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ABSTRACT  

A drug development process often starts with the identification of a disease-related 

target that is most often a protein. The target must have a site where a drug-like 

molecule (DLM) can bind and undergo interactions to alter the activity of the target. 

Several computational DLM binding site prediction tools, such as SiteMap, have been 

developed; these are especially important if no ligands or their binding sites for the 

target have been reported. Should there be a known DLM that modulates the target, 

then the binding site can be detected by co-crystallising the DLM with the target, or 

by using other experimental methods. 

Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that can deacetylate 

lysine residues of several proteins and thus control gene expression as well as various 

cellular pathways. The most widely studied SIRTs have been SIRT1–3 while SIRT6 

has been less extensively investigated. SIRT6 is a possible drug development target 

in many age-related diseases, for example in cancer, where it can act as either a 

tumour suppressor or promotor. Thus, SIRT6 should be either activated or inhibited 

depending on the type of the cancer. While some structures of SIRT6 inhibitors have 

been published, only a few activators have been described so far. Overall, developing 

SIRT activators is challenging, as the location of activator binding site is still a matter 

of debate.  

In this work, novel and potent SIRT6 modulators were discovered experimentally 

and their binding pockets and interactions were predicted with computational 

molecular modelling methods. The inhibitors were predicted to bind to sites where 

they would either disturb the binding of substrate or the co-factor of the 

deacetylation reaction. Two possible activator binding sites were investigated with 

computational method, but SIRT6 might have other activator binding sites that 

should be also examined. 

As SIRT activators are difficult to develop, an alternative approach to modulating 

SIRT activity was also investigated. Inhibition of bromodomain and extraterminal 

proteins (BETs), that are also involved in histone lysine acetylation, was shown to 

modulate SIRT1 protein levels. All in all, this work gives new tools to investigate 
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SIRT6-related diseases and develop more potent SIRT6 modulators and alternative 

experimental methods to affect SIRT activity. 

 

Keywords: BET proteins, binding site detection, flavonoids, molecular modelling, sirtuins 
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TIIVISTELMÄ 

Lääkekehitys alkaa usein sairauteen liittyvän kohteen tunnistamisella. Kohde on 

yleensä proteiini, johon lääkeaineen kaltainen molekyyli (ligandi) voi sitoutua ja 

muodostaa vuorovaikutuksia siten, että kohteen aktiivisuus muuttuu. Nämä 

sitoutumispaikat sijaitsevat yleensä proteiinien onkalomaisissa rakenteissa, ja niiden 

sijainnin ennustamiseen on kehitetty useita tietokoneavusteisia menetelmiä, kuten 

esimerkiksi SiteMap. Nämä menetelmät ovat hyödyllisiä varsinkin silloin, jos 

kohteeseen sitoutuvia ligandeja tai niiden sitoutumispaikkoja proteiinissa ei tiedetä. 

Jos kohdetta säätelevä ligandi tunnetaan, sitoutumiskohta voidaan selvittää 

kiteyttämällä ligandi yhdessä kohteen kanssa tai käyttämällä muita kokeellisia 

menetelmiä. 

Sirtuiinit ovat luokan III histonideasetylaaseja (HDAC), jotka voivat deasetyloida 

proteiinien lysiinejä ja siten kontrolloida geeniekspressiota ja erilaisia säätelyreittejä 

soluissa. Ihmisten sirtuiineista (SIRT1-7) eniten tutkittuja ovat SIRT1–3, kun taas 

SIRT6:a on tutkittu vielä vähän. SIRT6 on mahdollinen lääkekehityksen kohde 

syövässä ja muissa ikääntymiseen liittyvissä sairauksissa. Syövässä SIRT6 voi toimia 

tuumorisuppressorina tai -promoottorina ja täten SIRT6:a pitäisi estää tai aktivoida 

riippuen syövästä. Joitain SIRT6-inhibiittoreita on julkaistu, mutta toistaiseksi 

aktivaattoreita tunnetaan vähän. SIRT-aktivaattorien kehittäminen on yleisestikin 

vaikeaa, koska niiden sitoutumiskohdan sijannista ei ole varmuutta. 

Tässä työssä tunnistettiin kokeellisesti uusia ja tehokkaita SIRT6-säätelijöitä ja 

niiden sitoutumistaskuja ja vuorovaikutuksia ennustettiin laskennallisten 

molekyylimallinnustyökalujen avulla. Inhibiittorien ennustettiin sitoutuvan siten, 

että ne häiritsevät substraatin tai deasetylaatioreaktion kofaktorin sitoutumista. 

Kahta mahdollista aktivaattorien sitoutumiskohtaa tutkittiin, mutta SIRT6:lla voi olla 

myös muita aktivaattorin sitoutumiskohtia, joita tulisi myös tutkia. 

Koska SIRT-aktivaattoreita on vaikea kehittää, myös vaihtoehtoista tapaa säädellä 

SIRT:ien aktiivisuutta tutkittiin. Histonien lysiininien asetylaation liittyvien BET-

proteiinien estäminen vaikutti SIRT1-proteiinitasoihin. Kokonaisuudessaan tämä työ 

antaa uusia työkaluja tutkia SIRT6:een liittyviä sairauksia ja kehittää tehokkaampia 

SIRT6-säätelijöitä sekä vaihtoehtoisia menetelmiä SIRT-aktiivisuuden säätelyyn. 
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Avainsanat: BET-proteiinit, flavonoidit, molekyylimallinnus, sirtuiinit, sitoutumispaikan 

tunnistaminen 

 

 

  



11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If it’s not Here, that means it’s out There. 

- Winnie the Pooh 
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1 INTRODUCTION  

Rational drug development often starts with the identification of a valid drug target. 

The target can be a human or pathogenic macromolecule, e.g. a protein or nucleic 

acid. In this thesis, the term target is used to refer to a protein as they are the most 

common drug targets (Overington et al. 2006, Santos et al. 2017). Once the target has 

been identified, it is important to evaluate if it is druggable as undruggability of a 

target is one of the major reasons why drug development processes often fail 

(Hingorani et al. 2019). The term druggable is defined as the ability of the target 

protein to interact with a drug-like molecule (DLM) with high enough affinity and to 

exert a therapeutic effect (Hopkins and Groom 2002, Edfeldt et al. 2011, Hussein et 

al. 2017). The term DLM is used in this thesis to refer to a drug-like small molecule 

that is not an endogenous ligand nor an approved drug, whereas the term ligand is 

used here to refer to any molecule that binds to a target.   

Binding site prediction and detection is one way to assess the druggability of the 

target. The binding sites of drugs can be classified to orthosteric and allosteric sites 

(Wenthur et al. 2014). Orthosteric sites are the sites where endogenous ligands e.g. 

receptor agonists and antagonists or enzyme substrates bind. Allosteric sites are 

located distinct from the orthosteric site; a drug that binds to an allosteric site can 

change the protein’s 3D conformation and thus, protein activity (Schwartz and Holst 

2007, Wenthur et al. 2014, Lisi and Loria 2017). Protein-protein interaction (PPI) sites 

have also been proposed to be drug binding sites (Jin et al. 2014).  

The identification of a drug-binding site is straightforward if a 3D structure of the 

protein has been crystallised with a drug. So far, approximately 171 000 

macromolecular structures have been published in the Research Collaboratory for 

Structural Bioinformatics Protein Data Bank (RCSB PDB), but not all of them contain 

a co-crystallized drug (Berman et al. 2000, RCSB PDB 2020). However, structures that 

contain other ligands, e.g. enzyme substrates or cofactors, can be sometimes used in 

determining the DLM-binding site, as they show the orthosteric binding site. 

If the target has not been crystallised with a ligand, the location of a possible 

binding site can be predicted and its druggability can be evaluated with 

computational modelling approaches (Dukka 2013, Roche et al. 2015, Zhao et al. 

2020). These methods are based on the prior knowledge of the general properties of 

drug- and DLM-binding sites such as sequence, geometry, size, physicochemical 

properties, and possible interactions. In addition to molecular modelling methods, 

different in vitro applications can also be used in determining the binding sites (Smith 

and Collins 2015, Syson et al. 2016, Sirtori et al. 2018).   

In recent years, epigenetic regulators have attracted interest in the field of drug 

research (Lanza et al. 2019, Lu et al. 2020a, Schiano et al. 2020). Epigenetic regulators 

can alter gene expression and affect phenotype without modifying genotype for 

example by controlling the post-translational modifications of histones and DNA. 

One of these post-translational modifications is histone lysine acetylation. The 
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acetylation of N-terminal lysines weakens the interaction between histones and 

DNA, leading to a less compact chromatin structure and subsequently activation of 

gene expression. The proteins that control the acetylation are histone acetyl 

transferases (HATs) and histone lysine deacetylases (HDACs) including human 

sirtuins (SIRTs) (Figure 1) (Filippakopoulos et al. 2010, Biswas and Rao 2018). 

Additionally, bromodomain (BRD) containing proteins can bind to acetylated lysines 

and serve as a binding platform for different transcription factors (TFs). Interestingly, 

some inhibitors of bromodomain containing proteins have been shown to potentiate 

the effects of certain HDAC inhibitors and thus, there might be a functional link 

between them (Kim et al. 2018, Meng et al. 2018, Cortiguera et al. 2019).   

 

 
Figure 1. HATs, HDACs, and BRD-containing proteins are related to histone lysine (K) 
acetylation (Ac). Histones are presented with a peach colored shape that is surrounded by 
DNA (purple string). Transcription factor is abbreviated with TF.  

 

HDACs, including SIRTs, are considered as promising drug targets, especially in 

cancer research. While four HDAC-targeting drugs have been approved by U.S. Food 

and Drug Administration, none of them target specifically SIRTs (Autin et al. 2019, 

Sanaei and Kavoosi 2019). Despite the great effort put into the development of small 

molecule SIRT deacetylase modulators, most of the modulators have targeted three 

SIRTs i.e. SIRT1, SIRT2, and SIRT3 while much fewer modulators for SIRT4, SIRT5, 

SIRT6, and SIRT7 have been published. Moreover, the number of small molecule 

SIRT deacetylase activators lags behind the inhibitors as the development of 

activators is more difficult due to the uncertainty related to both the binding site and 

the mechanism of enzyme activation (Dai et al. 2018). In addition to small molecule 

inhibitors and activators that alter the velocity of enzymatic reaction, cellular SIRT 

activity can be modulated by controlling the gene expression, cofactor levels and 

post-translational modifications of the SIRTs (Revollo and Li 2013, Zhao and Zhou 

2020).  

In this thesis, molecular modelling tools for binding site prediction and evaluation 

have been used to investigate the putative binding sites and interactions of small 

molecules inhibiting and activating SIRT6. Additionally, inhibition of BRD-

containing proteins was investigated expremintally as an alternative approach to 

modulating SIRT activity.  
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2 REVIEW OF THE LITERATURE 

2.1 THE MODELS OF LIGAND-PROTEIN BINDING   

The drug-binding sites are usually located in protein cavities that are quite 

commonly referred to as pockets (Stank et al. 2017). The size of drug-binding pockets 

varies; the average volume of a pocket has been estimated to be 930 Å3, but it can 

vary from 100 to up to 1000 Å3 (Liang et al. 1998, Nayal and Honig 2006). Besides the 

volume, also the shape, flexibility, and physicochemical properties of the pocket 

affect the binding of a drug or a DLM and thus not all proper-sized pockets are 

druggable (Ehrt et al. 2019). Different models describing the binding of ligands, 

including DLMs, to a protein pocket consider the size and shape of the pocket (Figure 

2). In addition, some of them also consider the flexibility or physicochemical 

properties.  

In 1894, Emil Fischer introduced the first theory describing the binding of a ligand 

to a protein (Fischer 1894). He stated that a ligand should fit into its binding pocket 

as a key fits into a lock (Figure 2). In other words, the shape of a ligand should be 

complementary to the shape of its pocket. However, the ligand and the protein 

pocket should not be considered as a static and rigid structure as usually molecules 

tend to be flexible. In fact, a ligand that approaches a protein binding pocket can 

induce some conformational changes in the structure of the pocket (Koshland 1958, 

Stank et al. 2016). Considering this dynamic nature of both protein and ligand, Daniel 

Koshland Jr. proposed an induced-fit model in 1958 (Figure 2).  

Another model considering the pocket flexibility is the conformational selection 

model (aka population shift or selected fit model) (Figure 2) (Weikl and von Deuster 

2009, Csermely et al. 2010, Kar et al. 2010, Paul and Weikl 2016). Instead of suggesting 

that a ligand induces changes in the conformation of the binding pocket, this theory 

proposes that the ligand selects one of the many possible pocket conformations. The 

zipper model is the third flexibility-considering method; it considers the ligand’s 

flexibility rather than the flexibility of the pocket (Figure 2) (Burgen et al. 1975). It 

suggests that the ligand binds with one part to a subsite of the pocket which changes 

the ligand conformation. After the conformational change, the ligand can bind with 

another part to another subsite of the pocket.  

Tripathi and Bankaitis (2017) have introduced the combination lock model that 

differs from the other models: it also considers the physicochemical environment of 

the pocket and the interactions in describing ligand-protein recognition (Figure 2). 

This model proposes that the physicochemical environment of a pocket should be 

compatible with a ligand, and that the pocket should form favourable interactions 

with the ligand.  
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Figure 2. Schematic figure of different models of protein-drug binding. The turquoise shape 

represents the protein pocket, and the black shape represents the drug. In the combination 

lock model, the green and yellow shapes represent the features that should match.  

 

All together, the different binding models consider the shape (geometry), 

conformation, and interactions of binding. The reason why they are important for 

ligand binding can be explained by thermodynamics (O’Brien et al. 2017). A 

thorough discussion of the thermodynamics of binding is outwith the scope of this 

thesis; the issue has been discussed broadly, for example by Velazquez-Campoy et 

al. (2001), Geschwindner et al. (2015), Du et al. (2016), and O’Brien et al. (2017). 

However, the principal idea is that a ligand can bind to a protein pocket only if the 
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energy of the system decreases (Du et al. 2016). This means that the drug-protein 

complex needs to have lower energy than the system where they are separated and 

interact with the solvent. Thus, the interactions between the protein and drug should 

be stronger than those that they have with the solvent when the drug is unbound (Du 

et al. 2016, O’Brien et al. 2017). However, also other factors, such as conformational 

freedom, affect the energy difference between the two systems. This energy 

difference is commonly described with Gibbs free energy, ∆G (Velazquez-Campoy 

et al. 2001, Du et al. 2016, O’Brien et al. 2017). 

 

2.2 BINDING POCKET PREDICTION AND DETECTION 

The lack of knowledge about the location and properties of a DLM binding pocket in 

the target protein can be a limiting factor in designing compounds that would alter 

the target’s activity. Sometimes the structure of the target in a complex with a similar 

DLM or another ligand might be available, and the binding site can be estimated 

based on the co-crystallised ligand. However, estimating the site can be challenging 

if there are conflicts between different crystal structures. For example, the crystal 

structures of human sirtuins (SIRTs) in complex with their activators suggest that the 

activators might have diverse binding sites (Dai et al. 2018). Additionally, the binding 

site shown in a crystal structure might disagree with the in vitro results, as in case of 

a SIRT6 inhibitor (Wood et al. 2018, You and Steegborn 2018). If no ligands have been 

crystallised with the target, the binding pockets and sites can be predicted with 

computational methods or they can be determined with different experimental 

methods.  

 
2.2.1 Computational applications for binding site prediction  

Numerous computational algorithms and programs for predicting DLM binding 

sites have been developed during the past decades (Table 1) and they have been 

discussed in several reviews (Dukka 2013, Roche et al. 2015, Zhao et al. 2020). Here, 

the methods are divided into five main groups: geometric approaches, energetic 

approaches, sequence and structure comparison methods, machine learning 

methods, and molecular dynamics (MD) approaches. The predicted binding sites can 

be evaluated and ranked with druggability-assessing methods. Methods that are 

developed only for visualizing of predetermined cavities are not considered here as 

binding site prediction methods.  

 

Geometric approaches 

In general, the geometric approaches analyse protein 3D structure to find cavities 

that would be optimal in size and/or shape for DLM binding. Geometric approaches 

can be classified into different groups; in the current work they are divided into grid-

based, and sphere-based methods. In grid-based methods, the protein is placed onto 

a 3D grid and the grid is scanned step-by-step to identify those grid points that would 

form the pocket (Simões et al. 2017). For example, the decision of whether a grid point 
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is a part of the pocket or not, can be made based on the distance of the grid point 

from the surrounding protein atoms or surfaces.  

 
Table 1. Examples of different pocket detection methods.  
 

APPROACH ALGORITHM / PROGRAM REFERENCE 

GEOMETRIC APPROACHES 
Grid scanning 
 
 
 
 
Grid scanning combined to 
energetic approach 
 
Sphere-based  
 

POCKET 
VOIDOO 
LIGSITE, LIGSITECSC 
 
 
SiteMap 
 
 
SURFNET  
PASS  
SCREEN 
Roll/POCASA 
APROPOS  
CAST  
Fpocket 
AlphaSpace 

Levitt and Banaszak 1992 
Kleywegt and Jones 1994 
Hendlich et al. 1997, Huang 
and Schroeder 2006 
 
Halgren 2007, Halgren 2009 
 
 
Laskowski 1995 
Brady and Stouten 2000 
Nayal and Honig 2006 
Yu et al. 2010 
Peters et al.1996 
Liang et al. 1998 
Le Guilloux et al. 2009 
Rooklin et al. 2015 
 

ENERGETIC APPROACHES 
Probe-based GRID 

Q-SiteFinder 
FTMap 

Goodford 1985 
Laurie and Jackson 2005 
Brenke et al. 2009 

Potential map evaluation PocketFinder An et al. 2005 

SEQUENCE AND STRUCTURE COMPARISON METHODS 
Evolution rate calculation ConSurf 

 
 
Rate4Site  

Armon et al. 2001, Glaser et 
al. 2003 
 
Pupko et al. 2002 
 

Sequence identity, alignment  

Alignment 

FINDSITE 

COFACTOR 
G-LoSA 

Brylinski and Sklonick 2008 

Roy and Zhang 2012 
Lee and Im 2012 

MACHINE LEARNING METHODS 
Geometry- and sequence-based  
 
Atom property considering  

ConCavity  
 
P2Rank  
 

Capra et al. 2009  
 
Krivák and Hoksza 2018 

MD APPROACHES 
Probe based MD simulation 
 
PCA tool 
Fpocket utilizing tool 

Isopropyl probe method 
 
PocketAnalyzerPCA 

MDPocket 

Seco et al. 2009 
 
Craig et al. 2011 
Schmidtke et al. 2011 
 

Multiple probe MD MixMD Ung et al. 2016 

 

One of the first grid-based methods was POCKET that utilizes a density map in 

determining the binding pocket (Levitt and Banaszak 1992). Two years after 

POCKET’s release, Kleywegt and Jones (1994) published a method called VOIDOO, 
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which can also be used in calculating the volume of the pockets. VOIDOO and 

another grid-based method, LIGSITE, use a smaller grid point spacing and sphere 

radius than POCKET, which makes them more accurate methods (Kleywegt and 

Jones 1994, Hendlich et al. 1997).  

SiteMap is another grid-based binding site detection method (Halgren 2007, 

Halgren 2009). It determines binding sites by including the grid points (or site points) 

that are close enough to the protein and each other, and where a probe molecule 

displays good enough van der Waals interaction energies with protein atoms 

(Halgren 2009). Thus, SiteMap is a method that uses both geometric and energetic 

approaches in determining the location of a pocket. It uses the probe-based energetic 

approach also to characterise the hydrophilic and hydrophobic parts of the detected 

pockets.    

Sphere-based geometric methods locate cavities by placing sphere probes on the 

different surfaces of protein without generating a grid. The probes can be placed 

between two, three or four atoms. SURFNET is an example of a sphere-based method 

that places the spheres between two atoms, and PASS is one of the programs that 

places spheres between three atoms (Laskowski 1995, Brady and Stouten 2000). The 

algorithms and programs that place the sphere between four atoms are based on the 

Alpha sphere algorithm (Edelsbrunner and Mücke 1994). Peters and co-workers 

were the first to introduce a shape-evaluating alpha sphere-based algorithm, 

APROPOS (Peters et al. 1996). Combinations of sphere- and grid-based approaches 

have been also introduced; for example, there is an algorithm called Roll that is 

implemented in POCASA (Yu et al. 2010). 

 

Energetic approaches 

In energetic pocket detection approaches, the protein can be probed with small 

chemical moieties such as a methyl group (Henrich et al. 2010). The interaction 

energies between the small molecule probe(s) and protein are then calculated in 

different interaction sites. The pockets are determined to be at the sites, where the 

probes have the strongest interaction energies with the protein. These types of 

methods are based on the assumption that the probe molecules are drug-like enough 

to describe the binding of DLMs.  

The foundation of energetic pocket detection approaches was the method called 

GRID devised by Goodford (1985). Goodford used amino, oxygen, hydroxyl, methyl, 

and water probes. Other probe-using methods are Q-SiteFinder, that uses methyl as 

a probe, and FTMap that uses 16 different small organic molecules in probing (Laurie 

and Jackson 2005, Brenke et al. 2009). In FTMap, the sites where the clusters of 

different probes overlap are more likely to be drug binding sites, and the largest of 

overlapping site areas are usually the most important ones. FTMap has been 

improved in several ways to serve different purposes from binding site prediction to 

druggability evaluation (Ngan et al. 2012a, Ngan et al. 2012b, Grove et al. 2013, 

Bohnuud et al. 2014, Kozakov et al. 2015).  
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PocketFinder also uses a probe-in-pocket prediction, but in a different way than 

the above-mentioned methods (An et al. 2005). The probe is an aliphatic carbon atom 

which is used in determining potential map of the protein. The pockets are then 

determined based on the potential and volume.  

 

Sequence and structure comparison methods 

The principle idea behind sequence comparison methods, aka evolutionary methods, 

is that functionally important regions such as enzyme active sites are rather well 

conserved among evolutionary related homologous proteins (Lichtarge et al. 1996, 

Valdar 2002). The binding site location of a protein can be predicted by utilizing the 

information of binding sites in structurally related proteins. The Evolutionary Trace 

method by Lichtarge et al. (1996) was one of the first of these types of methods. It 

uses sequence comparison in determining functionally important residues. There are 

other sequence comparing algorithms e.g. ConSurf algorithm and Rat4Site (Armon 

et al. 2001, Pupko et al. 2002). 

Structure comparison methods such as FINDSITE, COFACTOR, and G-LoSA all 

use structural alignment in the binding site prediction (Brylinski and Skolnick 2008, 

Lee and Im 2012, Roy and Zhang 2012). In general, structure comparison methods 

differ from sequence prediction methods in that the reference proteins do not need 

to be homologous to the target protein if they have similar folding characteristics.  

 

Machine learning methods 

The increasing amount of information about drug binding sites has led to the 

development of several machine learning methods (Zhao et al. 2020). Machine 

learning enables the combination of information concerning several properties of 

previously detected binding sites. For example, these properties can describe 

interactions, the solvent accessible surface area, or an amino acid sequence.  

Capra et al. (2009) have introduced a machine learning-based algorithm called 

ConCavity that relies on geometry and sequence comparison methods. Another 

machine-learning tool called P2Rank uses the properties of surface exposed atoms in 

predicting the binding site (Krivák and Hoksza 2018). Other examples are SFCscore, 

MetaPocket, NNSCORE, and eFindSite (Sotriffer et al. 2008, Huang 2009, Durrant 

and McCammon 2010, Brylinski and Feinstein 2013).     

 

MD approaches 

While machine learning methods represent a powerful tool to combine large 

amounts of information about binding site properties, they still might fail to detect 

all possible binding sites (Zhao et al. 2020). Proteins and their pockets exist in 

different conformations, and a crystallised protein structure captures only one of 

these conformations. Several studies have reported pockets and sites that at are 

absent when the protein is not bound within a ligand (Gee et al. 2007, Hudson et al. 

2018, Hollingsworth et al. 2019). These pockets and sites are called cryptic and many 
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studies have aimed to predict their locations in different proteins (Bowman and 

Geissler 2012, Kimura et al. 2017, Comitani and Gervasio 2018).  

In addition to cryptic pockets and sites, the pockets might have different 

conformations and sometimes ligand binding can induce conformational changes in 

the pocket and even in the entire protein (Stank et al. 2016). For example, these 

changes can involve the formation of a new subpocket or an adjacent pocket, 

contractive or expansive movement of the pocket, the formation of a channel or 

tunnel at the opening of the pocket, and conformational changes induced by the 

binding of an allosteric modulator to an adjacent site.  

Molecular dynamics (MD) simulations can be applied to search for the 

conformational changes of pockets and cryptic binding sites. MD simulations for 

detecting binding sites can be probe-based, in which the protein is simulated with a 

solvent mixture containing small drug-like probe molecule(s) (Seco et al. 2009, Ung 

et al. 2016). The affinity of the probe(s) for different interaction sites during the 

simulation is calculated, and the highest affinity sites are the most probable drug-

binding sites. Thus, the basic principle is similar to the probe-based energetic pocket 

detection methods. Seco et al. (2009) introduced a probe-based MD method that uses 

isopropyl alcohol probes for predicting hot spots of protein-protein interactions 

(PPIs). Mixed-Solvent MD (MixMD) is another probe-based MD method where 

acetonitrile, isopropanol, and pyrimidine, are used as probes (Ung et al. 2016).  

Alternatively, the target protein can be simulated without probe molecules with 

the binding sites being predicted based on the motions of the protein. Principal 

Component Analysis (PCA) can be used to detect the major motions in the protein 

structure during the simulations. The sites of the largest movements have been 

speculated to serve as possible drug binding sites (Ho and Agard 2009, Ha and Loh 

2013, David and Jacobs 2014). Automated tools for analysing the MD trajectory to 

detect possible binding pockets have also been developed. For example, 

PocketAnalyzerPCA and MDPocket detect the pockets from MD ensembles with a 

grid-based geometrical algorithm (Craig et al. 2011, Schmidtke et al. 2011). 

Cimermancic et al. (2016) have also introduced a computational tool called 

CryptoSite that in combination MD simulations, uses sequence analysis, and docking 

for prediction of cryptic binding sites.  
 

Pocket ranking 

The process of evaluating which of the predicted sites is the best or most probable 

DLM binding site is referred as the binding site assessment or pocket ranking (Huang 

and Jacobson 2010, Krivák and Hoksza 2015, Yang et al. 2016, Choudhary et al. 2017). 

Here, the term pocket ranking is used for describing the process where pockets are 

ranked for example based on descriptors, amino acid composition, or free energy 

prediction.  

The descriptor-based methods aim to predict the druggability of the detected 

pockets.  The descriptors are related to the physicochemical properties as well as the 

size and geometry of the pocket, which are the main aspects in different ligand 
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binding models. Hajduk et al. (2005) were among the first investigators to introduce 

a druggability evaluation method; it used pocket compactness, total surface area, 

polarity, and residue charges as descriptors. SCREEN, that used 408 different 

descriptors, was developed later by Nayal and Honig (2006). They suggested that the 

most relevant descriptors for druggability would be related to the pocket geometry 

and size. SiteMap, a method used also for pocket detection, can also evaluate the 

druggability of the predicted site (Halgren 2007, Halgren 2009). Binding site size, 

pocket enclosure, and hydrophilicity are the main druggability descriptors utilized 

by SiteMap. Pocket druggability can be evaluated also based on the amino acid 

composition. The PLB Index and its improved version, MF-PLB, are examples of 

ranking methods that evaluate the druggability of the detected pockets based on their 

amino acid composition (Soga et al. 2007, Cao and Xu 2016).  

Another way to rank the pockets is to try to predict the binding free energy of the 

active and inactive ligands. One way to assess the energy is to dock the ligands to the 

predicted site, as scoring functions of different docking protocols can predict the free 

energy of binding (Huang and Jacobson 2010, Patschull et al. 2012, Michel et al. 2019, 

Thornton et al. 2019). The docking methods can be divided roughly into 1) rigid 

docking methods, where both receptor and ligand are treated as rigid structures 

(rarely used nowadays), 2) flexible docking, such as Glide (Friesner et al. 2004) and 

FlexX (Rarey et al. 1996), where the conformation of the ligand is sampled, and into 

3) induced fit protocols, such as Induced Fit (Sherman et al. 2006) and FiberDock 

(Mashiach et al. 2010), where both ligand and pocket are treated as flexible structures. 

However, the accuracy of the scoring functions of the docking programs varies and 

might depend on the target being investigated or how the components of the scoring 

function, e.g. interactions and solvent effects, are weighted (Cross et al. 2009, Xu et 

al. 2015a, Wang et al. 2016a, Pagadala et al. 2017). For example, the highest scoring 

pose might be complementary with the pocket but have only a few or no interactions 

(Lionta et al. 2014). Thus, a visual inspection of the docking results should also be 

carried out to evaluate the ranking of the pockets. 

Methods for evaluating the binding free energy from MD simulations are also 

used in pocket ranking. These methods include molecular mechanics with Poisson-

Boltzmann or generalized Born and surface area continuum solvation (MM-

PBSA/GBSA) (Broomhead and Soliman 2017). In those methods, free energy is 

determined for all the possible drug-protein interaction sites present in the 

simulations and then compared to the free energy of the system where the drug is 

unbound.  (Kollman et al. 2000). In order to obtain statistically relevant results from 

MM-PBSA/GBSA, it is suggested to run several short simulations rather than a few 

long simulations (Genheden and Ryde 2010, Wright et al. 2014).  Methods that assess 

the binding energies from MD simulations are linear interaction energy and free 

energy perturbation (FEP) (Neubauer de Amorim et al. 2008, Cournia et al. 2017). 

FEP simulations might be more accurate if the protein conformation does not change 

significantly (Fratev and Sirimulla 2019).  
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2.2.2 Binding site identification with experimental methods 

Structure-based methods 

One way to locate the DLM binding pockets in the target is to solve the structure of 

the target-ligand complex, for example with X-ray crystallography (Renaud et al. 

2016). However, the quality of the crystal structure must be evaluated.  For example, 

the resolution should be preferably under 2.5 Å, as higher resolution values might 

mean that there are inaccuracies in the structure (Djinovic-Carugo and Carugo 2015, 

Maveyraud and Mourey 2020). The crystal structure might also have missing 

residues especially in loops and in the N- and C-terminal tails, which are more 

flexible and thus, their accurate positions are more difficult to capture (Djinovic-

Carugo and Carugo 2015). Additionally, the components of the crystallization 

solution, such as polyethylene glycol or acetate ions, should not occupy possible 

binding site as they could prevent the ligand-binding to the site (Yamanaka et al. 

2011, Maveyraud and Mourey 2020). Moreover, co-crystallizing a ligand with a 

protein might show conformational changes in the pocket that are not shown with a 

soaking method where the protein structure has been crystallised prior to the 

introduction of ligand (Ehrmann et al. 2017). The binding mode of the ligand might 

also be slightly different. 

Nuclear magnetic resonance (NMR) spectroscopy is another method for solving 

the structures of ligand-protein complexes (Yee et al. 2002, Ziarek et al. 2011, Maity 

et al. 2019). However, the NMR technique is limited by the target size; it has been 

proposed that it can be best utilized for proteins containing under 250 amino acids 

or proteins with molecular weights under 40 kDa (Yee et al. 2002, Maveyraud and 

Mourey 2020). NMR and X-ray crystallography can be used as complementary tools 

(Savchenko et al. 2003, Yee et al. 2005, Doerr 2006, Feng et al. 2011) 

 

Affinity-based methods 

Photo affinity labelling (PAL) is one direct in vitro approach for validating binding 

sites. The labelling reagent use in PAL contains two parts: one part binds to the 

predicted protein binding site reversibly, and the other part is a photoreactive group 

that is activated by light and forms a reactive intermediate that binds covalently to 

the protein (Ruoho et al. 1973, Gronemeyer and Govindan 1986, Smith and Collins 

2015). Several studies identifying binding sites with PAL have been published 

(Seifert et al. 2016, Cheng et al. 2019, Hsieh et al. 2019). 

Ligand-footprinting mass spectrometry (LiF-MS) is another direct method for 

detecting binding sites for active DLMs. The method’s idea is to apply modifications 

(such as hydrogen to deuterium exchange) in the protein-ligand complex (Sirtori et 

al. 2018). After ligand dissociation, the binding site can be detected based on the 

assumption that the binding site is less modified as the ligand has decreased the rate 

of modifications of the binding site. The different approaches of LiF-MS have been 

described in more detail in several reviews and reports (Sirtori et al. 2018, Li et al. 

2019, Guo et al. 2020, Lu et al. 2020b).  
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Site-directed mutagenesis (SDM), where a mutation is introduced into the 

proposed binding site, can be also used in confirming indirectly the DLM binding 

site (Geissler et al. 2007, Syson et al. 2016, Ricatti et al. 2019). After the mutation has 

been introduced, one can compare the activity or affinity data of the DLM between 

the mutated and the wild type protein. If the mutation is at the binding site of the 

DLM, one can assume that the affinity or efficacy of the DLM will decrease. The 

differences in the binding to wild type and mutated protein can be detected also with 

labelling methods such as PAL (Kim et al. 1997, Al-Mawsawi et al. 2006).  

 
2.3 SIRTUINS 

Sirtuins are class III subfamily of HDACs, and unlike other HDACs they require a 

nicotinamide adenine dinucleotide (NAD+) cofactor in the enzymatic reaction (Tanny 

and Moazed 2001, Smith and Denu 2007, Seto and Yoshida 2014). The sirtuin-

mediated lysine deacetylation starts with the cleavage of the nicotinamide (NAM) 

moiety of NAD+. The remaining, adenosine diphosphate ribose (ADPr), forms an O-

alkylamidate intermediate with the acetylated substrate (Figure 3) (Chen et al. 2015). 

The intermediate is transformed further to a 1’2’-cyclic intermediate with the help of 

the catalytically active histidine (Zhao et al. 2004, Smith and Denu 2006). Finally, the 

cyclic intermediate is decomposed into deacetylated lysine and O-acetylated 

adenosine diphosphate ribose (OAADPr). A more detailed description of each step 

of the reaction is reviewed by Chen et al. (2015). 

 
Figure 3. The deacetylation reaction mechanism of sirtuins.  

 

The human sirtuin family (SIRTs) consists of seven sirtuins (SIRT1-7) that vary in 

their length (Table 2) and amino acid composition (Parenti et al. 2015). However, they 

have rather well conserved catalytical core that contains approximately 250 amino 

acids. The similarity is highest at the binding region of NAD+. SIRTs are expressed 
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ubiquitously although the expression levels in different tissues can vary (Frye 1999, 

Michishita et al. 2005). SIRTs differ from each other in their main subcellular locations 

(Table 2) and their location can also vary depending on their mutational status or for 

example on the stress status of the cells (Tanno et al. 2007, Aquilano et al. 2010, 

Jedrusik-Bode et al. 2013, Yang et al. 2019a).  

 
Table 2. Human sirtuins 
 

Sirtuin Amino acids Primary subcellular location Reference 

SIRT1 747 Nucleoplasm 
Vaziri et al. 2001, Michishita et al. 
2005, UniProt 2020 

SIRT2 389 Cytoplasm 
Afshar and Murnane 1999, Perrod et 
al. 2001, Michishita et al. 2005, 
UniProt 2020 

SIRT3 399 Mitochondria Michishita et al. 2005, UniProt 2020 

SIRT4 314 Mitochondria Michishita et al. 2005, UniProt 2020 

SIRT5 310 Mitochondria Michishita et al. 2005, UniProt 2020 

SIRT6 355 Nucleoplasm 
Michishita et al. 2005, Ardestani and 
Liang 2012, UniProt 2020 

SIRT7 400 Nucleolus Michishita et al. 2005, UniProt 2020 

       

SIRTs control gene expression directly through deacetylation of histone lysines, 

and indirectly by deacetylating non-histone targets (Gallinari et al. 2007, Feige and 

Auwerx 2008, Jing and Lin 2015, O’Callaghan and Vassilopoulos 2017). Moreover, 

SIRTs have also other lysine deacylase activities, such as demyristolyation, that have 

been suggested to affect multiple cellular pathways (Feldman et al. 2013, Du et al. 

2015, Thinon and Hang 2015, Tong et al. 2017). SIRTs have also been proposed to 

ADP-ribosylate different proteins that control DNA repair (Haigis et al. 2006, Mao et 

al. 2011, Van Meter et al. 2014a). Due to these functions, SIRTs have attracted interest 

as possible targets in various diseases (Chalkiadaki and Guarente 2015, Matsushima 

and Sadoshima 2015, Jęśko et al. 2017, Kane and Sinclair 2018). Here we focus on 

SIRT6 that is one of the nuclear sirtuins. It has been less studied than SIRT1 and 

SIRT2, but recently it has been a focus of interest after the discovery of the first 

natural activators (Feldman et al. 2013).  

 
2.3.1 The role of SIRT6 in health and disease 

SIRT6 affects many cellular processes by deacetylating histones and a variety of other 

proteins (Table 3). In addition to deacetylation, SIRT6 catalyses other deacylation 

reactions and ADP-ribosylation (Mao et al. 2011, Feldman et al. 2013, Van Meter et 
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al. 2014a, Wang et al. 2016b). Due to these versatile functions, SIRT6 has been 

postulated to have protective roles in cardiovascular diseases, inflammatory 

diseases, Alzheimer’s disease, and type 2 diabetes (Lee et al. 2013, Tian et al. 2015, 

Griñán-Ferré et al. 2016, Hou et al. 2017, Sociali et al. 2017, Arsiwala et al. 2020). In 

cancer, the role of SIRT6 is controversial and depends on the cancer type and stage 

(Table 4) (Garcia-Peterson et al. 2017, Desantis et al. 2018, Geng et al. 2018, He et al. 

2020).  

 
Table 3. The targets of SIRT6-catalyzed reactions. 
  

Histone targets Reaction Affected process References 

H3K9 Deacetylation 
Cancer, inflammation 
metabolism 

Michishita et al. 
2008, Kawahara et 
al. 2009, Zhong et 
al. 2010 

H3K18 Deacetylation DNA repair, senescence 
Tasselli et al. 2016 
Wang et al. 2016a,  

H3K27 Deacetylation Cell identity control 
Wang et al. 2016b, 
Lavarone et al. 
2019 

H3K56 Deacetylation DNA repair 
Michishita et al. 
2009, Toiber et al. 
2013 

Non-histone targets Reaction Affected process References 

Forkhead box protein O1 
(FOXO1) 

Deacetylation Glucose and lipid 
metabolism 

Zhang et al. 2014 

General control non-
repressed (GCN5) 

Deacetylation Hepatic glucose 
production 

Dominy et al. 2012 

Nicotinamide 
phosphoribosyltransferase 
(NAMPT) 

Deacetylation NAD+ biosynthesis Sociali et al. 2019 

p53 Deacetylation Apoptosis, cancer 
development 

Wood et al. 2018 

Pyruvate kinase M2 
(PKM2) 

Deacetylation Cancer development Bhardwaj and Das 
2016 

Tumor necrosis factor 
alpha (TNF-α) 

Deacylation of long-
chain fatty acyls 

Immune responses Jiang et al. 2013 

KRAB-associated protein-
1 (KAP1) 

ADP-ribosylation DNA repair Van Meter et al. 
2014a 

Poly [ADP-ribose] 
polymerase 1 (PARP1) 

ADP-ribosylation DNA repair Mao et al. 2011 
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Table 4. Examples of SIRT6-related cancers. 
 

Cancer 
Change in SIRT6 
expression 

Role of SIRT6 References 

Breast cancer (paclitaxel 
and epirubicin resistant) 

↑ Tumour promoter Khongkow et al. 2013 

Colon cancer ↑↓ Dual role 

Geng et al. 2018 
Li et al. 2018a  
Liu et al. 2018a  
Tian and Yuan 2018 

Endometrial carcinoma ↑ Dual role 
Colas et al. 2011 
Fukuda et al. 2015 

Gastric cancer ↓ Tumour suppressor Zhou et al. 2017 

Glioma Unknown Tumour suppressor 
Feng et al. 2016  
Zhu et al. 2019 

Head and neck squamous 
cell carcinoma 

↓ Tumour suppressor Lai et al. 2013 

Hepatic cancer ↓ Dual role 

Tao et al. 2017  
Xia et al. 2018  
Han et al. 2019 
Zhang et al. 2019a 

Melanoma ↑↓ Dual role 
Garcia-Peterson et al. 
2017 
Wang et al. 2018a 

Non-small cell lung cancer ↑↓ 
Dual role 
 

Li et al. 2018b  
Wang et al. 2018b  
Zhu et al. 2018 
Krishnamoorthy and 
Vilwanathan 2020  

Osteosarcoma ↓ Tumour suppressor Gao et al. 2019 

Ovarian cancer Unknown Dual role 
Zhang et al. 2015  
Bae et al. 2018 
He et al. 2020 

Papillary thyroid cancer ↑ Tumour promoter 
Qu et al. 2017,  
Yang et al. 2019b,  
Yu et al. 2019 

Renal cancer ↓ Dual role 
Jeh et al. 2017 
Ding et al. 2019 

 

SIRT6 acts through multiple mechanisms in preventing cancer, for example by 

repressing the function of the oncogenic transcription factor c-Myc (Sebastián et al. 

2012). SIRT6 also improves genomic stability via telomere maintenance and DNA 

damage repair (Xu et al. 2015b, Chen et al. 2017, Tian et al. 2019). Cancer cell 

metabolism is also controlled by SIRT6. Sebastián et al. (2012) demonstrated that the 

knock-out of the SIRT6 gene increased anaerobic glycolysis, that is a typical change 

in cancer cell metabolism (Zhong et al. 2010, Sebastián et al. 2012, Van Meter et al. 

2014b). However, in papillary thyroid cancer cells, the activity of SIRT6 was 

speculated to increase anaerobic glycolysis through the production of reactive 

oxygen species (Yu et al. 2019). Thus, the role of SIRT6 in cancer cell metabolism 
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seems to be rather complex. SIRT6 has also been thought to play a role in 

inflammation, apoptosis, proliferation, and other cancer-related processes.  

 
2.3.2 SIRT6 protein structure 

The protein structure of SIRT6 was first published by Pan et al. (2011), and today a 

total of 15 SIRT6 structures are available (Table 5) (RCSB PDB 2020). All structures 

include at least ADPr and some of them include a ligand such as an inhibitor, an 

activator, or a myristoylated substrate. However, complete structure of SIRT6 

remains still unknown, as the structures published today lack approximately the 50 

C-terminal amino acids. In addition, most of the structures lack several N-terminal 

residues and none of them includes an acetylated substrate or NAD+. 

 
Table 5. SIRT6 structures published in RCSB PDB. 
 

PDB ID (resolution)  Crystallised sequence  Ligands Reference 

3K35 (2.00 Å) 
K15–K296  
missing residues: 
A169–A176 

ADPr  Pan et al. 2011 

3PKI (2.04 Å) A13–L297 ADPr Pan et al. 2011 

3PKJ (2.12 Å) 
A13–K296  
missing residues: 
A169–R175 

2’N-Acetyl ADPr Pan et al. 2011 

3ZG6 (2.20 Å) N4–K296 
ADPr, myristoylated 
peptide 

Jiang et al. 2013 

5MF6 (1.87 Å) 
A13–E298  
missing residues: 
K170–A176 

ADPr, UBCS039 You et al. 2017 

5MFZ (2.10 Å) 
A13–E298  
missing residues: 
K170–A176 

ADPr, UBCS40 You et al. 2017 

5MFP (1.98 Å) 
A13–E298 
missing residues: 
K170–A176 

ADPr, UBCS58 You et al. 2017 

5MGN (2.07 Å) 
A13–E298  
missing residues:  
K170–A176 

ADPr, UBCS38 You et al. 2017 

5X16 (1.97 Å) A7–P299 ADPr RCSB PDB 2020 

5Y2F (2.53 Å) V3–P299 
ADPr, myristoylated 
H3K9 peptide, MDL-801  

Huang et al. 2018 

6HOY (1.70 Å) 
A13–L297  
missing residues:  
K170–A176 

ADPr, Trichostatin A 
You and Steegborn 
2018 

6QCD (1.84 Å) 
A13–E298 
missing residues:  
K170–A176 

ADPr, quercetin You et al. 2019 

6QCE (1.90 Å) 
A13–E298  
missing residues: 
K170–A176 

ADPr, isoquercetin You et al. 2019 

6QCH (2.10 Å) 
A13–L297  
missing residues:  
K170–A176 

ADPr, cyanidin  You et al. 2019 

6QCJ (2.01 Å) 
A13–E298  
missing residues:  
K170–A176 

ADPr, catechin gallate You et al. 2019 
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Nevertheless, the crystal structures reveal that like other sirtuins, SIRT6 also has 

a large NAD+-binding Rossmann fold domain and a smaller zinc-binding domain 

(Figure 4). There is a tunnel-like binding pocket for the different substrates of SIRT6 

between the two domains. The acylated part of the substrate enters into the binding 

site from the cleft between β6/α6 and β7/α7 loops which undergoes interactions with 

the peptide part of the substrate (Jiang et al. 2013, Huang et al. 2018). The other larger 

opening of the tunnel-like site is next to the α3 helix. Next to the substrate binding 

site is also the binding site of the NAM-moiety of NAD+ (Min et al. 2001, Gertz et al. 

2013).  

 

 
Figure 4. The structure of SIRT6 (PDB ID 5Y2F) (Huang et al. 2018). Zn ion is presented as a 
grey ball, acetylated substrate as a green surface and ribbon, and catalytically active histidine 
as black sticks. Blue surface represents the binding site for the ADPr moiety of NAD+, and the 
yellow surface indicates the NAM-moiety binding site.  

 
2.3.3 SIRT6 deacetylase inhibitors  

SIRT deacetylase inhibitors are compounds that decrease the velocity of SIRT-

mediated deacetylation reaction. The SIRT6 inhibitors so far discovered are 

micromolar inhibitors that compete with the substrate-binding or disturb NAD+-

binding (Table 6). Most of the inhibitors are unselective and inhibit also other SIRTs. 

The inhibitors include compounds that mimic the structure of peptide substrates and 

bind to the substrate area. Most of them are reported to be more potent against SIRT6 

than for other SIRTs, except for the cyclic pentapeptide inhibitor. NAM and NAM-

mimicking compounds, such as pyrazinamides (PZAs), bind to the NAM-binding 
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site and subsequently prevent NAD+ from binding in the correct orientation to allow 

the reaction to proceed (Gertz et al. 2013, Zhao et al. 2013).  

 

Table 6. Examples of SIRT6 inhibitors and their activities against SIRT6 and other SIRTs.  

 
COMPOUND ACTIVITY DATA REFERENCES 

Substrate-based inhibitors 

AKK(thioAc)LM                                              

 
 

IC50(SIRT6) = 47 µM 
IC50(SIRT1) = 380 nM 
IC50(SIRT2) = 8.5 µM 

Kokkonen et al. 2012 
 

ARK(thioMyr)ST                                           

 
 

IC50(SIRT6) = 8.2 µM 
IC50(SIRT1) = 4.4 µM 
IC50(SIRT2) = 2.6 µM 
IC50(SIRT3) = 5.6 µM 

He et al. 2014 

Pseudopeptidic inhibitor                

 
 

At 200 µM compound 
concentration:  
Inhibition % (I%) (SIRT6) = 58 
 
At 50 µM compound 
concentration: 
I% (SIRT1) = 94 
I% (SIRT2) = 74  
I% (SIRT3) = 72 
 

Mellini et al. 2013 
Kokkonen et al. 2014 
 

Cyclic pentapeptide                                                                    

 
 

IC50(SIRT6) = 319 nM 
IC50(SIRT1) = 730 nM 
IC50(SIRT2) = 6.4 µM 
IC50(SIRT3) = 3.5 µM 
IC50(SIRT5) = >300 µM  

Liu and Zheng 2016 
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Table 6 continues. 

 
COMPOUND ACTIVITY DATA REFERENCES 

NAM and NAM-mimicking inhibitors 

NAM 

             

IC50(SIRT6) = 184 µM –   
                       3.5 mM 
IC50(SIRT1) = 68–77 µM 
IC50(SIRT2) = 10 µM 
IC50(SIRT3) = 31–37 µM 

Rye et al. 2011 
Hu et al. 2013,  
Guan et al. 2014, 
Kokkonen et al. 
2014,  
Bolivar and Welch 
2017,  
Huang et al. 2018 

5-MeO-PZA 

 
 

IC50(SIRT6) = 40 µM Bolivar and Welch 
2017 

5-Cl-PZA 

           
 

IC50(SIRT6) = 33 µM Bolivar and Welch 
2017 

Common SIRT and HDAC inhibitors with SIRT6 inhibitory activity 

EX527 

                
 

IC50(SIRT6) = 107 µM 
IC50(SIRT1) = 100 nM 
IC50(SIRT2) = 3 µM 
IC50(SIRT3) = 165 µM 
 

Ekblad and Schüler 
2016 

AGK2 

 
 

At 300 µM compound 
concentration: 
I% (SIRT6) = 27  
I% (SIRT2) = 22 
 
IC50(SIRT2) = 3–66 µM 
 

Outeiro et al. 2007 
He et al. 2014 

Sirtinol 

 
 

At 200 µM compound 
concentration:  
I% (SIRT6) < 50  
 
At 300 µM compound 
concentration: 
I% (SIRT1) = 21  
 
IC50(SIRT2) = 65 µM 
IC50(SIRT3) = 150 µM 

 

Hu et al. 2013,  
He et al. 2014 

Trichostatin A                           

 
 

Ki(SIRT6) = 2–4.6 µM 
(for different acetylated 
substrates) 

Wood et al. 2018 
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Table 6 continues. 

 
COMPOUND ACTIVITY DATA REFERENCES 

Benzoic acid and quinazoline sulfonamides 

5-[[3-(furan-2-carbonylamino)benzoyl]amino]-2-
hydroxybenzoic acid 

 
 

IC50(SIRT6) = 89 µM  
IC50(SIRT1) = 1.6 mM 
IC50(SIRT2) = 751 µM  

Parenti et al. 2014 

4-[2,5-dioxo-3-(N'-phenylcarbamimidoyl) 
sulfanylpyrrolidin-1-yl]benzoic acid 

 
 

IC50(SIRT6) = 181 µM 
IC50(SIRT1) = 3.5 mM 
IC50(SIRT2) = 1.7 mM  

Parenti et al. 2014 

5-[[4-(furan-2-carbonylamino)benzoyl]amino]-2-
hydroxybenzoic acid 

 
 

IC50(SIRT6) = 34 µM 
IC50(SIRT1) = 783 µM 
IC50(SIRT2) = 453 µM 
 

Damonte et al. 2017 

4-[[4-(furan-2-carbonylamino)benzoyl]amino]-2-
hydroxybenzoic acid 

 
 

IC50(SIRT6) = 22 µM 
IC50(SIRT1) = 599 µM 
IC50(SIRT2) = 482 µM 
 

Damonte et al. 2017 

2,4-dioxo-N-(4-pyridin-3-yloxyphenyl)-1H-
quinazoline-6-sulfonamide 

 
 

IC50(SIRT6) = 106 µM 
IC50(SIRT1) = 314 µM 
IC50(SIRT2) = 114 µM 

Parenti et al. 2014 

2,4-dioxo-N-[3-(2-pyridin-4-ylethyl)phenyl]-1H-
quinazoline-6-sulfonamide  

  
 

IC50(SIRT6) = 37 µM 
IC50(SIRT1) = 424 µM 
IC50(SIRT2) = 85 µM 

Sociali et al. 2015 

1,3-dimethyl-2,4-dioxo-N-[4-(pyridin-4-
ylmethyl)phenyl]quinazoline-6-sulfonamide 

 

IC50(SIRT6) = 49 µM 
IC50(SIRT1) = 6.5 mM 
IC50(SIRT2) = 242 µM 

Sociali et al. 2015 

 

Compounds that have been previously reported to inhibit other sirtuins such as 

EX527, AGK2, and Sirtinol have also been shown to inhibit SIRT6 (Table 6) (Outeiro 

et al. 2007, Hu et al. 2013, He et al. 2014, Ekblad and Schüler 2016). From these, EX527 

and AGK2 are suggested to bind to the NAM-binding site (Outeiro et al. 2007, Gertz 

et al. 2013). Trichostatin A, an HDAC inhibitor, has also been reported to inhibit 

SIRT6 but no other SIRTs (Wood et al. 2018). Although the kinetic studies hinted that 
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it was a substrate competitive inhibitor, the crystal structure of SIRT6 complexed 

with Trichostatin A indicated that it binds to the NAM-binding site (Wood et al. 2018, 

You and Steegborn 2018).  

SIRT6-inhibiting benzoic acid and quinazoline sulfonamide derivatives were 

developed by Parenti et al. (2014), Sociali et al. (2015), and Damonte et al. (2017). 

Some of these compounds have been reported to be better inhibitors for SIRT6 than 

for SIRT1 and SIRT2 (Table 6). These inhibitors have been suggested to bind partly 

to the SIRT6 NAM-binding site and also to occupy the substrate-binding area 

(Parenti et al. 2014, Sociali et al. 2015, Damonte et al. 2017). In cellular studies, these 

inhibitors reduced Tumor necrosis factor alpha (TNF-α) secretion and increased 

glucose uptake by enhancing the expression of Glucose transporter type 1 (GLUT-1). 

Some of these inhibitors also sensitize pancreatic cancer cells to chemotherapeutics, 

improve glucose tolerance in type 2 diabetes mouse models, and are effective against 

hepatitis B virus (Sociali et al. 2015, Damonte et al. 2017).  

  
2.3.4 SIRT6 deacetylase activators 

SIRT deacetylase activators increase the velocity of SIRT-mediated deacetylation 

reaction. The first SIRT6 activators that were published were natural fatty acids: 

linoleic and oleic acid (Feldman et al. 2013). Later, other fatty acid-like activators 

were developed (Table 7) (Rahnasto-Rilla et al. 2016, Klein et al. 2020). Other natural 

compounds and their derivatives have also been shown to increase SIRT6 

deacetylase activity (Yasuda et al. 2011, Rahnasto-Rilla et al. 2016, Rahnasto-Rilla et 

al. 2017, You et al. 2019). However, some non-fatty acid compounds such as luteolin 

and quercetin were found to have also SIRT6 inhibition potential (Rahnasto-Rilla et 

al. 2016). The reason for their ability to activate and inhibit SIRT6 is still unclear but 

it depends on the compound’s concentration. The inhibition at higher concentration 

might be due to the formation of colloidal aggregates that can function as unspecific 

inhibitors (Pohjala and Tammela 2012, Reker et al. 2019). A few synthetic activators 

have also been developed (Table 7) of which UBCS039 has been shown to induce 

lethal autophagy in epithelial cervix carcinoma and non-small cell lung cancer cells 

(You et al. 2017, Huang et al. 2018, Klein et al. 2020). One of the most efficient 

activators is lysophosphatidic acid.  

 Two different activator-binding sites for SIRT6 have been proposed. The fatty 

acids, fatty acid-like compounds, and some synthetic activators have been suggested 

to bind to the same site where the long acyl chain of  some substrates bind (Feldman 

et al. 2013, You et al. 2017, Klein et al. 2020). Another binding site was suggested for 

the activator MDL-801 that was shown to bind between the Zn-binding domain and 

α3-α4 loop in a crystal structure (Figure 5) (Huang et al. 2018). Moreover, MDL-801 

does not inhibit the binding of long-chain acyl substrates which supports the theory 

that there is another activator-binding site in addition to the long acyl chain binding 

site. 
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Table 7. Examples of SIRT6 activators and compounds with dual activity. 

 

COMPOUND SIRT6 ACTIVITY DATA REFERENCES 

Fatty acids and fatty acid-like activators 

Linoleic acid 

 
 

1)FAmax ≈ 7 
EC50 = 90 µM 
 

Feldman et al. 2013 

Oleic acid 

 
 

FAmax ≈ 6 
EC50 = 100 µM 
 

Feldman et al. 2013 

Myristic acid 

 
 

FAmax ≈ 11 
EC50 = 246 µM 
 

Feldman et al. 2013 

Myristoylethanolamide 

 
 

FAmax ≈ 2 
EC50 = 7.5 µM 

Rahnasto-Rilla et al. 2016 

Oleoylethanolamide 

 
 

FAmax ≈ 2 
EC50 = 3.1 µM 

Rahnasto-Rilla et al. 2016 

Lysophosphatidic acid 

  
 

FAmax = 30 
EC50 = 25 µM 

Klein et al. 2020 

Other SIRT6-activating natural compounds or their derivatives 

Fucoidan extract from brown seaweed 
Fucus distichus, exact structure unknown 

At 100 µg/ml extract 
concentration  
2)FA = 140–355 

Rahnasto-Rilla et al. 2017 

Arotinoid acid 

 

FAmax = 15 
EC50 = 53 µM 

Klein et al. 2020 

Luteolin 

 

FAmax ≈ 6 
 
At 100 µM compound 
concentration:  
I% = 30  

Rahnasto-Rilla et al. 2016, 
You et al. 2019 

Quercetin 

 
 

FAmax = 6 
 
At 100 µM compound 
concentration:  
I% = 38  

Rahnasto-Rilla et al. 2016,  
You et al. 2019 

1) FAmax = Maximal increase in enzymatic activity that can be achieved with the compound 
2) FA = Fold of inrease in enzymatic activity at certain concentration 
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Table 7 continues 

 

COMPOUND ACTIVITY DATA REFERENCES 

Synthetic activators 

UBCS039  

 
 

FAmax ≈ 2 
EC50 = 38 µM 

You et al. 2017 

MDL-801 

 
 

At 100 µM compound 
concentration:  
FA > 22 
EC50 = 5.7 µM 
 

Huang et al. 2018 

CL5D 

 
 

At 3 µM compound 
concentration: 
FA = 4 
 
EC50 = 16 µM 

Klein et al. 2020 

 

 

 
Figure 5. Suggested allosteric activator binding site (grey surface), and the binding site 
proposed for SIRT6 activating natural fatty acids and some synthetic compounds (magenta 
surface). Acetylated substrate is marked with light green, ADPr-binding site with blue, and 
NAM-binding site with yellow. 
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2.4 BROMODOMAIN AND EXTRATERMINAL MOTIF PROTEINS  

In addition to molecular activators and inhibitors, HDAC and SIRT activity can 

possibly be altered by affecting the expression of these proteins. One approach might 

be the inhibition of bromodomain and extraterminal motif proteins (BETs) as the 

most extensively studied BET inhibitor, (+)-JQ1, has been shown to induce HDAC6 

and SIRT1 expression in various cell lines including T-cell, multiple myeloma, and 

breast cancer cell lines (Banerjee et al. 2012, Kokkola et al. 2015, Carew et al. 2019).  

BETs, in common with all bromodomain-containing proteins, can bind to histone 

lysine acetylation marks and anchor simultaneously transcription factors near DNA 

(Yang et al. 2005, Peng et al. 2007, Filippakopoulos et al. 2012). BET inhibitors are 

designed to block the interaction between BETs and acetylated lysine by occupying 

the binding pocket of acetylated lysine in the BETs. This pocket is highly conserved 

between all BETs: BRD2, BRD3, BRD4, and BRDT (Pervaiz et al. 2018). For that 

reason, the BET inhibitors developed up until now lack selectivity within the BET 

family.  

The first BET inhibitors were diazepine derivatives such as (+)-JQ1 and OTX015 

(Birabresib) (Figure 6) (Filippakopoulos et al. 2010, Noel et al. 2013). There were also 

some dimethylisoxazole-containing compounds among the first inhibitors, e.g. I-

BET151 and GS-5829 (Alobresib) (Figure 6) (Dawson et al. 2011, Bonazzoli et al. 2018). 

Quinazolinone compounds, such as Pfi-1 and RVX2135, and several 

pyrrolopyridinone compounds, including ABBV-075 (Mivebresib) have also shown 

potency in inhibiting BETs (Figure 6) (Fish et al. 2012, Faivre et al. 2016, Fidanze et 

al. 2018). Several other scaffolds have also been introduced for BET inhibitors and 

they have been discussed in the reviews by Zhang and Ma 2018, Cochran et al. 2019, 

Yang et al. 2019c, and Lu et al. 2020c. 

BET inhibitors have been shown to exert tumour suppressive effects; for example, 

they downregulate the transcription c-Myc-related transcription of different 

oncogenes (Delmore et al. 2011). They can also potentiate the effects of other 

compounds that have anticancer activity (Karakashev et al. 2017, Echevarría-Vargas 

et al. 2018, Hupe et al. 2019, Miller et al. 2019). Interestingly, HDAC inhibitors are 

one group of the compounds which have shown synergistic effects with BET 

inhibitors against cancer (Table 8). The synergy between BET inhibitors and SIRT 

modulators has not been investigated. However, BETs and SIRTs have been shown 

to regulate the same cellular processes and they target the same histone lysine 

acetylation sites (Filippakopoulos et al. 2012, Mellers et al. 2018, Guo et al. 2019).  
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Figure 6. Examples of BET inhibitors containing diazepine (red), dimethylisoxazole (blue), 
quinazolinone (green), or pyrrolopyridinone moiety (orange).    
    

 
Table 8. The synergy between different BET inhibitors and HDAC inhibitors in cancers. 
 

BET inhibitor HDAC inhibitor Cancer Reference 

(+)-JQ1 

Romidepsin 
 
 
 
Vorinostat 
 
 
Panobinostat 
 
 
 
Sulforaphane 

Urothelial carcinoma  
Lymphomas 
 
 
Pancreatic ductal adenocarcinoma 
Cutaneous T-cell lymphoma 
 
Neuroblastoma 
Globlastoma 
Myelogenous leukaemia 
 
Colon cancer 

Hölscher et al. 2018 
Kim et al. 2018 
Cortiguera et al. 2019 
 
Mazur et al. 2015 
Kim et al. 2018 
 
Fiskus et al. 2014 
Meng et al. 2018 
Cortiguera et al. 2019 
 
Rajendran et al. 2019 

OTX015 Panobionstat Glioblastoma Meng et al. 2018 

I-BET151 LBH589 Melanoma Heinemann et al. 2015 

ABBV-075 
Vorinostat, 
romidepsin 

T-cell lymphoma Kim et al. 2018 
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3 AIMS OF THE STUDY 

The overall aim was to discover new SIRT6 modulators and to investigate how SIRT 

activity could be modulated indirectly through regulation of their expression. 

The specific aims of the studies were 

- To discover novel SIRT6 inhibitors and activators  

- To explore possible binding sites for the identified SIRT6 modulators and to 

study their possible binding modes and with computational modelling 

methods 

- To explore the functional link between BET inhibition and SIRT1 protein 

expression 
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4 METHODS 

4.1 IN VITRO METHODS FOR DETERMINING INHIBITION AND 
ACTIVATION OF SIRT DEACETYLASE ACTIVITY (STUDIES 
I–III)  

4.1.1 Compounds 

Several natural flavonoids, including catechins, flavanols, flavanones, and 

anthocyanidins, as well as quercetin, flavone and dihydropyridine derivatives 

(Figure 7) were tested in vitro for their ability to modulate SIRT6 deacetylation 

activity. The previously reported quercetin (Table 7) was used as a reference 

compound in studies I–III. The compounds were ordered from Sigma Aldrich (USA) 

or MolPort, or they were provided by our collaborators. 

 

 
Figure 7. Examples of the core structures of the compounds screened in studies I-III. 
 

 
4.1.2 Deacetylation assays  

SIRT6 HPLC assay  

In studies I and III, a high-performance liquid chromatography (HPLC) assay was 

used to determine the effect of the compounds on SIRT6 activity. The compounds 

were tested at 10 and/or 100 µM concentrations in both studies. A dose response 

curve was determined for the most potent inhibitors and activators with compound 

concentrations of 10–1000 µM. In study III, a steady state kinetical analysis 
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(Michaelis-Menten kinetics) was performed for the most potent activator (50 µM) to 

determine if it improved substrate or NAD+ binding.  

The HPLC assay is described in more detail in the publication of Rahnasto-Rilla 

et al. (2017). Briefly, compounds were incubated in the reaction mixture (pH 8) with 

recombinant SIRT6, acetylated substrate, and NAD+ (Table 9). The deacetylation 

reaction was stopped with cold 10% formic acid. In kinetic analyses, the 

concentration of either NAD+ or acetylated substrate was increased while the 

concentration of the other compound was kept at a saturating concentration (2.5 mM 

for NAD+ and 2 mM for H3K9Ac). Control samples were prepared without NAD+ or 

SIRT6. Samples were analysed with reversed-phase HPLC. Peaks for H3K9Ac and 

for the deacetylated product (H3K9) were detected. The percent of inhibition was 

calculated based on the peak size.  

 

Table 9. The concentrations of the substrates and NAD+ in SIRT deacetylation assays.   

 SIRT6 HPLC 
assay 

SIRT6  
fluorescence 

assay  

SIRT1 
inhibition 

% 

SIRT2 
inhibition 

% 

SIRT3 
inhibition 

% 

Substrate 
and its 
concentration  

H3K9Ac peptide 
(residues 1–21) 
 
Activation assay 
40 or 70 µM  
 
Inhibition assay 
200 µM  
 
Kinetic analyses:  
2 mM or 
increasing 

Ac-RYQK(Ac)-
AMC, 320 μM 
 
Kinetic analyses: 
600 µM or  
100 µM – 1.2 mM 
 
 

BioMol  
KI117,  
58 μM 

BioMol 
KI179,  
198 μM 

BioMol 
KI79, 
32 μM 

NAD+ 
concentration 

500 µM  
 
Kinetic analyses: 
3 mM or 
increasing 

3 mM 
 
Kinetic analyses: 
3 mM or  
300 µM – 2.4 mM  

558 µM 547 µM 2 mM 

 

SIRT6 and SIRT1–3 fluorescence assays  

In study II, a fluorescence-based assay was applied to determine the SIRT6 and 

SIRT1–3 inhibition percentage for the compounds. The concentrations of the 

compounds used in the SIRT6 assay were 50 µM and 200 µM and in SIRT1–3 assays 

10–200 µM. Dose response curves for SIRT2 and SIRT6 inhibition were determined 

for the most potent compounds at 12–1000 µM concentrations. Additionally, the 

SIRT6 inhibition mechanism of the selected compounds was investigated with 

kinetic analysis (Lineweaver-Burk assay) where the concentration of either NAD+ or 

substrate was changed while the concentration of the compound was held constant 

(3 mM for NAD+ and 600 µM for substrate). 

The detailed description of the SIRT6 assay can be found in publication of 

Kokkonen et al. 2014, and the SIRT1–3 assay was performed according to the 

instructions of the assay kit’s product sheet (BioMol, Enzo Life Sciences). Briefly, 

compounds were incubated in a reaction mixture (pH 8.0) containing recombinant 
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SIRT, acetylated substrate, and NAD+ (Table 9). After incubation, the reaction was 

stopped with NAM, and trypsin was added to free the fluorophore from deacetylated 

substrates.  

 

Western blotting assay  

As the results concerning certain compounds in the SIRT6 HPLC-assay and 

Fluorescence assay were ambiguous, the effect of those compounds on SIRT6 activity 

was confirmed with Western blotting using full length H3 histone substrates. The 

detailed description of the method can be found in publications I and II. Briefly, the 

compounds (50 µM, 100 µM, or 200 µM) were incubated with recombinant human 

purified chicken core histones (H3), and NAD+. The deacetylation reaction was 

stopped with Laemmli buffer, and the sample proteins were separated with sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Separated 

proteins were transferred to polyvinylidene difluoride (PVDF) membranes. H3 and 

acetylated H3K9 (H3K9Ac) protein bands were detected with chemiluminescence 

method by using specific antibodies. Densitometric analyses of protein bands were 

carried out to determine the H3K9 acetylation level in relation to total H3 amount.  

 

4.2 CELL-BASED EXPERIMENTS WITH SIRT6 DEACETYLASE 
ACTIVATORS 

Western blotting  

The most potent SIRT6 deacetylase activator discovered in study I was examined 

with human epithelial colorectal adenocarcinoma cells and its effects on the protein 

expression of SIRT6 and SIRT6-associated proteins was determined. The proteins 

from the cell samples were separated on SDS-PAGE and transferred to PVDF 

membranes. The bands of the proteins were detected with specific antibodies using 

a chemiluminescence method. H3 and α-tubulin were utilized as controls.  

 

qPCR  

In study III, the effect of the most potent activator of that study was investigated with 

various types of breast cancer cells with differing hormone receptor profiles. The 

effect of that activator (1 µM and 10 µM) on SIRT6 gene expression was determined 

with quantitative polymerase chain reaction (qPCR). The total RNA from treated 

cells was extracted and purified and the RNA was reverse transcribed to cDNA using 

random priming. SIRT6 specific primer was used in determining SIRT6 from the 

cDNA and Β-actin was determined as an endogenous control. 

 

PI-digitonin assay  

The effect of the activator (1–100 µM) of study III on cell viability and proliferation 

in the selected breast cancer cell lines was determined with the propidium iodide (PI) 

digitonin assay as described in Huovinen et al. (2011). In order to study cell viability, 

the activator-treated cells were exposed to fluorescent PI that binds to the DNA of 
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dead cells with damaged membranes. The fluorescence was then measured to 

determine the dead cell number that describes cell viability. Subsequently, the cells 

were exposed to digitonin to degrade the cell membranes and thus to allow PI to 

enter all cells. The fluorescence was then measured to determine the total cell number 

that was used in determining the effect of the activator on proliferation.   

 

Cell cycle analysis  

The effect of the most potent activator (10 µM and 50 µM) on cell cycle progression 

was determined with a flow cytometry method. After treatment with activator, the 

cells were made permeable to PI and DNA content of the cells was analysed by 

measuring the fluorescence signal. The amount of DNA within cells varies 

depending on the cell cycle phase, and thus cells in different phases display different 

fluorescence signal strengths. 

 

4.3 MOLECULAR MODELLING METHODS 

Molecular modelling methods were used to study the possible binding sites, poses, 

and interactions of the SIRT6 modulators discovered in studies I–III to obtain 

information for future SIRT6 modulator development. Different versions of 

Schrödinger Maestro software and force fields were used (Table 11) (Schrödinger 

2016, Schrödinger 2017, Schrödinger 2019). The 3D structures for SIRT6 (studies I-III) 

and for SIRT2 (study II) were downloaded from RCSB PDB (Table 11). The SIRT6 

structure 3ZG6 (resolution 2.2 Å) was selected for studies I and II as it contained N-

terminal residues that were lacking from the other SIRT6 structures (Jiang et al. 2013). 

The SIRT6 structure 6QCD (resolution 1.84 Å), that was published after the studies I 

and II, was selected for study III as the structure contained a co-crystallised quercetin 

that is structurally related to the activator discovered in the study (You et al. 2019). 

In study II, the SIRT2 structure 4RMG (resolution 1.88 Å) was selected as it contained 

a co-crystallised inhibitor, SirReal2.  

The protein structures were prepared with Maestro’s Protein Preparation Wizard 

(Sastry et al. 2013). The default preparation protocol included adding hydrogens, 

assigning bond orders, creating zero-order bonds to metals, and creating disulphide 

bonds. Possible missing loops and side chains were added with Prime (Jacobson et 

al. 2004). All unnecessary small molecules, such as the reagents used in the 

crystallization, were removed. Ionization states for retained small molecules (Table 

11) were generated with Epik at a target pH of 7.4 (Greenwood et al. 2010). Hydrogen 

bonds were assigned with PROPKA and waters having less than 3 hydrogen bonds 

to non-waters were removed. Final minimization was executed with OPLS3 (studies 

I and II) or OPLS3e (study III) with root mean squared deviation (RMSD) limit for 

heavy atom converging at 0.3 Å (Harder et al. 2016). The structure quality was 

confirmed with the Ramachandran plot.  

The structures of SIRT6 deacetylase modulators in studies I–III were sketched 

with Maestro’s 2D sketcher and prepared and minimized with Maestro’s LigPrep 
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tool using OPLS3 (studies I and II) or OPLS3e force field (study III) (Harder et al. 

2016). Ionization states were generated with Epik at target pH of 7.4 (Greenwood et 

al. 2010). In study I, the chirality of the compounds was known and thus, no 

stereoisomers were generated. In studies II and III, all possible stereoisomers were 

generated for the compounds.   
 

Table 11. Summary of software, protein structures, and docking settings used in different 
studies of this work.  

       STUDY 

 I II III 

Schrödinger 
release 

2016-4 2017-4 2019-4 

Maestro version 11.0 11.4 12.2 

Force field OPLS3 OPLS3 OPLS3e 

Protein PDB ID 
 

3ZG6 (SIRT6) 
3ZG6 (SIRT6) 
4RMG (SIRT2) 

6QCD (SIRT6) 

Retained ligands ADPr, Zn2+ 
ADPr, Zn2+ (3ZG6) 
NAD+, Zn2+, SirReal2 (4RMG) 

ADPr, Zn2+, quercetin 

Grid center 

Inhibitor docking:  
According to prior 
knowledge of EX527 
in SIRT1 
 
Activator docking: 
according to 
SiteMap results 

SIRT6: 
NAM-binding site and 
Substrate-binding site 
 
 
SIRT2:  
according to the co-
crystallised SirReal2 

Inhibitor-docking: 
NAM-binding site 

 

 
Activator docking: 
according to the co-
crystallised quercetin 

Docking method Induced Fit Induced Fit 

 
Glide docking with 
SP (for activator) and 
with XP (for 
inhibitors)  

 

Binding site prediction and molecular docking 

In study I, Schrödinger SiteMap with default settings was used for searching the 

possible drug-like molecule (DLM) binding sites from the SIRT6 structure 3ZG6 

(Halgren et al. 2009). Default settings were applied: at least 10 site points were 

required for each site, a more restrictive definition of hydrophobicity was used, and 

site maps were cropped at 4 Å from the nearest site point. In addition to visualizing 

the predicted binding sites, SiteMap reports two values for evaluating the sites: 

SiteScore and Dscore (Halgren 2009). SiteScore is used to distinguish the sites that 

could serve as small ligand binding sites: scores over 0.8 are indicative of a good 

binding site. Dscore, that uses the same properties as SiteScore but with different 

weightings, can be used to evaluate if the site is undruggable, difficult, or druggable. 

Dscores under 0.83 indicate an undruggable site, Dscores between 0.83 and 0.98 
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indicate difficult binding sites, and sites having Dscore larger than 0.98 are 

considered as druggable.   

In study I, the grid for the activator docking was assigned based on the SiteMap 

results. The grid for inhibitor docking was determined by selecting the residues in 

SIRT6 that corresponded to the residues of EX527 binding site in SIRT1. In study II, 

two grid centres for SIRT6 were applied: one at the substrate-binding site and one at 

the NAM-binding site. The grid centre for SIRT2 in study II was assigned based on 

the co-crystallised SirReal2. In study III, the grid for activator docking was set based 

on the co-crystallised quercetin, and the grid centre for inhibitor docking was at the 

binding site of NAM.   

Induced Fit docking that considers the flexibility of the binding pocket was used 

in studies I and II (Table 11) (Farid et al. 2006). Default settings for Induced Fit 

docking were used. Compound ring conformations were sampled with an energy 

limit of 2.6 kcal/mol and nonpolar amide bond conformations were penalized. 

Receptor and ligand van der Waals scaling was 0.5 Å. Amino acid residues within 

5.0 Å of ligand poses were refined. Ligands were redocked in structures within 30.0 

kcal/mol of the best structure with standard precision (SP).  

In study III, the compounds were docked with Glide docking, where the receptor 

structure is rigid (Table 11) (Friesner et al. 2006). SP docking was used in activator 

docking and extra precision (XP) was used in inhibitor docking. The docking position 

of activator was restricted to the position of the co-crystallised quercetin with. For 

inhibitor docking, extra precision (XP) with accurate scoring function was used. 

Default settings were applied in the dockings: van der Waals radii scaling for the 

ligand nonpolar parts was applied with scaling factor of 0.8 and partial charge cut-

off of 0.15. Compounds were docked flexibly by sampling nitrogen inversions and 

ring conformations, and sampling of torsions was biased only for amides. 

 

4.4 BET INHIBITOR EXPERIMENTS 

The effect of BET inhibition on SIRT1 cellular levels and activity was investigated in 

study IV. Three BET inhibitors (+)-JQ1, I-BET151, and Pfi-1 that have differing 

structures and inhibition potential against BETs were selected for this study (Figure 

8). All of them have IC50 values in the nanomolar range with (+)-JQ1 being the most 

potent: it is twice as potent as Pfi-1 and ten times more potent than I-BET151. 

Previously the effect of (+)-JQ1 on SIRT1 levels has been examined in estrogen and 

progesterone receptor positive MCF-7 cells (Kokkola et al. 2015). Therefore, the same 

cell line was selected also for study IV. The other cell line selected for this experiment 

was a triple-negative MDA-MB-231 breast cancer cell line. The cells were treated with 

the BET inhibitors at various concentrations.  

After the treatments, the protein contents of the cell samples were analysed with 

Western blotting. Briefly, the proteins were separated with SDS-PAGE and 

transferred to a PVDF membrane. The amounts of SIRT1, acetylated p53 (at K382), 

total p53, and total α-tubulin (loading control) were detected with specific antibodies 
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from the membranes. Detection was carried out with chemiluminescence method. 

One-way ANOVA with Bonferroni post-hoc test was used in the statistical analysis. 
 

 
Figure 8. Structures of the BET inhibitors used in study IV. 
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5 RESULTS 

5.1 NATURAL FLAVONOIDS MODULATE SIRT6 
DEACETYLATION ACTIVITY (STUDY I) 

Several flavonoids were discovered to inhibit or activate SIRT6 deacetylation activity 

in vitro (Figure 9). The possible binding sites and poses of these flavonoids were 

studied with docking methods.  

 

 
Figure 9. The structures of SIRT6 inhibitors and activators and their activities. The compound 
concentration for reported inhibition % (I%) and maximal-fold of activation (FAmax) is 100 µM. 

 

The binding mode of inhibitors  

The most potent inhibitors were discovered in the catechins (compounds 1–9). 

Catechin compounds 1–5 were in general less potent than their larger derivatives 

catechin gallates (compounds 6–9) (Figure 9). The inhibitory compounds were 

docked close to the NAM-binding site that includes residues N114, V115, and D116. 

The docking results suggested that the compounds 1–5 could find multiple poses in 

the binding pocket: they could either be located near to the NAM-binding site or 

(Figure 10A) more towards the substrate-binding site (Figure 10B).  
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Figure 10. Representative docking poses of catechins at NAM-binding site (A) and closer to 
the substrate-binding site (B). Yellow surface represents the shape of the pocket. Catalytically 
active histidine is marked with black, and co-crystallised ADPr with brown. Compounds in 
figure A are 1 (blue), 2 (purple), and 4 (red), and in figure B 3 (green) and 5 (pink). 

 

The most potent inhibitors, compounds 6, 7, and 8 had the most complementary 

shape with the pocket structure (Figure 11A–C). Overall, these compounds filled the 

pocket better than the less potent catechins (compounds 1–5) (Figure 11). 

Compounds 6 and 7 were more potent than their stereoisomers, compounds 8 and 9. 

The docking results suggested that compounds 6 and 7 were directing the gallate 

moiety towards the substrate-binding area whereas compound 8 directed it to the 

NAM-binding site. The least potent catechin gallate, compound 9, could not fit 

completely inside the pocket (Figure 11D). Thus, the change in the stereochemistry 

of the catechin structures can cause differences in their binding modes and 

interactions of the compounds and subsequently in their inhibition potencies.   

 

 
Figure 11. Representative docking poses of catechin gallate compounds 6 (A), 7 (B), 8 (C), 
and 9 (D). Yellow surface represents the shape of the binding pocket, catalytically active 
histidine is marked with black, and co-crystallised ADPr is with brown colour. 
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The docking results of the most potent inhibitors, compounds 6 and 7, suggest 

that they form interactions with N4 at N-terminus, P62 and F64 in the ADPr-binding 

site, W71 at α3 helix, F82, T84, F86 at α3/α4-loop, Q113 at NAM-binding site, and 

L186 and D187 at substrate-binding site (Figure 12). Previously other SIRT6 

inhibitors, trichostatin A and some of the benzoic acid and quinazoline sulfonamide 

derivatives (Table 5), have been suggested to form interactions also to P62, F64, W71, 

and D187 (Parenti et al. 2014, You and Steegborn 2018).  

 

 
Figure 12. Representative docking poses and interactions of the most potent inhibitors of study 
I: compounds 6 (A) and 7 (B). H133 is the active histidine and co-crystallised ADPr is marked 
with brown. Hydrogen bonds are presented with yellow and π-π-stacking with blue dashes.  

 

Compound 10 showed inhibition at a lower compound concentration but 

activation at a higher compound concentration. The reference compound quercetin 

had been previously shown to be a dual modulator that can inhibit or activate SIRT6 

(Rahnasto-Rilla et al. 2016). These dual modulators were also docked to SIRT6, but 

the reason for their dual effect is still unclear. 

 

The binding mode of activators 

To determine a possible activator binding site, DLM binding sites in SIRT6 structure 

were predicted with SiteMap. SiteMap reported five sites for SIRT6, but only two of 

these sites were predicted to be druggable (Dscore > 0.98), with the others being 

undruggable and unlikely to bind small molecules (SiteScore < 0.8). The best scored 

site covered the substrate-binding site and the NAM-binding pocket at the cleft 

between the Rossmann fold and Zn-binding domain (SiteScore 1.077, Dscore 1.097, 

volume 482 Å3) (Figure 13). The second-best site was predicted to be next to the 

substrate-binding site between the substrate-binding β6/α6-loop and Zn-binding 

domain. It did not overlap with the best scored site, and it had a SiteScore of 1.003, 

Dscore of 1.022, and volume of 342 Å3. This second-best site was selected as the 

activator docking site.   
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Figure 13. The druggable sites predicted by 
SiteMap on SIRT6 structure (PDB ID: 
3ZG6) (Pan et al. 2011). The best scoring 
site is marked with yellow and the second-
best site is marked with green. The grey 
ball is Zn2+, blue loop is the substrate-
binding β6/α6, active histidine is coloured 
with black, and co-crystallised ADPr with 
brown.  

 

 

 

 

 

 

The most potent activators, compounds 11–13, had docking poses outside the 

substrate-binding cleft. They formed π-π interactions with W188, salt bridges with 

D187, and hydrogen bonds with substrate-binding β6/α6-loop residues and Zn-

binding domain residue G158 (Figure 14). The interactions of the activators with the 

substrate-binding loop might have an influence on the conformation or orientation 

of the loop residues. These effects can further influence the binding ability of the 

substrate. 

 

 
Figure 14. Representative docking poses and interactions of the activators: compounds 11 (A), 
12 (B), and 13 (C). Yellow dashed indicate hydrogen bonding, magenta dashes salt bridges, 
and blue dashes π-π-stacking. Co-crystallised ADPr is marked with brown. 

 

5.2 SYNTHETIC QUERCETIN DERIVATIVES INHIBIT SIRT6 
(STUDY II) 

Two SIRT6 inhibitors were discovered in study II. These compounds were synthetic 

quercetin derivatives compounds 14 and 15 (Figure 15) that were previously shown 

to have antioxidative effects (Veverka et al. 2013). They inhibited also SIRT1–3, and 

compound 15 was shown to be an especially potent inhibitor of SIRT2 (Figure 15). 

The dual modulators quercetin and compound 10 from study I were used as 

reference compounds. The results indicated that all the tested compounds would act 

only as inhibitors. As the results of the fluorescence assay for compound 10 and 
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quercetin were ambiguous and disagreed with the results of the HPLC assay in study 

I, the effect of the compounds on SIRT6 deacetylation activity was confirmed with 

Western blotting. In the Western blotting method, a full length H3 histone was used 

as a substrate, whereas in the other methods, the substrate was a H3 peptide 

(residues 1–21). The results of Western blotting indicated that compound 10 was an 

activator whereas quercetin and compounds 14 and 15 were inhibitors. The kinetic 

studies showed that compound 14 was NAD+ competitive inhibitor whereas 

compound 15 competed with the peptide substrate. 

 
Figure 15. SIRT6 inhibitors 
discovered in study II. The 
compound concentration for 
reported inhibition % (I%) of SIRT6 
and SIRT2 is 50 µM. 

 

 

 

 

The binding modes of quercetin derivatives in SIRT6 

Before docking, compound 14 and 15 were prepared, and possible ionization stages 

and isomers were generated as the isomer composition of the substance applied in in 

vitro studies was unknown. Compound 15 did not have any stereoisomers but 

compound 14 had four unionized stereoisomers (Figure 16). Compounds 14 and 15 

were docked to the substrate-binding site and also close to the NAM-binding site in 

order to explore the possible reasons why compound 14 was NAD+-competitive 

whereas compound 15 competed with the substrate.   

 

 
Figure 16. The isomers of compound 14. 

 

All compound 14 isomers found poses in the hydrophobic pocket that includes 

the NAM-binding site, but isomers 1 and 2 had poses with more interactions than the 

other isomers (Figure 17). Isomer 3 was the only compound that had poses also at the 

substrate binding site. These results suggest that the isomers 1 and 2 are unlikely to 

bind to the substrate-binding site. The isomers of compound 14 underwent π-π 
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interactions and h-bonds with the N-terminus (N4), ADPr-binding site (P62 and F64), 

α3/α4 loop (P80, F82, W84, T85, and F86), NAM-binding site (V115 and D116), active 

histidine (H133), Zn-binding domain (G155), and substrate-binding site (L186). The 

SIRT 6 inhibiting trichostatin A and benzoic acid and quinazoline sulfonamide 

derivatives have also been suggested to interact with P62, F64, V115, and D116 

(Parenti et al. 2014, You and Steegborn 2018).  

 

 
Figure 17. Representative docking poses of the isomers 1 (A), 2 (B), 3 (C), and 4(D) of 
compound 14. H133 is the catalytically active histidine and ADPr is presented with brown 
colour. Hydrogen bonds are presented with yellow dashes, and π-π-stacking with blue 
dashing.  

 

Compound 15 fitted better into the substrate binding site than into the site near 

NAM-binding site where the lipophilic chloronaphthoquinone-moiety of compound 

15 was positioned outside the pocket and was exposed to solvent (Figure 18). The 

docking pose of compound 15 at substrate-binding site revealed that it formed π-π 

interactions with W188 and F64 and hydrogen bonds with E189 and D190. F64 is 

located in the ADPr-binding site while the rest of the residues were located in the 

substrate-binding β6/α6 loop. 
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Figure 18. Representative docking poses of compound 15 at substrate-binding site (A), and 
at the site that includes the NAM-binding site (B). H133 is the catalytically active histidine 
and ADPr is presented with brown colour. Hydrogen bonds are presented with yellow 
dashes, and π-π-stacking with blue dashes. 
 

The binding mode of quercetin derivatives in SIRT2 

As compounds 14 and 15 were also potent SIRT2 inhibitors, they were docked to 

theSIRT2 structure at the binding site of SirReal2 that is approximately the same size 

as the compounds 14 and 15. Based on the results, both of these compounds might 

position slightly differently than SirReal2 within the cleft between the Zn-binding 

domain and Rossmann-fold domain (Figure 19). 
 

Figure 19. Representative docking poses of 
compound 14 (isomer 1) (green) and compound 
15 (light blue) aligned with co-crystallised 
SirReal2 (yellow) at SIRT2 inhibitor binding site. 
Co-crystallised SirReal2 is represented with, 
compound 14 with light green, and compound 
15 with light blue colour. Black residue is the 
catalytically active histidine and brown 
compound is NAD+. 
 
 
 

 

5.3 NOVEL FLAVONE DERIVATIVE IS A POTENT SIRT6 
DEACETYLASE ACTIVATOR                                         
(STUDY III) 

In study III, one potent SIRT6 activator and two SIRT6 inhibitors were discovered 

(Figure 20). The activator was a synthetic flavone derivative (compound 16) and the 

results of the kinetic studies suggested that it improved the binding of the substrate 

considerably but had no effect on the binding of NAD+. The inhibitors discovered in 

study III were novel dihydropyridine derivatives synthetized by a collaborating 

research group (compounds 17 and 18) and they were approximately as potent as 

compound 8 discovered in study I (Figure 9).  
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Figure 20. SIRT6 modulators discovered in study III. 

 

The binding mode of the potent SIRT6 activating flavone derivative 

Compound 16 was predicted to have a total charge of -1 at pH 7.4 (Figure 21A). The 

docking revealed that compound 16 has a pose where the flavone moiety places 

according to the quercetin and the rest of the compound positioned next to α3 helix 

(Figure 21B). The activator formed a hydrogen bond with E74 locating in α3 helix. 

This pose was compared with known SIRT6 activators. The flavone moiety of 

compound 16 places to the binding site of activator UBCS039, and the rest of the 

compound occupies a part of the binding site of MDL-801 (Figure 21C) (You et al. 

2017, Huang et al. 2018).   

 

 
 
Figure 21. (A) The ionised form of compound 16. (B) The docking pose of compound 16 (red) 
aligned with co-crystallised quercetin (yellow). Yellow dashes indicate hydrogen bonding. (C) 
The docking pose of compound 16 (red) aligned with the crystallised poses of SIRT6 activators 
UBCS039 (green) and MDL-801 (blue). 

 

The binding modes of SIRT6 inhibiting dihydropyridine derivatives 

Compounds 17 and 18 were predicted to have a net charge of -1 at pH of 7.4 (Figure 

22). Additionally, compound 17 was predicted to have two stereoisomers (Figure 22) 

that were both docked. The grid centre for the inhibitors was assigned to be at the 

NAM-binding site. Both compound 17 isomers could occupy a part of the NAM-

binding site but neither of them could be placed near to the substrate-binding site 
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(Figure 23A). Interestingly, compound 18 found two alternative poses: one reaching 

deeper into NAM-binding pocket and one reaching deeper into the substrate binding 

site (Figure 23B). The inhibitors formed interactions with F82 in the α3/α4 loop and 

with L186 and W188 in the β6/α6 loop. Interestingly, compound 18 had no 

electrostatic interactions when occupying the NAM-binding site.  

 

 
Figure 22. The deprotonated structures of compound 17 isomers and compound 18. 

 

 
Figure 23. Representative docking poses of compound 17 isomers 1 (pink) and 2 (purple) (A). 
Two different docking poses of compound 18 (blue and light blue) (B). Substrate-binding site 
is marked with green mesh and ADPr with brown colour. Blue dashes indicate π-π-stacking 
and yellow dashes hydrogen bonds.  
 

5.4 CELLULAR EFFECTS OF SIRT6 DEACETYLASE 
ACTIVATORS (STUDIES I AND III) 

The effects of the SIRT6 activating compound 12 on cellular SIRT6 protein levels were 

investigated in Caco-2 cells. Compound 12 upregulated the protein levels of SIRT6. 

It also downregulated the protein levels of Twist-related protein 1 (Twist1) and 

GLUT-1 and upregulated the levels of forkhead box O3 (FoxO3α). These proteins are 

all associated with SIRT6 and have been claimed to be involved in cancer (Zhong et 

al. 2010, Han et al. 2014, Zhao et al. 2017, Liu et al. 2018b, Zhang et al. 2019b).  

In study III, the SIRT6 activating compound 16 was administered to a variety of 

breast cancer cell lines and the effect on SIRT6 mRNA levels was examined. The 

results showed that compound 16 has no significant effect on the expression of SIRT6. 

The effect of compound 16 on cell viability of non-tumorigenic immortalized 

MCF10A breast cells and variety of breast cancer cells was investigated at 

concentrations of 1–100 µM. At 100 µM concentration, the activator decreased the 

viability of the MCF10A cells and triple negative (Hs578T) cancer cells. No effect was 
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detected on the viability of the other breast cancer cells. However, compound 16 

decreased the cell number of all cancer cell lines investigated, and thus inhibited their 

proliferation. As the compound 16 affected the proliferation, its effect on cell cycle 

was investigated. The compound arrested the cell cycle in cell lines but in different 

cell cycle phases depending on the cell type.  

 

5.5 BET INHIBITION CAN ALTER SIRTUIN LEVELS IN BREAST 
CANCER CELLS (STUDY IV) 

In study IV, an alternative approach to modulate SIRT activity was investigated. BET 

proteins, that bind to acetylated lysines of histones and serve a binding platform for 

different transcription factors, were inhibited and the effect on SIRT1 was measured. 

The effect of BET inhibition was investigated in two breast cancer cell lines: estrogen 

and progesterone receptor positive MCF-7 and triple negative MDA-MB-231 cells. 

Previously (+)-JQ1 was reported to increase the levels of SIRT1 in MCF-7 cells as well 

as in two other human cell lines (Kokkola et al. 2015). In study IV, in addition to (+)-

JQ1, two structurally diverse inhibitors were used: I-BET151 and Pfi-1. Interestingly, 

the effects of the inhibitors were different.  

 

The impacts of BET inhibition on SIRT1 protein levels and acetylation of 

p53(K382) in MCF-7 cells 

I-BET151 exerted increasing effects on SIRT1 protein levels in MCF-7 cells while Pfi-

1 was inactive (Figure 24A&B). To examine if the changes in SIRT1 levels correlated 

to the SIRT1 mediated deacetylation, the levels of acetylated p53 (acp53) lysine 382 

(K382) were determined. Even though I-BET151 increased SIRT1 levels, the 

acetylation level of SIRT1 target acp53(K382) did not decrease accordingly (Figure 

24C). In addition, Pfi-1 had no statistically significant effect on the levels of 

acp53(K382) (Figure 24D). The levels of total p53 were constant (Figure 24E&F). 
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Figure 24. Western blotting results of I-BET151 and Pfi-1 treated MCF-7 cells. Data are 
presented as mean ±SEM (n=3). Statistical significance is presented with *(p < 0.05 vs. 
control). 
 

The impacts of BET inhibition on SIRT1 levels levels and acetylation of p53(K382) 

in MDA-MB-231 cells 

(+)-JQ1 decreased SIRT1 levels in MDA-MB-231 cells (Figure 25A) and thus, the effect 

was opposite than that reported in MCF-7 cells (Kokkola et al. 2015).  However, I-

BET151 and Pfi-1 displayed similar effects in MDA-MB-231 cells on SIRT1 as in MCF-

7 cells: I-BET151 increased SIRT1 levels, and Pfi-1 had no effect (Figure 25B&C). 

Despite the opposite effects on SIRT1 protein levels, both (+)-JQ1 and I-BET151 
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increased p53(K382) acetylation (Figure 25D&E). This indicates that the change in 

SIRT1 levels might not correlate with the acetylation level of its target, p53(K382). 

Pfi-1 had no significant effect on the acetylation level of p53(K382) (Figure 25F). 

Interestingly, (+)-JQ1 and I-BET151 decreased total p53 levels at all concentrations, 

and the effect of I-BET151 was significant (Figure 25G&H). Pfi-1 decreased total p53 

levels only at the concentration of 350 nM (Figure 25L). The results for Pfi-1 at the 700 

nM concentration were omitted since it caused a decrease in α-tubulin levels.   

 
Figure 25. Western blotting results BET inhibitor treated MDA-MB-231 cells. Data are 
presented as mean ±SEM (n=3). Statistical significance is presented with * (p < 0.05 vs. 
control), ** (p < 0.01 vs. control), and *** (p < 0.001 vs. control).  
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6 DISCUSSION  

6.1 SIRT6 DEACETYLASE MODULATORS  

Fewer modulators for SIRT6 have been developed than for SIRT1–3. When starting 

this thesis work, only a few non-peptide SIRT6 inhibitors had been published, and 

the most potent of them had an IC50 value of 37 µM (Table 5) (Sociali et al. 2015). 

Moreover, the only compounds known to activate SIRT6 deacetylation reaction were 

certain natural fatty acids and their derivatives as well as quercetin and luteolin 

(Feldman et al. 2013, Rahnasto-Rilla et al. 2016).  

In this work, several potent SIRT6 deacetylase modulators with novel scaffolds 

were discovered. The majority of the compounds were natural polyphenols that 

affect multiple disease-related processes (Li et al. 2014). The most potent inhibitors 

were catechin gallate compounds 6 and 7 that were discovered in study I (Figure 9). 

These compounds were more potent than the previously published SIRT6 inhibitors 

except for the cyclic pentapeptide inhibitor described by Liu and Zheng (2016). 

Moreover, two very potent SIRT6 activators were discovered: compound 12 in study 

I and compound 16 in study III that had FAmax values of 55 and 30–40, respectively. 

Only the lysophosphatidic acid that was reported recently has a comparable FAmax 

value (Table 6) (Klein et al. 2020). Synthetic quercetin derivatives were also shown to 

inhibit SIRT6 and have IC50 values similar to those of benzoic acid and quinazoline 

sulfonamide compounds (Table 5). In addition, dihydropyridine derivatives were 

shown for the first time to inhibit SIRT6.  

However, it is challenging to compare the potency of the modulators discovered 

in this work to those compounds examined in other studies due to the differences in 

assay conditions. Different studies have shown that the effect of SIRT deacetylase 

modulators, especially in the case of activators, can vary between substrates, as the 

reaction rate and affinity for different substrates can differ (Dai et al. 2010, Wood et 

al. 2018). This work also revealed that the substrate affects the results of deacetylation 

assays: Compound 10 and quercetin, that were designated as being concentration 

dependent dual modulators in the peptide-based HPLC assay, showed only 

activation (compound 10) or inhibition (quercetin) with the full-length H3 substrate. 

In addition to the differences in the substrates, also variations in the concentrations 

of the substrate or NAD+ can affect the results.  

However, quercetin and some other polyphenolic compounds have been 

demonstrated to form aggregates at higher concentrations at certain assay 

concentrations (Pohjala and Tammela 2012, Reker et al. 2019). The aggregates on the 

other hand can cause unspesific inhibition through denaturation or conformational 

changes. Thus, some of the polyphenolic compounds can show inhibition because 

they form aggregates.  
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6.2 THE BINDING SITES OF SIRT6 MODULATORS 

At the beginning of this work, no inhibitors or activators had been crystallised with 

SIRT6: the first SIRT6 structure with an activator was published on 2017, and the first 

structure with an inhibitor was released on 2018 (Table 5) (You et al. 2017, You and 

Steegborn 2018). The binding sites of SIRT6 inhibitors for docking were assigned to 

be at the substrate-binding site or closer to the NAM-binding site as they are the most 

common SIRT inhibitor binding sites. The results of inhibitor docking implied that 

the shape complementarity with the pocket affects to the inhibition potency. 

Additionally, simultaneous interactions with NAM- and substrate-binding sites, N-

terminus, α3 helix, and α3/α4 loop might also be important for inhibition. Some of 

the interactions suggested by docking in this work have previously been reported for 

other SIRT6 inhibitors and thus, they might be critical for the inhibitory effects of 

these compounds. (Parenti et al. 2014, You and Steegborn 2018). In summary, the 

results of all SIRT6 docking studies indicated that the SIRT6 inhibitors can bind either 

to the substrate-binding site or to the NAM-binding site, or they can occupy both 

sites simultaneously.  

At the time of study I, no activators had been crystallised with SIRT6 and there 

was conflicting knowledge about the binding sites of other SIRT activators (Dai et al. 

2018). Thus, SiteMap was used to predict possible DLM binding sites. As the most 

druggable binding site covered the inhibitor binding site, the other druggable site 

was chosen for activator docking. The activators formed interactions with the 

substrate-binding loop from the outside of the substrate-binding cleft. Since they 

might undergo interactions with the substrate-binding loop, they might 

subsequently affect the substrate binding properties. However, as the SIRT6 crystal 

structure lacks approximately the 50 C-terminal amino acids, the possible C-terminal 

binding site(s) were undetected with SiteMap that predicts the pockets based on the 

protein’s 3D structure. Thus, the C-terminal domain might include a better binding 

site for the activators. 

Before study III was started, a crystal structure of SIRT6 in a complex with the 

dual modulator quercetin was published (PDB ID 6QCD);  it showed that quercetin 

would bind to the cleft between the Zn-binding domain and the Rossmann-fold 

domain (You et al. 2019). The docking results of the most potent activator, compound 

16, showed that while the flavonoid moiety positioned according to the quercetin, 

the rest of the molecule placed next to α3/α4 loop. The pose had similarities with 

previously published activator UBCS039 that has been suggested to bind to the 

propsed binding site of SIRT6 activating fatty acids (You et al. 2017, Klein et al. 2020). 

Moreover, compound 16 occupied partly the binding site of allosteric SIRT6 activator 

MDL-801. Overall, it seems that SIRT6 might have more than only one activator 

binding site. 

After study I, SIRT6 crystal structures containing compounds 6 and 12 were 

reported (PDB ID 6QCJ and 6QCH) (You et al. 2019). The binding pose of compound 

6 differed from the onr suggested by docking. As the molecular modelling results are 
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predictions, the differences between the crystallisation and docking can originate 

from errors in the docking. However, also the crystallization process might have 

resulted in inaccuracies in the binding mode since the compounds have been soaked 

after crystallizing SIRT6 with ADPr. Additionally, the crystal structure lacks several 

N-terminal residues that participate in forming at least the myristoyl binding site in 

the cleft between the Rossmann-fold and the Zn-binding domain (Jiang et al. 2013, 

Huang et al. 2018). Thus, they are likely to form also parts of the other binding 

pockets located in that cleft.  

Moreover, the N-terminal domain might be important for SIRT6 activator-

binding similarly to the situation with SIRT1 as the polyphenolic SIRT1 activator, 

resveratrol, has been shown to bind between the N-terminal domain and substrate 

(Cao et al. 2015).  Additionally, none of the SIRT6 crystal structures have included 

co-crystallised NAD+ nor acetylated substrate. Thus, their exact interactions and 

binding modes at SIRT6 are unknown and it is difficult to compare the interactions 

and poses of inhibitors with substrate or the NAM-moiety of NAD+.   

In addition to the problems in SIRT6 crystal structures, modelling the ionisation 

states and subsequent enolates of the activating compounds 11, 12, and 13 are 

possible sources of errors. Those activators have been predicted to have pKa values 

close to physiological values or assay pH (~8) (Álvarez-Diduk et al. 2013, León-

Carmona et al. 2016). Thus, they might exist in more than one ionisation form in those 

conditions, and thus it seems that the modelling methods used in this work are 

imprecise in predicting the exact form of the compounds. 

 

6.3 THE IMPLICATIONS OF SIRT6 MODULATORS  

SIRT6 can be a possible drug target in a variety of diseases including cancer, 

metabolic diseases, and inflammation (Khan et al. 2018). However, SIRT6 possesses 

diverse roles in cancer e.g. depending on the cancer type (Garcia-Peterson et al. 2017, 

Desantis et al. 2018). In this work, the two most potent activators, compounds 12 and 

16 were investigated in different cancer cell lines. In Caco-2 cells, compound 12 

increased the protein levels of SIRT6 and subsequently decreased the protein levels 

of Twist1 and GLUT-1, i.e. two proteins that are tumour promotors (Zhong et al. 

2010, Zhao et al. 2017). Compound 12 also increased the protein levels of the tumour 

suppressor FoxO3α, a protein known to induce the expression of SIRT6 (Liu et al. 

2018b, Zhang et al. 2019b). Thus, compound 12 could potentially exert several anti-

cancer effects. 

Compound 16 was investigated in breast cancer cell lines. The results imply that 

it inhibited the proliferation and arrested the cell cycle in either the G1 or G2 phase. 

However, the magnitude of the proliferation effect and the effect on cell cycle varied 

between the cell lines. 

The natural flavonoids that modulated SIRT6 activity have been reported also to 

affect other targets and disease pathways (Pan et al. 2010, Abotaleb et al. 2019, Neri-

Numa et al. 2020). Thus, some of the cellular effects observed for the activators might 
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be caused by the modulation of some other protein and not SIRT6. In fact, some of 

the drug candidates in clinical trials actually might induce tumour suppressive 

effects through their off-targets (Lin et al. 2019).  

Examples of the other targets for the SIRT6 modulators of this work are 

inflammation-related interleukin 17A, inhibited by compound 12, and various 

kinases that interact at least with compounds 8, 10, and 11 (Kim et al. 2015, Fechtner 

et al. 2017, Liu et al. 2017, Stoll et al. 2019). Additionally, the quercetin derivatives 

(study II) and dihydropyridine derivatives (study III) modulate other SIRTs (Mai et 

al. 2009). Nonetheless, since these off-targets affect the same processes as SIRT6, 

modulating them together with SIRT6 might represent a good strategy in the 

treatment of different diseases. In cancer, for example, targeting multiple proteins 

has been suggested to be one approach to overcomimg possible drug resistance 

(Apaya et al. 2016, Rao et al. 2019). Moreover, targeting multiple SIRTs might have 

synergistic effects in cancer, as both activators and inhibitors of SIRT1 potentiate the 

anti-tumour effects of HDAC inhibitors (Cea et al. 2011, Kala et al. 2015).  

 

6.4 THE INTERPLAY BETWEEN BET INHIBITION AND SIRT 
EXPRESSION 

Due to the difficulties in the development SIRT activators, an alternative way to affect 

SIRT activity was explored. BET inhibition was shown to affect the SIRT1 protein 

levels, with the effect varying both between the inhibitors and the cell lines. The 

change in SIRT1 levels did not correlate with the acetylation level of its target, 

p53(K382). Thus, the cellular activity of SIRT1 might not increase accordingly with 

SIRT1 levels, or the BET inhibitors can cause an opposite effect on p53(K382) 

acetylation by acting on other pathways. 

 The results from this work and previous studies imply that the effects of BET 

inhibitors on SIRT1 can be cell type-dependent (Banerjee et al. 2012, Kokkola et al. 

2015, Hytti et al. 2016). Thus, BET inhibitors should be investigated with different 

types of cells when developing BET inhibition-based treatments. Moreover, 

conclusions made based on only one type of BET inhibitors should be avoided, as 

these compounds might exert individual effects. For example, their unexpected 

effects on the expression of other epigenetic proteins or possible off-targets might 

cause unwanted side-effects that could lead to a failure in clinical trials (Andrieu et 

al. 2016).  

In addition to SIRT1, BET inhibition has been demonstrated to upregulate the 

expression of HDAC6 (Carew et al. 2019). Moreover, different BET inhibitors have 

exerted synergistic effects with HDAC inhibitors (Table 8). Thus, similar synergy 

might exist also between BET inhibitors and SIRTs. As SIRT1 modulators and HDAC 

inhibitors have also shown synergistic effects in cancer, the idea of aiming at a triple 

target of BETs, SIRTs, and other HDACs might represent an interesting approach in 

the therapy of cancer.  
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7 CONCLUSIONS AND FUTURE 
PROSPECTS 

In this work, several previously unreported SIRT6 deacetylase modulators were 

discovered; these represent interesting new starting points for developing more 

SIRT6 modulators and investigating SIRT6-related diseases. Two of the inhibitors, 

compounds 6 and 7, were more potent than the previously reported non-peptide 

inhibitors with IC50 values of 2.5 µM and 5.4 µM, respectively. Moreover, two highly 

potent activators, compounds 12 and 16, were discovered. They were determined to 

activate SIRT6 catalysed deacetylation reaction up to 55- and 30–40-fold, respectively. 

They also displayed anticancer effects in different cell lines. Thus, SIRT6 activation 

can serve as a novel approach to develop treatments against cancer. The anticancer 

effects of SIRT6 inhibitors should also be investigated as the role of SIRT6 in cancer 

seems to depends on both the cancer type and its stage. 

The SIRT6 modulating flavonoids discovered in this work are unselective. In the 

future studies, selective SIRT6 modulators will be needed to clarify the SIRT6-specific 

effects in cells. Nevertheless their target proteins are related to the same processes 

influenced by SIRT6 and thus, co-targeting these other proteins and SIRT6 could be 

investigated as a future strategy for cancer treatment.  

In the future molecular modelling tools can help in developing selective and more 

efficient SIRT6 modulators that could enter into clinical trials. However, a full length 

SIRT6 is needed if one wishes to investigate all the possible sites and interactions. 

Moreover, the structure should include NAD+ and acetylated substrate since that 

would demonstrate the exact catalytical interactions and conformations.  

Despite the incomplete SIRT6 structures, this work provided insights into the 

possible interactions and binding modes of SIRT6 modulators. As the site for 

activators remained unconfirmed, the possible binding sites should be still examined 

with other computational tools, for example with MD-based methods. Alternatively, 

an experimental method, such as PAL could be used in detecting the binding site.  

BET inhibition was shown to be an alternative approach to modulate SIRTs. This 

approach could be considered in developing future treatments intended to modulate 

SIRT activity. However, the effect seems to be cell line-dependent and should be 

investigated further and confirmed for other SIRTs. Nevertheless, as BET inhibitors 

and SIRT modulators can both exert synergistic effects with HDAC inhibitors, 

exploiting this epigenetic triplet might be a future approach in targeting serious 

diseases, such as cancer. 
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Human sirtuins (SIRT1-7) are promising drug 
targets in many diseases. Depending on the 
disease sirtuins should be either activated 

or inhibited. In this thesis, novel small 
molecule inhibitors and activators for SIRT6 
were discovered among natural compounds 
and their derivatives. The binding of these 

modulators was examined with computational 
modelling tools. Additionally, regulation of 
sirtuin expression was investigated as an 

alternative method to control sirtuin activity. 
Altogether, this thesis provides new insights to 

the regulation of sirtuins.
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