exponentially larger, depending on the audio bit-rate

and frequency, if the size of the network is big, which in turn implies more layers, if

the number of parameters included is large, or if the overhead d(opi) is high, because

each operation is run individually (Kalchbrenner et al., 2018). WaveRNN is an attempt

to reduce the time these operations require, but at the same time maintain the quality a

WaveNet equipped system outputs. A model trained on sequences of 960 samples of

16-bit bit-rate and full back-propagation puts WaveRNN on the same level of quality

which WaveNet is (Kalchbrenner et al., 2018).

3.5 Griffin - Lim Algorithm and Vocoder

Fast experiment cycles require algorithms that are efficient and quick to provide re-

sults; therefore a neural network vocoder is usually preserved for higher scale testing.

To this end, the Griffin - Lim algorithm may be used, in order to provide real-time

inference when testing the performance of a speech synthesis model. The algorithm

was first proposed by Griffin and Lim (1984) and is an attempt at computing a signal

from its modified STFT. It is a version of the double-projection algorithm originally

suggested by Gerchberg and Saxton (1972) for solving the phase recovery problem

in terms of the Fourier transform. The Gerchberg-Saxton works for a non-redundant

system (the Fourier transform) by considering additional side-constraints to make the

solution unique; the GLA algorithm on the other hand works for redundant systems

without any side constraints, where the uniqueness of the solution comes via the re-

dundancy (Perraudin et al., 2013; p.2). The Griffin - Lim algorithm allows for a con-

vergence towards the estimated phase layer, by acquiring the sound signal, which has

an STFT as close as possible to the modified STFT. The algorithm allows for recon-

struction of a signal from a spectrogram, which a synthesizer constructs. The algorithm

10

is iterative, so a number of iterations is set, depending on the size of the spectrogram

(Figure 4). Inference is slower when the number of iterations is set higher; a number

between 30 and 60 often proves sufficient.

Figure 4: Griffin - Lim pseudocode (Perraudin et al., 2013). The algorithm consists
of many iterations and at times produces low-quality signals owing to the lack of prior
knowledge of the target signal.

3.6 Goals and Hypotheses

On the basis of transfer learning and its usage of pretrained weights, the aim is to

train a neural network on a very small amount of data and still be able to produce

intelligible speech. To further demonstrate the success of transfer learning as means to

finetuning, the output is compared to a model trained from scratch on the same data.

While the general goal is within reach, especially seeing as previous work on transfer

learning and speech synthesis has been made, exceptional results are not expected,

due to the scope of the paper. As far as the model trained from scratch is concerned,

it is anticipated that it will perform poorly, while, finally, for the testing of the TTS

model that is based on embeddings, what is expected, is a baseline result that will not

outperform the finetuned model. In short, the following hypotheses are expressed:

1. Hypothesis 1: Adapted models will perform better when finetuned on small

amounts of data, when the language is the same and the alignments have been

learnt, thus the weight initialisation will be easier and quicker. The hypothesis

follows what Tits et al. (2019) discover, in terms of transfer learning when the

training data amount is low.

2. Hypothesis 2: The trained from scratch model is not going to be able to produce

intelligible speech. The assumption is based on the complex architecture both

Tacotron and Tacotron2 have, so more data would be needed, when no zero-shot

adaptation is involved.

11

3. Hypothesis 3: The network learnt on speaker embeddings will be able to retain

the voice of the new speaker, without being able to model the prosody or the

accent of the former. As section 2 recalls, usage of neural speaker embeddings

implies an environment where learning data is not present.

Figure 5: A neural network with a robust alignment. Here, diagonal aligning may be
observed, which shows no trouble in inferring the text and stop token.

In the above picture (Figure 5), the model has learnt phoneme alignments, while also

preserves robust attention, as evident by the smooth transition of the decoder to the next

step and presents with a good stopnet, which is showcased by the fact that there is no

yellow colour at the end of the diagonal line, which would signify that the model was

having trouble knowing when to stop inferring. A good stopnet is critical, as it signifies

the end of inference and, thus, the usage of computational resources. A stopnet that has

not converged enough means longer inference times and repeating words at the end of

sequences, since the model does not know where to stop.

4 Methodology

4.1 Data Preparation

There currently exist many open source speech datasets fit for speaker verification

tasks; however, in the case of training a speech synthesis neural network, finding suit-

able candidates becomes a more challenging task; as section 1 recalls, when training

12

networks for speaker verification purposes, there is a lesser need for data to be accu-

rately transcribed, if at all, while the quality may also be sub-par. In the case of training

a text to speech model, data must be as high of quality as possible, with accurate sound

transcriptions and lack of noise. To this end, it is important that a quality check be

carried out, especially when transfer learning is involved and the amount of data of

target speaker is limited. The steps and tools for data acquisition and processing are

outlined in this section.

4.2 Speech Dataset

For the experiments in this paper, an audiobook recording excerpt derived from Lib-

riTTS is used (Zen et al., 2019, in order to extract a target speaker and their speaker

identity, in regard to voice characteristics like accent, pitch and prosody. The Lib-

riTTS speech corpus is a corpus which is derived from LibriSpeech, which is a dataset

used for research in speech recognition. LibriTTS addresses properties in LibriSpeech

that make it a less than ideal candidate for text to speech research, by ensuring all au-

dio matches the transcription perfectly, with neighbouring sentences information being

available and high resolution sound; the transcriptions are normalized and utterances

with background information are removed. LibriTTS is a good example when attempt-

ing to construct multispeaker datasets for speech synthesis objectives, since it combines

many attributes that make it attractive for text to speech research.

The source and target language is English. The audiobook excerpt is well recorded,

with no audible high noise levels in the sound and is of approximately 30 minutes

length. The narrator is consistent in reading out what the book reads, enunciates well

and, in combination with the ebook text, a one to one (1:1) mapping between the audio

and its transcription is obtained. For the purpose of the finetuning experiment, these 30

minutes of recording are used, in order to make it harder on the model to transfer and

comply with the setting in reference, that is, a low amount of data. That accounts to

approximately 200 sentences, with a duration that usually varies between from 7 to 10

seconds and a word length of 3-15 words, accounting for each sentence; on character

level, this length translates to approximately 80-90 characters, at most. This amount of

data is significantly less than what an average TTS model calls for, in order to perform

adequately, which accounts to approximately 24 hours, in order for it to avoid word

skipping, repeating of words in harder cases and mel-spectrogram speed generation

13

(Ren et al., 2019). Using processing software, only the first 30 minutes of the audio-

book recording are thus selected, along with its corresponding ebook transcription.

The pipeline used for transfer learning automatically splits the data in training, valida-

tion and test sets, so no manual splitting is carried out manually. The quality of this

specific dataset serves the initial purpose, which, as section 1 notes, is training speech

synthesis models, that are industry oriented.

4.3 The VoxCeleb Dataset

For the part of any experiment where neural speaker embeddings are leveraged, a mul-

tispeaker TTS model is to be trained; this enables a TTS model to gain a rich repre-

sentation of various speaker identities and generalize better when presented with an

unseen speaker. As a result, a dataset of many utterances from many different speakers

is required. To this end, an implementation that is trained on the VoxCeleb dataset

(Nagrani et al., 2017) is evaluated. The corpus consists of hundreds of thousands ut-

terance and hours of spoken speech and is derived from the original audio and text

materials of various celebrities recordings (Panayotov et al., 2015), which have been

used for training and evaluating automatic speech recognition systems. The dataset

presents both with male and female voices, is gender balanced and and includes both

video and audio. Neural E2E speaker verification and identification systems trained on

the VoxCeleb dataset, are shown to achieve a high performance score higher than 4.0,

in regard to naturalness. For the purposes of the experiments in the paper, evaluation

is based on an already trained TTS neural network that works with neural speaker em-

beddings, since training a new model presents with long waiting times and is outside

the time domain of this project.

4.4 Sentence - Level Segmentation

In order to train a robust speech synthesis model, it is necessary that the audio be

segmented in sentences, have the correct transcriptions and the distribution of word

length be even across all of the dataset. This renders the task of learning the phoneme

alignments easier for the model, while it ensures less errors, since sequences with a

lot of words usually use a lot of GPU memory, bottle-necking the training session

14

(Pascual et al., 2019). While the LibriTTS dataset comes segmented in sentences,

that is usually not the case with audiobooks, which mostly present with bigger sound

chunks. Manually segmenting audiobooks proves to be time consuming, thus there

exist two options:

1. Take advantage of Voice Activity Detection (VAD), in order to split the audio on

sentence breaks, using a CNN. The process is described further below.

2. Pass the audio through the Google Speech To Text API (Chiu et al., 2018), in

order to obtain word timestamps. Cross-referencing the results with the ebook

transcription is then possible and, using an edit distance algorithm, construct a

mapping between audiobook and ebook words; Sentence - level segmentation

may then be achieved, using the Python programming language.

The first option is to leverage VAD. To this end, inaSpeechSegmenter (Doukhan et al.,

2018) may be used, in order to process the audio files. The library provides with

numerous options, such as gender, speech, music or silence detection and "has been

designed in order to perform large-scale gender equality studies based on men and

women speech-time percentage estimation". Using the library, a Comma Separated

Values (CSV) file is obtained, which presents with the timestamps of the sound file,

split on silence. Using Python, one can only keep the narrator’s utterances, doing away

with music, silence and chapter information, which is spoken by a speaker of a dif-

ferent gender. After a quality check, mapping the audio with the corresponding text

from the ebook is performed. This is rendered possible, since the quality check is only

performed for 3 hours of data and the quality of the library used is sufficient, so there

are not a lot of mistakes. In addition to this, using the library, a big amount of trail-

ing silences may also be avoided, which make it harder for the model to align. In the

case of larger amounts of data, one may proceed with Speaker Recognition methods

instead, albeit the timestamps the STT API provides are not entirely accurate (off by a

few milliseconds), so the edit distance would have also not worked for all of the sen-

tences and an even smaller number of the former would comprise the dataset. However,

this proves to be a viable solution when the VAD method underperforms and wrongly

classifies genders, or mid-sentence silences. This generally is affected by the voice

narrator, their narrating skill and the duration of the audio. In general, it should be

noted that the process of creating datasets out of audiobook recordings cannot be en-

15

tirely automated and some manual correction and quality checking is always welcome

and, to a certain extent, required.

4.5 Preprocessing

The LibriTTS corpus has had many normalization techniques applied to it; for that

reason, there is not any need to apply anything further. For the dataset constructed us-

ing the audiobook recording excerpt and its ebook counterpart, checks that it complies

with the following are performed:

1. Normalize each number and currency to its natural language counterpart.

2. Normalize each abbreviation to its natural language counterpart (Mr. to Mister,

Ms. to Miss etc.).

3. Upper case every sentence beginning.

4. Remove instances where code-switching occurs.

5. Phrase break punctuation that is not signified with the semi colon sign, is re-

placed with one.

6. Remove instances where the narrator imitates book characters, as that makes it

harder for the model to learn alignments.

The following sound information is used:

1. 22050Hz sampling rate.

2. Mono channel.

3. 16-bit.

4. Waveform audio format (WAV).

Finally, any sentence longer than ten (10) second is split to smaller segments, as longer

sequences prove to be harder for the network to model during evaluation time and,

thus, learn alignments for.

16

For the above, the SoX library (2012) is used, in order to batch process the sentence

files. A CSV file is constructed, that includes the number of the sentence, the orig-

inal transcription of the sentence and its normalized counterpart, in the style of the

LJSpeech dataset (Ito, 2017), which is the chosen format used while training the TTS

model. These are some of the considerations to be made when making constructing a

speech dataset for any speech recognition or speech synthesis task. Most open source

TTS pipelines that are based on deep neural network architectures, require that the

format of the dataset follow that of aligned sound-text pairs, and that the alignment

be included in a CSV or text (TXT) file (Iakushkin et al., 2018). The sound must be

monophonic, with a sample rate starting from 16kHz and a bit-rate of 16bit. Even

though 16kHz may prove enough for Speaker Recognition, however, Speech Synthesis

requires sound of better quality for more optimal results (Arik et al., 2017).

4.6 Tacotron and Tacotron2: A seq2seq approach to neural speech
synthesis

For the experiment cycles of this paper, Tacotron and Tacotron2 architectures are lever-

aged; thus, the problem of neural speech synthesis is treated as a seq2seq issue, using

seq2seq learning, which is first seen on Sutskever et al. (2014); seq2seq converts one

sequence to another, using RNN. Both Tacotron and Tacotron2 are generative models,

take raw character as input, and output spectrograms. Both models may be trained

using <text,audio> pairs. A traditional seq2seq system consists of an encoder, which

encodes a sequence of symbols into a fixed length vector representation, while the de-

coder decodes the vector representation into another sequence of symbols (Sutskever

et al., 2014). Since Tacotron and Tacotron2 do not require forced phoneme alignments,

they both can be trained from scratch, by using clean transcripts and the matching au-

dio. This comes in contrast to concatenative speech synthesis methods, which most

usually require that each sentence in the training corpus be accompanied by files indi-

cating start and end boundaries on sentence, word, and phoneme level, as also phone-

mic transcriptions of all words, including suprasegmentals, so the unit selection can

combine the best parts of phonemes (Khan and Chitode, 2016. This lack of alignment

requirement renders Neural Speech Synthesis a much more enticing alternative, dic-

tates, however, an absolute need that the corpus to be used be manually checked and

corrected before training, so the model is able to learn robust phoneme alignments.

17

Silences must also be trimmed, as they are impediment to the former.

4.7 Mozilla TTS

The Common Voice Project is an initiative led by Mozilla, in the goals of enabling

users to leverage the power of machine learning in the fields of Speech Recognition

and Speech Synthesis, by making access to large datasets easier (Ardila et al., 2019).

Mozilla TTS is a part of this initiative and is an engine that was first released in 2018.

The first implementations were based on Tacotron, while Tacotron2 support followed

later. Being an open source project anyone can contribute to, Mozilla TTS has been

seeing a lot of traffic and quick adoption, which has rendered it a competitive option

when it comes to training neural networks for speech synthesis objectives. Aside from

Tacotron and Tacotron2 support, Mozilla TTS also includes a speaker encoder side

project, which is useful when it comes to computing speaker embeddings for speakers,

as also pretrained models, free to use. It also provides with tools fit for dataset analysis,

which may be used to plot utterance distributions and decide on whether certain utter-

ances may be broken or not. The engine supports multispeaker TTS learning, prosody

modeling using Global Style Tokens (Wang et al., 2018) and some normalization tech-

niques that may be used in the case of small datasets. The user is free to choose an

attention mechanism from Forward, implemented in the style of Zhang et al. (2018),

Graves attention, or a bidirectional auto encoder.

Since the engine is lightweight, adaptable and trivial to use, Mozilla TTS is used for

the purposes of this paper, when attempting transfer learning and training models from

scratch. An implementation of multispeaker TTS from scratch is out of the time frame

of this paper, thus Louppe’s (2019) implementation is evaluated, in order to conclude

whether voice embeddings are able to model an unseen speaker’s voice. Finally, the

Griffin - Lim vocoder is the choice of vocoder, in order to keep up with the quick

experiment cycles.

4.8 Hyperparameters

Once the resources and datasets are organized, the training phase starts. In single

speaker training environments, the Mozilla TTS offers pre-processing scripts which

18

make data handling easier. In general, the engine expects the dataset in the format of

a CSV file that contains the name of each sentence, the sentence and its normalized

counterpart, all separated by the pipe symbol. On the basis that the dataset’s sample

rate is 22050 Hz, the following set of hyperparameters is proposed:

1. Size of the mel spectrogram frame: 80, in order to retain as many speech features

as possible.

2. Number of STFT frequency levels: 1025. This size of the linear spectrogram

frame fits in memory of the GPU and is not wide enough to provide with poor

time resolution.

3. Sample rate: 22050Hz, which is a popular sample rate.

4. STFT window length (in ms): 1024.

5. STFT window hop-length in ms: 256.

6. A pre-emphasis level of 0.98, in order to reduce spectrogram noise and make the

speech more structured.

7. A normalization range of -100 dB.

8. A reference level of 20 dB.

9. A power value of 1.5, which corresponds to wav signals sharpening after the

Griffin - Lim algorithm inverts the spectrogram, to make the sound more struc-

tured.

10. A number of 60 Griffin - Lim iterations, in order to have both quick an inference

time and acceptable quality.

11. A minimum frequency level of 50.0 for the mel spectrogram, since the speaker

is male.

12. Trimming of silences, to make it easier on the model to learn phoneme align-

ments.

13. A trim threshold of 60 dB, which serves trimming background noise and silences.

19

These attributes serve the purposes of quick extreme experiment cycles, without loss

of audio quality, or memory problems. In addition to these, a batch size of 64 is ini-

tially set and enable gradual training. Gradual training proves to be helpful when a

lot of steps are involved in the training of the neural network, as observed in Wang et

al. (2017). The implementation of gradual training in training the TTS network keeps

the batch size of 64 until the 5000th step, when it drops it to 32 and then, finally, to

16, on the 290000th step. The same applies to decoder frames prediction, which starts

from 7 and gradually decreases to 1, as the model starts to converge and is more con-

fident in its alignments. A learning rate of 0.000001 is implemented, combined with a

forward, location sensitive attention mechanism. Attention is a vital component used

when training a speech synthesis model; it is important to use an attention mechanism

which serves the diagonal nature of the problem, where the output aligns perfectly

with the text in a monotonic style. Location sensitive attention enables the network

to perform better, by allowing it to look into the previous alignment vectors and learn

diagonal attention more easily (Chorowski et al., 2015). A good learning rate is crucial

to the performance of the network, as having too small of a rate may result in never

reaching a convergence level, and a big learning rate runs the risk of overfitting the

model to the training data. To remedy the LSTM’s tendency to forget alignments when

inferring long sequences, a limit of 150 characters is set, when it comes to maximum

sequence length. Instead of raw characters, phonemes are used, as it helps with the pro-

nunciation. This also makes easier to adapt text-to-speech pipelines to most languages,

without worrying about language specific characters.

4.9 Training Environment

All models and experiments are trained and performed on a Compute Engine instance

on the Google Cloud platform, which is equipped with 30GB of RAM, 8 vCPU cores,

one NVIDIA K80 GPU, and runs on Ubuntu 18.04 LTS. Where local experiments and

data pre-processing are involved, a MacBook Pro 2019 with an 2,4 GHz Quad-Core

Intel Core i5 and 16 GB of RAM is leveraged.

20

4.10 Evaluation Method

The evaluation of a TTS system can be as trivial as listening to the output samples.

To this end, a combination of evaluating the output and Mean Opinion Score (Kim

et al., 2013) is deemed sufficient, which offers a scale of 1, which is bad, to 5, which is

excellent. In addition, the performance of the trained neural networks is further exam-

ined, in terms of decoder loss, postnet loss, alignments during evaluation and testing

phases, gradient normalization stepping and epoch times. In general, a diagonal align-

ment during evaluation and inference times, signifies that the model has learnt robust

alignments and knows when to stop inferring. These are the evaluations implemented,

as regards the finetuned model and the pipeline that uses neural speaker embeddings,

since the model trained from scratch does not produce acceptable results.

5 Results

5.1 Transfer Learning using Pretrained Weights

Starting with transfer learning, a pretrained model, which has been trained on the

Tacotron2 architecture, using a Forward Attention mechanism for 400.000 steps and

batch normalization from that point, until it reaches 670.000 steps, is used. The model

has been trained on a single-speaker dataset, with utterances recorded from a female

speaker. Finetuning this model on the small dataset, intelligible speech is obtained in

less than 8 hours. The model has adapted to the target speaker and is able to retain

the prosody of them, while the alignments remain robust, albeit less so than what ob-

serve before finetuning the model. With that said, the network is able to produce short,

unseen sentences that do not lack varying prosody and are generally of an acceptable

quality, especially considering that the vocoder of choice if Griffin - Lim based. In

short, the finetuned model provides with the scores found in Table 1, during evaluation

and train time.

The alignment scores refer to how well the model has learnt representations of phonemes

and is also a pseudo-metric when it comes to audio quality measurement. Tacotron

and Tacotron2 models start forming meaningful alignments approximately after 30000

21

Score Evaluation Train
Alignment 0.69 0.58
Loss (Decoder) 0.298 0.15
Lost (Postnet) 0.228 0.135
Stop Loss 0.050 0.280

Table 1: Results obtained when transfer learning.

steps of training (Wang et al., 2017). The decoder loss values refer to how well the

model can cope with sequences, when it has to compress the information it learns into

a fixed length vector, while the postnet loss values regard the part of the network where

a residual is applied to the mel spectrogram, for better reconstruction (Shen et al.,

2018). Finally, the stop loss values explain how well the model knows when to stop

performing inference, when it reaches the end of the sequence.

An alignment score of 0.69 during evaluation time, signifies that the model performs

well when it comes to hyperparameter tuning and that it obviously benefits from us-

ing all the compatible layers from the pretrained weights it is provided with; since all

weights are trained on the same language, all the layers of the pretrained weights are

used. As seen in the scores in Table 1, the finetuned model goes as high in alignments

as a score of approximately 0.70. However, as seen on Figure 6, there are parts of the

sequence it does not decode well (seen on the picture as blurry spots), so the perfor-

mance is diminished, in the form of pronunciation, or sound glitches. This is observed

during test time as well and, more specifically, in the alignments of the test sentences

(see Figure 9, Figure 10, Figure 11 and Figure 12). In general, while the network

seemingly performs adequately, the alignments present with artifacts and parts where

the model is confused.i

All loss scores, both during evaluation and train times show that the model may benefit

from longer training times, or more data. Loss scores seen in Table 1, leave much to

be desired. In general, the culprit to these values seems to be the fact that the dataset is

very limited. More specifically, as Figure 7 shows, the decoder loss value slowly keeps

increasing with each epoch, when the exact opposite should be happening. The model

seems to not be able to generalize to unseen data.

It is interesting that, while all values seem to be very close during evaluation and train

times, which would otherwise signify good hyperparameter tuning and general perfor-

mance, the stop loss value seems to spike during train time (see Table 1), which is

22

assumed to be more of a telltale sign that more data is needed. During test time, it

is verified in one of the tests we put the model through, that it does not know when

to stop inference; otherwise, the sequences that are produced do not exhibit the same

behaviour. In general, the loss scores leave much to be desires, however the pretrained

weights seem to be rectifying any issue the network may be having during training

time, which is promising.

Figure 6: Alignments during evaluation time. The blurred parts show that the model
has trouble in predicting the ground truth spectrogram, attributing to either noise or
bad phoneme alignments learning.

Figure 7: Decoder loss during evaluation time; the increase is attributed to the small
amounts of data Tacotron2 is provided with.

As expected and shown on Figure 8, spectrogram prediction is satisfying, attributing to

the pretrained weights the network is provided with. Although the loss values are high,

the network is still able to produce spectrogram representations, that are improved

using the L2 loss function. During test time, Figures 9, 10, 11 and 12 consistently

23

show with good spectrogram predictions, in terms of sound quality; however, the test

sentences in Figure 10 and 11 are the ones where the model seems to fall short in

its stopnet predictions, and it is noticed that there are repetitions of the end of the

sequence.

Figure 8: Ground truth and prediction of evaluation sentence. L2 loss function is
applied during evaluation time.

Figure 9: Sentence 1 alignments and spectrogram prediction.

Figure 10: Sentence 2 alignments and spectrogram prediction. The network is having
trouble predicting the correct spectrogram and knowing when to stop inferring.

5.2 Training a new model on 30 minutes of speech

For the model trained from scratch on the same dataset used to obtain the results ob-

served in section 5.1, results are expectedly not good; specifically, it is evident that

24

Figure 11: Sentence 3 alignments and spectrogram prediction.

Figure 12: Sentence 4 alignments and spectrogram prediction.

the model is not able to learn any kind of phoneme alignments. There is no speech

produced and the ground truth prediction during evaluation time never picks up on the

ground truth mel spectrograms. For the sake of fairness, the model is allowed to train

for two days on the same setup that is used for the experiments results obtained in sec-

tion 5.1 (on a model that was trained for 8 hours), in order to allow for more time. In

short, this model scores as follows:

Score Evaluation Train
Alignment 9.466e-3 9.300e-3
Loss (Decoder) 2.0 1.80
Lost (Postnet) 2.30 2.20
Stop Loss 0.280 0.250

Table 2: Results obtained when training a new model.

The obtained results show low performance, in terms of alignments and no improve-

ments on any part of the network. More specifically, as Table 2 and Figure 13 exhibit,

the loss curve plateaus somewhere around the value of 2, which is an extremely high

number and proves that the amount of data provided (30 minutes), is simply not enough

to train a seq2seq model from scratch. As mentioned above, a diagonal alignment in the

timestep frame signifies the model’s ability to form alignments and, as seen on Figure

14, the timestep of this specific network purely consists of artifacts, which explains the

25

very low alignment scores, also (the number approximately translates to -2.66). This

same behaviour can be observed in Figure 15, where the spectrogram prediction during

evaluation time is, essentially, noise and the network cannot predict the ground truth

spectrogram. For these reasons, we are not able to conduct any meaningful tests in the

form of synthesis, since the model only produces noise during training, evaluation and

test time. It can also be expected that the model would not perform any better using

Tacotron2 as the architecture, seeing as Tacotron is smaller and more efficient to train,

as it presents with less trainable parameters (Wang et al., 2017).

Figure 13: Decoder loss when training the model from scratch; the high rates and the
plateuing make it clear that the data is not enough.

Figure 14: Alignments of model during evaluation time, which showcase an inability
to learn phoneme representations.

26

Figure 15: Ground truth and prediction of model during evaluation time; here, the
predicted spectrogram is noise.

5.3 Speaker Embeddings

For the evaluation of the pipeline that synthesizes speech using neural speaker embed-

dings, a command line interface is used, which provides no front-end part; therefore,

no visualisation is possible and no screenshots or pictures of how the model performs

are provided; instead, listening to the samples obtained is the chosen way of evalua-

tion, after passing the recording of the source speaker and the text to be synthesized.

The pipeline, then, computes the voice features of the speaker of the utterance, takes

the text as input and conditions the decoder output on the features it extracted from the

audio utterance. In general, we find that the performance is satisfying and the output

speech resembles that of the source speaker. A discussion of the results can be found

further down below.

6 Discussion

6.1 Hypothesis Outcomes

Hypotheses 1 and 2 stated that the finetuned model would perform quite well, given that

the pretrained weights were trained for a long time and that the model that were to be

trained from scratch would perform very poorly. Both hypotheses are confirmed; from

tables 1 and 2, it is observed that the model which was finetuned on pretrained weighs

performs consistently much higher than the model that was trained from scratch, and

the conditioning of Louppe’s (2019) TTS pipeline on the neural speaker embeddings

computed from the dataset. Hypothesis 3 states that the TTS engine that is conditioned

on neural speaker embeddings will return acceptable results, although not of better

27

quality than the one obtained with the finetuned model. Once again, the hypothesis is

confirmed.

6.2 Individual Models

As section 5 recalls, the finetuned model presents with the best performance and re-

sults off the three experiments presented in this paper. This does not come as a surprise,

since the pretrained weights used serve as a robust backdrop, after having been trained

for 670.000 steps on a relatively large dataset of 24 hours, on the same language. It

is interesting that, while the alignments the model presents with might look erratic at

times (refer to Figure 10 and 11), the model still manages to produce speech of ac-

ceptable quality; the loss values and the presence of under-fitting (refer to Figure 7)

make it clear that, even though finetuning may, in general, yield better than expected

results, a large and balanced dataset is always needed for the network’s performance

to not be impeded; in the experiments, there is the attempt to leverage the least amount

of data, so to simulate an environment where the presence of the former is lacking, but

pretrained weights exist. This serves the objective that for different needs, different

datasets exist, however the lack of specific data types should not render a task of train-

ing a neural network to a different end impossible; for example, a model trained on

a dataset that is industry oriented, should serve as a good starting point for a network

intended to be used for personal needs. This is showcased by the fact that the origi-

nal dataset the pretrained weights were trained on, together with the dataset of choice,

all comprise of audiobook recordings and the test sentences chosen, are general news

headlines extracts.

The model that was trained from scratch does not achieve any accuracy, which is to be

expected, considering the amount of data it was fed was incredibly small and would

never be enough. In general, it is accepted that a good, balanced dataset with a duration

of approximately 24 hours is needed, in order for a model to be able to generalize and

achieve robust alignments. The term balanced refers to audio recordings that are, in

general, up to 100 characters long, are clean and well transcribed. The efficiency and

number of parameters neural network architectures like Tacotron and Tacotron2 offer

should, also, not support the assumption that a small amount of data would render a

model to perform well. Additionally, the results that are obtained here correlate to

what Chung et al. (2018) highlight, which is that, when baseline Tacotron is trained

28

on approximately 24 hours minutes of speech, the network fails to produce intelligible

speech. In lieu of these scores, there have been proposed different, semi-supervised

training frameworks, in order to improve the data effieciency of Tacotron, by introduc-

ing textual and acoustic knowledge in the form of vector representations, that has been

gained by training other neural networks on different amounts of text (2018). In these

experiments, Tacotron is able to produce intelligible speech, when trained on 30 min-

utes of speech; however, the time limitations of this specific experiment do not allow

such exploration.

As far as evaluating the pipeline that produces speech conditioned on neural speaker

embeddings, in the listening tests, a small difference in the speech produced on the

neural speaker embeddings computed, can clearly be heard. This has many explana-

tions; first, the authors state that the pretrained models provided have been trained on

the VoxCeleb dataset only, and nothing else. This of course sets a limit as to how

accurate of embeddings the speaker encoder can compute and how accurate of mel

spectrograms the synthesizer can produce. In general, the concept of producing mel

spectrograms on speaker embeddings is supported by the notion that all people have

different voices, however all of them share some base characteristics and some voices

will be more similar to others. It is also quite expected that a single-speaker model

is able to perform better on that specific voice and, finally, it is safe to assume that,

the fact that the architecture of the author’s pipeline has been trained on speech of

frequency of 16kHZ, plays a role in quality. All in all, the TTS pipeline seems to per-

form quite adequately and that similarity between source audio and produced output is

there. It is observed that there are sound artifacts between utterances, especially when

punctuation is concerned, where the model produces some static noise. In taking the

punctuation out, the model produces speech that is very quick and lacks sentiment and

prosody. With that said, it should be noted that the speaker encoder of this particular

neural network performs very well in capturing the source speaker style in the form of

speaker embeddings, seeing as it has been trained on large amounts of data, for a long

time; thus, it also affects the quality of the synthesized voice, as presented by Jia et al.

(2018). In general, training such neural networks is often an easier task, considering

that no text transcriptions are needed, so sound of any kind can be used. Under this

prism, these networks may be trained independently of the synthesizer and the data

(and quality thereof) the latter requires. An example of a speaker encoder network and

its performance is showcased in Figure 16, when the same speaker encoder network

that is evaluated in Louppe’s (2019) pipeline, is used in combination with a different

29

Python library, and it has learnt to distinguish between genders, thus is able to form

different clusters, based on the gender of the speaker2.

Figure 16: Visualization of a clustering algorithm, using a speaker encoder network.
The model is able to distinguish between genders and can form different clusters for
male and female voices.

6.3 Overall

The trend that is observed is high loss values, in the two training experiments that

are run. Although there is a very big difference in scores and performance between

the two models, with the model trained from scratch not performing at all, the scores

further solidify the view that a good neural network architecture will not yield any good

results if the amount of data is small or of low-quality. The neural speaker embeddings’

performance leads us to think that, although machine learning has reached a point

where zero-shot neural speech synthesis may be achieved, there still are a lot of factors

at play, such as the number of parameters of the network and the construction of the

TTS engine in terms of speaker encoder quality and training data. As section 2 recalls,

other researchers have considered different types of neural speaker embeddings when

modelling speech, in order to rank them and make use of the best one. The types

of embeddings the neural speech synthesis engine uses, in order to perform speaker

adaptation using embeddings are not known; it should also be noted that the pipeline

is, by today’s standards, not up to date with current technology. The initial experiment

2Picture taken from Rezemblyzer: https://github.com/resemble-ai/Resemblyzer

30

scope included training a multispeaker TTS on Tacotron2 from scratch, in order to

test its performance, but such activity would take a long time, and it was possible to

implement it.

The models trained, both depend on Tacotron2 architecture and not Tacotron. The

reason for this, because of the fact that the pretrained weights the author is provided

with, are also trained on Tacotron2, so they are not compatible with Tacotron setups.

It would have been interesting to see if Tacotron might perform better in smaller data,

since the trainable parameters of the network are also more limited.

6.4 Considerations when evaluating

It is wise to consider a number of things when evaluating neural speech synthesis.

First, one should be aware of the fact that the choice of neural vocoder affects the

output waveforms, but should not be confused with the performance of the synthesizer,

which produces the mel spectrograms. In all of the tests, the Griffin Lim algorithm is

used, since there is not any time to train a neural vocoder, howeverthis is taken into

account, when testing the output audio. Even though vocoding should be a part of the

evaluation, it should usually come last, since it is a part of the whole pipeline that can be

finetuned on its own and so the primary concerns should include naturalness of speech

and prosody. To this end, when Mean Opinion Scoring is performed, the sentences are

synthesized and the evaluators are asked that they judge whether the voice resembles

that of the reference speaker, rather than the sound quality of the clips, which is to

be expectedly diminished because of the usage of Griffin - Lim instead of a neural

vocoder. In short, four different sentences (found in the appendix) are distributed, and

the average scores obtained for each sentence are as follows:

Test Sentence MOS: Trained Model MOS: Embeddings
1 3.75 3.25
2 3.50 2.25
3 3.0 3.0
4 3.25 2.50

Table 3: Mean Opinion Scores acquired on the test sentences. On a scale from 1 to 5,
1 is bad and 5 is excellent, almost wholly resembling of the source speaker.

In table 3, a general score of 3 and above is observed, that does not exceed 4, which

is to be expected, since the data is small and so the model seems to be limited in

31

performance; however, in the scale of MOS, with 3 being classified as a "fair" scoring,

it does seem that the model is able to perform adequately, preserving prosody and

resembling the source speaker. In general, all evaluators have graded the same. These

scores posit that, with longer training times and more data, a speech synthesis neural

network should be able to achieve an even better result, a performance which may

further be improved using a neural vocoder. In terms of speaker similarity as regards

the speaker embeddings pipeline, the evaluators are asked to grade on voice similarity

and naturalness of utterances. The lower scores are attributed to the less natural speech

the engine produced and the static noise that was included in the output samples.

In terms of performance, the model should also be robust when it comes to reading

out longer sentences, since LSTMs are known to have trouble when handling long

sequences (Nugaliyadde et al., 2019). A solution to that would be to include long se-

quences during training, although that would increase training times and would, most

definitely, put more strain on the GPU, as different experiments have showcased. An-

other solution includes truncated back propagation through time, where the gradient

can be estimated from a subset of the last time steps. It allows all sequences to be

provided as input and execute the forward pass, but only the last tens or hundreds of

time steps would be used to estimate the gradients and used in weight updates (Tallec

and Ollivier, 2017).

Another point of discussion is the nature of data and how well the model can general-

ize. Even though it is obvious that the goal of a neural network is for it to be able to

perform on out-of-domain data, it remains a fact that a model learns what a model is

fed; so, if the dataset consists of webpage content readings, this model will obviously

not be the best candidate for audiobook reading. This should not take away that such

datasets and pretrained weights would not serve as good starting points, however it

is a point of interesting discussions to be made; the finetuned model uses pretrained

weights that have been trained on a dataset which consists of audiobook recordings,

so good performance is achieved, in terms of prosody. To determine whether a neu-

ral network trained on different content may serve as a good candidate in audiobooks

reading, a smaller experiment is run; the goal here is to train a model on a profes-

sionally recorded dataset and have it output speech that comes from text off ebooks.

The Swedish Corpus for Speech Synthesis that is found on the National Bank of Nor-

way is used, which includes 7 hours of utterances recorded from a native speaker from

Stockholm, sampled at 44kHZ (Nordisk Språkteknologi Holdings, 2002) and consist-

32

ing of stereo channel, including a laryngograph recording. The corpus is noted to be

phonemically optimized, aimed at covering as many diphone combinations as possible,

with a goal to include prosody variation. Since the utterances found in it are short, the

scope of the experiment is limited to the one of childrens’ books, which are known to

include shorter sentences. Tacotron2 is used for training, since it has more trainable

parameters than Tacotron and offers for better alignments. In general, it is observed

that the model is not able to align well and the scores obtained are poor when trying

to synthesize speech found on childrens’ ebooks, further solidifying the take on how

prosody matters and that specific domains call for specific types of data.

6.5 Data criticality: what makes a good TTS dataset?

The conclusion that is drawn, as regards the quality of the output synthesis, is that the

quality of the data used for training is responsible for a big part of the performance of

the system. These traits correspond to many attributes, such as signal to noise ratio, the

pitch of the speaker, the average length of the sentences and the variation of different

phonemic combinations. As a general rule, any dataset fit for training machine learning

algorithms must be cleaned and organized before it is used on the model. Although

the mantra of "more data, more representation" sounds very alluring and, to a certain

extent, very reassuring that a model will perform better, when it comes to neural speech

synthesis, it is much more preferable to have half the amount of correctly segmented

and transcribed recorded speech, than double the latter, with wrong transcriptions and

cut speech chunks.

In independent experiments that are run, the objective is to train Tacotron2 with data

that include some wrong transcriptions, abrupt sentence endings and aspiration sounds

at the ends of phrases, where there should have been a silence, or padding added. It

seems that, especially Tacotron2, is able to form much more robust alignments us-

ing just 6 (six) hours of speech, if the dataset is mostly clean and assuming that is

has the correct transcriptions and a relatively normal, Gaussian-like sentence distribu-

tion, while it had a harder time converging on double the amount of hours and a lot

of transcription mistakes. The discovery that Tacotron2 produces perfectly intelligible

speech on 6 hours of training data is very promising, as it paves the way for additional

experiments and partly gives solution to the problem of acquiring clean, transcribed

speech data, which is known to be very costly and time consuming to label. Further-

33

more, it is evident that, the dataset must have a high signal-to-noise ratio, devoid of as

much background noise as possible. While different authors note on audiobooks being

an unfit source of data for text to speech purposes, the author maintains that they are

indeed some of the best options, considering that they mostly are recorded in profes-

sional settings, which include properties such as a high bit-rate and recordings made

in anechoic rooms, on professional equipment. The fact that Tacotron2 is able to learn

phoneme alignments itself, only given pairs in the form of <text,audio>, means that

more resources may be devoted to good recording quality and annotation, instead.

6.6 The issue of underwhelming speech: prosody modelling

Another trend that is prevalent when neural speech synthesis is leveraged, is the way

neural networks tackle speech prosody. In general, as section 2 recalls, Tacotron and

Tacotron2 learn, by default, character representations during training and do not retain

any prosody characteristics. It is no secret that neural speech synthesis is suggested

as an alternative, when the goal is to produce a TTS engine that provides with more

natural speech that is more human sounding. In the alternatives of neural TTS, namely

concatenative speech synthesis and parametric speech synthesis, one of the require-

ments is that a large speech database be in a place, which contains as many graphemes

and their phoneme counterparts as possible, in order for the model to generalize well

and perform an accurate unit selection, especially in out of domain words. That is

not to say that a neural network does not need a large phonemic representation, since

a neural network essentially learns what it is fed during training time; however, the

main disadvantage of the unit selection method, is that the dataset used consists of the

speaker speaking in a suppressed tone, with as few vocal variations as possible (Khan

and Chitode, 2016). The above leads to a system that is fairly even in tone, thus makes

it less apparent when different units are concatenated to form a phoneme. This means

that a concatenative speech synthesis system is to be fairly monotonic in speech; how-

ever it makes these solutions much less flexible and costly to produce, since a new

database is needed when speech must be added.

Both Tacotron and Tacotron2 are able to capture vocal characteristics when trained on

data that is expressive and rich in emotional range, however are limited by the approach

of learning character embeddings as input. This in turn means the prosody cannot be

controlled during inference time and neural networks are, mostly, unpredictable in what

34

they output. Prosody modeling using Global Style Tokens (Wang et al., 2018) can rem-

edy that, by adding an extra embedding layer to the network’s architecture, which is

responsible for capturing prosody characteristics, while training. These attributes are

modeled and included in the hidden layer and during inference time, may be concate-

nated to the encoder decoder outputs, to control the style of the output speech. The

global style tokens are text predicted and do not require explicit labels during training

and can be used to control speech synthesis in many levels, such as speed of talking,

and style which is independent of the text content. Wang et al. (2018) use the tokens

to make Tacotron2 to replicate the speaking style of a single audio clip across an en-

tire long-form text corpus; Stanton et al. (2018) highlight that the tokens are also able

to remove background noise that is there, when the dataset the model is trained on is

noisy. While Global Style Tokens are usually used to make speech synthesis more ex-

pressive, the last part means that global style tokens may also be used in combination

with datasets formed from found data, crawled for the internet, when low-resource

languages are in question and the data acquired is noisy. In this paper, there are no

experiments with Global Style Tokens present, but varying prosody in the output clips

is noted, attributing it to a dataset rich in n-gram distributions only seen a handful of

times, thus the model was able to model the voice characteristics as well.

6.7 High quality synthesis using a CPU: GAN vocoders

Generating high fidelity audio waveforms is a task that happens with the usage of an

additional neural network, which takes in the spectrograms the synthesizer has pro-

duced and turns them into sound. As section 3 recalls, these vocoders can be based

on architectures like the ones WaveNet and WaveRNN propose (Shen et al., 2017;

Kalchbrenner et al., 2018). However, it is also known that these networks are compu-

tationally expensive and require access to GPU during inference time. This also calls

for increased computation times which may prove inefficient. To this end, Kumar et

al. (2019), explore the usage of Generative Adversarial Networks as vocoders, in or-

der to achieve high quality, real time speech synthesis, by training such a network for

raw audio generation purposes, without additional distillation. The architecture of the

network is that of a typical GAN, that is it consists of a generator, which is a fully

convolutional network, that takes a mel spectrogram as input and three discrimina-

tors, which operate on different sound scales. Weight normalization ensures that the

sound quality does not diminish. The authors find that the model is lightweight, easy

35

to train and produces sound waves of reasonable quality, but that it can also generalize

to unseen speakers, when trained on a multispeaker dataset.

Experimenting with GAN techniques for high quality audio synthesis, Yamamoto et

al. (2019) propose ParallelWaveGAN, which uses a non-autoreggresive WaveNet net-

work, which "is trained by jointly optimizing multi-resolution spectrogram and adver-

sarial loss functions, which can effectively capture the time-frequency distribution of

the realistic speech waveform" (Yamamoto et al., 2019). The network is compact, only

has 1.44 million trainable parameters and can generate high quality speech in real time,

using a CPU. The novelty lies in the fact that the architecture can be trained without

any teacher-student framework, which follows the idea of training two networks, and

then the second network tries to replicate the outputs of the first, bigger network (Guo

et al., 2018). The absence of this architecture leads to faster training and convergence

times. When coupled with a TTS acoustic model, ParallelWaveGAN achieves a MOS

of 4.16. The model consists of 30 dilated residual convolutional blocks, with exponen-

tially increasing three dilation cycles. Weight normalization is applied to all the layers,

both for the generator and the discriminator. STFT spectral loss is computed, using

the sum of three STFT losses, with a Hanning function applied before the FFT pro-

cess. The evaluations show that the systems trained with STFT losses perform better

than the counterparts which do not have STFT losses computed. The autoreggresive

WaveNet system produces a high-frequency sound, as a result of it using a band limited

mel spectrogram for local conditioning, while the systems with STFT loss were able to

extract full band frequency information from the STFT loss itself. As future research,

the authors propose improvements in the multi-resolution STFT auxiliary loss, which

may lead to better capturing speech characteristics and emotion.

36

7 Conclusions and Future Work

This paper addresses the task of speaker adaptation, using pretrained weights and neu-

ral speaker embeddings. There are several areas that the experiments could have been

improved in, if the time frame of the paper were to be bigger, or the reach of the paper

were to be further. Firstly, it is noted that the amount of time provided was not enough

to add improvements to the models, such as training a neural vocoder, or trying dif-

ferent sets of hyperparameters to achieve better performance scores and alleviate the

problem of feeding the neural network with not a lot of data. It is clear from the re-

sults that, in situations where small amounts of data may be used, available pre-trained

weights prove to be extremely helpful and can be a good starting point in providing

with robust alignments; however the high loss score that is present in all of the ex-

periments conducted, which involve training, highlight the importance of data and the

role they play in a model’s performance. To this end, in section 5.3, evaluation of the

performance of an already constructed neural speech synthesis pipeline is done, which

conditions the speech on neural speaker embeddings. The initial plan was to train a

similar pipeline by ourselves, with different sets of data and evaluate the performance

of it and how well it might be able to generalize to unseen speakers. Such objective

could, unfortunately, not be completed.

Suggestions for future work are aplenty and generally center around speaker adapta-

tion using neural speaker embeddings. The notion of zero-shot speech synthesis is

intriguing and one that should further be explored, in lines of evaluating different types

of embeddings and ways to inject them in the model. Training a large, multispeaker

TTS model with good speaker representation should, in theory, yield good results when

attempting voice cloning, using an unseen speaker’s voice embeddings.

Speech vocoding remains a computationally expensive task and requires an additional

neural network that turns the mel spectrograms the synthesizer predicts to sound quality

waveforms. Generative Adversarial Networks may help in bridging the gap between

high quality audio generation and computation times.

Global Style Tokens are promising in the sense that they may allow a speech synthesis

model more control over speaking style and multispeaker TTS systems trained on large,

expressive, multispeaker datasets would greatly benefit from that. Architectures like

Tacotron and Tacotron2 have made it possible that expressive speech can be produced,

37

although more work remains to be done on prosody modeling.

38

8 References

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R.,

Saunders, L., Tyers, F. M., and Weber, G. (2019). Common voice: A massively-

multilingual speech corpus.

Arik, S., Diamos, G., Gibiansky, A., Miller, J., Peng, K., Ping, W., Raiman, J., and

Zhou, Y. (2017). Deep voice 2: Multi-speaker neural text-to-speech.

Arik, S. O., Chen, J., Peng, K., Ping, W., and Zhou, Y. (2018). Neural voice cloning

with a few samples.

Barras, B. (2012). Sox : Sound exchange.

Chiu, C.-C., Sainath, T., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan, A.,

Weiss, R. J., Rao, K., Gonina, K., Jaitly, N., Li, B., Chorowski, J., and Bacchiani,

M. (2018). State-of-the-art speech recognition with sequence-to-sequence models.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-

based models for speech recognition.

Chung, Y.-A., Wang, Y., Hsu, W.-N., Zhang, Y., and Skerry-Ryan, R. (2018). Semi-

supervised training for improving data efficiency in end-to-end speech synthesis.

Cooper, E., Lai, C.-I., Yasuda, Y., Fang, F., Wang, X., Chen, N., and Yamagishi, J.

(2019). Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker

embeddings.

Doukhan, D., Lechapt, E., Evrard, M., and Carrive, J. (2018). Ina’s mirex 2018 music

and speech detection system. In Music Information Retrieval Evaluation eXchange

(MIREX 2018).

Fang, W., Chung, Y.-A., and Glass, J. (2019). Towards transfer learning for end-to-end

speech synthesis from deep pre-trained language models.

Gerchberg, R. W. (1972). A practical algorithm for the determination of phase from

image and diffraction plane pictures.

Griffin, D. and Jae Lim (1984). Signal estimation from modified short-time fourier

transform. IEEE Transactions on Acoustics, Speech, and Signal Processing,

32(2):236–243.

39

Guo, T., Xu, C., He, S., Shi, B., Xu, C., and Tao, D. (2018). Robust student network

learning.

Hong, Y., Hwang, U., Yoo, J., and Yoon, S. (2019). How generative adversarial net-

works and their variants work. ACM Computing Surveys, 52(1):1–43.

Hunt, A. J. and Black, A. W. (1996). Unit selection in a concatenative speech synthesis

system using a large speech database. In 1996 IEEE International Conference on

Acoustics, Speech, and Signal Processing Conference Proceedings, volume 1, pages

373–376 vol. 1.

Iakushkin, O., Fedoseev, G., Shaleva, A., and Sedova, O. (2018). Building corpora

of transcribed speech from open access sources. In Proceedings of the VIII In-

ternational Conference "Distributed Computing and Grid-technologies in Science

and Education" (GRID 2018), volume 2267 of CEUR workshop proceedings, pages

475–479, Germany. RWTH Aahen University.

Ito, K. (2017). The lj speech dataset. https://keithito.com/

LJ-Speech-Dataset/.

Jia, Y., Zhang, Y., Weiss, R. J., Wang, Q., Shen, J., Ren, F., Chen, Z., Nguyen, P., Pang,

R., Moreno, I. L., and Wu, Y. (2018). Transfer learning from speaker verification to

multispeaker text-to-speech synthesis.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E.,

Stimberg, F., van den Oord, A., Dieleman, S., and Kavukcuoglu, K. (2018). Efficient

neural audio synthesis.

Khan, R. A. and Chitode, J. S. (2016). Concatenative speech synthesis: A review.

International Journal of Computer Applications, 136:1–6.

Kim, C.-c., Ha, S.-y., Roh, B.-h., Jeong, J.-p., and Choi, J.-y. (2013). Measurement

method for mean opinion score in actual home environments. pages 16–19.

Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W. Z., Sotelo, J., de Bre-

bisson, A., Bengio, Y., and Courville, A. (2019). Melgan: Generative adversarial

networks for conditional waveform synthesis.

Li, N., Liu, S., Liu, Y., Zhao, S., and Liu, M. (2019). Neural speech synthesis with

transformer network. In AAAI.

40

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

Louppe, G. (2019). Master thesis : Automatic multispeaker voice cloning.

Luong, H.-T. and Yamagishi, J. (2019). A unified speaker adaptation method for speech

synthesis using transcribed and untranscribed speech with backpropagation.

Masuyama, Y., Yatabe, K., Koizumi, Y., Oikawa, Y., and Harada, N. (2019). Deep

griffin-lim iteration.

Nagrani, A., Chung, J. S., and Zisserman, A. (2017). Voxceleb: a large-scale speaker

identification dataset.

Neekhara, P., Donahue, C., Puckette, M., Dubnov, S., and McAuley, J. (2019). Expe-

diting tts synthesis with adversarial vocoding.

Nordisk Språkteknologi Holdings, A. (2002). Nst swedish speech synthesis (44 khz).

Nugaliyadde, A., Wong, K. W., Sohel, F., and Xie, H. (2019). Language modeling

through long term memory network.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An asr

corpus based on public domain audio books. In 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210.

Pascual, S., Serrà, J., and Bonafonte, A. (2019). Exploring efficient neural architectures

for linguistic–acoustic mapping in text-to-speech. Applied Sciences, 9:3391.

Perraudin, N., Balazs, P., and Søndergaard, P. L. (2013). A fast griffin-lim algorithm. In

2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,

pages 1–4.

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y. (2019). Fast-

speech: Fast, robust and controllable text to speech.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang,

Y., Wang, Y., Skerrv-Ryan, R., Saurous, R. A., Agiomvrgiannakis, Y., and Wu, Y.

(2018). Natural tts synthesis by conditioning wavenet on mel spectrogram predic-

tions. In 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4779–4783.

41

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang,

Y., Wang, Y., Skerry-Ryan, R., Saurous, R. A., Agiomyrgiannakis, Y., and Wu, Y.

(2017). Natural tts synthesis by conditioning wavenet on mel spectrogram predic-

tions.

Stanton, D., Wang, Y., and Skerry-Ryan, R. (2018). Predicting expressive speaking

style from text in end-to-end speech synthesis.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks.

Tallec, C. and Ollivier, Y. (2017). Unbiasing truncated backpropagation through time.

Tenney, I., Das, D., and Pavlick, E. (2019). Bert rediscovers the classical nlp pipeline.

Tits, N., Haddad, K. E., and Dutoit, T. (2019). Exploring transfer learning for low

resource emotional tts.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,

Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016a). Wavenet: A generative

model for raw audio.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and

Kavukcuoglu, K. (2016b). Conditional image generation with pixelcnn decoders.

van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu,

K., van den Driessche, G., Lockhart, E., Cobo, L. C., Stimberg, F., Casagrande, N.,

Grewe, D., Noury, S., Dieleman, S., Elsen, E., Kalchbrenner, N., Zen, H., Graves,

A., King, H., Walters, T., Belov, D., and Hassabis, D. (2017). Parallel wavenet: Fast

high-fidelity speech synthesis.

Vig, J. (2019). A multiscale visualization of attention in the transformer model.

Wang, D. and Chen, J. (2017). Supervised speech separation based on deep learning:

An overview.

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., Xiao,

Y., Chen, Z., Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark, R., and Saurous, R. A.

(2017). Tacotron: Towards end-to-end speech synthesis.

42

Wang, Y., Stanton, D., Zhang, Y., Skerry-Ryan, R., Battenberg, E., Shor, J., Xiao,

Y., Ren, F., Jia, Y., and Saurous, R. A. (2018). Style tokens: Unsupervised style

modeling, control and transfer in end-to-end speech synthesis.

Yamamoto, R., Song, E., and Kim, J.-M. (2019). Parallel wavegan: A fast waveform

generation model based on generative adversarial networks with multi-resolution

spectrogram.

Zen, H., Clark, R., Weiss, R. J., Dang, V., Jia, Y., Wu, Y., Zhang, Y., and Chen, Z.

(2019). Libritts: A corpus derived from librispeech for text-to-speech. In Inter-

speech.

Zhang, J.-X., Ling, Z.-H., and Dai, L.-R. (2018). Forward attention in sequence- to-

sequence acoustic modeling for speech synthesis. 2018 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP).

43

A Mozilla TTS github repository

https://github.com/mozilla/TTS

44

B Samples used for Mean Opinion Scoring

https://drive.google.com/open?id=12mOaSNbKlMtJO8XXFRHS274Fn8cqAYj2

45

	List of Figures
	List of Tables
	Introduction
	Related Work
	Few shot: Finetuning existing models
	Zero shot: Using neural speaker embeddings

	Neural Speech Synthesis
	Tacotron
	Tacotron2
	WaveNet
	WaveRNN
	Griffin - Lim Algorithm and Vocoder
	Goals and Hypotheses

	Methodology
	Data Preparation
	Speech Dataset
	The VoxCeleb Dataset
	Sentence - Level Segmentation
	Preprocessing
	Tacotron and Tacotron2: A seq2seq approach to neural speech synthesis
	Mozilla TTS
	Hyperparameters
	Training Environment
	Evaluation Method

	Results
	Transfer Learning using Pretrained Weights
	Training a new model on 30 minutes of speech
	Speaker Embeddings

	Discussion
	Hypothesis Outcomes
	Individual Models
	Overall
	Considerations when evaluating
	Data criticality: what makes a good TTS dataset?
	The issue of underwhelming speech: prosody modelling
	High quality synthesis using a CPU: GAN vocoders

	Conclusions and Future Work
	References
	Appendix Mozilla TTS github repository
	Appendix Samples used for Mean Opinion Scoring

