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Brno University of Technology
Department of Computer Graphics and Multimedia
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ABSTRACT

Automatic speaker recognition is used in authentication, surveillance, and foren-
sic applications. Authentication applications use voice as a convenient method to
access physical locations or log in to devices. For surveillance purposes, recogni-
tion technology can be used, for example, by security agencies to find a criminal
by monitoring speech data on telephone networks. In forensic cases, the voices
recorded from a crime scene may be analyzed and identified automatically to find
clues and evidence relating to the crime. All the above applications benefit from the
improvements to speaker recognition technology. The improvements can include
increased speed, robustness, and security. Faster recognition systems help create a
better user experience in authentication applications and facilitate surveillance by
allowing more speech data to be processed in the same amount of time. Robustness
helps in all applications by mitigating the detrimental effects caused by variabilities
in speech, such as variation caused by recording devices, acoustic environments,
and the speaker’s health. Finally, the security of speaker recognition must be con-
sidered if the technology is used for authentication to minimize the risks associated
with malicious use.

This doctoral dissertation presents a versatile selection of studies on the above
three topics: speed, robustness, and the security of automatic speaker recognition.
The studies include both theoretical and experimental research as well as tutorial-
like discussions, challenge organization work (ASVspoof 2019), and science pop-
ularization elements. In addition to the studies included in the dissertation, this
dissertation offers a technical overview of the selected techniques commonly used
in modern speaker recognition systems.

The speed of speaker recognition systems is considered in three studies. The first
study compares multiple fast-to-train speaker recognition systems based on dimen-
sionality reduction of Gaussian mixture model (GMM) supervectors. The second study
deploys one of the compared systems in a web application used for demonstrating
speaker recognition technology to the public. This study focuses on recognition speed
rather than the speed of training. In the last study, the training speed of the well-
known i-vector model is improved by performing computations using a graphics
processing unit.

Likewise, robustness is considered in three studies. The first two studies ad-
dress the issue of mismatch between speaker enrollment and testing utterances by
proposing robust acoustic features. The proposed features, based on time-varying
linear prediction, reveal promising results in mismatch conditions caused by rever-
beration and changing the speaking style to whispering. The third study takes a
different approach by focusing on the utterance-level features (embeddings) rather
than on acoustic features. This study combines the ideas of GMMs, generative i-
vector models, and deep neural network-based feature extractors into a so-called
neural i-vector model.
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Finally, the topic of security is also discussed in three studies. These studies
consider various kinds of spoofing attacks against automatic speaker verification
(ASV) systems. The first one presents the ASVspoof 2019 challenge and its results.
This challenge evaluated anti-spoofing methods against replayed, converted, and
synthesized speech. The second study evaluates the effectiveness of mimicry at-
tacks enhanced using technology-assisted target-speaker selection. The last study
proposes so called worst-case false alarm rate metric, which can be used to evaluate
the potential of technology-assisted target-speaker selection attacks. Additionally,
the study proposes a generative model of ASV scores, which allows the estimation
of the proposed metric for arbitrary speaker population sizes.

In summary, this dissertation advances and supports speaker recognition re-
search on multiple fronts. It provides some future directions for improving the core
technology, and it supports further research on ASV security. It explains the pecu-
liarities of speaker recognition for whispered speech, and it offers ideas on how to
design engaging speaker recognition technology demonstrations.

Universal Decimal Classification: 004.8, 004.85, 004.934
Library of Congress Subject Headings: Pattern recognition systems; Voice; Speech;
Speech processing systems; Identification; Authentication; Machine learning; Neural net-
works (Computer science)
Yleinen suomalainen ontologia: identifiointi; tunnistaminen; todentaminen; verifiointi;
puhujantunnistus; hahmontunnistus; tekoäly; koneoppiminen; neuroverkot
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1 INTRODUCTION

A widespread transition in the field of machine learning is currently occurring — a
transition from rule-based methods and shallow statistical models to deep learning
with deep neural networks (DNNs). The transition has been particularly prevalent
in the fields of image [8, 9] and speech processing [10]. Recent advancements in
these fields, for example in face [11], speech [12], and speaker recognition [13], are
largely a result of developing more powerful deep learning models. The products
of this progress have been deployed in consumer applications at a rapid rate [14].
For example, many new smartphones use face recognition to unlock the phone.
In addition, translator applications that can recognize spoken words and language
automatically, translate speech to another language, and synthesize the translation
results to natural-sounding speech are commonly found in phones.

While the enhanced accuracy of modern technologies has enabled a wide variety
of new applications, the need for further research continues into the foreseeable
future. The problems in machine learning are often not fully solved, but the existing
solutions can always be improved. As the techniques improve over time, they can
be applied to increasingly more difficult tasks.

An example of a difficult application for machine learning is the use of biometric
identifiers to identify people. Biometric identifiers are measurable characteristics of
humans, such as fingerprints, facial characteristics, heartbeat, or other physiologi-
cal or behavioral traits [15]. The difficulty of biometric identification is highlighted
by the fact that even a well-established fingerprint-matching task can be challeng-
ing when encountering partial fingerprints or fingerprints from wet or damaged
fingers [15].

The challenges are even more profound with biometric identifiers of voice (voice
biometrics) because human speech is subject to many nuisance variations [16]. The
variability can be caused by background noises, varying acoustic environments, and
varying recording devices. While all of these sources of variability (extrinsic fac-
tors) are independent of the speaker, another set of variabilities originates from the
speaker (intrinsic factors): The voice can be different when people are ill, tired, or
emotional. In addition, voice changes as a result of aging. Furthermore, the voice
can be altered intentionally [17], for example, when a voice actor plays a character.

As voice is one of the most natural forms of communication between humans,
it is also a very convenient method of providing biometric identifiers. The applica-
tions of voice biometrics include its use in forensics [18], surveillance [19], authen-
tication [20], and human-to-machine communications [21]. An example of forensic
application is the use of technology to identify people at a crime scene based on
a voice recording. Voice biometrics can be used for surveillance, for example, by
listening to voice communications over the Internet. The potential authentication
applications vary from banking scenarios to unlocking a door or phone. Finally,
voice biometrics can be used to enrich human-to-machine communications by pro-
viding electronic appliances a means to know who is communicating with the device
(e.g., Google Home [21]).
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1.1 RESEARCH THEMES IN THIS DISSERTATION

The broad focus of this dissertation is on automatic speaker recognition [13,16]. Speaker
recognition refers to identifying or verifying people’s identities from their voices,
and the word automatic signifies that this is done by a computer rather than a hu-
man. The task can further be divided into automatic speaker identification (SID) and
automatic speaker verification (ASV) tasks. The former answers the question ‘Who
is the speaker?’, whereas the latter considers the question ‘Is the speaker whom
he or she claims to be?’. The practical differences in implementing SID and ASV
systems are elaborated in Section 2.1. Another closely related task is speaker diariza-
tion [22,23]. Speaker diarization is used to determine who spoke when, when multiple
speakers are present in a speech recording.

The specific research themes of this dissertation are speed, robustness, and the
security of the speaker recognition system. One of these themes is considered in
each of the publications, I through IX. The following paragraphs briefly discuss
each of the themes in the context of automatic speaker recognition.

The speed of speaker recognition systems can be considered from two view-
points. We can either consider the time required for training these systems or the
speed of the deployed systems in actual use. The two cases are different from each
other. During system development, available computing resources are usually am-
ple, but so is the amount of data needed to train the system. However, when the
trained system has been deployed, it usually only performs the recognition for one
speech recording at a time, but possibly with severely limited computational re-
sources available in the end-user devices. The lack of speed at training time can
exhaust the computing resources needed for system optimization, resulting in sub-
optimal recognition accuracy. The lack of speed in the deployed systems results in
compromised user experience.

In general, different approaches exist to accelerate computation. For example,
the computational complexity can be reduced by simplifying or approximating to the
machine learning models and algorithms [24, 25, III]. With this approach, the goal
is to have a minimal detrimental effect on recognition accuracy while accelerating
computation. Another method to speed up computation is to use more suitable or
powerful hardware. A prime example of this is using graphics processing units (GPUs)
instead of central processing units (CPUs) to train DNNs. By taking advantage of the
massive parallelism provided by hundreds or thousands of cores in GPUs, networks
can potentially be trained up to 50 times faster than with CPUs [26].

As mentioned, the second theme, robustness, requires special attention in speech-
related applications due to the high level of variability in speech. Diverse sources
of variability are specified in Table 1.1. Some of the intrinsic variations in speech
(Table 1.1a) can be induced by the conscious effort of the speaker, whereas some
variations are more subconscious or inherent in nature. An example of a subcon-
scious voice alteration is the Lombard effect [27], in which the speaker subconsciously
changes his or her voice to counteract the lack of audibility caused by a noisy en-
vironment. Similarly, the speaker’s voice can change depending on with whom the
speaker is speaking. Further, the speech may not always be regular conversational
speech but could be read speech or acted speech. Each of the different situations
has manifestations in the characteristics of speech. Furthermore, the voice can be
affected by health conditions, emotional states, or levels of mental alertness. Fi-
nally, not all variability in voices is detrimental for speaker recognition. While the
within-speaker sources of variability presented in Table 1.1a often cause challenges,
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Table 1.1: Sources of variability in speech. Adapted from [16].

(a) Variability induced by the speaker (intrinsic factors).

• Changes in speaking style (e.g.,
normal, shouting, or whispering)

• Acting

• Lexical content of speech

• Changing language or accent

• Style variation in conversational
versus read speech

• Health condition (e.g., cold,
Parkinson’s disease)

• Emotional state (e.g., calm, an-
gry, frightened, or delighted)

• Mental alertness

• Lombard effect

• Style variation based on discus-
sion partner (e.g., adult, child,
pet, or machine)

(b) Variability due to extrinsic factors.

Variability in technology Variability in environment

• Properties of the microphone

• Sampling rate and bit rate

• Lossy audio formats (e.g., .mp3,
.m4a, and .ogg)

• Voice enhancement methods
(e.g., equalizer or compressor)

• Transmission channels (cord,
cordless, landline, mobile, and
voice over Internet protocol
(VoIP))

• Background noise (e.g., traffic
noise, babble noise, noise from
air conditioning, and wind noise)

• Acoustic conditions

• Distance to microphone

the between-speaker variability of voices, such as the characteristics of vocal tract and
articulation, enables speaker recognition in the first place.

The variability that is unrelated to the speaker relates to the environment where
the speech was spoken and how the audio was captured, transmitted, processed,
and stored (Table 1.1b). Given two distinct environments, sound waves propagate
and reflect differently based on the surrounding objects and their materials. Al-
though we, as humans, can still perceive that the sound comes from the same source
in both environments, the resulting differences at the signal level can be consider-
able and cause challenges for machines. Further, different environments can have
different background noises. For example, in an office room, the sound of air con-
ditioning is often present, whereas on the street, we can encounter traffic noise.
The former of these noises is stationary (i.e., it does not change considerably over a
period), whereas the latter is nonstationary.

Intrinsic and extrinsic variability can be detrimental for automatic speaker recog-
nition in different ways, depending on where in the speech recordings the variabil-
ity occurs. First, if the speaker recognition system is trained on different types
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of speech data than what is expected in actual use, the system typically performs
poorly because it has not previously encountered the new type of data. This prob-
lem is known as domain mismatch [28,29]. Second, even if the system is trained with
matched data conditions, the task of comparing speakers from two recordings can
still be challenging due to the variations between the two recordings.

The nuisance variability in speech strongly influences the accuracy of speaker
recognition systems. While studies have demonstrated almost perfect speaker recog-
nition results using laboratory quality data with a small amount of variability [30,
31], the results using more realistic data are considerably worse [4]. Thus, improv-
ing the robustness to nuisance variability is essential for making automatic speaker
recognition viable for practical application. A typical approach to improving the
robustness is to train recognition systems using larger datasets with more variabil-
ity. Larger datasets with more variable audio allow the statistical models to learn
speaker representations better. However, collecting such datasets is often laborious;
thus researchers have developed approaches to automatically collect large datasets
of speech, including speaker labels, from the Internet [32, 33]. Another frequently
used strategy to increase the size of training datasets is to augment data with altered
copies of the original recordings [34, 35]. These alterations can be done by adding
background noise or by reverberating speech signals to simulate different environ-
ments. A complementary strategy is the use of various signal processing approaches
to improve the robustness of the systems [36, 37, I, II].

In recent years, automatic speaker recognition has been advancing rapidly, allow-
ing the technology to be adopted in a growing number of applications. However,
the adoption rate of innovative technology might be also hindered by security is-
sues, especially in high-security applications such as banking [38]. Thus, the third
theme of this dissertation, security of speaker recognition, has been gaining mo-
mentum recently. The security of speech-related technologies can be compromised
in various ways. Figure 1.1 provides selected examples of potential security issues
and malicious uses of technology. The first example (a) illustrates a case of a replay
attack [39]. In principle, it does not require highly technical skills because it only
requires the ability to record the target’s (victim’s) speech followed by playing the
recording to the ASV system using a loudspeaker. Figure 1.1b depicts a case of
voice conversion attack [40], in which the attacker uses technology to modify his
or her voice to sound like the target speaker. By doing so, the attacker could then
try to deceive the target’s friend (or an ASV system) into thinking that he or she is
speaking with the target. In the last example (Figure 1.1c), the attacker uses an ASV
system to facilitate deceiving another ASV system [VII].

The development of the security of ASV technology has been fostered by biennial
ASVspoof challenges (2015, 2017, and 2019) [41, 42, VI]. These challenges focused
on improving the detection of spoofing attacks against ASV systems. The challenges
consider two kinds of spoofing attack scenarios known as logical access and physical
access. In the former, the attack audio is injected into the ASV system directly with-
out passing through a microphone. This kind of attack is feasible when attacking
automatized phone services because the attacker can redirect the playback output
directly to the microphone input, bypassing the need to use a microphone. In con-
trast, in the physical access scenario, the attacker uses the microphone of the ASV
system similarly as depicted in Figure 1.1a. In addition to different access scenar-
ios, ASVspoof challenges consider multiple types of audio for spoofing, including
replayed audio and audio generated via voice conversion or speech synthesis tech-
nologies. All of these types of spoofed audio can, in principle, be used in both
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Seca)

b)

c)

ASV
system

Sectretly records
target’s speech.

ASV
system

Plays the recorded
speech to the ASV.

Finds target’s speech
from social media and 
trains a voice conver-
sion (VC) system.

VC
system

VC
system

Calls to a friend of 
the target while pre-
tending to be the target
with the help of VC.

Uses publicly available ASV techno-
logy to find the best matching voice
to his own voice from social media

ASV

ASV
system

Uses his own voice to unlock
the phone of the best
matching target

Figure 1.1: Example scenarios of spoofing attempts to fool speaker verification
systems or humans.

logical and physical access attacks. Thus far, the ASVspoof series has considered re-
played audio with physical access and voice conversion and speech synthesis with
logical access. As a result of the ASVspoof challenges, these attack types are cur-
rently the most extensively studied, and several spoofing attack detectors can detect
such attacks [43, 44].

1.2 LINKING PUBLICATIONS TO RESEARCH THEMES

Table 1.2 connects each of the publications to the selected research themes. The
theme of Publications I and II is robustness, more specifically, robustness to rever-
berant and whispered speech. Publication IX also considers robustness with a focus
on developing the core ASV technology. In Publications III, IV, and V, the focus
is largely on accelerating either the i-vector system development or online recogni-
tion phase. Publication IV has the special function of science popularization. In this
work, a speaker recognition system was deployed into a web app, which was then
presented to the public. The remaining theme, the security of ASV technology, is
considered in Publications VI, VII, and VIII.

Table 1.2 also illustrates the detailed focus areas and methods used in the pub-
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lications. These are intended as an advanced overview to offer the overall idea on
the topics discussed in the publications. The detailed explanations of the terms and
methods are reserved for the upcoming chapters, which are briefly described below.

Chapter 2 explains the most common variants of speaker recognition tasks and
provides an overview of speaker recognition system designs. In addition, it presents
the discussion of the topics of acoustic feature extraction and system evaluation.
Then, Chapter 3 focuses on the probabilistic generative models used in speaker
recognition. Next, Chapter 4 presents the DNN models. Finally, Chapter 5 summa-
rizes the publications in this dissertation, and Chapter 6 concludes the work.

6



Ta
bl

e
1.

2:
A

n
ov

er
vi

ew
of

th
e

pu
bl

ic
at

io
ns

in
cl

ud
ed

in
th

is
di

ss
er

ta
ti

on
.

Pu
bl

ic
at

io
n

R
es

ea
rc

h
th

em
es

Fo
cu

s
ar

ea
M

et
ho

ds
us

ed

I
X

Sp
ea

ke
r

ve
ri

fic
at

io
n

in
re

ve
rb

er
an

t
co

nd
i-

ti
on

s
Fe

at
ur

e
ex

tr
ac

ti
on

us
in

g
ti

m
e-

va
ry

in
g

lin
ea

r
pr

ed
ic

ti
on

II
X

Sp
ea

ke
r

re
co

gn
it

io
n

fr
om

w
hi

sp
er

ed
sp

ee
ch

,a
na

ly
si

s
of

w
hi

sp
er

ed
sp

ee
ch

Ti
m

e-
va

ry
in

g
lin

ea
r

pr
ed

ic
ti

on
,

al
ig

nm
en

t
of

no
rm

al
an

d
w

hi
sp

er
ed

sp
ee

ch
us

in
g

dy
na

m
ic

ti
m

e
w

ar
pi

ng
(D

TW
)

II
I

X
U

se
of

G
au

ss
ia

n
m

ix
tu

re
m

od
el

(G
M

M
)s

u-
pe

rv
ec

to
rs

to
sp

ee
d

up
A

SV
de

ve
lo

pm
en

t
V

ar
ia

nt
s

of
pr

ob
ab

ili
st

ic
pr

in
ci

pa
l

co
m

po
ne

nt
an

al
ys

is
(P

PC
A

)

IV
X

Po
pu

la
ri

za
ti

on
of

A
SV

te
ch

no
lo

gy
,f

as
to

n-
lin

e
sp

ea
ke

r
re

co
gn

it
io

n
M

et
ho

ds
of

II
I

de
pl

oy
ed

in
to

a
w

eb
ap

pl
ic

a-
ti

on

V
X

O
pt

im
iz

at
io

n
of

sp
ee

d
an

d
ac

cu
ra

cy
of

i-
ve

ct
or

te
ch

no
lo

gy
G

PU
ac

ce
le

ra
ti

on
,

m
in

im
um

di
ve

rg
en

ce
re

-
es

ti
m

at
io

n
an

d
ot

he
r

tr
ai

ni
ng

ph
as

e
im

pr
ov

e-
m

en
ts

V
I

X
A

nt
i-

sp
oo

fin
g

Ev
al

ua
ti

on
of

A
SV

sp
oo

f
ch

al
le

ng
e

re
su

lt
s

V
II

X
A

SV
as

si
st

ed
vo

ic
e

im
pe

rs
on

at
io

n
at

ta
ck

s
ag

ai
ns

t
an

ot
he

r
A

SV
i-

ve
ct

or
,

x-
ve

ct
or

,
da

ta
co

lle
ct

io
n,

pe
rc

ep
tu

al
ev

al
ua

ti
on

V
II

I
X

Ev
al

ua
ti

on
of

sp
ea

ke
r

ve
ri

fic
at

io
n

pe
rf

or
-

m
an

ce
w

it
h

la
rg

e
sp

ea
ke

r
po

pu
la

ti
on

s
D

ev
el

op
m

en
t

of
ne

w
ev

al
ua

ti
on

m
et

ri
c

an
d

m
od

el
fo

r
A

SV
sc

or
es

,i
-v

ec
to

r,
x-

ve
ct

or

IX
X

Sp
ea

ke
r

ve
ri

fic
at

io
n

by
co

m
bi

ni
ng

di
s-

cr
im

in
at

iv
e

an
d

ge
ne

ra
ti

ve
ap

pr
oa

ch
es

of
sp

ea
ke

r
m

od
el

in
g

D
at

a
au

gm
en

ta
ti

on
,

di
sc

ri
m

in
at

iv
el

y
tr

ai
ne

d
fe

at
ur

es
,i

-v
ec

to
rs

Sp
ee

d Ro
bu

st
ne

ss Se
cu

rit
y

7





2 FUNDAMENTALS OF SPEAKER RECOGNITION

Speaker recognition tasks come in various forms, and recognition systems can be de-
signed in multiple ways. This chapter describes the most common forms of speaker
recognition tasks and presents the overall structure of typical speaker recognition
systems. In addition, this chapter discusses acoustic feature extraction, a process that
transforms input speech waveforms into features that are more suitable for further
modeling. Finally, the last section discusses how the performance of speaker recog-
nition systems is evaluated.

2.1 MODES OF SPEAKER RECOGNITION

In both speaker verification and identification, the speakers to be recognized (target
speakers) must be enrolled in the system database before recognizing them. During
the enrollment (or registration) phase, the recognition system is provided with a
speech sample (enrollment utterance) from a target speaker. It is used to create a
model (template) for the target speaker. To increase reliability and robustness, it
is helpful to use an ample amount of speech in the enrollment (possibly up to a
few minutes) [45]. In addition, using multiple enrollment recordings recorded at
different times (sessions) can improve performance by increasing robustness toward
nuisance variability [46, 47] because different sessions can often contain different
sources of variabilities (see Table 1.1).

The key difference between verification and identification tasks is in how the
enrolled speaker models are used during the recognition (testing) phase. In the
verification task, one verifies that the speaker is whom he or she claims to be, so
the test utterance is only compared against the model of the claimed identity. If
the similarity score between the speech sample and the model is high enough, the
speaker passes the verification test. In the identification task, the test utterance is
compared against all models of the enrolled speakers. The speaker with the highest
similarity score is returned as the result (i.e., the system answers the question ‘Who
is the speaker?’). This is known as closed-set speaker identification. In the open-set
task, the system has the option to declare that no enrolled speakers match the test
segment [48].

If a speaker recognition system expects the lexical content of the enrollment and
test utterances to match, the system is text-dependent. For example, in the enrollment
phase, the speaker could be asked to utter a passphrase that he or she must use
later on in the testing phase. In the text-independent scenario, the lexical content of
enrollment and test utterances is not required to match. Out of these two modes,
the text-independent mode is more general in its application areas because it does
not restrict the lexical content. For the same reason, more data are available for de-
veloping of text-independent systems than for text-dependent systems. The benefit
of text-dependent speaker verification is that it removes one major source of vari-
ability (lexical content), which can lead to higher accuracy. This could be beneficial
in applications where high accuracy is preferred over user convenience.

9



2.2 OVERVIEW OF SPEAKER RECOGNITION SYSTEM DESIGNS

This section provides an overview of common system pipelines for speaker recog-
nition focusing on those used in the publications in this dissertation. These in-
clude speaker classifier based on the Gaussian mixture model – universal background
model (GMM-UBM) [49], the pipeline based on i-vectors [50] and probabilistic lin-
ear discriminant analysis (PLDA) [51], and the deep learning approach to extract
x-vectors [35]. The GMM-UBM, i-vector, and PLDA models are discussed in more
detail in Chapter 3, and Chapter 4 reviews the deep learning models.

The above system pipelines start with an acoustic feature extraction step, as de-
picted in Figure 2.1. Feature extraction converts time-domain audio waveforms into
sequences of acoustic feature vectors. Typically, each of the feature vectors contains
information about a short segment of the original waveform. The extraction pro-
cess of these short-time features often involves transforming short-time segments
through Fourier transform. This and other common feature extraction approaches
are described in more detail in the next section.

In the i-vector and x-vector pipelines, the basic idea is to transform variable-
length sequences of acoustic feature vectors into fixed and compact sized vectors
so that these vectors contain an ample amount of speaker-related information while
minimizing statistical redundancies. The common term to describe such a vector is
speaker embedding. Being vectors, the comparison of the enrollment and test embed-
dings can be as simple as computing the angle between the two vectors (the cosine
similarity measure) [52]. However, the most successful embedding comparator (or
classifier) in recent years has been PLDA, a generative probabilistic model discussed
later in this dissertation.

In Figure 2.1, the i-vector and x-vector pipelines fall under Design 1, whereas
the GMM-UBM classifier follows Design 2. In Design 2, a statistical model is fitted
to the feature vectors extracted from the enrollment utterance to create a speaker
model. This model is often not trained from scratch but instead is adapted from the
(UBM) [49]. The UBM is trained using a large pool of speakers and utterances, which
are not part of enrollment or test data. In the GMM-UBM design, the UBM serves as
a common anchor to all speaker models and acts as an alternative hypothesis model
in likelihood ratio testing, in which the following hypotheses are considered:{

H0 : Test utterance u is from speaker s,
H1 : Test utterance u is not from speaker s.

The likelihood ratio is computed as follows:

LR =
p(u|H0)

p(u|H1)
=

p(u|θs)

p(u|θUBM)
, (2.1)

where the null hypothesis H0 is represented by the enrollment model defined by the
parameters θs and the alternative hypothesis H1 is represented by the UBM defined
by the parameters θUBM. The quantities p(u|θs) and p(u|θUBM) are the probability
density functions for the given models evaluated for the test utterance u [49].

The raw output from speaker recognition systems is a similarity score s ∈ R.
The similarity score is commonly, but not necessarily, a logarithm of the likelihood
ratio (both GMM-UBM and PLDA provide it as an output). The reason for tak-
ing the logarithm of the likelihood ratio is that it makes the computation of joint
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likelihoods and Gaussian densities more convenient and numerically stable [53, p.
26]. Applying the logarithm does not affect the order of scores as the logarithm is a
strictly increasing function and hence it does not affect the recognition performance.

In the verification setting, the output score is compared against a decision thresh-
old λ ∈ R. If s > λ, then the verification trial is accepted; and otherwise, it is
rejected. In closed-set identification, the threshold is not needed because the scores
of all enrolled speakers are compared with each other and the speaker with the
maximum score is selected.

Likelihood ratio
Similarity score

Enrollment utterance Test utterance

Acoustic feature extraction:
Arbitrary length waveform to a 
non-fixed length sequence of 

fixed size feature vectors

Design 1 Design 2

Embedding extractor

From variable 
size input to 

fixed size 
output

Classifier

Model of enrollment 
feature vectors

Universal 
background model

Likelihood 
ratio test

Decision Decision

Example figures:

4.2 s / 2.8 s of speech 

(enrollment / test). 

16 kHz sampling rate. 

67200 / 44800 samples.

420 / 280 feature 

vectors of 60

dimensions.

Design 1: Embeddings 

of 512 dimensions (one 

embedding per 

utterance).

Design 2: GMM 

parameters of the 

enrollment utterance.

1 Scalar score

1 Threshold value

Decision: Accept / Rej.

Figure 2.1: Examples of common speaker verification system designs. Design 1 is
seen in the i-vector and x-vector systems, whereas Design 2 represents the GMM-
UBM approach.
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(1) Time-domain signal

|STFT|2

(2) Power spectrogram (3) Filterbank coefficients

Mel-filterbank 

Log

(4) Log filterbank coefficients

DCT Normalization

(5) MFCCs (6) Normalized MFCCs

Figure 2.2: The process of computing mel frequency cepstral coefficients (MFCCs):
First, a power spectrogram is obtained via the short-time Fourier transform (STFT).
Second, a mel-scaled filterbank is applied. Third, the resulting filterbank coefficients
are log-compressed. Fourth, the discrete cosine transform (DCT) is applied to obtain
MFCCs. Finally, the MFCCs are normalized to have zero mean and unit variance
over time.

2.3 ACOUSTIC FEATURE EXTRACTION FROM SPEECH SIGNALS

Figure 2.1 illustrates that two types of features are often present in speaker verifica-
tion systems: (1) short-time features (also referred to as acoustic features), which are
typically extracted from 20 or 25 ms long speech segments (frames); and (2) embed-
dings, which represent information extracted from the whole utterance in fixed-size
format. The short-time features are often obtained as a result of rule-based (or hand-
crafted) processes, whereas the computation of the latter usually relies on statistical
models and machine learning. This section focuses on the short-time features by
presenting the most used techniques for acoustic feature extraction.

Mel frequency cepstral coefficients (MFCCs) [54] have been the most frequently used
acoustic features for speaker recognition tasks. They have served as the standard
baseline in most speech feature-oriented research papers in the past several decades.
The success of MFCC features stems from their ability to perform well in various
applications, while being relatively computationally inexpensive and easy to imple-
ment. The computation scheme of MFCCs is presented in Figure 2.2. In addition
to MFCCs, many other feature extraction schemes have a similar computational
pipeline. Various parts of this pipeline are explained in the following subsections.

2.3.1 Speech preprocessing and speech activity detection

Before feature extraction, the time-domain input signal is usually preprocessed.
Some of the commonly used preprocessing steps include removing direct current
(DC) offset, normalizing the signal’s maximum amplitude to a fixed value, and pre-
emphasis filtering [55]. Pre-emphasis flattens the typically low-frequency dominated
speech spectra by emphasizing high frequencies. Whether this is beneficial depends
on the data, feature extraction method, and statistical model.

Then, as the input signal may contain portions that do not contain speech, such
as silence or noise, it is beneficial to detect and discard these portions of the input
signal. Therefore, most speaker recognition systems incorporate a speech activity
detector (SAD) [56, 57] that aims at removing nonspeech frames. The removal of
nonspeech frames in ideal, noise-free conditions is relatively easy because one can
simply use the signal energy computed from a speech frame as an indicator of
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silence. If the energy is less than a specified threshold, the frame is considered
to be silence; otherwise, it is considered speech. As the overall energy levels of
different recordings can vary, it is beneficial to incorporate an adaptive threshold
setting strategy. An example is shown in [13], where SAD sets the threshold based
on the energy of the highest energy frame. The detection of frames without speech
or silence, such as frames corrupted with a considerable amount of background
noise, is much more challenging because energy is no longer a reliable indicator for
speech activity. Therefore, many systems rely on energy-based SAD and instead
mitigate the detrimental effects of non-speech (e.g., noise) frames in the other parts
of the system, such as in embedding extractor or in PLDA. Nevertheless, many
sophisticated SADs exist, such as the ones that use GMM [57] or DNN models [58]
to address the issue at the SAD stage.

2.3.2 Speech spectrum estimation

After preprocessing, the first step in the feature extraction process is to compute
a specific time-frequency representation, the spectrogram. In the case of MFCCs,
the spectrogram is obtained as follows. First, the signal is split into overlapping
frames that typically have a duration of 20 or 25 ms with an overlap of 10 or 15
ms between consecutive frames. Second, the frames are processed using a window
function that tapers the values near the endpoints of the frames toward zero. The
windowing benefits in the third step, which applies the discrete Fourier transform
(DFT) [59, p. 99] to each frame by reducing spectral leakage [60]. Spectral leakage is
an effect that causes the energy of a frequency to ‘leak’ into other frequency bins in
DFT presentation. The effect is due to the frequency components not being periodic
in the observation window. The effect is mitigated by windowing, which lessens the
abrupt discontinuities at the end points of the frames.

When combined, the above three steps (framing, windowing, and DFT), are
known as the short-time Fourier transform (STFT) [61, p. 81]. The fourth step is to
take a magnitude of the complex-valued DFT outputs to obtain a magnitude spec-
trum of each frame. These spectra are then squared to obtain the power spectra, or
a power spectrogram. An example of a power spectrogram is shown in the second
panel of Figure 2.2. Using a linear scale, the visualization of a power spectrogram
appears quite uninformative. The visualization quality can be improved by adding
a logarithmic transform, as observed in the fourth panel of the figure.

Although STFT is commonly used to produce the time-frequency representation
of a signal, several alternative methods are available [55, 62, 63]. One of the most
prominent approaches for obtaining speech spectra (and spectrograms) is linear pre-
diction (LP) [55]. The LP technique is adopted in features, such as linear prediction
cepstral coefficients (LPCC) [54], frequency domain linear prediction (FDLP) features [64],
2-D autoregressive (2-D AR) features [65], and the new features proposed in Publica-
tions I and II.

In LP modeling [55], the current sample of a speech frame x[n], n = 1, . . . , L, is
predicted as a linear combination of the past p samples [55]. That is,

x̂[n] =
p

∑
k=1

akx[n− k], (2.2)

where the real-valued coefficients ak are known as predictor coefficients. Predictor
coefficients are typically found by minimizing the mean squared error of the error
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signal e[n] = x[n]− x̂[n]. Following the autocorrelation method of LP [30,55] this leads
to solving a set of normal equations given as follows:

p

∑
k=1

akr|i−k| = ri, i = 1, . . . , p, (2.3)

where

ri =
L

∑
n=1

x[n]x[n− i] (2.4)

are known as autocorrelation coefficients. Here, x[n] is assumed to be zero when n < 1.
The solved predictor coefficients can be used to estimate the envelope of the speech
spectrum X[m] as follows [30, 55]:

X[m] =
G∣∣∣1−∑

p
k=1 ake−i2πmk/L

∣∣∣ , m = 0, . . . , L− 1,

where G is the gain coefficient, which can be computed as follows:

G = r0 −
p

∑
k=1

akrk.

The above spectrum estimation is performed independently for each frame (L de-
notes the number of samples per frame). The model order p can be used to control
the amount of detail in the spectral estimate. By increasing model order p, the LP
spectrum can be made arbitrarily close to the corresponding DFT spectrum [55].

2.3.3 Filterbanks

Once the spectral representation is obtained, the next step is to apply a filterbank. A
filterbank defines a set of filters used to compute signal energies in the frequency
bands defined by the filters. The application of a filterbank serves two primary pur-
poses. First, it allows frequency warping by placing more filters in certain frequency
bands than in the others. Second, it reduces the dimensionality of spectral data ob-
tained from DFT or LP analysis. The filterbank used in the computation of MFCCs
consists of triangular bandpass filters spaced according to the mel-scale [66]. The
mel-scale is a logarithmic scale based on perceptual studies that measured equal
pitch differences in different frequencies. As humans are more sensitive to pitch dif-
ferences at low frequencies, the mel-scaled filterbank places filters more densely in
the low-frequency bands. The mel-scaled filterbank may be replaced by filters with
different shapes and scales in other feature extraction approaches. For example, by
spacing filters linearly, one obtains linear frequency cepstral coefficients (LFCCs) [54].
It is also possible to use a linear filterbank to compute MFCCs if the warping of
the frequency axis is already included in the DFT, as done in [67]. Finally, there are
cases when the filterbank is not applied at all. An example of this is the extraction
of LPCC features, where the linear prediction coefficients (LPCs) are converted directly
to LPCCs, as described in [68].
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2.3.4 Cepstral features and feature normalization

The filterbank outputs are converted to cepstral coefficients by applying logarithmic
compression followed by the discrete cosine transform (DCT). The logarithmic non-
linearity can be replaced with an other suitable nonlinear function. For example,
power-normalized cepstral coefficients (PNCCs) [69] use the 15th root compression, and
perceptual linear prediction (PLP) features [70] use cubic-root compression instead of
log compression. The DCT operation following the logarithmic compression decor-
relates the log filterbank signal [71]. The decorrelation process removes redundan-
cies, allowing more a compact presentation. Thus, the last DCT coefficients are often
discarded from further processing.

As the final step of acoustic feature extraction, cepstral features are usually nor-
malized to suppress the influence of convolutional noise (such as reverberation or
the variation induced by differences in microphones [72]). A convolution in the
time domain corresponds to multiplication in the spectral domain and addition in
the cepstral (i.e., log spectral) domain. To this end, the MFCCs are normalized by
subtracting the mean MFCC vector (computed over time) from all MFCC feature
vectors. This operation is known as cepstral mean subtraction (CMS). If the MFCCs
are further divided by their standard deviations, the operation is known as cepstral
mean and variance normalization (CMVN). Finally, instead of normalizing the features
using the statistics of the full utterance, the means and standard deviations are of-
ten computed using a sliding window centered on the processed frame [73,74]. This
makes the normalization more adaptive to varying conditions within an utterance.

2.3.5 Delta features

Not shown in Figure 2.2 is another commonly performed step: The MFCCs are often
appended with their delta (∆) and delta-delta (∆∆) features. While the MFCC base
coefficients described above provide a ‘snapshot’ of speech properties in a given
frame, the delta features capture information about the dynamics of speech (i.e.,
how the speech changes from frame to frame). Delta features have been effectively
used in speaker recognition systems of the past few decades with similar constructs
dating back at least to the early 1980s [75].

A simple way (one method among many [76, p. 98]) to compute delta features
for a frame at time index t is as follows:

∆t = mt+1 −mt−1,

where mt is a vector containing MFCCs for the frame at time t. Similarly, delta-delta
features describing the dynamics of the delta features can be obtained as follows:

∆∆t = ∆t+1 − ∆t−1.

If calculated as above, the feature vector formed from MFCCs appended with deltas
and delta-deltas contain information from not just one frame but five consecutive
frames. Note that the above delta features can be computed with a convolution
filter

[
−1 0 1

]
. Due to the convolutional nature of delta features, their utility in

deep learning-based speaker recognition (e.g., x-vector [35]) is questionable because
convolutional neural networks are readily designed to model the changes between
consecutive frames. This lessened importance of delta features is reflected in the
recent neural network based state-of-the-art systems [77, 78], where delta features
may no longer be used. In contrast, the delta features are used by default in GMM-
UBM and i-vector-based speaker recognition systems [2].
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2.4 DATASETS, EVALUATIONS, AND METRICS

Most speaker recognition systems are designed either for 8 kHz (narrowband) or 16
kHz (wideband) speech data. From the Nyquist-Shannon sampling theorem [79], it
follows that these sampling rates can be used to reconstruct signals with frequen-
cies of up to 4 kHz and 8 kHz, respectively. Frequencies of up to 4 kHz are enough
to convey the most energy content in speech. However, the clarity of some high-
frequency consonants can be impaired with the 4 kHz bandwidth limit [80, p. 63].
The narrowband 8 kHz sampling rate is often used in telephone speech transmis-
sion. The 16 kHz wideband speech can convey very high-quality speech and is
often used with the voice over Internet protocol (VoIP). Speaker recognition datasets
commonly contain either of the above two types of speech data.

Today, speaker recognition is largely based on using data-hungry machine learn-
ing methods. Thus, the availability of speech data is crucial both for training and
evaluating speaker recognition systems. A speech dataset is well suited for speaker
recognition research if it contains speaker labels, has a numerous speakers, and
contains multiple utterances and recording sessions per speaker. In the past, such
datasets were not readily available; thus, researchers often used small self-collected
datasets. In recent years, the situation has improved, and many large publicly
available speaker recognition datasets are available. A few examples of these are
VoxCeleb [81, 82], Speakers in the Wild (SITW) [83], RedDots [84], and RSR2015 [85]
datasets.

In addition to the better availability of the datasets, speaker recognition research
has been pushed forward by numerous open speaker recognition evaluations (or
challenges) [86–90]. In these evaluations, research teams from different countries
and organizations submit their speaker recognition scores for a task specified by the
challenge organizers. This facilitates the meaningful comparison of different speaker
recognition technologies because every participant must obey common challenge
rules and use a common dataset. The most prominent challenge organizer over
the years has been the National Institute of Standards and Technology (NIST), which
has been organizing speaker recognition challenges almost yearly since 1996 [88,
91]. Recently, many other community-driven challenges have taken place as well.
Some examples of these are the VoxCeleb Speaker Recognition Challenge (VoxSRC)
2019 [89], SITW evaluation [90], Voices from a Distance Challenge 2019 [92], Short-
duration Speaker Verification Challenge 2020 [93], and the ASVspoof 2019 Challenge
(Publication VI). All of these challenges have motivated researchers to push the
limits of their systems, which has driven the performance of speaker recognition
systems forward.

Speaker verification systems are evaluated using a set of evaluation trials. Each
trial consists of the enrollment identifier and test segment identifier. The enroll-
ment identifier specifies the speaker model created at the enrollment stage. The test
segment identifier can point to a recording from the same speaker as the enrolled
speaker or from a different speaker. These two types of trials are called target and
non-target trials, respectively. In the system evaluation phase, each trial is indepen-
dently processed (scored) by the speaker verification system. A high score value
indicates that the trial is likely a target trial, while a low score is likely a non-target
trial. In speaker recognition challenges, the ground-truth labels are not given to par-
ticipants beforehand. Instead, the participants are asked to send their scores to the
organizers, who use the ground-truth labels to compute the performance metrics.
This prevents participants from overfitting their systems to the evaluation trial list.
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Besides defining common audio data and common evaluation trials, the third
and equally important design aspect concerns the choice of performance metrics.
In the field of ASV, several established evaluation metrics have been adopted by
the research community. Perhaps the most common performance metrics are the
equal error rate (EER) and the detection cost obtained from the detection cost function
(DCF). The former is a non-parametric metric that does not require setting a decision
threshold or any other parameters. The latter involves multiple parameter settings,
as is discussed below.

For any given decision threshold λ, one can compute the corresponding rates of
false alarm (or false acceptance) and false rejection (or miss). The rates of false acceptance
(Pfa) and miss (Pmiss) are given as follows:

Pfa(λ) =
1
|Snon| ∑

s∈Snon

I(s > λ) and Pmiss(λ) =
1
|Star| ∑

s∈Star

I(s < λ),

where I(·) is the indicator function that outputs 1 if the comparison in brackets is
true, and 0 otherwise. The sets Star and Snon contain scores for target trials and non-
target trials, respectively, and | · | denotes the total number of trials in a given set. By
increasing the detection threshold λ, the false acceptance rate Pfa decreases, and the
miss rate Pmiss increases. The EER is defined as the rate at which Pfa(λ) = Pmiss(λ).
In practice, the score sets are often such that the above equation does not exactly
hold with any detection threshold. In such cases, one can search for a threshold
that provides the smallest difference between Pfa(λ) and Pmiss(λ) and compute the
average of these two values.

The performance of a system can be visualized by drawing the detection error
tradeoff (DET) curve [94], which is obtained by plotting the miss rate against the
false alarm rate at different thresholds. The axes of the DET curve are scaled using
a normal deviate scale. Figure 2.3 presents examples of the DET curves.

Unlike the nonparametric EER metric, the DCF can be manually adjusted for a
specific application. For some applications, the user-convenience (low miss rates)
can be more important than the the security (low false alarm rates), and vice versa.
The adjustability is achieved using three control parameters. These are the prior
probability of the target speaker (Ptar) and the costs of falsely accepting a nontar-
get speaker (Cfa) and missing a target speaker (Cmiss). Table 2.1 lists examples of
DCF settings in two different scenarios. The first scenario is representative of a
surveillance-type application, in which the prior probability of the target speaker
among a larger population is low. Thus, Ptar is set to 0.01. The second scenario
considers an access control system, whose users are assumed to be well-intentioned.
This assumption favors the use of a high Ptar value of 0.99. The associated risks of
falsely accepting a malicious user are high, which supports the use of the high cost
value of Cfa = 10.

The detection cost for a specific threshold value λ is computed as follows [86]:

Cdet(λ) = PtarCmissPmiss(λ) + (1− Ptar)CfaPfa(λ).

As the costs of the DCF can be arbitrary positive values, the resulting detection cost
values can be difficult to interpret. Thus, the detection cost is normalized with the
default detection cost defined as follows:

Cdefault = min

{
PtarCmiss

(1− Ptar)Cfa.
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The default cost represents a “dummy” system, which either accepts or rejects all
trials (whichever leads to a lower cost). The following normalized cost indicates that
the evaluated system is better than the dummy system if the cost is less than 1:

Cnorm(λ) =
Cdet(λ)

Cdefault
.

Finally, to evaluate the system without fixing the threshold, the minimum of the
normalized detection cost (minDCF) can be computed as follows:

Cmin = min
λ

(Cnorm(λ)).
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Figure 2.3: Examples of detection error tradeoff (DET) curves. System 1 has better
performance at low false acceptance (false alarm) rates, while System 2 performs
better at low false rejection (miss) rates. The figure displays EER points and the
points determined by the minDCF metric using two different parameter settings.
MinDCF1 and minDCF2 correspond to the surveillance and access control scenarios
in Table 2.1, respectively.

Table 2.1: Examples of detection cost function (DCF) control parameters for surveil-
lance and access control applications.

Cmiss Cfa Ptar

Surveillance scenario 1 1 0.01

Access control scenario 1 10 0.99
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3 SPEAKER RECOGNITION WITH PROBABILISTIC

GENERATIVE MODELS

Probabilistic generative models are probabilistic because they involve random vari-
ables and probability distributions. They are generative because they describe the
generation process of the observed data given the target variable [95]. This contrasts
with discriminative models that model the target variable given the observed data.

This chapter presents a selected set of probabilistic generative models commonly
used in speaker recognition systems.

3.1 GAUSSIAN MIXTURE MODELS

The Gaussian mixture model (GMM) has been one of the cornerstones of speaker
recognition systems since the 1990s. Of the most successful speaker recognition
systems, only some deep learning-based systems, such as the x-vector, do not use
GMMs or GMM-inspired constructs. Even if the x-vector has been the state-of-the-
art system for the last few years, the GMM ideology has not been abandoned, as
DNN layers that resemble GMMs have been studied in recent work [78, 96, 97, IX]
with good results.

The GMMs have been used in diverse ways for speaker recognition, not just as
a GMM-UBM classifier or DNN layer. For example, the the GMM assumptions are
built into the i-vector and joint factor analysis approaches [98], which are discussed
in detail in Section 3.4, and GMMs have been also used with support vector ma-
chines (SVMs) [99] and probabilistic principal component analysis (PPCA) [100, III].
The following subsections cover the basics of Gaussian mixture modeling of speech.

3.1.1 Multivariate Gaussian distribution

Let X be a continuous d-dimensional random vector following a multivariate Gaussian
(i.e., normal) distribution. The probability density function of X is then given by the
following:

p(X = x|θ) = N (x|θ) ≡ 1√
(2π)d det(Σ)

e−
1
2 (x−µ)TΣ−1(x−µ),

where the parameters θ = (µ, Σ) are the mean vector (µ) and covariance matrix (Σ) of
the multivariate Gaussian distribution [101, p. 46]. The sign ‘≡’ means “equal by
definition”. If the random variable is clear from the context, the following notation
may be used:

p(X = x|θ) = p(x|θ).
In the context of speaker recognition and machine learning in general, we are

often interested in fitting a multivariate Gaussian distribution to a given sequence of
independent observations (feature vectors), D = (x1, x2, . . . , xN). The independence
assumption of observations is useful in deriving formulas for model fitting using
probabilistic machinery. However, this assumption tends not to hold in practice
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because feature vectors extracted from different frames of the same utterance are
not independent due to temporal dependencies in speech. That is, on a scale of 5
to 100 ms, the speech signal is rather stationary [61] so that the consecutive speech
frames can be highly correlated. Although the independence assumption may not
be completely satisfied in practice, the formulas derived using stricter assumptions
can often be applied with satisfactory results in practical settings.

One way to estimate parameters θ is through a maximum likelihood (ML) estima-
tion:

θML = argmax
θ

p(x1, x2, . . . , xN |θ) = argmax
θ

N

∏
n=1

p(xn|θ) (3.1)

= argmax
θ

N

∑
n=1

log p(xn|θ)

(3.2)

The maximization can be done [101, pp. 99–100] by setting

∂g
∂µ

= 0 and
∂g
∂Σ

= 0,

where g(θ) = ∑N
n=1 log p(xn|θ). This results in the following:

µ̂ML =
1
N

N

∑
n=1

xn and Σ̂ML =
1
N

N

∑
n=1

(xn − µ̂ML)(xn − µ̂ML)
T.

The result reveals that the ML estimates of the mean and covariance parameters are
obtained by computing the sample mean and covariance of the data.

Another commonly used strategy of fitting the parameters is the maximum a
posteriori (MAP) estimation [101, p. 149]. The MAP estimation can be considered a
more general form of ML estimation that uses prior information about the model
parameters in addition to the observations. That is, the model parameters are treated
as random variables, which is the basic idea in Bayesian statistics [101, p. 191]. To
explain the idea further, it is helpful to introduce Bayes’ theorem [53, p. 15]:

p(θ|D) = p(D|θ)p(θ)
p(D) .

Here, the terms p(θ|D), p(D|θ), p(θ), and p(D) are called posterior of θ, likelihood
of θ, prior of θ, and evidence, respectively. The evidence is a normalization constant
that is needed to ensure that the posterior distribution integrates to one.

In ML estimation, only the likelihood is maximized, whereas in MAP, the poste-
rior is maximized:

θMAP = argmax
θ

p(θ|D) = argmax
θ

p(D|θ)p(θ)
p(D) = argmax

θ

p(D|θ)p(θ). (3.3)

In the above maximization, the evidence p(D) can be neglected because it does not
depend on θ. As a result, maximization (3.3) differs from (3.1) only in that (3.3)
has the prior p(θ). The prior distribution is a distribution of the parameters of the
data distribution and has its own parameters θprior. The parameters θprior of the
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prior distribution p(θ) = p(θ|θprior) are called hyperparameters. The prior distribu-
tion reflects the prior beliefs or knowledge on how the data should be distributed.
In this sense, it can be regarded as a regularizer [101, pp. 149, 206] for the plain
ML estimation, preventing unexpected fitted distributions, which could occur as a
result of insufficient observations D in terms of quantity or quality. Moreover, if
the prior distribution does not indicate any preference in the choice of parameters
θ (that is, p(θ) is a uniform distribution), the MAP estimate (3.3) reduces to the ML
estimate (3.1).

As discussed in [102], an appropriate choice of prior distribution can simplify the
MAP estimation process of parameters. To this end, it is common to use the conjugate
prior of the likelihood function as a prior. The prior distribution is a conjugate prior if
the prior and posterior distributions are from the same family of distributions [101,
p. 74]. In the case of the multivariate Gaussian likelihood function defined by
the mean and covariance, the conjugate prior is the normal-inverse-Wishart (NIW)
distribution, which has the following density:

NIW (µ, Σ|µ0, τ, Ψ, ν) = N
(

µ
∣∣∣µ0,

1
τ

Σ

)
W−1 (Σ|Ψ, ν) , (3.4)

where W−1 is the probability density function for the inverse-Wishart distribution
[101, p. 127, Eq. (4.165)]. The hyperparameters µ0, τ, Ψ, and ν define the underlying
normal and inverse Wishart distributions. To sample values from NIW, one first
samples the covariance matrix from the inverse-Wishart distribution, and then the
sampled covariance (scaled by 1/τ) is used to sample the mean vector from the
normal distribution.

It can be shown [102] that with NIW prior the MAP estimates of parameters are
given as follows:

µ̂MAP =
τµ0 + Nµ̂ML

τ + N
, (3.5)

Σ̂MAP =
Ψ + NΣ̂ML + τN

τ+N (µ0 − µ̂ML)(µ0 − µ̂ML)
T

ν− d + N
.

It is straightforward to verify that the limits of µ̂MAP and Σ̂MAP as N approaches
infinity are the ML estimates µ̂ML and Σ̂ML, respectively. That is, as the number of
observations increases, the ML and MAP estimates better agree with each other.

3.1.2 Gaussian mixture model

The previous section demonstrated how to fit a single Gaussian distribution to the
observed feature vectors. However, the distribution of acoustic feature vectors tends
not to be a unimodal Gaussian distribution; different phones of speech have dif-
ferent spectral representations, and the differences also occur in acoustic features.
Therefore, it may be better to model each phone or speech sound with its own
Gaussian distribution instead of using a single Gaussian distribution only. Such an
approach combines multiple Gaussian distributions into a mixture model.

A GMM [101, pp. 339] of C components can be presented as θ = {wc, µc, Σc}C
c=1,

where wc, µc, and Σc are the mixing weight, mean vector, and covariance matrix of
component c, respectively. The mixing weights wc(c = 1, . . . , C) are non-negative
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and sum to one so that the following density function integrates correctly to one:

p(x|θ) =
C

∑
c=1

wcN (x|µc, Σc).

To sample a vector from a GMM, one first samples a component index c from a
categorical distribution defined by the mixing weights wc and then samples a vector
from N (µc, Σc).

When trying to compute an ML estimate of GMM parameters for the given data
D = (x1, x2, . . . , xN), the main difficulty is that the components to which each ob-
servation belongs are not known [101, pp. 348–349]. If these component assignments
were known, the ML estimation could be simply done for each component fol-
lowing the above-presented approach for a single Gaussian distribution. Instead,
the assignments can be presented with the latent (hidden/unobserved) variables
zn ∈ {1, . . . , C}, where zn is the assignment for observation xn. The posterior dis-
tributions of variables zn contain probabilities that can be regarded as “soft” assign-
ments, which are useful in the parameter estimation process that is briefly explained
below.

The ML estimates of GMM parameters are typically obtained using the expectation-
maximization (EM) algorithm [103]. The EM algorithm is an iterative algorithm guar-
anteed to monotonically increase the likelihood value after every iteration. Each
iteration of the algorithm consists of two steps, the E and M steps. First, in the
E step, the soft component assignments are computed using the GMM parameters
from previous iteration θ(t−1):

γn,c = P(zn = c|xn, θ(t−1)) =
p(xn|zn = c, θ(t−1))P(zn = c|θ(t−1))

p(xn|θ(t−1))
(3.6)

=
p(xn|zn = c, θ(t−1))P(zn = c|θ(t−1))

∑C
i=1 p(xn|zn = i, θ(t−1))P(zn = i|θ(t−1))

(3.7)

=
w(t−1)

c N (xn|µ(t−1)
c , Σ

(t−1)
c )

∑C
i=1 w(t−1)

i N (xn|µ(t−1)
i , Σ

(t−1)
i )

. (3.8)

Here, (3.6) follows from Bayes’ theorem, the expression for evidence in (3.7) follows
from the fact that the posterior probabilities P(zn = c|xn, θ(t−1)) sum up to one, and
finally, (3.8) follows from the definitions of the likelihood and prior.

Then, in the M step, the GMM parameters θ are updated. The update based on
maximization of log-likelihood

p(D|θ) =
N

∑
n=1

log
C

∑
c=1

wcN (x|µc, Σc) (3.9)

is difficult as the logarithm cannot be moved inside the inner sum [101, p. 349].
Thus, the complete data log-likelihood log p(x1, x2, . . . , xN , z1, z2, . . . , zN |θ) is consid-
ered instead. However, this cannot be directly computed because latent variables zn

are not observed. Thus, the expectation with respect to the old parameters θ(t−1) of
the complete data log-likelihood is maximized instead. The expected complete data
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log-likelihood is given as follows [101, p. 351]:

E [log p(x1, x2, . . . , xN , z1, z2, . . . , zN |θ)] = E

[
N

∑
n=1

log p(xn, zn|θ)
]

=
N

∑
n=1

C

∑
c=1

E[Ic(zn) log(wcN (xn|µc, Σc)]

=
N

∑
n=1

C

∑
c=1

γn,c log(wcN (xn|µc, Σc)],

where Ic(z) is an indicator function that returns 1 if z = c and 0 otherwise. The
maximization is done by computing the partial derivatives with respect to the pa-
rameters wc, µc, and Σc and setting them to zero. The solution must also satisfy the
constraint that the weights wc sum to one. The maximization leads to the following
update equations [101, p. 351]:

wc =
1
n

Nc,

µc =
fc

Nc
,

Σc =
Sc

Nc
− µcµT

c ,

where Nc, fc, and Sc are known as the Baum-Welch statistics [104], and are defined
as follows:

Nc =
N

∑
n=1

γn,c, (3.10)

fc =
N

∑
n=1

γn,cxn, (3.11)

Sc =
N

∑
n=1

γn,cxnxTn .

The EM parameter estimation process repeats the above two steps until stopped.
The iteration can be terminated when the relative increase in the log-likelihood (3.9)
across consecutive iterations falls below a predefined threshold, for example.

3.1.3 The universal background model approach for speaker adaptation

This section describes the GMM-UBM framework [49] for speaker recognition. The
backbone of the GMM-UBM framework is the UBM, which is trained using a large
volume of speech data, including numerous speakers and utterances. The UBM
captures a wide range of variabilities in speech and serves as the base model for
adapting speaker-specific models using the enrollment data. In the testing phase,
the UBM serves as an alternative hypothesis model, whereas the speaker-specific
model works as the null hypothesis model in likelihood ratio testing.

The enrollment relies on the MAP estimation of parameters, for which the prior
is obtained from the UBM, and the observations are from the enrollment data. In
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other words, the speaker specific parameters are adapted from the UBM parameters.
The MAP adaptation could be done for all parameters of GMM (i.e., weights, means,
and covariances) [49], but the common practice is to adapt only the means using (3.5)
because adapting weights and covariances has not been found to be beneficial [49].

Consider the following example of a MAP adaptation to compute a speaker
model. Let θUBM = {wubm

c , µubm
c , Σubm

c }C
c=1 be the UBM, and let (x1, x2, . . . , xN) be

the feature vectors computed from the enrollment utterance of a speaker. Then, the
speaker model is obtained as θs = {wubm

c , µ
adapted
c , Σubm

c }C
c=1, where

µ
adapted
c =

τµubm
c + ∑N

n=1 γn,cxn

τ + Nc
.

Here, ∑N
n=1 γn,cxn corresponds to Nµ̂ML in (3.5), the difference being that the GMM

version of the adaptation uses the soft assignments γn,c computed with respect to the
UBM. The tunable parameter τ ≥ 0 is known as the relevance factor, which controls
how much weight is given to the prior information. A larger value of τ results in
more weight for the prior (i.e., UBM) in the adaptation. If τ = 0, the adapted model
reduces to the ML estimate, meaning that the prior does not affect the adaptation at
all.

The similarity score between a test utterance represented with feature vectors
(y1, y2, . . . , yM) and a speaker model θs can be obtained as the ratio of the log-
likelihoods of the form (3.9) between the speaker model and UBM:

score = log
p(y1, y2, . . . , yM|θs)

p(y1, y2, . . . , yM|θUBM)

The obtained log likelihood ratio can then be compared to the decision threshold of
the system to accept or reject the verification trial.

3.1.4 Gaussian mixture model supervectors

While the GMM-UBM system in Section 3.1.3 follows Design 2 of Figure 2.1, the
GMM-based modeling also enables multiple ways to build systems that follow De-
sign 1. The key characteristic in Design 1 is that both the enrollment and test utter-
ances are presented using fixed-length embeddings. In the GMM-UBM approach,
the fixed-length embeddings could be constructed, for example, by concatenating
the MAP-adapted mean vectors together to obtain a high-dimensional fixed-size
vector called a supervector [99]:

m =


µ

adapted
1

µ
adapted
2

...

µ
adapted
C

 .

The dimensionality of supervectors can be very large because it is common to
have GMMs with 512 to 4096 components and feature spaces with 30 to 90 dimen-
sions. For example, a 2048-component GMM with 60-dimensional feature vectors
results in 122 880-dimensional supervectors.
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The classifier may be either built for high-dimensional data or lower-dimensional
data obtained through a dimensionality reduction. Examples of the former are the
use of the SVM classifier for the supervectors [99] and the use of PLDA in high-
dimensional space [105]. The latter approaches include PPCA (for dimensionality
reduction) [100, III] followed by PLDA and the use of i-vector embedding extrac-
tor [50] with PLDA. In the following sections, the focus is limited to the latter ap-
proaches because the i-vector like pipelines have been more successful in the 2010s.
Furthermore, the former approaches have not been used in the publications of this
dissertation.

3.2 PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS

In GMM-UBM, the acoustic feature space is modeled using a mixture of multiple
Gaussian distributions due to the complex nature of acoustic feature distributions.
The features in the embedding spaces, however, are commonly modeled using a
single Gaussian distribution. Restricting a model to a single Gaussian distribution
can be advantageous because the embeddings are already a result of statistical mod-
eling; thus they are likely to have a simpler distribution.

One of the single-Gaussian models is the PPCA [106], a probabilistic version
of the classic PCA. The PPCA model can be used to encode high-dimensional su-
pervectors to low-dimensional latent vectors. Let zn ∈ Re (n = 1, . . . , N) be the
latent vector representations of the supervectors mn ∈ Rd (n = 1, . . . , N) with the
assumption that prior of the latent vectors is standard normal; that is,

p(zn) = N (zn|0, I).

Then, the PPCA model defined by parameters θ = {µ, V , σ2} is Gaussian

p(mn|zn, θ) = N (mn|µ + Vzn, σ2 I), (3.12)

where µ ∈ Rd, V ∈ Rd×e, and σ2 > 0.
The PPCA model can be trained using the EM-algorithm with the parameter

update equations given in [53, p. 578]. Given the trained model with parameters θ,
the posterior distributions of the latent vectors are given as follows:

p(zn|mn, θ) = N (φ, Ψ),

where

Ψ = (I +
1
σ2 VVT)−1 and (3.13)

φn =
1
σ2 ΨVT(mn − µ). (3.14)

The mean φn of the posterior distribution is used as a lower-dimensional repre-
sentation of the supervector mn. This kind of representation is used as a speaker
embedding in Publication III. Moreover, PPCA has been also used to estimate the
total variability model presented in the Section 3.4 [100].

A close relative to the PPCA is factor analysis [53, pp. 583–586], which differs
from PPCA in that, instead of the isotropic covariance matrix σ2 I in (3.12), the factor
analysis model has a diagonal covariance matrix.

25



3.3 PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS

A PLDA model can be used to compute the speaker similarity score for a pair
of embeddings. As opposed to unsupervised GMM and PPCA models, the PLDA
is trained in a supervised manner by using the speaker label of each embedding.
The labels allow the same latent speaker representation to be shared between the
utterances of the same speaker. Thus, the latent representation is enforced to capture
information common to all utterances; that is, clues about a speaker’s identity.

The PLDA model has multiple variants [107]: the original [108], simplified [109],
two-covariance [110], and heavy-tailed PLDA [111]. The first three variants have the
same model structure, the first one is the most constrained in terms of degrees
of freedom, whereas the third one is the least constrained [107] [112, p. 35]. In
the fourth variant, heavy-tailed PLDA, the latent vectors are assumed to have a
Students’ t prior instead of a Gaussian prior. In the following paragraphs, the focus
is on the simplified PLDA, which is among the most commonly used variants in
speaker recognition. It was also used in Publications III, IV, V, VII, and IX of this
dissertation.

The simplified PLDA model θ = {µ, V , Σ} is defined for e-dimensional embed-
dings φn, n = 1, . . . , N, from the same speaker as follows:

p(φn|z, θ) = N (µ + Vz, Σ), (3.15)

where the f -dimensional latent vector z has a prior N (z|0, I). The model differs
from the PPCA model (3.12) in that the latent vector z is shared among all embed-
dings φn and that the covariance matrix Σ is full, rather than isotropic.

Similar to other latent variable models, the PLDA model is commonly trained
using the EM-algorithm [107]. The trained PLDA model can be used to compute
the log-likelihood score between the enrollment (φe) and test embeddings (φt) as
follows:

score = log
p(φe, φt|θ, H0)

p(φe, φt|θ, H1)
, (3.16)

where H0 is the hypothesis, in which φe and φt share the same latent vector, whereas
the latent vectors are not shared in the hypothesis H1. To compute the above log-
likelihood ratio, it is necessary to marginalize (3.15) over the latent vectors [108] to
obtain the following joint likelihoods:

p(φ1, . . . , φN |θ) = N (µ′, V ′V ′T + Σ′), (3.17)

where

µ′ =


µ

µ
...

µ


eN×1,

V ′ =


V

V
...

V


eN× f ,

Σ′ =


Σ 0 . . . 0

0 Σ . . . 0
...

...
. . .

...

0 0 . . . Σ


eN×eN.

Note that V ′ differs from its counterpart in [108] because of the differences between
the original and simplified forms of PLDA.
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Now, the score in (3.16) can be written as follows:

score = log

N

φe

φt

 ∣∣∣∣
µ

µ

 ,

Σt Σb

Σb Σt


N

φe

φt

 ∣∣∣∣
µ

µ

 ,

Σt 0

0 Σt

 , (3.18)

where the total and between-class covariance matrices are given by Σt = VVT + Σ

and Σb = VVT, respectively. Here, the numerator is obtained directly from (3.17),
and the denominator follows from the independence of two embeddings with dis-
tinct latent representations.

Finally, by setting µ = 0 (by shifting the embedding space by −µ), by expanding
the Gaussian densities in (3.18), applying the logarithm, and computing the inverses
of the symmetric block matrices, the score (3.18) can be written in the following
form [109]:

score = φT
e Qφe + φT

t Qφt + 2φT
t Pφe + constant,

where

Q = Σ−1
t − (Σt − ΣbΣ−1

t Σb)
−1,

P = Σ−1
t Σb(Σt − ΣbΣ−1

t Σb)
−1.

To use the above scoring method without training the PLDA model parame-
ters µ, V , and Σ using the EM-algorithm, one can directly compute the total and
between-class covariance matrices from the training data. This strategy was used in
Publications V and IX.

3.4 MULTI-GAUSSIAN FACTOR ANALYSIS

When combined, the computation of the MAP-adapted GMM supervectors (Section
3.1.4), supervector compression using PPCA (Section 3.2), and PLDA scoring (Sec-
tion 3.3) form the speaker verification pipeline used in Publication III. There are two
drawbacks with this approach, which can be tackled using alternative approaches
presented below. These drawbacks are: First, after computing the MAP-adapted
supervectors, the uncertainty caused by short-duration recordings is not propagated
to the following steps. This is evident from (3.13), where all the utterances have
the same posterior covariance matrix regardless of the length of the utterance. The
covariance matrix (3.13) reflects the uncertainty in the embedding (3.14). Second,
the computation of MAP-adapted supervectors has one extra tunable parameter τ,
which is not needed in the following approach.

One way to mitigate the above drawbacks is to create a factor analysis model
that operates on acoustic features directly instead of GMM supervectors. This ap-
proach creates two additional challenges compared to the simple case presented in
Section 3.2. First, instead of having just a single supervector per utterance, one ut-
terance has a varied number of acoustic feature vectors (frames). Second, it is not
sufficient to model the acoustic feature space using a single Gaussian distribution
only. Addressing these challenges leads to a similar approach to that taken in the
PLDA model. In the PLDA, multiple embeddings from the same speaker share the
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same latent variable. In this case, the requirement is the ability to present multi-
ple frames and Gaussian components using the same latent variable. The idea of
tying the same latent variable across multiple frames and Gaussian components is
emphasized in [113] and [114].

The model with the tying of frames and Gaussian components was first pre-
sented in [115] and was further elaborated in [50]. To be exact, this model, known
as the total variability model, was obtained as a modification of the joint factor analysis
(JFA) [98]. The JFA model has separate latent vectors for the speaker and channel
effects, whereas the total variability model captures both effects in a single latent
vector.

Let x1, x2, . . . , xN be feature vectors extracted from an utterance, and let z be
the shared latent vector with the standard normal prior. Then, the total variability
model defined by parameters θ = {µc, Tc, Σc}C

c=1 can be presented as follows:

p(x1, x2, . . . , xN |z, θ) =
C

∏
c=1

∏
x∈Xc

N (x|µc + Tcz, Σc),

where Xc contains feature vectors from {x1, x2, . . . , xN} that are aligned to component
c. Here, each Gaussian component c is represented with a mean vector µc, projection
matrix Tc, and covariance matrix Σc. The same latent vector z is shared across all
Gaussian components.

Given the total variability model θ, the posterior distribution of the latent vector
is obtained as [116]

p(z|x1, x2, . . . , xN , θ) = N (z|φ, Ψ),

where

Ψ =

(
I +

C

∑
c=1

N̂cTT
c Σ−1

c Tc

)−1

,

φ = Ψ
C

∑
c=1

TT
c Σ−1

c ( f̂c − N̂cµc), (3.19)

N̂c = |Xc| (the number of feature vectors in Xc), (3.20)

f̂c = ∑
x∈Xc

x. (3.21)

Similar to GMM training, it is not known to which component each frame belongs.
Therefore, the computation of sufficient statistics (3.20) and (3.21) is impossible. In-
stead, we can use the Baum-Welch statistics (3.10) and (3.11) computed with respect
to the UBM to replace the above sufficient statistics.

The vectors of the form in (3.19) computed using Baum-Welch statistics are
known as i-vectors, which are most commonly used with a PLDA back-end. The
i-vector-based speaker recognition systems were state-of-the-art roughly from 2010
to 2017. In the late 2010s, DNN embeddings started to outperform i-vectors [117].
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4 SPEAKER RECOGNITION WITH DEEP NEURAL

NETWORKS

This chapter discusses the topic of deep neural networks (DNNs) [26,118,119] and their
applications in speaker recognition. The focus is on core concepts of DNNs, such as
computational graphs, loss functions, automatic differentiation [120], and gradient-based
parameter optimization. These concepts are the key to understanding how neural
networks are trained regardless of the application. The last section of the chapter
then focuses on the use cases in speaker recognition.

4.1 NEURAL NETWORKS AS COMPUTATIONAL GRAPHS

Neural networks are computational models comprising numerous elementary pro-
cessing operations. Multiple elementary operations can be composed to form ar-
bitrarily complicated expressions. The computation of these expressions can be
represented using computational graphs. The following example is loosely based on
the presentation in [120] and elucidates this concept. Let f : R2 → R, g : R2 → R2,
and h : R2 → R2 be functions defined by the following equations

f (x) = cTx + d =
[
c1 c2

] x1

x2

+ d,

g(x) =

tanh(x1)

tanh(x2)

 , and

h(x) = Ax + b =

a11 a12

a21 a22

x1

x2

+

b1

b2

 .

Then, a composite function f ◦ g ◦ h : R2 → R, where y = ( f ◦ g ◦ h)(x) =
f (g(h(x))), can be presented with a computational graph, which is displayed in
Figure 4.1. This graph can be considered a simple neural network with x1 and x2
as the input variables, v1, . . . , v13 as the hidden variables, and y as the output variable.
The remaining nine nodes (a11, a12, a21, a22, b1, b2, c1, c2, d) represent the (learnable)
parameters of the network. The output node and each hidden node of the graph are
associated with an elementary operation. In the example graph, these operations
are either multiplications, additions, or evaluations of a hyperbolic tangent.

The computational graph in Figure 4.1 is an example of a feedforward neural net-
work. Feedforward networks do not have cycles, and the computation flows only
in one direction, from the input to output [119, p. 163]. Another type of network
suited for sequentially organized input data, such as speech signals, is the recurrent
neural network (RNN). In RNNs, the computation for the current time step may use
variables from the previous time step [119, p. 368]. The temporal connectedness al-
lows an RNN to have internal memory, so that computation at any time step benefits
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Figure 4.1: A computational graph representing the composite function f ◦ g ◦ h
defined at the beginning of Section 4.1.

from all the previous time steps. In the following sections, the focus is on feedfor-
ward networks as they have been used in Publications VI, VII, VIII, and IX of this
dissertation.

Although the computational graph in Figure 4.1 consists of seven layers of oper-
ations, the associated feedforward network is considered to have only three layers.
These are the input layer consisting of x1 and x2, the output layer consisting of y, and
one hidden layer consisting of v9 and v10. The convention is that one layer is formed
by a linear transformation followed by a nonlinearity (called an activation function).
In the example, the linear transformation h with the activation g gives the output for
the hidden layer, whereas the second linear transformation f provides the output y
for the output layer.

Activation functions, such as the hyperbolic tangent (tanh), play a key role in
increasing the modeling power of DNNs by adding nonlinearities. Indeed, without
the activation function, the network in Figure 4.1 could be presented as a single
linear transformation: ( f ◦ h)(x) = f (Ax + b) = (cTA)x + (cTb + d). In addition to
the tanh activation used in the example, some of the other widely adopted activation
functions include the rectified linear unit (ReLU) [121], sigmoid function [119, p. 65],
and softmax function [119, p. 179].

4.2 LOSS FUNCTIONS

Loss functions are used to measure the error between the network outputs and target
output values. For example, consider that the network in Figure 4.1 is used to
estimate the angle of the input vector x, which could be computed using the two-
argument arcus tangent (arctan2). Instead of using the arcus tangent directly, the
task is to obtain a good estimate of the angle using only the operations defined in the
computational graph. To train the network parameters for this task, the output of
the network must be compared to the correct value of the angle with a suitable loss
function. Here, such a loss function could be the squared error e(y, ytar) = (y− ytar)2

between the output value y and the correct target value ytar = arctan2(x).
Figure 4.2 illustrates a version of the computational graph presented in Figure 4.1
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arctan2

Hidden
variables

Figure 4.2: A simplified presentation of a computational graph presented in Fig-
ure 4.1 with squared error (loss) computation.

with loss function operations added to the graph. Nodes e1, e2, and e3 represent the
loss computation from the output value y and target value ytar. Typically, ytar is not
computed from the input values but is provided as a part of the labeled testing set.

In the case of the above example, the output is scalar-valued, and the squared
error was used as the loss. In the case of vector-valued regression tasks, it is common
to use the mean squared error (MSE) loss given as follows:

LMSE(y, ytar) =
1
D

D

∑
i=1

(yi − (ytar)i)
2,

where D is the number of dimensions in the output vector. Then, for classification
tasks with B classes, it is common to use cross-entropy (CE) loss with the following
strategy. First, the output layer of the network is constructed to have one node per
class (node yi for class i). Second, the outputs are activated using the softmax [119, p.
179] function

σ(y)i =
eyi

∑B
n=1 eyn

to obtain a valid probability mass function representing probabilities for different
classes. Finally, the CE loss is computed between the softmax outputs σ(y)i and
one-hot encoded class label ytar as follows:

LCE(σ(y), ytar) = −
B

∑
j=1

(ytar)j log(σ(y)j).

Because y is one-hot encoded, only the element at the index of the target class is 1
and the rest of the values are 0. Therefore, the above loss simplifies to the following:

LCE(σ(y), c) = − log(σ(y)c),

where c is the index of the target class.
As noted in [119, pp. 181–182], the name of the above softmax function is mis-

leading. The function represents a “soft” version of the argmax function instead of
the max function. Whereas the ordinary argmax provides an index of the maxi-
mum value, which could be then represented with a one-hot vector, the softmax (or
softargmax) provides a soft, continuous-valued version of the one-hot vector. An-
other name for softmax is the normalized exponential function [53, p. 198] because the
softmax outputs are normalized to sum to one.
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4.3 AUTOMATIC DIFFERENTIATION

The process of feeding the input data to the network and executing the operations
to compute the loss is called a forward pass. After computing the loss, the net-
work parameters are updated so that the loss becomes smaller. This is commonly
achieved using gradient-based optimization methods that require computations of
partial derivatives of the loss function with respect to every network parameter. To
this end, the network is traversed backward (backward pass) to compute the partial
derivatives.

In practice, the partial derivatives are computed using automatic differentiation
(AD) [120], which is a method to compute the exact values of partial derivatives
at specific points without constructing complete analytic expressions for the par-
tial derivatives. This differs from symbolic differentiation, where the expressions are
constructed, and from numerical differentiation, which only approximates the par-
tial derivatives at specific points. For further discussion of the differences between
automatic, symbolic, and numerical differentiation, the reader is pointed to [120].

Moreover, AD has two variants: forward mode [122] and reverse mode [123, pp. 24–
32]. Reverse mode is used in neural network training because it better suits cases
where the number of parameters is large, and the output is a scalar value (such
as the loss value in neural networks) [120]. Therefore, the following discussion
considers only the reverse-mode differentiation with a scalar-valued output.

During the forward pass, the values obtained for all variables are stored for use
during the backward pass of reverse-mode AD. The backward pass starts at the
output layer, where the first partial derivative ė2 (for the graph in Figure 4.2) is
given as follows:

ė2 =
∂e3

∂e2
= 2e2.

Then, the process continues by traversing the network backward with the help of
the chain rule of differentiation to obtain the following:

ẏ =
∂e3

∂y
=

∂e3

∂e2

∂e2

∂y
= ė2

∂e2

∂y
= ė2 × 1,

ḋ =
∂e3

∂d
=

∂e3

∂e2

∂e2

∂y
∂y
∂d

= ẏ
∂y
∂d

= ẏ× 1,

v̇13 =
∂e3

∂v13
=

∂e3

∂e2

∂e2

∂y
∂y

∂v13
= ẏ

∂y
∂v13

= ẏ× 1,

v̇12 =
∂e3

∂v12
= · · · = v̇13

∂v13

∂v12
= v̇13 × 1,

v̇11 =
∂e3

∂v11
= · · · = v̇13

∂v13

∂v11
= v̇13 × 1,

ċ2 =
∂e3

∂c2
= · · · = v̇12

∂v12

∂c2
= v̇12 × v10,

ċ1 =
∂e3

∂c1
= · · · = v̇11

∂v11

∂c1
= v̇11 × v9,

and so on. All expressions on the right side of the above equation chains can be
evaluated because the parameter values and the values of the hidden variables are
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known (the latter of which were computed and stored during the forward pass).
There is no need to formulate complicated analytic expressions of partial derivatives
at any stage.

In the example graph, no nodes are connected to two or more nodes other than
the input nodes. In the case of multiple connections, the contributions from different
paths must be summed to obtain the correct result, for example,

ẋ1 =
∂e3

∂x1
= v̇1

∂v1

∂x1
+ v̇2

∂v2

∂x1
= v̇1a11 + v̇2a21.

The above partial derivative with respect to the input variable x1 is given for the
sake of illustration only.

4.4 OPTIMIZATION OF NETWORK PARAMETERS

The goal of training a neural network is to minimize the loss function. This involves
the use of a gradient. The gradient of a scalar-valued function f (x1, x2, . . . , xn) is
defined using partial derivatives, as follows:

∇ f (y) =



∂ f
∂x1

(y)
∂ f
∂x2

(y)
...

∂ f
∂xn

(y)

 .

The gradient of the loss indicates the direction in the parameter space in which the
loss function increases the most. As the goal is to minimize the loss, the parameters
are updated in the opposite direction (i.e., to the direction of the negative gradient).
The magnitude of the update is controlled with a learning rate η > 0. For example, let
θ = (a11, a12, a21, a22, b1, b2, c1, c2, d) and let L(θ) be the loss function of the network
in Figure 4.2. Then, the updated parameters are obtained as follows:

θnew = θ− η∇L(θ).

Here, the components of ∇L(θ) are the partial derivatives computed during the
AD. This optimization method is known as gradient descent [124].

In neural network training, the network parameters are updated not only after
feeding all of the training data through the network, but they can be updated after
every individual training example. This training method is known as stochastic (or
online) gradient descent [53, p. 144]. Then, even more commonly, the data are fed
to the network in small batches of training examples, known as minibatches. The
resulting training approach is consequently known as minibatch gradient descent. The
losses of individual training examples within a minibatch are commonly averaged
to obtain a single loss value for use with AD. In this case, the averaging operation
of losses (which can be presented with addition and division operations) must be
added to the computational graph before performing AD.

Figure 4.3 demonstrates the gradient descent algorithm applied to a function
with two parameters. At first, the parameter updates are large, but as the magnitude
of the gradient becomes smaller, the updates also become smaller.
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2 with the gradient descent algorithm. The minimum of the function is
obtained using the values θ1 = θ2 = 0.

In addition to the gradient descent algorithm, numerous other gradient-based
optimizers exist that differ in the speed of convergence and sensitivity toward hy-
perparameter settings. Perhaps the most-used are gradient descent with momen-
tum [125] (i.e., Polyak’s heavy ball method), gradient descent with Nesterov accelera-
tion [126, 127], root mean square propagation (RMSprop) [128], and adaptive moment
estimation (Adam) [129]. In short, momentum adds memory to the parameter up-
dates so that the current update is affected by the previous one, as follows:

znew = αz− η∇L(θ),
θnew = θ+ znew,

where α ∈ (0, 1) is a parameter that controls the amount of decay in the momentum.
The Nesterov acceleration is similar, but it first jumps one step forward in the pa-
rameter space in the direction of the momentum. Then, it computes gradients at that
point, and adds a small correction to the parameters using this gradient. Finally, it
updates the momentum. RMSprop optimizer scales the update size separately for
each parameter using the square roots of the exponential moving averages of the
squared partial derivatives (second-order moments). Finally, the Adam optimizer is
similar to RMSprop with the addition of using first-order moments in the parameter
optimization.

Parameter optimization is often regularized with weight decay (i.e., the L2 penalty)
[130]. Weight decay adds a regularization term 1

2 λθTθ to the loss function L(θ) to
penalize parameter values with a high absolute value. This affects the gradient
computation in AD. For example, the partial derivative with respect to the bias term
d ∈ θ becomes

ḋreg = ḋ + λd

after adding the regularization term to the loss. This follows from the differentiation
of the regularization term with respect to d (d must have a straight connection to the
loss in the computational graph). Similarly, when computing the partial derivatives
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with respect to any other parameter, only the term ‘λ times the parameter value’ is
added to the original partial derivative. Therefore, the loss (and the computational
graph) does not need to be modified for the AD phase. It is instead enough to let
the optimizer add the required terms to the original partial derivatives.

All publications in this dissertation involving DNNs (Publications VI, VII, VIII,
and IX) used the minibatch gradient descent optimizer. In addition, the momentum
was used in the first three publications. The last publication used weight decay.

4.5 COMMON BUILDING BLOCKS OF FEEDFORWARD NETWORKS

This section presents a selected set of commonly used constructs in feedforward
networks starting with the most basic types of layers in feedforward networks, fully
connected (FC) and convolutional layers [131]. The FC layers implement linear trans-
forms similar to the function h(x) = Ax + b defined earlier. The number of columns
in the parameter matrix A is determined by the number of the input nodes, and
the number of rows in A and b are determined by the number of nodes in the
FC layer. In convolutional layers, a convolution kernel slides over the input data
computing one value per one position of a kernel (Figure 4.4). The computation
involves element-wise multiplication between the kernel and input data followed
by the summation of the element-wise products. This allows using a shared set of
weights (defined by the kernel) in all locations of input data. Typically, convolu-
tional layers also append a learnable bias term to the outputs.

Inputs:

Kernels:

Input channel 1 Input channel 2 Input channel 3

Output channel 1

Input channel 1

Output channel 1

1D input, 3 input channels 2D input, 1 input channel

Figure 4.4: Illustrations of one-dimensional (1D) convolutions with 1D input data
given in multiple channels (left) and 2D input data given in a single channel (right).

The convolutional layers come in different variations. First, the input data can
be an array of one, two, three, or higher dimension.1. Then, the convolution kernels
can move over the input data in many ways. For one-dimensional (1D) inputs, the
kernels can move only in one direction. For 2D inputs, they can move in one or two
dimensions. For 3D inputs, the kernel can move in one, two, or three dimensions,
and so on. The number of dimensions over which the convolution kernel slides
determines whether the operation is called a 1D, 2D, or 3D convolution. The output
array of the convolutional layer has the same number of dimensions as the dimen-
sionality of the convolution. The dimensionality of the convolution is different from

1In the context of machine learning, arrays of numerical data are typically called tensors. The usage
of the term is not exactly the same in mathematics and physics.
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the input data dimension if the kernel is the same size as the input data in some of
the dimensions. An example of this is shown in the right panel of Figure 4.4.

In addition, convolutional layers can have multiple input and output channels.
In audio processing with 1D convolutions, different dimensions of input acoustic
features are represented as different input channels, and the convolution kernels
span over time (this is similar to the convolution in the left panel of Figure 4.4).
If a layer has many input channels, then each channel has its own kernel, and the
outputs from these kernels are summed to obtain the output for one output channel.
Multiple output channels are obtained by repeating the process of obtaining one
output channel with different kernels for each output channel. Thus, if a layer has
U input channels and Y output channels, then the total number of kernels is UY.

Figure 4.4 illustrates 1D convolutions with 1D and 2D input data. The convolu-
tion with 1D input data and multiple input channels is the same as the convolution
with 2D input data with only a single input channel. Similarly, one could represent
a 1D convolution of 2D inputs and multiple input channels using a 1D convolution
of 3D inputs with only one input channel.

Both the convolutional layers and FC layers have been found to work well with
ReLU activations [121] and batch normalization (BN) [132]. These two operations may
be applied in either order depending on the application [133]. The ReLU activation
is defined as follows:

f (x) = max(0, x).

As observed, ReLU is a piecewise linear function that represents the identity map-
ping for input values greater than 0; for inputs less than 0, the output is 0. The
ReLU has the following potential advantages [121]: 1) it avoids vanishing partial
derivatives (i.e., values becoming too small) during AD, 2) it allows the network to
have sparse representations, and 3) it is computationally inexpensive. The potential
problems of ReLU include ‘dying’ network nodes (i.e., the partial derivative remains
0 if all inputs are smaller than 0) and an unbounded range of outputs, possibly lead-
ing to numerical problems. The former property was not found to be detrimental in
the experiments conducted in [121], and the latter problem can be alleviated using
regularization techniques, such as weight decay and BN.

BN uses all of the training samples within a minibatch to separately normalize
each of the layer outputs to a zero sample mean and unit sample variance. More
specifically, the BN operation is given as follows:

BN(x) = γ
x− µ

σ
+ β,

where µ and σ are the mean and standard deviation computed over the minibatch
dimension, respectively. The parameters γ and β allow scaling and shifting of the
BN output. When BN is applied to the outputs of the convolutional layer, the nor-
malization statistics µ and σ are computed separately for each output channel. This
way, the BN parameters and statistics are shared between every position of the input
— just like in the convolution operation.

Moreover, BN accelerates neural network training. The explanations for this
effect include that BN helps reduce internal covariate shift [132], smooths the loss
function [134] to derive more stable gradients, and causes length-direction decou-
pling [135, 136] of the weight parameters. In addition, BN helps avoid overfitting
the training data because the computation for any given training example is not
deterministic due to dependency on other (randomly selected) examples within a

36



minibatch [132]. This, however, raises the question regarding how BN can be applied
during test time when the samples are processed independently. This is achieved by
maintaining a running exponential average of the normalization statistics computed
over the consecutive minibatches during training. These statistics are used during
testing.

4.6 DEEP LEARNING APPLIED TO SPEAKER RECOGNITION

Over the years, many different approaches have been taken to use DNNs for speaker
recognition tasks. This section reviews some of the most adopted approaches. These
include using DNNs as extractors of frame-level [137–139] and utterance-level fea-
tures (embeddings) [35, 140, 141]. Furthermore, DNNs have been adopted in com-
puting UBM-posterior probabilities as an alternative to using GMMs with equation
(3.6) [142, 143].

The approach replacing the computation of UBM posteriors with DNN-based
posteriors was proposed in 2014 [142]. In that work, a DNN (similar to Figure
4.5c without the bottleneck) with seven FC layers was used to compute the pos-
teriors needed in Baum-Welch statistics for i-vector extraction. The input features
for the DNN were 40-dimensional vectors of log mel-filterbank confficients. For
each frame, a longer context was created by stacking the seven preceding and seven
following feature vectors with the current feature vector. Thus, the network inputs
were 40× (7+ 1+ 7) = 600 dimensional. The target labels were phonetic units called
senones computed using a separate automatic speech recognition (ASR) model. Senones
are tied states of triphone models [142, 144]. The network had a softmax output
layer consisting of 3450 nodes representing different senones. Therefore, it served
as a 3450-component DNN-UBM for posterior probability extraction. The benefit
of this approach is that the model encodes more accurate phonetic information to
the posteriors. That is, the frames that are aligned with a certain component of
the DNN-UBM should, in theory, always represent the corresponding triphone, no
matter how it was pronounced by the speaker. In traditional GMM-UBM, different
realizations of the same phoneme could become aligned with different components,
and as a result, some phonetic information about differences between speakers is
lost. The drawback of DNN-UBM is that it increases the complexity of the system
development because it requires an ASR model for senone computation.

In [143], the DNN of DNN-UBM was replaced with a time delay neural network
(TDNN) [146]. The TDNN is a special case of convolutional neural network (CNN), in
which convolution kernels slide in the temporal direction. In TDNN implementa-
tions, the convolution kernels are typically dilated (i.e., the kernels have empty gaps).
The i-vector systems based on both TDNN-UBM and DNN-UBM achieved consid-
erably higher speaker verification accuracy compared to the corresponding i-vector
systems based on GMM-UBM [142, 143].

Another commonly used approach that appeared in the early 2010s is the use
of DNNs to extract bottleneck features [137–139]. Bottleneck features are frame-level
features obtained from the traditional (usually stacked) acoustic features through
transformations implemented by a neural network. The training targets for bottle-
neck feature extractor networks are typically some sort of phonetic units, such as
senones. The bottleneck features are not obtained from the output layer but from
some intermediate layer of the network that has smaller surrounding layers (hence
the name ‘bottleneck’). The bottleneck layer forces the network to pass the data
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Figure 4.5: Illustrations of some popular deep architectures used for speaker recog-
nition. The d-vector [140], x-vector [35], and ResNet [145] architectures can be used
to extract speaker embeddings. The bottleneck DNN-UBM architecture can be used
in two ways: to extract bottleneck features or extract senone posteriors, both of
which are typically used as inputs for i-vector systems.

through a relatively small-dimensional internal representation, which should con-
tain relevant information to decode the output representation as well as possible.
Thus, it can be considered a dimensionality reduction mechanism [147].

In [148], the same network is used for extracting both bottleneck features and
senone posteriors. Combined with the traditional MFCCs and GMM, these allowed
four combinations for the Baum-Welch statistics computation: 1) MFCC features
with GMM posteriors, 2) MFCC features with DNN posteriors, 3) bottleneck fea-
tures with GMM posteriors, and 4) bottleneck features with DNN posteriors. The
third option gave the best results followed by the second option. Figure 4.5c displays
a crudely simplified illustration of the network used in the study.

In 2014, another line of research was initiated when deep vectors (d-vectors) were
proposed [140]. Deep vectors are speaker embeddings obtained through averaging
the outputs of a hidden layer of a DNN trained using speaker labels as targets. Fig-
ure 4.5a (reproduced from [140]) illustrates the original d-vector architecture. A key
point to note from the architecture is that unlike in the bottleneck approach, the
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network is trained for the actual end goal of performing speaker recognition. How-
ever, the whole network operates on the frame level even if it is used to construct
utterance-level features from the outputs of a hidden layer. This can be a drawback
because the network cannot fully use the information in an utterance, as it only
‘sees’ short segments of it. Perhaps this is one of the main reasons the d-vector ap-
proach did not exhibit impressive results when compared to the traditional i-vector
systems [140].

In the x-vector approach presented in 2017 [117], the averaging (pooling) oper-
ation to switch from frame-level to utterance-level representation occurs inside the
network, as illustrated in Figure 4.5b. In addition to computing averages over differ-
ent frame-level representations, the pooling layer computes standard deviations and
stacks them with the averages. The x-vector embeddings are extracted from the first
layer after the pooling layer before applying the activation function and BN. In ad-
dition to the pooling layer, the x-vector architecture differs from the d-vector in that
it uses a TDNN in the frame-level part of the network. The convolutional nature of
the TDNN is useful for modeling temporal dependencies between adjacent frames
while keeping the parameter count relatively low. Since their introduction, x-vectors
and similar variants [78] have been considered state-of-the-art speaker embeddings.

Recently, ResNets [145] have also been adopted for speaker recognition with com-
parable results to x-vector systems [78, 141, 149]. ResNets process 2D inputs with a
CNN that includes residual connections. A residual connection is a connection that
adds the output of a layer to the output of some other subsequent layer (skipping
one or more layers in between). Residual connections facilitate training deeper net-
works by allowing partial derivatives to propagate to the first layers of the network
with fewer connections, thus alleviating vanishing gradient problems. Even with
residual connections, increasing the network depth too much may not be a wise
strategy, as discussed in [150]. A simplified illustration of a ResNet is presented
in Figure 4.5d. Originally, ResNets were designed for image recognition; thus, the
pooling layer and the layers around it may need to be modified to better suit for
temporal speech data, as performed in [78] and [141].

Other than the above architectural choices, the recent research trends in speaker
recognition include the study of various pooling layer constructs and loss functions.
Perhaps the best known alternatives for the temporal average and standard devi-
ation pooling are the learnable dictionary encoder [96] and the netVLAD (Vector of
Locally Aggregated Descriptors) [151]. In both of these constructs, the pooling layer in-
side the network is replaced by a construct that resembles a GMM. That is, instead
of computing statistics globally, they are computed locally around the learnable clus-
ters (or components) of the models. Publication IX explains the relation of the LDE
and netVLAD to the GMM in detail.

The alternatives to the commonly-used cross-entropy loss with softmax acti-
vations include angular-softmax loss [152], angular additive margin loss [153], triplet
loss [154], and generalized end-to-end loss (GE2E) [155] to name but a few. The first
two of these losses compute the classification loss based on the angles between the
speaker embeddings and weight-vectors of the last layer. These angular loss based
methods minimize intra-speaker variation and maximize inter-speaker variation by
enforcing margins around the angles. Unlike the first two losses, the last two losses
do not compute the loss value for each embedding independently. Instead, the gen-
eral idea is to push embeddings from different speakers within a minibatch further
apart while bringing embeddings from the same speaker closer to each other.
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5 SUMMARY OF PUBLICATIONS

This dissertation includes nine publications. They are grouped into the three se-
lected themes of robustness, speed, and security. The following presents a sum-
mary of each paper in each theme. Finally, theme-wise summaries are followed by
a summary of published software implementations relating to the papers.

5.1 STUDIES ON ROBUSTNESS

The primary focus of Publications I, II, and IX was improving the robustness of
automatic speaker recognition systems. The first two publications address the issue
by proposing robust acoustic features using techniques such as frequency domain
linear prediction (FDLP) [156–158] and time-varying linear prediction (TVLP) [159, 160].
The first study uses proposed features in reverberant conditions, whereas the second
study uses them to tackle the problems caused by speaking-style mismatch induced
by whispering. The third study focuses on developing the core speaker recognition
technology. The study uses modern deep embedding extractor networks with data
augmentation to perform speaker recognition with audio extracted from videos.
The embedding networks are also employed as Baum-Welch statistics extractors for
the neural i-vector systems proposed in the study. The following paragraphs (see
Table 5.1) summarize all of the three studies in more detail starting from the studies
employing linear prediction (LP) techniques.

A well-known property of LP is its ability to convey essential information about
the speech spectrum within a small number of parameters (i.e., in the predictor co-
efficients ai) [161]. In Publications I and II, different types of LP are adopted for
speech spectrum estimation. The baseline method for these studies is 2D autoregres-
sive model (2DAR) [65, 162], which uses both FDLP and LP in succession. FDLP is
an analogous method to LP, where the roles of the time and frequency domains are
interchanged. Whereas LP is applied to windowed time-domain signals to obtain
short-time frequency spectrum estimates, FDLP applies LP to windowed frequency
subbands to obtain time-domain envelopes for the subband signals. Therefore, the
first step in FDLP is to transform the time-domain signal to the frequency domain
with the aid of discrete cosine transform (DCT). The transformed signal is then win-
dowed and FDLP modeling is applied to each subband window. As the window-
ing is done in frequency rather than in the time domain, FDLP allows modeling
the long-term temporal structure of speech signals from contexts longer than the
typical frame contexts of 25 ms or so. The time-domain envelopes of subbands
given by FDLP can be stacked (usually after subsampling by integration) to obtain
a spectrograph-like representation of a speech signal.

As noted above, FDLP is followed by LP in 2DAR modeling. Because the spec-
trogram output of FDLP cannot be directly used as input to LP, it is converted to
sequences of autocorrelation coefficients (2.4) by applying the inverse Fourier trans-
form [55, 65] to every frame of a spectrogram.

The first two studies propose a modification to 2DAR, where the LP step after
FDLP is replaced by TVLP. In TVLP, the predictor coefficients are allowed to be
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time-varying, so that equation (2.2) becomes the following:

x̂[n] =
p

∑
k=1

ak[n]x[n− k].

The predictor coefficients are restricted from being able to change arbitrarily over
time by expressing them using a set of q predefined continuous basis functions uj[n]
as follows:

ak[n] =
q

∑
j=1

bkjuj[n].

Here, bkj are the model parameters to be solved. In the standard TVLP formulation,
these parameters cannot be solved using the autocorrelation coefficients of form
(2.4); therefore, applying TVLP after FDLP is problematic. Hence, Publications I
and II propose a modified version of TVLP called autocorrelation domain TVLP that
uses the autocorrelation sequences in solving parameters bkj.

Both Publications I and II address robustness against a mismatch between the
speaker enrollment and test conditions. In Publication I, the mismatch was caused
by reverberation in test segments, whereas in Publication II, the speaking style in
the enrollment and test utterances was different. More precisely, the enrollment
utterances in II were modal speech, whereas the testing utterances were whispered
speech. The proposed FDLP-TVLP method outperformed the baseline methods in
both of the publications in mismatched conditions. Publication I also indicated
promising results for non-mismatched testing conditions, whereas, in Publication
II, the baseline methods outperformed the proposed features when speaking-style
mismatch was absent.

In addition to studying the proposed features with whispered speech, Publica-
tion II has the following contributions. First, it includes a comprehensive litera-
ture review on speaker recognition from whispered speech. Second, it proposes a
transcription-free alignment method to align utterances of normal and whispered
speech that share the same lexical content. The method can detect poorly aligned
speech segments so that they can be discarded when analyzing the differences in
modal and whispered speech. Third, the study provides an analysis of how the first
three formants (F1, F2, and F3) change when changing from normal to whispered
speech. The results indicate that the formant frequency F1 changes the most by
becoming, on average, 150 Hz higher in whispered speech.

The last study (Publication IX) under the robustness theme uses modern DNN
components for speaker embedding extraction. The primary novelty of the work is
the neural i-vector, a new construct in which the generative i-vector is extracted from
Baum-Welch statistics extracted by a DNN. This DNN is a deep speaker embedding
extractor network equipped with a GMM-like pooling layer. Two such pooling lay-
ers exist, namely learnable dictionary encoder (LDE) [96, 163] and netVLAD (VLAD
is an acronym for a vector of locally aggregated descriptors) [151, 164]. The differ-
ences between our work and the existing DNN i-vector formulation [142] are the
following. First, our DNN uses speaker labels as training targets instead of senone
labels. Second, the posteriors used for statistics computation are not obtained from
the output layer but the pooling layer. Lastly, the frame-level features for statistics
computation are discriminatively trained because they are also obtained from the
DNN.

The study also provides explanations on how the LDE and netVLAD pooling
layers resemble GMMs. Different variants of these pooling layers are experimentally
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compared to each other. In addition, we experiment with residual connections [145]
and squeeze-and-excitation (SE) modules [165, 166].

This preliminary investigation of the neural i-vectors indicates that their perfor-
mance is better than the other i-vector based systems reported in the literature. On
the other hand, the performance of neural i-vectors is worse than their correspond-
ing DNN embedding counterparts. Further, the benefits of residual connections
and SE modules appeared to be small and dependent on the evaluation conditions.
The residual connections may be more useful for deeper network architectures than
those used in the study.
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5.2 STUDIES ON COMPUTATIONAL SPEED-UPS

Among other topics, Publications III, IV, and V focus on the speed of speaker
recognition systems in training and testing. Publication III investigated multiple
fast-to-train speaker embedding extractors that operate on MAP-adapted GMM-
supervector inputs. Publication IV used one of the methods discussed in Publication
III in an online web demonstrator of speaker recognition technology. To this end,
it also considered the testing speed of the system. In the third study (Publication
V) of this theme, the standard i-vector system is implemented to use a graphics
processing unit (GPU) computation to obtain substantial training acceleration. All
three studies are discussed in more detail below. In addition, a summary in tabular
form is given in Table 5.2.

Publication III examined four different methods for reducing the dimensional-
ity of supervectors to obtain lower-dimensional speaker embeddings. The methods
were probabilistic principal component analysis (PPCA) [106], factor analysis (FA) [53,
pp. 583–586], probabilistic partial least squares (PPLS) [168], and supervised PPCA (SP-
PCA) [169]. The first two are unsupervised methods that do not require speaker
labels, whereas the last two are supervised. In the PPLS model, the labels are en-
coded as one-hot vectors, which are set to share the same latent representations
with the corresponding supervectors. Finally, the SPPCA model uses speaker labels
to create one supervector for each speaker by averaging the supervectors of different
utterances of the same speaker.

The findings in Publication III are the following. First, the differences between
most of the supervector dimensionality reduction techniques were small, support-
ing the use of the simplest method, that is, the PPCA. The PPCA model was more
than one hundred times faster to train than the standard i-vector model (i.e., the
total variability model), and it obtained similar EERs to the i-vector model. How-
ever, this result should be carefully considered because the specific i-vector baseline
lacked two training procedures that would improve the performance. These two
techniques, minimum divergence re-estimation and covariance matrix updates at M
step of the EM-algorithm were later studied in Publication V.

Publication V uses the modern machine learning library PyTorch [170] to im-
plement GPU-accelerated i-vector model training. The experiments indicate that
the GPU implementation is more than an order of magnitude faster than the cor-
responding CPU implementation in the Kaldi speech recognition toolkit [171]. The
considerable speedup allowed an extensive investigation of different training vari-
ations of the otherwise slow-to-train model. The findings of this investigation are
the following: Performing minimum divergence re-estimation between training it-
erations results in a 7.5% to 9% lower EER (relatively), and updating the covariance
matrices results in a 1.5% to 3% lower EER (relatively) with the VoxCeleb dataset.
In addition, updating the frame alignments and recomputing Baum-Welch statistics
after every iteration of training can lower EER by about 1% relatively.

An additional contribution of Publication V is documenting certain unpublished
details regarding Kaldi’s [171] i-vector extractor formulation. Kaldi’s formulation
is not the original formulation [50] but one in which the bias term of the model is
augmented into the total variability matrix. Therefore, it is referred as the augmented
formulation in Publication V. The study explains how this change in the model
affects its training.

After III was published, the PPCA-based speaker identification system was de-
ployed into a web demonstration application to be used for science popularization
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Figure 5.1: A research team member demonstrating speaker recognition technol-
ogy in a sub-event of the European Researchers’ Night (ERN) 2019. The ERN events
funded by the European Commission are dedicated to educating the public about
the current state of the research work. The sub-event in the picture took place at
Matkus Shopping Center, Kuopio, Finland. During the four-hour-long event, numerous
people (> 100) recorded their voices to discover whom they sound like.

purposes (Figure 5.1). The identification system was trained to recognize YouTube
celebrities present in the VoxCeleb 1 [81] and 2 [82] datasets. In the web demon-
stration, the user was asked to record a short speech sample, which was compared
with the VoxCeleb speakers to determine the closest sounding speakers. The results
were presented as a top-five list, which included embedded YouTube video players
so that the users could watch the videos of the closest matching people. To provide
a smooth user experience, special attention was paid to optimizing the system speed
at test time. This work is documented in Publication IV.
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5.3 STUDIES ON SECURITY

Publications VI, VII, and VIII focus on security aspects related to automatic speaker
recognition. Each of the studies is summarized below (Table 5.3).

Publication VI presented the ASVspoof 2019 anti-spoofing challenge and its re-
sults. The ASVspoof 2019 challenge was third in a series of biannually organized
ASV anti-spoofing challenges. The earlier editions of ASVspoof challenges were
organized in 2015 [41] and 2017 [42]. ASVspoof 2019 consisted of two separate chal-
lenge scenarios, namely the logical access (LA) and physical access (PA) scenarios. In
the LA scenario, spoofing attacks are injected directly into the ASV system, bypass-
ing the microphone. The spoofing attacks for LA are created using voice conversion
or text-to-speech synthesis. In the PA scenario, the spoofing attacks are captured
using the ASV system microphone in a reverberant room. The spoofing attacks
considered in the PA scenario are replay attacks, in which the recorded speech of
the target speaker is replayed to the ASV system through a loudspeaker. Unlike in
ASVspoof 2017, the PA audio files in ASVspoof 2019 were not collected by replaying
and recording speech; instead, the replay process was simulated. Simulation allows
the study of the replay attacks in different acoustic environments and with different
replay device characteristics in a more controlled way. In addition, simulation fa-
cilitates the creation of large replay datasets because simulation lessens the manual
human work required.

In the earlier editions of the ASVspoof challenge in 2015 and 2017, spoofing
countermeasures were evaluated using the EER of the spoofing detection task. This
metric, however, does not provide satisfactory insight on how well a combined system
of a spoofing countermeasure and ASV system would perform. For example, even if
the spoofing countermeasure EERs are high for a specific attack, the combined sys-
tem might still work fine if the attack cannot deceive the plain ASV system. To this
end, the ASVspoof 2019 was the first challenge to include the tandem DCF (t-DCF)
metric [6,172], which evaluates spoofing countermeasures with an ASV system. The
ASV system (specifically, the scores of the ASV system) were provided by the chal-
lenge organizers so that the challenge participants did not need to develop their
own ASV systems. The ASV system in the 2019 challenge was an x-vector system
based on the Kaldi recipe for VoxCeleb data.

The ASVspoof 2019 was successful in activating anti-spoofing research: more
than 150 teams registered for the challenge from all over the globe (including aca-
demic and industry participants). A total of 63 teams managed to submit their
countermeasure scores, and over half of these submissions performed better than
the baseline countermeasures provided by the organizers. The best teams managed
to reach spoofing detection EERs lower than 1% in both LA and PA scenarios.

Publication VII presents the study of two kinds of attacks that were not included
in the ASVspoof challenges or any other challenges to the best of the knowledge of
the author. These are impersonation (mimicry) attacks and attacks using technology-
assisted target speaker selection. In an impersonation attack, an impersonator aims to
deceive the ASV system by changing his or her voice to sound like the target speaker.
The technology-assisted target speaker selection refers to an act of searching for sim-
ilar voices to the attacker’s voice from a large set of speakers using ASV technology.
Then, by presenting him or herself to the ASV system as the closest sounding target,
the attacker has a higher chance to deceive the ASV system (or human listener).
The work aimed to study whether impersonation attacks can be improved by com-
bining them with technology-assisted target selection. To this end, we first selected
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suitable targets for the recruited impersonators using an ASV system. Then, the
impersonators were asked to impersonate the voices of the selected targets. These
impersonation recordings were then used to attack another ASV system.

The results of the study suggest that technology-assisted target speaker selection
helps create stronger attacks. In other words, the scores of one ASV system were
correlated to the scores of another ASV system. Contrary to our expectations, the
impersonation attacks were not found to be helpful, at least when the target speaker
was already close to the impersonator in terms of speaker recognition scores.

The examination of technology-assisted target speaker selection attacks is con-
tinued in Publication VIII. This work estimates the likelihood of finding a speaker
(worst-case impostor) among a large speaker population who could be verified by
an ASV system to be a specific target speaker. This is achieved with the proposed
performance metric worst-case false alarm rate among N impostors (PN

FA). The proposed
metric is similar to the standard FA rate but is computed with the most difficult
impostors in terms of the ASV scores.

Because the number of speakers in publicly available datasets is limited, the es-
timation of PN

FA is challenging for large values of N. Thus, the study proposes a
generative model of ASV scores that can be used to extrapolate false alarm rates
for a larger number of speakers than training datasets have. Using this model and
the VoxCeleb data, it was estimated that PN

FA is 54% for a population size of 100 000
with an x-vector system having a relatively strict threshold. That is, for a randomly
selected target speaker, there is a 54% chance that the closest impostor from a pop-
ulation of 100 000 would be accepted as the target speaker.
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5.4 SOFTWARE IMPLEMENTATIONS

The research work for this dissertation involved implementing various pieces of
software. Table 5.4 lists those ones that have been released into public. Apart from
the web platform, the listed software was mostly developed by the undersigned.

Table 5.4: A list of published software implemented during the research work.

Related
publications

Software title & link Software description

III, IV Supervector compres-
sion methods: https://

gitlab.com/ville.vestman/

supervector-compression

Contains MATLAB routines for com-
pressing supervectors into smaller di-
mensional speaker embeddings using
probabilistic principal component anal-
ysis (PPCA), factor analysis (FA), proba-
bilistic partial least squares (PPLS), and
supervised PPCA (SPPCA).

IV Web platform for demonstrat-
ing speech processing: https:
//github.com/bilalsoomro/

speech-demo-platform

A web platform based on PHP and
Javascript. Sends a wav-file to the
server-side, calls the specified speech
processing method, and finally returns
the output the to the client.

V GPU accelerated i-vectors:
https://github.com/

vvestman/pytorch-ivectors

Contains PyTorch implementations of
different variants of i-vector extractors
including the one in the Kaldi Toolkit.
Both the computation of alignment of
frames to GMM components and the i-
vector extractor training are accelerated
with GPU.

V, IX ASVtorch Toolkit: https://

gitlab.com/ville.vestman/

asvtorch/

ASVtorch is a PyTorch based speaker
verification toolkit that includes the
above i-vector implementations and
many x-vector variants. The toolkit
contains complete speaker verification
pipelines for the VoxCeleb and Speak-
ers in the Wild (SITW) datasets.
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6 CONCLUSIONS AND FUTURE WORK

Speaker recognition technologies have been actively researched for many decades.
The progress in the field has been remarkable, and there are no signs of slowing
down. The progress has been fostered by both developmental and research supporting
factors. The supporting factors are the increased availability of publicly available
speaker recognition datasets and increasing computational resources. The develop-
mental factors are the improvements produced through the research and develop-
ment of the core recognition technology. These include, for example, improved fea-
ture extraction methods, speaker models, and back-end classifiers. The progress is
also reflected in the work done in this doctoral dissertation. At the time of writing
the first publication, state-of-the-art speaker recognition systems were still largely
based on generative speaker embedding models. Since then, DNN-based embed-
dings have become increasingly powerful and are now the default choice for most
speaker recognition tasks.

The improved technologies and digitalization of society have widened the scope
of potential applications of automatic speaker recognition. The adoption of the
recognition systems for these applications can be facilitated by continuing the de-
velopment various aspects of the speaker recognition systems. These aspects in-
clude the robustness, security, and speed of speaker recognition, which are the main
themes of this dissertation. The following sections present the conclusions from
each studied theme along with ideas for future work.

6.1 ROBUSTNESS

The research presented in this dissertation contributed to the robustness of auto-
matic speaker recognition in the following ways. The proposed FDLP-TVLP fea-
tures (Publications I and II) exhibit the ability to mitigate problems caused by
enrollment-test mismatch caused by reverberation and normal-to-whisper speaking-
style changes. These results were obtained using the GMM-UBM speaker recogni-
tion system. Whether the proposed or similar feature extraction constructs are ben-
eficial with modern DNN-based speaker recognition systems is left for future work.
However, in the case of whispered speech, this might turn out to be challenging
as the availability of whispered speech data might not be sufficient for DNN train-
ing. Thus, it could be interesting to try to improve the speaker recognition from
whispered speech by creating artificial whispered speech data, for example, by us-
ing voice conversion technologies such as the ones proposed in [176]. The same
idea could be also applied to improve robustness to high vocal effort levels, such as
present in Lombard speech and shouting [177].

The last publication of this dissertation (Publication IX) explored new avenues in
combining DNN models with generative models. To this end, the work used GMM-
like pooling layers within a DNN embedding extractor network to use the network
as a statistics extractor for the generative i-vector model. The proposed neural i-
vectors outperformed the i-vector baselines reported in the literature but were not
able to compete with purely DNN-based embeddings. Despite not achieving state-
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of-the-art results, the proposed framework could inspire future work in applications,
such as ultra-short-duration speaker recognition. This hypothesis is supported by
the fact that the studied framework could be modified to use a GMM-UBM-like
frame-based scoring method, which could be useful, for instance, in fine-grained
speaker diarization. The investigation of this idea is left as future work.

In the recent past, the ASV systems were relatively homogenous; most of them
were using MFCC features, GMM-UBM or DNN-UBM, i-vectors, and PLDA. This
period was followed by the large-scale adoption of DNNs, and as the consequence,
design choices of the systems have become far more heterogenous. In the recent
literature, the variation in the ASV system designs is prevalent in all parts of the
system; in features, DNN architectures, and back-end solutions. Furthermore, while
some systems retain the traditional division of system to frame level feature extrac-
tor, utterance level feature extractor, and back-end classifier, there are many systems
that try to combine multiple parts together in more end-to-end fashion [178, 179].
In the long term, it will be interesting to see whether the current trend of diversifi-
cation of system designs continues, and, if the system designs start to converge, to
which specific design they converge to.

6.2 COMPUTATIONAL SPEED-UPS

Publications III and V contributed implementations and comparisons of variants of
fast-to-train speaker recognition systems. The first study compares multiple super-
vector compression methods that are computationally less expensive than the tradi-
tional i-vector systems. The second study improves the training speed of traditional
i-vector systems (including Kaldi’s i-vector variation) by using GPU acceleration.
The experiences from this work support the idea that probabilistic generative mod-
els can often be trained much faster by using GPUs. Then, contrary to the above two
studies, Publication IV focused more on the testing speed. In this work, one of the
methods (PPCA) in Publication III was adopted to create an online web demonstra-
tion of speaker recognition technology. The demonstration was optimized for test
phase speed, and the response and computation times were measured and reported
in the publication. The demonstration has been received well in various promotional
and science popularization events, indicating that sometimes even relatively simple
technology demonstrations can be very engaging to the audience.

The future work on computational speed-ups with modern ASV systems mostly
involves finding the lightest, yet well performing DNN architectures. To automatize
this task, ideas relating to network pruning [180], differentiable neural architecture search
[181], and neuroevolution [182] could be investigated.

6.3 SECURITY

The contributions of this dissertation in the third and the final theme of security are
various. Publication VII delivered new and updated knowledge about the rarely
studied topic of technology-assisted mimicry attacks against ASV. In general, the
attacks were not successful in misleading the ASV system. Nonetheless, the results
suggest that the technology-assisted target speaker selection seems more helpful
than the mimicry efforts by amateur mimickers in creating stronger attacks. This
study used VoxCeleb as the target data, which due to the uncontrolled nature of
the data, made both conducting the experiments (required manual cleaning) and

54



the interpretation of the results more difficult. Another slight problem was caused
by the nationality of mimickers (Finnish), which limited the number of possible
target speakers of the same language to a relative small number of Finnish speakers
present in the VoxCeleb corpus. Thus, in future, a study of a similar kind could
be conducted but with a cleaner data, and possibly with native English speakers as
mimickers.

Along the line of research of Publication VII, Publication VIII considered what
happens if an impostor is the worst-case impostor (the closest speaker to the target
speaker) — perhaps selected automatically by an ASV system from a large speaker
population (similar to that used in Publication IV). To this end, the paper proposed
a new worst-case false alarm rate metric. Another major novel idea in the paper is
generative modeling of the scores of the ASV system to predict the false alarm rates
with arbitrarily large speaker populations. This work has been recently continued
in [7], which proposed discriminative training of various score models to improve
the false alarm rate estimation.

Finally, Publication VI presented the ASVspoof 2019 challenge and its results.
This was the third edition of the challenge and was once again highly successful in
activating research on ASV anti-spoofing methods to detect replayed, synthesized,
and converted speech. Plans and ideas for the future editions of ASVspoof exist
and many of them will be highlighted in a new ASVspoof 2019 summary article,
which is, at the time of writing, under review. To name a few, these ideas include
the anti-spoofing under additive noise, inclusion of more diverse spoofing attacks,
and inclusion of multi-channel data to reflect the use cases with devices having
microphone arrays.

Whereas the ASV systems are expected to get extremely powerful within the next
few decades, the anti-spoofing side may remain as a bottleneck due to the continu-
ous technological arms race between spoofing attacks and countermeasures. Despite
this, anti-spoofing research is valuable to prevent if not all, then at least the most
easy to detect spoofing attacks. Furthermore, when ASV anti-spoofing countermea-
sures are combined with other modalities such as face and lip movement detection,
ASV systems may become too challenging to attack by any practical means.
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[77] P. Matějka, O. Plchot, O. Glembek, L. Burget, J. Rohdin, H. Zeinali, L. Mošner,
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A ERRATA

In Publication III, there is an error in the formula regarding the computation of
MAP adapted GMM mean vectors. The erroneous formula is

µ̂c = αc fc + (1− αc)µc.

Here the first order statistics fc should be divided by the zeroth order statistics (soft
counts) nc to obtain the correct formula:

µ̂c = αc
fc

nc
+ (1− αc)µc.

In Publication IX, the correct form of equation m = (mT
1 , mT

2 , . . . mT
T )

T, which is
shown below equation (5), is m = (mT

1 , mT
2 , . . . , mT

C )
T.
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Abstract
In poor room acoustics conditions, speech signals received by
a microphone might become corrupted by the signals’ delayed
versions that are reflected from the room surfaces (e.g. wall,
floor). This phenomenon, reverberation, drops the accuracy of
automatic speaker verification systems by causing mismatch be-
tween the training and testing. Since reverberation causes tem-
poral smearing to the signal, one way to tackle its effects is to
study robust feature extraction, particularly based on long-time
temporal feature extraction. This approach has been adopted
previously in the form of 2-dimensional autoregressive (2DAR)
feature extraction scheme by using frequency domain linear
prediction (FDLP). In 2DAR, FDLP processing is followed by
time domain linear prediction (TDLP). In the current study, we
propose modifying the latter part of the 2DAR feature extraction
scheme by replacing TDLP with time-varying linear prediction
(TVLP) to add an extra layer of temporal processing. Our
speaker verification experiments using the proposed features
with the text-dependent RedDots corpus show small but con-
sistent improvements in clean and reverberant conditions (up to
6.5%) over the 2DAR features and large improvements over the
MFCC features in reverberant conditions (up to 46.5%).
Index Terms: speaker recognition, autoregressive modeling,
autocorrelation domain time-varying linear prediction

1. Introduction
An automatic speaker verification system is said to be robust
if it tolerates external distortion caused by environmental noise
or transmission channel, or internal signal variation caused by,
for example, different speaking styles. A large part of previous
speaker verification studies have focused on robustness with re-
spect to noise (e.g. [1]), while robustness with respect to vary-
ing room acoustics conditions has remained less studied. Room
acoustics, however, might have a large effect on the accuracy of
a speaker recognition system: If the training and testing data
are recorded in different room environments, there will be a
mismatch between the training and testing which will degrade
recognition accuracy. Room acoustics affect speech signals par-
ticularly in the form of reverberation [2]: the signal received by
a microphone becomes a sum of the direct component and its
delayed versions that arrive at the microphone after being re-
flected from the surfaces (e.g. walls, floor, ceiling) of the room.
Mismatch caused by reverberation can in principle be tackled
by modifying the speaker verification front-end or back-end. In
our view, advances on both sides are necessary to reach the best
possible performance. On the back-end side, techniques such as
multi-condition training [3], where multiple speaker models for
different reverberation conditions are created for each speaker,
can be utilized. In the current study, however, we focus on the
system front-end by studying features that aim at reducing the
mismatch caused by reverberation.

Speech features robust to reverberation have been previ-
ously investigated in a few speaker verification studies. In [4],
the use of locally normalized cepstral coefficients (LNCCs) was
studied. LNCC features modify the conventional MFCC fea-
tures by using an additional filterbank to perform local nor-
malization in the spectral domain. LNCCs were found to im-
prove the recognition accuracy particularly when reverberation
was severe. A different approach, based on the blind spectral
weighting (BSW) technique, was proposed in [5] to handle the
reverberation mismatch. In addition to these two previous meth-
ods, there is a family of reverberation-robust features based on
smoothing of subband Hilbert envelopes. For example, mean
Hilbert envelope coefficient (MHEC) feature extraction scheme,
proposed in [6], takes advantage of low-pass filtering of Hilbert
envelopes of Gammatone filterbank outputs. Smoothing of
Hilbert envelopes can also be conducted using frequency do-
main linear prediction (FDLP) [7, 8, 9], a method to compute
all-pole estimates for Hilbert envelopes. FDLP processing can
be used on its own [8] or in conjunction with time domain lin-
ear prediction (TDLP) [10]. The technique where FDLP is fol-
lowed by TDLP, known as 2-dimensional autoregressive model
(2DAR), has been reported to provide better speaker verification
results in reverberant conditions than when using FDLP alone
[10]. Besides being efficient in tackling the reverberation mis-
match problem, 2DAR processing has been found to improve
verification in the presence of background noise as well [10].

In this study, we propose to modify the 2DAR model by
replacing TDLP with time-varying linear prediction (TVLP)
[11, 12] which is a generalization of conventional linear pre-
diction (LP) [13]. TVLP can be used to analyze non-stationarity
of speech signals by allowing the underlying all-pole model to
be time-varying. In TVLP, temporal trajectories of the all-pole
filter coefficients are represented with basis functions such as
polynomials or trigonometric functions. This introduces an ad-
ditional temporal constraint to 2DAR models that we hypoth-
esize to be useful in tackling reverberation mismatch between
training and testing.

Our contributions are as follows: First, we present a mod-
ification of TVLP that enables us to apply TVLP in the auto-
correlation domain. Traditionally, TVLP is applied in the time-
domain but to use TVLP after FDLP, it is necessary to mod-
ify the model to be applicable for spectro-temporal representa-
tions. Second, we modify the 2DAR model by replacing TDLP
with TVLP. Third, we conduct speaker verification experiments
with the recent text-dependent RedDots corpus to compare the
proposed features with the 2DAR and MFCC features. Finally,
we study the effect of RASTA filtering [14] combined with the
2DAR model, which was not included in [10].

This study was partly funded by Academy of Finland projects
#284671 and #288558.
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Figure 1: An example of time-varying linear predictive (TVLP) modeling. The graph on the left shows the monomial basis functions
used in TVLP-modeling of the predictor filter coefficient trajectories of 50 ms long speech signal depicted in the middle graph. In this
illustration, prediction order of 4 is used, leading to only four trajectories. Graph on the right shows examples of four all-pole spectra
that are all obtained from within the single 50 ms long TVLP window.

2. Time-varying linear prediction
2.1. Classical time-domain formulation

In conventional LP analysis [13], the current speech sample
x[n] is predicted as a linear weighted sum of the past p sam-
ples given by x̂[n] = −∑p

k=1 akx[n− k] where {ak}pk=1 are
the predictor coefficients. The solution to this formulation can
be obtained by minimizing the cost function E =

∑
n e

2[n],
where e[n] = x[n] − x̂[n], which in turn leads to solving a set
of normal equations given by

p∑

k=1

akrki = −r0i, i = 1, . . . , p, (1)

where rki denotes the correlation coefficients given by

rki =
∑

n

x[n− k]x[n− i]. (2)

The above formulation provides a piecewise constant ap-
proximation of the vocal tract system over short time intervals
(frames) by assuming the system to be quasi-stationary. How-
ever, the vocal tract is a slowly but continuously varying system
and therefore better modeled using time-varying linear predic-
tion (TVLP) analysis over longer time intervals. TVLP intro-
duces a time-continuity constraint on the predictor filter coeffi-
cients by expressing the prediction as

x̂[n] = −
p∑

k=1

ak[n]x[n− k] (3)

where ak[n] denotes the kth time-varying filter coefficient that
is approximated as a linear combination of q+1 basis functions
ui[n] as follows:

ak[n] =

q∑

i=0

bkiui[n]. (4)

Different sets of basis functions such as monomials, trigono-
metric functions, or Legendre polynomials can be used for
the approximation. In this paper, a simple monomial basis
ui[n] = ni, i = 0, . . . , 3, is adopted. An illustration of TVLP
analysis using monomial basis functions is given in Figure 1.

Minimization of the cost function with respect to each poly-
nomial coefficient leads to a set of normal equations given by

p∑

k=1

q∑

i=0

bkicij [k, l] = −c0j [0, l] (5)

for 1 ≤ l ≤ p and 0 ≤ j ≤ q [11]. Here cij [k, l] denotes the
generalized correlation coefficients defined as

cij [k, l] =
∑

n

ui[n]uj [n]x[n− k]x[n− l]. (6)

2.2. Proposed autocorrelation domain formulation

In several applications, including robust feature extraction, the
signal may have been converted into a spectro-temporal repre-
sentation using a filter-bank or spectrogram analysis. In such a
scenario, conventional TVLP modeling of the processed signal
would require a reconstruction of the time-domain signal from
the spectro-temporal representation. In order to avoid any such
reconstruction requiring careful handling of phase information,
we propose a new autocorrelation domain time-varying linear
prediction (AD-TVLP) analysis.

Any given spectro-temporal representation X(t, f) can be
converted into a sequence of autocorrelation functions rτ (t) =∫
f
X(t, f) exp(−j2πfτ)df by computing the inverse Fourier

transform of the power spectrum X(t, f) at each time instant
t. Now, the conventional LP analysis can be applied indepen-
dently on correlation function at each time instant by solving
the normal equations similar to that in Eq. (1). However, a time-
continuity constraint can be imposed on the LP coefficients de-
rived at each time instant by modifying the normal equations
in Eq. (1) to take advantage of the availability of a sequence of
autocorrelation functions. The resulting normal equations with
the continuity constraint is given by

p∑

k=1

ak[n]rki[n] ≈ −r0i[n], i = 1, . . . , p, (7)
n = 0, . . . , N − 1,

where rki[n], ak[n], and N denote the time-varying autocor-
relation coefficients, the time-varying LP coefficients, and the
window length for the time-varying analysis, respectively.

Substituting Eq. (4) into Eq. (7), we can compute the least
squares solution to the resulting set of linear equations (of the
form Rb = −r) as follows:

b̂ = argmin
b
||r +Rb||22 (8)

where

r = [r01[0], . . . , r0p[0], . . . , r01[N − 1], . . . , r0p[N − 1]]T
Np×1

(9)

b = [b10, . . . , b1q, . . . , bp0, . . . , bpq]
T

p(q+1)×1
(10)

R = [R0, R1, . . . , RN−1]
T

Np×p(q+1)
(11)

where Rn is a p(q + 1)× p matrix whose ith column is given
by

Rni = ri[n]⊗ u[n]. (12)

Here, ⊗ denotes the Kronecker product of ri[n] =
[r1i[n] . . . rpi[n]]

T and u[n] = [u0[n] . . . uq[n]]
T .
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3. 2-D autoregressive models
3.1. Background
Two dimensional autoregressive speech modeling (2DAR) was
first introduced in 2004 [15]. The 2DAR model provides a re-
freshing way of building speech spectrograms: instead of ap-
plying Fourier transform or AR modeling to short-time win-
dows, the speech signal is first transformed into frequency do-
main and then AR modeling is applied to frequency windows
followed by the usual temporal AR modeling. This idea was
first adopted to speaker recognition in [16] and extended later in
[17] and [10]. These studies indicate that 2DAR-processed fea-
tures give consistent and considerable improvements over stan-
dard MFCC features for speaker verification in noisy conditions
without compromising performance in clean conditions.

Autoregressive modeling is also known as LP modeling
and hence its applications in frequency and time domain are
known as frequency domain linear prediction (FDLP) and time
domain linear prediction (TDLP), respectively. The former is
less known, but nonetheless, it is the key concept behind the
2DAR model allowing temporal processing of speech without
first splitting the signal into short-time windows.

The left side of Figure 2 shows the steps for 2DAR-
processing of speech. The first step is to transform the in-
put speech with the discrete cosine transform (DCT) and then
to window this DCT-transformed signal into many overlapping
frequency bands (we used 100 bands). Then, FDLP is applied
to obtain all-pole estimates of Hilbert envelopes of each sub-
band. These envelopes represent signal’s energy in the subband-
specific frequency range as a function of time, which allows us
to form a spectrogram of the speech by stacking the informa-
tion from all of the envelopes. At this stage, we perform energy
integrations over the subband envelopes using 25 ms long Ham-
ming windows at 10 ms intervals. By doing so, the spectrogram
is effectively subsampled to obtain a frame rate that is similar
to that used in the conventional MFCC feature extraction. This
ends the FDLP part of 2DAR processing, where the data is pro-
cessed along the temporal dimension.

The second part of 2DAR is to apply TDLP to the FDLP-
processed spectrogram. The autocorrelation coefficients needed
for computing the LP coefficients are obtained from the power
spectra by using inverse Fourier transform. As a result of suc-
cessive application of FLDP and TVLP, we obtain a 2DAR
spectrogram that has been processed in both temporal and spec-
tral dimensions and from which we can then extract MFCC fea-
tures in the usual way.

3.2. Proposed method
We propose a modification to the 2DAR model by replacing
TDLP with the autocorrelation domain TVLP. This will, in ad-
dition to spectral processing, add an extra constraint for the LP-
coefficients in the temporal domain, preventing them to change
too abruptly from frame to frame. This effect is demonstrated
in Figure 3.

Figure 2 shows the differences between 2DAR and its
modified version 2DAR-TVLP. In 2DAR-TVLP, after obtain-
ing the autocorrelation sequences, we proceed by forming “su-
perframes” of autocorrelation sequences by using an 11 frames
long window that is shifted one frame at a time. We then apply
autocorrelation domain TVLP to each of the superframes. This
gives us 11 spectra per superframe and because superframes are
shifted 1 autocorrelation sequence at a time, we must select only
one spectrum from each superframe to keep the frame rate at the
original rate (100 Hz). Thus, we extract MFCCs only from the
middle frame of each superframe.

Figure 2: Diagram showing the differences between the 2DAR
and the 2DAR-TVLP models.

0 1 2 3 4

Frequency (kHz)

2DAR

0 1 2 3 4

2DAR−TVLP

Frequency (kHz)

Figure 3: 11 consecutive magnitude spectra (10 ms step) ob-
tained from 2DAR and 2DAR-TVLP processing. TVLP leads to
smoother transitions between successive spectra.

4. Experimental setup
4.1. Speech corpus

We performed speaker verification experiments using the male
speakers of common phrase task of the RedDots challenge cor-
pus [18] following the protocol for text-dependent speaker ver-
ification. This task consists of 320 pass-phrase specific target
speaker models from 35 unique speakers. For enrollment, data
of the same pass-phrase from three different sessions are used.
The target and non-target speakers utter the same pass-phrase
during enrollment and verification. The average duration of
each pass-phrase is three seconds. The common phrase task
has total 3242 genuine and 120086 impostor trials. As a back-
ground data, we used male speakers from TIMIT. Both corpora
have a sample rate of 16 kHz.
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Figure 4: Speaker verification results for dif-
ferent features in different conditions.
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Figure 5: Detection error tradeoff graphs for the original and stairway-reverberation
conditions.

4.2. Speech reverberation
In addition to the original RedDots data, we experimented on
artificially reverberated RedDots data. Reverberation was per-
formed by convolving original speech files with room impulse
responses (RIRs) obtained from the Aachen impulse response
(AIR) database [19]. We selected three different RIRs, one mea-
sured form an office room, second from a lecture room, and the
last one from a stairway. Reverberation times (RT60) for these
impulse responses are 0.35s, 0.28s, and 0.81s, respectively. Re-
verberation was only applied to the test data and not to the en-
rollment or background data.

4.3. Features and classifier
In our speaker verification experiments, we used the MFCC fea-
tures with a configuration shown in Table 1. These features
were computed from spectrograms that were obtained either by
Fourier-transforming Hamming-windowed frames or by apply-
ing 2DAR or 2DAR-TVLP.

We found that minimum EER was achieved with 2DAR by
using prediction orders of 24 and 42 for FDLP and TDLP, re-
spectively. For 2DAR-TVLP, the corresponding optimal predic-
tion orders were 24 and 38. Here, FDLP prediction orders are
given for 1 second long segments and they are normalized ac-
cording to the segment length. Long utterances were split into
3 second long segments before FDLP processing.

We used a classic Gaussian mixture model – universal back-
ground model (GMM-UBM) system [20], for which we trained
a 256-component UBM from the background data. Speaker
models were obtained by MAP adapting component means of
UBM using relevance factor 3. We chose a lightweight GMM-
UBM-based system to conduct rapid parameter experimentation
with computationally heavy 2DAR models. As demonstrated in
[21], GMM-UBM provides a competitive accuracy on the Red-
Dots data consisting of short utterances.

Table 1: Configuration of MFCC features.

Frame length / step 25 ms / 10 ms
Number of cepstral coefficients 19
Center frequency of the first mel-filter 100 Hz
Center frequency of the last mel-filter 5400 Hz
Energy coefficient Not included
Velocity and acceleration coefficients Included
RASTA filter pole position (if applied) z = 0.97
Speech activity detection Energy-based [22]
Feature normalization Cepstral mean and vari-

ance norm. (CMVN)

5. Results
Figure 4 presents the results for the speaker verification exper-
iments on RedDots corpus in terms of EER. We compared per-
formances of traditional FFT-based MFCCs, 2DAR-processed
MFCCs, and 2DAR-TVLP-processed MFCCs. Additionally,
we studied the effect of cepstral level RASTA filtering on
these feature types. In preliminary experiments, we found that
RASTA improves performance of FFT and 2DAR features, but
does not provide benefit with 2DAR-TVLP features and hence
the last combination is omitted from the figure. 2DAR-TVLP
outperforms other features in all the tested conditions. Differ-
ences between 2DAR-TVLP and 2DAR with RASTA are rel-
atively small but nevertheless consistent. Differences between
2DAR-TVLP and FFT with RASTA are larger and especially
so in the reverberant conditions. Table 2 contains the exact
numbers for these comparisons for the original and Stairway-
reverberation conditions. Detection error tradeoff graphs in Fig-
ure 5 reveal that the good performance of 2DAR-TVLP is not
restricted only to the proximity of the EER-point.

Table 2: Speaker verification equal error rates (EER (%)) for
the best performing feature configurations in the original and
in the stairway-reverberation conditions. The last two columns
show relative changes obtained by using the proposed features.

(1)
FFT +
RASTA

(2)
2DAR +
RASTA

(3)
2DAR-
TVLP

(1)→(3)
change

(%)

(2)→(3)
change

(%)

Original 3.08 3.02 2.87 -6.8 -5.0

Stairway 14.03 8.03 7.51 -46.5 -6.5

6. Conclusions
We studied the possibility of incorporating time-varying autore-
gressive modeling to the 2DAR feature extraction scheme to
improve speaker verification in reverberant conditions. This re-
quired us to develop a new time-varying linear prediction for-
mulation, AD-TVLP, that is applicable to the spectro-temporal
representations of signals. We adopted this formulation to the
existing 2DAR feature extraction method and obtained promis-
ing results. In comparison to the baseline 2DAR and MFCC
features, the proposed 2DAR-TVLP features improved speaker
verification performance in both original and reverberated test
conditions. These promising results encourage us to further ex-
plore adopting time-varying autoregressive models for speech
feature extraction in adverse conditions.
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A B S T R A C T

From the available biometric technologies, automatic speaker recognition is one of the most convenient and

accessible ones due to abundance of mobile devices equipped with a microphone, allowing users to be au-

thenticated across multiple environments and devices. Speaker recognition also finds use in forensics and sur-

veillance. Due to the acoustic mismatch induced by varied environments and devices of the same speaker,

leading to increased number of identification errors, much of the research focuses on compensating for such

technology-induced variations, especially using machine learning at the statistical back-end. Another much less

studied but at least as detrimental source of acoustic variation, however, arises from mismatched speaking styles

induced by the speaker, leading to a substantial performance drop in recognition accuracy. This is a major

problem especially in forensics where perpetrators may purposefully disguise their identity by varying their

speaking style. We focus on one of the most commonly used ways of disguising one’s speaker identity, namely,

whispering. We approach the problem of normal-whisper acoustic mismatch compensation from the viewpoint

of robust feature extraction. Since whispered speech is intelligible, yet a low-intensity signal and therefore prone

to extrinsic distortions, we take advantage of robust, long-term speech analysis methods that utilize slow ar-

ticulatory movements in speech production. In specific, we address the problem using a novel method, frequency-

domain linear prediction with time-varying linear prediction (FDLP-TVLP), which is an extension of the 2-dimensional

autoregressive (2DAR) model that allows vocal tract filter parameters to be time-varying, rather than piecewise

constant as in classic short-term speech analysis. Our speaker recognition experiments on the whisper subset of

the CHAINS corpus indicate that when tested in normal-whisper mismatched conditions, the proposed FDLP-

TVLP features improve speaker recognition performance by 7–10% over standard MFCC features in relative

terms. We further observe that the proposed FDLP-TVLP features perform better than the FDLP and 2DAR

methods for whispered speech.

1. Introduction

Research in automatic speaker recognition (Reynolds and Rose, 1995)

has focused increasingly on enhancing robustness in adverse conditions

induced by background noise, reverberation and low-quality record-

ings. Many approaches have been studied to tackle these challenges,

one of the most successful being the i-vector technology (Dehak et al.,

2011) used jointly with the probabilistic discriminant analysis (PLDA)

back-end (Prince and Elder, 2007; Rajan et al., 2014). In addition to the

new utterance level features (i-vectors) and back-ends, improvements

have been achieved in the first part of the speech processing chain by

developing robust acoustic features (Liu et al., 2012; Ganapathy et al.,

2014; Saeidi et al., 2016). Recent advances in both topics have brought

the performance of speaker recognition systems closer to the level ex-

pected in applications such as forensics, surveillance, and authentica-

tion.

In addition to the environment-related and technology-related

acoustic variations, another major, yet much less studied problem arises

from within-speaker variations caused by differences in speaking styles.

Changes in the speaking style occur, for instance, when the speaker

shouts (Saeidi et al., 2016) or whispers (Fan and Hansen, 2011b).

Current recognition systems that are typically trained with speech of

normal speaking style can tolerate only small changes in the speaking

style, and reliable speaker recognition has turned out to be very
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challenging if the mode of speaking changes considerably from normal

(Fan and Hansen, 2011b; Hansen et al., 2017; Saeidi et al., 2016).

Speaking style mismatched speaker recognition has applications for

example in forensics, where recorded audio excerpts can be used as

evidence. For instance, a crime might be committed in an agitated state

of mind, leading to shouting or screaming. Similarly, a perpetrator

might deliberately disguise his or her identity in order to avoid being

identified (Hautamäki et al., 2017). In (Masthoff, 1996), whispering

was found to be the most common way of changing the mode of speech

production to disguise the speaker identity. Furthermore,

Masthoff (1996) and Künzel (2000) report that disguise is commonly

found in criminal action, especially in blackmailing cases. Whispering

can also be used in public places to prevent others from hearing private

information or to avoid disturbing others in places where silent beha-

vior is expected. Conversely, people tend to use loud, high-effort voice

in noisy environments in order to make their speech more intelligible in

background noise. The tendency of the speaker to change his or her

speaking style in noisy environments is known as the Lombard effect

(Junqua, 1993).

As described above, various speaking styles are expected to be en-

countered in real-world speaker recognition applications. This imposes

a considerable challenge to the existing systems whose performance has

been shown to drastically decline due to changes in the speaking style

(Fan and Hansen, 2011b; Hansen et al., 2017; Saeidi et al., 2016). In

order to improve the performance of speaker recognition in real-world

scenarios including various speaking styles, the current study focuses

on a specific style of speaking, whispering, which differs vastly from

normal speech in its acoustic properties. In addition to being lower in

intensity, whispered speech lacks the vibration of the vocal folds (even

in case of voiced sounds such as vowels) when the sound excitation is

generated in the larynx (Ito et al., 2005). In addition to the absence of

the vocal fold vibration, it has been observed that whispered vowels

show an upward shift in formant frequencies when compared to vowels

of the normal speaking style and that whispered consonants show in-

creased spectral flatness (Ito et al., 2005).

In principle, suppressing the unwanted within-speaker variations

induced by speaking style mismatch could be addressed using statistical

back-end methods. In fact, most modern speaker recognition back-ends

(as reviewed in Hansen and Hasan, 2015) include some kind of a

within-speaker variation model, intended to quantify the extent of al-

lowed variation in any pair of utterances of the same speaker, before

they are considered more likely to have been spoken by different

speakers. Dating back to Kenny’s pioneering work on joint factor analysis

(JFA) (Kenny, 2006), which later inspired the i-vector paradigm

(Dehak et al., 2011), these techniques are realized as various flavors of

subspace models where the between- and within-speaker subspaces are

modeled using separate factor loading matrices. To exemplify, the

simplified PLDA model (Kenny, 2010) assumes a Gaussian within-

speaker variation model shared across all the speakers, parameterized

as a residual covariance matrix. The hyperparameters of such back-end

models are trained off-line using, typically, thousands of utterances

from hundreds of development speakers. In order to adopt these back-

ends for explicit style variation compensation, a corpus is needed that

contains, per each development speaker, utterances spoken in various

speaking styles. Unfortunately, this kind of speech data is prohibitively

expensive and difficult to collect in quantities required by PLDA back-

ends. Moreover, to the best of our knowledge, such large corpora are

not publicly available at present. For these reasons, and since the pre-

sent study addresses speaker recognition using short utterances, we

adopt instead the classic Gaussian mixture model- universal back-

ground model (GMM-UBM) (Reynolds et al., 2000) back-end approach

which, in fact, produces competitive accuracy — or even surpasses the

i-vector based approach (Li et al., 2016; Zeinali et al., 2017; Liu et al.,

2015) — in the duration conditions considered in this study.

Another commonly applied back-end recipe to enhance the speaker

recognition accuracy across varied conditions is multicondition training

(Garcia-Romero et al., 2012; Rajan et al., 2013). It utilizes data ob-

tained from different conditions to prepare the back-end components to

expect different variations of the speech data. Again, however, since

data collection for multiple conditions takes lots of resources and

usually is not a realistic requirement for speaker enrollment, a common

practice is to artificially generate data by, for example, digitally adding

noise. In case of variation caused by the speaking style (such as whis-

pering), however, generation of realistic artificial data is not easy.

Therefore, the current study focuses on an alternative approach, robust

extraction of features, to tackle the deteriorating effect caused by the

speaking style variation. Feature extraction, as the first step in the

speech processing chain of any speaker recognition system, has a key

role as it provides inputs to the back-end that can be based, for instance,

on the GMM-UBM (Reynolds et al., 2000), i-vectors (Dehak et al.,

2011), or deep neural networks (DNNs) (Heigold et al., 2016; Snyder

et al., 2016). Thus, we find it important to develop and study features

that show good performance across a wide variety of settings to make

speaker recognition systems less dependent on large amounts of

training data from different conditions. To this end, we propose using

two recent feature extraction methods (Ganapathy et al., 2014;

Vestman et al., 2017) for whispered speech that have already shown

good results in other studies.

Traditionally, most features used in speaker recognition are com-

puted from short-term analysis using frames that span about 25 ms of

speech (Kinnunen and Li, 2010). While this approach is effective in

capturing instantaneous acoustical features of the vocal tract, it ignores

long-term properties of speech such as prosody. In addition, the tradi-

tional short-term analysis is not capable of taking into account articu-

lation variations, and it lacks other possible benefits of longer-term

processing including improved robustness against noise and re-

verberation (Ganapathy et al., 2014). These limitations of the tradi-

tional short-term analysis are important factors to consider especially

when dealing with whispered speech as whispering has lower intensity

than normal speech (Zhang and Hansen, 2007), which makes it more

prone to extrinsic disturbances, such as additive noise. Whispered

speech also tends to show widening of formant bandwidths (see Fig. 1),

which makes it harder to accurately detect formants. We hypothesize

that a better utilization of contextual information observed over long-

time frames can be used to improve formant modeling accuracy over

standard short-time analysis.

To study feature extraction based on long-term processing, we

propose using 2-dimensional autoregressive features (2DAR) for whis-

pered speech speaker recognition. In the 2DAR scheme, speech is pro-

cessed in temporal domain before feeding it to the typical short-term

feature extraction pipeline. The temporal processing is achieved using

frequency domain linear prediction (FDLP) (Herre and Johnston, 1996;

Kumaresan and Rao, 1999), a method that produces smoothed, para-

metric time-domain Hilbert envelopes of the individual frequency

subbands. The smoothed, parametric representation of the subband

Hilbert envelopes provides robustness against noise and temporal

smearing caused by reverberation (Ganapathy et al., 2014).

As one of our key contributions, we propose a novel modification of

the 2DAR processing by replacing conventional linear prediction (LP),

conducted after FDLP, with time-varying linear prediction (TVLP)

(Vestman et al., 2017). In TVLP, the coefficients of the linear predictive

filter are not considered to be stationary but they are time-varying (i.e.

non-stationary) and expressed using basis functions (such as poly-

nomials or trigonometric functions). The type and number of the basis

functions can be tuned to control the rate of change of the underlying

vocal tract model. As a result of adopting TVLP, linear prediction filter

coefficients follow slowly-varying time-continuous contours, modelled

by the basis functions. Therefore, the corresponding features are less

prone to change abruptly over time, which is a phenomenon that de-

grades, for example, conventional LP-based features when speech is of

low-intensity (as in whispers) or corrupted by noise. To be able to apply

TVLP after FDLP, we modify the original TVLP model (Hall et al., 1983;

V. Vestman et al. Speech Communication 99 (2018) 62–79
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Rudoy et al., 2011), which assumes raw waveform as an input, to be

applicable to spectro-temporal representations produced by FDLP.

Next, in Section 2, we present an extensive literature review on

automatic speaker recognition from whispered speech and describe

available corpora of whispered speech. In Section 3, we discuss the

properties of whispered speech and propose a method for automatically

comparing formants of normal and whispered speech for a large speech

corpus. The proposed method aligns normally spoken sentences with

their whispered counterparts by matching the speech content. The

method does not require speech transcription with time alignments, so

it can be readily applied to any corpus containing parallel data of two

speaking styles. In Sections 4, 5, and 6.1, we extend our preliminary

study (Vestman et al., 2017) in many ways both regarding the metho-

dology and experiments. Firstly, we provide a more thorough and self-

contained exposition of the used methodologies. Secondly, unlike in

(Vestman et al., 2017), we study the choice of the basis functions in

TVLP. Thirdly, we verify our early positive findings with a new dataset

and a different problem domain ((Vestman et al., 2017) focuses on

reverberation robustness rather than speaking style mismatch). Finally,

for the comparison, we include a broader set of state-of-the-art re-

ference features including power-law adjusted linear prediction (LP-α)

(Saeidi et al., 2016) and minimum variance distortionless response

(MVDR) (Murthi and Rao, 2000) features.

2. Speaker recognition from whispered speech

In Table 1, we have summarized the main characteristics of the

speaker recognition studies on whispered speech that we found. We

hope that this table gives the interested reader a better understanding

of the studies on the topic. For those conducting their own research on

whispered speech, we also recommend (Lee et al., 2014) to get more

insight of available speech corpora containing whispered speech.

The performance numbers in the table indicate that the task at hand

is a rather difficult one. In the identification task, the accuracy can be as

low as 50 percent when the speaking style mismatch induced by

whispering is present, while the accuracy in the non-mismatched case is

near 100 percent. Similar drop in performance is naturally present in

the speaker verification studies where results are reported as equal

error rates (EERs).

We found that the comparison of previous studies and their methods

is difficult as they have differences in corpora, recognition task (ID/

verification), evaluation metric, and in the general approach to address

the problem. Some studies focus on reducing the speaking style mis-

match by developing features capturing properties that are present in

the two speaking styles (i.e. enrollment vs. testing), while other studies

develop complementary features to be fused in order to tackle the

mismatch. Another approach is to transform features of normal speech

to resemble those in whispered speech (Fan and Hansen, 2013), and to

use the transformed features in the enrollment phase (Fan and Hansen,

2013; Sarria-Paja et al., 2016).

As is apparent from the spectrograms in Fig. 1, there are clear dif-

ferences between normal and whispered speech. The differences are

especially evident at low frequencies (< 1.5 kHz) due to the lack of the

periodic voiced excitation in whisper (Ito et al., 2005). This property of

whispered speech has inspired many previous feature extraction tech-

nologies. Some of the features have been extracted from a limited

bandwidth that exclude lower frequencies altogether. Also, because

lower frequencies do not have as important role for whispered speech

as for normal speech, features with different frequency warping stra-

tegies, such as linear frequency cepstral coefficients (LFCCs) and ex-

ponential frequency cepstral coefficients (EFCCs), have been adopted

(Fan and Hansen, 2011b).

Being the default feature extraction scheme in speaker recognition,

mel-frequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980)

have been included in every study listed in Table 1. Therefore, to avoid

repetition, we have excluded MFCCs from the listed methods. Some of the

features studied were not proposed originally for whispered speech, but as

they have shown good performances in other tasks, they have later been

adopted to whispered speech in many experiments. These features include

weighted instantaneous frequencies (WIFs) (Sarria-Paja et al., 2013),
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Fig. 1. Spectrograms computed using discrete Fourier transform (DFT) and the proposed frequency-domain linear prediction with time-varying linear prediction (FDLP-TVLP), for the sentence

“She had your dark suit in greasy wash water all year.” uttered by a male speaker in normal and whispered speaking styles. Due to the mismatch in speaking style, the conventional DFT

spectrograms between normal and whispered speech differ substantially from each other, while the proposed spectrogram exhibits relatively less variation.
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pyknogram frequency estimate coefficients (pykfecs) (Grimaldi and

Cummins, 2008) and temporal energy subband cepstral coefficients

(TESBCCs, TTESBCCs) (Jawarkar et al., 2013).

Some of the methods presented in Table 1 harvest long-term prop-

erties of speech to the features but this is done in different ways. In

(Fan and Hansen, 2009), subband specific features are extracted with a

technique called modified temporal patterns (m-TRAPs). More precisely,

features are extracted from the horizontal strides of a spectrogram

obtained by filtering the spectra with 13 linear filters. In contrast, in the

auditory-inspired amplitude modulation feature (AAMF) extraction scheme

(Sarria-Paja and Falk, 2017), features are extracted from blocks of

spectrograms consisting of multiple consecutive short-time frames.

AAMFs characterize the rate of change in long-term subband envelopes.

As this leads to high-dimensional feature representations, feature se-

lection and principal component analysis (PCA) have been adopted.

Feature selection is also used to select features that share the highest

amount of mutual information across different speaking styles. The

third previous method adopting contextual information extracts fea-

tures known as the mean Hilbert envelope coefficients (MHECs)

(Sadjadi and Hansen, 2015). These features are closest to the 2DAR

based features studied in the present investigation as the MHEC ex-

traction includes smoothing of subband Hilbert envelopes and, similarly

to 2DAR, it finally outputs features that resemble standard short-term

features.

Recently, empirical mode decomposition (EMD) based features have been

investigated to extract complementary speech information (Sharma et al.,

2017). Features are extracted from intrinsic mode functions (IMFs) and they

have shown to boost whispered speaker recognition performance when

combined with MFCCs.

3. Properties of whispered speech

The lack of voiced excitation (i.e. periodic glottal flow) in whispered

speech (Tartter, 1989) is the main aspect that makes whispered speech

different from normal speech. The lack of voicing (and thereby also the

lack of fundamental frequency and its harmonics) in whispered speech

results in reduction of sound energy at low frequencies, which in turn

increases spectral flatness. The lack of voicing together with low in-

tensity of the sound makes whispered speech less intelligible than

normal speech. Therefore, speakers tend to adapt their voice production

mechanisms in other ways to enhance speech intelligibility. These

adaptations can be carried out, for example, by changing the vocal tract

configuration (affecting formant center frequencies and their band-

widths), speaking rate, or phone durations.

In addition to the lack of voiced excitation, a number of other

acoustic differences between normal and whispered speech have been

reported. For instance, frequencies of the lowest three formants (F1–F3)

tend to be higher in whispered speech (Ito et al., 2005; Heeren, 2015;

Higashikawa et al., 1996) with the largest increase in F1. In (Ito et al.,

2005), two other observations were made. First, whispered speech

sounds were found to have less energy in frequencies below 1.5 kHz.

Second, and rather expectedly, by comparing the average cepstra of

individual phone segments, it was shown in (Ito et al., 2005) that the

cepstral distance between voiced utterances of normal speaking style

and the corresponding sounds in whispers is greater than the distance

between unvoiced sounds in normal speaking style and the corre-

sponding phones in whispers.

In this study, we analyze first how formant (center) frequencies and

formant bandwidths differ between whispered and normal speech.

Differently from (Ito et al., 2005; Heeren, 2015; Higashikawa et al.,

1996) where formants were analyzed either from recordings of isolated

vowels or from automatically segmented speech sounds relying on

manually segmented training data, we automatically align whispered

sentences to their normally spoken counterparts without requiring any

speech transcription or manual annotation of segments. After the

alignment, the aligned frames are compared to measure differences inT
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formants between whispered and normal speech. Our method can be

used not only for isolated vowel utterances but also in processing of

realistic, continuous speech, and neither requires it performing manual

or automatic speech sound segmentation.

3.1. Corpus description

To analyze formants via aligning normal and whispered speech, a

parallel corpus containing utterances spoken in both speaking styles is

needed. To this end, we adopt the CHAINS (CHAracterizing INdividual

Speakers) corpus (Cummins et al., 2006), used especially in recent

speaker recognition studies involving whispered speech. The CHAINS

corpus is, importantly, also publicly available.1 The corpus is targeted

for advancing the study of speaker identification by investigating un-

ique characteristics of speakers and it contains recordings from 16 fe-

males and 20 males speaking in various styles, including normal and

whispered speech. Majority of the speakers share the same dialect,

spoken in the Eastern part of Ireland. For the formant analysis we in-

cluded 12 speakers from both genders from the described dialect re-

gion. We utilized 33 utterances available in the corpus for each speaker

for normal and whispered speaking styles. All the normally spoken

samples originate from a single recording session and all the whispered

recordings from another session. These sessions were held about two

months apart. Speech is sampled at 44.1 kHz, and this sample rate is

also used in the formant analysis.

3.2. Analysis of changes in formants via speech alignment

We used VoiceSauce (Shue et al., 2011) with Praat back-end

(Boersma, 2017) (Burg’s algorithm) to extract formant (center) fre-

quencies and the corresponding formant bandwidths for the lowest

three formants for all the utterances. Formants were extracted using

20 ms frame every 2 ms. To make formant tracks less noisy, both for-

mant frequency and bandwidth tracks were median filtered using a 9-

frame window.

After extracting the formant data, we considered all pairs of whis-

pered and normal speech where the same speaker spoke the same

sentence. Since we have 33 sentence pairs from 12 speakers for both

genders (except for one file missing from the original corpus), the total

number of sentence pairs is − =33·12·2 1 791. We aligned pairs of

whispered and normal sentences by using dynamic time warping (DTW)

(Ellis, 2003). It is apparent from Fig. 2 that aligned sentences contain

parts where either the alignment can be imprecise or the formant tracks

are not reliably estimated. Therefore, we use an automatic detection of

reliable segments containing no alignment or formant tracking errors.

For details of DTW and the automatic detection of reliable segments,

see Appendix A. In panels 2 and 3 of the figure, the segments that are

detected to be well aligned are marked with yellow bars. These seg-

ments provide aligned formant frequency and bandwidth pairs to be

used in analyzing differences in formants between normal and whis-

pered speech.

3.3. Analysis results

We pooled aligned frame pairs and the corresponding aligned for-

mant frequencies and their bandwidths over all speakers and sentences

for both genders. Then, we computed histograms of the center fre-

quencies (F1-F3) of the lowest three formants and their bandwidths

(B1-B3) for both speaking styles and genders using a 20 Hz bin size. The

histograms of the formant frequencies and bandwidths are depicted in

Figs. 3 and 4, respectively. Further, Table 2 summarizes the mean

statistics.

Distributions in Fig. 3 show that formant frequencies tend to be

higher in whispered speech. Differences between normal and whispered

speech are more prominent for F1 and less so for F2 and F3. On average,

for both genders, F1 is about 150 Hz higher and F2 and F3 about 100 Hz

higher in whispered speech. An exception is F3 of male speakers, where

there is little difference between the two speaking styles. By in large,

these observations are in line with the earlier results obtained using

different analysis methods (Ito et al., 2005; Heeren, 2015; Higashikawa

et al., 1996) for other corpora.

The analysis of formant bandwidths shows that whispered speech

tends to have higher B1 whereas B3 tends be higher in normal speech.

Bandwidth B2 is similar in both speaking styles.

4. Features for whispered speech speaker recognition

4.1. Two-dimensional autoregressive features

Two-dimensional autoregressive speech modeling (2DAR), introduced

in (Athineos et al., 2004), provides a way to construct speech spectro-

grams that are smoothed both in time and frequency dimensions. As a

result of such smoothing, 2DAR spectrograms can be used to extract

features that are robust against noise and reverberation without losing

relevant information that is used for recognition purposes

(Ganapathy et al., 2014). The smoothing is first applied in the temporal

domain using frequency domain linear prediction (FDLP) (Herre and

Johnston, 1996; Kumaresan and Rao, 1999), after which spectral

smoothing is done using time domain linear prediction (TDLP)

(Makhoul, 1975). In the following, a brief description of both of these

techniques is provided by starting from TDLP, more commonly known

as LP (linear prediction).

4.1.1. Linear prediction

In conventional LP analysis (Makhoul, 1975), the current speech

sample x[n] is predicted as a weighted sum of the past p samples given

by

̂ ∑= − −
=

x n a x n k[ ] [ ]
k

p

k

1 (1)

where ak, = …k p1, , , are known as the predictor coefficients. The most

common way of solving the predictor coefficients is to minimize the

prediction error in the least squares sense. That is, we minimize

∑=E e n[ ]
n

2

(2)

where ̂= −e n x n x n[ ] [ ] [ ]. The minimum of (2) is found by calculating

partial derivatives with respect to all predictor coefficients ak and

equating them to zero. As a result, we obtain a set of linear equations

∑ = − = …
=

a r r i p, 1, , ,
k

p

k ki i

1

0
(3)

where rki denotes the correlation coefficients given by

∑= − −r x n k x n i[ ] [ ].ki

n

In 2DAR, the autocorrelation method (Makhoul, 1975) is used to solve

the predictor coefficients from (3). After solving the coefficients, an all-

pole estimate of the magnitude spectrum can be obtained as a frequency

response of the filter

=
+ ∑ =

−
H z

G

a z
( )

1
,

k

p
k

k
1

where G is the gain coefficient.

4.1.2. Frequency domain linear prediction

The first part of 2DAR-modeling, FDLP (Herre and Johnston, 1996;

Kumaresan and Rao, 1999), can be regarded as the frequency domain1 http://chains.ucd.ie/ (URL accessed 2018/03/09 09:44:44).
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counterpart of LP. It was shown in (Athineos and Ellis, 2007) that by

applying LP to a signal computed by discrete cosine transform (DCT)

provides an all-pole estimate of the squared Hilbert envelope of the

original time domain signal. In 2DAR, however, FDLP is not applied to

the full-band speech signal, but instead to individual frequency bands

obtained by windowing the DCT-transformed signal. As a result, all-

pole models of the Hilbert envelopes are obtained for each frequency

band, and these all-pole models can be used to approximate frequency

band energies at regular time instants (e.g. once in 10 ms).

4.1.3. Two-dimensional autoregressive modeling

In classical speech analysis, LP is applied by predicting time domain

samples within short frames of speech. The 2DAR model, in contrast,

models longer-term properties of speech. It achieves this by first re-

versing the time and frequency domains. This leads to obtaining tem-

poral all-pole power estimates for long-term subbands instead of all-

pole spectrum estimates for short-time frames.

The processing steps of 2DAR are depicted in Fig. 5. The first step in

2DAR is to transform speech into the frequency domain with DCT.

Then, the DCT signal is windowed into subbands using rectangular
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Fig. 2. Alignment of normal and whispered speech using dynamic time warping. The first and the last panel of the figure display the spectrograms and formant tracks of the original (non-

aligned) pair of normal and whispered sentences spoken by the same speaker. The second and third panel show these sentences after DTW alignment. The aligned sentences are of the

same duration, which is longer than the durations of the original sentences because DTW has repeated certain frames multiple times in the aligned speech. After the alignment, an

automatic alignment quality detection is applied to the aligned sentences to discard sections of speech where the alignment is unreliable due to, for example, noisy formant tracks or low

energy content. We retain the aligned and detected high-quality segments for subsequent analyses.
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windows. In this study, we use 100 bands with an overlap of 60% be-

tween adjacent bands. These bands are then subjected to the FDLP

modeling (LP in frequency domain) to obtain models of the Hilbert

envelopes in each band. These envelopes are, in turn, windowed using

25 ms Hamming windows with 60% overlap. Samples of each

windowed envelope are integrated to obtain power estimates for each

25 ms time interval of the corresponding frequency band. By stacking

power estimates over different subbands, we obtain power spectral

estimates for all time-frames. As the next step, the power spectral es-

timates are inverse Fourier-transformed to compute the autocorrelation
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Fig. 3. Formant frequency histograms of the lowest three formants (F1–F3) estimated from normal and whispered speech of female and male talkers. The histograms are computed using a

20-Hz bin size. F1 shows the largest change between the two speaking styles.
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function. The autocorrelation functions are used in the TDLP, which

outputs the final spectral estimates that are used in 2DAR spectrograms

and in feature extraction.

4.2. Two-dimensional time-varying autoregressive features

In our preliminary work (Vestman et al., 2017), we have proposed a

modification to the 2DAR method that uses time-varying linear predic-

tion in the place of conventional LP. In the present study, we cover this

technique in a more elaborate manner in both theoretical and experi-

mental means.

4.2.1. Classical time-varying linear prediction

The conventional LP analysis (Makhoul, 1975) assumes the under-

lying vocal tract model of a speech signal to remain constant over each

short-time interval (frame) of speech. Depending on the frame incre-

ment, the model can have abrupt changes from frame to frame. In

reality, however, the vocal tract is a continuously varying system that

changes even within a single 25 ms frame. TVLP model (Hall et al.,

1983; Rudoy et al., 2011) takes into account the non-stationarity of the

vocal tract by allowing the predictor coefficients ak to be time-varying.

Thus, in the case of TVLP (1) becomes

̂ ∑= − −
=

x n a n x n k[ ] [ ] [ ].
k

p

k

1 (4)

By itself, (4) does not prevent the occurrence of models that change

rapidly in time because no constraint has yet been imposed on the

change of the predictor coefficients. In TVLP, the rate of the change is

constrained by representing the time trajectories of the predictor

coefficients as a linear combination of +q 1 basis functions =u n{ [ ]}i i
q
0 as

follows:

∑=
=

a n b u n[ ] [ ].k

i

q

ki i

0 (5)

Typically, basis functions are selected so that they provide smooth,

low-pass type of predictor coefficient trajectories. A high number of

such basis functions allows for more rapid changes in the predictor

coefficients and in the vocal tract model. Conversely, using only one

constant basis function, =u n[ ] 1,0 makes the model equivalent to LP.

An example of using simple monomial basis function in TVLP modeling

of a 50 ms speech frame is given in Fig. 6.

In TVLP, minimization of (2) with respect to each basis coefficient

bki leads to a set of equations given by

∑∑ = −
= =

b c k l c l[ , ] [0, ]
k

p

i

q

ki ij j

1 0

0

(6)

for 1≤ l≤ p and 0≤ j≤ q (Hall et al., 1983). Here cij[k, l] denotes the

generalized correlation coefficients defined as

∑= − −c k l u n u n x n k x n l[ , ] [ ] [ ] [ ] [ ].ij

n

i j

(7)

4.2.2. Proposed autocorrelation domain time-varying linear prediction

In classical TVLP formulation, as can be seen from Eq. (7), the

computation is directly based on the time-domain signal. However, this

Table 2

Mean formant frequencies (F1–F3) and bandwidths (B1–B3) in Hz. The standard error of

the mean for all values is about 1 Hz.

F1 F2 F3 B1 B2 B3

Females Whispered 746 1853 2861 353 277 396

Normal 595 1743 2753 206 290 436

Difference 151 110 108 147 −13 −43

Males Whispered 665 1675 2642 286 259 382

Normal 509 1572 2652 195 276 480

Difference 156 103 −10 91 −17 −98
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Fig. 5. Process flows in creating 2DAR and FDLP-TVLP spectrograms

from sentence “If it doesn’t matter who wins, why do we keep score?”.

FDLP applied to subband windows provides time domain envelopes for

the subbands. The integrated envelopes shown in the bottom are ob-

tained by summing up values of subband envelopes over 25 ms long

Hamming windows that have a 15 ms overlap. Integrated envelopes

provide power spectral estimates that are transformed to autocorrela-

tion values and used either in TDLP or autocorrelation domain TVLP

(AD-TVLP) modeling. TDLP processing is performed for individual

frames, while in AD-TVLP, modeling is performed in superframes that

consist of multiple consecutive short-time frames. As the superframe

slides forward one frame at a time, only the center spectrum resulting

from AD-TVLP modeling of the superframe is retained to the FDLP-

TVLP spectrogram.
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can be a serious constraint if one wants to combine the advantages of

TVLP with some other robust signal processing techniques. In several

robust feature extraction techniques, such as FDLP, non-negative matrix

factorization (NMF) based feature enhancement (Weninger et al., 2011),

and missing data imputation, the signal is converted into a spectro-

temporal representation before processing or enhancing it further. In

such a scenario, the use of classical TVLP requires the spectro-temporal

representations to be converted back to time domain samples. This in

turn would require a careful handling of the phase information. In order

to avoid distortions that may occur due to phase reconstruction, we

propose a modified TVLP analysis which can performed directly on the

spectro-temporal representations.

Any given spectro-temporal representation X(t, f) can be converted

into a sequence of autocorrelation functions by computing the inverse

Fourier transform of the power spectrum X(t, f) at each time instant t,

given by

∫=r t
π

X t f j πfτ df( )
1

2
( , )exp( 2 )τ

f (8)

At this stage, one can use the conventional LP or TDLP in-

dependently on the correlation functions at each time instant by solving

the normal equations similar to that in Eq. (3). In such a scenario, the

LP coefficients derived at each time instant are prone to errors induced

by non-stationary noise and do not take advantage of the fact that the

speech production apparatus is a slowly varying inertial system. In

order to take advantage of this inertial property of the speech produc-

tion system, we propose a new TVLP formulation that operates directly

on the autocorrelation sequences. This is achieved by imposing a time-

continuity constraint on the LP coefficients derived at each time instant

by modifying the normal equations in Eq. (3). The resulting normal

equations with the continuity constraint, making use of the sequence of

autocorrelation functions, is given by

∑ = − = …

= … −
=

a n r n r n i p

n N

[ ] [ ] [ ], 1, , ,

0, , 1,
k

p

k ki i

1

0

(9)

where rki[n], ak[n], and N denote the time-varying autocorrelation

coefficients, the time-varying LP coefficients, and the window length

for the time-varying analysis, respectively. This expression is similar to

Eq. (3), except that both the filter coefficients as well as the correlation

coefficients are now functions of time.

Now approximating the piecewise constant filter coefficients ak[n]

using Eq. (5), the above expression in Eq. (9) can be written as

∑∑ = − = …

= … −
= =

b u n r n r n i p

n N

[ ] [ ] [ ], 1, , ,

0, , 1,

k

p

j

q

kj j ki i

1 0

0

(10)

This expression is similar to Eq. (6), except that the autocorrelation

coefficients rki[n] do not include basis functions uj[n] in their compu-

tation, as is the case with cij[k, l] in Eq. (7). This expression can also be

interpreted as modeling a piecewise constant filter coefficients

= ⋯ = ⋯ −a n k p n N{ [ ]; 1 , 0 1}k using a smooth continuous time-

varying model represented by = ⋯ = ⋯b k p i q{ ; 1 , 0 }ki .

The above set of linear equations can be written in matrix form,

given by

= −Rb r (11)

where

= ⋯ ⋯ − ⋯ −
×

r r r r N r N[ [0], , [0], , [ 1], , [ 1]]p p
T

01 0 01 0
Np 1 (12)

= ⋯ ⋯ ⋯
+ ×

b b b b b[ , , , , , , ]q p pq
T

10 1 0
p q( 1) 1 (13)

= ⋯ − × +
R R R R[ , , , ] .N

T
0 1 1 Np p q( 1) (14)

Here Rn is a + ×p q p( 1) matrix whose ith column is given by

= ⊗r uR n n[ ] [ ],ni i (15)

and ⊗ denotes the Kronecker product of = ⋯r n r n r n[ ] [ [ ], , [ ]]i i pi
T

1 and

= ⋯u n u n u n[ ] [ [ ], , [ ]] ,q
T

0 given by

= ⋯ ⋯ ⋯
+ ×

R

r n u n r n u n r n u n r n u n[ [ ] [ ], , [ ] [ ], , [ ] [ ], , [ ] [ ]]

.

ni

i i q pi pi q p q
T

1 0 1 0 ( 1) 1

(16)

The least square solution to the set of linear equations in Eq. (11)

can be computed as

Fig. 6. An example of time-varying linear predictive (TVLP) modeling. In this illustration, TVLP coefficient trajectories of a 50 ms long speech frame are modeled using four ( =q 3) basis

functions = …u i q, 0, ,i . The model order of TVLP is set to =p 4 resulting in four trajectories shown in the upper graph. Because the coefficients are time-varying within the frame, an

unique set of predictor coefficients can be sampled at any time instant. The lower graph shows examples of all-pole spectra obtained from four different time instants.
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̂= +b r Rbargmin .
b

2
2

(17)

The above TVLP formulation starting with a sequence of auto-

correlation functions is refered to as autocorrelation domain time-varying

linear prediction (AD-TVLP).

4.2.3. Proposed feature extraction method

Fig. 5 illustrates the difference between 2DAR and the proposed

TVLP-enhanced version of 2DAR that we call as FDLP-TVLP. After FDLP

processing, 2DAR models individual frames with LP, while in our

method, we form “superframes” consisting of multiple consecutive

frames and feed them to autocorrelation domain TVLP. While LP pro-

cessing smooths the spectrogram only in the spectral dimension, TVLP

is computed simultaneously in spectral and temporal domains making

the final spectrogram more robust to noise.

The use of TVLP in the proposed AD-TVLP differs from previous

TVLP studies (e.g. Rudoy et al., 2011; Hall et al., 1983) because speech

is not modeled in sample-level precision but in frame-precision. While

the conventional TVLP formulation uses only the sample-precision in

time domain, AD-TVLP can be applied either for sample-precision

subband envelopes or for frame-precision integrated envelopes. In our

early experiments (Vestman et al., 2017), we found that operating on

the frame-level provides better results in SID tasks. Therefore the cur-

rent study focuses on the frame-level application of AD-TVLP.

4.3. Reference features

We compare 2DAR and and FDLP-TVLP features against multiple

reference features. As a first reference feature, we use standard mel-

frequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980)

with delta and double-delta coefficients appended. We provide spectral

estimates for MFCCs with discrete Fourier transform (DFT). In this

work, all the studied features differ only in the spectral estimation part.

That is, for every feature, including 2DAR and FDLP-TVLP, we use the

same MFCC feature extraction configuration except for the spectral

estimation part.

Next, we evaluate features using conventional, short-term LP spec-

tral estimation, which is a justified baseline for the long-term 2DAR and

FDLP-TVLP features. We also include power-law adjusted LP

(Saeidi et al., 2016) (LP-α) features, which showed positive results for

shouted speech SID in a recent study (Saeidi et al., 2016). The LP-α is a

spectral compression technique to reduce the effect of the spectral tilt

difference between normal and shouted speech. Since the spectral tilt

varies also between normal and whispered speech, it was justified to

select also (LP-α) as one robust reference feature extraction method in

the current study. Then, the FDLP method without TDLP or TVLP is

included as a reference method containing temporal processing but

without the spectral processing. Finally, as a last reference spectral

estimation method, we use minimum variance distortionless response

(MVDR) (Murthi and Rao, 2000) spectrum.

5. Experimental set-up for speaker recognition

5.1. Speech corpus and experimental protocols

To conduct speaker recognition experiments from whispered

speech, a suitable evaluation corpus needs to be identified first. Unlike

studying speech of normal speaking style, for which a large supply of

corpora and associated standard evaluation protocols are available,

there are fewer databases available for studying speaker recognition

from whispered speech. With the help of data given in Table 1, we

decided to adopt the CHAINS corpus (Cummins et al., 2006) in the

current study. In the recognition experiments, the original speech data,

sampled at 44.1 kHz, were downsampled to 16 kHz.

To cover a broad set of possible application scenarios, we designed

two speaker recognition evaluation protocols. The first one, the speaker

identification (SID) protocol, is relevant in applications such as perso-

nalized control of smart devices. The second one, the automatic speaker

verification (ASV), is relevant in applications such as user authentica-

tion for access control, forensics, and surveillance. While there are

several prior studies on speaker recognition from whispered speech

(Table 1), there exists, unfortunately, no commonly used standard

protocol. Hence, we decided to design our own protocols with an in-

tention of maximizing the number of recognition trials with a limited

amount of data.

5.1.1. Speaker identification protocol

The SID protocol utilizes recordings from 12 females and 12 males

from the same dialect region (Eastern Ireland). For each speaker, we

utilized 32 spoken sentences available in the corpus for normal and

whispered speaking styles. The original corpus, in fact, contains 33

utterances, but we excluded one of them since one audio file was

missing from the original corpus distribution.

Similar to (Saeidi et al., 2016), we adopt a leave-one-out protocol to

increase the number SID evaluation trials: we leave one utterance at a

time, to be used as the test trial, and use the remaining 31 utterances to

train the target speaker model. As the average duration of an utterance

is 2.81 s, the average duration of speech data to train the speaker model

is about 87 s.

One SID trial consists of comparing the test utterance against all the

12 speaker models of the same gender. The identified speaker is the one

whose target speaker model reaches the highest SID score. This way, we

have in total × =12 32 384 SID trials per gender. We conducted SID

trials in two ways. First, by using normal speech for both speaker en-

rollment and testing and second, by using normal speech in enrollment

but whispered speech in testing.

As our objective measure of performance, we compute speaker

identification rate, defined as the proportion of correctly classified test

segments to the total number of scored test segments, computed sepa-

rately per each gender.

5.1.2. Speaker verification protocol

The ASV protocol utilizes all of the normal and whispered speech

data in the CHAINS corpus in order to obtain more trials and to increase

the reliability of the results. That is, we use all 33 sentences and 4 fables

(typically 30 – 60 s long) from 36 speakers (16 females, 20 males). The

first fable, with an average duration of 56 s, is used for training the

target speaker models. The remaining 3 fables are cut into 3 s long clips

and they are used together with the 33 sentences as test segments in the

verification experiments. By testing all test segments against all speaker

models, we obtain trial statistics summarized in Table 3. Again, trials

were conducted in two ways by always enrolling speakers with normal

speech, but testing either with normal or whispered speech. The de-

signed protocol is similar to the one in (Sarria-Paja and Falk, 2015),

with a difference that our test set is somewhat larger.

We report verification performances in terms of equal error rate

(EER), the rate at which false alarm and miss rates are equal. When

comparing the proposed features to the reference features, we also re-

port 95% confidence intervals of EERs, computed using the metho-

dology of Bengio and Mariéthoz (2004). That is, confidence interval

around EER is EER ± c, where

Table 3

Number of trials in the speaker verification protocol. The numbers of same-speaker trials

are given in parentheses.

Normal Whispered

Females 16,752 (1,047) 17,136 (1,071)

Males 25,520 (1,276) 26,000 (1,300)

All 42,272 (2,323) 43,136 (2,371)
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where Ni is the number of impostor trials and Ns is the number of same

speaker trials.

5.2. Speaker recognition system

We performed speaker recognition experiments with a classic

Gaussian mixture model – universal background model (GMM-UBM)

system (Reynolds et al., 2000). While there are many other possible

choices for the back-end, including i-vectors, the GMM-UBM tends to

provide comparative (or higher) accuracy for short utterances (Delgado

et al., 2016; Zeinali et al., 2016; Dey et al., 2017) and is suitable with

limited development datasets, requiring only UBM training data spe-

cification besides the enrollment and test samples. For each of the

feature extraction techniques, we train a 256-component UBM using the

TIMIT corpus, which is sampled at 16 kHz and recorded in quiet en-

vironments. To make the UBM training data gender-balanced, we use

192 speakers for both genders. The target speaker models are obtained

by maximum a posteriori (MAP) adaptation (Lee and Gauvain, 1993) of

the UBM using the training sentences of a particular speaker. A re-

levance factor of 2 was used to adapt the Gaussian component means of

the UBM.

5.3. Feature configurations

The feature extraction techniques compared in this study differ

substantially in their internal computations. At the output, however,

they all yield estimates of the power spectrum (or power-spectrum like

presentation) that are computed in 25 ms frames, incremented in 10-ms

steps. For the power spectrum estimation, we study the following five

reference methods besides the proposed FDLP-TVLP method: discrete

Fourier transform (DFT), linear prediction (LP) (Makhoul, 1975),

power-law adjusted LP (LP-α) (Saeidi et al., 2016), frequency domain

linear prediction (FDLP) (Thomas et al., 2008), minimum variance

distortionless response (MVDR) (Murthi and Rao, 2000), and 2-di-

mensional autoregressive model (2DAR) (Ganapathy et al., 2014). The

power spectrum, estimated using one of these methods, is used as input

to the MFCC computation chain in the standard way (Pohjalainen et al.,

2014). In the identification experiments, the center frequency of the

first and last mel-filter were set to 200 Hz and 7800 Hz, respectively,

whereas in verification experiments, we adopt a narrower frequency

range between 200 Hz and 5600 Hz (In Section 6.4, we study how the

feature extraction bandwidth affects the system performance.) We use

19 MFCCs without the energy coefficient, appended with delta and

double delta coefficients, yielding 57-dimensional feature vectors.

MFCCs are RASTA-filtered (Hermansky and Morgan, 1994) except

when temporal processing with FDLP is used, as it had a negative effect

on the SID performance. Including both RASTA and FDLP could cause

too much temporal smoothing of speech information. For the other

spectrum estimation methods, RASTA had a positive or neutral effect.

Finally, MFCCs of non-speech frames are discarded and the remaining

MFCCs are normalized to have zero mean and unit variance per utter-

ance.

Each of the feature extraction techniques have a number of control

parameters that need to be set. For LP, we found the model order of at

least 40 to yield the highest SID accuracy. Thus, in this study, we use

=p 40 for LP, LP-α, and MVDR. We use the same model order for TDLP

in 2DAR and for AD-TVLP in FDLP-TVLP. For both 2DAR and FDLP-

TVLP, we found that a FDLP model order of 24 or higher for one second

long segments provides the best performance for both normal and

whispered speech. Because of the varying utterance lengths, we nor-

malize the FDLP prediction order according to the length of the pro-

cessed utterance. In the identification protocol, we use an FDLP model

order of =p 24 and for the verification, we set the model order to

=p 48. For LP-α, the best α value was found to be 0.05.

6. Speaker recognition results

In this section, we provide results of the conducted speaker re-

cognition experiments. First, we optimize the control parameters of the

proposed FDLP-TVLP feature extraction method and then continue by

comparing the method to the reference methods. We provide results for

two kinds of speaker recognition tasks, speaker identification (SID) and

speaker verification. Further, we address the SID task in more detail by

analyzing SID accuracies at the level of individual speakers.

6.1. The choice of basis functions for time-varying linear prediction

In TVLP, temporal contours of LP filter coefficients are modeled as a

linear combination of basis functions. Many types of functions, such as

Monomial functions (Liporace, 1975), trigonometric functions (Hall et al.,

1983), and Legendre polynomials (Grenier, 1983), have been used pre-

viously. The choice of basis functions, however, has not been studied

for the AD-TVLP formulation used in this study where we model the LP

predictor coefficient trajectories at frame precision instead of sample-

by-sample basis as is done in the classic TVLP. Therefore, we analyze

the impact of the choice with four kinds of basis functions illustrated in

Fig. 7.

First, we study the effect of superframe size (N) and the number of

used basis functions ( +q 1) together with a monomial basis (Fig. 7(a))
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Fig. 7. Different types of basis functions used in AD-TVLP.
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used in our previous work (Vestman et al., 2017). The superframe size

determines the number of adjacent frames being fed to the AD-TVLP

model at once. The results presented in Table 4 indicate that the

parameter choice is not critical, provided that the superframe size is

sufficiently large and that the number of basis functions is large enough

for a given superframe size. A suitable number of basis functions seems

to be around one-third of the superframe size.

We fix the superframe size to =N 11 for the remaining experiments

with other basis function types, namely Legendre polynomials

(Fig. 7(b)) and B-splines (Fig. 7(c) and (d)) (Friedman et al., 2009). In

contrast to monomials and Legendre polynomials, B-splines have a local

support. However, the results in Table 5 indicate that this does not

provide benefits to the given ASV task. Further, the monomial and

Legendre bases provide equal results. Therefore, we consider only the

monomial basis with 4 basis functions for all the remaining experi-

ments.

6.2. Model orders for spectral and temporal processing of speech

As the 2DAR scheme performs linear prediction in both frequency

(FDLP) and time (TDLP) domains, it has two main parameters to be

optimized. The model order for FDLP determines the amount of

smoothing in temporal subband envelopes; lower value resulting in

more smoothed spectrograms in time. TDLP model order, in turn, is

used to control the amount of details present in the frequency dimen-

sion. In (Ganapathy et al., 2014), the effect of model orders of 2DAR to

speaker verification performance was studied for clean and noisy

speech.

Similarly, the proposed FDLP-TVLP contains two model order

parameters, one for FDLP and the other for AD-TVLP. In Fig. 8, we

jointly vary both in the speaker verification task. Regarding to the FDLP

model order, our results are very similar to the ones in

(Ganapathy et al., 2014). In specific, the model order has to be at least

24 to obtain good results.

Concerning the model order in spectral processing, there are some

differences largely explained by the differences in data. In

(Ganapathy et al., 2014), the experiments performed with TDLP

revealed that a high model order (> 20) is better for clean speech

while for a noisy speech, a low model order (< 15) improves the

performance. As our data is clean and has twice as high sampling rate

(16 kHz), we find that for the AD-TVLP and for 16 kHz sampling rate,

the best performance is obtained with model orders higher than 32.

6.3. Comparison of features in speaker identification task

Table 6 presents the identification results for all the evaluated

spectrum estimation methods described in Sections 4 and 5.3. All the

methods provide close to or equal to 100% identification rate when

there is no speaking style mismatch present between enrollment and

testing. With whispering-induced mismatch, however, all the accuracies

drop to around 50%. Unlike in many other speaker recognition studies

(e.g. Saeidi et al., 2016, Pohjalainen et al., 2014), we curiously find that

female speakers obtain higher identification accuracies than males for

whispered speech. From the whispered SID studies listed in Table 1,

only (Sarria-Paja and Falk, 2015) reports SID results per gender basis

and did not find considerable differences in performances between

males and females on the same corpus and same type of back-end. The

difference might be partly explained by differing sampling rate (16 vs.

8 kHz) and the evaluation protocol. In addition, unlike in the current

study, gender dependent UBMs were used in (Sarria-Paja and

Falk, 2015).

We have grouped the methods in Table 6 into three categories. The

first group consists of the two standard short-term methods, DFT and

LP, from which LP provides higher SID accuracy. Then, in the second

group, the LP-α and MVDR methods have been introduced to provide

added robustness to short-term features. From these two, only LP-α

outperforms or matches the DFT and LP baselines when subjected to

whispered speech SID. The last group consists of the FDLP-derived

methods that use long-term speech processing. The FDLP method, by

itself, is behind most of the short-term methods but improves sub-

stantially when combined with the spectral processing provided by LP

(2DAR).

Finally, the proposed FDLP-TVLP method has a moderate margin to

2DAR and provides the best overall performance for whispered test

cases. We also tried to include the α-compression of the power spectrum

to the FDLP-TVLP method prior to the TVLP processing step, but as the

Table 4

Effect of the superframe size and the number of basis functions to the speaker verification performance (EER (%)) using monomial basis.

Superframe size (# frames (ms)) Normal vs. normal Normal vs. whisper

Number of basis functions ( +q 1)

3 4 5 6 3 4 5 6

7 (85 ms) 3.4 ± 0.4 3.4 ± 0.4 3.3 ± 0.4 3.5 ± 0.4 27.9 ± 0.9 28.3 ± 0.9 28.4 ± 0.9 28.9 ± 0.9

11 (125 ms) 3.7 ± 0.4 3.3 ± 0.4 3.1 ± 0.4 3.5 ± 0.4 28.0 ± 0.9 27.4 ± 0.9 28.1 ± 0.9 28.1 ± 0.9

15 (165 ms) 5.0 ± 0.5 4.5 ± 0.4 3.5 ± 0.4 3.5 ± 0.4 29.2 ± 0.9 29.0 ± 0.9 28.0 ± 0.9 28.7 ± 0.9

19 (205 ms) 6.0 ± 0.5 5.1 ± 0.5 4.2 ± 0.4 3.7 ± 0.4 30.4 ± 1.0 29.2 ± 0.9 28.8 ± 0.9 28.4 ± 0.9

23 (245 ms) 7.7 ± 0.6 6.5 ± 0.5 5.2 ± 0.5 4.6 ± 0.4 32.4 ± 1.0 30.5 ± 1.0 29.6 ± 0.9 28.8 ± 0.9

Table 5

Speaker verification equal error rates (%) for different basis types (superframe size = 11).

Basis type Normal vs. normal Normal vs. whisper

Number of basis functions

3 4 5 6 3 4 5 6

Monomial 3.7 ± 0.4 3.3 ± 0.4 3.1 ± 0.4 3.5 ± 0.4 28.0 ± 0.9 27.4 ± 0.9 28.1 ± 0.9 28.1 ± 0.9

Legendre 3.7 ± 0.4 3.3 ± 0.4 3.1 ± 0.4 3.5 ± 0.4 28.0 ± 0.9 27.4 ± 0.9 28.1 ± 0.9 28.1 ± 0.9

3rd order B-spline 8.3 ± 0.6 3.5 ± 0.4 3.4 ± 0.4 3.3 ± 0.4 32.6 ± 1.0 28.1 ± 0.9 27.8 ± 0.9 28.6 ± 0.9

4th order B-spline –
a 6.8 ± 0.5 3.3 ± 0.4 3.2 ± 0.4 –

a 31.7 ± 1.0 28.2 ± 0.9 28.5 ± 0.9

a *Undefined configuration

V. Vestman et al. Speech Communication 99 (2018) 62–79

73



results show, we did not find this to be beneficial. This might be due to

both methods already having similar beneficial effects by themselves,

achieved through different means. An aggressive α-compression can be

used to make spurious spectral peaks less prominent, but similar effect

can be achieved using contextual information, as in FDLP-TVLP, by

smoothing the spectra over time.

The obtained SID results, as a whole, imply more benefits being

gained by improving spectral processing as opposed to temporal pro-

cessing. This is supported by the good results obtained with LP and LP-α

and by the large performance difference between FDLP and the other

FDLP-based methods that include LP-based spectral processing. On the

other hand, the proposed FDLP-TVLP achieved the best performance by

including two layers of temporal processing, one by FDLP, and the other

by AD-TVLP. This suggests that TVLP methodology, in the context of

style mismatch compensation, is worthwhile of further studies.

6.4. The choice of frequency range in feature extraction

Next, we studied how the frequency range used in the MFCC ex-

traction affects the identification results of DFT and FDLP-TVLP for

whispered speech. We kept the first mel-filter centered at 200 Hz and

changed the position of the other filters according to the position of the

last mel-filter, which was varied between 4000 Hz and 7600 Hz. The

results are presented in Fig. 9. We find that as the frequency range

decreases the identification accuracy drops. Furthermore, we find that

FDLP-TVLP does not seem to benefit from the inclusion of higher fre-

quencies (> 5000 Hz) as much as DFT.

In prior studies (Sarria-Paja and Falk, 2015; Fan and Hansen, 2009),

the frequency range has been limited by increasing the frequency of the

first mel-filter. It has been found that discarding spectral information

below 1 kHz improves system performance in normal-whispered mis-

matched test cases, since the spectral differences between the two

speaking modes are largest in the low frequency range.

6.5. Speaker-by-speaker analysis

Up to this point, we have shown the results in a pooled form over all

the speakers. With an aim to provide further insights into SID from

whispered speech, we analyze results on a speaker-by-speaker basis.

Fig. 10 displays the SID results of DFT and FDLP-TVLP methods for each

speaker, sorted according to the number of correct identifications ob-

tained using FDLP-TVLP. The results indicate large differences between

individuals; some speakers are correctly identified almost every time,

while others are almost always misidentified. From informal listening of

the most difficult speakers, we could not identify any obvious abnormal

speech characteristics or recording quality related issues. Hence, in-

stead, we decided to analyze whether a change in formant values be-

tween normal and whispered speech explains the differences between

SID performances of individual speakers. In Fig. 11, we present corre-

lations between the number of correct identifications for a speaker and

the average difference of formant frequencies between whispered and

normal speech. We find a weak correlation between these two vari-

ables. Interestingly, the correlation is stronger for F2 than for F1 and it

is also stronger for DFT than for FDLP-TVLP, which suggests that FDLP-

TVLP might tolerate formant changes slightly better.

6.6. Comparison of features in speaker verification task

The results for the speaker verification task are presented in Table 7.

As expected, the results resemble those obtained from the identification

experiments. For normally spoken speech, male and female perfor-

mances are close to each other. For whispered speech, however, there is

a clear gap between genders; in specific, females show 3–6% lower

EERs in absolute terms. As before, DFT and LP show the best perfor-

mance in the normal speaking style, while for whispered speech, FDLP-

TVLP gives the lowest error rates although it compromises performance

in normal speech by about 0.5% (absolute EER). As a general finding,

all the methods yield high error rates when tested under speaking style

mismatch. Our results are similar to those reported in (Sarria-Paja and

Falk, 2015).
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Fig. 8. Speaker verification equal error rates (%) for normal and whispered speech using different model orders in FDLP-TVLP modeling.

Table 6

SID accuracies (%) for different spectrum estimation methods.

Method Normal vs. normal Normal vs. whisper

Females Males All Females Males All

DFT 100.0 100.0 100.0 52.1 40.4 46.2

LP 100.0 100.0 100.0 51.3 44.8 48.0

LP-α (α = 0.05) 100.0 100.0 100.0 53.9 42.4 48.2

MVDR 100.0 100.0 100.0 51.0 35.4 43.2

FDLP 96.1 94.8 95.4 39.3 32.6 35.9

2DAR 99.7 99.5 99.6 55.2 44.0 49.6

FDLP-TVLP 99.7 99.7 99.7 56.5 45.3 50.9

FDLP-TVLP-α 99.7 99.5 99.6 54.9 41.4 48.2
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6.7. Analysis of local variability in spectrogram estimation methods

In machine learning, the well-known over-fitting vs. under-fitting

trade-off, also know as the bias-variance trade-off, relates to general-

ization of models beyond a given training set. Models with a com-

paratively larger number of degrees of freedom tend to produce good

results on training data (low bias) but fail to generalize (high variance).

Being constrained by the low-order polynomial functions, the TVLP

models addressed in this study are intuitively more rigid in comparison

to the traditional way of extracting MFCCs. For this reason, we expect

them to be less sensitive to acoustic mismatch between enrollment and

test utterances, including changes in speaking style.

As our last analysis, we are interested to objectively quantify the

degree of feature rigidness directly from the spectral representations.

To this end, inspired by the widespread use of Laplace operator in image

processing (Wang, 2007), and by viewing spectrograms as images, we

adopt discrete Laplacians to quantify the rigidness of spectrogram re-

presentation of speech signals both in time and frequency variables

obtained by different spectrum estimators. In specific, we use the

average value of absolute values of Laplacian evaluated at all points of

spectrograms (excluding non-speech segments). The discrete Laplacian

L is defined as,

L = − + + + − + +

−

t f S t f S t f S t f S t f

S t f

( , ) ( 1, ) ( 1, ) ( , 1) ( , 1)

4 ( , ),

where t and f refer to indices of time and frequency values, respectively,

and where S(t, f) is a speech spectrogram. Furthermore, to measure

variability along one dimension only, we similarly use,

L

L

= − + + −

= − + + −

t f S t f S t f S t f

t f S t f S t f S t f
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We computed the spectrograms of the UBM data (TIMIT) using DFT,

LP, and FDLP-TVLP methods. The average absolute Laplacians are

presented in Table 8. In comparison to DFT, we find that LP helps to

reduce the local variability in time (mean(Lf )) as it smooths spectra in

frequency. As a side product, it also reduces variability in time (mean

(Lt )) because the noisy values of spectrogram get removed. The

smoothing in time in FDLP-TVLP causes a large drop to variability in

time while the variability in frequency is similar to the LP method.

7. Conclusions

Significant advancements on speaker recognition research have

been made in recent years by speaker modeling using i-vector and DNN

technology, yet mismatch conditions due to the intrinsic and extrinsic

variabilities remain as a major cause of performance degradation. In the

current study, we addressed the problem of mismatch arising from a

specific speaking style, whispering. Besides providing an up-to-date and

self-contained tutorial survey on speaker recognition from whispered

speech, we introduced a new speech modeling technique that involves a
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Fig. 9. Speaker identification accuracies (%) for whispered speech using different frequency ranges in the MFCC computation.
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long-term speech analysis based on a joint utilization of frequency do-

main linear prediction and time-varying linear prediction (FDLP-TVLP).

Our speaker recognition experiments on the CHAINS corpus in-

dicate that speaker recognition from whispered speech can benefit from

using FDLP-TVLP when the control parameters of the model are prop-

erly set. We made the following conclusions regarding the parameter

choices. The number of basis functions for the proposed TVLP method

should be about one third of the number of short-time frames in the

superframe. With an experiment using four basis functions, we con-

clude that recognition performances do not depend much on the type of

the basis function. We recommend to use simple monomial bases.

Further, we experimented with different model orders for FDLP and

TVLP, and we found that as long as the model orders are above 24 and

32 (assuming 16 kHz sampling rate) respectively, performance remains

high.

In comparison with baseline reference features, we have found that

the FDLP-TVLP feature performs considerably better than standard

MFCC and LP-based MFCC features for speaker recognition from

whispered speech. On the other hand, we observe a small performance

degradation with normal voice. Also, the results obtained with the

proposed feature have shown considerable improvement over closely

related FDLP and 2DAR feature, and these indicate that speech

modeling including the time-varying form of linear prediction helps for

the recognition of whispering speaker. Interestingly, the recognition

performance for whispered female voice is better than for the male

voice. This finding contradicts with the usual observation in speaker

recognition experiments where recognition of female speakers is more

difficult than male speakers.

From speaker-by-speaker analysis of speaker identification perfor-

mance, we observed considerable accuracy differences across the

speakers. This suggests that the articulatory process for producing

whispered voice is highly dependent on the individual person and

evidently, some speakers are naturally good at disguising themselves by

producing close to unidentifiable whispered voice. From the more de-

tailed analysis, we found that a small part of individual differences can

be explained by the amount of changes in formant frequencies between

the normal and whispered speaking styles.

While our preliminary study on whispered speech showed pro-

mising results, we are aware of the following limitations planned to be

addressed in future studies. Firstly, although the current study shows

moderate improvement over baseline, the identification accuracy for

normal vs. whisper condition is almost half of the accuracy obtained for

the non-mismatched normal vs. normal condition. One reason for this is

the absence of whispered data in the back-end training where we used
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the TIMIT data, which is well suited only for normal vs. normal condi-

tion. Secondly, for processing whispered speech, we have applied ex-

actly same processing steps as used for the normal speech. One ad-

vantage of this approach is that it does not use knowledge of the

underlying speaking style during processing, however, at the cost of a

possible performance loss when compared to speaking style specific

processing used jointly with a speaking style detector. Thirdly, the

current study uses GMM-UBM framework which does not explicitly

consider any channel or session variability compensation technique as

used in i-vector-PLDA frameworks. For such advanced systems, pre-

paring suitable data recipe for training parameters and hyper-para-

meters is difficult due to the lack of appropriate and adequate data.

Finally, the study was conducted on a relatively small dataset requiring

further experiments to be conducted to generalize the existing results.

We found that comparison of findings with the existing studies on

speaker recognition from whispered speech is difficult due to the lack of

commonly used data sets and evaluation protocols. In addition to

having standard evaluation protocols, the research community would

benefit from a large publicly available corpus containing recordings of

both normal and whispered speech. A larger corpus would allow the use

of more data-intensive methods and would make the evaluation of re-

search findings more reliable.
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Appendix A. Details on aligning normal and whispered speech

A1. Frame-to-frame distance function

To perform time alignment of normal and whispered speech with dynamic time warping (DTW), we defined a frame-to-frame distance function d

given by

= − + − + − + − +d E E(frame , frame ) F1 F1 F2 F2 F3 F3 500,i j i j i j i j i j

where F1–F3 are the formant (center) frequencies in Hz and E is the log energy of a frame computed between 4 kHz and 8 kHz. That is, the distances

are based on computing absolute differences of the formant frequencies and the log energy values. The reason for excluding low frequencies

(0–4 kHz) from the energy computation is that, due to lack of the fundamental frequency, the energy in whispered speech differs more from that of

normal speech in the low frequency range than in the high frequency range. Before distance computation, the log energies are shifted and scaled so

that for each sentence the minimum log energy is 0 and the maximum log energy is 1000. In addition, we add a constant term 500 to all of the

distances to reduce the amount of time stretching in the DTW algorithm.

A2. Automatic alignment quality detection

The detection of well aligned segments consists of three steps. First, energy based speech activity detection is performed for both normal and

whispered speech to discard non-speech frames. Second, we discard those segments whose formant tracks can be considered unreliable. The al-

gorithm for detecting formant tracking quality uses 30-frame long sliding window to discard windows that contain too many sudden jumps (more

than 200 Hz) between the consecutive formant frequencies. Finally, we discard segments that contain considerable amount of time stretching

(repeated frames). More precisely (within a 30-frame window), if the sum of the repeated frames in aligned normal and aligned whispered speech is

more than 8, the window will be discarded. An example of a segment that contains too much time stretching can be seen near the 3 s mark in the

third panel of Fig. 2.

Table 7

Speaker verification equal error rates (%) with 95% confidence intervals (Bengio and

Mariéthoz, 2004) for different spectrum estimation methods.

Method Normal vs. normal

Females Males All

DFT 2.67 ± 0.50 2.50 ± 0.44 2.57 ± 0.33

LP 2.48 ± 0.49 3.11 ± 0.49 2.84 ± 0.35

LP-α (α = 0.05) 3.15 ± 0.55 3.37 ± 0.51 3.45 ± 0.38

MVDR 3.56 ± 0.58 3.61 ± 0.52 3.61 ± 0.39

FDLP 3.82 ± 0.60 4.58 ± 0.59 4.30 ± 0.42

2DAR 3.34 ± 0.56 2.97 ± 0.48 3.10 ± 0.36

FDLP-TVLP 3.06 ± 0.54 3.33 ± 0.50 3.27 ± 0.37

FDLP-TVLP-α 3.78 ± 0.60 3.91 ± 0.55 3.86 ± 0.40

Method Normal vs. whisper

Females Males All

DFT 26.24 ± 1.36 29.89 ± 1.28 29.69 ± 0.95

LP 26.32 ± 1.36 30.38 ± 1.28 28.38 ± 0.93

LP-α (α = 0.05) 26.12 ± 1.36 30.38 ± 1.28 28.91 ± 0.94

MVDR 24.90 ± 1.34 31.45 ± 1.29 28.13 ± 0.93

FDLP 26.70 ± 1.37 31.69 ± 1.30 30.33 ± 0.95

2DAR 25.38 ± 1.35 29.69 ± 1.27 28.43 ± 0.93

FDLP-TVLP 24.84 ± 1.34 29.08 ± 1.27 27.48 ± 0.92

FDLP-TVLP-α 25.96 ± 1.36 30.32 ± 1.28 28.64 ± 0.94

Table 8

Analysis of local variability in spectrograms obtained using DFT, LP, and FDLP-TVLP

spectrum estimators. Variabilities are measured as average absolute values of Laplacians

extracted from speech spectrograms. LaplacianL is used the measure variability jointly

in both dimensions andLt andLf are used to measure variability independently in time

an frequency, respectively. As the means are computed over a large dataset, standard

errors of the means in all cases are less than 0.01, making all the values significantly

different from each other.

mean(L ) mean(Lt ) mean(Lf )

DFT 33.36 18.52 18.76

LP 13.88 9.49 5.20

FDLP-TVLP 7.09 2.90 4.78
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Abstract
The front-end factor analysis (FEFA), an extension of principal
component analysis (PPCA) tailored to be used with Gaussian
mixture models (GMMs), is currently the prevalent approach
to extract compact utterance-level features (i-vectors) for au-
tomatic speaker verification (ASV) systems. Little research has
been conducted comparing FEFA to the conventional PPCA ap-
plied to maximum a posteriori (MAP) adapted GMM supervec-
tors. We study several alternative methods, including PPCA,
factor analysis (FA), and two supervised approaches, supervised
PPCA (SPPCA) and the recently proposed probabilistic partial
least squares (PPLS), to compress MAP-adapted GMM super-
vectors. The resulting i-vectors are used in ASV tasks with
a probabilistic linear discriminant analysis (PLDA) back-end.
We experiment on two different datasets, on the telephone con-
dition of NIST SRE 2010 and on the recent VoxCeleb corpus
collected from YouTube videos containing celebrity interviews
recorded in various acoustical and technical conditions. The
results suggest that, in terms of ASV accuracy, the supervec-
tor compression approaches are on a par with FEFA. The su-
pervised approaches did not result in improved performance.
In comparison to FEFA, we obtained more than hundred-fold
(100x) speedups in the total variability model (TVM) training
using the PPCA and FA supervector compression approaches.

1. Introduction
Modern text-independent automatic speaker verification (ASV)
relies heavily on the use of identity vectors (i-vectors) [1, 2].
I-vectors are compact representations of speech utterances
containing useful information for speech-related classification
tasks. The i-vector extraction pipeline involves many steps
starting from the extraction of acoustic features such as Mel-
frequency cepstral coefficients (MFCCs), followed by the ex-
traction of sufficient statistics with the aid of an universal
background model (UBM), typically a Gaussian mixture model
(GMM) [3] or a deep neural network (DNN) model [4]. Suffi-
cient statistics are then used to extract an i-vector, a fixed-length
representation of an utterance, using a pre-trained total vari-
ability model (TVM) that models the distribution of utterance-
specific GMM supervectors.

The development and optimization of an i-vector based
ASV system consists of a multiple time-consuming steps. The
most notable ones are extraction of acoustic features and suffi-
cient statistics, and training of UBM and TVM. The two former
require processing of a large number of speech files and TVM
training is among the most time consuming parts of the system
development process. Thus, by reducing TVM training time, a
meaningful positive effect to the total development time of ASV

This work was partially funded by Academy of Finland (project
309629).

system can be achieved [5, 6]. This is particularly beneficial in
studies focused on the acoustic front-end optimizations when
one has to retrain the entire system when feature extractor is
changed [7].

Previous studies on rapid i-vector extraction have primar-
ily optimized computations in the standard front-end factor
analysis (FEFA) approach [1, 2] by adopting new computa-
tional algorithms, often approximative in nature [6, 8, 9]. In
this study, however, we focus on an alternative and straightfor-
ward compression of classic maximum a posteriori (MAP) [3]
adapted GMM supervectors with a goal of obtaining fast execu-
tion times without compromising on ASV accuracy. In fact, be-
fore FEFA, and its predecessor, joint factor analysis (JFA) [10],
became prevalent, MAP adapted supervectors were commonly
used with support vector machine (SVM) to do speaker classifi-
cation [11]. Recently, however, the use of MAP adapted super-
vectors has been less common.

Supervector compression, for example by using probabilis-
tic principal component analysis (PPCA) [12, 13], provides a
large computational saving in TVM estimation over FEFA [14].
In FEFA, the posterior covariance matrix needed for i-vector ex-
traction is utterance-dependent, while in the supervector com-
pression methods addressed in this study, covariance is shared
among all speech utterances, which greatly reduces computa-
tion. As the TVM training set may consist of tens of thousands
of utterances, the resulting computational saving is consider-
able [14].

The closest prior work similar in spirit to ours are [14]
and [15], which we extend in many ways. In these two studies,
the training of TVM is performed using PPCA. The acoustic
feature vectors are hardly aligned to a single UBM component.
If they were softly aligned, this approach would equal to using
MAP adapted supervectors with a relevance factor of 0 [16].
Differing from [14] and [15], we use MAP adapted supervec-
tors to train TVM and we study how the choice of relevance
factor affects the system performance.

Recently [17], TVM estimation using probabilistic partial
least squares (PPLS) was proposed as an alternative to FEFA.
PPLS compresses supervectors in a supervised way by taking
advantage of the speaker labels in the training set. In the cur-
rent study, we attempt to validate the positive results [17] ob-
tained for Chinese mandarin corpus by using datasets contain-
ing English speech instead. In [18], supervision is added to the
total variability matrix training by deploying supervised PPCA
(SPPCA) [19]. The SPPCA model is fundamentally the same as
the PPLS model, with a difference in what has been used as the
supervision data; PPLS has been used directly with speaker la-
bels [17], while SPPCA has been utilized with speaker-specific
(not just utterance-specific) sufficient statistics [18]. In the cur-
rent work, we study the use of SPPCA for supervector compres-
sion.

In addition to the above models, we adopt standard fac-

Odyssey 2018 The Speaker and Language Recognition Workshop
26-29 June 2018, Les Sables d’Olonne, France

357 10.21437/Odyssey.2018-50



tor analysis (FA) for supervector compression. Note, that this
differs from the FEFA framework: In FEFA, the TVM train-
ing is based on the maximization of posterior probabilities of
acoustic feature vectors, assumed to have been generated by
a GMM [20], whereas in FA (and PPCA), maximization is
performed with respect to posterior probabilities of supervec-
tors [21].

We conduct comparisons of different methods in ASV set-
ting using a recently released VoxCeleb corpus [22]. The corpus
contains “real-world” utterances obtained from YouTube videos
of celebrity interviews using a fully automated data collection
pipeline. The data is challenging for ASV due to large intra-
speaker variability caused by large differences in environments,
speaking styles, and technical conditions. In addition to Vox-
Celeb, we validate our findings with the telephone condition of
NIST 2010 Speaker Recognition Evaluation corpus.

Our contributions can be summarized as follows. First, we
present all the selected methods in an unified notation high-
lighting the important formulas regarding their implementation.
Second, we aim at validating the results claimed in [17] regard-
ing the recently proposed PPLS method on different corpora,
and we extend the study by introducing the weighting scheme
proposed in [18]. Third, we implement and test SPPCA in the
supervector compression domain. Fourth, we compare all the
methods in terms of ASV performances and training times of
total variability models. Lastly, we propose a slight simplifica-
tion to the maximization principle of TVM training.

2. I-Vector Extraction by Front-End Factor
Analysis

Front-end factor analysis (FEFA) [1] is the current standard
method for extracting utterance level features known as i-
vectors. In FEFA, a supervector m(u) of an utterance u is
modeled as

m̂(u) = µ+ Vw(u),

where µ ∈ Rh×1 is an utterance-independent bias supervec-
tor, w(u) ∈ Rd×1 is a low dimensional representation of an
utterance supervector, i.e., an i-vector, and V ∈ Rh×d is a map-
ping between low and high dimensional spaces known as total
variability matrix. The mathematical foundation of FEFA is
presented in detail in [20].

The traditional way of TVM estimation and i-vector ex-
traction begins with computing frame posterior probabilities for
short-term spectral features (e.g. MFCCs) of an utterance with
each Gaussian component of UBM. These posteriors are then
used to compute zeroth and first order sufficient statistics,

nc =
T∑

t=1

pt(c),

fc =
T∑

t=1

pt(c)xt,

wherext is the tth feature vector of the utterance and pt(c) is the
posterior probability of tth vector belonging to cth component of
UBM, computed with the aid of Bayes’ rule.

Assuming that the prior distribution p(w(u)) is stardard
normal, it can be shown [20] that

p(w(u)|X(u), V ) = N (µ(u),Σ(u)),

where X(u) = {x1, . . . ,xT } is a sequence of all feature vec-
tors in the utterance u and where

I-Vector Extraction

Σ(u) =

(
I +

C∑

c=1

nc(u)V ᵀ
c Σ−1

c Vc

)−1

,

µ(u) = Σ(u)
C∑

c=1

V ᵀ
c Σ−1

c (fc(u)− nc(u)µc).

In the above equations, Σc is the covariance matrix of the cth

UBM component, and Vc and µc are component-wise repre-
sentations of V and µ so that

V =



V1

...
VC


 and µ =



µ1

...
µC


 ,

where the vectors µ1, . . . ,µC are the means of the UBM com-
ponents. Mean µ(u) of the posterior i-vector distribution is the
i-vector of the utterance u.

The matrix V is estimated using an offline training set of U
utterances by maximizing

U∑

u=1

E[ln p(X(u)|w(u), V )], (1)

where the expectations are taken with respect to posterior i-
vector distributions [20]. This leads to an update formula

Update Formula for V

Vc=

(
U∑

u=1

fc(u)µ(u)ᵀ
)(

U∑

u=1

nc(u)Eµµ(u)

)−1

,

Eµµ(u) = Σ(u) + µ(u)µ(u)ᵀ.

Training of V is iterative; one iteration consists of computing
Σ(u), µ(u), and Eµµ(u) for all training utterances by keeping
V fixed and then updating V using the computed values. Dur-
ing the first iteration, parameters of posterior distributions are
computed using a randomly initialized matrix V .

3. I-Vector Extraction by Supervector
Compression

In this section, we present multiple approaches to compressing
MAP adapted GMM supervectors to low-dimensional represen-
tations, which we will also refer as “i-vectors”. Unlike FEFA,
these approaches do not assume the underlying speaker model
to be GMM.

In relevance MAP, the adapted mean vectors µ̂c,
c = 1, . . . , C, for utterance’s GMM are obtained from UBM
by computing

µ̂c = αcfc + (1− αc)µc,
where

αc =
nc

nc + r
and r ≥ 0 is the relevance factor to be optimized [3]. When
r → 0, then αc → 1, and when r = 0, the mean vectors are
solely determined by the sufficient statistics fc. If r is large,
then the adapted mean vectors remain close to UBM’s mean
vectors. Adapted mean vectors µ̂c are concatenated together to
form a supervector for the utterance.

358



3.1. Principal Component Analysis

Being one of the most commonly used dimension reduction
techniques, we include the conventional principal component
analysis (PCA) [23] as a baseline method for supervector com-
pression. The PCA transformation matrix, consisting of eigen-
vectors of data covariance matrix, can be used to transform high
dimensional supervectors to low dimensional i-vectors. In this
study, we use the standard singular value decomposition (SVD)
approach for PCA computation. However, for high dimensional
data, PCA could be computed more efficiently by adopting iter-
ative PCA algorithms [12].

3.2. Probabilistic Principal Component Analysis

Probabilistic principal component analysis (PPCA) [12, 13]
models observations using a linear-Gaussian framework. In
this section, we present a compact self-contained formulation
of PPCA in the context of supervectors. The rest of the meth-
ods discussed in Section 3 are formulated similarly and their
theory can be easily formulated using PPCA as a starting point.

In PPCA, supervectors are modeled as

m(u) = Vw(u) + ε, (2)

wherew ∼ N (0, I) and ε ∼ N (0, σ2I). For brevity, we have
omitted the bias termµ from the right-hand side of the equation
by assuming that supervectors have been centered using the data
mean computed from the training data.

By using properties of normally distributed random vari-
ables and by assuming that V is given, from (2) it follows that

p(m(u)|w(u)) = N (Vw(u), σ2I).

Further, in Appendix A, we show that

p(w(u)|m(u)) = N (µ(u),Σ), (3)

where
I-Vector Extraction

Σ =
(
I +

1

σ2
V ᵀV

)−1

,

µ(u) =
1

σ2
ΣV ᵀm(u).

(4)

Unlike with FEFA, covariance Σ of the posterior i-vector dis-
tribution does not depend on the utterance. Hence, by adopt-
ing PPCA instead of FEFA, the time complexity of com-
puting the parameters of posterior distributions drops from
O(U(CFd+ Cd2 + d3)) to O(UCFd), where F is the di-
mension of acoustic feature vectors [14].

In the current work, we study two different ways of obtain-
ing V for all the presented methods. The traditional approach
(max. principle 1) maximizes

U∑

u=1

E[ln p(m(u)|w(u), V )], (5)

where expectations are taken with respect to posterior i-vector
distributions (similar to (1)). We propose maximizing the sum
of log-likelihoods directly (max. principle 2) without comput-
ing expectations by setting w(u) = µ(u). That is, we maxi-

mize

U∑

u=1

ln p(m(u)|w(u), V ) (6)

=
U∑

u=1

(
− h

2
ln(2πσ2)

− 1

2σ2

(
m(u)− V µ(u)

)ᵀ(
m(u)− V µ(u)

))

= −hU
2

ln(2πσ2)− 1

2σ2

U∑

u=1

(
m(u)ᵀm(u)

− 2m(u)ᵀV µ(u) + µ(u)ᵀV ᵀV µ(u)
)
,

where h is the dimension of supervectors.
By taking derivatives with respect to each variable in the

matrix V and by setting them to zero, we obtain

Update Formulas for V and σ2

V =

( U∑

u=1

m(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

σ2 =
1

hU

U∑

u=1

(
m(u)ᵀm(u)− tr

(
Eµµ(u)V ᵀV

))
,

Eµµ(u) = µ(u)µ(u)ᵀ (max principle 2).

The traditional approach (max principle 1) of solving V
results in the exact same formulas but with

Eµµ(u) = Σ + µ(u)µ(u)ᵀ [13].

Similarly to FEFA, training of V is iterative. As initial values,
we use random V and σ2 = 1.

3.3. Factor Analysis

Factor analysis (FA) agrees with the model (2) of PPCA,
except that the noise term ε has more freedom by let-
ting ε ∼ N (0,Ψ), where Ψ ∈ Rh×h is diagonal instead
of isotropic [13]. The training procedure is analogous to
PPCA [21, pp. 585–586]. First, the parameters of posterior
distributions (3) are computed as

I-Vector Extraction

Σ =
(
I + V ᵀΨ−1V

)−1

,

µ(u) = ΣV ᵀΨ−1m(u).

Then, the model parameters are updated as follows:

Update Formulas for V and Ψ

V =

( U∑

u=1

m(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

Ψ =
1

U

U∑

u=1

(
m(u)m(u)ᵀ − V Eµµ(u)V ᵀ

)
� I,

where � denotes the Hadamard (element-wise) product. The
update formula for matrix V is the same as with PPCA.
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3.4. Supervised Approaches

The methods presented so far capture the variability between
individual utterances regardless of the speaker’s identity. That
is, their training is unsupervised in the sense that no speaker
labels are needed. This makes it convenient to apply any of
the above methods to different classification tasks, but leaves
an open question whether “better” i-vectors could be extracted
by utilizing speaker labels. Thus, we explore two methods that
include identity information to the training process of the to-
tal variability matrix V to discriminate speakers better. The
explored methods, recently proposed probabilistic partial least
squares (PPLS) [17] and supervised PPCA (SPPCA) [18], can
both be thought as extensions of the regular PPCA. The un-
derlying models of PPLS and SPPCA are essentially the same,
where the difference is in the data used to discriminate speak-
ers: PPLS adds discrimination by using speaker labels while
SPPCA utilizes speaker-dependent sufficient statistics within
the FEFA framework. In the current work, however, we ap-
ply SPPCA in the supervector context in contrast to [18], where
the FEFA context is used.

In PPLS, supervector model is bundled together with a
speaker label model. Speaker labels are encoded as one-hot
vectors, y(u) ∈ Rs, where s is the number of speakers in the
training set. For example, if the utterance u originates from the
second speaker of the set, then y(u) = (0, 1, 0, . . . , 0)ᵀ. The
speaker label model and the supervector model share the same
i-vectorw(u) as follows:

{
m(u) = Vw(u) + ε, (supervector model)
y(u) = Qw(u) + ζ, (speaker label model)

(7)

where (7) is defined in the same way as before, Q ∈ Rs×d is
a mapping between the i-vector space and the one-hot vector
space, and ζ ∼ N (0, ρ2I).

As presented in [17] and [18], the PPLS model leads to

I-Vector Extraction

Σ =
(
I +

1

σ2
V ᵀV +

1

ρ2
QᵀQ

)−1

,

µ(u) = Σ
( 1

σ2
V ᵀm(u) +

1

ρ2
Qᵀy(u)

) (8)

and

Update Formulas for V , Q, σ2, and ρ2

V =

( U∑

u=1

m(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

Q =

( U∑

u=1

y(u)µ(u)ᵀ
)( U∑

u=1

Eµµ(u)

)−1

,

σ2 =
1

hU

U∑

u=1

(
m(u)ᵀm(u)− tr

(
Eµµ(u)V ᵀV

))
,

ρ2 =
1

sU

U∑

u=1

(
y(u)ᵀy(u)− tr

(
Eµµ(u)QᵀQ

))
, (9)

where, as before, we assume that all the supervectors and one-
hot vectors are centered using the mean vectors calculated from
the training data.

To extract i-vectors as in (8), we are required to have
speaker information of the utterance stored in y(u). In the test-
ing phase, however, we have no information about the speaker.

To this end, we might simply extract the test i-vector using ex-
traction formulas (4) for PPCA [18]. The result is not the same
as with PPCA, since the training of V is influenced by the su-
pervised approach. Another solution to deal with the lacking
speaker information is to predict speaker labels as a mean of
posterior distribution p(y(u)|m(u)); see the details in [17].
We found experimentally that both approaches extract exactly
the same i-vectors.

The described formulations apply also for SPPCA with a
difference that instead of using one-hot encoded speaker labels
as vectors y(s), we use speaker dependent supervectors. A
speaker dependent supervector is formed by using the acous-
tic features from all of the speaker’s training utterances. Note
that with SPPCA, h should be used instead of s in (9) and that
Q’s dimensionality is the same as V ’s.

In [18], a weighted SPPCA is proposed. In weighted
SPPCA, (8) becomes

I-Vector Extraction

Σ =
(
I +

1

σ2
V ᵀV +

β

ρ2
QᵀQ

)−1

,

µ(u) = Σ
( 1

σ2
V ᵀm(u) +

β

ρ2
Qᵀy(u)

)
,

where β is a weight parameter. The weight parameter can be
used to adjust the amount of supervision added on top of the
conventional PPCA model. With β = 0, the model equals
PPCA and when β = 1, we have the ordinary SPPCA.

4. Experimental Setup
4.1. VoxCeleb Speaker Recognition Corpus

We performed the speaker verification experiments on the re-
cently published VoxCeleb dataset [22]. VoxCeleb contains over
150,000 real-world utterances from 1251 celebrities, of which
561 are females and 690 are males. A key difference to the
widely used NIST corpora is that, on average, VoxCeleb has
more than 100 utterances per speaker, typically obtained from
multiple sessions with highly variable environments and record-
ing conditions providing a large intra-speaker variability. The
average utterance length is about 8 seconds. Although most of
the utterances are short, the utterance length varies consider-
ably, the longest ones being longer than one minute. Utterances
have a sampling rate of 16 kHz.

The dataset was collected using fully automated pipeline
that extracts and annotates utterances from YouTube videos. To
ensure correct speaker annotation, the pipeline contains auto-
matic face verification verifying that mouth movement in the
video corresponds to the audio track and that the speaker’s iden-
tity is the correct one. The utterances are mostly extracted
from interview situations ranging from quiet studios to public
speeches in front of large audiences. Differing environments
and speaking styles are not the only source of variability, since
differences in recording devices and audio processing practices
are present in YouTube videos. As the acoustic and technical
conditions of the utterances vary considerably, the dataset turns
out to be challenging for an automatic speaker verification task
as we will see in the experiments.

We used the same standard trial list as in the baseline system
of [22]. It contains 40 speakers, whose name starts with the
letter ‘E’. The list has 37720 trials, half of them (18860) being
same speaker trials, which differs substantially from the typical
NIST setups with about 10 to 1 ratio between non-target and
target trials.
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The rest of the speakers were used for developing our
speaker verification systems, i.e., to train the UBM, TVM and
classifier back-end. To speed up experimentation, we utilized
only one-fourth of the available training data as we did not see
large decrease in system performance by decreasing the amount
of training data. Our training set contains total of 37160 utter-
ances from 1211 speakers.

We report recognition accuracy using equal error rates
(EERs) that are the rates where false alarm and miss rates are
equal. With the current trial list setup, 95% confidence intervals
around EERs that are below 8% (the case with most experi-
ments) are at widest±0.27% absolute. Confidence intervals are
computed using z-test based methodology presented in [24].

4.2. NIST Data

Even if our primary interest is in the VoxCeleb data, for the
sake of reference, we also study different i-vector systems using
common condition 5 of NIST 2010 Speaker Recognition Eval-
uation (SRE10)1. Trial segments in condition 5 contain con-
versational 8 kHz telephone speech spoken with normal vocal
effort. The trial list consists of 30373 trials, of which 708 are
same speaker trials.

Speaker verification systems were trained using 43308 ut-
terances obtained from SRE04, SRE05, SRE06, Switchboard,
and Fisher corpora.

The performances are reported as EERs and minimum val-
ues of detection cost function (minDCF) used in SRE10. The
SRE10 detection cost function is given as

DCF = 0.001Pmiss + 0.999Pfa,

where Pmiss and Pfa are probabilities of miss and false alarm,
respectively [25].

4.3. Description of Speaker Verification System

We extracted 38 dimensional acoustic feature vectors contain-
ing 19 Mel-frequency cepstral coefficients (MFCCs) and their
delta coefficients. After discarding features of non-speech seg-
ments, we subjected features to utterance-level mean and vari-
ance normalization.

The universal background model (UBM), 1024 component
Gaussian mixture model (GMM) with diagonal covariance ma-
trices, was trained using the development data. UBM was used
to extract sufficient statistics, which were used in FEFA or in
supervector extraction. Supervectors were extracted by first
creating utterance specific GMMs using maximum a posteriori
(MAP) adaptation [3] and then by concatenating mean vectors
of adapted GMMs into supervectors.

We extracted 400 dimensional i-vectors, which were
then centered, length-normalized, and whitened. Finally,
we used simplified probabilistic linear discriminant analysis
(PLDA) [26] to perform supervised dimensionality reduction of
i-vectors into 200 dimensions and to score verification trials.

5. Speaker Verification Experiments
The results presented in Sections 5.1 to 5.6 are given for
the VoxCeleb ASV protocol. Section 5.7 presents results for
SRE10.

1https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-
2010

5.1. Relevance Factor in MAP Adaptation

We studied how the choice of relevance factor affects speaker
verification performance with PPCA and FA methods. The re-
sults for VoxCeleb protocol are presented in Figure 1. Based on
the results, we fix the relevance factor to r = 1 for the remain-
ing experiments with this data. The choice of relevance factor is
data-dependent, and therefore, the same value might not work
well with other datasets.
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Figure 1: The effect of relevance factor used in MAP adapta-
tion on speaker verification performance. For VoxCeleb data,
relevance factor close to 1 leads to the best results.

5.2. Number of Training Iterations

To find out the sufficient number of iterations in TVM training,
we evaluated verification performances with varying number of
iterations. The results of the experiment, presented in Figure
2, reveal that 5 iterations are enough to obtain near to optimal
performance. Hence, we fix the number of iterations to 5 for the
remaining experiments.

All the methods, except SPPCA, behave similarly. With
SPPCA, the training does not proceed in a desirable way during
the first 5 iterations.
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Figure 2: Speaker verification performances with different num-
bers of training iterations in total variability model training.
About 5 iterations are enough to obtain satisfying performance.
The trend is similar for all the methods except for SPPCA, for
which the iterative training does not improve the results.
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5.3. Maximization Principles in System Training

In Section 3.2, we presented two different maximization princi-
ples that can be used with all the discussed iterative TVM train-
ing methods. The comparison of the maximization principles
in terms of resulting speaker verification performances is pre-
sented in Table 1. There are no clear differences between the
principles.

Table 1: Speaker verification equal error rates (%) for differ-
ent methods and maximization principles used in TVM training.
With conventional PCA approach we obtained EER of 7.39%.

max1 [Eq. (5)] max2 [Eq. (6)]
FEFA 7.09 7.11
PPCA 7.04 7.18
FA 7.20 7.26
PPLS 7.05 7.42
SPPCA 8.44 8.26

5.4. Training Times

Figure 3 shows the elapsed times for 5 TVM training iterations
with different methods. The measured times do not include the
times needed to compute sufficient statistics or supervectors or
to load them into memory using I/O operations. Measurements
were conducted by running MATLAB implementations of all
the methods in a 16-core 2.60 GHz machine with an ample
amount of RAM (>300GB). To obtain reasonable training time
with FEFA, we trained the system with 8 CPU cores, whereas
other methods were trained using a single core.

Before the TVM training phase, different methods have
only small differences in terms of computational requirements.
Even though FEFA differs from other methods in that it uses
sufficient statistics as inputs, the difference is minuscule, as
most of the time in the extraction of MAP adapted supervec-
tors is spent in the computation of sufficient statistics.

From the perspective of system optimization, note that
FEFA does not require optimization of the relevance factor. But,
the extra cost of relevance factor optimization in PPCA-PLDA
system does not outweigh the training time of FEFA, as MAP
adaptation using precomputed sufficient statistics and training
of PPCA and PLDA are much less expensive operations than
FEFA training.
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Figure 3: Training times of TVMs with 5 iterations (PCA is non-
iterative). Iterative supervector compression methods are the
fastest to train, while FEFA requires the most amount of com-
putation. FEFA was trained with 8 CPU cores to reduce the
training time.

5.5. Weight Parameter in Supervised Approaches

Next, we apply weighting to the supervised methods, PPLS
and SPPCA, as discussed in Section 3.4. The results obtained
with different weight parameter values are presented in Fig-
ure 4. We find that weighting does not affect PPLS and that
the weighted SPPCA model functions better when it approaches
PPCA (β → 0). This suggests that the studied supervised meth-
ods do not provide any noticeable benefits over the unsuper-
vised i-vector extractors.
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Figure 4: Effect of the weight parameter (β) value in the su-
pervised models. When β = 0, both models equal to the con-
ventional PPCA. Adding supervision by increasing β does not
improve the speaker verification performance.

5.6. Dimensionality of I-Vectors

To improve the speaker verification performance, we jointly op-
timized dimensions of i-vectors and their PLDA-compressed
versions. We varied the i-vector dimensionality between 200
and 1000 and the PLDA subspace dimensionality between 100
and 500. The results for all combinations using PPCA method
are presented in Figure 5. The results indicate that, our initial
parameters, 400 and 200 for i-vectors and PLDA, respectively,
give a relatively good performance. We also see that a slight
increase in performance might be obtained by using i-vector di-
mensions between 600 and 1000 with 350 to 400 dimensional
PLDA subspaces.
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Figure 5: Optimization of i-vector and PLDA subspace dimen-
sions for PPCA method. Different lines represent different i-
vector dimensionalities. The lowest error rate is obtained with
800-dimensional i-vectors and 350-dimensional PLDA space.
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5.7. Evaluation With NIST SRE10 Data

To increase our confidence of the generality of the results, we
tested different i-vector systems on common condition 5 of
SRE10. We ran the second protocol using mostly the same sys-
tem configuration as with VoxCeleb corpus. We changed the
filterbank spacing in MFCCs to match the 8 kHz sampling rate
and we also increased the relevance factor to 6. Otherwise, the
system was not optimized for the new data.

The results for SRE10, shown in Table 2, indicate that there
are no clear differences between the two maximization princi-
ples. Further, we observe that the results for EER and minDCF
are somewhat different as FEFA performs the best in terms of
EER, while FA obtains the lowest minDCF. To gain better un-
derstanding on the performances of the systems, in Figure 6, we
present detection error trade-off (DET) curves for all the meth-
ods using the maximization principle 1. The DET curves reveal
that there are no clear differences between FEFA and FA.

6. Discussion and Conclusions
The development and optimization of i-vector systems tends
to be time consuming. In particular, any change in the acous-
tic front-end or the UBM configuration requires retraining the
TVM. If TVM training is slow, the parameter optimization can
become unfeasible, possibly leading to suboptimal system con-
figuration. In this work, we studied fast GMM supervector
compression methods to streamline ASV system development.
By focusing on compression of MAP adapted supervectors, we
managed to cut the system training time down to a fraction of
traditional approach (FEFA). Our results indicate that the alter-
native approaches work as well as the standard FEFA in terms
of recognition accuracy. The less-optimistic performance re-
ported in [14] and [15] (for the PPCA system) could be due to
absence of MAP adaptation: we found that increasing the rele-
vance factor from 0 (no MAP adaptation) towards some higher
(optimized) value results in considerably higher verification ac-
curacy.

We did not find benefit with either of the studied supervised
models, PPLS or SPPCA. We were not, therefore, able to repro-
duce positive findings claimed in [17] for PPLS. This might be
due to differing datasets or feature configurations. On a posi-
tive side, we found that PPLS attains similar training speeds to
PPCA and FA.

The proposed modification to the maximization principle
in TVM training did not affect verification results negatively.
This modification makes the theory and the system implemen-
tation slightly simpler as it avoids computing expectations over
i-vector posterior distributions.

We recognize that the findings of the current study can not
be generalized to all existing system configurations without fur-
ther studies. In this study, we only experimented with a specific
set of acoustic features together with a specific UBM and back-
end configurations (PLDA).

In summary, from the various compared variants, we rec-
ommend to use PPCA and FA to compress supervectors. Both
are easy to implement on top of the GMM framework and
lead to considerably faster TVM training times. For optimal
verification accuracy, supervectors should be created using the
MAP adaptation with an optimized relevance factor. We have
made our MATLAB implementations of PPCA, FA, PPLS,
and SPPCA available at http://cs.uef.fi/˜vvestman/
research codes/supervector compression.zip.

Table 2: Speaker verification performances for different meth-
ods and maximization principles (max1, max2) on common con-
dition 5 of SRE10. With conventional PCA we obtained EER of
4.69% and minDCF of 6.55%.

EER (%) minDCF (%)
max1 max2 max1 max2

FEFA 4.24 3.86 6.24 6.85
PPCA 4.66 4.66 6.55 6.72
FA 4.24 4.24 6.00 5.50
PPLS 4.66 4.79 6.73 6.53
SPPCA 4.46 4.38 6.46 6.26
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Figure 6: Detection error trade-off curves for different methods
using max. principle 1 on common condition 5 of SRE10.
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A. Proof: I-Vector Posterior Distribution
for PPCA Model

The following proof is similar in principle to the proof of Propo-
sition 1 in [20].

It is enough to show that p(w(u)|m(u)) ∝ N (µ(u),Σ),
since p(w(u)|m(u)) is a probability density function and will
hence be correctly scaled. For brevity, we drop u from the no-
tation of the following chain of relations that proves the claim
(e.g. µ will refer to µ(u)):
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Note that in the above chain of proportional relations, we can
drop (exp(const(m))) and add (exp(mᵀm); p(m)) multipli-
ers that only depend onm without breaking the chain.
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WHO DO I SOUND LIKE?
SHOWCASING SPEAKER RECOGNITION TECHNOLOGY BY YOUTUBE VOICE SEARCH

Ville Vestman, Bilal Soomro, Anssi Kanervisto, Ville Hautamäki, Tomi Kinnunen

School of Computing, University of Eastern Finland

ABSTRACT
The popularization of science can often be disregarded by scientists
as it may be challenging to put highly sophisticated research into
words that general public can understand. This work aims to help
presenting speaker recognition research to public by proposing a
publicly appealing concept for showcasing recognition systems. We
leverage data from YouTube and use it in a large-scale voice search
web application that finds the celebrity voices that best match to the
user’s voice. The concept was tested in a public event as well as
“in the wild” and the received feedback was mostly positive. The
i-vector based speaker identification back end was found to be fast
(665 ms per request) and had a high identification accuracy (93%)
for the YouTube target speakers. To help other researchers to de-
velop the idea further, we share the source codes of the web platform
used for the demo at https://github.com/bilalsoomro/
speech-demo-platform.

Index Terms— Large-scale speaker identification, speaker
ranking, public demo, VoxCeleb, web service

1. INTRODUCTION
As methodology researchers, we often find it challenging to explain
intuitively where and how our research advancements in speaker
recognition can be used. To demonstrate speaker recognition tech-
nology in an appealing way to the public, many challenges need to
be resolved. Besides the standard challenges of speaker recogni-
tion technology such as background noise [1], channel mismatch [2],
and the requirement of fast response times in large-scale recognition
tasks [3], there are challenges related to the demo design itself. First,
the traditional speaker recognition setting requires at least two sepa-
rate speech inputs from the user, one is for enrollment and the other
one for test. The requirement of two separate recordings can be in-
convenient for an user who wants to quickly test the system. The
second challenge in showcasing is how to give an attractive feedback
to the user. This could be implemented as a real-life application, for
example, by using user’s voice to open a physical lock, or in a less
involved way by displaying recognition scores in a screen [4].

In this work, we present a concept for creating publicly appeal-
ing demos to showcase speaker recognition technology by leverag-
ing public-domain target speaker data collected from YouTube. The
core idea is to compare users’ speech to the ones of celebrities on
YouTube, who have been enrolled prior to the real-time demonstra-
tion. The results of the comparison are then displayed as a selection
of YouTube videos from the best matching celebrities, which allows
users to see and listen to the celebrity speakers who they most resem-
ble to (Figure 1). Even if we focus on speaker recognition research,
the same concept could also be applied for other things that can be
inferred or estimated from speech such as age, emotion, or language.

This research was partially funded by the Academy of Finland (grants
#313970 and #309629).

Fig. 1. A screenshot from our voice search web application display-
ing the basic elements of the UI: Recording button, audio visualiza-
tion, playback option for the recorded speech, and the results.

For example, if the user records angry voice, the results could show
YouTube videos of angry people. When the results include famous
public figures, the user’s interest and satisfaction of the demo tends
to naturally rise. We saw this positive effect while presenting the
demo in a locally organized sub-event of an European-wide “The
European Researchers’ Night 2018” 1 that aims to bring scientific
research to public.

We run our demo on a web platform that can be used on PCs and
mobile phones with an internet connection to ensure good accessi-
bility of the demo. The web platform communicates with a compu-
tation server that runs the speaker recognition back end based on our
recent work on computationally efficient i-vector extraction [5]. The
back end provides the results to the web platform that displays them
by using embedded YouTube video players.

Our extensive use of YouTube data has been made possible by
recent automated speech data collection efforts in [6] and [7] result-
ing in VoxCeleb1 and VoxCeleb2 corpora, respectively. These cor-
pora provide a large set of annotated YouTube speech data including
metadata for obtaining web links to the original YouTube videos.

To best of our knowledge, prior existing speaker recognition de-
mos have not utilized VoxCeleb data in the proposed way. We are
aware of a website 2 with a similar idea, but unfortunately we have
not been able to successfully run the demo to see how it functions.
Based on the celebrity speaker names, that demo does not utilize
VoxCeleb data, and likely does not display YouTube videos in the
results.

In summary, the current work describes a novel concept that al-

1https://ec.europa.eu/research/mariecurieactions/
actions/european-researchers-night

2https://celebsoundalike.com
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lows speech technology research teams to demonstrate their research
without requiring large amount of additional work. To help other re-
searchers to apply the concept for their own research, we share the
source code of our web platform allowing a quick start for prototyp-
ing possible demo applications. We tested the concept among the
public using our voice comparison demo utilizing standard speaker
recognition techniques, and the received feedback from the people
was mainly positive.

2. WEB PLATFORM FOR SPEECH DEMOS
We designed the web platform with the sole purpose of demonstrat-
ing speech processing systems to the public, and in this work we
used it to demonstrate speaker recognition using YouTube data. The
platform is implemented as a web service in PHP and JavaScript,
supporting different browser and devices. Users can select one of
speech processing “methods” defined by the host of the platform.
The methods could, for example, perform speaker recognition or age
estimation from the recorded speech.

The back end of the platform is implemented in PHP, and thus
only needs a web server capable of running PHP (e.g. Apache or
Nginx). For simplicity and reliability, server-side code only receives
WAV audio files from the clients and runs a specified method as a
system() call, and finally returns the results to the client. For pri-
vacy reasons, the audio file is not stored on the server, and is imme-
diately removed at the end of handling user’s request. The platform
supports including additional user inputs required for the analysis,
e.g. the claimed identity for speaker verification demo.

The front end of the platform is implemented in JavaScript,
which also handles recording of the audio in raw format at 16kHz.
Features required by this code are supported by the most PCs and
Android phones, making it easier to share the demo with others. The
user interface records a sample of user’s speech, queries what speech
processing method should be applied on the recorded sample, sends
the sample to server to be processed, and displays the results.

We share the source code of the platform in the hopes it will sup-
port other researchers in speech analysis to demonstrate their work
to the public. The code includes instructions how to setup the server
in couple of steps. New speech analysis systems for demonstration
can be added by modifying a single JSON file.

3. SPEAKER RECOGNITION BACK END
The system comparing user’s voice to voices in YouTube videos can
be regarded as a closed set speaker identification system. As we only
utilize a closed set of YouTube target speakers, we can include the
data from the target speakers in the system development. In this sec-
tion, we describe the data sets and the speaker identification system
used for providing functionality to the web front end.

3.1. YouTube data: VoxCeleb1 & VoxCeleb2
The audio-visual VoxCeleb corpora [6, 7] have been adopted in many
application areas including speaker recognition [6, 7], speech sepa-
ration [8], and emotion recognition [9] to name a few. The VoxCeleb
data has been automatically collected from YouTube by exploiting
face verification and active speaker detection systems. An automated
pipeline enabled collecting very large scale speaker recognition data
sets: When combined, the VoxCeleb corpora consist of almost 1.3
million speech clips from over 170,000 YouTube videos from more
than 7000 speakers and, in total, nearly 3000 hours of speech mate-
rial. The average length of speech clips in VoxCeleb is about eight
seconds.

The metadata provided with the VoxCeleb corpora includes, for
example, speakers’ names, IDs of the original YouTube videos, and

the starting and ending times of the clips within the videos expressed
as frames. This metadata is enough for setting up a demo where users
can find best matching voices to theirs from YouTube. Although the
metadata is automatically obtained, it is, in our experience, fairly ac-
curate. Regarding to the correctness of the labels, the authors of Vox-
Celeb mention that the VoxCeleb2 corpus is mainly intended to be
used as a training data set and that during the data collection thresh-
olds for discarding false positives were not as strictly set as with
VoxCeleb1 data collection [7]. We have witnessed a few labeling
errors in VoxCeleb2, such as Finnish president Tarja Halonen being
confused to talk-show host Conan O’Brien. However, the errors do
not exist to an extent that would be a considerable problem for our
application.

3.2. Speaker identification system description
The acoustic feature vectors of the speaker identification system con-
sist of 20 MFCCs plus their delta and double-delta coefficients. The
system discards non-speech frames using a energy based speech ac-
tivity detector and normalizes obtained features to have zero mean
and unit variance.

For training the system components and enrolling the celebrities,
we used those speakers from VoxCeleb corpora who had more than
five utterances of length of five seconds or more. There are 903,498
such utterances and 7,363 such speakers. In the training of some
system components, only a fraction of this data was needed to reach
close to optimal recognition accuracy. We trained an universal back-
ground model (UBM) using one-thirtieth of the selected 903,498 ut-
terances. The UBM is a 1024-component Gaussian mixture model
(GMM) [10], which is used to compute sufficient statistics for i-
vector extraction. We compute 800-dimensional i-vectors by com-
pressing mean supervectors of maximum a posteriori (MAP) adapted
GMMs using probabilistic principal component analysis (PPCA) as
described in [5]. This is a (speed-wise) high-performing alterna-
tive to the stardard i-vector extraction that is traditionally done via
front-end factor analysis [11, 12]. We trained the PPCA model using
one-fifteenth of the selected data.

Prior to scoring, i-vectors are centered using the mean computed
from the whole training data of 903,498 utterances and then normal-
ized to unit length. Scoring is performed with a simplified Gaus-
sian probabilistic linear discriminant analysis (G-PLDA) model [13],
which has a 350-dimensional speaker subspace. The G-PLDA model
was trained using the whole training data.

At the online stage, the i-vector extracted from user’s recording
is scored against all of the 903,498 i-vectors used in PLDA train-
ing. The speakers are sorted according to the scores of their highest
scoring utterances, from highest score to lowest. Finally, the system
sends the names of the top-5 speakers together with the links to the
YouTube-videos that correspond to the highest scoring utterances to
the client.

3.3. System runtime considerations at online stage

To ensure fast response times, we implemented the speaker recogni-
tion back end as a server that has all the necessary models preloaded
in the memory. The server is implemented with Python using scien-
tific computing libraries available to it (e.g. NumPy and SciPy). We
pay special attention to the PLDA scoring and i-vector extraction as
they are the most time consuming steps during the computation.

In [13], it is shown that the score for a trial using G-PLDA can
be computed as

score = η̃ᵀ
1Q̃η̃1 + η̃ᵀ

2Q̃η̃2 + 2η̃ᵀ
1Λη̃2 + const,
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Table 1. Speaker rank testing for six public figures using 10 audio clips from each speaker. The speaker ranks range from 1 to 5 and ’x’ is
shown if the result list of top-5 speakers did not contain the correct speaker at all. The tests are performed with and without a replay channel.
The replay experiment does not require direct access to the back end system, but can be done by using the web demo only.

Without replay channel With replay channel

Occurrences in Occurrences in

Speaker’s name list positions for 10 clips top1 top3 top5 list positions for 10 clips top1 top3 top5

Hillary Clinton 1111111111 10 10 10 1111111111 10 10 10

Ariana Grande 1111111111 10 10 10 3111111111 9 10 10

Oprah Winfrey 1111111111 10 10 10 1311111112 8 10 10

Johnny Depp 1111112112 8 10 10 1111x11121 8 9 9

Bruno Mars 1411111112 8 9 10 1x21111211 7 9 9

Conan O’Brien 1111111111 10 10 10 1111111111 10 10 10

Total (in % of max.) 93 98 100 87 97 97

where η̃1 and η̃2 are lower dimensional projections of enrollment
and test i-vectors, respectively, and where η̃ᵀ

1Q̃η̃1 and η̃ᵀ
1Λ can be

precomputed.
As we work with an identification system (one test segment vs.

all enrollment segments), the second term η̃ᵀ
2Q̃η̃2 is a constant and

thus can be neglected. Therefore, to get all the n = 903,498 scores
at online stage, we only need to compute

scores = ν + 2DPη2,

where ν is an n-dimensional vector containing precomputed values
η̃ᵀ
1Q̃η̃1, matrix D ∈ Rn×350 contains precomputed vectors η̃ᵀ

1Λ,
and P is a 350× 800 projection matrix that projects test i-vector η2

to a lower dimensional space so that η̃2 = Pη2. The product Dη̃2

can be efficiently parallelized.
The i-vector extraction using PPCA is simply a matter of com-

pressing 61440-dimensional GMM-supervector to 800-dimensional
space using a precomputed projection matrix. Note that the tradi-
tional approach for i-vector extraction would, in addition, require
inverting an 800× 800 posterior covariance matrix [14, 5].

4. SYSTEM EVALUATION
We tested our voice search demo and the underlying speaker recog-
nition back end in multiple ways using both objective and subjec-
tive measures in evaluation. On the objective side, we computed an
equal error rate (EER) using VoxCeleb speaker verification proto-
col and further we tested the rankings that the system displays for
newly downloaded and replayed YouTube data. On the subjective
side, we gathered feedback from the users of the system, including
their opinions on how close the displayed top five celebrities sound
to the user.

4.1. Evaluation using VoxCeleb speaker verification protocol
The VoxCeleb1 speaker verification test protocol includes 37720 tri-
als with a balanced number of same speaker trials and impostor tri-
als. The trial list has been formed using 4715 utterances from 40
speakers. Using this protocol, we obtained EER of 6.69 %. This
result is better than the baseline result for i-vectors in [7], but should
not be directly compared as our system utilizes testing utterances
also in system training.

4.2. Speaker rank testing on non-VoxCeleb YouTube data
To test the the final deployed demo, we studied the speaker rankings
the system outputs. For this purpose, we collected a small set of new

YouTube data. This set contains 10 new speech clips for six public
figures in VoxCeleb corpora. The clips are about 15 seconds long
each and they are extracted from videos that are not already present
in VoxCeleb corpora. When the new clips are fed to the speaker
recognition back end, the output lists of top-5 speakers should con-
tain the correct speaker as they are present in VoxCeleb and hence
are already enrolled to the system.

The new test data was used with the system in two ways: First,
we downloaded the speech clips from YouTube and fed the data di-
rectly to the speaker recognition back end. Secondly, we played files
directly from YouTube and at the same time recorded them with the
web demo. Unlike the first approach, the second one includes the
channel effects caused by replaying the data. In the replay experi-
ment, the playback device was Sony SRS-XB10 portable Bluetooth
speaker while the web demo was ran in Chrome browser in Nokia
8 smartphone running Android 8.1.0. The distance between the two
devices was kept to 5 cm as the recording device was held by hand
above the up facing speaker. The room in which the experiment took
place was quiet and the only background noise that was present was
the fan noise of the laptop which was connected to the speaker.

For both settings, with and without replay, the speaker rankings
for all the test utterances are shown in Table 1. In addition, the table
contains statistics of the number of occurrences in the top-1, top-3,
and top-5 rankings. Without the replay, the system was always able
to include the correct speaker to the top-5 list and 93% of the times
the speaker was identified correctly (i.e., in top-1). Replaying the
audio clips decreased the system performance only slightly as the
correct speaker was left outside the top-5 list only twice out of the
60 trials.

To get insight of how long of an utterance is required for getting
good results in our celebrity matching demo, we studied the effect
of length of the test utterance on system accuracy. We ran the previ-
ous experiment without the replay effect using utterances clipped to
lengths ranging from 1 second to 15 seconds. We found that the test
segment needs to be at least 9 seconds to obtain close to optimal per-
formance and at least 5 seconds to obtain identification accuracies
greater than 70% (Figure 2).

4.3. Feedback and impressions from public testing
The first public test for our voice search demo took place in the event
“The European Researchers’ Night 2018” (September 28, 2018),
where researcher’s from many fields were displaying their research
to the public. The event was funded by EU and it was organized
in many countries across the Europe. In our local event, we were
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Fig. 2. The effect of utterance length on speaker ranking perfor-
mance. Specifically, the graph shows how often the target speakers
are displayed in the top-lists when tested with different lengths of
test utterances from the target. An utterance of length 9s is required
to reach close to optimal performance.

Table 2. Computation times for the different steps in the voice com-
parison pipeline. The steps marked with * are parallelized to 16 CPU
cores while others steps utilize only 1 core. The total response time
is the time it takes to upload the speech and compute and display
the results. The data was collected from 402 requests, except for the
total response time which was collected together with the feedback
questionnaire (n=27).

Times in milliseconds (ms)

median mean SD

Audio loading, MFCC extraction 47.1 86.2 142.1

Sufficient statistics computation 20.9 46.3 98.1

MAP adaptation 0.8 0.9 0.6

Supervector compression (PPCA)* 42.6 56.5 28.3

I-vector centering & length norm. 0.1 0.1 < 0.1

I-vector compression (PLDA) 0.4 0.5 0.3

PLDA scoring* 336.4 423.8 195.8

Sorting speakers 39.6 44.6 13.8

Total time in computing server 521.5 661.0 331.6

Total response time 1791.1 2503.5 1975.1

showcasing our demo for five hours and for the most of the time
there was a long queue of people waiting for their turn to test our
demo. In total, approximately 150 people tried the demo. The feed-
back was mostly positive, although not everyone was satisfied with
their results. As the event was targeted for families, many of the
testers were children. This was a slight problem as only a small mi-
nority of the speakers in VoxCeleb corpora are children, causing it
to be difficult to find a good voice match for everyone.

In the event, we were using our own high-quality microphone
(Zoom H6 Handy Recorder, XY mic) and a laptop that was well
tested with the demo. To see how the demo works “in the wild”,
we shared a web link to our demo in a multiple social media plat-
forms. The shared demo application was equipped with a short feed-
back questionnaire for subjective evaluation. We also collected error
reports containing system information of the devices on which the
demo did not work.

The public testing revealed that the device and browser support
is still quite limited due to some issues with the audio recording and
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The results showed up quickly.

The application was easy to use.

I could recommend
 this application to others.

Strongly disagree
Disagree
Neither disagree or agree

Agree
Strongly agree

Fig. 3. Results from the feedback questionnaire, gathered from users
using platform that finds matches for their speech from a set of over
7000 celebrities. Based on these subjective assessments, the system
is able to find good matches for users’ speech in most cases.

playback support. Based on the feedback, we estimate that demo
ran on 50 to 70 percent of the device-browser configurations that our
test users were using. We also got some good suggestions how to im-
prove the user interface and we believe that together with improved
browser support the user experience can be very good as the received
answers (n=27) to the questionnaire were already fairly positive as
can be seen from Figure 3.

4.4. Response and computation times
During the test in the wild, we collected computation times of the
different steps in the voice comparison. The statistics are summa-
rized in Table 2. The average time to compute one voice comparison
request was 661 milliseconds, which means that our computation
server could, theoretically, respond to 5000 requests in an hour with-
out processing multiple requests in parallel. The total response time,
on average, was about 2.5 seconds. As seen from Figure 3, this level
of responding speed was considered to be fast.

5. CONCLUSIONS
We successfully capitalized the appeal to public figures with
our YouTube voice search demo application. The objective and
the subjective evaluations of the demo showed that the platform
was mostly successful in providing good results and also being
convenient to use. The feedback received from the users al-
lows us to further develop our demo platform, which we have
shared for open source development at https://github.com/
bilalsoomro/speech-demo-platform. We would be
happy to see the proposed concept to be applied in the future with
other speech related recognition systems as well.
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and Pierre Ouellet, “Front-end factor analysis for speaker veri-
fication,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 4, pp. 788–798, 2011.

[12] Patrick Kenny, “A small footprint i-vector extractor,” in
Odyssey, 2012, vol. 2012, pp. 1–6.

[13] Daniel Garcia-Romero and Carol Espy-Wilson, “Analysis of
i-vector length normalization in speaker recognition systems,”
in Proc. Interspeech, 2011, pp. 249–252.

[14] Srikanth Madikeri, “A fast and scalable hybrid FA/PPCA-
based framework for speaker recognition,” Digital Signal Pro-
cessing, vol. 32, pp. 137–145, 2014.

5785





Paper V

c© 2019 ISCA. Reprinted, with permission, from:
V. Vestman, K. A. Lee,

T. H. Kinnunen, and T. Koshinaka,
“Unleashing the unused potential of i-vectors

enabled by GPU acceleration,”
Proc. INTERSPEECH 2019,
Graz, Austria, pp. 351–355.

http://dx.doi.org/10.21437/Interspeech.2019-1955





Unleashing the Unused Potential of I-Vectors Enabled by GPU Acceleration

Ville Vestman1,2, Kong Aik Lee1, Tomi H. Kinnunen2, Takafumi Koshinaka1

1Biometrics Research Laboratories, NEC Corporation, Japan
2Computational Speech Group, University of Eastern Finland, Finland

vvestman@cs.uef.fi, k-lee@ax.jp.nec.com, tkinnu@cs.uef.fi, koshinak@ap.jp.nec.com

Abstract
Speaker embeddings are continuous-value vector representa-
tions that allow easy comparison between voices of speakers
with simple geometric operations. Among others, i-vector and
x-vector have emerged as the mainstream methods for speaker
embedding. In this paper, we illustrate the use of modern com-
putation platform to harness the benefit of GPU acceleration
for i-vector extraction. In particular, we achieve an accelera-
tion of 3000 times in frame posterior computation compared to
real time and 25 times in training the i-vector extractor com-
pared to the CPU baseline from Kaldi toolkit. This significant
speed-up allows the exploration of ideas that were hitherto im-
possible. In particular, we show that it is beneficial to update
the universal background model (UBM) and re-compute frame
alignments while training the i-vector extractor. Additionally,
we are able to study different variations of i-vector extractors
more rigorously than before. In this process, we reveal some un-
documented details of Kaldi’s i-vector extractor and show that
it outperforms the standard formulation by a margin of 1 to 2%
when tested with VoxCeleb speaker verification protocol. All
of our findings are asserted by ensemble averaging the results
from multiple runs with random start.
Index Terms: speaker recognition, PyTorch, factor analysis,
total variability model

1. Introduction
A decade ago, the i-vector speaker embedding was intro-
duced [1]. Since its introduction, it has remained as a stan-
dard solution for speaker recognition until recent years when it
was excelled in many tasks by the deep neural network based
embeddings [2, 3]. The recent developments are a result of
the widespread interest among researchers to adopt deep learn-
ing techniques in their research. The most recent rise of deep
learning has been partially made possible by the year-by-year
increasing computation resources [4], and especially the use
of graphics processing units (GPUs) to harness the benefits of
massive parallelism even with consumer level devices.

While GPUs are heavily adopted in deep learning, they can
also be conveniently utilized for the traditional learning of gen-
erative models such as the total variability model [5] underly-
ing i-vector extraction. So far, this has been a largely unex-
ploited possibility despite the fact that full-fledged i-vector ex-
tractors tend to be slow to train. The slowness of training has of-
ten forced many researchers to limit their experimental valida-
tion, for example by limiting the number of training iterations,
or by relaying on the results from a single run with random
initialization. In addition, simplifications and approximations
of the model have been proposed to reduce the computational
load [6, 7, 8].

For the current work, we utilize GPU to accelerate i-vector
extraction and the total variability model training to alleviate the
above limitations. The obtained speed-up allows us to study i-

vector extractors in a more detailed manner than what has been
possible previously. For example, we can train i-vector extrac-
tors without any approximations for hundreds of iterations to
study the optimal number of iterations to maximize the speaker
recognition performance. In addition, we are able to obtain
more reliable comparisons between different variations of ex-
tractors by averaging the results of multiple runs with different
random initializations of the model. For instance, the extractor
training can differ in terms of whether model parameters are re-
estimated using minimum divergence criterion [9] and whether
the residual covariance matrix of the model is updated.

Further, we re-explore the idea of updating frame align-
ments during the training of i-vector extractor, which could po-
tentially enhance the model fit and the resulting speaker recog-
nition performance. The idea of updating the alignments was
originally presented in the context of eigenvoice modeling for
automatic speech recognition [10], but has received limited at-
tention in the context of i-vectors for speaker recognition. In
eigenvoice modeling, the alignment update is performed using
speaker-dependent supervectors, which is not suitable approach
for speaker recognition as it would tend to model out the speaker
information from the i-vectors. Instead, we update the global
UBM mean supervector to realign the training data.

In the experiments, we extensively utilize our GPU re-
implementation of Kaldi speech recognition toolkit’s [11]
i-vector extractor. The implementation in Kaldi has some spe-
cial traits, which, to the best of our knowledge, have not been
extensively documented. Most notably, in Kaldi’s implemen-
tation, the bias term is augmented to the total variability ma-
trix [5], which causes some changes to the minimum divergence
re-estimation step and which also eliminates the need of central-
izing Baum-Welch statistics [12]. As Kaldi is one of the most
popular tools used for the speaker recognition research, we con-
sider it worthwhile to document the main differences of the two
formulations in the following sections.

2. I-vector speaker embeddings
We compare two different formulations of the total variability
approach [5] of joint factor analysis [13] to extract i-vectors. In
the total variability model, all of the variability in utterances is
modeled using a single subspace only, without having separate
subspaces to model speaker and channel effects.

The first of the formulations is the original formulation [10,
14], which is commonly adopted in many available speaker
recognition toolkits [15, 16, 17]. The second formulation, im-
plemented in the Kaldi speech recognition toolkit, is inspired
by the subspace Gaussian mixture model [18]. This formula-
tion differs from the standard one as it augments the bias term
of the model to the factor loading matrix, which allows estimat-
ing the bias term and the factor loading matrix jointly.

Common to both formulations is the use of Baum-Welch
statistics as defined in [14]. In this work, we denote the occu-
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pancy statistics, first order statistics, and the second order statis-
tics for the Gaussian component c (c = 1, 2, . . . , C) as nc, fc,
and Sc, respectively. To obtain unified presentation for the two
formulations, we hereafter assume that the first and second or-
der statistics are centered [19] for the standard formulation and
not centered for the augmented formulation.

2.1. Standard formulation
Following the standard formulation, we model the mean vector
of the cth Gaussian component of utterance u as

µc(u) = mc + Tcω(u), (1)

where mc is a bias term, matrix Tc is a projection matrix, and
ω(u) is a latent vector. The latent vector is shared among all
the components and we assume that the prior over latent vectors
is standard normal. Further, the covariance matrix of the cth
Gaussian is modeled as

Dc(u) = TcΦ(u)TT
c + Σc, (2)

where Φ(u) is the posterior covariance matrix of the latent
vector, and Σc is the residual covariance matrix for compo-
nent c [20].

The posterior covariance matrix Φ(u) and the mean vector
φ(u) for the latent vector are obtained as

Φ(u) =

(
I +

C∑

c=1

nc(u)T
T
c Σ−1

c Tc

)−1

, (3)

φ(u) = Φ(u)

(
p +

C∑

c=1

TT
c Σ−1

c fc(u)

)
, (4)

where p is the prior offset, which is 0 in the standard formula-
tion.

The model is trained iteratively using an EM-algorithm, for
which the update formulas for matrices Tc and Σc are given
in [10]. In the beginning of training, the matrices Tc are ini-
tialized with random values drawn from the standard normal
distribution. The initial bias terms mc and the residual covari-
ance matrices Σc are obtained as the means and covariances
from universal background model (UBM) [12]. As the training
progresses, the residual covariances get smaller as the first term
of right-hand side of (2) starts to explain parts of the covariance
structures of training utterances.

2.2. Augmented formulation
In the second formulation, we augment the bias terms mc into
the matrices Tc. This is done by assuming non-zero mean for
the prior over the first elements of the latent vectors. Then,
equation (1) becomes

µc(u) = Tcω(u), (5)

whereω ∼ N (p, I) with p =
[
p 0 · · · 0

]T, p ∈ R.
Assuming that the Baum-Welch statistics are not central-

ized, the equations (3) and (4) hold also for the augmented
formulation. The EM update equations presented in [10] re-
main the same as well1. It is worth to note that because of the
augmentation, the update of matrices Tc also updates the bias
terms, which reside in the first columns of matrices Tc.

The model initialization differs slightly from the standard
formulation. First, we set p = 100 (same as in the Kaldi im-
plementation) and then we fill the first columns of the randomly
initialized matrices Tc with the values from the mean vectors
of the UBM divided by p.

1Although the residual covariance update implemented in Kaldi
might seem different than in [10], they can be shown to be equivalent.

3. Training enhancements
The update step of the model training can have many varia-
tions. The most basic one is to only update matrices Tc, while
also updating residual covariances Σc gives a slight improve-
ment to the performance as we will demonstrate later. An-
other way to improve the model is to apply minimum divergence
re-estimation to make the empirical distribution of i-vectors
close to standard normal [9, 14]. The minimum divergence re-
estimation is not quite as straightforward for the augmented for-
mulation as for the standard one. To the best of our knowledge,
the procedure for the augmented formulation is not documented
elsewhere than in the source code comments of Kaldi, hence we
will provide the key details in the following. Finally, further
improvements can be obtained by realigning the training data
during the training using the updated models.

3.1. Minimum divergence re-estimation
For the minimum divergence re-estimation, we accumulate the
sums

h =
1

U

U∑

u=1

φ(u), (6)

H =
1

U

U∑

u=1

[
Φ(u) +φ(u)φ(u)T

]
, (7)

during the E-step. Then, a whitening matrix can be computed
via eigendecomposition (alternatively, via Cholesky decompo-
sition) of the covariance matrix G = H − hhT . That is, if
G = QΛQT is an eigendecomposition of G, then the whiten-
ing transform is obtained as P1 = Λ− 1

2 QT. Now, the up-
date Tupd

c = TcP
−1
1 , has an effect of whitening the training

i-vectors.
In the standard formulation, the above update is sufficient

for the minimum divergence estimation. In the augmented for-
mulation, however, we need to apply another transform P2 to
the matrices Tupd

c to conform to the prior offset assumption.
In specific, after transforming i-vectors with P1 and P2, they
should remain whitened and only the first element (prior offset)
of the projected mean vector P2P1h should be non-zero.

One option for a transform that can satisfy the requirements
set for P2 is a reflection about a hyperplane that goes through
the origin. This type of transform is known as the Householder
transform [21]. The Householder transform with a reflection
hyperplane that is orthogonal to an unit length vector a is de-
fined as

P2 = I− 2aaT. (8)
Now, the problem is to find a so that the projected mean vector
is a scalar multiple of a unit vector e1 =

[
1 0 · · · 0

]
.

That is,
P2P1h = be1, b ∈ R. (9)

It can be shown that one solution is

a = αh̃ + βe1, (10)

where h̃ is P1h normalized to unit length (h̃ = P1h/||P1h||)
and {

α = 1√
2(1−h̃[1])

β = −α,
(11)

where h̃[1] is the first element of h̃.
Now, the update Tupd

c = TcP
−1
1 P−1

2 whitens and centers
the training i-vectors with respect to the prior offset. Finally,
the prior offset p is updated as follows:

p = P2P1h. (12)
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3.2. Realignment of training data
To compute the Baum-Welch statistics used in training, the
frames of training utterances are first aligned to the components
of the UBM by computing frame posterior probabilities. The
posteriors and the Baum-Welch statistics are typically held con-
stant during the training of i-vector extractor.

In [10], the frame alignments of the training utterances are
updated during the training of factor analysis model for auto-
matic speech recognition (ASR). The realignment is done per
speaker basis using adapted GMM means and covariances. In
the application of speaker recognition, however, this would be
counterproductive as it would reduce the amount of speaker in-
formation in the latent vectors. What we propose instead, is
updating the UBM means with the updated bias terms mc and
then using the updated UBM to realign the data, which can po-
tentially lead to a better model fit. To obtain the updated bias
terms from the augmented formulation, we simply take the first
columns of matrices Tc and multiply them with p.

In summary, the augmented model with posterior updates
is trained by iterating over the following five steps:

1. The computation of frame alignments and Baum-Welch
statistics using the current UBM [12, 14].

2. E-step: The computation of posterior means and covari-
ances for the latent vectors using (3) and (4) to accumu-
late the required terms for the M-step.

3. M-step: The update of matrices Tc followed by the up-
date of residual covariances Σc [10].

4. Minimum divergence re-estimation: The update of
matrices Tc using the transforms P1 and P2 followed
by the update of the prior offset p using (12).

5. If not the last iteration, the update of the mean vectors of
the UBM with the first columns of matrices Tupd

c multi-
plied by p.

After the model has been trained, the updated UBM is used in
the testing phase to compute the frame posteriors.

4. Experiments
4.1. Experimentation setup
We built the acoustic front-end of our systems on the basis of
Kaldi [11] i-vector recipe for VoxCeleb [22, 23]. That is, we
relied on Kaldi to extract MFCCs, to perform voice activity de-
tection (VAD), and to train the UBM. We used the same settings
as in the Kaldi recipe: The MFCC vectors are 72-dimensional
including delta and double-delta coefficients, and the UBM con-
sists of 2048 components with full covariance matrices.

Following the Kaldi recipe, the UBM was trained using all
of the data from the training parts of VoxCeleb1 and Voxceleb2
consisting of 1 277 344 utterances from 7325 speakers. The i-
vector extractors were trained using the 100 000 longest utter-
ances. To train the scoring back-end, the Kaldi recipe uses the
whole training data, while we utilized only the VoxCeleb1 pro-
portion to speed up the experimentation. Although this reduced
the number of training speakers from 7325 to 1211, we did not
observe degradation in speaker verification performance2.

After the i-vector extraction, we centered and length nor-
malized the i-vectors. In addition, if minimum divergence re-
estimation was not used, we also whitened the i-vectors be-
fore length normalization. Then, we reduced the dimensionality

2This might be explained by the fact that VoxCeleb1 has more reli-
able speaker labels than VoxCeleb2 [23].
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Figure 1: An overview of computational flow of frame align-
ment, i-vector extraction, and model training using a GPU. To
keep the GPU memory requirements constant, fixed size batches
of frames and utterances are used for frame alignment and
i-vector extraction, respectively.

of i-vectors from 400 to 200 using linear discriminant anal-
ysis (LDA) before subjecting them to probabilistic linear dis-
criminant analysis (PLDA) scoring [24]. For testing, we used
adopted the VoxCeleb1 speaker verification protocol, which
consists of 37 720 trials with an equal number of target and non-
target trials.

We ran the experiments on a server having Intel Xeon Gold
6152 CPU with 22 physical cores and NVIDIA Titan V GPU
with 12 GB of memory. The file I/O operations were performed
on a solid-state drive (SSD).

4.2. GPU implementation
In our implementations of frame alignment and i-vector extrac-
tion, we utilized PyTorch [25] for GPU computations, SciPy
ecosystem [26] for computations in CPU, and PyKaldi [27] for
reading files stored in Kaldi format. The implementations use
multiple CPU cores in parallel as data loaders, which load, pre-
process, and feed the data to the GPU (Figure 1). The data
loaders function in parallel with respect to the GPU to keep the
GPU utilized all the time.

For frame alignment, we use the same strategy as in Kaldi:
First, to reduce the computational load, we use a UBM with di-
agonal covariance matrices to select the top-20 Gaussian com-
ponents with the highest frame posteriors for each frame. Sec-
ond, we compute the posteriors with only the selected com-
ponents using a full covariance UBM. Finally, we discard the
posteriors that are less than 0.025 and we linearly scale the re-
maining posteriors so that their sum equals to one. As a result,
on average, only four Gaussian indices and the corresponding
posteriors are stored to disk per frame.

The Baum-Welch statistics used in i-vector extractor train-
ing are computed in CPU, while the rest of the computation is
done in GPU. The reason to compute statistics in CPU is as
follows: For i-vector extraction implementation, it is natural to
feed data in batches of utterances, and statistics provide a fixed
size representation of utterances unlike the acoustic features.
We opted not to compute statistics beforehand as the disk usage
would be excessive; instead we recompute them during each
iteration of i-vector extractor training.

With the settings laid out in Section 4.1, the GPU mem-
ory usage for alignment computation is about 2.5 GB and for i-
vector extractor training about 4 GB. The frame alignment can
be done about 3000 times faster than real time (including I/O
operations), and assuming that the alignments are ready in the
disk, i-vectors can be extracted 10 000 times faster than real
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Figure 2: System performance as function of number of it-
erations in i-vector extractor training. The frame alignments
are not updated during the training. The standard formulation
has four training variations, which are obtained by either per-
forming or not performing minimum divergence re-estimation
and either updating or not updating residual covariance ma-
trices. In the augmented formulation, the minimum divergence
re-estimation is always applied. Each curve is obtained as an
average of five runs with different random initial values of Tc.

time. By using the GPU re-implementation of Kaldi’s i-vector
extractor training, we were able to obtain 25-fold reduction in
the training times. This number was obtained by training both
our GPU implementation and Kaldi’s CPU implementation for
five iterations and measuring the elapsed times. The training
using Kaldi utilized all the available CPU cores in the server.

4.3. Speaker verification results
We began the experiments by comparing different variations of
i-vector extractors to select the best one for further experiments
with frame alignment updates. The results of the comparison
are shown in Figure 2. We observe the following: First, the
minimum divergence re-estimation to update the model hyper-
parameters results in 7.5 – 9% relative reduction in terms of
equal error rate (EER). Second, the update of residual covari-
ance matrices leads to 1.5 – 3% relative reduction of error rates.
Third, the augmented formulations obtain 1 – 2% lower error
rates (relative) than the standard formulations. Finally, we as-
sert that 22 iterations are enough to reach the optimal speaker
verification performance with the best performing extractors.
As our results are averages of five runs, individual runs may
converge faster than that. In addition, we confirmed that our as-
sertion is correct by training the augmented model once for 200
iterations.

Based on the first experiment, we continued to experiment
with the realignment of training data using the augmented for-
mulation with residual covariance matrix updates. We varied
the interval between the frame posterior updates ranging from
updating on every iteration to updating only on every seventh
iteration. We display the results in Figure 3. The findings
are two-fold: First, the more frequently the frame posteriors
are updated, the faster the performance improves. Second, up-
dating the posteriors, no matter how frequently, leads to about
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Figure 3: Performance of the augmented formulation for vary-
ing intervals of frame alignment updates. The more often the
alignments are updated, the faster the system performance im-
proves. Each curve is obtained as an average of five runs with
different random initializations.

1% lower error rates (relative) compared to training without up-
dates.

At best, we obtained an EER of 4.6%, which could be pos-
sibly made closer to 4.0% by carefully optimizing configura-
tions in various parts of the system. For comparison, the state-
of-the-art system, using x-vectors, obtains EER of 3.1% (re-
ported in the Kaldi recipe). This is an expected performance
difference between the i-vector and x-vector systems [28].

5. Discussion and conclusions
We have a couple of remarks from the practical aspect of the
study. First, we found that by using the modern deep learning
platforms, such as PyTorch, the implementation of GPU accel-
erated algorithms for generative models is almost as straight-
forward as it is with their non-GPU counterparts (e.g. NumPy).
The only concern is the limited amount of memory in GPUs.
This limitation can be often circumvented by relying on the
computational power of GPUs to recompute values that do not
fit into the memory.

The second remark concerns the update of the UBM means
using the bias terms mc of the model. For this purpose, we
only used the augmented formulation, but it can be done also
with the standard formulation by updating the means in the min-
imum divergence step using a formula mupd

c = mc+Tch [19].
However, we found that updating the means in this way did not
work well together with residual covariance updates.

In summary, the results of the study showed that the choice
of the training algorithm for i-vector extractor matters as the
relative change in equal error rate between the worst and the
best variations was 11.4%. For the optimal performance, our
recommendation is to use the augmented formulation including
the residual covariance updates and the updates of frame align-
ments. Additionally we found that the extractors reach their
maximum performance after 22 training iterations.
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Abstract
ASVspoof, now in its third edition, is a series of

community-led challenges which promote the development
of countermeasures to protect automatic speaker verification
(ASV) from the threat of spoofing. Advances in the 2019 edi-
tion include: (i) a consideration of both logical access (LA)
and physical access (PA) scenarios and the three major forms
of spoofing attack, namely synthetic, converted and replayed
speech; (ii) spoofing attacks generated with state-of-the-art neu-
ral acoustic and waveform models; (iii) an improved, controlled
simulation of replay attacks; (iv) use of the tandem detection
cost function (t-DCF) that reflects the impact of both spoofing
and countermeasures upon ASV reliability. Even if ASV re-
mains the core focus, in retaining the equal error rate (EER)
as a secondary metric, ASVspoof also embraces the growing
importance of fake audio detection. ASVspoof 2019 attracted
the participation of 63 research teams, with more than half of
these reporting systems that improve upon the performance of
two baseline spoofing countermeasures. This paper describes
the 2019 database, protocols and challenge results. It also out-
lines major findings which demonstrate the real progress made
in protecting against the threat of spoofing and fake audio.
Index Terms: spoofing, automatic speaker verification,
ASVspoof, presentation attack detection, fake audio.

1. Introduction
The ASVspoof initiative1 [1, 2, 3] spearheads research in anti-
spoofing for automatic speaker verification (ASV). Previous
ASVspoof editions focused on the design of spoofing coun-
termeasures for synthetic and converted speech (2015) and re-
played speech (2017). ASVspoof 2019 [4], the first edition to
focus on all three major spoofing attack types, extends previous
challenges in several directions, not least in terms of adressing
two different use case scenarios: logical access (LA) and phys-
ical access (PA).

The LA scenario involves spoofing attacks that are injected
directly into the ASV system. Attacks in the LA scenario are
generated using the latest text-to-speech synthesis (TTS) and
voice conversion (VC) technologies. The best of these algo-
rithms produce speech which is perceptually indistinguishable
from bona fide speech. ASVspoof 2019 thus aims to deter-
mine whether the advances in TTS and VC technology pose
a greater threat to the reliability of ASV systems, as well as
spoofing countermeasures. For the PA scenario, speech data is
assumed to be captured by a microphone in a physical, rever-
berant space. Replay spoofing attacks are recordings of bona
fide speech which are assumed to be captured, possibly surrep-

titiously, and then re-presented to the microphone of an ASV

1http://www.asvspoof.org

system using a replay device. In contrast to the 2017 edition of
ASVspoof, the 2019 edition PA database is constructed from a
far more controlled simulation of replay spoofing attacks that is
also relevant to the study of fake audio detection in the case of,
e.g. smart home devices.

While the equal error rate (EER) metric of previous edi-
tions is retained as a secondary metric, ASVspoof 2019 mi-
grates to a new primary metric in the form of the ASV-centric
tandem decision cost function (t-DCF) [5]. While the challenge
is still a stand-alone spoofing detection task which does not re-
quire expertise in ASV, adoption of the t-DCF ensures that scor-
ing and ranking reflects the comparative impact of both spoofing
and countermeasures upon an ASV system.

This paper describes the ASVspoof 2019 challenge, the LA
and PA scenarios, the evaluation rules and protocols, the t-DCF
metric, the common ASV system, baseline countermeasures
and challenge results.

2. Database
The ASVspoof 2019 database2 encompasses two partitions for
the assessment of LA and PA scenarios. Both are derived
from the VCTK base corpus3 which includes speech data cap-
tured from 107 speakers (46 males, 61 females). Both LA
and PA databases are themselves partitioned into three datasets,
namely training, development and evaluation which comprise
the speech from 20 (8 male, 12 female), 10 (4 male, 6 female)
and 48 (21 male, 27 female) speakers respectively. The three
partitions are disjoint in terms of speakers and the recording
conditions for all source data are identical. While the training
and development sets contain spoofing attacks generated with
the same algorithms/conditions (designated as known attacks),
the evaluation set also contains attacks generated with differ-
ent algorithms/conditions (designated as unknown attacks). Re-
liable spoofing detection performance therefore calls for sys-
tems that generalise well to previously-unseen spoofing attacks.
With full descriptions available in the ASVspoof 2019 evalua-
tion plan [4], the following presents a summary of the specific
characteristics of the LA and PA databases.

2.1. Logical access
The LA database contains bona fide speech and spoofed speech
data generated using 17 different TTS and VC systems. Data
used for the training of TTS and VC systems also comes from
the VCTK database but there is no overlap with the data con-
tained in the 2019 database. Six of these systems are desig-
nated as known attacks, with the other 11 being designated

2http://dx.doi.org/10.7488/ds/2555
3http://dx.doi.org/10.7488/ds/1994
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known and 11 unknown spoofing attacks. Among the 6 known
attacks there are 2 VC systems and 4 TTS systems. VC sys-
tems use a neural-network-based and spectral-filtering-based
approaches [6]. TTS systems use either waveform concatena-
tion or neural-network-based speech synthesis using a conven-
tional source-filter vocoder [7] or a WaveNet-based vocoder [8].
The 11 unknown systems comprise 2 VC, 6 TTS and 3 hybrid
TTS-VC systems and were implemented with various wave-
form generation methods including classical vocoding, Griffin-
Lim [9], generative adversarial networks [10], neural wave-
form models [8, 11], waveform concatenation, waveform fil-
tering [12], spectral filtering, and their combination.

2.2. Physical access
Inspired by work to analyse and improve ASV reliability in re-
verberant conditions [13, 14] and a similar approach used in the
study of replay reported in [15], both bona fide data and spoofed
data contained in the PA database are generated according to a
simulation [16, 17, 18] of their presentation to the microphone
of an ASV system within a reverberant acoustic environment.
Replayed speech is assumed first to be captured with a recording
device before being replayed using a non-linear replay device.
Training and development data is created according to 27 differ-
ent acoustic and 9 different replay configurations. Acoustic con-
figurations comprise an exhaustive combination of 3 categories
of room sizes, 3 categories of reverberation and 3 categories
of speaker/talker4-to-ASV microphone distances. Replay con-
figurations comprise 3 categories of attacker-to-talker record-
ing distances, and 3 categories of loudspeaker quality. Replay
attacks are simulated with a random attacker-to-talker record-
ing distance and a random loudspeaker quality corresponding
to the given configuration category. Both bona fide and replay
spoofing access attempts are made with a random room size,
reverberation level and talker-to-ASV microphone distance.

Evaluation data is generated in the same manner as train-
ing and development data, albeit with different, random acous-
tic and replay configurations. The set of room sizes, levels
of reverberation, talker-to-ASV microphone distances, attacker-
to-talker recording distances and loudspeaker qualities, while
drawn from the same configuration categories, are different to
those for the training and development set. Accordingly, while
the categories are the same and known a priori, the specific im-
pulse responses and replay devices used to simulate bona fide
and replay spoofing access attempts are different or unknown.
It is expected that reliable performance will only be obtained
by countermeasures that generalise well to these conditions, i.e.
countermeasures that are not over-fitted to the specific acoustic
and replay configurations observed in training and development
data.

3. Performance measures and baselines
ASVspoof 2019 focuses on assessment of tandem systems con-
sisting of both a spoofing countermeasure (CM) (designed by
the participant) and an ASV system (provided by the organis-
ers). The performance of the two combined systems is evaluated
via the minimum normalized tandem detection cost function
(t-DCF, for the sake of easier tractability) [5] of the form:

t-DCFmin
norm = min

s
{βP cm

miss(s) + P cm
fa (s) } , (1)

4From hereon we refer to talkers in order to avoid potential confu-
sion with loudspeakers used to mount replay spoofing attacks.

where β depends on application parameters (priors, costs) and
ASV performance (miss, false alarm, and spoof miss rates),
whileP cm

miss(s) andP cm
fa (s) are the CM miss and false alarm rates

at threshold s. The minimum in (1) is taken over all thresholds
on given data (development or evaluation) with a known key,
corresponding to oracle calibration. While the challenge rank-
ings are based on pooled performance in either scenario (LA or
PA), results are also presented when decomposed by attack. In
this case, β depends on the effectiveness of each attack. In par-
ticular, with everything else being constant, β is inversely pro-
portional to the ASV false accept rate for a specific attack: the
penalty when a CM falsely rejects bona fide speech is higher in
the case of less effective attacks. Likewise, the relative penalty
when a CM falsely accepts spoofs is higher for more effective
attacks. Thus, while (1) appears to be deceptively similar to
the NIST DCF, β (hence, the cost function itself) is automati-
cally adjusted according to the effectiveness of each attack. Full
details of the t-DCF metric and specific configuration parame-
ters as concerns ASVspoof 2019 are presented in [4]. The EER
serves as a secondary metric. The EER corresponds to a CM
operating point with equal miss and false alarm rates and was
the primary metric for previous editions of ASVspoof. Without
an explicit link to the impact of CMs upon the reliability of an
ASV system, the EER may be more appropriate as a metric for
fake audio detection, i.e. where there is no ASV system.

The common ASV system uses x-vector speaker embed-
dings [14] together with a probabilistic linear discriminant
analysis (PLDA) [19] backend. The x-vector model used to
compute ASV scores required to compute the t-DCF is pre-
trained5 with the Kaldi [20] VoxCeleb [21] recipe. The original
recipe is modified to include PLDA adaptation using disjoint,
bona fide, in-domain data. Adaptation was performed sepa-
rately for LA and PA scenarios since bona fide recordings for
the latter contain additional simulated acoustic and recording
effects. The ASV operating point, needed in computing β in
(1), is set to the EER point based on target and nontarget scores.

ASVspoof 2019 adopted two CM baseline systems. They
use a common Gaussian mixture model (GMM) back-end clas-
sifier with either constant Q cepstral coefficient (CQCC) fea-
tures [22, 23] (B01) or linear frequency cepstral coefficient
(LFCC) features [24] (B02).

4. Challenge results
Table 1 shows results6 in terms of the t-DCF and EER for pri-
mary systems, pooled over all attacks. For the LA scenario,
27 of the 48 participating teams produced systems that outper-
formed the best baseline B02. For the PA scenario, the per-
formance of B01 was bettered by 32 of the 50 participating
teams. There is substantial variation in minimum t-DCF and
EER for both LA and PA scenarios. The top-performing sys-
tem for the LA scenario, T05, achieved a t-DCF of 0.0069 and
EER of 0.22%. The top-performing system for the PA scenario,
T28, achieved a t-DCF of 0.0096 and EER of 0.39%. Confirm-
ing observations reported in [5], monotonic increases in the t-
DCF that are not always mirrored by monotonic increases in the
EER show the importance of considering the performance of the
ASV and CM systems in tandem. Table 1 also shows that the
top 7 (LA) and 6 (PA) systems used neural networks whereas 9
(LA) and 10 (PA) systems used an ensemble of classifiers.

5http://kaldi-asr.org/models/m7
6As for previous editions of ASVspoof, results are anonymised, with

individual teams being able to identify their position in the evaluation
rankings via an identifier communicated separately to each of them.

as unknown attacks. The training and development sets con-
tain known attacks only whereas the evaluation set contains 2

1009



Table 1: Primary system results. Results shown in terms of min-
imum t-DCF and the CM EER [%]. IDs highlighted in grey
signify systems that used neural networks in either the front- or
back-end. IDs highlighted in bold font signify systems that use
an ensemble of classifiers.

ASVspoof 2019 LA scenario
# ID t-DCF EER # ID t-DCF EER
1 T05 0.0069 0.22 26 T57 0.2059 10.65
2 T45 0.0510 1.86 27 T42 0.2080 8.01
3 T60 0.0755 2.64 28 B02 0.2116 8.09
4 T24 0.0953 3.45 29 T17 0.2129 7.63
5 T50 0.1118 3.56 30 T23 0.2180 8.27
6 T41 0.1131 4.50 31 T53 0.2252 8.20
7 T39 0.1203 7.42 32 T59 0.2298 7.95
8 T32 0.1239 4.92 33 B01 0.2366 9.57
9 T58 0.1333 6.14 34 T52 0.2366 9.25
10 T04 0.1404 5.74 35 T40 0.2417 8.82
11 T01 0.1409 6.01 36 T55 0.2681 10.88
12 T22 0.1545 6.20 37 T43 0.2720 13.35
13 T02 0.1552 6.34 38 T31 0.2788 15.11
14 T44 0.1554 6.70 39 T25 0.3025 23.21
15 T16 0.1569 6.02 40 T26 0.3036 15.09
16 T08 0.1583 6.38 41 T47 0.3049 18.34
17 T62 0.1628 6.74 42 T46 0.3214 12.59
18 T27 0.1648 6.84 43 T21 0.3393 19.01
19 T29 0.1677 6.76 44 T61 0.3437 15.66
20 T13 0.1778 6.57 45 T11 0.3742 18.15
21 T48 0.1791 9.08 46 T56 0.3856 15.32
22 T10 0.1829 6.81 47 T12 0.4088 18.27
23 T54 0.1852 7.71 48 T14 0.4143 20.60
24 T38 0.1940 7.51 49 T20 1.0000 92.36
25 T33 0.1960 8.93 50 T30 1.0000 49.60

ASVspoof 2019 PA scenario
# ID t-DCF EER # ID t-DCF EER
1 T28 0.0096 0.39 27 T29 0.2129 8.48
2 T45 0.0122 0.54 28 T01 0.2129 9.07
3 T44 0.0161 0.59 29 T54 0.2130 11.93
4 T10 0.0168 0.66 30 T35 0.2286 7.77
5 T24 0.0215 0.77 31 T46 0.2372 8.82
6 T53 0.0219 0.88 32 T34 0.2402 10.35
7 T17 0.0266 0.96 33 B01 0.2454 11.04
8 T50 0.0350 1.16 34 T38 0.2460 9.12
9 T42 0.0372 1.51 35 T59 0.2490 10.53
10 T07 0.0570 2.45 36 T03 0.2593 11.26
11 T02 0.0614 2.23 37 T51 0.2617 11.92
12 T05 0.0672 2.66 38 T08 0.2635 10.97
13 T25 0.0749 3.01 39 T58 0.2767 11.28
14 T48 0.1133 4.48 40 T47 0.2785 10.60
15 T57 0.1297 4.57 41 T09 0.2793 12.09
16 T31 0.1299 5.20 42 T32 0.2810 12.20
17 T56 0.1309 4.87 43 T61 0.2958 12.53
18 T49 0.1351 5.74 44 B02 0.3017 13.54
19 T40 0.1381 5.95 45 T62 0.3641 13.85
20 T60 0.1492 6.11 46 T19 0.4269 21.25
21 T14 0.1712 6.50 47 T36 0.4537 18.99
22 T23 0.1728 7.19 48 T41 0.5452 28.98
23 T13 0.1765 7.61 49 T21 0.6368 27.50
24 T27 0.1819 7.98 50 T15 0.9948 42.28
25 T22 0.1859 7.44 51 T30 0.9998 50.19
26 T55 0.1979 8.19 52 T20 1.0000 92.64

4.1. CM analysis
Corresponding CM detection error trade-off (DET) plots (no
combination with ASV) are illustrated for LA and PA scenar-
ios in Fig. 1. Highlighted in both plots are profiles for the two
baseline systems B01 and B02, the best performing primary
systems for teams T05 and T28, and the same teams’ single
systems. Also shown are profiles for the overall best perform-
ing single system for the LA and PA scenarios submitted by
teams T45 and, again, T28 respectively. For the LA scenario,
very few systems deliver EERs below 5%. A dense concentra-
tion of systems deliver EERs between 5% and 10%. Of interest
is the especially low EER delivered by the primary T05 system,
which delivers a substantial improvement over the same team’s
best performing single system. Even the overall best performing
single system of T45 is some way behind, suggesting that reli-

(a)

(b)

Figure 1: CM DET profiles for (a) LA and (b) PA scenarios.

able performance for the LA scenario depends upon the fusion
of complementary sub-systems. This is likely due to the diver-
sity in attack families, namely TTS, VC and hybrid TTS-VC
systems. Observations are different for the PA scenario. There
is a greater spread in EERs and the difference between the best
performing primary and single systems (both from T28) is much
narrower. That a low EER can be obtained with a single system
suggests that reliable performance is less dependent upon effec-
tive fusion strategies. This might be due to lesser variability (as
compared to that for the LA) in replay spoofing attacks; there is
only one family of attack which exhibits differences only in the
level of convolutional channel noise.

4.2. Tandem analysis
Fig. 2 illustrates boxplots of the t-DCF when pooled (left-most)
and when decomposed separately for each of the spoofing at-
tacks in the evaluation set. Results are shown individually
for the best performing baseline, primary and single systems
whereas the boxes illustrate the variation in performance for the
top-10 performing systems. Illustrated to the top of each box-
plot are the EER of the common ASV system (when subjected
to each attack) and the median CM EER across all primary sys-
tems. The ASV system delivers baseline EERs (without spoof-
ing attacks) of 2.48% and 6.47% for LA and PA scenarios re-
spectively.

As shown in Fig. 2(a) for the LA scenario, attacks A10, A13
and, to a lesser extent, A18, degrade ASV performance while
being challenging to detect. They are end-to-end TTS with Wa-
veRNN and a speaker encoder pretrained for ASV [25], VC
using moment matching networks [26] and waveform filtering
[12], and i-vector/PLDA based VC [27] using a DNN glottal
vocoder [28], respectively. Although A08, A12, and A15 also
use neural waveform models and threaten ASV, they are easier
to detect than A10. One reason may be that A08, A12, A15
are pipeline TTS and VC systems while A10 is optimized in an
end-to-end manner. Another reason may be that A10 transfers
ASV knowledge into TTS, implying that advances in ASV also
improve the LA attacks. A17, a VAE-based VC [29] with wave-
form filtering, poses little threat to the ASV system, but it is the
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Figure 2: Boxplots of the top-10 performing LA (a) and PA (b) ASVspoof 2019 submissions. Results illustrated in terms of t-DCF
decomposed for the 13 (LA) and 9 (PA) attacks in the evaluation partion. ASV under attack and the median CM EER [%] of all the
submitted systems are shown above the boxplots. A16 and A19 are known attacks.

most difficult to detect and lead to the highest t-DCF. All the
above attacks are new attacks not included in ASVspoof 2015.

More consistent trends can be observed for the PA sce-
nario. Fig. 2(b) shows the t-DCF when pooled and decom-
posed for each of the 9 replay configurations. Each attack
is a combination of different attacker-to-talker recording dis-
tances {A,B,C}X, and replay device qualities X{A,B,C} [4].
When subjected to replay attacks, the EER of the ASV sys-
tem increases more when the attacker-to-talker distance is low
(near-field effect) and when the attack is performed with higher
quality replay devices (fewer channel effects). There are similar
observations for CM performance and the t-DCF; lower quality
replay attacks can be detected reliably whereas higher quality
replay attacks present more of a challenge.

5. Discussion
Care must be exercised in order that t-DCF results are inter-
preted correctly. The reader may find it curious, for instance,
that LA attack A17 corresponds to the highest t-DCF while,
with an ASV EER of 3.92%, the attack is the least effective.
Conversely, attack A16 provokes an ASV EER of almost 65%7,
yet the median t-DCF is among the lowest. So, does A17 —
a weak attack — really pose a problem? The answer is affir-
mative: A17 is problematic, as far as the t-DCF is concerned.
Further insight can be obtained from the attack-specific weights
β of (1). For A17, a value of β ≈ 26, indicates that the in-
duced cost function provides 26 times higher penalty for reject-
ing bona fide users, than it does for missed spoofing attacks
passed to the ASV system. The behavior of primary system
T05 in Fig. 1(a), with an aggressively tilted slope towards the
low false alarm region, may explain why the t-DCF is near an
order of magnitude better than the second best system.

6. Conclusions
ASVspoof 2019 addressed two different spoofing scenarios,
namely LA and PA, and also the three major forms of spoofing
attack: synthetic, converted and replayed speech. The LA sce-
nario aimed to determine whether advances in countermeasure
design have kept pace with progress in TTS and VC technolo-
gies and whether, as result, today’s state-of-the-art systems pose
a threat to the reliability of ASV. While findings show that the
most recent techniques, e.g. those using neural waveform mod-
els and waveform filtering, in addition to those resulting from
transfer learning (TTS and VC systems borrowing ASV tech-
niques) do indeed provoke greater degradations in ASV perfor-
mance, there is potential for their detection using countermea-

7Scores produced by spoofing attacks are higher than those of gen-
uine trials.

sures that combine multiple classifiers. The PA scenario aimed
to assess the spoofing threat and countermeasure performance

via simulation with which factors influencing replay spoofing
attacks could be carefully controlled and studied. Simulations
consider variation in room size and reverberation time, replay
device quality and the physical separation between both talkers
and attackers (making surreptitious recordings) and talkers and
the ASV system microphone. Irrespective of the replay config-
uration, all replay attacks degrade ASV performance, yet, reas-
suringly, there is promising potential for their detection.

Also new to ASVspoof 2019 and with the objective of as-
sessing the impact of both spoofing and countermeasures upon
ASV reliability, is adoption of the ASV-centric t-DCF metric.
This strategy marks a departure from the independent assess-
ment of countermeasure performance in isolation from ASV
and a shift towards cost-based evaluation. Much of the spoofing
attack research across different biometric modalities revolves
around the premise that spoofing attacks are harmful and should
be detected at any cost. That spoofing attacks have potential for
harm is not in dispute. It does not necessarily follow, however,
that every attack must be detected. Depending on the appli-
cation, spoofing attempts could be extremely rare or, in some
cases, ineffective. Preparing for a worst case scenario, when
that worst case is unlikely in practice, incurs costs of its own, i.e.
degraded user convenience. The t-DCF framework enables one
to encode explicitly the relevant statistical assumptions in terms
of a well-defined cost function that generalises the classic NIST
DCF. A key benefit is that the t-DCF disentangles the roles of
ASV and CM developers as the error rates of the two systems
are still treated independently. As a result, ASVspoof 2019 fol-
lowed the same, familiar format as previous editions, involving
a low entry barrier — participation still requires no ASV exper-
tise and participants need submit countermeasures scores only
— the ASV system is provided by the organisers and is common
to the assessment of all submissions. With the highest number
of submissions in ASVspoof’s history, this strategy appears to
have been a resounding success.
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Abstract

In this work, we simulate a scenario, where a publicly available ASV system is used to enhance mimicry attacks against

another closed source ASV system. In specific, ASV technology is used to perform a similarity search between the voices of

recruited attackers (6) and potential target speakers (7,365) from VoxCeleb corpora to find the closest targets for each of the

attackers. In addition, we consider ‘median’, ‘furthest’, and ’common’ targets to serve as a reference points.

Our goal is to gain insights how well similarity rankings transfer from the attacker’s ASV system to the attacked ASV system,

whether the attackers are able to improve their attacks by mimicking, and how the properties of the voices of attackers change

due to mimicking. We address these questions through ASV experiments, listening tests, and prosodic and formant analyses. For

the ASV experiments, we use i-vector technology in the attacker side, and x-vectors in the attacked side. For the listening tests,

we recruit listeners through crowdsourcing.

The results of the ASV experiments indicate that the speaker similarity scores transfer well from one ASV system to another.

Both the ASV experiments and the listening tests reveal that the mimicry attempts do not, in general, help in bringing attacker’s

scores closer to the target’s. A detailed analysis shows that mimicking does not improve attacks, when the natural voices of attack-

ers and targets are similar to each other. The analysis of prosody and formants suggests that the attackers were able to consider-

ably change their speaking rates when mimicking, but the changes in F0 and formants were modest. Overall, the results suggest

that untrained impersonators do not pose a high threat towards ASV systems, but the use of ASV systems to attack other ASV sys-

tems is a potential threat.
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1. Introduction

Security is of key importance in today’s society where information processing gets increasingly digital, auto-

mated and lacks human-to-human communication. We need new ways to protect our data records from unauthorized

access. Alongside with the traditional means of user authentication, biometric technology has emerged as one of the

potential solutions. The use of human voice for strong user authentication is attractive especially under remote, unat-

tended scenarios and due to the readily available infrastructure (namely, telephones) to scale it up easily.

Similar to the traditional means of user authentication, however, biometric systems are prone to malicious attacks

by hackers. It is no longer news, neither to the research community nor to the general public, that biometric systems

can be fooled through various representation attacks (Ratha et al., 2001; ISO/IEC 30107-1:2016, 2016), also known

as spoofing attacks. A spoofing attack involves an adversary (attacker) who aims at masquerading oneself as another

targeted user to gain illegitimate access to the targeted person’s data. Unprotected automatic speaker verification

(ASV) systems can be easily spoofed using replay, voice conversion (VC) and text-to-speech (TTS) attacks (Wu

et al., 2015a). Since the attacks are typically not perfect but contain either processing artifacts or display degraded

audio quality, they can be detected to a certain extent. To this end, community-driven challenges such as ASVspoof

(Wu et al., 2015b) and AVspoof (Ergunay et al., 2015) were launched for an organized study of spoofing counter-

measures. In the context of security, the continuous arms race between attacks and their defenses is well known (Big-

gio and Roli, 2018): so as to develop effective countermeasures, it is necessary to understand the attacks. The speech

synthesis community has independently launched voice conversion challenges (Toda et al., 2016; Lorenzo-Trueba

et al., 2018b) to advance VC methods (though targeted primarily for human listeners rather than for ASV spoofing).

To sum up, within the past few years, active and dynamic communities both at the ‘attack’ and ‘defense’ sides of

ASV have emerged. There is now a far better understanding of the technology-based attacks and their defenses

against ASV systems than half a decade ago — see (Sahidullah et al., 2018) for an up-to-date review.

In this study we focus on a nearly-forgotten ASV attack � mimicry (impersonation). Unlike the technology-

induced attacks, mimicry involves human-based modification of one’s voice production. The question of recognizer

vulnerability against mimicry was addressed at least around half a century ago (Luck, 1969; Endres et al., 1971) and

has remained a cursory topic within the ASV field (Lau et al., 2004; 2005; Mari�ethoz and Bengio, 2005; Eriksson,

2010; Gonz�alez Hautam€aki et al., 2015; Farr�us, 2018). While ASV vulnerability caused by technical attacks is

widely reported, less (reliable) information is available on effectivess of mimicry, primarily due to adoption of small

and proprietary datasets. The only conclusions that one can possibly extrapolate from the prior studies on mimicry

effect against ASV is that the results depend on a specific study. This suggests that mimicry is less consistent attack

compared to replay, VC and TTS that are repeatable reported to be successful in spoofing ASV systems.

The authors are aware of the difficulties in collecting mimicry data from professional artists (Gonz�alez Hautam€aki
et al., 2015), whose prevalence in the general population is arguably very low. Nonetheless, if mimicry attacks could

be shown to be a threat to ASV, it would be conceivably challenging to devise countermeasures: natural human

speech lacks processing artifacts that enable detection of technical attacks. Thus, we argue that it is important to

keep mimicry also in the list of potential attacks against ASV. Besides the security aspect, mimicry could potentially

help us in the design of better ASV methods for voice comparison.

Of particular interest in this work are mimicry attacks against persons whose voice data is exposed in a public

domain in large quantities — such as celebrities or anyone streaming or uploading massive amounts of his/her videos

to the Internet. In line with the recent EU’s General Data Protection Regulation (GDPR) GDPR, intended to protect

the privacy of individuals, it is important to assess potential risks associated with multimedia data in the public

domain; we elaborate on this emerging problem further in Section 2. Differently from most prior studies, we focus

on technology-assisted mimicry attacks. In specific, we use the ASV technology itself to identify potential target

speakers to be subjected to mimicry attacks. The idea is to identify targets whose voice is a priori similar to that of

the attacker’s voice in terms of acoustic parameters. The assumption is that nearby target speakers might be easier to

mimic due to potentially fewer articulatory or voice source modifications required. Two related prior studies are

(Lau et al., 2004) and (Panjwani and Prakash, 2014) which involve search of either targets (Lau et al., 2004) or

attackers (Panjwani and Prakash, 2014) from a pool of candidates. The authors of (Lau et al., 2004) used a Gaussian

mixture model (GMM) system to find closest, intermediate and furthest target speakers from YOHO corpus for two

naive impersonators, leading to substantially increased false acceptance rate for the closest targets. In (Panjwani and
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Prakash, 2014), the authors selected impersonators (rather than targets) through a commercial crowd-sourcing plat-

form based on self-judgment and further refinement using ASV.

Our study can be seen as an attempt to reproduce the findings of (Lau et al., 2004) using up-to-date ASV technol-

ogy and a far larger target candidate set (7,365 celebrities pooled from VoxCeleb1 (Nagrani et al., 2017) and VoxCe-

leb2 (Chung et al., 2018)). Besides the order of magnitude larger target speaker pool and adoption of state-of-the-art

ASV systems, there is a key difference in the research methodology as well: unlike (Lau et al., 2004) that used a sin-

gle GMM recognizer, we include two different ASV systems as illustrated in Fig. 1. We argue that it is unrealistic

for the attacker to interact many times with the targeted ASV, as done in that past work. In our attack model, there-

fore, the attacker uses an offline, publicly available substitute ASV system to first identify which speakers to attack;

ideally, the substitute system would behave similar to the attacked ASV system. This idea bears some resemblance

to black box attacks (Papernot et al., 2017) in adversarial machine learning (Biggio and Roli, 2018), though our

adversary is not a machine learning algorithm but a human. Further, those methods use either classifier output score

or decision to optimize the attacks, while we assume that the attacker receives no feedback from the attacked system

in any form. Thus, we expect that our attacks are not strong, but we argue that they are realistic given the abundance

of both voice data and ASV implementations in the public domain. We seek to answer the question whether the use

of ASV technology itself could increase the risk of an attacker being falsely accepted by (another) ASV system.

A preliminary version of this work appears in Kinnunen et al. (2019). Our preliminary findings in that work sug-

gested a negative result — i.e. that mimicry attempts, even when the target speakers were selected with automatic

speaker identification, would not have left the attacked ASV systems vulnerable. We are not entirely content with

just this finding, however — we are interested to understand the reasons. To this end, the present work substantially

extends Kinnunen et al. (2019) by contrastive automatic, perceptual, prosody, and formant analyses. In particular,

we include (i) analysis of domain mismatch in ASV score domain (presented in Section 6), (ii) a human bench-

mark of speaker similarity (presented in Section 7), and (iii) prosody and formant analysis (presented in Section 8).

Additionally, (iv) Section 2 provides a broad background context to our work. None of the above were provided in

Kinnunen et al. (2019). The score domain analysis seeks to answer whether the negative finding might have been

due to condition differences across our attacker and celebrity corpora. The human benchmark, implemented via

crowdsourcing, serves for a reference point to the automatic methods. Finally, the prosody and formant analyses

serve to study changes in the speaking rate, fundamental frequency (F0), and formants induced by mimicry. Our

hypothesis is that some of these ‘broad’ speech parameters might be among the prominent cues that a naive mimic

attempts to primarily modify towards the target speaker. While this article is intended to be as self-contained as pos-

sible, the interested reader may consult additional online material Vestman et al. (2019) for further details about our

text prompts and target speakers.

Fig. 1. Automatic speaker verification (ASV) assisted mimicry attack: attacker uses a public-domain ASV system to select target speakers

matched with his/her voice from a public celebrity database. The attacker then practices target speaker mimicry, intended to attack another inde-

pendently developed ASV system.
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2. Attacks on speaker verification systems with found data

The amount of personal data that people upload to the Internet increases year by year. Enabled by popular social

media platforms and other picture/video sharing services, people upload (or stream) their self-portraits (selfies),

voice samples and video clips much more easily — perhaps more carelessly — than in the past. The general public

may be unaware that their face photos, videos and voice samples contain biometric traits and form potentially their

‘unique’ identifiers2. Somewhat paradoxically, of a specific concern is the rapidly advancing biometric technology

itself. The aim of biometric technology, similar to the traditional ways of user authentication, is to regulate access to

a restricted domain. The basic premise is that a biometric database administrator (such as the police, a border control

officer, or a bank) has sufficient security countermeasures to protect their biometric database and systems from being

hacked or tampered. But what if the user decides to voluntarily expose his or her biometric data to the public? Very

few of us would purposefully upload our credit card number or a photo-copy of our passport to a public website, but

uploading our face and voice data does not seem to concern many. It is important to address the potential risk scenar-

ios of misuse of personal data, and to make the general public aware of the potential risks of uploading their data to a

public domain. Awareness on the potential risks among the professional community has increased due to initiatives

such as EU’s IC1206 COST action3 that focused on de-identification and privacy protection of multimedia data (see

(Ribaric et al., 2016) for a review). The overall picture is not yet complete, however, and human voice has received

far less attention than image-based biometric traits in this context.

One potential risk is that biometric data that is not searchable or indexable using today’s technology might

become so tomorrow. Imagine a search engine that uses face or speaker recognition to cross-link someone’s sensitive

personal multimedia data — such as sexually explicit photographs shared confidently with one’s partner but leaked

to a porn website; or a video portraying someone under the influence of drugs — with his or her personal website or

social media profile. Other risks could include fabricating a ‘digital clone’ of someone using machine learning —

recent warning examples are provided by the so-called deepfakes Chung et al. (2017); Liu et al. (2017); Suwajana-

korn et al. (2017), realistic-appearing but fabricated or tampered videos portraying a targeted person created with the

aid of deep learning (the interested reader is pointed to to Chesney and Citron (2018) for a detailed review of poten-

tial societal, ethical and legal implications of deepfakes). In the context of speaker verification in specific, Lorenzo-

Trueba et al. (2018a) addressed voice cloning of a well-known celebrity (the former US president Barack Obama).

Even if the result was essentially negative (the cloned voice samples were detectable as artificial ones using a spoof-

ing countermeasure), machine learning, including voice cloning techniques, do not stand still.

As current machine learning models require large training sets, one may argue that persons who have more (and

of technically higher-quality) data in the Internet might become more easily exposed to novel, yet unforeseen, types

of attacks and misuse in the future. Our present study is framed in the context of celebrity voices (due to the adoption

of the VoxCeleb corpus) but we intend it as a proxy to address a specific risk associated with anyone having large

quantities of biometric data in a public domain, often referred to as found data. In specific, we carry out empirical

assessment of attacks on voice biometric system with the help of found audio data. This type of attacks have received

surprisingly little attention in the literature. Unlike the use of publicly available tools for voice cloning of a specific

target, we look for a speaker with the most similar voice and use him/her as an imposter. We use target speaker’s

publicly available voice data and publicly available ASV tool for the voice similarity search.

The potential threat of natural impersonated voice, also known as mimicry Gonz�alez Hautam€aki et al. (2015), has
been studied in a limited number of target speakers and mimickers Luck (1969); Lau et al. (2004); Gonz�alez Hau-

tam€aki et al. (2015); Zetterholm et al. (2004). The present work is related to the study on the impact of the voice

impersonation in ASV where the impersonator and potential target speakers are selected from large set of speakers.

This enables us to choose the those impersonator-target pairs who are already similar in their natural voice. Surpris-

ingly, the studies involving the search of potential attackers and the assessment of their ability to break the biometric

security system are very limited. For other behavioral biometric traits (than voice), perhaps the only related study is

done with shoulder surfing attack in the context of touch input implicit authentication Khan et al. (2016). This

2 The authors argue that ‘unique’ is a misleading term in the context of biometrics where decisions are not based on exact pattern matching but

probabilistic reasoning.
3 https://www.cost.eu/actions/IC1206
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demonstrated that when potential attackers are selected and trained to perform targeted mimicry, this authentication

method is highly prone to such attacks.

The closest prior work in spirit to our study is Lau et al. (2005) where the authors studied the effect of mimicry in

ASV with two professional imitators and four non-professional imitators. The closest speaker for each imitator was

chosen from YOHO corpus of 138 speakers using Gaussian mixture model (GMM) based likelihood. The study indi-

cated that, when mimicking the most similar speaker, the professionals did not achieve better mimicry performance

than non-professional imitators. On the other hand, the professional imitators were more successful at mimicry when

the target speaker is different from the most similar speaker. In another study crowdsourcing is used to select the

best imitator for a set of 53 target speakers Panjwani and Prakash (2014). The authors used GMM-based ASV system

for finding the imitators from a set of 176 participants. As a first step, the participants were asked to speak in natural

and mimicked voices. Then an ASV system was used to filter the candidates by assessing the closeness of their voice

samples to the target speakers. Finally, a set of good imitators were confirmed based on the performance of filtered

candidates on multiple imitation tasks.

In contrast to the studies in Lau et al. (2004, 2005); Panjwani and Prakash (2014) with limited number of target

speakers (and use of a single ASV system only), the current work uses two large publicly available datasets, VoxCe-

leb1 and VoxCeleb2, consisting of more than 7,000 speakers to search the targets corresponding to the six recruited

participants who are native Finnish speakers. In addition to the impersonator-specific closest, median, and furthest

targets, we also consider a common celebrity target. This is to evaluate the impersonator’s natural ability to mimic a

known person. Further, the target speakers are chosen from both Finnish and non-Finnish speakers to assess imperso-

nator’s success rate for native and non-native targets.

3. ASV-assisted mimicry attacks

3.1. Attack implementation

Let T ¼ fTjgJj¼1 denote a set of unique, publicly known target speaker identities and let A ¼ fAkgKk¼1 denote a

set of attacker identities. The aim of an attacker A2A is to masquerade him/herself as a specific target T 2 T that

he/she pre-selects using automatic speaker recognition technology. We assume that J� K — that is, an attacker is

relatively infrequent, but there are many natural persons who have their voice samples available in a public domain.

Celebrities and anyone actively uploading or streaming their video or voice data to social media platforms are repre-

sentative examples.

Given a pair of speech utterances (or a pair of collections of multiple utterances), (Ui, Uj), an automatic speaker

verification (ASV) system (speaker detector), DðUi;UjÞ computes a detection score, sij 2R; typically a log-likeli-

hood ratio (LLR),

sij ¼ log
pðUi;UjjH0Þ
pðUi;UjjH1Þ ; ð1Þ

where the null hypothesis H0 states that Ui and Uj originate from the same speaker and its complement H1 states they

originate from two different speakers. In this work, utterances are represented as fixed-sized embeddings using either

identity vectors (i-vectors) (Dehak et al., 2011) or x-vectors (Snyder et al., 2018). If either Ui or Uj consist of multiple

utterances, their embeddings are averaged. The LLR computation uses probabilistic linear discriminant analysis

(PLDA) Prince and Elder (2007) scoring. The higher the LLR score, the stronger the support for the null hypothesis.

We consider two different types of ASV systems. The first one, attacker’s ASV (Dpub), is a public-domain ASV

implementation while the latter, black-box ASV (Dblack 6¼ Dpub), is the system which the attacker attempts to hack

into as a specific target. The attacker does not have access to the internal workings of Dblack or its outputs to optimize

mimicry attacks. The attack proceeds as follows:

ASV-assisted target speaker selection for mimicry attack

1. Attacker A2A records his/her natural voice sample, Unat (one or several utterances).

2. A usesDpub to compute scores fsjgJj¼1 between Unat and all the targets in a public domain. A picks the closest tar-

get, j� ¼ argmaxJj¼1DpubðUnat;UjÞ; where Uj contains all the public recordings of target Tj.
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3. A further uses Dpub to pick the top-scoring utterances of Tj� similarly.

4. A listens to the selected utterance(s) and tries to adjust his/her voice towards the target. Once completed practic-

ing, A submits a mimicked test utterance Umimic to DblackðUmimic;Uj� Þ with identity claim Tj� (aiming to be

accepted as Tj� ).

Note that in our model, the attacker uses the public-domain ASV system only to select the target speakers. In

some prior work, such as (Zetterholm et al., 2004), ASV score was provided as feedback for the impersonators to

improve their mimicry skills. We do not provide ASV (or other) feedback signals to our attackers. The main reason

is that the ASV score is not necessarily intuitive to humans. For instance, a low attacker-to-target ASV score does

not suggest how to modify one’s voice production so as to improve the score. Providing intuitive feedback, for

instance in terms of suggested articulatory or voice source modifications, would require a different system (and user

interface) design. In our model, the attacker uses a readily-available public-domain ASV system to rank and select

potential target speakers, but without any further numerical feedback or system optimization. Such ‘passive’ ASV

system could be, for instance, a voice search service that finds most similar speakers to the user’s voice from a public

video archive — see Vestman et al. (2019); Intelligent Voice (2019) as examples.

Both the attacker’s and the attacked ASV systems are text-independent, i.e. none assumes the spoken contents of

the compared enrollment and test utterances to match. Even if properly-optimized text-dependent ASV systems can

provide higher recognition accuracy, text-independent ASV systems provide more flexibility and are justifiable in

certain authentication applications, such as secure teleconferencing and telephone banking. The use of text-indepen-

dent ASV systems in this study was, in fact, necessary as we have no control over the text content in the celebrity

corpus (VoxCeleb).

3.2. Public-domain (attacker’s) ASV system

The attacker’s ASV system uses i-vector front-end (Dehak et al., 2011) and probabilistic discriminant analysis

(PLDA) (Prince and Elder, 2007) back-end to compute speaker similarity scores. The system’s acoustic front-end4

extracts 20 mel-frequency cepstral coefficients (MFCCs) per frame using 20 filters, leading to 60 features per frame

after including deltas and double-deltas. The chosen MFCC configuration is commonly used in speaker recognition

experiments Alam et al. (2013); Dehak et al. (2011). The features are processed with RASTA filtering (Hermansky

and Morgan, 1994) and cepstral mean and variance normalization (CMVN). Non-speech frames are omitted using

energy-based speech activity detector (SAD) (described in Section 5.1 of (Kinnunen and Li, 2010)).

The universal background model (UBM), i-vector extractor, linear discriminant analyzer (LDA), and PLDA, are

trained using Wall Street Journal (WSJ) and Librispeech corpora. LDA is used to reduce 400-dimensional i-vectors

to 250 dimensions before centering, whitening, and length normalization. Simplified PLDA with 200-dimensional

Table 1

Details of the speaker verification systems used to simulate targeted impersonation attack against automatic speaker verification.

The attacker is assumed to not have information about the attacked system, and hence the attacker’s system differs from the

attacked system.

Attacker’s ASV system Attacked ASV system

ðDpubÞ ðDblackÞ

Type Text-independent Text-independent

Implementation MSR Identity Toolkit (MATLAB) Kaldi (c++)

Sampling rate 16 kHz 16 kHz

Acoustic features 60 MFCCs (20 static+20-D+20-DD), RASTA, SAD, CMVN 30 MFCCs (no deltas), Sliding CMN normalization, SAD

Embedding type i-vector (400-D) x-vector (512-D)

Back-end / scoring LDA (250-D)+PLDA (simplified, 200-D) LDA (200-D)+PLDA (2-cov)

Development data Librispeech (train-clean-360 and train-clean-100 subsets), WSJ0 and WSJ1 VoxCeleb2, training part of VoxCeleb1

Data augmentation None Reverberation, noise, music, babble

EER* 12.84 (%) 3.11 (%)

* EER for VoxCeleb1 test protocol

4 http://cs.joensuu.fi/~sahid/codes/AntiSpoofing_Features.zip
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speaker subspace is used for scoring. For further details, refer to Table 1 of the current work and Section 2.2 of Kin-

nunen et al. (2019).

3.3. Attacked ASV system

In our experiments, we regard the x-vector system (Snyder et al., 2018), based on pre-trained Kaldi (Povey et al.,

2011) recipe, as the ASV system to be attacked. To emulate the scenario of attacker’s limited knowledge of this sys-

tem, the attacker’s ASV is made intentionally different from the attacked ASV system in terms of feature extractor

set-up, embedding type, and development corpora (Table 1). The attacked system is the Kaldi x-vector recipe for

VoxCeleb, while the attacker’s system uses i-vectors. Unlike the i-vector extractor, the x-vector extractor is trained

discriminatively using speaker labels.

4. Corpus of target speakers: VoxCeleb

The attacker’s ASV is used as a voice search tool to find the closest speakers from the combination of VoxCeleb1

(Nagrani et al., 2017) and Voxceleb2 (Chung et al., 2018) to each of the locally recruited subjects (described in Sec-

tion 5). The combined VoxCeleb corpus contains about 1.3 million speech excerpts extracted from more than

170,000 YouTube videos from J ¼ 7; 365 unique speakers. This totals to about 2,800 hours of audio material, most

of which is active speech. Both VoxCeleb corpora were collected using automated pipeline exploiting face verifica-

tion and active speaker verification technologies (Chung et al., 2018).

VoxCeleb1 contains mostly English speech, while VoxCeleb2 is more diverse in nationalities and languages. The

nationality information of the target speakers was of our interest, as the recruited local speakers are Finnish and we

wanted to see if Finnish people do better job at imitating Finnish rather than non-Finnish targets. According to the

VoxCeleb1 metadata, there are no Finnish speakers in VoxCeleb1. VoxCeleb2 did not include nationality metadata

but we extracted the nationalities automatically using Google’s Knowledge Graph API5. This way we identified a

total of 44 Finnish speakers from VoxCeleb2.

5. Locally recruited attackers

5.1. Speakers and recording gear

We recruited K ¼ 6 voluntary local speakers (4M + 2F) to serve as ‘attackers’. The selected terminology,

‘attacker’, is made for convenience to reflect the focus of ASV vulnerability study; it should be understood that all

speakers took part voluntarily and were not asked to ‘hack’ any computer systems in the sense understood in the

security field. In fact, most of our speakers are considered naive to the study aims: two of the male subjects knew the

specific goals of the study but the remaining four subjects were not informed that the text and target speakers were

tailored for them, nor where the target voices were obtained from. The speakers were not informed that the study

relates to ASV vulnerability, but were asked to mimic the target speakers as accurately as they could. All the subjects

signed an informed consent form to use their speech data for research, and were rewarded with movie and coffee

tickets.

All six attackers are native Finnish speakers with an age range between 24 to 44 years old. They are naive imper-

sonators who lack formal training in mimicry. We adopt the same recording setup from (Gonz�alez Hautam€aki et al.,
2017) and text prompts are described in detail in Vestman et al. (2019). As illustrated in Fig. 1, the subjects took part

to three recording sessions. The first session, produced in the subject’s natural voice, is used for VoxCeleb target

speaker selection, while the remaining two sessions serve for vulnerability analysis of the attacked systems. The

tasks in the recording sessions differed, while the recording set-up was the same: recordings took place in a silent

laboratory room with a portable Zoom H6 Handy Recorder using an omnidirectional headset mic (Glottal Enter-

prises M80) with 44.1 kHz sampling and 16-bit quantization. Three other channels (two smartphones and electro-

glottograph) were also collected, but are not used in this study.

5 https://developers.google.com/knowledge-graph/
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5.2. The first recording session (data for target search)

The first session, used for the targeted VoxCeleb speaker search, consists of four tasks in the speaker’s natural

voice. The tasks consisted of spontaneous speech and read text (13 sentences) in both Finnish and English. The read

texts in Finnish are the same used in (Gonz�alez Hautam€aki et al., 2017). Their corresponding English versions were

added for this study. We have approximately six minutes of speech (before speech activity detection) per speaker

from Session 1. Detailed description of the material used in data collection can be found in the online supplementary

material Vestman et al. (2019).

5.3. Attacked target speaker search and utterance selection

For the purpose of targeted speaker search, we compute a single averaged i-vector for each of the six speakers

resulting from 28 individual utterances from Session 1. Similar to (Lau et al., 2004), we use the ASV system to pick

for each attacker the closest, median, and furthest speakers among the VoxCeleb speakers. The closest one is most

relevant for vulnerability analysis while the other two serve for reference purposes. We do this ASV-assisted search

separately for all the VoxCeleb speakers (unconstrained search from 7,365 speakers) and for the subset of 44 Finnish

speakers. We pool all the speech data of the VoxCeleb speakers to compute average i-vector per target. The selected

target speakers per attacker are presented in Tables 2 and 3.

In addition to the three ASV-selected targets, we include common target matched with the speaker’s gender, in

both Finnish and English. The common Finnish speaking targets are P€aivi R€as€anen (female, politician) and Ilkka

Kanerva (male, politician), and the common English speaking targets are Hillary R. Clinton (female, politician) and

Leonardo DiCaprio (male, actor). The choice of the common targets is arbitrary but based on a loose, subjective cri-

terion as famous as possible. We first identified a short-list of VoxCeleb celebrities that we thought are well-known.

We then ran an e-mail survey among our friends and colleagues (23 responded), asking each one to indicate the three

most famous persons (in their opinion). We combined their votes to select the common targets. Even if the selected

targets are well-known, from the viewpoint of ASV they are random target speakers with no strong presuppositions

how similar their voices are to our attackers.

In summary, for each of our four male and two female subjects, we select six customized targets (three ASV-

ranks £ two languages) and two common gender-matched ones (one Finnish, one English). This gives a theoretical

total of 3� 2� 4 maleþ 2 common male + 3� 2� 2 femaleþ 2 common female ¼ 40 target speakers. But as

the reader can see from Table 2, not all of the ASV-selected targets are unique: one Finnish male celebrity (Edel-

mann) was the closest target for three attackers, one Finnish male celebrity repeated as the median speaker for two

male attackers (V€ayrynen), and one Finnish female celebrity (Halonen) is the furthest speaker for both female

Table 2

Target speakers (closest, median and furthest) per attacker. Selec-

tion of potential targets from 44 Finnish celebrities in VoxCeleb2.

Attacker ID Celebrity Profession Spoken language

M1 Samuli Edelmann Actor, singer Finnish, English

Paavo V€ayrynen Politician Finnish

Antti Tuisku Pop singer Finnish

M2 Samuli Edelmann Actor, singer Finnish, English

Paavo V€ayrynen Politician Finnish

Mika Kojonkoski Ski jumper, politician Finnish, English

M3 Joni Ortio Ice hockey player Finnish, English

Elastinen Rap musician Finnish

Perttu Kivilaakso Musician English

M4 Samuli Edelmann Actor, singer Finnish, English

Tuomas Holopainen Musician Finnish, English

Jyrki Katainen Politician Finnish, English

F1 Anna Puu Pop singer Finnish

Karita Mattila Opera singer Finnish, English

Tarja Halonen Politician Finnish, English

F2 Sofi Oksanen Writer Finnish, English

Kaisa M€ak€ar€ainen Biathlete Finnish, English

Tarja Halonen Politician Finnish, English
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attackers. These collisions might be explained by the the limited number of Finnish celebrities (30M, 14F) in Vox-

Celeb. The total number of unique celebrity targets is 36.

For each of the 36 target speakers, we selected multiple short utterances so that, when combined, each target

would have at minimum 30 seconds of active speech. The selected utterances were used to evaluate the ASV system

attacks. We selected only short utterances for two reasons. First, the duration of most of the VoxCeleb excerpts

varies between five to ten seconds. Second, we deemed shorter utterances to be easier for our attackers to imitate.

Detailed description of these utterances is provided in an online supplementary material Vestman et al. (2019).

The selection of the VoxCeleb excerpts was done by utilizing attacker’s ASV system. For the closest and furthest

targets we selected, respectively, the highest and lowest scoring utterances. For the median speakers, we selected the

utterances closest to the mean. This was further accompanied by manual inspection: if the audio quality (determined

subjectively by listening) in a given utterance was not deemed high enough, we discarded it and moved on to the

next ones in the ranked list.

5.4. Speech transcription and the mimicry recordings

Unlike the first recording session (common to all subjects), the second and third sessions were tailored for each

subject. This process involved the use of speech transcripts of the selected target utterances. To this end, we used

Amazon’s Mechanical Turk6 (MTurk), a commercial crowdsourcing service, to transcribe the English language

audio. The Finnish transcripts were produced by two native Finnish speakers. The 35 MTurk crowdworkers and the

two Finnish transcribers were asked to transcribe all the nuances of conversational speech, including repetitions, hes-

itations, filler words etc. Finally, two reviewers audited the quality of all the transcripts. All the final transcriptions

are provided in the supplementary material Vestman et al. (2019).

In Session 2, which took place five to six weeks after Session 1, the subject was provided with the transcripts of

the selected target utterance(s) and was asked to read the sentences twice in his or her natural voice. The speaker

was not informed whose speech the transcripts corresponded to. The rationale of including this session was to famil-

iarize each attacker with the target speaker sentences. We adopted the general idea to include a session with refer-

ence text only and another one with audio from the design used in (Mari�ethoz and Bengio, 2005). In that study, the

target speakers were public personalities that each impersonator knew. Each impersonator completed three scenarios

with an increasing level of detail about the target speakers. The impersonator was first asked to produce prototypical

target speech without knowledge of text (other than common category, e.g. everyday sentences). The impersonator

Table 3

English speaking celebrities (closest, median and furthest) per

attacker. Selection from 7321 potential targets in VoxCeleb1

and VoxCeleb2. * indicates speakers from VoxCeleb1.

Attacker ID Celebrity Profession Spoken language

M1 Valentin Inzko Politician English (Austrian)

Elijah Cummings Politician American English

Chris Colfer * Actor American English

M2 Jeremy Irons * Actor British English

Karan Tacker Actor Indian English

Ryan Ochoa * Actor American English

M3 �Eric Boullier F1 manager English (French)

Guillaume Canet * Actor, director English (French)

Bill Gilman Singer American English

M4 Ciar�an Hinds Actor Irish English

Ian Kinsler Baseball player American English

Phil Mickelson Golf player American English

F1 Jessie J * Singer British English

Candace Cameron * Actress American English

Lin Shaye * Actress American English

F2 Fay Ripley Actress, author American English

Belcim Bilgin Actress English (Turkish)

Anne Hathaway * Actress American English

6 https://www.mturk.com/
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was then revealed the target speaker texts to be impersonated and, finally, he would be provided audio reference of

target.

In the last session, which took place two to six days after Session 2, the subjects were provided with the same

transcript as in Session 2. Additionally, they were now provided access to the actual target speaker audio excerpts.

The transcripts were provided on a printed paper and the audio was presented through headphones connected to a

tablet computer with an interactive webpage. The subject was allowed to interact with the audio samples and could

listen to the target utterance(s) as many times as needed, and he/she then tried to mimic the voice according to their

best skills. Again, the subject was asked to mimic each sentence twice. In the experiments, we use only the second

recording of each sentence.

Following standard convention in the context of spoofing and countermeasure studies Wu et al. (2015a), we refer

to the speech recordings of the second session as zero-effort. This is to signify that the attackers were instructed to

produce target speaker texts in their own modal voice, i.e. without dedicated effort to sound like the target. The

recordings from the last session, in turn, are simply referred to as mimicry utterances.

6. Results: mimicry attacks against automatic verification system

In the following, we evaluate the effectiveness of mimicry attacks against ASV systems. The target speaker mod-

els used in the experiments were enrolled using all available segments except those selected for testing as described

in Section 5.3.

Figure 2 displays how the PLDA scores of genuine and attack trials compare to each other. The general findings

are as expected. First, the order of the closest, the median, and the furthest speakers transfers from the attacker’s

ASV system to the attacked ASV system, implying that the ASV-assisted speaker selection can help in ASV attacks.

Second, in general, the attackers’ natural and mimicry scores are significantly (by a wide margin) below the target

scores. Additionally, we find no significant difference between the zero-effort and mimicry attacks (except for the

closest category). Finally, as the recruited attackers are Finnish, attackers’ scores against the Finnish targets are

higher than for the non-Finnish targets (within each rank category).

We further display the difference of mimicked and natural speech scores in Table 4. Interestingly, and contradic-

tory to what we assumed, if the target speaker’s voice is already close to the attacker’s voice, the impersonation

attempts degrade the score. The same finding was noted in situations where the target is a well known public figure

(as the targets in the common category are). We suspect that the effect might be due to people having higher ten-

dency to overact someone they already know well. However, if the targets are not close to the attackers (i.e., median

and furthest categories) or are less well known, impersonation is potentially helpful (though, not by a statistically

significant margin).

Our attackers are native Finnish speakers recorded with a specific set-up which may differ from the target domain

(VoxCeleb) conditions. This raises a question whether our mimicry attacks might have been unsuccessful due to

domain mismatch. To address this question, we studied target-domain, attacker-domain, and cross-domain non-tar-

get score distributions as well as target-domain and attacker-domain target score distributions. It was not possible to

Fig. 2. Comparison of attackers’ ASV scores (log likelihood ratios) to the targets’ scores for both of the ASV systems involved in the study. The

scores are averaged over all attackers and all speech segments. The error bars represent 95 % confidence intervals for the means.
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construct cross-domain target trials as we do not have speakers common to both domains. The main interest in this

specific study is to compare target-domain non-target scores to cross-domain non-target scores. If the cross-domain

scores (the case of attacks) do not fall below the target-domain scores, it suggests that the attacker does not get penal-

ized by the domain mismatch. The scores for the study were obtained from the attacked x-vector based ASV system.

Figure 3 indicates that when the nationality mismatch is present (non-Finnish target-domain speakers), the cross-

domain non-target scores are, on average, slightly lower than the the target-domain non-target scores. If, however,

the target-domain speakers are Finnish, like our recruited attackers are, the non-target speaker distributions overlap

almost perfectly. This suggests that the Finnish attackers attacking the Finnish VoxCeleb targets did not seem to get

penalized by the domain mismatch. The domain mismatch can be observed by comparing target and non-target

scores of attacker-domain and target-domain. As the attacker-domain is has much less variability in the conditions,

the scores in attacker-domain tend to be higher.

7. Perceptual evaluation of mimicry attacks

Next, we evaluated how ASV assisted mimicry attacks perform against human listeners. Further, we compared

the findings of perceptual test to those obtained from the attacks against the ASV system. To avoid nationality mis-

match between targets and attackers, we restricted our experiments to Finnish targets only.

7.1. Listening test setup

In total, we had 625 pairs of speech samples (trials) to be evaluated by the listeners. These trials can be divided

into five groups of 125 trials (4 to 7 trials for each of the 24 attacker-target combinations). The first three groups are

related to the mimicry attacks: 1) target vs. target (reference point), 2) target vs. attacker (zero-effort mimicry), and

3) target vs. attacker (mimicry). For each set of three trials, the same target enrollment utterance is used. The speech

content of the test utterances is the same in all three cases, but different from that of the enrollment utterance (i.e.

text-independent speaker comparison). The two last types of trials focus on the attacker. They are 4) attacker (zero-

effort) vs. attacker (zero-effort) and 5) attacker (zero-effort) vs. attacker (mimicry). These two cases are included,

respectively, to study the listeners’ performance for the same-speaker trials with fixed recording conditions, and to

study how much the attackers modify their voices relative to their natural voices when mimicking. In the cases 4)

and 5), the enrollment utterances are selected from the English part of the data described in Section 5.2. Similarly as

Table 4

Score differences between attacks with impersonated voices and

attacks with natural voices. Differences are averaged over

attackers, target nationalities, and utterances. § indicates

95 % confidence intervals. In the case of the closest target

speakers, impersonation attempts are counterproductive.

ASV system Closest Median Furthest Common

Attacker’s ASV �9.7 § 5.2 2.2 § 4.3 5.9 § 7.1 �7.2 § 4.3

Attacked ASV �5.2 § 3.9 9.2 § 3.3 6.1 § 4.3 �0.5 § 3.8

Fig. 3. Distributions of target and non-target scores in different domains. Cross-domain non-target scores are obtained by scoring speakers from

the attacker domain against the speakers from the target (VoxCeleb) domain. The simulated mimicry attacks in this work fall under the category

of cross-domain trials. As the cross-domain score distributions overlap almost perfectly with the target-domain non-target distributions, the

domain mismatch does not seem to make attacking more difficult, at least when the targets are Finnish.
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above, for each set of two trials, the enrollment utterance is fixed and the two test utterances have the same content.

In all of the cases, the enrollment utterance was selected from the available utterances so that its duration is close to

the duration of the test utterances.

The listening trials were accompanied with a question “How similar the two speakers in the two voice samples

sound to you?”, to which the listeners answered using a 4-point scale with options Very dissimilar, Dissimilar, Simi-

lar, and Very similar. The 4-point scale was selected to enforce the listeners to make up their mind regarding speaker

similarity. When presenting the trials, the order of the two voice samples in a trial was randomized so that the enroll-

ment utterance was not always played the first. Each trial was presented individually and their order was randomized

as well. For each of the 625 trials, we asked opinions from five different listeners, so in total we collected 3125

responses from the listeners.

We recruited the listeners using the Amazon’s MTurk service. All the listeners were either native English speak-

ers or had advanced English skills. In total, 225 crowdworkers participated the listening trials. Five workers rated

more than 100 trials, whereas 130 completed less than five. On average, a crowdworker completed 3125/225� 14

trials. Out of the 225 listeners, 40 provided information about their mother tongue: 26 English, 4 Italian, 4 Portu-

guese, 2 German, 2 Spanish, 1 Estonian, 1 Tamil.

7.2. Listening test results

We present the main results of the listening test in Figure 4, which presents the listener judgements of speaker

similarity for all the studied attacker-target combinations. First, the listeners regard the two samples from the same

target speaker (target vs. target cases) similar or very similar to each other, as expected. However, there are individ-

ual cases that turned out to be difficult for the listeners. For example, the median target of the male attacker 1 was

considered dissimilar or very dissimilar sounding to himself in most of the answers. Informal listening of the utteran-

ces of this target revealed that the target’s voice sounded different each time mostly due to differences in speaking

style, recording conditions, and audio processing. For example, in one sample, the target speaker (Finnish politician)

is being interviewed in a talk show, whereas in another sample he is giving a public speech in very different condi-

tions.

How are the listeners opinions affected by mimicry? On average (see the last column of Figure 4), mimicry does

not seem to help to make the attackers sound more like the targets. At the individual level, we find, however, that

Fig. 4. Results from the listening test (target speaker enrollment vs. test segment). Each attacker (in columns) has 4 targets speakers (in rows: clos-

est, median, furthest, common). For each attacker-target combination, there are three different trial types (denoted by circled digits) as described in

the left-hand side legend. The last column shows the results when trials from all the attackers are combined.
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male attackers 1 and 2 got higher ratings for their mimicked speech. Further, we find that ASV assisted target

speaker selection can help in choosing attacker-target pairs that sound similar to each other. That is, the furthest tar-

gets get lower similarity ratings than the closest targets. Even if automatic systems and humans based their speaker

similarity judgments differently, the broad rank categories seem consistent.

Figure 5 displays listening test results for those trial types where attacker’s enrollment utterances are compared to

attacker’s test segments with and without mimicry effort. The same-speaker trials have higher similarity ratings in

comparison to those in Figure 4). This is expected since our attacker corpus is practically free from channel variation

and background noise unlike the VoxCeleb collections. In addition, we find that when the attackers are trying to

mimic the voices of the target speakers, they sound a little bit less like themselves.

7.3. Comparison of human listeners and automatic speaker verification system

To compare human opinions to ASV system scores, we scored the same trials using both the attacker’s ASV sys-

tem and the attacked ASV system. All the individual scores for three different trial types are displayed in Figure 6.

The scores for the content matching test utterances are connected with lines and thus form score-triplets. This allows

us to see how close the attacker’s scores are to the target’s scores and how successful were the mimicry attempts in

individual cases. The results agree with the results of Figure 2, as expected — the only difference with the earlier

ASV protocol is the number of target speaker enrollment utterances, which is now only one7.

In general, the findings from the listening test are similar to what the ASV system scores imply. The ASV-assisted

target speaker selection helps to bring attacker’s scores closer to the target’s scores, while the mimicry attempts do

not seem to help much to bring the scores closer to the target’s scores.

8. Prosody and formant analysis of mimicry attacks

To gain further insight how attackers’ change their voices to mimic their targets, we carried out a study of the

changes in fundamental frequency (F0), speaking rate, and formants. Our main motivation to study these qualities is

to see whether attackers changed more their prosody than spectral cues. If this is the case, the changes might not be

reflected by ASV scores as our systems are based on spectral features.

8.1. Estimation of fundamental frequency and speech rate

Speaking rate, in terms of syllable rate (the number of syllables per second), was measured using a

Praat (Boersma and Weenink, 2015) implementation (De Jong and Wempe, 2009) that automatically calculates the

number of syllables per sample duration by detecting syllable nuclei (Wang and Narayanan, 2007) and pause dura-

tion. As for F0 extraction, we adopt an autocorrelation-based method (Boersma, 1993) implemented in Praat. We

use gender-specific frequency ranges set to [75, 200] Hz for males and [100, 300] Hz for females. We initially tested

Fig. 5. Results from the listening test (attacker enrollment vs. attacker test segment). Listeners evaluate each attacker’s enrollment samples against

attacker’s zero-effort and mimicry-effort attack samples. The voice modification induced by mimicry attempt makes the attackers sound less like

themselves.

7 In general, data processing capacity of ASV systems and listeners differ: ASV systems can process multiple enrollment utterances and large

number of trials, but humans have limited attention span and memory and cannot process many trials (or excessively long utterances). For the

maximum benefit of the ASV system, the earlier ASV protocol used in Fig. 2 used multiple enrollment utterances, while the scaled-down ASV

protocol (single enrollment utterance) used in Fig. 6 was designed to facilitate perceptual speaker comparisons.
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F0 extraction with wider F0 ranges but it was observed that the selected ranges were appropriate to exclude possible

tracking errors and outliers in the F0 contour. The parameters to select the F0 candidates at 10ms intervals were set

at their default values in Praat: silence threshold 0.03, voicing threshold 0.45, octave cost per octave 0.01, octave-

jump cost 0.35, and voiced-unvoiced transition cost 0.14.

We summarize F0 values of each utterance using two summary statistics, namely, median and standard deviation.

They reflect, respectively, the average pitch range and pitch dynamics within a given utterance. We study changes in

these summary statistics between the zero-effort and mimicry attempts, with the aim of studying whether or not our

attackers attempt to match their broad prosody characteristics with those of their targets upon their mimicry

attempts.

8.2. Estimation and alignment of formant frequencies

We performed formant analysis by comparing formant information of aligned utterances. First, we extracted for-

mant center frequencies of the first three formants (F1, F2, and F3) using VoiceSauce Shue et al. (2011) with Praat

backend. Next, we aligned attacker’s utterances (natural & mimicry) with target’s utterance using dynamic time

Fig. 6. The scores of the ASV systems for the trials used in the listening test. The scores in each score triplet (described in the legend) are from the

trials that have the same target speaker enrollment utterance and the speech content is the same in all the three test segments. Scores for male and

female attackers are shown in separate groups. The right side of each graph displays the mean values of the score groups together with standard

error of the mean multiplied by 1.96.

V. Vestman et al. / Computer Speech & Language 59 (2020) 36�54 49



warping (DTW) Sakoe and Chiba (1978). The aligning process was done similarly as in Vestman et al. (2018). This

process involves using automatic selection of active speech frames that are well aligned and have reliable formant

information. The alignment of utterances turned out to be challenging due to differences in speaking styles, acoustic

conditions, and small deviations in spoken texts caused by mumbling. Thus, in addition to the automatic frame selec-

tion, we listened the aligned utterances in order to discard the the badly misaligned ones. Finally, after getting the

aligned formant data, we measured the formant difference d between utterances a and b as

dða; bÞ ¼ 1

3T

XT

t¼1

X3

n¼1

����faðt; nÞ�fbðt; nÞ
����; ð2Þ

where T is the number of aligned frames and fa(t, n) is the center frequency of formant n of utterance a at frame t.

8.3. Results of prosody and formant analysis

In Figure 7a, we show the results for the analysis of speech rate differences. For each attacker-target combination,

the displayed speech rates are obtained by averaging the speech rates of the available utterances (4 to 7 utterances per

combination). The results indicate that the speech rates of the attackers were, in general, slower than the targets’

speech rates, when the attackers were not mimicking. This was anticipated, since the attackers were reading

prompted text from a paper yielding slower speaking rates as opposed to those of the targets samples obtained from

conversational situations. After listening to target’s speech, the attackers were in most cases able to change their

speech rates towards the targets’ speech rates. At the individual level, we find that the male attacker 1 (M1) was

good at adjusting his speech rate, while the male attacker 3 (M3) had naturally fast reading pace so that in some cases

(common target) his speech rate was already too fast.

A similar comparison regarding F0 statistics is shown in Figures 7b and 7c. We find that the attackers M1, M2,

and M3 did not change their F0 considerably while mimicking, whereas attackers M4, F1, and F2 had some mimicry

Fig. 7. Differences of attacker’s (M1, M2, M3, M4, F1, F2) prosodic and formant parameters to target’s parameters for all attacker-target combi-

nations. Differences are shown for non-effort speech (black arrow) and for mimicked speech. The effect of mimicry is displayed with a green

arrow if it made attacker’s and target’s parameters closer to each other and with a red arrow otherwise.
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attempts with clearly different F0 than what their natural F0 is. We do not observe clear differences between closest,

median, and furthest target categories in terms of distances in F0 parameters between attackers and targets.

Finally, in Figure 7d, we depict the formant differences between targets and attackers as defined in (2). Again, we

find that the mimicking did not have major impact to the similarity of the formant frequencies. In 14 out of 24 cases,

mimickers managed to get slightly closer to their targets in terms of the given metric. We further find that the for-

mant differences are larger in the furthest category than in the closest category, which is expected as the location of

formants affect the spectral features used in the target speaker selection.

9. Conclusion

Biometric data uploaded to the Internet in large quantities, including human voice samples, opens up potential for

misuse whenever the same biometric identifiers are adopted for strong user authentication to regulate access to per-

sonal data records, bank accounts and other services. Our study addressed a potential risk related to combination of

public-domain automatic speaker verification (ASV) technology and public-domain voice data. The former is used

as a search tool to identify potential target speakers to be mimicked.

Our results suggest that human mimicry is a rather special skill and less effective in spoofing modern ASV sys-

tems compared to voice conversion, text-to-speech, and replay. In specific, none of our six attackers received high

detection scores for their attacks from our simulated8 public-domain or attacked ASV systems. Similar negative find-

ings have been reported in earlier studies and are often speculated to be due to difficulty of humans to mimic accu-

rately low-level spectral cues employed by ASV systems. One of our motivations was to re-assess whether speech

mimicry — one of the weakest known attacks against ASV — might be made substantially stronger (or more practi-

cal) when the target speakers are selected using ASV. We approached this question from two perspectives. On the

one hand, we wanted to find out how the score ranges associated with broad target speaker rank (closest, median, fur-

ther) transfer from the attacker’s ASV to the attacked ASV. This is the technology dimension of our attack model.

On the other hand, we wanted to isolate the effect of the mimicry effort by collecting attackers’ voice samples both

‘before’ (zero-effort attack) and ‘after’ (mimicry attack) listening to the target speaker’s voice. This allows us to ana-

lyze the changes in attacker-to-target log-likelihood ratio (LLR) scores due to mimicry effect alone. This is the

human dimension of our attack model.

Concerning the broad target speaker rank, the score relations generalize well from the attacker’s ASV system to

the attacked ASV system: LLR(closest target) > LLR(median target) > LLR(furthest target) relationship was

retained both for Finnish and non-Finnish targets. This suggests that one could, indeed, use one ASV system (here,

i-vector PLDA) to emulate the broad speaker ranking of another, targeted ASV system (here, x-vector PLDA). We

find this result interesting and worthwhile of future work. Even if the VoxCeleb corpora are among the largest (pub-

lic) speaker corpora at this time, they are still tiny compared to the number of voice samples in the Internet. It would

be interesting to repeat a similar study design to ours in a few years, perhaps with an order of magnitude larger target

speaker corpus and, at this stage, unforeseen ASV technology. It would be important to uncover the conditions under

which such emulation succeeds (or fails). With an increasing number of video and voice samples posted online, it is

not only the security, but user privacy, that deserves attention.

Concerning the impact of mimicry effort, the attacker-to-target LLRs remained low, and substantially below the

target-to-target LLRs in both zero-effort and mimicry scenarios. Curiously, while the LLR scores for the furthest tar-

get speakers indicated some increase between zero-effort and mimicry scenarios, for the closest targets the LLR

scores decreased (but significantly only for the non-Finnish target speakers). To sum up, the broad target speaker

rank generalized across the ASV systems, while the mimicry effect itself lead to negative (or no difference) effect.

These findings reinforce the conjecture that voice mimicry by itself may not pose a strong attack against ASV; but

ASV-based target speaker selection may.

We hypothesized that while our attackers’ mimicry efforts did not have major impact on the ASV scores, they

might have impact on human perception. Human listeners might, to some degree, focus on different cues of speaker

identity than the ASV systems, which mostly focus on spectral characteristics of speech. However, the results of our

8 The ASV implementations combine scripts/tools (e.g.MSR Identity Toolkit, Kaldi) that are all public-domain code. They should be considered

as proxies of modern ASV technology, rather than end-user software.
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listening test did not support the above hypothesis, as the results showed similar patterns to those we saw from the

ASV scores.

So as to understand better the mimicry strategies implemented by the attackers, we also analyzed changes in for-

mant frequencies and prosody statistics (F0, speaking rate). Even if some attackers were able to adjust their average

formant frequencies towards those of their target speakers, the relative change in attacker-to-target formant distance

(from zero-effort to mimicry) was minor. Adjustments in F0 statistics were minor as well. The most prominent

adjustments towards the targets were seen in the speaking rate.

Our study has a number of limitations that one should take into account in future studies. First, the number of

attackers (six) is admittedly small. This limitation, familiar to some of the authors Gonz�alez Hautam€aki et al.
(2015), is common to most speech mimicry studies and relates to difficulties in data collection. The number of

attackers varies from 1 to half dozen (or so) Wu et al. (2015a). Here, additional complications were caused by tai-

lored target speaker selection, involving tedious speech transcription and several stages of data quality auditing. In

future work, it might be practical to drop the transcription step and ask the attackers to impersonate their targets

based on audio only. Another way to scale up the study would be attacker recruitment through crowdsourcing Pan-

jwani and Prakash (2014). This will, however, introduce new uncontrolled variations (such as attacker microphone

differences). All our attacks were recorded using the same gear in the same room.

The second limitation relates to the cross-domain data conditions: our attackers are native Finnish speakers, while

VoxCeleb consists of many different nationalities and accents. Further, VoxCeleb consists of conversational speech

while our attackers read text passages in an office environment. These differences induce style differences and might

make the impersonation task harder for the attackers. This limitation is primarily due to lack of large Finnish celeb-

rity corpus at the authors’ exposure, as well as our preference to interact with the attackers conveniently. It would be

interesting to repeat selected experiments using a larger target speaker corpus with matched mother tongue. In Vox-

Celeb, we are limited to 44 Finnish target speakers. Future work could therefore either adopt a larger Finnish celeb-

rity corpus, or to recruit native American English attackers. Given the nature of found data, controlling all the

variations will be difficult.

Our attacks could also be made stronger in a number of ways. First, the attacker might use the public-domain

ASV system in a more proactive way, such as optimizing its detection accuracy further in off-line experiments. Sec-

ond, the attacker could potentially utilize more detailed feedback from a dedicated ASV system — in this work,

attackers used ASV for speaker ranking while some prior work has used ASV score as a feedback signal Zetterholm

et al. (2004). Third, assuming there would be an actual monetary (or other strong) motivator to seriously mimic

someone — similar to practicing to forge someone’s signature — the attacker might use substantially more effort to

get familiar with the speaking style of his or her targets. He or she might perhaps use feedback from prosody meas-

urements in addition to ASV score. In our study, given the extensive work required to prepare the tailored targets

and collect the data, all the above had to be relaxed to complete recordings in a reasonable time. The mimicry attacks

(with audio reference of the target) took place in a single session and our attackers completed their mimicry tasks rel-

atively fast. Nonetheless, in future work it would be interesting to evaluate whether mimicry attacks could be

improved with further, and more proactive, training. Another interesting target would be studying combination of

automatic target speaker selection with voice conversion (or other technical) spoofing attacks.

It would be also interesting to address whether, and how, one may benefit from current (or suitably modified)

ASV methods to provide intuitive feedback to improve one’s mimicry skills. This would be potentially helpful in

suggesting specific articulatory or voice source modifications required to increase the ASV score. The present study

was framed to the context of ASV attacks but such methods could be potentially useful for mimicry artists, voice

actors, and language learners as well.
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A B S T R A C T

How secure automatic speaker verification (ASV) technology is? More concretely, given a
specific target speaker, how likely is it to find another person who gets falsely accepted as
that target? This question may be addressed empirically by studying naturally confusable
pairs of speakers within a large enough corpus. To this end, one might expect to find at least
some speaker pairs that are indistinguishable from each other in terms of ASV. To a certain
extent, such aim is mirrored in the standardized ASV evaluation benchmarks, for instance,
the series of speaker recognition evaluation (SRE) organized by the National Institute of
Standards and Technology (NIST). Nonetheless, arguably the number of speakers in such
evaluation benchmarks represents only a small fraction of all possible human voices, making
it challenging to extrapolate performance beyond a given corpus. Furthermore, the impos-
tors used in performance evaluation are usually selected randomly. A potentially more mean-
ingful definition of an impostor — at least in the context of security-driven ASV applications
—would be closest (most confusable) other speaker to a given target.
We put forward a novel performance assessment framework to address both the inadequacy
of the random-impostor evaluation model and the size limitation of evaluation corpora by
addressing ASV security against closest impostors on arbitrarily large datasets. The frame-
work allows one to make a prediction of the safety of given ASV technology, in its current
state, for arbitrarily large speaker database size consisting of virtual (sampled) speakers. As a
proof-of-concept, we analyze the performance of two state-of-the-art ASV systems, based on
i-vector and x-vector speaker embeddings (as implemented in the popular Kaldi toolkit), on
the recent VoxCeleb 1, and 2 corpora, containing a total of 7365 speakers. We fix the number
of target speakers to 1000, and generate up to N¼100;000 virtual impostors sampled from
the generative model. The model-based false alarm rates are in a reasonable agreement with
empirical false alarm rates and, as predicted, increase substantially (values up to 98%) with N
¼100;000 impostors. Neither the i-vector or x-vector system is immune to increased false
alarm rate at increased impostor database size, as predicted by the model.
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1. Introduction

Some have predicted that voice-operated user interfaces will be the next paradigm of human-machine interaction. Given that
the consumer market already provides various virtual assistants — Google Home, Apple Siri, and Amazon Alexa to name a few — it
might be a reasonable prediction. Such services are intended to provide human-to-human like user experience leveraging from
speech and speaker recognition technology, dialogue modeling and speech synthesis. An increasing number of smart services also
enable users to log-in or authenticate payments using voice (or other biometric traits), for both increased security and user conve-
nience — there is no need to consult, e.g., printed key-lists (or other stealable or copiable accessories). The co-evolution of smart
device technology and machine learning (Bishop, 2006; Goodfellow et al., 2016) has substantially broadened the landscape of auto-
matic speaker verification (ASV) (Reynolds, 1995) use cases from its traditional, highly specialized applications — forensics and sur-
veillance — to our living rooms and everyday mobile environments. For instance, nowadays, smart phones, virtual assistants and
other devices with powerful processors and wireless connectivity enable efficient on-device or cloud-based voice data processing,
including ASV-based user authentication with algorithms that would have been difficult to execute on portable devices of the past
decades. Early ASV technology, such as Reynolds (1995), was developed with the aid of far less powerful computers and smaller
datasets. The increase in dataset sizes and computing power has not only enabled the research community to address increasingly
more challenging ASV tasks, but enabled running more powerful models in portable devices. Much of the progress in the underlying
core ASV technology has been facilitated by coordinated technology benchmarks, pioneered by National Institute of Standards and
Technology (NIST) in their evaluation campaigns (Doddington et al., 2000; Sadjadi et al., 2017; Wu et al., 2017).

Increased awareness of the possibilities of voice-based interaction also raises concern about the security of the technology. The
possibility to invoke malicious voice commands from a distance in another user’s phone Carlini et al. (2016) (potentially even using
inaudible sounds Zhang et al., 2017), and the potential to masquerade oneself as another targeted speaker through various spoofing
attacks (Ratha et al., 2001) is widely acknowledged. The latter includes replay, text-to-speech, and voice conversion attacks. Many of
these technology-aided attacks can be combated through various countermeasures ranging from knowledge-based approaches to clas-
sification approaches, known within biometric technology standardization bodies as presentation attack detection (PAD) (ISO/IEC
30107-1:2016, 2016) methods. For instance, specialized binary detector could be used to verify liveness of a voice sample before being
passed to a speaker verification system. Detection of attacks is possible since replayed speech, introduced through loudspeakers, has
different frequency characteristics than live human; and since synthetic and converted voices contain processing artifacts due to train-
ing data limitations andmodeling imperfections. More details of different attacks, their effectiveness, detection, and evaluationmetrics
are discussed elsewhere (Sahidullah et al., 2018) in more detail. In this study, we focus on core ASV technology.

While recent efforts have capitalized the importance of preparing ASV systems against spoofing attacks, another, more funda-
mental question remains: how unique the human voice is? Note that even the performance of an ASV system equipped with per-
fect PAD subsystem will be upper bounded by the performance of the underlying core technology (Kinnunen et al., 2018). This
raises fundamental, yet thus far conclusively unanswered questions such as,

� Given a large-enough population of speakers (such as 7.6 billion), how likely is it to find two speakers that are confusable with
each other? In other words, how many unique voices there are?

� Conversely, assuming that we wish to maintain a certain minimum level of non-confusability between speakers, is there some
maximum population (speaker database) size for which it can be guaranteed?

Answers would enable both technology vendors and users of ASV technology to have increased confidence to the expected
reliability of such systems. By drawing analogy from the security of passwords, some studies (Nautsch et al., 2015) based on bio-
metric information measures (Lim and Yuen, 2016) have assessed the strength of speech representations in terms of their
speaker information, though the viewpoint is rarely neither on the population size nor attacks.

Before proceeding further, it is necessary to constrain the scope. First, the question of voice uniqueness is, clearly, ill-posed. In
theory, the number of different human voices is, if not infinite, some very large number: both the organic (physiological) and
learnt traits vary greatly across individuals thanks to differences in the anatomy and kinematics of our articulatory systems — it
would be extremely unlikely to find another voice clone with perfectly-matched voice production systems and learned traits. In
practice, when working with real-world acoustic speech waveforms, we are bounded both by extrinsic and intrinsic signal varia-
tions. Extrinsic variation refers to the inability to accurately measure ‘pure’ speaker characteristics from imperfect acoustic obser-
vations (for instance, due to imperfect transducer, lossy communication channel, background noise, or reverberant
environment). Intrinsic variation, in turn, refers to linguistic and non-linguistic variation induced by the speaker him/herself,
some of which can be substantial (Hansen et al., 2017; Gonz�alez Hautam€aki et al., 2017). The main focus of the ASV research com-
munity for the past several decades (Reynolds, 1995; Kenny, 2010) has been on improving ASV technology to handle extrinsic
variations of increased complexity, though specific intrinsic factors, such as vocal effort, have also been addressed in the context
of NIST SREs (Greenberg et al., 2011).

Neither the extrinsic nor intrinsic variations are deterministic, fixed operations. Therefore, there are practical limits as to how accu-
rately one can discriminate two voices from each other. As these limits are clearly a function of the specific types of variations and dis-
tortions (as the ASV community is well aware of), it would be meaningless to attempt to answer the unconditional question of voice
uniqueness. The answer depends on both data conditions and the employed hypothesis tester (e.g., a specific human listener or a spe-
cific ASV system). We might even say that uniqueness of voices is a subjective matter; a pair of speakers that is confusable for one
hypothesis tester A (for instance, a human) may not be so for another hypothesis tester B (for instance, a machine).
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We, therefore, constrain the focus on statistical methods to address questions such as the above empirically for given data. In
particular, we are interested in the relation of corpus size (number of speakers) and the probability of a false alarm (PFA) for a
given ASV system, under a specific model detailed in Section 2. The input data to our proposed model consists of detection scores
(log-likelihood ratios or uncalibrated raw scores) of any ASV system on a specific corpus. This makes the method widely applica-
ble for the analysis of any ASV system, treated as a black-box.

The reader familiar with performance assessment of ASV systems may wonder if there is anything new to say about detection
scores of a given system on a given corpus. Indeed, measuring detection errors (including PFA) and calibrating speaker recognition
systems is a fairly standardized activity (Doddington et al., 2000; Br€ummer and du Preez, 2006). So, what is new here? The
answer, in brief, is that in the NIST-style ASV evaluations, the non-target speaker trials (pairwise comparisons of test utterances
against a hypothesized speaker model with disjoint speaker identities) are, essentially, random pairs of speakers. We use more
effort to model situation of more confusable (closest) pairs of speakers; one could argue a recognizer that handles the ‘worst
cases’ (closest competing) speakers well may exhibit improved generalization.

In our model, ‘closest’ speakers are in fact none of the non-target speakers in the training set, but virtual speakers sampled
from the distribution that models random sampling of speakers. Specifically, speakers are represented implicitly by distributions
of scores corresponding to pairs of speakers. This allows us to extrapolate beyond the given evaluation corpus to arbitrarily large
virtual speaker populations. Assuming that the observed speaker pairs are sampled from a same underlying generative process,
we can get an idea of how the ASV system scales up with corpus size,without collecting new speech data.

While the technical voice conversion spoofing attacks have received a lot of attention in the recent years, it might be appropri-
ate time to re-address worst-case impostors in the context of regular ASV as well. The initial spark for this work stems from our
recent work (Vestman et al., 2020) (inspired by Lau et al., 2004) where we addressed a specific research hypothesis relating to
potentially emerging, yet cursorily addressed vulnerability of ASV technology against itself. The idea was that an attacker could
use (public-domain) ASV system as a voice search engine to identify suitable target speaker (specifically, the closest one), such as
a celebrity or any person who uploads a lot of his/her voice or video samples to the Internet. After identifying a suitable target,
the attacker would attempt to attack another ASV system (e.g., at bank) using natural (possibly mimicked2) voice. Despite the rel-
atively large VoxCeleb corpus with more than 7000 target speakers, none of our attackers were successful in getting falsely
accepted.3 While good news concerning security of ASV, the finding was on specific ASV systems, attackers and target corpus.
One reason why the finding in Vestman et al. (2020) might have been negative is that the attacker’s ASV (designed to be purpose-
fully different from the attacked one) was not powerful enough. Nonetheless, we saw transferability across our two ASV systems
in terms of relative target speaker rankings, suggesting that the attacks might be successful with a scaled-up database. We argue
that there must be a speaker database size (possibly very large) where one is likely to locate closely-matched non-target voices —
effect which we were unable to observe under the specific experimental conditions. For these reasons, we wanted to re-address
the problem by using a more principled and re-usable setup that requires neither two ASV systems (attacker’s ASV and targeted
ASV) nor fresh recordings. To be precise, the framework proposed in this study addresses a worst-case attack scenario with the
following two assumptions:

1. Assumption 1: known ASV system. The adversary’s ASV system (used for identifying closest targets to attack) is the same as the
attacked ASV system.

2. Assumption 2: access to target’s enrollment data. The adversary has access to the target speaker’s enrollment data (alterna-
tively, no domain mismatch exist between target’s public-domain and enrollment recordings).

The generative model presented in this work enables us to increase the corpus size indefinitely to establish empirical perfor-
mance bounds on the false alarm rate, under these two assumptions. As search queries to the attacked system can be limited and
the enrollment utterances can be protected by template protection techniques, neither assumption is necessarily realistic from
the perspective of the adversary. An evaluation corpus designer, technology vendor, or a bank, however, may still want to assess
worst-case performance. Importantly, the above assumptions greatly simplify the set-up over the scenarios addressed in Vest-
man et al. (2020). The methods developed in this study can be seen as an extension of the arsenal of statistical performance eval-
uation tools. We address each of the two assumptions in the empirical part.

We summarize our two main contributions as follows. First, we propose a general-purpose performance metric, worst-case
false alarm rate with N impostors (PN

FA). It is the probability of accepting the closest impostor among N available candidate impos-
tors selected randomly for each enrolled speaker. As will be discussed below, the proposed metric reduces to the ‘conventional’
probability of a false alarm (PFA) if N¼1. Second, we devise a hierarchical Bayesian generative model of non-target score distribu-
tion to enable prediction of PNFA for arbitrarily large values of N that can exceed the number of non-target speakers in a given cor-
pus. The proposed model allows one to make a prediction of the safety of given ASV technology, in its current state, for arbitrarily
large speaker database size consisting of virtual (sampled) speakers. Importantly, as the training data consists of detection scores
only, the framework is widely applicable for the analysis of arbitrary ASV system (or even other biometric systems). Further, all

2 Mimicry is a special skill, based on the idea of a listener trying to match his or her acoustic profile with that of another person. As the acoustic correlates of
speaker identity, as learned by current ASV systems, remain largely unknown, human mimicry is generally an inconsistent strategy to spoof ASV systems. This is
why Vestman et al. (2020) included ASV system to first identify targets that are similar to attacker’s voice.

3 To be more precise, in Vestman et al. (2020), we did not consider hard binary decisions but analyzed changes in the log-likelihood ratio (LLR) scores of the
ASV systems. The nontarget LLRs, whether or not originating from zero-effort or mimicry trials were far below the range of target LLRs.
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the model parameters are automatically inferred from data, leaving no manually-tunable control parameters to be set. As a repre-
sentative snapshot of the current ASV technology and evaluation databases, our proof-of-concept experiments include two
widely-used ASV methods based on i-vector (Dehak et al., 2011) and x-vector (Snyder et al., 2018) embeddings, evaluated on the
combined VoxCeleb1 (Nagrani et al., 2017) and VoxCeleb2 (Chung et al., 2018) corpora.

2. Measuring and extrapolating false alarm rates

An automatic speaker verification (ASV) system is a hypothesis testing machine that takes a pair of speech utterances X¼ðXe;X tÞ
— one for enrollment, one for test — and produces a numerical detection score s2R; with the convention that higher values (in rela-
tive terms) indicate stronger support for the same speaker (null) hypothesis and low scores for the different speaker (alternative)
hypothesis. Speech utterances are typically represented as fixed-sized speaker embeddings such as i-vectors (Dehak et al., 2011) or
x-vectors (Snyder et al., 2018) and the detection score is a logarithmic likelihood ratio (LLR) produced by a statistical back-end model,
such as the probabilistic linear discriminant analysis (PLDA) (Prince et al., 2007; Kenny, 2010).

2.1. False alarm rate

The detection score s can be interpreted as a realization of a continuous random variable that admits an underlying probability
density p(s), with p(s)� 0 and

R 1
s¼�1 pðsÞds¼1. In the conventional ASV set-up (as in NIST SREs Doddington et al., 2000; Sadjadi

et al., 2017), the performance of an ASV system is assessed using two types of users, targets and nontargets. The former means
that speaker identities of X e and X t match, while the latter means that they differ. We denote the class-conditional score densi-
ties of targets and nontargets by p(sjtar) and p(sjnon), respectively.

Our focus is on ASV security against impostors, characterized by the nontarget score distribution. In specific, an ASV system is
characterized by the probability of accepting a random impostor (sometimes known as zero-effort impostor), known as false
alarm rate (or false acceptance rate). It is defined as the following non-increasing function of detection threshold t 2R:

PFAðtÞ¼
Z 1

t
pðsjnonÞds; ð1Þ

where t is fixed in advance to set PFAðtÞ to a desirable level (increasing t reduces false alarm rate but increases target rejection
rate, also known asmiss rate).

As we do not have access to p(sjnon), in practice PFAðtÞ is usually approximated using Monte-Carlo (MC) methods (Robert and
Casella, 2005). Monte-Carlo integration is a class of numerical methods that can be used to evaluate expected values of compli-
cated functions. It replaces integrals in expectations by finite sums with the help of independent samples drawn from the under-
lying probability distribution. By using If ¢ g to denote an indicator function that equals 1 for a true proposition and 0 otherwise,
we write the MC-approximated false alarm rate as,

PFAðtÞ ¼R 1
�1 pðsjnonÞIfs> tgds

¼Es» pðsjnonÞ½Ifs> tg� � 1
R

XR

r¼1
Ifsr > tg; sr »pðsjnonÞ; ð2Þ

by assuming one is able to obtain R independent samples sr from the non-target score distribution. Here, Es»pðsÞ½gðsÞ� denotes
expected (average) value of function g(s) w.r.t. the distribution p(s). Usually we have just a finite collection of detection scores
fsrgRr¼1 with no further knowledge of p(sjnon).

2.2. Reinterpreting false alarm rate as averaged speaker-pair conditioned false alarm rate

In the following, we provide an alternative view of the false alarm rate as an average of speaker-pair specific false alarm rates, use-
ful in paving way towards a new performancemetric and a generative model designed to extrapolate its values beyond available data-
sets. To that end, note first that the detection scores {sr} are obtained through an ASV system that processes some pre-defined trial list
formed from a finite set of pairwise speaker comparisons. Thus, the terms in (2) can be divided into groups corresponding to unique
pairs of speakers. In the special case when these groups are of equal size, we can rewrite the sum in (2) as

1
R

XR

r¼1
Ifsr > tg¼1

T

XT

i¼1

1
Li

XLi

l¼1
Ifsi;l > tg

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
speaker�pair specific

probability of a false alarm

; ð3Þ

where si,l denotes the lth trial score from speaker pair i, Li is the total number of scores for the ith speaker pair, and T is the total
number of speaker pairs, such that L1¼L2¼ . . .¼LT ¼L and R¼T ¢ L. Here, the inner sum can be interpreted as the probability of a
trial from a given pair of speakers being incorrectly accepted, with the outer sum forming average of the speaker-pair specific
false alarm probabilities.

The above simple reformulation provides a bridge towards our proposed framework detailed below. As our approach enables
extrapolation of PFAðtÞ estimates beyond a given speech corpus, it is necessary to proceed from the empirical averaged false
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alarm rate (3) towards a continuous-space formulation. In specific, as illustrated in Fig. 1, we require a model that enables sam-
pling both speakers and speaker-pair specific scores from continuous distributions. Note, first, that the distribution of non-target
scores p(sjnon) can be seen as a continuous mixture of score distributions between all possible pairs of speakers,

pðsjnonÞ¼
Z Z

pðsjye; ytÞpðyeÞpðytÞdyedyt; ð4Þ

where we have introduced two new vector-valued variables ye and yt; viewed as so-called latent identity variables (Prince et al.,
2007; Kenny, 2010). Let y2Y be an element of some space Y. The latent identity variable framework (Prince et al., 2007) assumes
that y is a pure representation of a person’s identity and that there is a distribution on Y with known probability density function
pðyÞ. Given a likelihood function for the latent identity variable (e.g., meta-embedding Br€ummer et al., 2018), one can make infer-
ences about speaker identities within a set of speech utterances. Examples of such tasks include speaker verification, identifica-
tion and clustering (Br€ummer and de Villiers, 2010). For instance, speaker verification involves testing whether two sets of
utterances belong to the same or to different speakers. In this setup the unit of observations, a speech utterance, corresponds to a
single speaker identity.

The same framework can also be used in the score domain where observations correspond to pairs of identities. Given a pair
of (unknown) identity variables ye; yt 2Y; one can describe the distribution of similarity scores between the corresponding speak-
ers by the density function pðsjye; ytÞ. This allows to conduct a test of alternative hypotheses such as: (i) two sets of scores belong
to different pairs of speakers, (ii) two sets of scores share one common speaker, (iii) two sets of scores belong to the same pair of
speakers.

The representation (4) allows us to rewrite the false alarm probability PFAðtÞ akin to (3), namely,

PFAðtÞ¼
R 1
t pðsjnonÞds¼R 1

t

RR
pðsjye; ytÞpðyeÞpðytÞdyedyt

� �
ds

¼ RR Z 1

t
pðsjye; ytÞds

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
speaker � pair specific

probability of a false alarm

pðyeÞpðytÞdyedyt; ð5Þ

where the inner integral is the speaker-pair specific probability of a false alarm and the outer two integrals correspond to sum-
ming over all possible speaker pairs.

Given a trial list with speaker IDs, one can obtain the estimate of PFAðtÞ using so-called nested Monte-Carlo (Rainforth et al.,
2018). It uses MC estimate of the inner integral in (5) to compute MC estimate of the outer integral. The corresponding nested
sampling scheme consists of sampling a pair of speakers, followed by sampling a set of scores from the speaker-pair specific score
distribution. In practice, any trial list consisting of T unique speaker pairs and the corresponding scores can be thought as being
generated according to this scheme. For instance (see Fig. 1), the following generative process produces the scores suitable for
computing the nested MC estimate of PFAðtÞ:

1. sample an enrolled speaker yðiÞe » pðyÞ
2. sample a test speaker yðiÞt »pðyÞ
3. sample ne utterances of the enrolled speaker xe;j »pðxjyðiÞe Þ; j¼1;2; . . . ;ne

4. sample nt utterances of the test speaker xt;k »pðxjyðiÞt Þ; k¼1;2; . . . ;nt

5. compute Li¼ne ¢nt pairwise scores sj;k¼scoreðxe;j; xt;kÞ using an ASV system.

Fig. 1. Illustration of the steps to obtain the speaker-pair conditioned score distribution. (Left) Latent speaker identity space. Each element of this space corre-
sponds to unique identity. Small circles represent a dataset consisting of 7 speakers. (Middle) Observation space. Here, pðxjyÞ is the distribution of utterances x of
the speaker y. (Right) Score space. Here, pðsjye; ytÞ is the distribution of similarity scores between utterances of the pair of speakers. Samples from this distribution
are shown as vertical arrows. Shaded area corresponds to the speaker-pair conditioned false alarm probability which depends on the decision threshold t.
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Here, the index i runs over all speaker pairs and pðxjyÞ denotes the conditional distribution of speech utterances x belonging to
speaker y. Here, the last step can be equivalently re-formulated as sampling from the distribution of scores conditioned on a pair
of speakers:

1. sample an enrolled speaker yðiÞe » pðyÞ
2. sample a test speaker yðiÞt »pðyÞ
3. sample Li scores sl »pðsjyðiÞe ; y

ðiÞ
t Þ; l¼1;2; . . . ; Li.

Now, the nested MC estimate of (5) can be found as

PFAðtÞ � 1
T

XT

i¼1
PðiÞFAðtÞ; ð6Þ

where

PðiÞFAðtÞ¼
R 1
t pðsjyðiÞe ; y

ðiÞ
t Þds

� 1
Li

XLi

l¼1
Ifsl > tg; sl » pðsjyðiÞe ; y

ðiÞ
t Þ; y

ðiÞ
e ; y

ðiÞ
t »pðyÞ:

ð7Þ

We refer to PðiÞFAðtÞ as speaker-pair conditioned false alarm rate. It is the fraction of similarity scores between these speakers being
above the decision threshold t.

The PFAðtÞ can be estimated based on either a model or available empirical data. In the former case one needs a probabilistic
model of between-speaker similarity scores and an algorithm to generate samples from this model. In specific, one must be able
to obtain samples from the distribution of speaker identities pðyÞ and from the distribution of similarity scores pðsjye; ytÞ given an
arbitrary speaker pair ðye; ytÞ. An example of such a model will be described in Section 2.4. In the latter case, the distribution pðyÞ
is a uniform distribution over speakers’ IDs and the observed between-speaker scores can be viewed as being samples drawn
from an unknown distribution pðsjye; ytÞ. That is, the PFAðtÞ can be estimated by repeated selection of random pairs of speakers
from a dataset and computing similarity scores between random subsets of their sessions. Algorithm 2.1 summarizes a procedure
to estimate the probability of accepting a zero-effort impostor, PFAðtÞ; given a set of utterances with speaker labels.

One should note that in general case, i.e., when speaker-pair specific subsets have different number of scores, Li, the estimators
defined by (2) and (6) produce different results. The former estimator relies on the unrealistic i.i.d. assumption and does not take into
account data dependencies resulting from multiple appearances of the same speaker in a given trial list. In practice, however, limited
resources usually do not allow to collect sufficiently many unique pairs of speakers to satisfy this assumption. As a result, the estimate
may be biased if some speaker pairs have disproportionately large number of trials compared to the rest. The estimator in (6) compen-
sates this bias by assigning weights to the terms in the sumwhich are inversely proportional to the number of trials. A more in-depth
discussion of data dependence in speaker recognition evaluation can be found inWu et al. (2017).

Algorithm 2.1
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2.3. Worst-case false alarm rate with N impostors

As (6) suggests, the probability of accepting an impostor speaker can be estimated by averaging the speaker-pair conditioned
false alarm probabilities. In particular, Algorithm 2.1 repeats simulation of the zero-effort attack scenario where an impostor
speaker is selected at random from the general population.

We propose a new characteristic of ASV systems which generalizes PFAðtÞ to attack scenarios where an impostor speaker is
selected among N speakers with the intention to fool an ASV system. We call it the worst-case false alarm rate with N impostors,
denoted by PNFAðtÞ. Algorithm 2.2 outlines the steps to estimate PN

FAðtÞ. Here, similarity( ¢ , ¢ ) is an arbitrary similarity measure
between speakers. The similarity function could be defined, for instance, in a speaker embedding space. In this work, all our mod-
els are defined in the score domain. One possible strategy to select the closest speaker is to sample N sets of scores from
pðsjyðiÞe ; y

ðiÞ
t;j Þ for j¼1; . . . ;N and select the set with the highest mean value. We adopt this strategy. Fig. 2 illustrates progression of

Algorithm 2.2.
Algorithm 2.2 reduces to the zero-effort imposture case if N¼1; or if one selects a random (among N available) test speaker,

rather than the closest one to the enrolled speaker. Fig. 3 demonstrates differences between these cases.

Fig. 3. Illustration of two evaluation scenarios where an impostor speaker is selected among N¼1 (zero-effort attack) and N¼3 impostor speakers. (Left and Mid-
dle) Latent speaker identity space. Star represents an enrolled speaker and circles correspond to the impostor speakers. (Right) Distributions of scores between
the enrolled speaker ye and each of the N impostor speakers yt;j for j¼1;⋯;N.

Fig. 2. Illustration of a few iterations of the Algorithm 2.3 in the case of N¼3. At each iteration the algorithm samples N non-target speakers. The corresponding
speaker-pair conditioned score distributions are depicted as Gaussians. The algorithm selects a distribution with the largest mean value. This distribution
is shown as the one with shaded area under the curve. Finally, the algorithm computes the probability of the score being above the decision threshold t for the
selected distribution. This probability, denoted as PðiÞFA; equals the area under the curve to the right of t. Since the score distributions are not available in practice,
one can only compute the empirical estimates of PðiÞFA.
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2.4. Performance extrapolation through generative model of scores

Note that in the above strategy, the value of N is limited by the number of speakers in the dataset. Here, we describe an
approach to extrapolate PNFAðtÞ for values of N greater than the number of speakers in a dataset. Our main assumption is
to approximate the speaker-pair conditioned score distribution pðsjye; ytÞ as a (univariate) Gaussian. It should be noted that this
assumption, by itself, does not put too many constraints on the shape of the distribution p(sjnon) which can be asymmetric and/
or heavy-tailed.

In the sequel we describe a probabilistic model of between-speaker scores which follows the generative process in Algo-
rithm 2.2. It will allow to obtain estimates of PN

FAðtÞ for arbitrary values of N. We introduce two sets of latent variables: he and ht.
The variables he are shared among N speaker pairs and represent individual characteristics of the enrolled speaker ye. The varia-
bles ht;j; in turn, are responsible for differences between score distributions within a set of test speakers yt;j.

The proposed probabilistic model consists of the distribution of observations pðsjhe;htÞ;which is assumed to be Gaussian, and
the prior distribution of latent variables pðhe;htÞ¼pðhtjheÞpðheÞ. Assuming that one can generate random samples of these varia-
bles, sampling scores from the model can be done according to the following steps (index i is omitted for clarity):

1. sample he »pðheÞ
2. sample ht;j »pðhtjheÞ for j¼1 . . .N
3. sample N sets of scores Sj¼fsj;lg;where sj;l »pðsjhe;ht;jÞ

We consider a particular instance of such model where ht¼fmg; he¼fm; λ;s2g and the joint probability density function of
the observed score and latent variables is factorized as follows:

pðs;he;htÞ¼pðsjm;s2Þpðmjm; λ;s2ÞpðmÞpðλÞpðs2Þ:
The individual factors are outlined below:

pðsjm;s2Þ¼N ðsjm;s2Þ
pðmjm; λ;s2Þ¼N ðmjm;s2=λÞ
pðmÞ¼N ðmjm0;s

2
0Þ

pðλÞ¼Gamðλjaλ;bλÞ
pðs2Þ¼ InvGamðs2jas ; bsÞ:
Here, u¼fm0;s

2
0; as ; bs aλ;bλg are hyper-parameters which can be estimated on the training set of scores formed according to

Algorithm 2.2. Given hyper-parameters, the model can be used to predict PN
FAðtÞ for arbitrary values of N using Algorithm 2.3. It

differs from Algorithm 2.2 in a way that the observed scores are replaced by samples from a generative model meant to approxi-
mate the unknown distribution of scores. In the special case of the proposed model the PN

FAðtÞ can be estimated without explicit
sampling of scores. The assumption of the speaker-pair conditioned score distribution being Gaussian allows to compute the

Algorithm 2.2
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estimate as

PNFAðtÞ �
1
T

XT

i¼1
1�F

�
tj maxj¼1...Nðfmi;jgÞ;s2

i

�
;

where mi, λi, s2
i and mi,j are sampled from the corresponding distributions. Here, F( ¢ ) denotes cumulative distribution function

of the Gaussian distribution.
This model assumes shared variance among score distributions pðsjye; yt;jÞ for j¼1;⋯;N given a target speaker ye. This assump-

tion as well as the choice of specific distributions are primarily motivated by the convenience of computing the posterior distri-
bution of the latent variables. In particular, using conjugate pairs of distributions (Gelman et al., 2013) as building blocks in the
model allows to devise efficient algorithms to obtain approximate posterior distribution. This leads to closed-form updates in the
expectation-maximization (EM) algorithm (Dempster et al., 1977) used to estimate the model hyper-parameters, with the details
provided in Appendix I. Further insight to the form of the score distributions implied by our model (including its limitations) is
provided in Appendix II. In Section 5 we provide discussion of the adequacy of the model assumptions and potential alternatives.

Fig. 4 depicts the Bayesian network of the proposed model. A Bayesian network is a directed graphical model (Bishop, 2006)
that represents a set of random variables and their conditional dependencies via a directed acyclic graph. Empty circles denote
latent variables, shaded circles denote observed variables and nodes without circles denote deterministic parameters. A group of
nodes surrounded by a box, called a plate, labeled with T indicates that the subgraph inside a plate is duplicated T times (Buntine,
1994). The arrows between the nodes point from the parent variables to their children variables and represent the conditional
dependencies between these variables.

Algorithm 2.3

Fig. 4. A graphical representation of the generative model. Here, T is the number of target speakers, Ni is the number of non-target speakers for the ith target
speaker, and Li,j is the number of similarity scores between the ith target speaker and the jth non-target speaker.
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3. Experimental setup

This section describes the ASV systems, protocols, and the dataset we use for the experiments with the proposed worst-case
false alarm rate with N impostors (PN

FA) metric.

3.1. Dataset

A suitable dataset for our experiments has to fulfill two requirements. First, it must have a large number of speakers to not
only train well-performing ASV systems, but to have enough speakers in the evaluation side to produce good PN

FA estimates from
the ASV scores. Second, each speaker in the evaluation side should have enough utterances to produce a sufficiently large number
of scores between each pair of speakers, required for reliable PN

FA estimation. For these reasons, we chose the VoxCeleb datasets
(VoxCeleb1 Nagrani et al., 2017 & VoxCeleb2 Chung et al., 2018). When combined, the datasets contain 7365 speakers and, on
average, each speaker has well over 100 utterances, which typically originate from about 20 sessions.

We divided the available speakers into three disjoint sets containing 5345, 40, and 2000 speakers. The first set of 5345 speak-
ers is used to train the ASV systems. The second set of 40 speakers consists of the test speakers in the standard VoxCeleb1 ASV
evaluation protocol, which is used for evaluating performance of our ASV systems. The third, gender-balanced set contains 1000
male and 1000 female speakers and is used for the experiments with PN

FA estimation. The speakers in this last set were chosen so
that each had utterances from at least 18 different sessions; otherwise the split between the first and the last set was random.

3.2. Automatic speaker verification systems

We provide experimental results for two different ASV systems, based on the two most commonly used speaker embeddings,
i-vectors (Dehak et al., 2011) and x-vectors (Snyder et al., 2018). We trained both systems using Kaldi (Povey et al., 2011) recipes for
VoxCeleb using our custom train-test data division. Both systems use mel-frequency cepstral coefficients (MFCCs) as acoustic features
and a combination of linear discriminant analysis (LDA) and probabilistic LDA (PLDA) in the scoring backend. The fundamental differ-
ence between the i-vector and x-vector systems is that the former is based on Gaussian generative model, while the latter is trained
discriminatively and utilizes longer time context via time-delay neural network. Another major difference is that the x-vector system
is trained with a larger training set leveraging from data augmentation. For further details of the systems, refer to Table 1.

3.3. Evaluation protocols

We used two ASV protocols to serve two different purposes. First, we adopted the standard VoxCeleb1 ASV protocol to assess the
performance of our ASV systems. This protocol contains 40 speakers, and 37;720 evaluation trials with a balanced number of target
(same speaker) and non-target (different speaker) trials. The second protocol is used to obtain a large number of non-target scores for
a large number of speaker pairs to estimate PN

FA. For each of the 2000 speakers in the testing set, we randomly chose 18 utterances so
that all the utterances were from different sessions. Then, for each pair of speakers, we obtained 182¼324 trials by forming all the
utterance pairs between the two speakers. In total, we had 1999000� 324¼647676000 trials, where 19990004 is the total number
of unique speaker pairs. The above number includes cross-gender trials. Including only speaker pairs within one gender, we have
161838000 trials for both males and females.

4. Results

4.1. Performance of speaker verification systems

Before proceeding to our proposed generative approach, we validate correctness of the ASV implementations through stan-
dard performance metrics. To this end, we report equal error rate (EER) andminimum normalized detection cost function (minDCF)

Table 1
Details of the ASV systems used in this study.

i-vector system x-vector system

Acoustic features 24-dimensional MFCCs + delta + double-delta coefficients;
energy based speech activity detection

30-dimensional MFCCs; energy based speech activity detection

Background model Gaussian mixture model of 2048 components with full covari-
ance matrices; trained using the whole training data

—

Embedding extractor Trained with 100000 longest utterances in the training set Trained using the whole training data plus 1000 000 utterances
obtained by data augmentation (reverb, noise, babble, music)

Embeddings 400-dimensional i-vectors 512-dimensional x-vectors
LDA and PLDA Both trained using the whole training data; dimensionality

reduction to 200-D with LDA
Both trained using the whole training data; dimensionality reduc-
tion to 200-D with LDA

4 2000!=ð2!ð2000�2Þ!Þ¼1999000 (number of 2-combinations in a set of 2000 speakers)
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(Alvin and Martin, 2004). EER is obtained by setting the system threshold t so that false alarm and miss rates equal each other.
The threshold selection for minDCF, in turn, is governed by the parameters Ptarget (prior probability of target speaker), Cmiss (cost
of missing the target speaker), and Cfa (cost of falsely accepting a non-target speaker). For this study, we adopt three different
sets of parameters (Table 2): the first set has high cost for misses, the second set has equal costs for misses and false alarms, and
the last one penalizes false alarms more. From the security perspective, DCF3 is the most relevant, whereas the other two DCFs
can be utilized in applications where high security is not required.

Table 3 shows the EERs and minDCFs for i-vector and x-vector systems using VoxCeleb test protocol (category ‘all’). In addi-
tion, we split the protocol based on genders and also report a result for the ‘pooled’ category, which does not contain inter-gen-
der trials making the original test protocol more difficult. Our results are in line with the results reported in the original Kaldi
recipes. As we used about 2000 speakers less for system training, our EER for x-vector system is about 0.5% (absolute) higher
than what is reported in the original recipe.

In addition to the overall performance difference between i-vector and x-vector systems, these systems differ in their ability
to recognize speakers from different genders. For the i-vector system, the performance for males is considerably better, whereas
for the x-vector system the difference between the genders is smaller.

In Fig. 5, we display score distributions for the VoxCeleb1 test protocol and for our custom protocol containing non-target
scores only. The VoxCeleb1 protocol is used to set the system thresholds t for the PNFA estimation experiments presented in the
next section. In these experiments, we use gender-specific thresholds obtained via minimizing DCF separately on male and
female trials. Note that for clarity, Fig. 5 does not show gender-specific thresholds, but instead it shows the thresholds for ‘pooled’
category.

4.2. Estimation of worst-Case false alarm rates

We estimated worst-case false alarm rates empirically using Algorithm 2.2 by randomly selecting enrolled speaker T¼1000
times. Similarly, we use T¼1000 in Algorithm 2.3 to obtain model-based estimates. The estimates are shown in Fig. 6 for both
ASV systems using three different thresholds obtained using the DCF parameter sets in Table 2. We find that model-based
approaches give good estimates when the threshold is low (higher cost for misses). When the threshold is higher than in the
minDCF1 case, the model-based estimates can be seen as a conservative upper bounds for the PN

FA rates. We also find that the dif-
ferences between the empirical and the model-based estimates are greater for females than for the males. To obtain further
insight, we depict the score distributions of the closest impostors for population size of N¼1000 in Fig. 7. The figure indicates
that especially for females, the model-based score distributions tend to be too wide and slightly shifted to the right, which causes
higher false acceptance rates when a high threshold value is used.

Table 2
Parameters of three different detection cost functions (DCF) used in this study.
The system thresholds (t) that mimimize these DCFs are used to estimate false
alarm rates in the following experiments.

Ptarget Cmiss Cfa

minDCF1 0.5 10 1
minDCF2 0.5 1 1
minDCF3 0.5 1 10

Table 3
Performance of i-vector and x-vector systems on VoxCeleb1
test protocol. The original protocol (‘all’) contains both
intra- and inter-gender trials. The numbers under the cate-
gory ‘pooled’ are computed using only intra-gender trials
from both genders.

minDCF1 minDCF2 minDCF3 EER (%)

i-vector
male 0.43 0.14 0.31 6.97
female 0.53 0.17 0.37 8.80
pooled 0.44 0.14 0.34 7.18
all 0.30 0.11 0.27 5.62

x-vector
male 0.27 0.09 0.24 4.71
female 0.30 0.10 0.24 5.19
pooled 0.28 0.09 0.23 4.75
all 0.21 0.07 0.19 3.61
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Using the estimates, we can predict that for the minDCF1 threshold, P
N
FA is 95�98% for an impostor population of size 100000.

For minDCF3 threshold, we can rely only on the empirical estimates, which tell us that, depending on the system and gender, PN
FA

rate of 12�28% is obtained for a population of size 1000. Note that our populations contain only speakers from one gender. If the
population would contain speakers from both genders, the false alarm rates would be lower.

5. Discussion

Before concluding, the authors would like to address two relevant concerns, the over-estimated false alarm rates at high
threshold, and the worst-case attack assumption.

5.1. Analysis of the model-based worst-case false alarm estimation

From Fig. 7, we observe two apparent problems in the score distributions given by the model for the closest impostors: (a) they are
shifted to the right and (b) they have too large variances. As a result, some of the generated scores of the closest impostors are too
high, which results in over-estimated false alarm rates given by the model. We have identified three causes for the problems.

First, we found that the empirical distribution of m, which is the distribution of score means of speaker pairs, is skewed to the
left (negative skewness, see Table 4). Consequently, the fitted normal distribution (assumed in the model) has longer tail on the
right than what the original score data had. The right tail of the distribution of m is where we will find the closest impostors in
Algorithm 2.3. As a result, the scores of the closest impostors are shifted to the right.

Additionally, we observed that the variation in target-vs-impostor scores is smaller for speaker pairs with the closest impos-
tors than for random impostors. In other words, the closer the impostor’s voice is to the target speaker’s voice, the smaller is the
variance in scores between the two speakers. As our model does not take this into account, the speaker pairs with closest impos-
tors tend to have too large score variances.

(a) i-vector. (b) x-vector.

Fig. 5. Score distributions for the standard VoxCeleb protocol and the custom protocol obtained using i-vector and x-vector systems. Dashed lines represent
minDCF thresholds for ‘pooled’ scores (see Table 3) using different sets of cost parameters presented in Table 3.
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Finally, the scores between the speaker pairs are also skewed to the left, which is another source of mismatch between empir-
ical scores and scores generated by the model.

These observations open two potential directions towards increasing the prediction accuracy. The first direction is to revise the
proposed generative model to take into account the skew of score distributions, as well as by relaxing the assumption of a shared vari-
ance. This can be done at the cost of losing conjugacy between distributions in the model, leading to increased computational com-
plexity of hyper-parameter estimation. An alternative, second direction would be supervised fine-tuning to optimize some loss
function between the empirical and the model-based estimates. As our model is parameterized only by six numbers, we believe that a
good hyper-parameter configuration can be found in reasonable time using one of the derivative-free optimization methods (Larson
et al., 2019). To give some empirical evidence for this claim, Fig. 8 displays an example where we tuned our model parametersmanu-
ally. As seen, the model itself is actually flexible enough to fit the empirical false alarm rates accurately — but the purely generative
training criterion does not find the parameter values that achieve this. With the manually corrected model, we obtained 54% worst-
case false acceptance rate estimate for population size of 100, 000 for the strictest minDCF3 threshold, whereas the original model
clearly over-estimated this by giving FA rate of 70% as shown in the top-right panel of Fig. 6.

(a) i-vector. (b) x-vector.

Fig. 6. Empirical and model-based estimates of worst-case false alarm rates with N impostors for various sizes of speaker populations. In each plot, three empiri-
cal and model-based estimates are shown for three different thresholds. These thresholds are obtained separately for each plot using cost parameters defined in
Table 2. The curves from top to bottom correspond to the thresholds of minDCF1, minDCF2, and minDCF3, respectively. The model-based estimates follow closely
emprical estimates for low threshold values, but as the threshold gets stricter, the difference between the empirical and model-based estimates grows. The curves
are obtained using T¼1000 in Algorithms 2.3 and 2.4. The mean values obtained using these algorithms are shown together with their 99% confidence intervals.
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(a) i-vector. (b) x-vector.

Fig. 7. Score distributions of the closest impostors (N¼1000) pooled together from T¼1000 samplings/simulations for the empirical and model-based
approaches. Dashed lines represent minDCF thresholds obtained using different sets of cost parameters, which are presented in Table 3. For the strictest thresh-
old, the area under the density curves on the right side of the threshold is larger for the model-based estimation, which explains why the model-based estimation
lead to higher false alarm rates as shown in Fig. 6.

Table 4
Sources of mismatch between the observed and generated scores. The generative score
model assumes that pairwise non-target scores and means of pair-wise scores (m) are nor-
mally distributed, while the analysis shows that they are skewed to the left. Additionally,
scores with the closest impostors tend to have smaller variances than scores with random
impostors, which is not factored into the model.

i-vector system x-vector system

males females males females

Avg. skewness of pairwise scores �0.20 �0.29 �0.20 �0.27
Skewness ofm �0.86 �0.99 �0.99 �0.62
Avg. STDEV* of scores with the closest impostors 5.1 5.5 7.5 9.4
Avg. STDEV* of scores with random impostors 6.2 7.1 9.6 13.7

* Computed as a square root of an average of variances.

Fig. 8. Worst-case false alarm estimates for male scores given by x-vector system after tweaking the model hyper-parameters manually. First, the parameter aλ
was adjusted until the variances of distributions in Fig. 7 matched and then m0 was adjusted to fix the shifting misalignment. As a result, the model-based esti-
mates follow closely the empirical estimates unlike in Fig. 6.
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5.2. False alarm estimation in simulated attack scenarios

So far we have considered worst-case false alarm estimation from the system deployer’s perspective. From the presented
results, we can gain understanding on how many enrolled speakers systems with specific thresholds can handle without starting
to confuse speakers to each other too much.

Next, let us consider a scenario, in which a malicious attacker is utilizing ASV technology to find similar sounding speakers to
the enrolled target speaker’s voice to break the ASV system. As discussed in Section 1, the previously presented results can be
considered as the worst-case situation, where the attacker has access to both the deployed ASV system as well as to the target
speaker’s enrollment data. In reality, the attacker would be unlikely to have access to either of them. Instead, the attacker would
first have to set up another ASV system and then collect some speech data from the target speaker to perform the speaker search.
These steps will make the attack more difficult as the closest impostor obtained using attacker’s system and data might not be
the same as what would be the closest impostor when using the attacked system and the real enrollment data.

To study the effect of system/data mismatch in the impostor selection, we set up a following experiment. First, we divided the
available 18 utterances for each speaker into two disjoint sets of nine utterances. The first one was used for impostor selection
and the second for speaker enrollment. We compared this setup to a case, where the same set of nine utterances was used both
for impostor selection and enrollment to address the effect of data mismatch. Further, we also varied the number of utterances
used for impostor selection from one to nine to see the effect of the amount of data used for impostor search. We simulated the
ASV system mismatch by using i-vector system to select closest impostors, while the x-vector system was considered to be the
attacked system. This was compared to the case where the impostor search was done using the same attacked x-vector system.

The results are shown in Fig. 9, which reveals the expected patterns: when there is no data mismatch or ASV system mis-
match, false acceptance rates are highest, which means that the attacks are most successful. If there is either data mismatch or
systemmismatch, the false acceptance rates drop. The lowest false acceptance rates are obtained, when both types of mismatches
are present and when the number of utterances available for impostor search is low.

As another future direction, we consider designing amodel for joint modeling of scores from two different ASV systems suitable for
more realistic scenario where the attacker does not have access to the target speaker’s enrollment data and the deployed ASV system.

6. Conclusions

Seamless integration of artificial intelligence to our daily lives, including speech technology products, raises growing concern
of their trustworthiness and safety. Our study resides in the landscape of automatic speaker verification (ASV), or voice biomet-
rics security. One unique feature of voice (and face) biometrics is that, unlike traditional physical biometrics — fingerprints, iris,
retina, DNA to name a few — is that much of the biometric data is publicly available in the Internet through social media, news,
interviews, lectures, and workplace websites to name a few. An important concern is the relation of false alarm (false acceptance)

(a) Male speakers. (b) Female speakers.

Fig. 9. Empirical estimation of PNFA (N¼1000) in various scenarios for x-vector systemwithminDCF3 threshold (see Table 2). ‘Public ASV system’ refers to a case where
the closest impostors in Algorithm 2.3 are selected using the same x-vector system. To simulate a scenario, where attacker uses another ASV system for impostor
selection due to not knowing the details of the deployed system (‘private ASV system’), an i-vector system is used to select the closest impostors. Further, ‘public
enrollment’ and ‘private enrollment’ refer to such cases, where the attacker has access (public) or does not have access (private) to the enrolled target speaker’s enroll-
ment data. If the enrollment data and the ASV system are public, the selection of the closest impostor is easier, which results in higher false acceptance rates.
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and database size: regardless of the selected ASV technology, given a large enough database, one will eventually have speaker
collisions. A technology-aware attacker may increase the likelihood of such collisions through the use of public-domain ASV sys-
tem to identify target speakers from a public database (Vestman et al., 2020). Even without dedicated attacks, however, the num-
ber of different voices (subject to extrinsic and intrinsic speech variations) is not infinite. Therefore, eventually, ASV performance
will be capped at some database size.

The methodology concept put forward in this study gives us novel tool to address the dependency of false alarm rate and
database size beyond the size of a given evaluation corpus. The proposed model produced reasonable match with empirical
scores and displayed the expected trend of increasing false alarm rate as a function of database size. Our model is general and
can be applied to analyze (and optimize) any black-box ASV system to produce graphs similar to those in Fig. 6, based on detec-
tion scores only. As such, these graphs are predictions by the model — how the ASV system will behave if one were able to collect
more speakers assuming the speaker sampling process remains the same. Even if it is not easy to experimentally validate the
model beyond a given training corpus size, the general trends what we saw in our pilot experiments with VoxCeleb corpus are
deemed as expected: false alarm rates increase as a function of database size and will eventually saturate.

Our work has a number of limitations as well. First, as the results indicate, the generative model overestimated the false alarm
rates, especially for the high-security operating region (high threshold). In real-world deployment of ASV, the detection threshold t
needs to be optimized to achieve a desirable security�convenience trade-off based on some development data and application (DCF
setting). If the false alarm rate is over-estimated, the threshold t would have to be increased (relative to the value it would have been
set with precise knowledge of the false alarm rate), leading to decreased user convenience due to increased miss rate. Nonetheless, as
Section 5 indicates, our proposed generative model is flexible enough to be adjusted so that the empirical and predicted false alarm
rates will match closely. Our model design philosophy has been simplicity: all the parameters are automatically learned from data
and we leverage from conjugate families of distributions to enable efficient inference. The suggested future improvements include
revising our distributional assumptions, and combining generative modeling with discriminative fine-tuning.

Second, our model assumes a worst-case scenario where the attacker has access to the target speaker’s enrollment data, as well as
the attacked ASV system. This is no different from standard NIST SRE style evaluations where an evaluator reports standard evaluation
metrics (such as EER, minDCF, or PFA) on a given, fixed evaluation corpus with known trial key. In future, we are interested in extend-
ing our generative model to model interaction between two different ASV systems and across different data domains.

Furthermore, it would be interesting to compare different ASV systems and database qualities. VoxCeleb data was selected for
the experiments primarily due to the large number of speakers and the amount of intra-speaker scores. Nonetheless, being repre-
sentative of found Internet data, VoxCeleb contains many style, channel and environment variations. At least for academic curios-
ity, it would be interesting to repeat our simulations on more controlled database for reference purposes. Further, it will be
interesting to analyze the impacts of i-vector and x-vector dimensionality, dimensionality reduction of these embeddings, and
speaker subspace size in PLDA. Finally, it would be interesting to apply the proposed methods to speaker diarization or other use
cases within ASV, such as score normalization with increased speaker cohort size.
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Appendix A. parameter inference

In the following we describe the algorithm used to estimate hyper-parameters of the proposed generative model. We find the
values of hyper-parameters u that maximize the likelihood function � the joint probability density of the observed data viewed
as a function of u¼fm0;s

2
0; as ; bs ;aλ;bλg:

L ðuÞ¼R
YT

i¼1
N ðmijm0;s

2
0ÞGamðλijaλ;bλÞInvGamðs2

i jas ; bsÞ

YNi
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N ðmi;jjmj; λi;s2

i Þ
YLi;j
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N ðsi;j;ljmi;j;s

2
i Þdmi dλi ds2

i dmi;j

For many probabilistic models with latent variables, including the proposed one, this objective function is intractable (cannot be
evaluated). A commonly adopted strategy to avoid this obstacle is to use the expectation-maximization (EM) algorithm (Dempster
et al., 1977), an iterative optimization method to find the local extrema of the likelihood function. The EM algorithm alternates
between two steps: expectation step (E-step) and maximization step (M-step). On the E-step it computes (approximate) posterior
distribution of the latent variables and on the M-step it updates all the hyper-parameters of the model.

Inference for latent variable models can be conducted through variational Bayes (Bishop, 2006, Chapter 10) or Monte-Carlo
techniques (Bishop, 2006, Chapter 11). We choose the former approach due to its better scalability in terms of computational
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costs. The variational Bayesian inference approximates the exact posterior distribution pðfmig; fλig; fs2
i g; fmi;jgjfsi;j;lgÞ by a varia-

tional distribution q from a restricted family of distributions. The variational distribution is found by minimizing the Kull-
back�Leibler divergence from the posterior distribution.

One of the commonly adopted strategies, known as black-box variational inference (BBVI) (Ranganath et al., 2014), is to explic-
itly define the family of variational distributions and use stochastic optimization (Robbins and Monro, 1951) to minimize the
objective. Another strategy to define q is themean-field approximation (Bishop, 2006; Jordan et al., 1999) which assumes the var-
iational distribution to be fully factorized:

qðfmig; fλig; fs2
i g; fmi;jgÞ¼

YT

i¼1
qðmiÞqðλiÞqðs2

i Þ
YNi

j¼1
qðmi;jÞ ð8Þ

but with no further assumptions imposed on the functional forms of the factors. For conditionally conjugate models (Wang and
Blei, 2013) this approach leads to closed form solutions in a coordinate descent optimization algorithm which iteratively updates
the parameters of one factor while holding the others fixed. Since the proposed model is conditionally conjugate we choose to
use the mean-field approach due to its lower computational complexity. The inference algorithm performs the following updates
performed until convergence.

Expectation step (E-step):

� Updating q(mi):

qðmiÞ¼N mijbmi; s2i
� �

s2i ¼ NiE λi½ �E 1
s2
i

" #
þ 1
s2
0

 !�1

bmi¼ NiE½λi�E
1
s2
i

" #
þ 1
s2
0

 !�1
E½λi�E

1
s2
i

" #
XNi

j¼1
E mi;j

h i
0
@

1
Aþm0

s2
0

0
@

1
A

E½mi�¼ bmi; E½m2
i �¼ bm

2
i þs2i

� Updating qðs2
i Þ:

qðs2
i Þ¼ InvGam s2

i jbai;
bbi

� �

bai¼asþNi

2
þ
XNi

j¼1
Li;j

bbi¼bsþ1
2
E
XNi

j¼1

XLi;j

l¼1
ðsi;j;l�mi;jÞ2

2
4

3
5þ1

2
E½λi�E

XNi

j¼1
ðmi;j�miÞ2

2
4

3
5

E
1
s2
i

" #
¼bai

bbi

; E½ logs2
i �¼ logbbi�cðbaiÞ

� Updating q(λi):

qðλiÞ¼Gam λijba i;
bb i

� �

ba i¼aλþ
Ni

2

bb i¼bλþ
1
2
E

1
s2
i

" #
E
XNi

j¼1
ðmi;j�miÞ2

2
4

3
5

E½λi�¼
ba i

bb i

; E½ logλi�¼cðba iÞ� logbb i:

� Updating q(mi,j):

qðmi;jÞ¼N mi;jjbm i;j;bs
2
i;j

� �

bm i;j¼
PLi;j

l¼1þE½λi�
Li;jþE½λi�

bs2i;j¼ E
1
s2
i

" #
ðLi;jþE½λi�Þ

 !�1

E½mi;j�¼ bm i;j; E½m2
i;j�¼ bm i;jþbs2i;j
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Here, E½ ¢ � denotes the expected value of a random variable.

Maximization step (M-step):
Given an approximate posterior distribution found on the E-step, the M-step proceeds by updating the hyper-parameters u as

follows:

� Updatingm0:

m0¼
1
T

XT

i¼1
E½mi�

� Updating s2
0:

s2
0¼

1
T

XT

i¼1
ðE½mi��m0Þ2

� Updating aλ and bλ:

aλ;bλ¼ arg maxa;bT
�
a logb� logGðaÞ

�
þða�1Þ

XT

i¼1
E½ logλi��b

XT

i¼1
E½λi�

� Updating as and bs:

as ; bs¼ arg maxa;bT
�
a logb� logGðaÞ

�
þða�1Þ

XT

i¼1
E½ logs2

i ��b
XT

i¼1
E

1
s2
i

" #

The last two updates are two-dimensional convex optimization problems. Their solutions can be obtained using numerical optimiza-
tion algorithms specialized to these tasks (Minka, 2002; Llera and F. Beckmann, 2016). Our approach is a less elaborate version of Minka
(2002) where we use general-purpose root-finding algorithmswhich can be found in any commonly-adoptedmathematical library.

The EM algorithm repeats the E- and M-steps outlined above until the convergence. In our experiments we found that a few
iterations are sufficient to reach a point where any further iterations do not substantially change the values of hyper-parameters.

Appendix B. Score Distribution of the model is approximately Gaussian

In the sequel we show how to obtain the marginal distribution of the observations

pðsÞ¼
Z

pðsjm;s2Þpðmjm; λ;s2ÞpðmÞpðλÞpðs2Þdmdmdλds2

by integrating out all the latent variables in the model one-by-one. We begin by noting that convolution of two Gaussians is
another Gaussian with summed variances, to integrate outm:

pðsÞ¼
Z

N ðsjm;s2þs2=λÞN ðmjm0;s
2
0ÞGamðλjaλ;bλÞInvGamðs2jas ; bsÞdmdλds2

Further, since the inverse gamma distribution is a conjugate prior for Gaussian distribution with fixed mean, we arrive at the fol-
lowing:

pðsÞ¼
Z

t2as
�
sjm; bs=asð1þ1=λÞ

�
N ðmjm0;s

2
0ÞGamðλjaλ;bλÞdmdλ

where tn(sjh, &2) denotes the non-standardized t-distribution with n degrees of freedom, mean h and variance &2. Since the t-dis-
tribution can be closely approximated by a Gaussian distribution, which is its limiting case when n!1, even for moderate val-
ues of n, we can approximate the score distribution by a continuous mixture of Gaussians with gamma as the mixing distribution:

pðsÞ �
Z

N
�
sjm0;s

2
0þbs=asð1þ1=λÞ

�
Gamðλjaλ;bλÞdλ

Note that the distributions inside the integral resemble a conjugate pair, which would lead to p(s) being the t-distribution. There-
fore, we speculate that the distribution p(s) can be roughly approximated by a Gaussian. In fact, our simulations indicate that
sampling scores from the model results in bell curve shaped histograms. The analysis above reveals a potential limitation of the
proposed model � the assumption that the distribution is symmetric around the mean.
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Abstract
Deep speaker embeddings have been demonstrated to

outperform their generative counterparts, i-vectors, in recent
speaker verification evaluations. To combine the benefits of
high performance and generative interpretation, we investigate
the use of deep embedding extractor and i-vector extractor in
succession. To bundle the deep embedding extractor with an i-
vector extractor, we adopt aggregation layers inspired by the
Gaussian mixture model (GMM) to the embedding extractor
networks. The inclusion of GMM-like layer allows the discrim-
inatively trained network to be used as a provider of sufficient
statistics for the i-vector extractor to extract what we call neu-
ral i-vectors. We compare the deep embeddings to the proposed
neural i-vectors on the Speakers in the Wild (SITW) and the
Speaker Recognition Evaluation (SRE) 2018 and 2019 datasets.
On the core-core condition of SITW, our deep embeddings ob-
tain performance comparative to the state-of-the-art. The neural
i-vectors obtain about 50% worse performance than the deep
embeddings, but on the other hand outperform the previous i-
vector approaches reported in the literature by a clear margin.

1. Introduction
Automatic speaker verification (ASV) systems extract speaker-
related information from a pair of speech recordings (enroll-
ment and test) to decide whether the speakers in the two record-
ings are the same. This is done by computing similarity score
between speaker-related features in the two recordings. While
the base features have remained the same for decades [1], ex-
traction and comparison of speaker traits from these features has
coevolved with advances in machine learning. Much of ASV
research has focused on modeling low-level speech feature dis-
tributions via Gaussian mixture models (GMMs) [2, 3, 4, 5].
Common to models such as GMM with universal background
model (GMM-UBM) [3], joint factor analysis (JFA) [4] and i-
vector [5] is the use of GMM to model acoustic features within
recording(s).

What has changed throughout the years, however, is how
speaker comparison is carried out. In the classic GMM
pipelines [2, 3], features in the enrollment utterance(s) are used
to train a speaker-dependent GMM, and comparison consists of
evaluating the likelihoods of the target speaker model and the
UBM to form an average log-likelihood ratio over all frames. In
contrast to these frame-based approaches, the modern approach
is to first represent the enrollment and test utterances as vectors
of the same dimensionality. They can then be compared using a
simple inner product, or a trainable classifier [6]. How these
vectors are defined (and called) has changed throughout the
years. The early approaches, driven by the success of GMMs,
used high-dimensional GMM supervectors [7] with inner prod-
uct scoring, typically implemented using support vector ma-

chines (SVMs). Through base work in [4], this was followed up
by the highly-successful i-vector framework [5] where GMM
supervectors are presented as points in a low-dimensional la-
tent subspace. Following trends in deep learning, the focus has
recently shifted towards deep neural network (DNN) based fea-
tures [8], called nowadays embeddings. The idea to represent
utterances as vectors, however, is the same as before, with the
same back-end classifiers [9] used with GMM- and neural net-
work based embeddings.

As the title suggests, we focus on i-vector extraction along
the lines of classic GMM-based pipelines, but with a ‘neural
twist’. The general idea, of course, is not new. The three
building blocks of any GMM-based method are (a) a frame-
level feature extractor (e.g. MFCC extractor), (b) a dictio-
nary (e.g. a UBM), and (c) a posterior estimator (e.g. feature
vector alignment to dictionary components), each of which has
been successfully replaced in prior work by their neural ver-
sions [10, 11]. In contrast to these studies that have focused
either on replacing one or two of the components only, or using
GMM-inspired components [12, 13, 14] to implement neural
embedding extractors, we obtain all the three as ‘side-products’
from a neural network and proceed with conventional i-vector
extractor training on top of them. Noting that (a), (b) and (c)
are the only needed building blocks of any GMM-based em-
bedding — be it a GMM-UBM [3], JFA [4], GMM-supervector
[7], or i-vector [5] — this opens up a pathway to re-address any
of the classic pipelines, still respecting the undeniable perfor-
mance gains demonstrated by the recent neural approaches.

Our focus on i-vectors is arbitrary and the goal of our work
is not to improve upon state-of-the-art in deep neural network
based speaker embeddings. Instead, we aim to demonstrate that
classic GMM-based ASV pipelines may not be inferior because
of their model structures per se, but in the adoption of generic
(nondiscriminative) elements. Classic frame-based GMM ap-
proaches have certain, nearly forgotten advantages, such as the
ability to provide ‘partial’ scores at a fine temporal scale — the
frame level. This might be particularly useful in speaker diariza-
tion (not addressed here) and speaker recognition from short
utterances. Even if DNN embeddings appear to perform well
in short duration ASV tasks [15], we argue that using GMMs
retains all the benefits of generative modeling, such as the pos-
sibility to do sampling and obtaining uncertainty estimates for
features and speaker embeddings. These add up to transparency
and explainability demanded with increasing frequency from
any machine learning system.

2. Modern speaker embedding extractors
Deep neural networks used for extracting speaker discrimina-
tive embeddings typically consist of three main parts (see Fig-
ure 1). The first part of the network operates on frame-level
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features as an input in order to construct discriminative features
from short time contexts, ranging from 100 milliseconds up to
a few seconds. The frame-level layers are followed by the sec-
ond main component, temporal aggregation layer, which con-
verts the variable length input feature vector sequence to a fixed-
dimensional representation. Finally, the last part of the network,
which consists of one or two feedforward layers and the output
layer, acts as a classifier for speaker identities. The speaker
embeddings are usually extracted from the first fully connected
layer after the aggregation layer [8].

Each of the three main parts can be implemented in mul-
tiple different ways. The frame-level component is often im-
plemented as 1D convolutional neural network (CNN) [16], 2D
CNN [17], or as some variant of time-delay neural network [18].
In 1D CNN, the convolution kernel slides over the temporal di-
mension (frames), whereas in 2D convolution, the kernel slides
over both time and frequency dimensions.

There are two commonly used approaches for temporal ag-
gregation. In the first approach [8], relatively high-dimensional
features are obtained from CNN/TDNN, which are then aggre-
gated by computing the (sample) mean and the standard devi-
ation of the feature vectors over time. The output of the ag-
gregation layer is then formed by concatenating the mean and
standard deviation vectors. The second approach [12] of ag-
gregation assumes relatively low-dimensional features (akin to
conventional hand-crafted acoustic features) from CNN/TDNN
but assigns them into multiple clusters (see Figure 2). Here, the
aggregation is performed for each cluster separately, resulting in
locally aggregated descriptor vectors. Finally, the locally aggre-
gated descriptors are concatenated to form a higher-dimensional
residual vector. This approach is analogous to the process how
GMM mean supervectors are formed in the GMM-UBM frame-
work.

3. Cluster-wise temporal aggregation
We focus on cluster-wise temporal aggregation methods as they
offer a natural pathway to utilize GMM-based speaker verifi-
cation approaches, such as the i-vector approach, together with
discriminatively trained features. In the following, we consider
two recent aggregation methods known as learnable dictionary
encoder (LDE) [19, 12] and NetVLAD [20, 13], where VLAD is
an acronym for “vector of locally aggregated descriptors”. As
we will show below, both can be regarded as discriminatively
trained GMM-supervector [7] encoders with specific assump-
tions.

Let us first recall the formula for posterior computation of
a Gaussian mixture component given a feature vector xt (time
index t = 1, . . . , T ). By letting θ = {µc,Σc, wc}Cc=1 be a
GMM of C components with mean vectors µc, covariance ma-
trices Σc, and component weights wc, we can compute the pos-
teriors as follows:

γc,t = P (c|xt) =
wcN (xt|µc,Σc)∑C
l=1 wlN (xt|µl,Σl)

, c = 1, . . . , C.

(1)
By denoting

βc = log

(
wc√

(2π)D|Σc|

)
, (2)

where D is the dimension of feature vectors, we can expand (1)
to form

γc,t =
exp

[
− 1

2
(xt − µc)

TΣ−1
c (xt − µc) + βc

]
∑C

l=1 exp
[
− 1

2
(xt − µl)TΣ−1

l (xt − µl) + βl
] .

(3)

Table 1: Comparison of LDE and NetVLAD.

Computation step LDE NetVLAD

Posterior computation Eq. (4) Eq. (7)
Cluster-wise representations Eq. (5) Eq. (8)
Supervector normalization — Length-norm

3.1. Learnable dictionary encoder

Equation (3) holds for any GMM with unrestricted covariance
matrices. In the following, we consider special cases, where the
covariance matrices are restricted to have specific forms. First,
by assuming isotropic covariance matrices (i.e., Σc = scI, with
sc > 0), (3) becomes

γc,t =
exp

[
− 1

2
sc‖xt − µc‖2 + βc

]
∑C

l=1 exp
[
− 1

2
sl‖xt − µl‖2 + βl

] , (4)

where ‖ · ‖ denotes the Euclidean norm. This is the formula-
tion used for posterior computation in [18] with LDE. Earlier
works on LDE [19, 12], did not include the bias terms βc. Both
the parameters sc that define the isotropic covariance matrices,
and the bias terms βc as well as the cluster centroids µc are
learnable parameters of the LDE layer.

After computing the posteriors, the construction of the out-
put of LDE layer is a two step process. First, the input features
are temporally aggregated with respect to each cluster. This is
done by computing the weighted meansmc of residualsµc−xt

around the cluster centroids for each cluster c:

mc =

∑T
t=1 γc,t(µc − xt)∑T

t=1 γc,t
. (5)

The second step is to concatenate the cluster-wise representa-
tions to form a supervector m = (mT

1 ,m
T
2 , . . .m

T
T )

T, which
is the output of the LDE layer.

While the original formulation of LDE uses separate
isotropic covariance matrices for each component, it is straight-
forward to modify the LDE layer to operate with diagonal co-
variance matrices, or to use one shared diagonal or spherical
covariance matrix for all components. In our experiments, we
consider only the shared diagonal matrix formulation besides
the original formulation with non-shared spherical covariances
to limit the computational burden.

3.2. NetVLAD encoder

Let us next assume shared full covariance matrices (i.e., Σc =
Σ ∀c), which will lead to the NetVLAD formulation of poste-
rior computation. The shared covariance assumption simplifies
(3) to

γc,t =
exp

[
µT

c Σ−1xt + log(wc)− 1
2
µT

c Σ−1µc

]
∑C

l=1 exp
[
µT

l Σ−1xt + log(wl)− 1
2
µT

l Σ−1µl

] ,

(6)
which allows us to write

γc,t =
exp

[
ωT

c xt + ψc

]
∑C

l=1 exp
[
ωT

l xt + ψl

] , (7)

where

ωc = Σ−1µc and ψc = log(wc)− 1

2
µT

c Σ−1µc.

Equation (7) can be implemented as an affine transform fol-
lowed by softmax operation over clusters, which is exactly what
is done in NetVLAD layer to compute the posteriors. The
NetVLAD layer has ωc, ψc, and µc as its learnable parameters.
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Figure 1: An x-vector extractor consists of three functional blocks: a frame-level processor, a temporal pooling layer, and classifier.
X-vector embeddings are derived from the affine transformation after the pooling layer.
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Figure 4: An i-vector extractor is built upon a Universal Background Model (UBM) defined by the parameter set consists of weights,
mean vectors, and covariance matrices.

In terms of the number of learnable parameters, the correspon-
dence between NetVLAD and GMM with shared covariances
is not exact as covariance matrix Σ contains D(D + 1)/2 free
parameters, whereas a matrix containing all ωc vectors has CD
parameters.

In NetVLAD, the construction of the output supervec-
tor differs from LDE in two ways. First, NetVLAD length-
normalizes the component-wise outputs:

mc =

∑T
t=1 γc,t(µc − xt)∥∥∥

∑T
t=1 γc,t(µc − xt)

∥∥∥
. (8)

The second difference is that the supervector m, obtained by
concatenating the cluster-wise outputs mc, is further length-
normalized to unit sphere.

The differences between LDE and NetVLAD are summa-
rized in Table 1. As LDE and NetVLAD differ in the posterior
computation as well as whether or not length-normalizations are
applied, it is challenging to identify the potential causes of the
performance difference between the two methods (if such dif-

ference is to exist). Therefore, we also study a hybrid approach
(referred as NetVLAD/LDE), in which the posterior computa-
tion follows the NetVLAD approach, while the rest of the steps
follow the LDE approach.

4. Utilizing aggregation statistics for
i-vector extraction

Deep speaker embedding [8] has been demonstrated to outper-
form the i-vector representation shown in Figure 4. The en-
hanced performance is attained by (1) training the network us-
ing large amount of training data via data augmentation, and
(2) discriminative training (e.g., multi-class cross entropy cost,
angular margin cost [21]). The drawback is lack of generative
interpretation. We propose to combine the benefits from both
sides, leading to the so-called neural i-vector shown in Fig-
ure 3. In the neural i-vector, we utilize the features, posterior
estimator, and the UBM that all have been trained discrimina-
tively using speaker labels. This differs from the DNN i-vector
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presented in [11] as it requires senone labels and does not utilize
discriminatively trained features.

To extract neural i-vectors, we do not compute (5) or (8),
but instead compute the suffiecient statistics in a standard way
[22] as follows:

zc =
T∑

t=1

γc,t, (9)

fc =
T∑

t=1

γc,txt, (10)

Sc =
T∑

t=1

γc,txtx
T
t . (11)

Here the features and posteriors are extracted from the embed-
ding extractor network. The obtained statistics can be then eas-
ily used with any available i-vector code to train the i-vector
extractor and to extract the i-vectors.

5. Speaker verification experiments
5.1. Network architectures and training procedure

The network architectures designed for this study are all derived
from the standard x-vector architecture presented in [8]. Our
most elementary architecture differs from [8] in the following
ways:
• As in [16], we use non-dilated 1D CNN instead of

TDNN with dilations used in [8].
• As in [16], we use leaky rectified linear unit (LReLU)

activations (with slope of 0.01) instead of ReLUs.
• We have only one embedding layer (rather than two)

after the aggregation layer. In our preliminary experi-
ments, we did not find adding another layer to decrease
the resulting speaker verification equal error rates.

We extend our default network (referred as TDNN) by
adding squeeze-and-excitation (SE) modules [23] to the TDNN
layers. The SE module aims to improve the representative
power of hidden features by reweighting them using informa-
tion from global temporal statistics of features. Using the ter-
minology of [24], we adopt SE modules to perform temporal
squeeze and channel (feature) excitation. That is, the output fea-
tures of 1D CNN layer are weighted by factors computed from
temporally pooled (non-weighted) features. Our implementa-
tion of the SE module is depicted in Figure 5, while Figure 6
illustrates how the SE module is added to the TDNN layer. The
resulting TDNN-SE network architecture is presented in Table
2. Our SE module differs from the original in that it computes
standard deviations in addition to means during the squeeze
phase. In the excitation phase, we add batch normalization be-
tween the fully connected layers, as shown in Figure 5.

Inspired by the widely used ResNet architecture [25], our
next network variant includes residual modules. Our imple-
mentation of a residual module (referred as TDNN-RES-SE)
includes a fully connected layer, a 1D convolutional layer, and
a SE module, as depicted in Figure 7. The network architecture
is shown in Table 3. We replace neither the first nor the last
TDNN-SE layer with the residual modules, as residual mod-
ules require the number of input and output features to be the
same. The first layer has relatively low-dimensional MFCCs as
its input, while the output size of the last layer depends on the
aggregation method used. Networks with the mean and stan-
dard deviation pooling produce 1500-dimensional feature vec-
tors at the output of the last TDNN layer. Networks with LDE or

Table 2: The architecture of TDNN-SE network.

# Layer type CNN kernel size Output dim.

1 TDNN-SE 5 512
2 TDNN-SE 5 512
3 TDNN-SE 7 512
4 TDNN-SE 1 512
5 TDNN-SE 1 1500
6 Aggregation — 3000
7 FC-LReLU-BN — 512
8 FC-softmax — #speakers

Table 3: The architecture of TDNN-RES-SE network. The out-
put sizes of the last TDNN-SE layer and the aggregation layer
depend on the aggregation method. If aggregation using means
and standard deviations is used, these sizes are 1500 and 3000,
but if LDE or NetVLAD is used, the sizes are 128 and 8192.

# Layer type CNN kernel size Output dim.

1 TDNN-SE 5 512
2,3 TDNN-RES-SE 5 512
4,5 TDNN-RES-SE 7 512
6,7 TDNN-RES-SE 1 512
8 TDNN-SE 1 1500/128
9 Aggregation — 3000/8192
10 FC-LReLU-BN — 512
11 FC-softmax — #speakers

NetVLAD, in turn, produce TDNN outputs of 128-dimensions.
With LDE and NetVLAD, we use 64 clusters, resulting in 8192-
dimensional output vectors from the aggregation layer.

All our networks are implemented with PyTorch [26]. The
Kaldi toolkit [27] is used to extract speech activity labels and
60-dimensional MFCCs (without delta features), used as the in-
put features. PyKaldi [28] is used to load the features in Kaldi
format in Python and to perform cepstral mean normalization
(CMS) for the features.

For network training, we use four second long segments
selected from random positions of the training utterances. Dur-
ing training, we feed about 14 000 short segments from each
training speaker to the network in minibatches of size 64. Net-
work weights are updated to minimize cross-entropy loss using
stochastic gradient descend optimizer with weight decay param-
eter set to 0.001. We use a learning rate schedule that decreases
the learning rate from 0.05 to 0.0002 during the training.

5.2. Neural i-vector training details
We utilized the augmented form of i-vector extractor as de-
scribed in [29]1. In the augmented form, the UBM mean vec-
tors are augmented into the first column of the total variability
matrix T and they are thus updated after the each iteration of
extractor training, unlike in the standard formulation. For mod-
eling residual covariances in the total variability model, we used
a diagonal covariance matrix that was shared between all com-
ponents. To initialize the first column of T and the residual
covariance matrix, we used means and covariances computed
from the sufficient statistics (9), (10), and (11) of the training
data. We set the i-vector dimension to 512, which is the same
as the dimension of the network embeddings.

1The PyTorch re-implementation of Kaldi’s i-vector extractor used
in our study is available at https://github.com/vvestman/
pytorch-ivectors
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Figure 5: The squeeze-and-excitation (SE) module. The output weights are used to weight the input features as shown in Figs. 6 and 7.
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Figure 6: A TDNN module with squeeze-and-excitation (SE). This module is used to build the frame processor of TDNN-SE network.
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Figure 7: A Residual module with squeeze-and-excitation (SE). This module is used to build the frame processor of TDNN-RES-SE
network. Compared to the module in Figure 6, this module adds a fully connected layer (fc) and a residual connection. The residual
connection adds input features to the features obtained from the SE operation.

5.3. Training data

To train the neural networks, i-vector extractors, and scoring
back-ends, we used 16 kHz speech data from VoxCeleb1 [30]
and VoxCeleb2 [17]. VoxCeleb data has been collected from
YouTube by automatic means. Like in [18], we concatenated all
the segments that were extracted from the same YouTube source
video, and used these concatenated segments as the training
data. We excluded all concatenated segments less than six sec-
onds long. After filtering out the short segments, we were left
with data extracted from 149 754 unique YouTube videos, con-
taining 7365 speakers. This data was then augmented five-fold
using Kaldi’s augmentation recipe, resulting in total of 748 770
concatenated segments. The augmentation creates copies of
data by reverberating speech or by adding noise, babble, or mu-
sic to the speech.

5.4. Evaluation data and metrics

We evaluated all the ASV systems on Speakers in the Wild
(SITW) [31] and NIST Speaker Recognition Evaluation (SRE)
2018 [32] and 2019 [33] data. From SITW, we selected core-
core (referred here as ‘core’) and core-multi (referred as ‘multi’)
conditions. In both, only a single speaker appears in each of the
enrollment segments, but in the multi condition, the test utter-
ances may contain speech from multiple speakers (unlike in the
core condition). The core condition evaluation contains 721 788
trials, out of which 3658 are target trials. The multi condition
contains 2 010 683 trials, out of which 10 045 are target trials.

The SRE 2018 and the SRE 2019 both consist of two sep-
arate evaluations. One is based on telephone speech data in
Call My Net 2 (CMN2) corpus, while the other one is based
on Video Annotation for Speech Technology (VAST) corpus.
In this study, we evaluated only the VAST portions of SREs as
VAST data is a better match to our VoxCeleb training data. The
SRE 2018 evaluation contains 31 815 trials, out of which 315
are target trials, while the SRE 2019 has 67 348 trials, out of
which 452 are target trials.

With SREs, we used the diarization labels provided by
NIST for the enrollment side to remove the unwanted portions
of speech from the enrollment. We did not perform diarization
of the test side for any of the datasets.

For each set of evaluation trials, we report equal error
rate (EER) and normalized minimum detection cost (minDCF).
See [34] for details of minDCF. We adopted the same minDCF
parameters as used in SRE 2018 and 2019 evaluations. That is,
we set the costs of miss and false alarm equal to one (Cmiss =
Cfa = 1), and the target prior Ptarget to 0.05.

5.5. Scoring back-end
We centered, whitened, and length-normalized (both discrim-
inative and generative) speaker embeddings before simplified
PLDA scoring [35]. We did not apply domain adaptation tech-
niques, but simply used the training data (VoxCeleb) to compute
centering vector and whitening matrix. Finally, we performed
adaptive symmetric score normalization (AS-norm) [36]. For
AS-norm, we randomly selected 2000 utterances from training
data and chose 200 highest scoring utterances for each enroll-
ment or test utterance to compute the normalization statistics.

5.6. Speaker verification results
Table 4 shows the results of our experiments with different sys-
tems on multiple speaker verification evaluations. The results
for the core condition of SITW are the most representative of
the basic accuracy of the ASV systems as it does not have multi-
speaker utterances requiring diarization. The other evaluations
provide supporting evidence, although the results may be im-
paired by the lack of diarization.

In general, we find that the differences between the results
of different deep embedding extractors are small. For example,
when migrating from TDNN to TDNN-SE and to TDNN-RES-
SE architectures, the results slightly improve on some evalua-
tions, but get slightly worse on others. Similarly, the differences
between the different aggregation methods are relatively minor,
which is quite intriguing considering the differences between
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Table 4: Speaker verification results for the systems evaluated in this study. In addition to the deep speaker embedding systems, the
results are reported for four neural i-vector systems each of which are based on different variations of the aggregation layer.

SITW EVAL CORE SITW EVAL MULTI SRE18 EVAL VAST SRE19 EVAL VAST

EER Min Cost EER Min Cost EER Min Cost EER Min Cost

TDNN (mean & std) 2.21 0.135 3.46 0.183 12.69 0.472 5.97 0.223
TDNN-SE (mean & std) 2.02 0.125 4.03 0.188 12.70 0.473 5.97 0.212
TDNN-RES-SE (mean & std) 2.10 0.123 4.07 0.188 12.02 0.477 5.75 0.216
TDNN-RES-SE (LDE, isotropic) 2.02 0.122 4.04 0.185 12.70 0.497 5.53 0.212

CNeural i-vector 2.93 0.173 5.55 0.249 15.92 0.588 6.64 0.254
TDNN-RES-SE (LDE, shared diag.) 1.83 0.123 4.42 0.189 11.75 0.483 5.34 0.213

CNeural i-vector 2.81 0.168 5.40 0.246 15.87 0.522 6.43 0.256
TDNN-RES-SE (NetVLAD) 1.94 0.117 4.06 0.184 12.38 0.474 5.31 0.208

CNeural i-vector 3.09 0.175 5.73 0.261 16.51 0.588 6.00 0.290
TDNN-RES-SE (NetVLAD/LDE) 2.02 0.129 4.41 0.199 13.40 0.528 5.53 0.229

CNeural i-vector 3.06 0.188 5.65 0.262 15.56 0.596 5.97 0.253

Table 5: Review of recent single system results for SITW core-
core condition. Due to different experimental settings and im-
plementations, the results from different approaches are not di-
rectly comparable. Out of the i-vector systems, the proposed
neural i-vector obtains the lowest EER. The second lowest EER
was obtained by an i-vector system using a dereverberation sys-
tem (WPE) together with perceptual linear prediction (PLP)
and stacked bottleneck features (SBN). Other two included i-
vector systems use MFCCs and bottleneck features (BNF). Un-
der the divider line are the systems based on deep speaker em-
beddings. All systems use either MFCCs or filterbank coeffi-
cients (FBANK) as input features. All the embedding networks
use either TDNN, extended TDNN (E-TDNN), factorized TDNN
(F-TDNN), or ResNet34 based architectures. One system uses
additive angular margin (AAM) loss instead of standard cross-
entropy. The performance differences between the deep embed-
ding extractors are rather small, except for the last system utiliz-
ing tied mixture of factor analyzers (TMFA) layer that is trained
on 8 kHz Switchboard and SRE data.

System & study EER (%)

Neural i-vector [this study] 2.81
WPE PLP+SBN i-vector [37] 3.38
MFCC i-vector [37] 4.40
BNF i-vector [18] 5.77

TDNN-RES-SE (LDE) [this study] 1.83
FBANK E-TDNN [37] 1.70
MFCC E-TDNN [15] 1.7
MFCC F-TDNN [18] 1.86
FBANK ResNet34+LDE (AAM-softmax) [18] 2.11
FBANK ResNet34+TMFA (8 kHz) [14] 5.74

the standard mean and standard deviation aggregation and the
dictionary based methods.

Different variants of neural i-vectors perform almost
equally well to each other. The performance of neural i-vectors
is way behind the performance of their deep embedding coun-
terparts. On the other hand, the neural i-vectors perform sub-
stantially better than the other i-vector systems reported in lit-
erature as can be observed from Table 5. The table also shows
that our deep embeddings obtain a competitive results in com-
parison to the results reported in the other studies.

5.7. Visualizations of neural i-vectors
In Figure 8, we illustrate sampled neural i-vectors for 5 male
speakers in the SITW corpus. From each speaker we selected
six utterances and computed the posterior distributions [29, eqs.
(3) and (4)] of i-vectors. These distributions were used to sam-
ple 50 i-vectors per utterance. From the figure, we can observe
that different speakers are well separated and that the utterances
with short durations have higher uncertainty (i.e., more spread
clusters) than the utterances with long durations, as expected.

Finally, in Figure 9, we depict traces of posterior covari-
ances [29, eq. (3)] of i-vectors for SITW data. The traces reflect
the uncertainty in the i-vector estimation [39]. As expected, the
longer the duration, the less uncertain the i-vectors are.
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Figure 8: T-SNE visualization [38] of random neural i-vectors
drawn from i-vector posterior distributions of 30 utterances
from 5 male speakers in SITW corpus. Different colors rep-
resent different speakers. Each of the 30 clusters consists of
50 random i-vectors drawn from the posterior distribution of
one i-vector. The numbers show durations of the utterances
in seconds after removing non-speech frames. The long utter-
ances have less uncertainty than the short ones, which can be
observed from the compactness of the clusters.
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Figure 9: Trace of i-vector posterior covariance matrix as a
function of utterance duration for utterances in SITW core-core
condition.

6. Conclusion
At a broad outlook, the general developments in the field of

speaker recognition have involved innovative (and often suc-
cessful) re-use of previous generation tools to build up next gen-
eration recognizers: we have seen steady transition in state-of-
the-art from individually trained GMMs to GMM-UBM, GMM
supervectors, JFA and i-vectors (in this order). As a community,
we have been working on multi-layered (deep) models, formed
by stacking frame-level feature processors with utterance-level
presentations and speaker latent variable models. Until the re-
cent past, however, these pipelines have not been trained as
a whole, but constructed from individually-optimized compo-
nents. This is where the deep neural networks have come to a
rescue, and we are witnessing transition towards the next gen-
eration deep models. Nonetheless, deep neural network models
have seem to have interrupted the chain of GMM-based sys-
tems, particularly as they lack the concept of a universal back-
ground model. Some recent work has therefore looked into re-
placing the global temporal pooling operation of deep embed-
ding extractors with learnable dictionaries, similar to the UBM,
with demonstrated improvements.

In an attempt to bridge classic GMM-based technology and
the modern deep learning era, we have provided a unified com-
parison of alternative i-vector extractors that use different vari-
ants of deep neural networks to optimize the frame-level fea-
tures and the UBM. In particular, two recent deep neural net-
work architectures, LDE and NetVLAD, can be interpreted as
GMMs with specific assumptions. This interpretation enabled
us to re-consider classic GMM-based systems using discrimi-
natively obtained features and UBM. As a proof of concept, we
decided to focus on the i-vector system, but similar construction
is readily applicable to any ASV or diarization system that uses
GMMs.

Our results indicate that ‘neural i-vectors’ outperform all
the existing i-vector variants by a wide margin, indicating the
importance of using speaker-informative short-term features
and speaker-informative dictionary. Even if the corresponding
‘purely neural’ systems (used for obtaining the components of
our i-vector system) outperform the neural i-vector approach,
this was not the point of our study. The point, instead, is that
it is possible to view certain neural architectures as if having a
multi-modal aggregator (GMM) built in them. These identified

This work was partially supported by Academy of Finland (project
309629).

connections may open up fresh ideas in revoking techniques
such as uncertainty propagation, data augmentation (by sam-
pling features or speaker embeddings). Potential applications
that may benefit from fine-grained frame-by-frame speaker de-
cisions, such as speaker diarization, provide another potential
topic of future studies.
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This dissertation focuses on automatic 

speaker recognition with the aid of modern 
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