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Highlights 

 Metformin positively affect the course of age-related diseases 

 Metformin-users are at a lower risk of developing certain types of cancer 

 Metformin increases lifespan in model organisms 

 Metformin modulates molecular hallmarks of ageing 
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ABSTRACT 

 

Nowadays we observe a growing scientific interest and need to develop novel research 

approach that target ageing. Metformin, apart from its proven efectiveness as a glucose-

lowering agent, was found to exert multidirecional effects because of its cardioprotective, anti-

inflammatory and anti-cancer activity. Recently, metformin has become a subject of interest of 

many researchers as a promising drug with anti-aging properties; however, its impact on clinical 

ageing features is still hypothetical. Nevertheless, results of cellular experiments and animal 

studies confirm that metformin has advantageous effects on ageing. Additionally, a number of 

clinical trials prove positive effects of metformin on the prevalence of age-related diseases 

(ADR), including cardiovascular disease or carcinoma. We have observed a significant 

advancement in human research since a few randomised clinical trials evaluating the impact of 

metformin on aging were launched. 

Here, we present an investigation on anti-ageing properties of metformin, and provide the 

explanation of mechanisms and pathways implicated in this function. We also analyse available 

clinical evidence on healthspan extension, all-cause mortality and ADR. Finally, we discuss 

currently conducted randiomized clinical trials which aim to explore metformin potential as an 

anti-ageing drug in humans. 

 

 

Key words: metformin, biguanides, senescence, geroprotector, ageing  
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1. INTRODUCTION 

Over the previous few decades, life expectancy has risen dramatically and resulted in a higher 

population of elderly people across all developed countries (Skirbekk et al., 2019). In 2015, 

globally, there were 617.1 million (9%) people who were 65 or older. Within next 10 year the 

older population will reach about 1 billion which constitute 12% of the projected total world 

population (Roberts et al., 2018). The main factors contributing to the increased human 

longevity are as follows: implementation of vaccination, disinfectants, and antibiotics 

significantly reducing the incidence of infectious diseases, improvement in healthcare, nutrition 

and technology, and raising awareness of preventative actions, including exercise and reduction 

of smoking (Vaiserman et al., 2016). Development of novel technologies and standards in 

medicine, and education are associated with increased lifespan. However these positive 

outcomes do not contribute to improved healthspan, which is regarded as the number of years 

during which people are generally healthy and free from serious or chronic illness (Mercken et 

al., 2012). Thus, the growing number of elderly, and higher prevalence of ADR such as cancer, 

diabetes (type two diabetes mellitus, T2DM), cardiovascular disease are frequently found in 

most of developed countries. They all pose an extensive socio-economic challenge (Beard and 

Bloom, 2015; Vaiserman et al., 2016). 

Ageing stems from a permanent interplay between single genetic makeup and environment 

contributing to accumulation of cellular damage over time. It finally leads to disease promotion 

and death (Gurău  et al., 2018). Oxidative stress plays an important role in ageing because 

oxidative damage leads to cellular hallmarks of ageing which then lead to various ADR (Luo 

et al., 2020; Lopez-Otin and Kroemer, 2019). Taking into consideration oxidative-related 

hypothesis of ageing, and positive effects of observational studies, numerous clinical trials 

examining antioxidants have been carried out to investigate the potential of antioxidants for the 

prevention and treatment of age-related morbidity and mortality. However, the results of 

randomized clinical trials showed that antioxidant supplementation does not affect ARD (Luo 

et al., 2020). 

Therefore, investigation of novel interventional strategies, aiming at improving health span, is 

a current first concern in biomedical research. Traditionally, pharmacological approaches have 

gained special attention in the field of new discipline known as biogerontology (Campbell et 

al., 2017; Vaiserman et al., 2016, Vaiserman and Lushchak, 2017). There are several molecules 

targeting primary ageing pathways, including calorie restriction mimetics, and autophagy 

inducers. Also senolytic drugs (agents selectively inducing apoptosis of senescent cells), and 

telomerase activators are now under investigation (Vaiserman et al., 2016; Vaiserman and 

Lushchak, 2017). Current doubts regarding efficiency of antioxidants supplementation have 

contributed to an increased interest in other healthspan-promoting options, including calorie-

restriction (CR)-based strategy (Vaiserman et al., 2016). Although the beneficial effect of CR 

on healthspan is incontestable, the applicability of this strategy is difficult in humans. To 

overcome obstacles, the scientists are attempting to develop novel molecules to mimic the CR 

state without restricting a diet (Lee and Min, 2013). 

One drug which has been a subject of extensive research as a geroprotector is an anti-diabetic 

drug - metformin, N,N-dimethylbiguanide hydrochloride (Bailey, 2017). Metformin is one of 

the most frequently administered drugs in T2DM. The anti-hyperglycemic activity of the drug 

stems from its inhibition of gluconeogenesis and glycogenolysis, and increase in tissue 

sensitivity to insulin and tissue glucose utilization (Mahmood et al., 2013). Importantly, 
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metformin was found to be effective in polycystic ovarian syndrome (PCOS) and metabolic 

syndrome (Knowler et al., 2002). 

Given the history of metformin administration in pharmacotherapy presented inFigure 1, the 

greatest breakthrough was a result of the United Kingdom Prospective Diabetes Study 

(UKPDS). This study confirmed that the therapy with metformin contributes to 42% reduction 

of diabetes-related death and a 36% decline in all-cause mortality (UKPDS Group, 1998). In 

addition, metformin decreases CVD incidence in subjects with T2DM (Soukas et al., 2019). 

The positive properties of the drug regarding the cardiovascular system result from its beneficial 

influence on endothelium, protection from oxidative stress, and reduction of proliferation of 

smooth muscle cells (SMCs) (Nesti and Natali, 2017). 

 

Apart from its glucose-lowering properties, metformin has retained interest due to its 

pleiotropic effects and activity in various tissues, including muscles, adipose tissue, vascular 

endothelium, and brain (Foretz et al. 2014; Novelle et al., 2016). Metformin reduces food 

intake, and body weight through direct action on the hypothalamic center which control satiety 

and feeding (Novelle et al., 2016). Metabolic effects of metformin have been briefly reviewed 

by Piskovatska et al. (2019). Additionally, metformin affects metabolic and cellular processes 

associated with the development of ADR, including inflammation, oxidative damage, protein 

glycation, cellular senescence, apoptosis, and growth of certain types of cancer (Novelle et al., 

2016; Piskovatska et al. 2019). 

Another aspect of metformin which makes it specifically encouraging for further studies on its 

geroprotective potential is the fact that the drug has already been widely used in humans for 

several decades. Therefore, metformin safety profile, and its potential contraindications are well 

characterised (Campbell et al., 2017). These characteristics make the drug substantially more 

straightforward to be implemented as a therapy for ageing than clinically unapproved drugs.  

This review presents investigation on the application of metformin as a potential geroprotector. 

We outline state of the art data regarding anti-ageing activity of metformin, and provide 

molecular mechanisms and pathways engaged in this function. We also analyse available 

clinical evidence on healthspan extension, and currently conducted clinical trials which aim to 

explore metformin capacity as an anti-ageing drug in humans. Next, we provide the 

experimental and pre-clinical evidence on anti-ageing properties of metformin. Finally, the 

review shows new favourable circumstances relating to the translational potential of metformin. 

 

2. THE MECHANISM OF METFORMIN ACTION 

 

2.1. The gut – stimulation of hormone secretion 

Despite long clinical experience with metformin and increased scientific attention into its 

pleiotropic activity, the exact way of metformin activity remains unclear. Metformin is active 

in humans only when administered orally. A typical dose of classical formulation is usually two 

g per day. Approximately, half of the dose (ca. 6 mmol) is absorbed, and then excreted via 

kidneys. The other half of the drug is not absorbed, and excreted in the faeces (Graham et al., 

2011). It has been estimated that the colon is exposed to the drug at concentrations reaching 40 

mM (Glosmann and Lutz, 2019). 
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Previously, it was hypothesised that metformin exerts its action mainly in liver. Recently, it 

also has been claimed that the drug is also active in intestine (Glossmann and Lutz, 2019) and 

these effects in gastrointestinal tract are responsible for the pharmacological properties of the 

drug (Wu et al., 2017). This statement has been confirmed by Buse et al. (2016), who found 

separation of the glycemic effect from plasma exposure to the drug with gut-restricted delayed-

release formulation. It has also been reported that metformin concentration in the jejunum can 

be 300-fold higher than that measured in blood (Thomas and Gregg, 2017). Actually, typical 

side effects of metformin associated with the alimentary tract may be regarded as an indicator 

of therapeutic efficacy (Thomas and Gregg, 2017). During the last decade, many scientific 

teams have commenced to explore the drug’s effect on the intestine in more detail, since this is 

a major site of drug concentration. For instance, metformin has a specific influence on the 

composition of the intestinal microbiome independently on its glucose-lowering properties 

(Forslund et al., 2015). The authors examined the microbiome of 784 patients, and reported that 

the metformin-specific effect was associated with an increase in Escherichia species 

proportionally to the blood metformin level. Furthermore, the analysis of gut microbiome of 

metformin-treated T2DM subjects showed great similarity to the controls, and not to the T2DM 

subjects. This finding may indicate a rescue from dysbiosis associated with T2DM. The authors 

concluded that metformin participates in partial gut microbial mediation of both therapeutic and 

adverse effects. However, further validation is required to identify causality and to clarify how 

such mediation might occur. In addition, this study highlights the need to disentangle specific 

disease dysbioses from effects of treatment on human microbiomes (Forslund et al., 2015). 

These important conclusions were further proved by a study of Bryrup et al. (2019) who 

reported that metformin intake alters the gut microbiota composition in non-diabetic men, and 

claimed that this effect does not depend on the dysbiosis triggered by diabetes. Another 

randomised clinical trial embracing fourty non-treated subjects suffering from T2DM who were 

using placebo or metformin for four months found an elevation in abundance of Escherichia 

spp. and Bilophila wadsworthia along with a reduction in Intestinibacter spp. and Clostridium 

spp. (Wu H. et al., 2017). Furthermore, it was found that metformin-altered microbiota 

mediated some anti-diabetic effects of the drug (Wu H. et al., 2017). As reviewed by Soukas et 

al. (2019), metformin might also increase the number of bacteria producing short-chain fatty 

acids that lead to weight loss and anti-inflammatory effect in T2DM subjects. A comprehensive 

analysis of the effects of metformin on human microbiom can be found in a review of 

Prattichizzo et al. (2018). So far, the effect of metformin on microbiota and the related anti-

aging activity have been underestimated. As summarized by Prattichizzo et al. (2018), 

metformin reshapes intestinal microbiota, and fosters the growth of bacterial species producing 

short-chain fatty acids (SCFAs) which increase the barier function of the intestinal epithelium. 

As a consequence, lower levels of immune system stimulating agents, including LPS and 

flagellin, get into circulation, which may improve the balance between factors counteracting 

and promoting inflammation (Prattichizzo et al., 2018).  

Metformin might also act through the incretin axis. It has been known for several years that 

metformin therapy elevates both fasting and postprandial levels of the satiety-promoting 

incretin hormone, glucagon-like peptide 1 (GLP-1) (DeFronzo et al., 2016; Prattichizzo et al., 

2018). Metformin affects postprandial GLP-1 secretion in direct and AMPK mediated effects 

(Bahne et al., 2018). Furthermore, metformin administration might also lead to the significant 

increase in peptide YY (PYY) (DeFronzo et al., 2016) and growth differentiation factor 15 

(GDF15) (Glosmann and Lutz, 2019). GDF-15 is produced in the intestine, cardiomyocytes and 

endothelial cells via the “integrated stress response”, and is a member of the transforming 

growth factor beta (TGF-β) superfamily (Glosmann and Lutz, 2019; Adela et al., 2015). It was 

found that GDF-15 is a biomarker for T2DM and CVD (Adela et al., 2015) since GDF-15 levels 
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are higher in individuals with heart failure (HF), and coronary artery disease where its plasma 

levels might be regarded as prognosis of the disease (Natali et al., 2019). These possible 

associations between metformin administration and its cardiovascular effects were analyzed by 

Natali et al. (2019) and Gerstein et al. (2017). According to their results, administration of 

metformin in diabetics contributed to 40% elevation of GDF-15 plasma level (Natali et al., 

2019). Therefore, according to authors GDF-15 levels might be a biomarker for the use of 

metformin (Gerstein et al., 2017). It has been suggested that possible explanation for the 

association of GDF-15 with metformin therapy, and also with HbA1c, could be the fact that 

GDF-15 reflects the function of mitochondria (Natali et al., 2019).  

 

2.2. Mitochondrial Complex I Inhibition 

A metformin molecule is positively charged at pH 7.4 (99.9% of the molecule exists in ionized 

form in blood) (Graham et al., 2011) which predisposes the biguanide to concentrate in 

negatively charged organelles, such as mitochondria (Prattichizzo et al., 2018). Mitochondrial 

accumulation is frequently considered as the primary target of metformin (Prattichizzo et al., 

2018; Hardie et al., 2012). In 2000, metformin was discovered to suppress mitochondrial 

complex I, but not complexes II, III, and IV (El-Mir et al., 2000; Owen et al., 2000). Metformin 

was found to induce depolarization of the mitochondrial membrane potential, elevate the 

AMP/ATP and lactate/pyruvate ratios, and decrease glucose production (Kim and You, 2017). 

Interestingly, the degree of gluconeogenesis inhibition is related with the extent of suppression 

of the respiratory chain. These observations confirm that cellular energy depletion induced by 

metformin results in incomplete flux of ATP which is important to commence gluconeogenesis 

in the liver (El-Mir et al., 2000). 

The molecular mechanism of metformin interaction with complex I has not been fully 

discovered. It was proved that the drug suppresses NADH oxidation by complex I isolated from 

several species, including bovine heart mitochondria, yeast Pichia pastoris, and bacterium 

Escherichia coli, implying that metformin interacts to the conserved subunits of complex I (Kim 

and You, 2017). Bridges et al. (2014) found that metformin suppresses a rate-limiting step 

coupled to ubiquinone reduction, but does not competitively attach to the ubiquinone-binding 

site in complex I. It is worth pointing out that it has not yet been confirmed whether or not 

complex I is the only mitochondrial target of metformin. Importantly, it is still not determined  

whether the biguanide suppresses respiration directly or indirectly (Fontaine, 2014).  

Apart from hypoglycaemic effect, related to inhibition of complex I, metformin was also found 

to inhibit cancer cell growth through its action on this target (Andrzejewski et al., 2014; Birsoy 

et al., 2014). Activation of the energy sensor AMPK is another effect associated with complex 

I. However, it will be discussed later in the next chapter of this manuscript.  

Hunter et al. (2018) revealed thatinhibition of fructose-1-6-bisphosphatase (FBP1) participating 

in the process of glucose production is another effect of elevated AMP levels. It was found that 

metformin decreases glucose concentration by allosteric inhibition of FBP1 in mice. These 

results provide evidence that metformin at therapeutic concentrations in vivo exerts significant 

effects via adjustment of cellular energy charge (Soukas et al., 2019). 

The key function of mitochondria is ATP production through oxidative phosphorylation which 

result in generation of energy through oxidation of nutrients that create an electron chemical 

gradient across the mitochondrial inner membrane. Another important activity related to 

mitochondria is production of reactive oxygen species (ROS), contributing to DNA and cell 

damage. Impairment of mitochondria is one of principal causes of ageing because ageing 
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mitochondria lose their ability to provide cellular energy and release high levels of ROS. 

Impaired mitochondrial function has been linked to insulin resistance in multiple tissues 

including skeletal muscles, liver, fat, heart and pancreas (Podhorecka et al., 2017). 

Beneficial impact of metformin on ROS production are mediated not only by inhibition of the 

mitochondrial respiratory chain, but also by suppressing nicotinamide adenine dinucleotide 

phosphate (NAD(P)H) oxidase (Saisho et al., 2015). The inhibition of the electron transport 

chain together with the initiation of antioxidant gene expression by the SKN-1/Nrf2 

transcription pathway explains how metformin acts as an anti-oxidative agent, thus reducing 

the production of ROS (Novelle et al., 2016). 

The reduction of ROS production might also stem from other mechanisms. For example, 

Khallaghi et al. (2016) reported that metformin restores the activity of phosphoinositide 3-

Kinase/S6 Protein Kinase (P13K/S6K). Besides, metformin may enhance cell survival by 

improving anti-oxidant systems, particularly glutathione peroxidase (GSH) and catalase (CAT) 

(Khallaghi et al., 2016). In turn, Batchuluun et al. (2014) revealed anti-oxidative properties of 

metformin through suppression of protein kinase C (PKC) - NAD(P)H oxidase pathway. The 

available data suggests that inhibition of nuclear factor κB (NF-κB) by activation of AMPK is 

crucial for the anti-inflammatory properties of the drug (Saisho, 2015). For instance, Li et al. 

(2009) showed inhibitory properties of metformin towards nuclear factor κB (NF-κB) activation 

in the vessel wall. In another paper, Hattori et al. (2006) found that metformin inhibits cytokine-

induced NFκB activation via AMPK activation in human umbilical vein endothelial cells 

(HUVEC). 

Interestingly, metformin through the effects on AMPK might have an effect on pain in animal 

models of neuropathy and acute nociception (Melemedijan et al., 2011; Tillu et al., 2012). Russe 

et al. (2013) reported that metformin-mediated activation of AMPK leads to analgesic effects, 

similarly to those induced by ibuprofen. As presented by Lihn et al. (2008), AMPK activation 

might also be associated with decreasing levels of pro-inflammatory cytokines, including IL-6 

and IL-8 in adipose tissue and skeletal muscle. 

 

2.3. Increase of the Activity of Adenosine Monophosphate-Activated Protein Kinase 

AMPK is a fundamental indicator of cellular energy condition that controls metabolic energy 

equilibrium (Hardie et al., 2012). Generally, stimulation of AMPK is due to increased 

AMP/ATP and ADP/ATP ratios (Novelle et al., 2016), and this route is known as nucleotide-

dependent regulation. However, the activity of AMPK is regulated also by other upstream 

signals, thus making AMPK a central sensor coordinating the cellular metabolism (Garcia and 

Shaw, 2017). Importantly, AMPK activation is engaged in the acute release of gut hormones, 

such as GLP-1 and peptide YY from human mucosal preparations, since the kinase inhibitor 

prevents the metformin effect (Glosmann and Lutz, 2019). In addition, AMPK allosterically 

activates IR (insulin receptor) and IRS1 (insulin receptor substrate 1) thus increasing insulin 

sensitivity (Bahrambeigi et al., 2019). 

Metformin activates AMPK in two independent manners. The first one is the ‘canonical’ 

pathway which is nucleotide-dependent (increase in the [ADP/ATP] ratio and phosphorylation 

by upstream liver kinase B1 [LKB1]). The second possible way of AMPK activation 

(‘noncanonical’, AMP-independent) is a lysosomal pathway caused by a decrease in the 

fructose 1,6-bisphosphate level (Glosmann and Lutz, 2019). The importance of AMPK in 

glucose-lowering properties of metformin was confirmed in a study of Shaw et al. (2005), who 

reported that the ablation of LKB1 in the liver disturbed antihyperglycemic effects of metformin 
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in a high-fat diet. The activation of AMPK by metformin results in the following effects, (i) 

phosphorylation of acetyl-CoA carboxylase (ACC)1 and ACC2, resulting in an elevated fatty 

acid uptake and β-oxidation, thus improving insulin sensitivity and (ii) activation of 3,5-cyclic 

phosphodiesterase 4B (PDE4B), thus reducing cAMP and indirectly inhibiting the activity of 

cAMP-dependent protein kinase A (PKA). It finally leads to glucose consumption and 

decreased glucose output (Prattichizzo et al., 2018). The effects on ACC are also related with 

lipid-lowering properties of metformin (Novelle et al., 2016). However, the drug decreases also 

the levels of sterol regulatory element-binding protein 1 (SREBP-1), a major lipogenic 

transcription factor, through direct phosphorylation by AMPK (Novelle et al., 2016). 

The biological effects of metformin do not only stem from AMPK activation (Bahrambeigi et 

al., 2019). For instance, a study of Foretz et al. (2010) conducted on liver and primary 

hepatocytes from knockout models for both AMPKα1/α2 catalytic subunits and the upstream 

activating kinase LKB1 showed that neither AMPK nor LKB1 are important for metformin 

suppression of glucose production in the liver. However, one of more recent studies revealed 

that low doses of metformin effectively inhibit glucose production via AMPK activation 

regardless of the increased level of the AMP/ATP ratio (Cao et al., 2014). As mentioned above, 

metformin is able to stimulate AMPK indirectly, secondary to the inhibition of the 

mitochondrial respiratory chain complex 1, contributing to ATP reduction and an escalation of 

AMP levels (Foretz et al., 2014). It has been suggested that changes in the intracellular ATP 

levels, but not direct AMPK activation, are responsible for the influence of metformin on 

hepatic glucose output (Foretz et al., 2014). Recently another possible mechanism of metformin 

action has been found by Madiraju et al. (2014). The authors found that the inhibition of 

gluconeogenesis by metformin might stem from a direct effect on the activity of mitochondrial 

glycerophosphate dehydrogenase (mGPD). Suppression of mGPD pauses the glycerophosphate 

shuttle, contributing to the arrest of gluconeogenesis from glicerol (Foretz et al., 2014). 

AMPK was also found to adjust mTORC1 signalling (mechanistic target of rapamycin complex 

1) which is responsible for the process of ageing, carcinoma and neurodegenerative diseases 

(Melnik and Schmitz, 2014). In addition, over-stimulation of mTORC1 signaling by 

overabundance of food and high amino acid intake leads to T2DM evolution since mTORC1 

signaling is engaged in pancreatic β-cell growth, β-cell mass regulation, insulin synthesis and 

secretion. Metformin was found to suppress mTORC1 through different signalling pathways. 

One of them is LKB1/AMPK-mediated activation of TSC2 (tuberin) which suppresses 

mTORC1. Additionally, metformin improves AMPK/TSC2-mediated mTORC1 inhibition by 

stimulating REDD1 (regulated in DNA damage and development 1) and ATM (ataxia 

teleangiectasia mutated). Furthermore, it was found that metformin blocks amino acid-mediated 

activation of RAG (RAS-related GTP-binding protein) GTPases at the lysosomal surface 

(Melnik and Schmitz, 2014). Decreased mTORC1 activity downregulates S6K1 which 

contributes to improvement in glucose level control, through AKT-mediated glucose uptake 

and inhibition of FoxO1-mediated gluconeogenesis. The positive effects of mTORC1 

suppression are not limited to metabolic benefits, but are also related to other mTORC1-driven 

diseases, including PCOS, atherosclerosis and CVD, cancer, and neurodegenerative diseases 

(Melnik and Schmitz, 2014). 

Both AMPK and mTOR signalling pathways have been proposed as mediators of caloric 

restriction (CR) (Lee and Min, 2013). During lack of energy state, LKB phosphorylates and 

activates AMPK, which subsequently stimulates the processes to generate ATP. It has been 

proved that worms overexpressing AMPK (aak-2) lived longer than controls, and glucose 

restriction increased aak-2 activity (Schulz et al., 2007). The function of AMPK activation in 

lifespan extension was also proved in the Drosophila model (Funakoshi et al., 2011).  Due to 
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the advantageous influence of metformin on AMPK, mTOR and insulin/IGF-1 signalling 

pathways, the drug has been identified as downstream-type calorie restriction mimetic (CRM) 

(Shintani et al., 2018). Metformin was found to possess a CR-related longevity advantage 

mediated by the activation of AMPK in several animal models (Lee and Min, 2013). Results of 

these studies will be discussed in the following parts of this paper.  

Recently, it has also been found that prolonged metformin therapy is associated with increased 

levels of the microRNA‐processing protein DICER1 in mice as well as humans, and 

subsequently increases the expression of a subset of microRNAs (miR-20a, miR-34a, miR-

130a, miR-106b, miR-125, and let-7c) which are related with senescence (Hooten et al., 2016). 

Finally, one more molecular target of metformin, and signalling pathway of AMPK activation 

has been identified (Zhang et al., 2016). It has been found that metformin can interact with v-

ATPase (lysosomal vacuolar ATPase) to promote the translocation of AXIN/LKB1 (AXIN – a 

scaffold protein) onto the surface of lysosomes to form a complex with v-ATPase-Ragulator. It  

ultimately leads to AMPK activation. Binding of metformin to V-ATPase forces the 

Ragulator/V-ATPase complex to undergo a conformation change from the ‘nutrient-rich’ to the 

‘starvation conformation’, which finally is associated with the recruitment of LKB1 and 

prevents mTORC1 activation even during nutrient-rich state (Kim and You, 2017). 

 

2.4. Novel targets of action 

In the previous chapter, we have described the potential interaction between metformin and 

vATPase which could imply that late endosome/lysosome could be another target of metformin. 

Additionally, it has recently been found that it is possible for metformin to modulate endosomal 

trafficking to lysosomes by affecting eNHE (Na+/H+ exchangers). This suggests that the drug 

might be engaged in control of the cellular endocytic cycle (Kim and You, 2017). 

Another target for metformin is lipid phosphatase Src homology 2 domain-containing inositol-

5-phosphatase 2 (SHIP2), which is upregulated in diabetic rodent models and inhibits insulin 

signalling by decreasing Akt activation. This in turn leads to insulin resistance and reduced 

glucose uptake (Lehtonen, 2019). It has been found that metformin directly binds to purified 

recombinant SHIP2 and blocks its activity, while an in vivo subsequent effect of SHIP2 

inhibition includes increased insulin sensitivity (Polianskyte‐Prause et al., 2019). The authors 

list potentially beneficial effects of SHIP2 suppression which are as follow, improved glucose 

metabolism, attenuation of insulin resistance and hyperglycemia (Polianskyte‐Prause et al., 

2019). 

Although metformin is not a newly developed drug, new mechanisms of action continue to be 

discovered. Indded, recent studies have supplied us with a long record of possible molecular 

targets which are as follow: NF-ĸB inhibition, inflammasome inhibition, increased expression 

of nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10), 

increased expression of the peroxiredoxin PRDX-2, Nrf2 activation, and folate metabolism 

(Prattichizzo et al., 2018). 

Recently, it has also been found that metformin can enhance autophagy which is a cellular 

mechanism responsible for degradation of cytoplasmic constituents, preserving cellular 

homeostasis through elimination of impaired proteins and organelles (De Santi et al., 2019). 

Metformin enhances autophagy through AMPK activation and subsequent phosphorylation of 

unc-51-like kinase (ULK-1) and Beclin 1 (Hur and Lee, 2015). However, Song et al. (2015) 

reported improvement of hepatic steatosis by metformin through autophagy activation via 

sirtuin 1 pathway, not AMPK. Autophagy is also engaged in nutrient supply during energy 
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insufficiency, and is also important for the proper function of mitochondria and the ER. Due to 

the fact that AMPK is an inducer of intracellular energy equilibrium, the activation of AMPK 

by metformin implies that autophagy induction might be another mechanism responsible for 

metabolic improvement related with metformin therapy (Hur and Lee, 2015). Importantly, 

metformin was also found to prevent cell tumorigenesis through autophagic cell death (De Santi 

et al., 2019). 

Mechanisms of metformin anti-ageing activity have been summarized in Figure 2. Certainly, 

the above-mentioned mechanisms of metformin action will widen in the future, leading to 

greater insight of the molecular mechanisms responsible for pleiotropic activity of the drug. 

Moreover, discovery of new targets for metformin will aid in the search for novel anti-diabetic 

molecules with improved safety profiles. 

 

3. CLINICAL DATA ON METFORMIN ANTI-AGEING PROPERTIES 

Clinical studies have confirmed that metformin reduces the prevalence of diabetes in high risk 

subjects (Knowler et al., 2002). Later research of Knowler et al. (2015) also confirmed the 

advantageous properties of metformin in prevention of HbA1c-defined diabetes. There are also 

plenty of observational studies that provide evidence on geroprotective properties of metformin 

in humans which have been previously reviewed (Piskovatska et al., 2020). Within this chapter, 

we briefly review the current literature particularly emphasising all-cause mortality, age-related 

diseases, including cancer as well as cardiovascular disease. 

 

3.1. All-cause mortality 

Based on the survey of currently available clinical outcomes we can distinguish two types of 

studies focusing on influence of metformin on all-cause mortality. The first group of studies 

compares diabetic individuals using metformin to the general population or non-diabetic 

subjects (Bannister et al., 2014; Berard et al., 2014; Bo et al., 2012; Claesenet al., 2016), while 

the second group of studies compares metformin-treated diabetic subjects to other T2DM 

patients taking other medications used in management of diabetes, such as insulin (Ekstrom et 

al., 2012; Ghotbi et al., 2013), sulphonylurea (Evans et al., 2006; Kahler et al., 2007; Sullivan 

et al., 2011; Wang et al., 2014) or observing a diet (Bo et al., 2012; Sullivan et al., 2011). 

Results of the studies comparing metformin-treated diabetic patients with non-diabetics showed 

that the mortality rate is significantly lower in metformin users than in those who did not use 

the drug. For instance, Bannister et al. (2014) confirmed that T2DM patients, being 

administered metformin monotherapy, demonstrated a longer survival than matched, non-

diabetic controls. The authors found also that sulphonylurea therapy was associated with a 

reduced survival compared with controls and metformin monotherapy (Bannister et al., 2014). 

In turn, Bérard et al. (2014) evaluated a fourteen-year risk of all-cause mortality according to 

hypoglycemic exposure at baseline in the general population, and found that the hazard ratio 

for all-cause mortality was lower in the metformin-treated group (HR 2.28) that in the untreated 

diabetic subjects (HR 3.22). 

Ekstrom et al. (2012) evaluated the influence and safety of metformin therapy in T2DM 

subjects, and found that the biguanide treatment compared with insulin treatment contributed 

to a decreased risk of CVD, serious infection and all-cause mortality. Importantly, metformin 

use was associated with lower all-cause mortality in comparison with other hypoglycaemic 

agents (Ekstrom et al., 2012). In another study, Evans et al. (2006) assessed the risk of 
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cardiovascular events in T2DM subjects newly using with metformin or sulfonylureas. The 

most prominent observation of this study was the fact that individuals newly treated with 

sulfonylureas alone, or with sulfonylureas combined with metformin, were at higher risk of 

adverse cardiovascular effects than those treated only with metformin. Importantly, metformin 

treatment was related to a lower cumulative mortality rate in comparison with sulfonylurea 

therapy (Evans et al., 2006). A decrease in all-cause and cardiovascular mortality linked with 

metformin treatment compared with sulfonylurea monotherapy was also reported by Johnson 

et al. (2002). In turn, Kahler et al. (2007) found no significant drug effect on all-cause mortality 

for all oral treatment cohorts, including metformin relative to sulfonylurea oral monotherapy. 

Another study of Wang et al. (2014) showed that among older veterans suffering from T2DM 

without concomitant frailty-related disorders, metformin treatment, compared to sulfonylurea, 

contributed to a 30% decrease in the mortality risk. On the other hand, metformin appeared to 

have no effect on the mortality rate in the patients with frailty-related markers (Wang et al., 

2014). 

To summarize, one of recents meta-analyses of Campbell et al. (2017) revealed that diabetic 

subjects using metformin demonstrate importantly lower all-cause mortality than healthy 

people not using this biguanide (HR = 0.93, 95%CI 0.88–0.99). Metformin therapy also appears 

to be more beneficial regarding all-cause mortality in comparison to other therapies, including 

insulin or sulfonylurea therapies. 

 

3.2. Age-related diseases 

In this chapter, we will concentrate mainly on the relationship between metformin and the 

occurrence of cancer, cardiovascular disease and neurodegenerative diseases. 

 

3.2.1. Cancer 

Anti-cancer properties of metformin were confirmed for the first time in 2005 when Evans et 

al. (2005) published outcomes of a clinical trial, carried out on 11,867 patients. The authors 

reported that T2DM individuals using metformin had a lower cancer-related mortality rate than 

those who did not use metformin. Since then, numerous systematic investigations and meta-

analyses have been published. They aim to determine the association between metformin use 

and cancer incidence or survival outcomes (Campbell et al., 2017; Yu et al., 2019). 

Several clinical trials have reported that chronic use of metformin may contribute to decrease 

in progression of breast cancer and mortality due to this ailment (Pizzuti et al., 2015; Col et al., 

2012; Hadad et al., 2011: Goodwin et al., 2011). For example, Bodmer et al. (2010) reported in 

a nested case-control study that chronic treatment with metformin is significantly related with 

a reduced risk of breast cancer in T2DM patients. Metformin also appeared to be beneficial in 

newly diagnosed, untreated, non-diabetic breast cancer patients (Niraula et al., 2012). However, 

not all studies report advantageous effects of metformin on cancer incidence or outcomes. For 

instance, Bonanni et al. (2012) did not confirm statistically significant effects of metformin on 

breast cancer proliferation in non-diabetic women. Metformin was also found to positively 

affect the incidence of metastases in breast cancer since after 5-years follow-up, 9.2% of 

patients treated with metformin, and 12.3% subjects not using the drug developed metastases 

(Jacob et al., 2016). 

Ambiguous results were observed  for metformin and its effects on endometrial cancer. Becker 

et al. (2013) and Luo et al. (2014) did not find any effects of metformin on the risk of 
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endometrial cancer. Also Al Hilli et al. (2016) reported that the effect of diabetes and metformin 

on clinical outcomes is insignificant in risk-adjusted endometrial cancer groups. On the other 

hand, Tseng (2015) observed that metformin treatment in diabetic females is associated with an 

overall essentially lower risk of endometrial cancer with dose-response relationship. Also the 

results of three studies investigating the potential of metformin on the growth of pancreatic 

carcinoma in T2DM subjects did not provide the unequivocal answer, since Bodmer et al. 

(2012) reported that metformin was associated with a reduced risk of pancreatic cancer in 

women only. On the other hand, Lu et al. (2015) and Walker et al. (2015) did not find any 

important relationship between metformin and pancreatic cancer. 

The advantageous effetcs of metformin on cancer incidence, mortality and prognosis was also 

confirmed in various types of gastrointestinal cancers. For instance, Van de Voorde et al. (2015) 

published that metformin therapy contributed to a significantly better distant metastasis-free 

survival rate and overall survival rate. According to Lee et al. (2011), metformin utilization is 

related with a significantly decreased risk of incidence of total cancer, colorectal, liver and 

pancreatic cancer. Metformin was also found to decrease the risk of progression of 

hepatocellular carcinoma and reduce liver-related death in diabetic patients with HCV cirrhosis 

(Nkontchou et al. 2011). Positive effects of metformin regarding cancer incidence were also 

found ina metaanalysis conducted by Campbell et al. (2017). Its authors estimated that 

metformin therapy is associated with a decreased risk of colorectal and breast cancer. There are 

also other studies reporting beneficial effects of metformin on the prevalence of various types 

of cancers, including head and neck cancer (Rego et al. 2015), prostate cancer (Preston et al., 

2014) or lung cancer. However, negative results should also be taken into consideration, such 

as obtained for bladder (Goossens et al., 2015) or thyroid cancer (Tseng, 2012). The summary 

of the results of the above studies is enclosed in Table 1. A valuable summary of the anti-cancer 

properties of metformin are also presented by Pitskovatska et al. (2019). 

 

3.2.2. Cardiovascular diseases 

The past several years have brought strong evidence proving the favourable influence of 

metformin on the function of the cardiovascular system (Nesti and Natali, 2017). These 

beneficial effects may result from the improvements of endothelium function, reduction of 

proliferation of smooth muscle cells, and anti-inflammatory properties of the drug (Nesti and 

Natali, 2017). Within this chapter, we focus on clinical outcomes of the influence of metformin 

on the cardiovascular system.  

Apart from UKPDs study (1998), also other studies confirmed advantageous effects of 

metformin with respect to the cardiovascular system. For instance, Kooy et al. (2009) found 

that metformin treatment contributed to a reduction of macrovascular end point after a follow-

up period of 4.3 years. In another study (SPREAD-DIMCAD trial), metformin administration 

in patients with the T2DM and cardiovascular disease contributed to a 46% reduction of 

recurrent cardiovascular events when compared to glipizide (Hong et al., 2013). In turn, 

Ekstrom et al. (2012) evaluated the risk of CVD in 51,675 individuals with T2DM on 

continuous anti-hyperglycemic therapy or insulin, and found that metformin-treated patients 

showed a lower risk of CVD in comparison to patients using insulin. Also Ghotbi et al. (2013) 

found that metformin therapy of T2DM individuals was related to a lower risk of primary 

outcome event (POE), and lower mortality, which implies that the drug decreases the risk of 

CVD. These beneficial effects were not confirmed by results of the BARI2D trial performed in 

T2DM subjects who were eligible for coronary artery revascularization (Group BDS, 2009). 

Nevertheless, this study did not confirm a direct effect of metformin, because two therapeutic 
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strategies including insulin sensitizing (metformin and thiazolidinediones) versus insulin 

providing (sulfonylureas and insulin) drugs were applied in this study.  

There are also studies evaluating effects of metformin on the prevalence of stroke. Floyd et al. 

(2016) examined the prevalence of stroke in metformin users in comparison to other T2DM 

subjects non treated with metformin. The investigators found that the use of metformin is 

connected with a lower risk of stroke compared with other T2DM therapies. On the other hand, 

metformin was not found to decrease the risk of myocardial infarction (Floyd et al., 2016). In 

turn, Jansson et al.(2014) found that the incidence of cumulative cardiovascular disease and 

myocardial infarction were significantly lowered after implementation of metformin treatment. 

A meta-analysis of these studies reported an important decrease in the stroke incidence among 

patients using metformin (Campbell et al., 2017). However, there is also a study that does not 

confirm the efficacy of metformin in preservation of left ventricular ejection fraction in patients 

without diabetes presenting with ST-segment elevation myocardial infarction (STEMI) (Lexis 

and Horst, 2014). Also another study failed to demonstrate the benefits of metformin on the 

carotid intimal medial thickness in non-diabetic subjects (Preiss et al. 2014). 

Several studies identified influence of metformin on the incidence of HF. For instance, Hartung 

et al. (2005) compared various anti-diabetic therapies and found that metformin as opposed to 

thiazolidinedione was not associated with an elevated risk of hospitalization due to HF. On the 

other hand, Koro et al. (2005) reported an increase, yet non-significant, in the prevalence of 

congestive HF during the treatment with metformin compared to subjects treated with 

sulphonylurea. In the next study study, carried out by Nichols et al. (2005), a non-significant 

reduction in congestive HF in diabetics undergoing a metformin therapy was observed. 

Therefore, the authors concluded that metformin may offer some protection from the incidence 

of HF in comparison to sulphonylurea or insulin. Similar conclusions were presented by 

McAlister et al. (2008), who compared the prevalence of HF in T2DM subjects using metformin 

to those treated with sulphonylurea, and reported an insignificant decrease in HF in the 

metformin-treated group. The summary of metformin clinical effects resulting in lifespan 

extension is presented in Figure 3. 

  

 

3.2.3. Neurodegenerative disease 

The outcomes of several clinical trials give evidence that chronic treatment with metformin 

could reduce the liability of cognitive decline (Ng et al., 2014). The investigators examined 365 

older T2DM subjects (>55 years old) in the population-based Singapore Longitudinal Aging 

Study. According to the results, metformin use reduced the risk of cognitive impairment 

(modified Mini-Mental Status Exam score ≤ 23) by 51%, which remained strong to adjustment 

for vascular and non-vascular risk factors. Furthermore, Ng et al. (2014) did not report any 

essential interactive effects of metformin therapy with apolipoprotein (APOE-ε4) and 

depression. In turn, Cheng et al. (2014) presented results of a large observational study which 

showed that the risk of dementia is weaker in T2DM individuals treated with metformin or 

sulfonylurea than those using thiazolidinediones for a longer period. The authors presume that 

potential mechanisms of positive effects of the drug include: improved insulin sensitivity, a 

decreased risk of metabolic syndrome, and reduced inflammation (Cheng et al., 2014). 

Another study proved that a 24-week administration of metformin improves cognitive function 

in depressed diabetic patients. In addition, metformin was found to significantly reduce 

depressive sympthoms and change the glucose metabolism in depressed diabetics (Guo et al., 
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2014). Herath et al. (2016) examined the effect of diabetes treatment on certain cognitive 

parameters over four years, and reported that only metformin users demonstrated a better 

cognitive function including verbal learning, working memory, and executive functions in 

comparison to patients using other anti-diabetic drugs. Nevertheless, there is also one study 

reporting that metformin therapy was linked with impaired cognitive performance (Moore et 

al., 2013). Conflicting evidence regarding metformin effects on cognitive function was also 

presented by Piskovatska et al. (2019). 

 

3.3. Clinical studies targeting longevity 

Owing to the fact that metformin action can target the anti-ageing mechanism, and has a 

capability to reduce all-cause mortality and prevalence of certain types of cancers, researchers 

and clinicians have conducted clinical trials on nondiabetic individuals to determine the 

potential of metformin in extending human life. 

One example might be the Metformin in Longevity Study (MILES), which is a double-blind, 

placebo-controlled clinical study including fourteen patients. The study aims to find 

associations between 6-week metformin intake and youthful gene expression in elderly people 

with impaired glucose tolerance (https://clinicaltrials.gov/ct2/show/results/NCT02432287, 

available on 29.04.2020). Results of the study showed that in older adults, metformin 

contributes to metabolic and non-metabolic changes, including pyruvate metabolism and DNA 

repair in the muscle tissue as well as peroxisome proliferator-activated receptors (PPAR) and 

sterol regulatory element-binding proteins (SREBP) signaling, and mitochondrial fatty acid 

oxidation in the adipose tissue (Kulkarni et al., 2018). 

Quite recently, a large double-blind, placebo-control TAME (Targeting Aging with Metformin) 

study has been launched. The principal aim of the study is to establish anti-ageing properties of 

metformin in nondiabetic subjects, and to find out whether metformin can target the ageing 

process by slowing the sequelae of existing age-related morbidity. It is planned to include 3,000 

participants, aged 65 – 79 years. The authors plan to measure the time to the occurrence of new 

cardiovascular events, cancer, dementia, and mortality. TAME’s aim is also to determine 

significant functional and geriatric end points.Thanks to this study, scientists will know whether 

treatment with metformin can inhibit age-releated diseases, including cancer, CVD and AD and 

thus decrease or postpone mortality (Barzilai et al., 2016).  

 

4. PRECLINICAL IN VIVO EVIDENCE OF GEROPROTECTIVE EFFECTS 

As presented above metformin is a medication approved by the Food and Drug Administration 

for the therapy of T2DM but it has also been found to target some ageing-related mechanisms 

(Nir Barzilai et al. 2016). This aforementioned activity of metformin calls for its use in 

treatment of ARD and extension of longevity. Within this chapter we provide the results of pre-

clinical studies aiming to confirm the anti-ageing properties of the drug and explain its 

mechanism of action. 

4.1. Invertebrate models 

The multidirectional mechanism of metformin action has been demonstrated to beneficially 

affect ARDs. These effects were confirmed in in vitro studies targeting mainly molecular 

mechanisms of ageing, and also in vivo studies, including various types of organisms ranging 

from asimple worm to a mice and rhesus monkeys (Barzilai et al., 2016). Nematode 

Caenorhabditis elegans is an experimental model. It is widely used as it allows to elucidate 
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molecular mechanisms involved in longevity (Lapierre and Hansen, 2012). Research on the 

anti-ageing effects of metformin has been extensively conducted over the past decade, but 

according to some sources (Potempa et al., 2016), the first reports of these properties of 

metformin appeared 40 years ago. Several studies have found that metformin prolongs lifespan 

in C. elegans (Cabreiro et al., 2013; De Haes et al., 2014; Onken and Driscoll, 2010; Wu et al., 

2016). As reported by Onken and Driscoll (2010), the drug administered at a dose of 50 mM 

increases the mean lifespan of C. elegans by about 40%; however, it is not associated with the 

maximum life span extension. The authors also found that anti-ageing properties of metformin 

stem from the activation of LKB1-AMPK-SKN1 signalling pathway. Further research has 

shown that prolongevity effect of metformin in C. elegans is related to both v-ATPase-mediated 

mTORC1 suppression and v-ATPase-AXIN/LKB1-mediated AMPK activation (Chen et al., 

2017). 

Interestingly, metformin was also showed to increase lifespan in C. elegans co-cultured with 

Escherichia coli which has multidirectional effects on the model organism. The mechanism of 

action included alteration of microbial folate and methionine metabolism. Additionally, 

metformin differentially influences nematode lifespan, depending on E. coli strain, metformin 

sensitivity and glucose concentration. Bearing in mind that the intestinal microbiome affects 

human metabolism and health, metformin effects on gut microbiome can contribute to its 

therapeutic efficacy (Cabreiro et al., 2013). Reduced glucose supplementation prolongs C. 

elegans lifespan through mitohormesis, a biological response in which a lower level of 

mitochondrial stress improves health and viability (Bárcena et al., 2018). De Haes et al. (2014) 

showed that metformin prolongs lifespan by means of mitohormesis and found that the 

mitohormetic signal was transmitted by the hydrogen peroxide scavenger peroxiredoxin 

(PRDX-2), whose expression was greater after metformin supplemetation. The investigators 

also stress that due to its evolutionary conservation, the peroxiredoxin pathway might stand for 

a general principle of prolongevity signalling. In addition, C. elegans treated with the drug also 

demonstrated beneficial morphology for a longer time, which consequently led to their 

improved health span (De Haes et al., 2014). 

Despite the promising results in nematodes, metformin prolongevital effects were not 

confirmed in Drosophila, whose lifespan is affected by AMPK activation (Tohyama and 

Yamaguchi, 2010). Also in the fruit fly, Drosophipla melanogaster, independently on the 

gender, metformin did not extend the lifespan. Importantly, metformin at high doses (100 mM) 

was toxic to the flies, probably due to disturbances in intestinal fluid homeostasis (Slack et al., 

2012). These outcomes imply that the drug has evolutionarily conserved influence on 

metabolism but not on lifespan. Nevertheless, the drug was found to suppress age- and oxidative 

stress- induced DNA damage and delay stem cell ageing in Drosphila (Na et al. 2013). The 

effects of metformin on lifespan were also examined on a silkworm model (Song et al., 2019). 

Metformin was found to prolong the lifespan of the male silkworm through AMPK-P53-FoxO 

pathway, increasing stress resistance and anti-oxidative capacity. Interestingly, the survival 

change was not observed in female silk worms. Thus we can expect that anti-ageing effects of 

metformin might be gender-related. 

In summary, despite the intriguing benefits of metformin in lifespan extension in some 

nematodes, the underlying mode of action, not yet well explained has become a subject of 

extensive debate since metformin targets various cellular signaling pathways associated with 

inflammation, cellular senescence, and stress defense. The researchers claim that metformin 

prolongs lifespan through mimicking the effects of diet restriction by activating AMPK. 
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4.2. Vertebrate models 

Frequent application of metformin for the treatment of T2DM contributed to the collection of  

a large amount of data regarding effects of its potential application, pharmacological profile, 

safety, and mortality. A vast majority of studies on geroprotective effects of metformin utilised 

a rodent model, mainly various mice strains (Novelle et al., 2016). 

A study of Anisimov et al. (2005) was one of the first studies reporting effects of metformin on 

life span and progression of mammary tumors in mice. The investigators found that long-term 

treatment of female transgenic HER-2/neu mice with metformin at a dose of 100 mg/kg in 

drinking water, slightly reduced food intake, slowed down the age-related elevation of blood 

glucose and triglycerides level. Importantly, it was confirmed that the drug prolonged the mean 

life span by 8%, and the maximum life span by 1 month in comparison with the control group. 

In addition, the prevalence and size of mammary adenocarcinomas in mice treated with 

metformin got decreased and was similar to the one observed in the non-treated group 

(Anisimov et al., 2005). In another mice strain (outbred SHR mice), the chronic treatment of 

females with metformin (100 mg/kg in drinking water) reduced the body weight, improved the 

mean life span by 37.8%, and the maximum life span by 2.8 months in comparison with the 

control group. However, in this model, the authors did not find any effect of metformin 

supplementation on blood estradiol concentration and spontaneous tumor incidence (Anisimov 

et al., 2008). Metformin extends the mean life span, and in combination with melatonin, 

significantly inhibited the size of transplanted tumors in HER-2/neu mice, thus giving evidence 

that it may be useful in prevention and treatment of breast cancer (Anisimov et al., 2010a). 

Interestingly, Anisimov et al. (2011) showed that the prolongevity effects of metformin in 

female SHR mice depend on the age of the animals at the onset of treatment. A prolongation of 

the mean life span and the maximum life span was observed when metformin administration 

was started at the age of 3 months, while no effects were reported when metformin was 

supplemented to the animals at the age of 15 months (Anisimov et al. 2011). 

The geroprotective effects of metformin were also confirmed by Martin-Montalvo et al. (2013), 

who reported that the chronic supplementation with metformin (0.1% w/w in diet), introduced 

at middle age, extends the healthspan and lifespan in C57BL/6 mice. The authors reported that 

metformin acts as CR mimetic, and its beneficial effects include increased insulin sensitivity, 

and lowered LDL and cholesterol levels without a decrease in caloric intake. Furthermore, 

metformin improves antioxidant protection, resulting in reductions of both oxidative damage 

accumulation and incessant inflammation (Martin-Montalvo et al., 2013). The beneficial effects 

of metformin were also observed in a second strain of male mice (hybrid B6C3F1), with a 

4.15% increase in the mean lifespan (Martin-Montalvo et al. 2013). Research conducted by 

Smith et al. (2010) is one of a few studies examining anti-ageing effects of metformin in the 

Fisher-344 rat model. However, the authors did not find any evidence of lifespan extension in 

the metformin treated group. These discouraging effects were attributed to resistance of this 

strain of rat to calorie restriction (Smith et al., 2010). 

Metformin was also reported to exert advantageous effects on neurological disorders. For 

instance, Ma et al. (2007) found that metformin supplementation (2 mg/mL in drinking water) 

significantly increased the survival time of male mice suffering from Huntington’s disease 

(HD). A higher dose of metformin (5 mg/mL) did not affect survival. Interestingly, the positive 

affect of metformin was reported only in male mice, not female. Also Sanchis et al. (2019) 

reported that metformin relieves motor and neuropsychiatric phenotypes in zQ175 mice with 

HD indicating delay of HD progression. However, a study of Kaneb et al. (2011) have shown 
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that metformin does not influence the onset, progression and survival of male mice with 

amyotrophic lateral sclerosis (ALS). Results of other studies are summarized in Table 2.  

Beneficial properties of metformin were also confirmed with respect to pathological hallmarks 

of AD. For example, Chen et al. (2016) determined the effect of metformin in β-amyloid (Aβ) 

transport across the blood-brain barrier (BBB), and found the drug essentially reduced the influx 

across the BBB via the receptor for advanced end glycation product (RAGE) expression and 

intra-arterial infusion of 125I–Aβ(1–40) in diabetc male db/db mice. In another study, Li et al. 

(2012) reported that metformin improves AD-like neuropathology in obese, leptin-resistant 

mice. However, there are also studies showing adverse effects of metformin regarding the 

liability of developing AD. Chen et al. (2009) demonstrated that metformin administration in a 

triple transgenic mouse model of AD results in an increase in the expression of BACE1, being 

one of the two enzymes that cleave amyloid precursor protein (APP) to generate Aβ, which was 

associated with an increase in Aβ production and small plaque formation. In addition, the 

investigators found that the drug can be harmful toward viability of neurons through its AMPK-

mediated mechanism (Chen et al., 2009).  

Anti-inflammatory properties of metformin were also confirmed in an animal model. Oliveira 

et al. (2016) observed that diabetic mice treated with metformin demonstrate reduced levels of 

the expression of inflammation markers (IL-1 and vascular endothelial growth factor (VEGF)), 

accompanied by enhanced levels of p-AMPK and nitric oxide synthase 3 (eNOS). Anti-

oxidative potential of metformin was also examined in a mouse model with carbon tetrachloride 

(CCl4)- induced oxidative liver injury (Dai et al., 2014). Supplementation with metformin 

markedly reduced the level of serum aminotransferases and attenuated hepatic histological 

abnormalities. Ma et al. (2015), by using a rat model of painful diabetic neuropathy, 

demonstrated that metformin exerts beneficial effects on malondialdehyde (MDA) and 

glycation end product levels in blood, as well as increases superoxide dismutase activity, 

suggesting that the drug suppresses diabetes-induced oxidative stress. In addition, metformin 

was found to act neuroprotectively through enhancing autophagy and inhibiting the 

inflammation after a spinal cord injury (SCI) (Wang et al., 2016). 

Metformin was also found to be effective in other ARDs including cancer. Numerous pre-

clinical reports have confirmed anti-cancer properties of the drug, and discovered plausible 

mechanisms explaining the molecular mechanism of its action in cancer. This observation has 

been a subject of many review papers (Rizos and Elisaf, 2013; Yu et al., 2019; Pizutti et al., 

2015; Febbraro et al., 2014), so we will focus only on just a few examples. For instance, Gotlieb 

et al. (2008) demonstrated cytotoxic properties of metformin towards ovarian cancer cells, 

which has later been supported by a few papers (Wu et al., 2012; Lengyel et al., 2014). Initial 

experiments identified the molecular mechanism of metformin action, with AMPK, and its 

downstream targets responsible for anti-cancer activity (Wu et al., 2012). In xenograft mouse 

models of ovarian cancer, metformin reduced tumor burden, decreased tumor weight, and 

improved the cisplatin cytotoxicity (Wu et al., 2012; Lengyel et al., 2014; Rattan et al., 2011). 

Metformin was also found to significantly reduce the risk of pancreatic ductal adenocarcinoma 

incidence and tumor weights in transgenic mice (Mohammed et al., 2013). Moreover, the 

authors observed essential inhibition of carcinoma spread in the pancreas. Molecular studies 

have shown that the pancreatic tissue of mice, fed with metformin, exhibited a significant 

suppression of mTOR, extracellular signal-regulated kinases (ERK), phosphorylated 

extracellular signal-regulated kinases (pErk), and insulin-like growth factor 1 (IGF-1) 

(Mohammed et al., 2013). On the other hand, Cheng and Lanza-Jacoby (2015) suggested that 

metformin decreases pancreatic cancer cell survival by reducing ROS production through 

down-regulation of NADPH oxidase 4 (NOX4) protein expression. 
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In summary, on the base of the analysis of the above data collected in different animal models, 

metformin seems to be an encouraging geroprotector. The summary of the current knowledge 

on the metformin effects in various organisms in presented in Figure 4. In addition, growing 

evidence in preclinical studies suggests advantageous effects of metformin in the treatment of 

ARD, including cancer and neurodegenerative diseases. Significant is the fact that the drug 

presents a good safety profile and is well tolerated. However, there are still some discrepancies 

between results of some studies regarding the effectiveness of metformin. Thus, further studies 

are required to clarify both the mechanisms and biological properties of metformin. 

 

 

5. EXPERIMENTAL IN VITRO EVIDENCE OF GEROPROTECTIVE EFFECTS OF 

METFORMIN 

 

Within this chapter, we provide a brief overview of beneficial properties of metformin obtained 

in in vitro studies which might be valuable in the treatment of selected ADR. 

 

5.1. Anti-proliferative effects 

Before discussing the role of metformin as suppressor of cancer cell viability, one should look 

at the effective concentration of the drug. The efficacy of metformin as an anti-neoplastic drug 

stems from the sensitivity of certain tissues to the drug, and cellular transport. Based on the 

number of transporters engaged in cellular uptake of metformin into different tissues, including 

plasma membrane monoamine transporters (PMAT), organic cation transporters (OCTs), 

multidrug and toxin extrusion (MATE), we presume that the presence and function of 

transporters, and interactions between them may influence the uptake of metformin into tumor 

cells. This may result in different  anticancer potential of the drug (Markowicz-Piasecka et al., 

2019). Most of the available studies report anti-proliferative properties of metformin at 

concentrations reaching 5-50 mM which are much higher than those corresponding to 

therapeutic concentrations applied in T2DM treatment (plasma concentrations between 10–

40 μM). However, it should be noted that the concentration of metformin is highly different in 

various organs (Foretz et al., 2014). For instance, metformin concentration in the colon was 

found to reach 40 mM (Glosmann and Lutz, 2019).   

An overview of current literature shows that anti-cancer properties of metformin are based on 

several mechanisms, including activation of LKB1/AMPK pathway, and suppression of mTOR, 

induction of cell cycle arrest or apoptosis, inhibition of protein synthesis, and improvement of 

the immunity (Franciosi et al., 2013). Favourable inhibitory effects of metformin on cell growth 

have been described for various cancer cell lines. These outcomes may be divided into two 

categories – studies presenting the improvement of chemotherapy during metformin treatment 

and studies confirming metformin cytotoxicity (Rizos and Elisaf, 2013). 

For instance, two independent studies (Dong et al., 2012; Hanna et al. 2012) reported that 

metformin improves the response of endometrial cancer cells to cisplatin and paclitaxel. The 

synergistic effect between metformin and cisplatin with respect to cytotoxic effect was also 

found for breast cancer cells (Liu et al., 2012), ovarian cancer cells and metastatic nodules in 

the lung (Rattan et al., 2011). In turn, Song et al. (2012) reported that metformin elevated the 

radiosensitivity of human breast cancer cells and mouse fibrosarcoma cells. 
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The effectiveness of metformin as a cytotoxic agent has been reviewed comprehensively (Rizos 

and Elisaf, 2013). Metformin was reported to diminish the viability of several types of cancer 

cells, including lung, gastric or endometrial cancer cells (Rizos and Elisaf, 2013). Other studies 

proved that metformin blocks cellular transformation and selectively kills cancer stem cells in 

four types of breast cancer (Hirsch et al., 2013) as well as hepatocellular carcinoma cells (Bhalla 

et al., 2012). Other highly valuable cytotoxic properties of metformin have been presented in 

Table 3. 

 

Researchers usually examine both effects and associated mechanisms of metformin action. For 

example, Buzzai et al. (2007) established the effects of metformin on paired isogenic colon 

cancer cell lines HCT116 p53+/+ and HCT116 p53_/_. The authors found that metformin 

treatment selectively inhibited growth of HCT116 p53−/− by induction of apoptosis, and 

concluded that the drug exerts selective toxicity towards p53-deficient cells. Thus, metformin 

might be valuable in the treatment of patients with harboring p53-deficient tumors which are 

frequently resistant to traditional radiotherapy or chemotherapy (Buzzai et al. 2007). In turn, 

Zakikhani and co-workers (2006) reported that metformin suppresses breast and glial cancer 

cell growth in AMPK-dependent manner. They proved the results using small interfering RNA 

against AMP kinase, which prevented metformin-induced antiproliferative effect towards 

breast cancer cells (Zakikhani et al. 2006). Interesting findings were also collected by Ben Sahra 

et al. (2008), who revealed AMPK-mediated anti-proliferative effects of metformin on the 

human prostate cancer cells model. However, the scientists did not observe inhibition of anti-

proliferative metformin action after using siRNA against the two catalytic subunits of AMPK, 

which means that the drug has another anti-neoplastic mechanism of action. The authors found 

that metformin inhibits ribosomal protein S6 kinase beta-1 (p70S6 kinase, S6K1) 

phosphorylation which is connected with downregulation of the mTOR pathway. The authors 

reported that metformin antiproliferative activity was due to reduced expression of cyclin D1 

protein leading to cell cycle arrest at the G0/G1 phase (Sahra et al., 2008). Another interesting 

results were presented by Queiroz et al. (2013), who evaluated the anti-proliferative potential 

and mechanism of action of metformin in MCF-7 cancer cells. Metformin decreased the 

viability of MCF-7 cells, induced cell cycle arrest at the G0-G1 phase and increased cell 

apoptosis and necrosis. The authors identified also a molecular mechanism of the anti-

proliferative properties of metformin which was linked with AMPK, and its downstream 

effectors including p38, Akt and ERK 1/2 (pro-inflammatory phosphokinases). The final effect 

of metformin treatment was stimulation of FOXO3a, being a transcription factor attenuating 

cancer by promoting cell cycle arrest (Queiroz et al. 2014). 

 

5.2. Antioxidant properties 

The process of ageing is closely connected with an onset of several diseases including cancer, 

T2DM, CVD and neurodegenerative diseases. It has been postulated that one of the causes 

leading to these diseases is oxidative stress. The main mechanism of anti-oxidative properties 

of metformin stems from inhibition of the mitochondrial respiratory chain. However, metformin 

has also been shown to reduce the production of ROS in mouse embryonic fibroblasts 

independently of AMPK activation (Algire et al., 2010). In turn, Bonnefont-Rousselot et al. 

(2003) found that metformin at pharmacologically relevant concentrations has the potential to 

scavenge hydroxyl free radicals. The authors found a decrease, yet nonsignificant, in ROS-

induced luminescence in polymorphonuclear cells (PMN) stimulated by phorbol myristate 

acetate (PMA), or formyl methionine leucyl phenylalanine (fMLP). Thus, considering these 

Jo
ur

na
l P

re
-p

ro
of



20 
 
 

results, the authors concluded that metformin could directly remove ROS or act indirectly by 

modulating the intracellular synthesis of superoxide anion (Bonnefont-Rousselot et al., 2003).  

Vascular diabetic complications are associated with the production of advanced end glycation 

products (AGEs). Ruggiero-Lopez et al. (1999) was one of the first authors who reported that 

metformin affects the formation of AGEs through interaction with α-dicarbonyl compounds, 

including methylglyoxal and glyoxal. Thus, it may be stated that metformin reduces carbonyl 

stress which can result in the prevention of  vascular diabetic complication in vivo (Ruggiero-

Lopez et al. 1999). Anti-oxidative properties of metformin were also confirmed by An et al. 

(2016), who assessed the influence of metformin on fluctuating glucose-induced endothelial 

dysfunction. This in vitro study showed that metformin has protective properties towards 

endothelial cells against oxidative stress. The beneficial effects of metformin included 

recoupling eNOS (endothelial nitric oxide synthase) through upregulation of GTPCH1 

(guanosine 5′-triphosphate cyclohydrolase 1) and BH4 (tetrahydrobiopterin) levels, and 

attenuation of upregulation of p47-pox subunit in NADPH oxidase in FG-treated HUVECs. It 

was found that the protective effect of metformin resulted from inhibition of NADPHoxidase 

via an AMPK-dependent pathway. Additionally, metformin acted through typical activation of 

AMPK signalling pathway which inhibited generation of ROS and accelerated production of 

NO (An et al., 2016).  Another study, conducted on colorectal cancer cells (Nguyen et al., 2019), 

proved that the drug decreases ROS production through inhibition of NADPH oxidase activity. 

Additionally, metformin suppressed NF-κB signalling and blocked interleukin-8 (IL-8) up-

regulation induced by lithocholic acid (LCA). These outcomes led to a conclusion that 

metformin might prevent endothelial cell proliferation and tubelike formation (Nguyen et al., 

2019). 

 

5.3. Anti-inflammatory effects 

Inflammation constitutes an important part of the pathogenesis of ageing-related diseases, 

including T2DM, as well as Alzheimer’s disease (AD) (Verdile et al., 2015). For instance, 

multiple data have proved that the development of T2DM is related with elevated levels of 

inflammatory markers and mediators, including C-reactive protein (CRP) and interleukin 6 (IL-

6) (Pradhan et al., 2001). In the course of AD, the degree of inflammation is associated with a 

cognitive decline (Parachikova et al., 2007) and brain atrophy (Cagnin et al., 2002). 

Inflammation, including NF-κB signalling, is recognized as an important contributing factor to 

ARDs, and a few previous experiments have reported that metformin inhibits NF-κB, also in 

vascular tissue (Isoda et al., 2006) and in hepatocytes (Woo et al., 2014). The effects of NF-κB 

inhibition in human endothelial cells (ECs) and smooth muscle cells (SMCs) included a reduced 

release of cytokines, such as interleukin-6 (IL-6) and interleukin-8 (IL-8), and attenuated 

activation potential of pro-inflammatory phosphokinases (p38, JNK, and Erk and Akt), induced 

by IL-1 (Isoda et al., 2006). Also Cameron et al. (2016) found that the biguanide in primary 

hepatocytes inhibits tumor necrosis factor-α–dependent IκB degradation and expression of pro-

inflammatory mediators, including IL-6, IL-1β, and CXCL1/2 (C-X-C motif ligand 1/2). In 

addition, in macrophages, metformin specifically decreases a release of pro-inflammatory 

cytokines, without blocking M1-macrophages and M2-macrophages differentiation or 

activation (Cameron et al., 2016). 

Anti-inflammatory properties of metformin were confirmed in colon cancer cells (COLO205) 

as well. The drug was found to disrupt the activation of NF-kB and phosphorylation of inhibitor 

of kappa B. The activity of this mechanism resulted in decreased production of inflammatory 

interleukines (IL-8 and IL-1α). The authors evaluated also in vivo effects of metformin, and 
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found that the drug ameliorates inflammation in epithelial cells of mice, inhibits colitis-

associated colon tumorigenesis in a murine model, and weakens the severity of intestinal 

inflammation in IL-10 knockout mice (Koh et al. 2014). The advantageous effects of metformin 

on intestinal smooth muscle cells were also reported by Al-Dwairi et al. (2018). Cell stimulation 

with metformin caused a significant inhibition of secretion and expression of tumor necrosis 

factor-α (TNF-α), IL-1α, macrophage colony stimulating factor (M-CSF) and T cell activation 

gene-3 (TCA-3). The authors confirmed that the biguanide reduced levels of 

lipopolysaccharide-induced NF-κB phosphorylation (Al-Dwairi et al. 2018). The anti-

inflammatory properties of metformin were also presented in vitro using human retinal 

microvascular endothelial cells (hRVECs). The anti-inflammatory properties of the drug stem 

from activation of AMPK and related lowered levels of inflammatory molecules such as NF-

κB, intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1) 

and IL-8 in TNF-α -stimulated hRVECs (Han et al. 2018). 

In summary, numerous experimental studies have evaluated the potential of metformin in 

attenuation of inflammation and oxidative stress, and presented promising results in various 

types of cells. However, further studies conducted on animal models or clinical trials are 

required to support the results of in vitro studies. 

 

5.4. Neuroprotective effects 

It has been proved that metformin is able to counteract basic mechanisms of ARD such as 

cancer, CVD, and neurodegenerative diseases, including AD. According to Rotermund et al. 

(2018), the drug might affect neuronal longevity mechanisms because its cellular effects, yet 

not fully elucidated, are well-studied. Additionally, due to the well-known safety profile and 

multi-directional activity, metformin is an interesting drug for further studies. The main 

mechanisms supporting a neuroprotective effect of metformin include glucose metabolism 

improvement, energy sensing, counteracting protein phosphorylation, oxidative stress and 

neuroinflammation (Rotermund et al., 2018). The potential of metformin as a drug for  

treatment of neurodegenerative diseases has been studied thoroughly, and is a subject of many 

reviews (Palleria et al., 2016; Rotermund et al., 2018; Markowicz-Piasecka et al., 2017). 

Therefore, this article is a presentation of only a few in vitro studies on neuroprotective 

properties of metformin. 

Metformin was found to exert neuroprotective properties preventing apoptotis of primary 

neurons (El-Mir et al., 2008). Studies demonstrated that metformin reduced neuronal damage 

and ameliorated a lack of oxygen or glucose in neurons. Owing to this activity, the drug 

prevented etoposide induced-apoptosis, leading to improvement of neuronal cell survival (El-

Mir et al., 2008). Moreover, metformin effectively improves impaired glucose uptake in insulin-

resistant neuronal cells, and prevents occurrence of molecular and pathological characteristics 

of AD (Gupta et al., 2011). 

Importantly, metformin has the potential to significantly reduce beta-site amyloid precursor 

protein cleaving enzyme 1 (BACE1) protein expression and activity in cellular model, thereby 

reducing BACE1 cleavage products and generation of Aβ (Hettich et al., 2014). The decreased 

BACE1 expression was caused by interfering with MID1 (E3 ubiquitin ligase) complex which 

subsequently activates PPA2 (protein phosphatase 2A) and suppresses mTOR signalling. 

Therefore, in the future, the targeting mTOR/PP2A therapy may be a reasonable method of 

suppression of AD (Hettich et al. 2014). Another cell research also reported that metformin 

stimulates PP2A activity and reduces tau phosphorylation at PP2A-dependent epitopes. 

Interestingly, the authors reported that metformin effects on PP2A and subsequent tau 
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phosphorylation do not appear to depend on AMPK activation (Kickstein et al. 2010). These 

findings prove a beneficial effect of chronic metformin therapy and arouse the expectation that 

metformin would have a neuroprotective and protective effect in individuals with susceptibility 

for AD (Kickstein et al., 2010). According to Zhou and co-workers (Zhou et al., 2016) 

pretreating rat cerebellar granule neurons (CGN) with metformin significantly enhances cell 

viability against neurotoxic effects of glutamate.  

AMPK signalling appears to be crucial to protect neurons under pathologic conditions. Paintlia 

et al. (2013) showed that metformin through AMPK activation reduces inflammation and 

oxidative stress, which results in protection of oligodendrocytes (OLs) in mixed in vitro glial 

cultures, stimulated with lipopolysaccharide. Similar effects were also found in OLs exposed 

to cytokines. Based on these results, it can be claimed that metformin as a AMPK activator can 

decrease deficits in multiple sclerosis and associated neurodegenerative disorders (Paintlia et 

al., 2013). Another interesting results were presented by Wang et al. (2012), who reported that 

the biguanide supports neurogenesis and enhances spatial memory in a PKC-CBP-dependent 

(atypical kinase C) manner. As stated by the authors, PKC-CBP pathway is important for the 

normal genesis of neurons from neural precursors, and due to its activation, metformin 

promotes rodent and human neurogenesis in culture (Wang et al., 2012). 

In summary, the data presented herein imply that metformin may play a crucial role in the 

treatment of AD due to targeting several pathological hallmarks of AD, including 

neurodegeneration, tau phosphorylation, and neuroinflammation. Moreover, anti-

cholinesterase activity of the drug should also be pointed out. Nevertheless, negative results, 

especially those linking long-term use of metformin with accumulation of β-amyloid 

aggregates, should be kept in mind when evaluating the potential of metformin as an anti-AD 

agent. 

 

5.5. Anti-senescence properties 

Organismal ageing is accompanied by metabolic changes at the cellular level. A rising quantity 

of senescent cells (SCs) induces secretion of pro-inflammatory factors which impair the 

regeneration capability of stem cells. The chronic state of low grade inflammation is commonly 

reported in elderly people and is linked with many ARDs (Bielak-Żmijewska et al., 2014). In 

the body ageing process, accumulation of damage in cells, decreased efficiency of cell repair 

systems and impaired removal of damaged cells result in accumulation of malfunctioning cells. 

These impaired cells worsen the functioning of neighboring tissues, increase inflammation, 

which promotes the ageing of the whole body (Bielak-Żmijewska et al., 2014). 

Metformin is one of synthetic and natural compounds, investigated for their anti-senescence 

properties, in in vitro and animal models. As reviewed by Barzilai et al. (2012) and Gurău et al. 

(2018), metformin presents beneficial effects on a number of ageing-related processes such as 

inflammation, autophagy, cell viability, and protein synthesis. In addition, the drug modulates 

the expression of receptors for cytokines, insulin, and IGF-1, and promotes mTOR inhibition 

(Gurau et al., 2018). 

Metformin was found to significantly attenuate vascular senescence and HFD (high fat diet) 

induced atherosclerosis in mouse model. Furthermore, metformin increased the expression 

level of superoxide dismutase-1 (SOD1) in aortas of mice, leading to a decreased level of ROS 

(Forouzandeh et al., 2014). In turn, Moiseeva et al. (2013) reported that metformin suppresses 

the expression of genes coding for multiple inflammatory cytokines during cellular ageing. The 

investigators observed that metformin was able to prevent the translocation of NF-κB to the 
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nucleus and stopped the phosphorylation of IκB and IKKα/β, processes needed for activation 

of the NF-κB pathway. These observations can explain the anti-ageing and anti-neoplastic 

effects of metformin. Metformin was also proposed to be a SASP (senescence-associated 

secretory phenotype) inhibiting molecule in senescent fibroblasts (Moiseeva et al., 2013; 

Sultuybek et al. 2019). Interestingly, metformin did not reduce the expression of anti-cancer 

cytokines (e.g. interferon) in senescent cells, implying that the drug modulates SASP by 

reducing its inflammatory potential but retaining its anti-cancer properties (Moiseeva et al., 

2013). Noren Hooten et al. (2016) discovered that long-term treatment with metformin 

upregulated DICER1 and increased microRNA both in mice and humans with T2DM. In 

addition, the authors found that the drug reduced p16 and p21 protein levels and also other 

inflammatory oncogenes being the hallmarks of SASP. On the base of these results, the authors 

hypothesised that upregulation of DICER1 levels may become a new approach for ageing-

related diseases (Noren Hooten et al., 2016). Metformin up-regulated the expression of 

microRNAs in human pancreatic, prostate, lung cancer cells (Li et al. 2012; Avci et al. 2013; 

Dong et al. 2020) and also in endometrial epithelial cells of patients with PCOS (Zhai et al. 

2019) in a dose-dependent manner.  

Anti-aging effects of metformin cannot be discussed without describing its effects on SIRT1. 

SIRT are a group of proteins which have nicotinamide adenine dinucleotide (NAD+)-dependent 

deacetylase activity or ADP-ribosyltransferase activity. The sirtuin family is responsible for 

supporting mammalian health, regulating various cell functions, perhaps modulating the ageing 

process including extension of viability and forming responses to stressors. In mammals, there 

are seven sirtuin homologues of which SIRT1 is the most comprehensively examined for its 

significance in the vascular ageing process (Kida et al., 2016). The mechanism of SIRT1 action 

is linked with deacetylation of transcription factors (such as FOXO1, 3 and 4, p53, NF-κB, 

PGC-1 and HSF-1), histones and DNA repair proteins (Giblin et al., 2014). Metformin was 

found to act agonistically on SIRT1 by improving its catalytic efficacy (Cuyàs et al., 2018). 

Importantly, improvement in SIRT1 activity protects cells against apoptotic death by induction 

of p65 deacetylation, which provokes the inhibition of NF-κB factor (Lee et al., 2009). 

 

 

 

6. DOES METFORMIN MEET ALL CRYTERIA FOR A GEROPROTECTOR? 

The scientific area of discovery of geroprotectors is a very dynamic discipline. Currently, there 

is approximately 200 substances which possess anti-ageing properties, including slowing 

ageing or increasing lifespan in a variety of organisms (e.g. yeasts, nematodes or rodents) 

(Geroprotectors.org database) (Moskalev et al., 2015). In the previous chapters, we presented 

the multidirectional action of metformin in preserving youth. However, one should approach 

this topic critically and consider whether metformin meets all the most important criteria that 

are the basis to become a geroprotector.  

Nowadays, there is no single definition of geroprotectors in the scientific literature (Moskalev 

et al., 2016). Another important issue are the differences in the study protocols, including 

methodology, research methods or model organisms and genetic background within species 

which impede to compare the results and make conclusions. For this reason Moskalev et al. 

(2016) introduced the concept of geroprotector and developed the criteria for classifying a 

substance as a geroprotector. In general, a certain substance is regarded as geroprotector when 

it increases lifespan (Moskalev et al., 2016). The criteria for being a geroprotector have been 
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divided into primary and secondary groups. Increased lifespan, amelioration of ageing 

biomarkers, acceptable toxicity, and improving health-related quality of life are listed in the 

first group. Secondary selection criteria are as follows, evolutionary conservatism of target or 

mechanism of action, reproducibility of geroprotective effects on different model organisms, 

increase in stress resistance, and simultaneous influence on several ageing-associated causes of 

death in mammals (Moskalev et al., 2016). In the case of metformin, these criteria are not 

always met. Although some studies report increase in longevity in several model organisms: C. 

elegans (Cabreiro et al., 2013), D. melanogaster (Slack et al., 2012), and M. musculus (Martin- 

Montalvo et al., 2013), there are also reports showing no effect of metformin in rats with normal 

genetics (Smith et al., 2010). Importantly, metformin is regarded as a safe drug with acceptable 

acute toxicity – mouse LD50 oral 1450 mg per kg (Tomasulo, 2002), and is well tolerated 

(Giugliano et al., 1993). The effects of metformin on mice lifespan depend on its dose since it 

was found that smaller doses of the drug (0.1% w/w in diet) slightly prolonged the lifespan by 

5.83%, but higher doses (1% w/w) led to the shortening of mice lifespan due to renal 

dysfunction (-14.4%) (Martin-Montalvo et al., 2013). Toxic effects of metformin given at 1% 

(w/w) were also confirmed in 2-year-old mice (Alfaras et al., 2017). The authors examined the 

effects of 1% metformin given according to the different regimens, every-other week (EOW) 

or two consecutive weeks per month (2WM) on the survival of mice. During the first few weeks 

a decrease in body weight was observed; however, the lifespan of mice in both groups (EOW 

and 2WM) was comparable with non-treated animals. The differences in the action of 

metformin on metabolic markers between the EOW and 2WM groups, with EOW metformin 

conferring greater benefits were found. It was concluded that the absence of adverse outcomes 

associated with chronic, intermittent use of 1% metformin in old mice has clinical translatability 

into the biology of ageing in humans (Alfaras et al., 2017). Rarely occurring but serious adverse 

effects include lactic acidosis, respiratory disease (due to inadequate oxygenation of tissues), 

and impaired renal function (Moskalev et al., 2016). According to Espada et al. (2019) the pro-

longevity effects of metformin depend also on the time of metformin supplementation since the 

investigators found that late life metformin treatment limits cell survival and shortens lifespan 

of C. elegans by triggering an aging-associated failure of energy metabolism. In addition to 

above-mentioned data, metformin was found to not slow down the epigenetic clock (Quach et 

al., 2017). It was also found that metformin negatively affects the hypertrophic response to 

resistance training in healthy older subjects (Walton et al., 2019). Metformin was also reported 

to inhibit mitochondrial adaptation to aerobic exercise in the elderly (Konopka et al., 2019). 

Thus, it implies that prior to prescribing metformin as an anti-ageing agent, additional studies 

are required to understand the mechanisms that elicit positive and negative responses to 

metformin with and without exercise (Konopka et al., 2019). Among unfavourable effects 

associated with long-term metformin administration are those related with decreased level of 

vitamin B6, B12 and folate in the body, which can cause anemia, homocysteinemia (increased 

risk of atherosclerosis), neuropathy, impaired memory or even cognitive dysfunctions (Aroda 

et al., 2016; Glossmann and Lutz, 2019; Roy et al., 2016).  

To summarize, the benefical effects of metformin on lifespan in humans were reported mainly 

on people with specific diseases, including T2DM or hypertension. However, those favourable 

effects were not confirmed in healthy subjects since the causes of reduced mortality in sick 

people do not necessarily slow down the ageing of healthy individuals. Similar comparison can 

be done with relation to age because most of the available studies were conducted in elderly 

patients but we still lack the knowledge how metformin acts in young people. 
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7. CONCLUDING REMARKS 

In summary, metformin is a safe and effective drug for treatment of T2DM. It targets multiple 

mechanisms involved in senescence at the molecular level. Numerous cellular studies have 

revealed that metformin exerts anti-oxidative effects, reduces inflammatory markers, 

suppresses NF-κB, and mTOR signalling pathways, and thus reduces DNA damage. 

Importantly, mounting evidence in preclinical invertebrate and vertebrate models suggests 

advantageous contribution of the drug to lifespan extension and reduction of the risk of ageing-

related diseases, including cancer and neurodegeneration. These valuable properties of 

metformin attracted scientists’ and clinicians’attention who perceive metformin as a promising 

geroprotector in humans. 

A lot of human studies indicate that individuals using metformin demonstrate a decreased risk 

of developing any cancer compared with the general population. In addition, metformin-users 

have a lower probability of developing colorectal, breast or lung cancer compared with T2DM 

subjects who have been administered non-metformin therapies. However, not all clinical studies 

report beneficial effects of metformin regarding the incindence of cancer. Therefore, the 

currently available data is not sufficient to support the direct anti-cancer properties of 

metformin. Hopefully, ongoing trials, determining the long-term treatment with metformin as 

a therapy in prostate, colorectal or pancreatic cancer, will help to elucidate the potential of 

metformin as an anti-cancer drug. As far as we are concerned, the valuable influence of 

metformin on the prevalence of cancer might be evident over a longer period of time or in more 

specific treatment groups, including insulin users. Certainly, continuous progress in discovering 

molecular targets of metformin action will help to understand and continue research on 

antitumor activity of the drug. 

Currently ongoing clinical trials aim to determine effects of monotherapy of metformin or in 

combination with lifestyle changes on clinical and molecular hallmarks of ageing. For instance, 

NCT03451006 trial aims to check whether metformin can improve longevity of the cell, reduce 

ageing-related biochemical parameters and thereby strengthen physical performance, measured 

by the short physical performance battery test. In turn, the aim of NCT03713801 is to see 

whether metformin can boost the immune response to the pneumococcal conjugate vaccine 

(PCV-13) in older adults, and if this effect is mediated by microbiome. While writing this paper, 

at the beginning of May 2020, the register of clinical trials (www.clinicaltrials.gov) includes 

six recruiting clinical studies which aim at determining effects of metformin on ageing. 

Bearing in mind both the promising results of clinical studies, and neutral or ambiguous data 

regarding metformin anti-cancer effects, we strongly believe that current clinical studies, 

including TAME, could provide more accurate information on metformin potential as an anti-

ageing agent. Definite data is needed to confirm the role of metformin as a geroprotector.  
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In medieval times Galega officinalis herb was used to treat diabetes like sympthoms. Metformin 

was synthesized in 1922, and its glucose-lowering properties were studied in animal model in 

the mid-1920s, and in humans in 1930s. Owing to studies conducted by Dr Jean Sterne, 

metformin was approved for the treatment of diabetes in Europe in the 1950s. Knowledge about 

metformin has increased significantly over the past 20 years. New metformin properties have 

been discovered, including antioxidant and anti-cancer effects. Research into the anti-aging 

properties of metformin is also underway. 

Abbreviations: FDA – Food and Drug Administration; UKPDS – United Kingdom Prospective 

Diabetes Study; WHO – World Health Organization; SASP - senescence-associated secretory 

phenotype; SHIP2 - Inositol Polyphosphate Phosphatase-Like Protein 1; ARD – ageing related 

diseases; vATPase – vacuolar ATPase. 

 

Figure 2. Mechanisms of metformin action related to ageing.  

The figure shows schematically the most important intracellular targets of metformin. Outside 

the cells metformin has been found to affect the receptors for insulin and IGF-1 that are 

activated with ageing. Metformin is transported into the cells via organic cation transporters 

(OCTs) in which metformin inhibits mitochondrial complex I, and activates AMPK. Therefore, 

metformin suppresses mTOR, which appears to be a major target to modulate aging. Metformin 

through inhibition of complex I decreases ROS level, and through inhibition of NF-ƘB 

decreases inflammation. Modulation of SIRT1 activity leads to removal of senescent cells. All 

the processes affect cell proliferation, cellular survival, stress defense, autophagy, protein 

synthesis, and inflammation which are strongly associated with longevity.  

The effects of metformin on its primary targets are marker with red arrows or lines. The figure 

does not include all the cross-talk between individual factors. 

Abbreviations: IGF-1 – insulin growth factor 1; IRS-1/2 – insulin receptor substrate 1/2; PI3K 

- phosphoinositide 3-kinases; Akt – protein kinase B; FOXO – transcription factors (Forkhead 

box); SIRT1 – sirtuin 1; NF-ƘB - nuclear factor kappa-light-chain-enhancer of activated B cells; ACC 

- Acetyl-CoA carboxylase; TSC2 - tuberous sclerosis complex 2; ROS – reactive oxygen species, RHEB 
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- Ras homolog enriched in brain; mTOR - mammalian target of rapamycin; RAG - RAS-related GTP-

binding protein; PAT1- proton-coupled aminoacid transporter 1 ; vATPase – vacuolar ATPase. 

 

Figure 3. Potential clinical effects of metformin contributing to its anti-ageing effects. In the 

ageing patients, metformin may provide many multiple benefits. Metformin basic effects are 

related with the influence on the liver (e.g. reduction in glucose output), and the peripheral 

tissues to increase glucose uptake. With regard to cardiovascular system metformin 

ameliorates hyperglycemia, improves endothelial function, reduces blood pressure and 

possesses anti-coagulant properties. In addition, metformin reduces insulin resistance and fat 

redistribution. Accumulating data give evidence on the anti-proliferative role of metformin in 

several types of cancer. All these beneficial effects may improve physical function (e.g. mobility, 

endurance), clinical outcomes (e.g. blood pressure, weight and cardiovascular health) leading 

to improved quality of life and extended lifespan.  
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Figure 4. The summary of lifespan-extending properties of metformin in different animal 

models (Drosophila melanogaster, Caenorhabditis elegans, mus musculus, Rattus norvegicus). 

The results are based on the previous findings (Cabreiro et al., 2013; De Haes et al., 2014; 

Smith et al., 2010; Slack et al., 2012; Martin-Montalvo et al., 2013; Anisimov et al. 2010b). A 

detailed description of the research results is presented in the text. 
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Table 1. Other clinical studies evaluating the effects of metformin on lung, prostate, bladder, kidney, liver and pancreas cancer. 

Cancer Study 

type 

Study 

population 

Total 

participants 

Measured 

outcome 

Effect on organs Results and conclusions Ref. 

Lung Cohort study Newly 

diagnosed lung 

cancer patients 

with T2DM 

1,443 Lung cancer-

specific mortality 

with metformin 

treatment 

Further clinical studies are 

required to verify these 

findings. 

Little evidence of a protective association 

between metformin therapy and cancer 

mortality in lung cancer subjects. 

Menamina et 

al., 2016 

Lung Nested case-

control 

analysis 

New users of 

oral 

hypoglycemic 

drugs from the 

UK GPRD 

115,923 Risk of lung cancer 

with metformin 

therapy 

No significant change was 

observed in lung cancer 

cells.  

No beneficial effect of metformin on risk 

of lung cancer; RR = 0.94. 

Śmiechowski 

et al. 2013 

Lung Retrospective 

study 

Patients with a 

recorded 

diagnosis of 

lung cancer 

from the UK 

GPRD 

91,301 Risk of lung cancer 

with metformin 

treatment 

Long-term metformin 

treatment had preventive 

effect on subsequent 

development of lung cancer 

cells in women only. 

Chronic use of metformin was not 

associated with decreased risk of lung 

cancer. 

Bodmer et 

al. 2012 

Prostate Meta-

analysis 

30 cohort 

studies 

1,660,795 Overall survival 

(OS), PCa-specific 

survival, 

recurrence-free 

survival (RFS) 

Further clinical studies are 

required to verify these 

findings. 

Metformin treatment improves overall 

survival, and RFS in prostate cancer. 

Metformin did not decrease PCa-specific 

survival. 

He et al., 

2019 

Bladder Retrospective 

cohort study 

Patients with at 

least one 

prescription of 

oral anti-

diabetic agents 

and/or insulin 

165,398 Urinary bladder 

cancer (UBC) risk 

No significant change was 

observed in bladder cancer 

cells. 

No association between metformin use 

and UBC risk (HR = 1.12) compared with 

SU only users. 

Goossens et 

al., 2015 

Bladder Meta-

analysis 

9 retrospective 

cohort studies 

1,270,179 Risk of bladder 

cancer with 

metformin 

treatment 

Metformin intake reduced 

progression of muscle 

invasive bladder cancer for 

non-Asians.  

Metformin treatment improves survival 

connected with bladder cancer. 

Metformin ameliorates RFS, progression-

free survival (PFS), and cancer specific 

survival (CSS). Metformin had no ability 

to decreased the incidence of bladder 

cancer. 

Hu et al., 
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Bladder Retrospective 

cohort study 

Newly 

diagnosed 

Taiwanese 

patients with 

T2DM 

940,708 Risk of bladder 

cancer with 

metformin 

treatment 

Metformin revealed 

potential preventive effect 

on bladder cancer cells i.e. 

inhibition  the growth and 

proliferation of cancer cells. 

Use of metformin was associated with 

reduced bladder cancer risk. 

Tseng, 2014 

Bladder Retrospective 

cohort study 

Patients with 

T2DM treated 

with metformin 

or sulfonylureas 

87,600 Risk of bladder 

cancer with 

metformin or SUs 

treatment. 

No significant change was 

observed in bladder cancer 

cells. 

No significant effect of metformin 

treatment on prevalence of bladder 

cancer. 

Mamtani et 

al. 2014 

Kidney Meta-

analysis 

8 cohort studies 

and 

1 population 

based study 

7,426 Survival rate with 

kidney cancer after 

metformin 

treatment 

Metformin treatment 

decreased progression of 

kidney cancer in 5 studies.  

Metformin use had a protective ability on 

PFS, CSS and OS. Little evidence of a 

protective impact of metformin treatment 

on renal caner survival outcomes. None 

reached statistical significance.  

Nayan et al. 

2019 

Kidney Meta-

analysis 

8 cohorts 

studies 

254,329 Survival rate with 

kidney cancer after 

metformin 

treatment 

Reduced risk of cancer cells 

development in kidney in 

patients treated with 

metformin in comparison 

with non-treated patients. 

Metformin treatment improved OS, CSS 

in patients with renal cell carcinoma 

(RCC). No beneficial effect of metformin 

use on DFS and PFS of kidney cancer. 

Li et al. 2017 

Kidney Retrospective 

cohort study 

Patients with 

T2DM and M0 

renal cell 

carcinoma who 

undergoing 

nephrectomy.  

158 Overall survival, 

connection 

between metformin 

treatment and 

disease–free. 

No significant change was 

observed in kidney cancer 

cells. 

No positive effect of metformin use on 

kidney cancer risk. 

Nayan et al. 

2017 

Kidney Cohort study Taiwanese 

patients with 

type 2 diabetes 

247,252 Risk of bladder 

cancer with 

metformin 

treatment 

Further clinical studies are 

required to verify these 

findings. 

Metformin treatment reduced the 

prevalence of kidney cancer in T2DM 

subjects in a dose–dependent manner. 
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Liver Meta-

analysis 

Randomized 

controlled trials, 

6 retrospective 

cohort studies, 

and case–

control studies 

13,985 Overall survival 

(OS) after 

metformin 

treatment and other 

anti-diabetic drugs 

in hepatocellular 

carcinoma (HCC) 

patients with type 2 

diabetes 

Metformin use led to 

inhibition of hepatocellular 

carcinoma cells 

proliferation. 

Beneficial effect of metformin on OS of 

patients with HCC and T2DM after 

healing therapy.  

Zhou et al. 

2020 

Liver Cohort study Men at the age 

of 40‐89 

without renal, 

chronic liver, or 

cardiovascular 

diseases and 

cancer. 

84 433 Risk of 

hepatocellular 

carcinoma with 

metformin 

treatment 

Metformin intake revealed 

potential preventive effect 

on hepatocellular carcinoma 

cells in Hispanics and 

non‐Hispanic African 

American only. Thereby,  

metformin response is 

probably heritable or 

dependent on ethnicity 

disparity. 

Metformin use reduced the incidence of 

HCC by ca. 51% and altered the 

race/ethnicity disparity. 

Wang et al. 

2019. 

Liver Meta-

analysis  

23 studies 

(observational 

studies and 

randomized 

controlled 

trials) 

17,028,953 Risk of liver cancer 

with metformin 

treatment  

Further clinical studies are 

required to verify these 

findings. 

Protective association between metformin 

treatment and risk of liver cancer. In 

metformin treated group, the risk of liver 

cancer was reduced by 48%. 

Ma et al. 

2017 

Liver Random-

effects meta-

analysis 

model 

5 studies (2 

hospital-based 

case-control 

studies, 2 

prospective 

cohort study 

and 1 

retrospective 

cohort study) 

105,495 Risk of liver cancer 

with metformin 

treatment 

Metformin played a role in 

chemoprevention of growth 

of liver cancer cells. 

Little evidence of a protective association 

between metformin use and incidence of 

liver cancer – reduction by ca. 62%. In 

four studies, metformin treatment reduced 

the risk of HCC by ca. 70%.  

Zhang et al. 

2012 

Pancreas Cohort study Patients with 

pancreatic 

cancer–related 

diabetes 

(PCRD) and 

postpancreatitis 

diabetes 

1,862 Risk of 

mortalitywith anti-

diabetic drugs 

treatment in 

patients with 

PCRD and PPDM 

Further clinical studies are 

required to verify these 

findings. 

No association between metformin 

therapy and survival in PCRD patients. 

Beneficial effect on survival in PPDM 

patients. 
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mellitus 

(PPDM) 

Pancreas Meta-

analysis 

8 studies 

(randomized 

controlled trials, 

cohort studies, 

or case-control 

studies) 

4,293 Overall survival 

(OS) of patients 

with pancreatic 

cancer with 

metformin 

treatment 

In Asian patients, 

metformin treatment was 

associated with  reduced 

risk of cancer cells 

development only to small 

extent. 

Little evidence of a beneficial association 

between metformin therapy and OS. 

Metformin use caused increase of OS ca. 

19%.  

Xin et al. 

2018 

Pancreas Meta-

analysis 

17 studies 

(cohort, 

observational 

and case–

control) 

36,791 Overall survival 

after metformin 

adjuvant treatment 

in patients with 

pancreatic cancer. 

Metformin adjuvant 

treatment had preventive 

effect on growth of 

pancreatic cancer cells, 

especially in Asian patients 

at an early tumor stage (I-

II). 

Association between metformin use and 

prolonged survival in pancreatic cancer 

individuals. 

Wan et al. 

2018 

Pancreas Retrospective 

cohort study 

Patients with 

T2DM and 

advanced 

pancreatic 

adenocarcinoma 

(PAC) 

516 Survival rate with 

pancreatic cancer 

after metformin 

treatment 

No significant change was 

observed in pancreatic 

cancer cells. 

No clinically important association 

between metformin treatment and 

survival in patients with advanced PAC. 

However, metformin provided survival in 

PAC in non-metastatic disease.  

Hwang et al. 

2013 
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Table 2. The prolongevity effects of metformin in animal studies. 

Animal model Metformin dose Major findings Reference 

129/Sv mice 100 mg/kg in 

drinking water 

Long treatment with metformin 

increased female mice lives by ca. 5%. 

This effect has not been noticed among 

males. Metformin decreased the 

prevalence of malignant tumors in 

females. 

Anisimov et al. 

2010b 

Wistar rats fed 

with high-fat diet 

8 week treatment Metformin acts neuroprotectively 

against the detrimental effects of Aβ 

and HFDs on hippocampal synaptic 

plasticity. 

Asadbegi et al. 

2016 

129/Sv mice 100 mg/kg in s.c. 

injection at the 

3rd, 5th and 7th 

days of life 

Neonatal treatment with metformin 

increased male mice mean life span by 

ca. 20% and also extended maximum 

life span by ca. 3,5%. Nonetheless, 

such an effect has not been observed in 

females. Metformin reduced mean life 

span by ca. 9,1% and maximum life 

span by ca. 3,8%. Practically half 

(45%) of male of the control group and 

71,8% of the researched group 

survived up to 800 days of age.  

Anisimov et al. 

2015 

Kras G12D mice 5 mg/ml in the 

drinking water for 

3 or 9 months 

Three months treatment with 

metformin reduced risk of  hepatic 

steatosis development and ability to 

weight gain in mouse population 

subjected to HFD. After 9 months 

treatment, metformin significantly 

decreased the incidence of pancreatic 

ductal adenocarcinoma.  

Chang et al. 2018 

Balb/c female 

mice 

250 mg/kg in the 

drinking water  

Metformin inducted apoptosis in A549 

and PANC-1 cell xenografts and  

decreased growth of K-ras mutant 

tumors after 21 days of treatment.  

Ma et al. 2013 

C57BL/6J male 

mice 

50 mg/kg in the 

drinking water  

Metformin weakened enhanced 

activation of insulin receptor and 

significantly induced phosphorrylation 

of AMP kinase leading to considerable 

reduction of tumor size and growth in 

HFD mice. 

Algire et al. 2008 

Female Wistar 

rats 

2 mg/mL in the 

drinking water 

Metformin prevented postmenopausal 

breast cancer progression. After 8 

weeks treatment, mean tumor burden 

was decreased by ca 86% in the 

metformin-treated rats.  

Giles et al. 2018 
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Table 3. The selected studies evaluating cytotoxic potential of metformin in various cell lines. 

Type of cells IC50 value Major outcome Reference 

The human 

endometrial 

carcinoma cell line 

Hec1A, Ishikawa; 

the mouse 

endometrial 

carcinoma cell line 

MecPK 

 

IC50 = 5.03 mM for 

Hec1A 

IC50 = 141.12 mM 

for Ishikawa 

IC50 = 1.39 mM for 

MecPK 

 

 

In all cell lines, metformin increased 

AMPK phosphorylation. 

Reduction of S6 ribosomal protein (S6rp) 

phosphorylation, ERK1/2 phosphorylation 

and increase of apoptosis in K-Ras mutated 

cells was only observed in Hec1A and 

MecPK cells. Reduction of AKT 

phosphorylation influenced PI3K pathway 

in both cell lines. Metformin demonstrated 

considerable cytotoxicity effectiveness 

against tumor with mutation in the K-Ras. 

Iglesias et al. 

2013 

PC-3 (androgen 

independent 

phenotype) prostate 

cancer cells 

IC50 = 5 mM Metformin caused up-regulation of 10 

miRNAs and down-regulation of 12 

miRNAs. 

Avci et al. 2013 

The human breast 

cancer cell line 

MCF‐7 

IC50 = 10 mM After metformin administration, mTOR 

phosphorylation was suppressed and led to 

enhance of AMPK phosphorylation. 

Metformin also showed the ability to 

decreased NF‐κB level and weakened 

cyclin D1, IκBα and phospho‐IκBα. 

Significant reduction of ER alpha action 

was already noticed at a concentration of 2 

mM. 

Scherbakov et al. 

2016 

Feline injection-site 

sarcoma (ISS) line 

(JB) 

IC50 = 8 mM Metformin induced cell death but this effect 

was not associated with inhibition of 

mTOR. 

Pierro et al. 2017 

The Human 

Glioblastoma Stem 

Cell GBM1, GBM2, 

GBM3, GBM4, 

GBM5, GBM6, 

GBM7 

IC50 = 12.96 mM for 

GBM1 

IC50 = 12.30 mM for 

GBM2, 

IC50 = 6.22 mM for 

GBM3, 

IC50 = 12.65 mM 

GBM4, 

IC50 = 2.10 mM for 

GBM5, 

IC50 = 9.12 mM for 

GBM6, 

IC50 = 6.65 mM for 

GBM7 

Metformin had antiproliferative potency in 

glioblastoma stem cells (GSCs) by selective 

inhibition of  Chloride Intracellular Channel 

1 (CLIC1) - mediated ion.  

Barbieri et al. 

2018 

The human rectal 

cancer cell lines 

SW837 and 

SW1463, 

the human colon 

carcinoma cell lines 

HCT116 and LS513 

 

IC50 =1.02 mM for 

SW837 

IC50 = 8.75 mM for 

SW1463, 

IC50 = 34.4 mM for 

HCT116, 

IC50 = 40 mM for 

LS513 

Metformin showed the ability to regulate 

chemoresistance in rectal cancer cells by 

influening molecules acting as oncogenes: 

the drug stops signal transducer and 

activator of transcription (STAT3) 

phosphorylation and transforming growth 

factor, beta receptor II (TGFBR2)‐mediated 

signalling. Metformin action has oriented 
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 itself to TGF‐β signaling, leading to 

inhibition the TGF‐β1‐induced epithelial‐
mesenchymal transition (EMT).  

The human primary 

breast cancer cells 

MBCDF-D5, 

MBCD3, MBCD23, 

MBCDF-B3, 

MBCD25, MBCD17,  

MBCDF, MBCD4 

IC50 =44.70 mM for 

MBCDF-D5 

IC50 =23.97 mM for 

MBCD3, 

IC50 =36.55 mM for 

MBCD23 

IC50 =52.61 mM for 

MBCDF-B3, 

IC50 =  10.11 mM for 

BCD25, 

IC50 = 5.31 mM for 

MBCD17, 

IC50 = 11.45 mM for 

MBCDF, 

IC50 = 8.17 mM for 

MBCD4 
 

After metformin administration, AMPK 

was activated  in all cell lines and led to 

decrease of STAT3 phosphorylation. The 

ability of metformin to STAT3 and NF-κB 

inhibition caused decrease of IL-6-induced 

epithelial‐mesenchymal transition (EMT) 

expression. 

Esparza-López et 

al. 2019 

The human multiple 

myeloma (MM) cell 

lines RPMI8226, 

ARP-1 and OPM2 

IC50 = 10 mM Metformin curbed PFKFB3 expression and 

has a synergistic effect with PFK15. 

Liu et al. 2019 

Acute Myeloid 

Leukemia (AML) 

cell lines HL-60 

(AML M3 type) and 

THP-1 (AML M5 

type) 

For HL-60: 

IC5024h = 33.06 mM, 

IC5048h = 15.15 mM, 

IC5072h = 10.38 mM. 

 

For THP-1 

IC5024h = 78.77 mM,  

IC5048h = 12 mM, 

IC5072h = 6.386 mM. 

Metformin has a synergistic effect with 

cytarabine (Ara-C) through the suppression 

of mTORC1/P70S6K pathway. This 

combination of drugs caused cell cycle 

arrest (block of S phase). 

Yuan et al. 2020 
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