
Dissertations in Forestry
and Natural Sciences

SAMI SIERANOJA

Clustering with kNN
graph and k-means

PUBLICATIONS OF
THE UNIVERSITY OF EASTERN FINLAND

Clustering with kNN graph and k-means

Sami Sieranoja

Clustering with kNN graph and k-means

Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences

No 401

University of Eastern Finland
Joensuu

2020

Grano Oy
Jyväskylä, 2020

Editor in-Chief: Pertti Pasanen
Editor: Matti Tedre

Sales: University of Eastern Finland Library
ISBN: 978-952-61-3644-8 (print)
ISBN: 978-952-61-3645-5 (PDF)

ISSNL: 1798-5668
ISSN: 1798-5668

ISSN: 1798-5676 (PDF)

Author’s address:	 Sami Sieranoja
	 University of Eastern Finland
	 School of Computing
	 P.O. Box 111
	 80101 JOENSUU, FINLAND
	 email: samisi@cs.uef.fi

Supervisors:	 Professor Pasi Fränti, PhD.
	 University of Eastern Finland
	 School of Computing
	 P.O. Box 111
	 80101 JOENSUU, FINLAND
	 email: franti@cs.uef.fi

Reviewers:	 Professor Emre Celebi, Ph.D
	 University of Central Arkansas
	 Department of Computer Science
	 MCS 303
	 201 Donaghey Ave., Conway, AR 72035, USA
	 email: ecelebi@uca.edu

	 Professor Jyrki Kivinen, Ph.D
	 University of Helsinki
	 Department of Computer Science
	 P.O. Box 68
	 00014 UNIVERSITY OF HELSINKI, FINLAND
	 email: jyrki.kivinen@cs.helsinki.fi

Opponent: 	 Professor Julius Žilinskas
	 Vilnius University
	 Akademijos g. 4
	 LT-08663 Vilnius, Lithuania
	 email: julius.zilinskas@mif.vu.lt

6

7

Sieranoja, Sami
Clustering with kNN graph and k-means
Joensuu: University of Eastern Finland, 2020
Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences 2020; No. 401
ISBN: 978-952-61-3644-8 (print)
ISSNL: 1798-5668
ISSN: 1798-5668
ISBN: 978-952-61-3645-5 (PDF)
ISSN: 1798-5676 (PDF)

Abstract

Increase in the amount, variety and complexity of data has made it more
difficult to understand or process information. Data clustering provides
one way to help in these challenges. The aim of clustering is to group
objects of a dataset so that the objects in the same group are more similar
to each other than objects in other groups. It can be used to summarize
data, find patterns or preprocess data for other algorithms.

Thousands of clustering algorithms have been developed over the
years and many new ones are introduced each year, but one of the first
clustering algorithms, k-means, is still used very widely today. It is known
to have problems, but it has been unknown in which conditions it works
and when it fails. In this thesis, we study the situations when it succeeds
and when it fails, investigating properties of the data such as dataset
size, dimensionality and overlap of clusters. We also study the most
common ways of improving performance of k-means, such as repeating
the algorithm or using better initialization. We find that lack of overlap of
clusters is the most common property of data that causes k-means to fail.
Combining a better initialization technique with repeating the algorithm
100 times can reduce errors from 15% to 1%.

Large datasets are problematic for many clustering algorithms which
become too slow or inefficient to cluster them. One way to speed up

8

clustering algorithms is to use a structure called kNN graph which
connects every object to the k most similar objects in the same dataset.
In this thesis, we have developed two fast methods for constructing the
kNN graph. The first is targeted for high dimensional data. It constructs
the graph by using one-dimensional mapping with a Z-order curve. The
second is more general and can work for any type of data where a distance
function is defined. It works by hierarchical random point division. We use
the kNN graph to speed up a clustering algorithm called Density Peaks.
This faster variant can cluster data of one million in size and achieves a
speedup of 91:1 for datasets of size 100,000 or more.

Universal Decimal Classification: 004.021, 004.421, 004.6, 004.93, 519.1,
519.237.8

Library of Congress Subject Headings: Data mining; Data sets; Big data;
Cluster analysis; Automatic classification; Algorithms

Yleinen suomalainen ontologia: tiedonlouhinta; big data; klusterianalyysi;
graafit; algoritmit

9

Acknowledgements

This thesis contains the results of research conducted at the School of
Computing, University of Eastern Finland during 2017-2020. The University
has provided an interesting work environment with the opportunity to
meet many new people from different countries. These encounters have
shaped the direction of my work and my outlook on life in general.

I would like to thank my supervisor Pasi Fränti, who gave me the
possibility to start this journey and provided lots of support during the
many challenges involved in PhD work. I am especially grateful for all
the detailed comments and suggestions for improvements that greatly
improved the quality of my work.

I wish to thank all those colleagues with whom I worked during these
years, including Radu Mariescu-Istodor, Jiawei Yang, Gulraiz I. Choudhary,
Himat Shah, Nancy Fazal, Masoud Fatemi, Jehad Aldahdooh, Tomi
Kinnunen and Tiina Laatikainen.

I would also like to thank the pre-examiners of the thesis, Professors
Emre Celebi and Jyrki Kivinen for their valuable feedback. Also, I am
honoured to have Professor Julius Žilinskas as my opponent.

I would also like to thank my girlfriend Sini Pirinen, who has given me
encouragement and strength to face the many challenging events during
this journey.

I am also very grateful to my parents and my family whose support, care
and teaching since my childhood has given me a solid foundation that has
helped me in every moment of my life.

Joensuu, 4th November 2020
Sami Sieranoja

10

List of abbreviations

kNN	 k nearest neighbors
SSE	 Sum of Squared Errors
MSE	 Mean Squared Errors
CI	 Centroid Index
NMI	 Normalized Mutual Index
ZNP	 Z-order Neighborhood Propagation
RP-Div	 Random Pair Division

11

List of original publications

P1	 S. Sieranoja and P. Fränti, “Constructing a high-dimensional kNN-graph
using a Z-order curve”, ACM Journal of Experimental Algorithmics, 23
(1), 1.9:1-21, October 2018. https://doi.org/10.1145/3274656

P2	 S. Sieranoja and P. Fränti, “Fast and general density peaks clustering”,
Pattern Recognition Letters, 128, 551-558, December 2019. https://doi.
org/10.1016/j.patrec.2019.10.019

P3	 P. Fränti and S. Sieranoja, “K-means properties on six clustering
benchmark datasets.”, Applied Intelligence (2017), 1-17, 2018. https://
doi.org/10.1007/s10489-018-1238-7

P4	 P. Fränti and S. Sieranoja, “How much k-means can be improved by
using better initialization and repeats?”, Pattern Recognition, 93, 95-
112, 2019. https://doi.org/10.1016/j.patcog.2019.04.014

Throughout the thesis, these papers will be referred to by [P1]-[P4]. These
papers are included at the end of this thesis by the permission of their
copyright holders.

12

Author’s contribution

The idea of papers [P1]-[P2] originated from the author. The author
implemented and tested all new methods and performed all experiences.
The articles were jointly written with the co-author. The author generated
all graphics for the articles and did most of the writing.

The idea of papers [P3]-[P4] originated from the co-author. The author
implemented and tested all new methods and performed all experiences.
The articles were jointly written with the co-author. The author generated
most of the graphics for the articles and did a smaller part of the writing.

13

Table of contents

Abstract... 7

Acknowledgements... 9

1	 Introduction... 19

1.1	 Better clustering by using a kNN graph.. 20
1.2	 Clustering with k-means.. 22

2	 Data and similarity... 27

2.1	 Spherical data... 30
2.2	 Shape data.. 31
2.3	 Text data.. 33
2.4	 Properties of data.. 34
2.5	 Similarity or distance... 37
2.6	 Cost functions... 38
2.7	 Measuring clustering quality.. 39

3	 kNN graph.. 41

3.1	 Exact methods and the problem of dimensionality....................... 42
3.2	 Neighborhood Propagation.. 45
3.3	 Z-order neighborhood propagation.. 46
3.4	 Random point division... 49

4	 Density Peaks clustering using a kNN graph................................. 53

4.1	 Density Peaks.. 53
4.2	 Fast Density Peaks using a kNN graph.. 54

5	 k-means.. 59

5.1	 Repeated k-means (RKM).. 60
5.2	 Initialization methods.. 61
5.3	 Results... 63

6	 Summary of contributions... 67

7	 Summary of results... 69

8	 Conclusions.. 73

References.. 75

14

LIST OF FIGURES
Figure 1. 	 Constructing a kNN graph (k=4) for data can reveal the

cluster structure of the data. In case of completely separated
clusters (left), the connected components of the graph form
the clusters. In case of more overlapping clusters (right),
the cluster structure is more difficult to determine from the
graph.. 21

Figure 2. 	 Three examples of clustering results when using the SSE cost
function. A Gaussian cluster is split into several spherical
clusters (left); mismatch of the variance causes the larger
cluster to be split (middle); mismatch of cluster sizes does
not matter if the clusters are well-separated. [P4]................ 23

Figure 3. 	 K-means initializes the centroids to random positions (blue
dots). The algorithm then iteratively tunes the locations
of the centroids until it converges to a local optimum
solution (red dots). Success of the algorithm depends on the
initial centroids. In the left example, one of the clusters is
incorrectly assigned two centroids. In the right example the
initial location of the centroids is better and the algorithm
converges to the globally optimal solution............................. 24

Figure 4. 	 Some of the spherical datasets used in this thesis. [P3]....... 29
Figure 5. 	 Variants of the G2 dataset and their distance histograms.

The first peak is for the distances inside the clusters, the
second for distances between clusters. When variance of
clusters is increased, they become more overlapped and the
distance histograms finally merge into one............................ 30

Figure 6. 	 Distance histograms of selected (spherical) datasets. If
data has clusters, this usually shows up as peaks in the
distance histogram. The first peak contains the smallest
distances which are typically inside clusters. Other peaks
contain distances between clusters. If clusters have different
densities, this may show up as more than one peak of intra-
cluster distances, such as in case of the unbalance dataset:
local distances in the dense clusters, local distances in the
sparse clusters, and the flat area for the global distances... 31

Figure 7. 	 Shape datasets contain non-spherical data. They are not
suitable to cluster with k-means, but can be better clustered
using density based methods such as Density Peaks or
DBSCAN... 32

15

Figure 8. 	 Histograms for shape data do not have as clear first peak
as spherical datasets. This is because, contrary to spherical
datasets, points in the same cluster can be very far from
each other. Points belong to the same cluster when other
points, which are near each other, form a “chain” between
them. This is highlighted in the case of the spiral dataset.... 33

Figure 9: 	 Overlap measured for the G2-2-30 dataset. [P3]................... 36
Figure 10: 	Example of a typical k-means result for the A2 dataset.

The corresponding measures for this are: CI=4, SSE=3.08.
[P3]... 40

Figure 11. 	The kNN graph is formed by finding the k-nearest neighbors
for all points in the dataset. Therefore any kNN search
method can also be used to construct a kNN graph.
However, the reverse is not possible since in the kNN search
problem the query point (q) can be any unknown point
outside the original dataset.. 41

Figure 12. 	Example of k=10 nearest neighbors for the words porpoise,
tortoise and portoise. This is part of a larger edit distance
kNN graph on 466,544 words dataset. Here only the
neighbors of the three words are shown. All distances in the
graph are 2, except those marked by number 1. [33]........... 42

Figure 13. 	kNN searching in kd-tree... 43
Figure 14. 	Volume of a hypersphere in relation to volume of a same

width hypercube goes to zero very quickly as dimensionality
increases. This comes mainly from the O(D!) gamma function
which is the denominator in the formula. Number of points
are expected to be in relation to volume of container.
Therefore, assuming uniform distribution and fixed number
of points inside a hypersphere, the number of points
inside a hypercube is expected to grow exponentially as
dimensionality increases... 44

Figure 15. 	Bit-interleaving is used to produce the Z-values.................... 46
Figure 16. 	Space filling curves impose an ordering for multidimensional

discrete space. The Z-order -curve (left) and Hilbert curve
(right) are the two most common space filling curves. Both
are self-similar, which means that the same pattern repeats
recursively in three different levels on the 8x8 grid. [P1]..... 47

Figure 17. 	Multiple different z-orderings are needed to produce a
high quality kNN graph. Error points are shown as black
rectangles. [P1]... 48

16

Figure 18. 	The RP-div algorithm recursively subdivides the dataset of
size N=37 by first choosing two random points (a,b). The
dataset is split based on which of the two points is nearer.
After the first split, the size of the subset A is smaller than
threshold W=20, and is solved by brute force. The subset
B is further divided into two more subsets, which both are
smaller than W and now solved by brute force. [P2]............. 50

Figure 19. 	After repeating the random pair division, a new solution is
obtained. This solution is merged with the previous one to
form a new improved kNN graph. [P2].................................... 51

Figure 20. 	Different cluster selection strategies based on the density-vs-
delta plot for the S4 dataset. Cluster centroids typically have
both high density and high distance to a higher density point
(delta). Therefore, thresholding based on a combination of
delta and density (gamma) is expected to work better than
using the delta values alone. [P2].. 54

Figure 21. 	Illustration of the Fast Density Peaks algorithm. (1) For a
given data set, the kNN graph is constructed. (2) Densities
are calculated as inverse of the mean distance to the
neighbors. (3) Nearest higher density point (big brother) is
(in case of gray lines) found in the kNN graph. For others
(red lines) a slower full search is performed. (4) Cluster
centers are identified as the two points that have highest
gamma (delta*dens) value. (5) Clusters are formed by joining
other points to the same cluster as with their big brother.
[P2]... 55

Figure 22. 	Distribution of slope points (gray) and local peaks (red)
inside an example cluster. One of the local peaks (blue)
is the resulting cluster centroid (global peak). The case of
k=30 (left) and k=70 (right) are shown. When the number of
neighbors k in the kNN graph is increased, the number of
local peaks decrease. [P2]... 56

Figure 23. 	The k-means algorithm.. 59
Figure 24: 	General principle of repeated k-means (RKM). The key idea

is that the initialization includes randomness to produce
different solutions at every repeat... 61

Figure 25. 	Example of the maxmin heuristic for S3 dataset. The blue
dots are the initial and the red dots the final centroids.
The trajectories show their movement during the k-means
iterations... 62

17

Figure 26. 	Illustration of the positive effect of overlap for k-means.
The gray trajectories show the movement of the centroids
during the iterations. In both cases, only one initial centroid
is on the rightmost cluster and only when there is sufficient
overlap, one additional centroid can move across the
clusters... 64

Figure 27. 	Performance of k-means increases when overlap increases.
Performance is measured as success rate (%) and CI-values...
64

Figure 28. 	Effect of unbalance for k-means performance demonstrated
using the Unbalance dataset. Random initialization of
k-means tends to put too many centroids in the dense
clusters and too few in the sparse clusters. This results
in average CI of 3.9. This dataset cannot be successfully
clustered even with 100 repeats. [P3]..................................... 65

Figure 29. 	How different properties of a dataset affect the success of
k-means clustering... 74

18

19

1	 Introduction

As part of the ongoing digitalization, there has been an increase in the
amount, variety and complexity of data. In this setting, there arises many
challenges in understanding data and processing it in an efficient way. Data
clustering provides one way to help in these challenges.

Clustering algorithms aim at grouping objects of a dataset so that the
objects in the same group are more similar to each other than objects
in other groups. Clustering can serve as an efficient exploratory data
analysis tool in fields such as physics [1] and bioinformatics [2], or as a
preprocessing tool for other algorithms in e.g. road detection [3] and
motion segmentation [4].

Clustering can work on any type of data such as images [5], text [P2,6,7],
products [8], people [1] or genes [9]. Different algorithms have different
limitations, but generally the only thing that is needed for clustering to
work is a way of calculating either similarity or distance between the data
objects.

Many clustering techniques can be divided into a cost function which
defines the goal of clustering and an algorithm which optimizes the cost
function [10]. The Sum of squared errors (SSE) is one of the most well
known cost function. Algorithms that optimize this include k-means [11,12],
Ward’s method [13], Genetic algorithm [14] and Random Swap [15].
Some clustering algorithms are heuristics that do not optimize any clearly
defined goal or cost function. These include the Density Peaks algorithm
[5], DBSCAN [16] and Mean Shift [17].

K-means optimizes the SSE by first selecting an initial k random data
points to represent the clusters. Then it iteratively fine-tunes the location
of those points in a hill climbing manner, always improving the SSE in
each iteration until convergence. Ward’s method optimizes the SSE by first
putting each point in separate clusters and repeatedly merging the pair
of clusters with a smallest increase in SSE until there is only one cluster.
From a user perspective, the main difference to k-means is that Ward’s

20

method returns clustering for all possible numbers of clusters, whereas for
k-means the number of clusters needs to be fixed as a parameter.

One limitation of the traditional SSE optimizing algorithms like k-means
is that it works well mainly with spherical data, i.e. data consisting of
roughly ball shaped clusters, and cannot recognize non-spherical shapes
like cigars [18], spirals or nested clusters [10]. Since the clusters in real life
do not always follow spherical shapes, new methods have been introduced
to cluster data having arbitrary shape clusters. These include density based
clustering [16,5,2], graph based methods [1,19], exemplar based clustering
[20,21], support vector clustering [22] and kernel k-means [23].

DBSCAN [16] and Density Peaks [5] are examples of density based
heuristics. DBSCAN detects core points which lie in high density areas.
It then merges points into the same cluster if they are within R-radius of
a core point. All other points are considered outliers. The Density Peaks
method forms clusters by first detecting peaks of density as cluster
centers, i.e. those points that are located in a high density area and have
large distance to higher density points. Other points are merged to the
same cluster with the nearest higher density point.

1.1	 Better clustering by using a kNN graph

The current trend of ever larger datasets is a problem for many clustering
algorithms which become slow or inefficient for big datasets. In both
Density Peaks and Ward’s method, a major bottleneck is the calculation
of the full distance matrix which requires O(N2) calculations and memory
space. Spectral clustering has even higher complexity of O(N3) [24].

One way to improve clustering algorithms, both in terms of speed
and quality, is to use a structure called kNN graph (Figure 1). It is a data
structure where objects are connected to the k most similar objects in
the same dataset. It has been used to speed up Ward’s method to O(n log
n) complexity [25]. Also DBSCAN has been enhanced using a kNN graph
[26]. Density peaks has been previously improved by using a kNN graph in
terms of quality [27], and recently in terms of speed also [P2]. In addition

21

to their use in clustering, kNN graph has also many other applications
such as classification [28], k-nearest neighbor search [29], dimensionality
reduction [30], outlier detection [31] and computer graphics [32].

Figure 1. Constructing a kNN graph (k=4) for data can reveal the cluster
structure of the data. In case of completely separated clusters (left), the
connected components of the graph form the clusters. In case of more
overlapping clusters (right), the cluster structure is more difficult to
determine from the graph.

The trivial brute-force algorithm constructs a kNN-graph in O(N2) time
by calculating distances between all pairs of points and selecting the
k smallest distances for every point. This can be practical for small
datasets consisting of up to tens of thousands of points. However, for
larger datasets, consisting of millions of points, the brute-force algorithm
becomes too slow.

In Chapter 3 we present two fast methods for constructing a kNN graph.
The first, called Z-order neighborhood propagation (ZNP) [P1], uses one-
dimensional mapping with a Z-order curve to construct an initial graph
and then improves this using neighborhood propagation. This has been
targeted for and tested with high dimensional data sets.

The second method, called Random Pair Division (RP-Div) [33], constructs
an initial graph hierarchically by random point division and improves this

22

using neighborhood propagation. It is more general than the ZNP method
and can work with any type of data where a distance function is defined. In
[P2], we show a way of using it to speed up the Density Peaks algorithm.

1.2	 Clustering with k-means

The k-means algorithm was introduced already in 1965 by Forgy [12].
And although thousands of clustering algorithms have been developed
since then [10], k-means is still the most widely used. It is well known that
k-means has problems [18,34-36]. For example, it does not work well with
unbalanced data sizes [18,34,35] or when the data has outliers [18]. It has
also been unclear which errors of k-means originate from the SSE cost
function and which from the iterative process of the algorithm.

To counter the problems of k-means, it has been proposed to either
repeat the algorithm multiple times [37] or use better initial centroids [38-
41]. K-means++ [38] is the most well known initialization method and is
almost as popular as the original k-means [P4]. Some of the initialization
methods [39] are so complex that they can be considered new algorithms
themselves.

One problem of k-means is that it may produce significantly worse
results, in terms of the SSE cost function, compared to algorithms like
Ward’s or Random Swap. This problem is often referred to as k-means
getting stuck in a local minimum [18], but it does not tell much about the
problem. Since clustering is a NP hard problem, no practical algorithms can
guarantee an optimal solution. Yet, k-means is still commonly used and
quite often with satisfactory results. This raises the question: What are the
conditions when k-means works and when does it fail?

23

Figure 2. Three examples of clustering results when using the SSE cost
function. A Gaussian cluster is split into several spherical clusters (left);
mismatch of the variance causes the larger cluster to be split (middle);
mismatch of cluster sizes does not matter if the clusters are well-
separated. [P4]

Often, analysis of the properties of k-means can be misleading.
Examples, like the first two cases in Figure 2, are often presented as
problems of k-means [34,35]. However, these problems originate from the
SSE optimization function. Even better algorithms fail to solve the correct
clustering with these datasets if they minimize SSE. The problems of
k-means algorithm itself are completely different and will be studied in this
thesis.

A slightly better way to explain the problems of k-means is the claim of
its strong dependency on the initial solution [10]. This is true, as k-means
is a local fine-tuner that improves the given input solution. Originally only
random partitions and random centroids initializations were considered
as part of k-means. Later a large number of heuristic solutions have been
proposed [38-50] to provide better initialization for k-means.

However, providing a good initialization is almost as difficult as the
original clustering problem itself. The main problem for a clustering
algorithm to solve is the cluster allocation problem, which is to allocate
one centroid for each cluster. This is a combinatory problem in nature. If
the centroids are located inside the correct clusters, k-means can surely
tune the centroid locations (see Figure 3). The challenge is how to find the
correct allocation.

24

Although the main challenge of clustering remains unsolved, there are
several open questions that we can answer in this thesis: Are the existing
initialization strategies any better than random choice? How much better?
And in what conditions do they succeed?

Besides better initialization, another typical approach is to repeat
k-means multiple times. This trick is also known as multi-start in
optimization literature. It merely requires that there is randomness in
the initialization so that different results can be obtained. It can indeed
work when each repeat has some chance to find the correct clustering.
For example, if we throw a dice aiming to get the number 6, we have
only p=1/6 to succeed. However, if we repeat this process six times, the
percentage of success has been increased already to p’=1-(1-p) 6=66.5%.
Repeating k-means works in a similar way, but there are some open
questions: How much does the repeating improve results of k-means
clustering? When does it work and when not?

Figure 3. K-means initializes the centroids to random positions (blue dots).
The algorithm then iteratively tunes the locations of the centroids until it
converges to a local optimum solution (red dots). Success of the algorithm
depends on the initial centroids. In the left example, one of the clusters is
incorrectly assigned two centroids. In the right example the initial location
of the centroids is better and the algorithm converges to the globally
optimal solution.

25

Clustering algorithms may work well for some types of data and fail
for others. It is not generally known why and when clustering methods
fail. In chapter 5 we study this problem in the case of k-means clustering
algorithm. In particular, we study the situations when it fails, investigating
properties of the data such as dataset size, number of clusters, unbalance,
dimensionality and overlap of clusters.

We also study the most common ways of improving performance of
k-means. The simplest way is to just repeat the algorithm multiple times
with different random initialization [P4]. The other way is to use better
algorithms [38,40,47,51] to provide the initialization, which is fine-tuned by
k-means.

26

27

2	 Data and similarity

This thesis has two main emphasis points: clustering methods and
k-nearest neighbors (kNN). They both belong to a large class of
computational problems called proximity problems. Indyk defined these
as problems whose definitions involve the notion of distance between
data points [52]. We define proximity problems as all problems where
either distance or similarity is the primary property of the data used in
defining the problem. These problems include the closest pair problem [52],
minimum spanning tree [53], furthest pair [52], furthest neighbor [52] and
travelling salesman problem [54]. Because the notion of distance is at the
heart of these problems, they are all applicable to the same data sets.

Having suitable datasets and understanding the characteristics of those
datasets forms the basis of algorithm performance evaluation. In case of
clustering algorithms, classification datasets from UCI [55] are often used
in benchmarking. Classification and clustering are related because they
both divide the data into a certain number of disjoint groups. Still, we
refrain from using those datasets because they do not allow systematic
control of data properties. Also, classification and clustering are different
problems. Clustering is used for many purposes like exploration and data
summarization. Consequently, it often reveals different structures from the
data than what classification class labels define.

28

Table 1. Datasets used in this thesis (abbreviation in brackets). In case of
text datasets, dimensionality is measured as the number of characters (c).

Dataset Type Clusters Dim. Size Ref.
A1-A3 spherical 20,35,50 2 3000-7500 [57]
S1-S4 spherical 15 2 5000 [58]

Dim32-1024 spherical 16 32-1024 1024 [25]
G2 spherical 2 2-1024 2048 [59]

Birch1 (b1) spherical 100 2 100,000 [60]
Birch2 (b2) spherical 100 2 100,000 [60]

Unbalance (unb) spherical 8 2 6500 [61]
RC100k-h (RCh) spherical 100 128 100,000 [P2]
RC100k-l (RCl) spherical 100 128 100,000 [P2]
RC1M (RCm) spherical 100 128 1 million [P2]

Worms2D (W2) shape 35 2 105,600 [P2]
Worms64D (W64) shape 25 64 105,00 [P2]

Flame (fla) shape 2 2 240 [2]
Aggregation (agg) Shape 7 2 788 [62]

Spiral (spi) shape 3 2 312 [63]
DS6_8 (DS6) shape 8 2 2000 [19]

Countries text 48 8.1 c 6000 [P2]
English words text - 9.4 c 466,544 -

Tweets text - 90 c 544,133 [64]

There has been a clear lack of good benchmark datasets. Previously only
Steinley created properly controlled datasets [56], but he did not publish
the data. Contrary to this, the datasets documented in this thesis are all
publicly available1, with the exception of the tweets dataset and DS6_8.

In this section, we introduce the datasets that have been studied in this
thesis and analyze their properties. We have mainly applied clustering of
three different types of data: spherical data, shape data and text data. In
sections 2.1-2.3, we discuss the different types of data. In section 2.4 we
discuss the properties of data that are relevant for clustering. In section 2.5

1	 http://cs.uef.fi/sipu/datasets/

29

we show different ways of calculating distance or similarity. In chapter 2.6
we define the goals of clustering. In chapter 2.7 we discuss how to evaluate
the results of clustering.

Figure 4. Some of the spherical datasets used in this thesis. [P3]

30

2.1	 Spherical data

Most of the spherical datasets were documented in [P3] as part of the
clustering basic benchmark (see Figure 4). They have been selected so
that the SSE objective function can be used for clustering them. They are
challenging enough that most simple heuristics will fail, but easy enough
that a good clustering algorithm can solve them.

All of the spherical datasets are artificially generated data. Therefore, they
have also ground truth clustering, which correctly represents the original
parameters used in generating the dataset, i.e. the number of Gaussian
distributions and their center points. The ground truth also matches both the
SSE optimal clustering (see Chapter 2.6) for the dataset and human intuition.
For real world data and applications there is often no single correct clustering.

One way to analyze properties of a dataset is to use histograms of the
pairwise distance values. Steinbach et al. [65] used histograms to estimate
whether the data have clusters. See Figures 5-6 for examples. In general,
clusters with varying densities and distances from each other will produce
multiple peaks, and overlap causes the peaks to merge. Histogram is a
convenient way to represent a dataset, especially for high dimensional
datasets that are difficult to visualize otherwise.

Figure 5. Variants of the G2 dataset and their distance histograms. The
first peak is for the distances inside the clusters, the second for distances
between clusters. When variance of clusters is increased, they become
more overlapped and the distance histograms finally merge into one.

31

Figure 6. Distance histograms of selected (spherical) datasets. If data has
clusters, this usually shows up as peaks in the distance histogram. The first
peak contains the smallest distances which are typically inside clusters.
Other peaks contain distances between clusters. If clusters have different
densities, this may show up as more than one peak of intra-cluster
distances, such as in case of the unbalance dataset: local distances in the
dense clusters, local distances in the sparse clusters, and the flat area for
the global distances.

2.2	 Shape data

The shape datasets used in this thesis (Figure 7-8) are also artificial
numerical datasets. They do not constrain to spherical clusters but
contain any kind of shapes that still appear as distinct clusters to a human
observer. The shapes include ellipses, concave shapes and squiggly, worm
like, lines.

The Worms2D dataset is one example of a shape dataset. It was
produced for article [P2]. It consists of 105,600 points in 35 shapes
(clusters) which depict trails of random movement in 2D space. The data

32

contains 35 individual shapes that start from a random position and move
towards a random direction. At each step, points are drawn from the
Gaussian distribution to produce a cloud around the current position. The
direction of movement is continually altered to an orthogonal direction
and collision detected to prevent completely overlapping clusters. In
previous works [19,62,63], artificial shape data has mainly restricted to two
dimensional datasets. We also generated a high dimensional (64D) version
of the Worms dataset where shapes depict random movement in high
dimensional space.

Figure 7. Shape datasets contain non-spherical data. They are not suitable
to cluster with k-means, but can be better clustered using density based
methods such as Density Peaks or DBSCAN.

33

Figure 8. Histograms for shape data do not have as clear first peak as
spherical datasets. This is because, contrary to spherical datasets, points
in the same cluster can be very far from each other. Points belong to the
same cluster when other points, which are near each other, form a “chain”
between them. This is highlighted in the case of the spiral dataset.

2.3	 Text data

The text datasets (Table 2) contain short text strings. The countries dataset
is artificially generated and has a ground truth clustering where country
names like Spain, Moldova and Hungary are considered true centroids
and other strings are randomly modified versions of these. The other two,
English words and Tweets contain real life data and have no specific correct
clustering, but can still be clustered in a meaningful way.

34

Table 2. Ten random samples from each of the text datasets.

Words Countries Tweets

hemilaminectomy hkujndiyry

Kristersson pratar om bidragstak. Vad
är bidrag enligt Moderaterna? Viktigt

att säga är att färre nu lever på försö…
https://t.co/tpuEGiHIcr

noninterdependently bipain TO-MORRO https://t.co/4d2lMoXJsb

overtheorized ulovezsa

I’m kidding this is how I’m going to sleep
tonight not knowing which of the 25

Dinguses America’s Dingus Sweetheart…
https://t.co/h6Sr7QDhX8

inselberge osloenia

@tedlieu And who is enforcing the
application of international human rights
laws in the United States, with the big…

https://t.co/629M8v3KnU

tonn mosldova
Are they hosting with snipers aiming at

them? Why are they so uncomfortable?
#esc2018

Cuculiformes celn And if #UK doesn’t get to sing again I’M
SUING! #Eurovision

Hillard nynthecrands

Haha!! Ni som har barn, har ni sett
Djurparken på HBO? På Toonix Vilken

jävla pärla alltså. Kolla in! https://t.co/
j7iQFRB3jF

dichromatic mkonmtnegrv Er så lættis å se hvordan politimenn tror
de er guder. Bedre enn alle andre

domesticized snorwac @_chaigal Hahahahahahahahha

attemperate acedoniax
Wind 0,0 m/s NNW. Barometer 1019,0

hPa, Rising slowly. Temperature 10,9 °C.
Rain today 3,6 mm. Humidity 69%

2.4	 Properties of data

In papers [P2,P3,P4] we studied how well clustering algorithms work in
different circumstances. Specifically, we focused on the following four
aspects of data: (1) Number of clusters, (2) dimensionality, (3) overlap and
(4) unbalance.

The clustering-problem is generally understood to become more
difficult as the number of clusters increases. However, at least in case

35

of k-means, the relationship between the number of clusters and the
difficulty is not previously known. In [P3] we will show that the difficulty for
k-means grows linearly with the number of clusters.

The dimensionality of data makes many computational problems more
difficult [66,67]. This has also been noted in case of k-means [36] and the
clustering problem in general [68]. The dimensionality of data is usually
understood to be the number of attributes in the data representation
(e.g. elements in a vector). However, some data may have low intrinsic
dimensionality although the data representation has high dimensionality.
In some cases, this can be automatically detected with tools like principal
component analysis or based on variance of distances [69].

Intuitively, overlap can be understood as an inverse of separation, a
measure of how close clusters are to each other or if there is a lack of
empty space between them. It is often assumed that clustering algorithms
perform better when clusters are more separated (less overlap) [65,22]. We
vary the overlap property using the S-sets and G2 sets.

In [P3] we introduced a formal definition for overlap (Figure 9). We
measure overlap by calculating the distance from every point x to its
nearest centroid (d1) and to its nearest point in another cluster (d2). If any
point from another cluster is closer to x than its own centroid (d1>d2), then
the point is considered an evidence of overlap. Overlap of the dataset is
then defined as the number of evidences relative to the total number of
points:

	 	 (1)

	 	

36

Figure 9: Overlap measured for the G2-2-30 dataset. [P3]

The unbalance of cluster sizes means that some clusters in the dataset
have much more points than others. Most datasets studied in this thesis
contain clusters of roughly same size. The exception is the Unbalance
dataset (Figure 4) which has 20:1 size ratio between the smallest and
the largest cluster. Since the clusters with fewer points have also larger
variance, the dataset has strong unbalance also in density.

Using artificial datasets allows to systematically control these properties
of the data. The number of clusters can be varied using the A1-A3 datasets
and subsets of the birch2. Overlap increases steadily in the variants of the
S-sets (S1-S4); also the RC100k has high and low overlap versions. The Dim-
datasets contain clearly separated clusters with different dimensionality
(32 < D < 1024). The G2 sets vary both dimensionality and overlap, but only
in the special case of two clusters.

37

2.5	 Similarity or distance

Many different distance measures have been developed, but the Euclidean
distance (Equation 1) is still the most widely used. It is defined for vector
data of dimensions:

	 	 (2)

A more general distance measure is the Minkowski distance, which is
almost identical, but takes the additional parameter p:

	 	 (3)

Here Euclidean distance corresponds to Minkowski distance with .
Other forms of the Minkowski distance are Manhattan distance with

 and Chebyshev distance with . Use of values are less
common, but have been shown to work better for high dimensional data
[66].

Algorithms are often designed to work with only specific distance
measures. For example, the k-means algorithm can work with any forms
of the Minkowski distance, but the SSE cost function is properly optimized
only using the Euclidean distance. Some other methods such as Density
Peaks [5] can take a full distance matrix as input and do not even need
access to the original data or distance measure.

In this thesis, we use text datasets in addition to numerical ones to
test how algorithms work when the type of data is very different. A large
number of different text similarity measures have been introduced; we
point to [70] for a good review. Most commonly used measure for text data
is edit distance [71]. It calculates the minimum number of edit operations
needed to transform a string x to string y. The edit operations include
insertion, deletion, and substitution.

However, edit distance has time complexity of O(n2) for strings of length
n and is therefore slow for larger strings. Set matching based measures

38

like the Dice coefficient [72] can work faster, in linear time (assuming
set representation is precalculated). In Dice coefficient, each string is
represented as a set of bigrams. For example, word string would become
{st, tr, ri, in, ng}. Similarity is measured as the size of the intersection
divided by the average cardinality of the two sets:

	 	 (4)

2.6	 Cost functions

Clustering algorithms can use a cost function to determine the goodness of
clustering. These include the mean squared error (MSE) and mean absolute
error (MAE). The mean squared error is the most popular. Another variant
of it is the sum of squared errors (SSE), which is almost equal but lacks the
scaling via division with data size. Given a dataset X = {x1, x2...,xN} and a list
of cluster centroids C = {c1, c2...,ck}, where cj is the nearest centroid to xi, the
MSE is defined as:

	 	 (5)

Mean absolute error is similar, but without the squaring. It has been used
especially for the k-medoids algorithm [73]. It is defined as:

	 	 (6)

In the above two cases the only difference is in how distance between
data point xi and nearest centroid cj is calculated. Euclidean distance
(L2) is used in case of MSE and L1 in case of MAE. But often these can be
substituted with some other distance function. For example, the MATLAB
implementation of k-means allows to choose from the following distance
functions: L2, L1, cosine, correlation and hamming.

39

2.7	 Measuring clustering quality

After a dataset has been clustered, there remains the question of how
good is the clustering? For real usage scenarios, this question cannot
usually be answered since the correct clustering is generally unknown. Still,
in case of artificial data with known ground truth, it is possible to compare
the result of clustering algorithms to the ground truth in order to test how
well the algorithms perform.

Many ways exist to measure clustering quality. The Normalized Mutual
Index (NMI) and Adjusted Rand Index (ARI) are two of the most popular ones.
For a good review, we point to [61]. However, these commonly used quality
measures have the problem that the values they produce (such as 0.79 or
0.54) don’t have a clear meaning and are difficult to interpret.

For this reason, we use the Centroid Index (CI) instead [74,75] as our
primary measure of success. The CI values provide a clear understanding
of how many real clusters have errors. That is, how many clusters are
missing a centroid (see Figure 10).

Given a ground truth solution (G) and a clustering solution (C), Centroid
Index counts how many real clusters are missing a center. This calculation
is done by performing a nearest neighbor mapping between the clusters
in C and G. The nearest neighbor mapping is done in both directions, C→G
and G→C. The clusters that aren’t the nearest neighbor of any cluster in the
other solution are considered orphans. The number of orphans is counted
for each mapping and the maximum number is taken as the CI-value. This
provides a much clearer intuition about the result. Specifically, if CI=0, we
conclude that the result is correct clustering. We can say then that the
algorithm solves the problem.

40

Figure 10: Example of a typical k-means result for the A2 dataset. The
corresponding measures for this are: CI=4, SSE=3.08. [P3]

41

3	 kNN graph

Given a set of N points X = {x1, x2...,xN} in some D-dimensional space S,
the k-nearest neighbor problem (kNN) is to find the k points in X that are
closest to a given query point q ∈ S according to some distance function
d. A search for the k nearest neighbors for all points in X yields a directed
graph called kNN-graph (Figure 11) where the vertices correspond to points
in the data set and edges connect each point to its k nearest points in the
data set.

Figure 11. The kNN graph is formed by finding the k-nearest neighbors for
all points in the dataset. Therefore any kNN search method can also be
used to construct a kNN graph. However, the reverse is not possible since
in the kNN search problem the query point (q) can be any unknown point
outside the original dataset.

In the example in Figure 11, the graph is created for an artificial dataset
consisting of points on a 2D plane. However, it can also be created for any
type of data as long as there is some way to calculate distance or similarity
between the data objects. Consequently, it has been used for many

42

different types of data, including text [76], images [77] and music [78]. An
example of a kNN graph for small words is shown in Figure 12.

Figure 12. Example of k=10 nearest neighbors for the words porpoise,
tortoise and portoise. This is part of a larger edit distance kNN graph on
466,544 words dataset. Here only the neighbors of the three words are
shown. All distances in the graph are 2, except those marked by number 1.
[33]

3.1	 Exact methods and the problem of dimensionality

Exact kNN graph can be calculated fast for datasets that are either small
in size or low dimensional. For large and high dimensional datasets there
exists no efficient exact methods. In these cases approximate methods are
needed.

For small datasets, the brute-force algorithm can be used to construct a
kNN-graph in O(N2) time. It works simply by calculating distances between
all pairs of points and selecting the k smallest distances for every point.

Faster methods exist for low dimensional data. For example, kd-trees
[79] or z-order curve [32] can be used to calculate a kNN graph in O(n log n)

43

time. However, all these methods fail for high dimensional data. To
understand why this happens, consider the following example of kd-trees.

Figure 13. kNN searching in kd-tree.

Kd-trees are constructed by recursively dividing the data space on
the median point of a selected dimension, altering the dimension on
each division (Figure 13). This results in a tree which consists of nested
hyperrectangles. Searches in this tree involve finding a candidate set of
kNN points and then checking all points inside the smallest hyperrectangle
that encloses the ball of kNN candidates. This works well in 2D cases
because the rectangle is usually not much larger than the circle.

However, as dimensionality increases, the ratio of sphere volume to
cube volume goes rapidly towards zero (see Figure 14). Already with 10
dimensions the volume of the hyperspehere is only 0.25% of the volume
of a same width hypercube. If there are k=9 points in the candidate kNN
ball, then it is expected that 9/0.25%=4000 points would be inside a similar
width hypercube.

44

Figure 14. Volume of a hypersphere in relation to volume of a same width
hypercube goes to zero very quickly as dimensionality increases. This
comes mainly from the O(D!) gamma function which is the denominator in
the formula. Number of points are expected to be in relation to volume of
container. Therefore, assuming uniform distribution and fixed number of
points inside a hypersphere, the number of points inside a hypercube is
expected to grow exponentially as dimensionality increases.

In addition to kd-trees, many other exact search methods, such as
z-order search [32], mean order partial distance search [80] and principal
axis trees [80] work using a similar approach of searching the contents of
a hyperrectangle containing the kNN ball. The main difference between
these methods is in how the hyperrectangles are constructed. Therefore,
all of them generalize poorly for high dimensional data. For this reason,
approximation methods are needed in case of high dimensional data.

45

3.2	 Neighborhood Propagation

Neighborhood propagation is one method to construct an approximate
kNN-graph. It works by repeatedly measuring distance from each point
of a graph to all of its neighbors’ neighbors and keeping the ones with
k smallest distance. It is based on the observation that if a point y is a
neighbor of x and point z is a neighbor of y, then z is also likely to be
a neighbor of x. Different variants of neighborhood propagation have
been used in many approximate kNN graph construction methods
[P1,P2,29,78,81-83] to refine the quality of the graph after constructing an
initial coarse approximation using some other method.

Nearest Neighbor Descent (NNDES) developed by Dong et. al. [84] is one
variant of neighborhood propagation which also works as a standalone
method. It starts from a random kNN graph and gradually builds an
approximate kNN graph by refining it with neighborhood propagation.
Compared with other methods like those using principal component
analysis (PCA) [77,81], it has the benefit that it doesn’t require the data
to be in numerical form. Since the process only requires a distance or
similarity measure, it can work with almost any type of data.

The algorithm iteratively improves the quality of the graph. In each
iteration, the neighbors of neighbors are tested for each point x ∈ X. If any
of them are closer than the furthest of the current neighbors, the neighbor
list is updated accordingly. The algorithm is iterated until a specified stop
condition is met. For example, it can be run just for a fixed number of
iterations or as long as the method is able to improve the graph.

Since each point has k2 neighbors of neighbors, the propagation
requires O(k2N) distance calculations per iteration. The total time
complexity is therefore O(k2NI) where I represents the number of iterations
and is a small number, usually roughly 20.

This time complexity makes the method very slow for kNN graphs with
a large number of neighbors (e.g. k=100). For this reason, in [P1] we run
the neighborhood propagation only for m nearest neighbors where m < k.
We used the rule m = √jk, where j is a small number. We used the value
j=10. Therefore, in case of a graph with k=10 neighbors, NNDES would be

46

run for the m=√jk=√(10*10)=10 nearest neighbors. And in case of graph
with k=100 neighbors, NNDES would be run for the m=√jk=√(10*100)=32
nearest neighbors. This way, the time complexity per iteration can be kept
linear for k, at O(m2N)=O(kjN). Although the NNDES search gets run for the
m nearest neighbors, it is the values of the whole k nearest neighbors that
gets updated.

3.3	 Z-order neighborhood propagation

In this section we summarize the Z-order neighborhood propagation (ZNP)
method from [P1], which constructs an approximate kNN-graph for high-
dimensional data. It uses one-dimensional mapping with a Z-order curve
to construct an initial graph and then continues to improve this using the
NNDES algorithm.

Figure 15. Bit-interleaving is used to produce the Z-values.

The Z-order curve (Figures 15-16) is a function which maps
multidimensional points to one dimension by interlacing the bits of the
binary representation of the vector components. This one-dimensional
value is referred to as Z-value. When multidimensional points are ordered
by their Z-values, this order is called the Z-order. The Z-order curve has
been independently invented by Morton [85], Orenstein [86] and Tropf and
Herzog [87]. The Z-order curve has been previously used to construct a
kNN graph, but only for low-dimensional data [32].

47

Figure 16. Space filling curves impose an ordering for multidimensional
discrete space. The Z-order -curve (left) and Hilbert curve (right) are the two
most common space filling curves. Both are self-similar, which means that
the same pattern repeats recursively in three different levels on the 8x8
grid. [P1]

A kNN graph can be constructed using the z-ordering of points (see
Figure 17) by processing the points using a sliding window along the
z-order. The exact distance is then calculated between all points inside the
sliding window. This produces a low quality approximation of a kNN graph.
This approximation can be improved by repeating the process multiple
times for a randomly transformed data set. A simple transformation is to
shift the pointset to a random direction.

48

Figure 17. Multiple different z-orderings are needed to produce a high
quality kNN graph. Error points are shown as black rectangles. [P1]

The Z-order curve has been previously used to construct a kNN graph,
but only for low-dimensional data [32]. Applying it for a higher number of
dimensions can be problematic. One of the problems is that the z-values
become very large with a high number of dimensions. For example, for
a data set with dimensionality D = 1000, and bit-length b = 32 bits per
dimension, the Z-values would need to be represented by D ⋅ b = 32000
bit integers. Calculating, storing and comparing such large integers would
become a bottleneck in the algorithm.

49

To speed up the z-value handling in case of high dimensional data,
we introduced a simple dimensionality reduction method. It works by
dividing the dimensions into random subsets with roughly equal sizes and
then constructing new subvectors corresponding to the subsets of the
dimensions. Each subvector is mapped to one dimension by projecting
them to the diagonal axis.

This process is related to Johnson-Lindenstraus transform (JLT) [88],
Neighborhood embedding [89] and Multidimensional Scaling [90]. The
main difference with JLT and Multidimensional Scaling is that they
aim to preserve the distances between points in the projected space,
whereas we are concerned only on preserving the neighbor connections.
Neighborhood embedding on the other hand, aims at dimensionality
reduction while preserving the neighbor connections, but it is used mainly
for visualization purposes.

3.4	 Random point division

ZNP, the Z-order method, was fast but restricted to vectorial data and
only tested with Minkowski distance measures. In this section, we present
another algorithm called Random Point Division (RP-Div) which doesn’t have
this limitation and can work for any type of data as long as a distance or
similarity measure is provided. It has been documented in article [P2] and
somewhat more extensively in [33]. To demonstrate its generality, we have
used it with short strings (~10 chars) and Levenshtein distance or longer
strings (~140 chars) and dice distance with bigrams.

The RP-Div algorithm constructs the graph by applying hierarchical
subdivision (demonstrated in Figures 18-19). The dividing works by first
selecting two random points: a and b. The dataset is then split into two
subsets (A and B), so that subset A contains all points that are closer to the
point a, and subset B all points that are closer to the point b. The dividing
continues recursively until the subset size reaches a predefined threshold
(W), e.g. W < 20. Subsets smaller than the threshold are solved by the O(N2)
brute force algorithm, which calculates distances between all possible pairs
and updates the list of k nearest points found.

50

One iteration of the algorithm produces a crude approximation of
the kNN graph. The graph is improved by repeating the hierarchical
subdivision several times (Figure 19) using different random pairs for
splitting. As a result, several different kNN graphs are created. Every new
graph is used to improve the previous solution by adopting those k nearest
neighbor pointers that are shorter than in the previous graph.

The random pair division provides a moderate quality approximation
(50-80% accuracy) of a kNN graph fast. But if a higher quality graph is
wanted, we use the NNDES algorithm [84] to refine the graph further.

Figure 18. The RP-div algorithm recursively subdivides the dataset of size

N=37 by first choosing two random points (a,b). The dataset is split based
on which of the two points is nearer. After the first split, the size of the
subset A is smaller than threshold W=20, and is solved by brute force. The
subset B is further divided into two more subsets, which both are smaller
than W and now solved by brute force. [P2]

51

Figure 19. After repeating the random pair division, a new solution is
obtained. This solution is merged with the previous one to form a new
improved kNN graph. [P2]

52

53

4	 Density Peaks clustering using a kNN graph

Density Peaks is a popular clustering algorithm, used for many different
applications, especially for non-spherical data. Although powerful, its
use is limited by quadratic time complexity, which makes it slow for large
datasets. In [P2], we propose a fast density peaks algorithm that solves the
time complexity problem.

The proposed algorithm speeds up the density and delta calculation of
density peaks by using a kNN graph. The graph is constructed using the
random point division method presented in chapter 3.4. This approach
maintains the generality of density peaks, which allows using it for all types
of data, as long as a distance function is provided.

4.1	 Density Peaks

The Density Peaks clustering algorithm [5] is based on the idea that cluster
centers have usually a high density, and they are surrounded by points
with lower density. So they have a large distance to points with higher
density. Density Peaks uses two features to determine the clusters: the
density ρ and delta δ, which is the distance to the nearest point having a
higher density. We denote this point as the big brother.

The Density Peaks method has four main steps:
1.	 Calculate the density values
2.	 Find big brothers
3.	 Identify cluster centers
4.	 Join the remaining points

The original Density Peaks article [5] did not specify exactly how clusters
should be selected based on ρ and δ (step three). Different approaches
have been considered. For example, it could be done manually by the
analyst using a density vs. delta plot (Figure 20). In [P2] we follow the

54

gamma strategy [91,92], which uses the product of the two features
(γ = ρδ). Cluster centroids are then selected as the k points with the highest
γ value (Figure 20). After the cluster centroids (density peaks) have been
determined, the big brother pointers are used to merge the remaining
points to the same cluster as their big brother (step four).

Figure 20. Different cluster selection strategies based on the density-vs-
delta plot for the S4 dataset. Cluster centroids typically have both high
density and high distance to a higher density point (delta). Therefore,
thresholding based on a combination of delta and density (gamma) is
expected to work better than using the delta values alone. [P2]

4.2	 Fast Density Peaks using a kNN graph

The Density Peaks algorithm has two computational bottlenecks:
•	 Calculating the densities
•	 Finding the big brother points.

In the original Density Peaks, these steps required comparing all possible
pairs of points and thus took O(N2) time. However, both of these steps

55

can be calculated fast by using a kNN graph (Figure 21). Still, kNN graph
construction itself also takes O(N2) by using a straightforward brute force
method.

Figure 21. Illustration of the Fast Density Peaks algorithm. (1) For a given
data set, the kNN graph is constructed. (2) Densities are calculated as
inverse of the mean distance to the neighbors. (3) Nearest higher density
point (big brother) is (in case of gray lines) found in the kNN graph. For
others (red lines) a slower full search is performed. (4) Cluster centers are
identified as the two points that have highest gamma (delta*dens) value.
(5) Clusters are formed by joining other points to the same cluster as with
their big brother. [P2]

Faster methods for kNN graph construction exist. We use the random
point division method presented in chapter 3.4 because it can work for
any type of data. It is also faster than NNDES [84] which is the only other
generic kNN graph construction method [33].

The graph can be used to calculate all the information needed by
Density Peaks. Density values can be calculated trivially by taking the
inverse of mean distance of the k nearest neighbors. The graph can also be
used to find most of the big brother points.

Finding the big brother is a special case of the nearest neighbor search.
However, instead of considering only the distance, we must also select a
point with higher density. Fortunately, the majority of points have their

56

big brothers located within their kNN neighborhood. We call them slope
points, and all others are denoted as local peaks. For slope points, we can
find big brothers fast in O(k) steps simply by analyzing the kNN graph.

Local peaks, on the other hand, are local density maxima and their big
brothers cannot be found in the kNN graph. There is no shortcut to find
their big brothers and O(N) full search must therefore be performed. These
are also the points among which the final centroids will be chosen.

The time complexity of the big brother search depends on how many
local peaks there are. Assuming that the proportion of the local peaks is p,
the time complexity of this step is pN2 + (1-p)kN = O(pN2). The speed-up is
therefore inversely proportional to p.

Figure 22. Distribution of slope points (gray) and local peaks (red) inside
an example cluster. One of the local peaks (blue) is the resulting cluster
centroid (global peak). The case of k=30 (left) and k=70 (right) are shown.
When the number of neighbors k in the kNN graph is increased, the
number of local peaks decrease. [P2]

Figure 22 shows an example of the distribution of the local peak points
with an example dataset. In general, the higher the value of k, the less
there are peak points, and the faster is the search for the big brothers.

The proportion of local peaks (p) is bound by the number of neighbors
(k) in the graph. A neighbor of a peak cannot be another peak. If we have

57

pN local peaks, there will be at least kpN slope points. Since all points are
either local peaks or slopes, we have the following inequality:

	 	 (7)

Therefore, the time complexity of O(pN2) can also be written in terms of k
as O(N2/k). When combining with the O(rkN) time complexity of the kNN
graph construction (see Section 3.4), this leads to a total time complexity of
O(N2/k + rkN), where r is a small number.

58

59

5	 k-means

The k-means algorithm [11,12,93] groups N data points into k clusters
by minimizing the sum of squared distances between every point and
its nearest cluster center (centroid). This objective function is called sum-
of-squared errors (SSE). For a dataset X = {x1, x2...,xN} and a list of cluster
centroids C = {c1, c2...,ck}, it is defined as:

	 	 (8)

where xi is the data point and cj is its nearest centroid.

Figure 23. The k-means algorithm.

K-means optimizes this objective by first selecting k random data points
as the initial centroids and then iteratively fine-tuning those locations
(see Figure 3). Each iteration consists of two steps, the assignment step
and the update step. In the assignment step, every point is put into the
cluster whose centroid is closest. In the update step, the centroids are
re-calculated by taking the mean of all data points assigned to the same

60

cluster. The iterations continue a fixed number of times or until no further
improvement is obtained (convergence).

The success of k-means depends on the goodness of the initial centroids
(see Figure 3). Selecting random centroids can sometimes provide good
enough initial centroids so that k-means can fine tune them to a correct
solution. For simple datasets, it is enough to repeat the algorithm several
times to find the correct solution (Chapter 5.1). For more challenging
datasets this approach is not enough. For these situations, many have
suggested new techniques to provide better initial centroids (Chapter 5.2).

In Chapter 5.3 we discuss how the different approaches of applying
k-means (normal, repeated, better initialization) perform depending on the
properties of the datasets.

5.1	 Repeated k-means (RKM)

Repeated k-means performs k-means multiple times starting with different
initialization, and then keeping the result with lowest SSE-value. This
is sometimes referred to as multi-start k-means. The basic idea of the
repeats is to increase the probability of success. Repeated k-means can be
formulated as a probabilistic algorithm as follows. If we know that k-means
with a certain initialization technique will succeed with a probability of p,
the expected number of repeats (R) to find the correct clustering would be:

	 	

In other words, it is enough that k-means succeeds even sometimes (p>0).
It is then merely a question of how many repeats are needed. Only if p ≈ 0
the number of repeats can be unrealistically high. For example, standard
k-means with random centroids succeeds 6-26% of the time with the S1-S4
datasets. These correspond to R=7 to 14 repeats, on average.

If the initialization technique is deterministic (no randomness), then it
either succeeds (p=100%) or fails (p=0%) every time. To justify the repeats,

61

a basic requirement is that there is some randomness in the initialization
so that the different runs produce different results.

K-means

Initialize
Repeat

100 times

Figure 24: General principle of repeated k-means (RKM). The key idea is
that the initialization includes randomness to produce different solutions
at every repeat.

5.2	 Initialization methods

Any clustering algorithm could be used as an initialization technique
for k-means. However, solving the location of initial centroids is not
significantly easier than the original clustering problem itself. Therefore,
for an algorithm to be considered as initialization technique for k-means,
in contrast to being a standalone algorithm, it should fulfil three
requirements [P4]:

•	 Be simple to implement
•	 Have lower (or equal) time complexity than k-means
•	 Be free of additional parameters

Random centroids [11,12] is the most common initialization technique.
It simply selects k random data objects as the set of initial centroids. This

62

can be done fast, in O(N) steps. It is well suitable to repeating k-means
since different random centroids lead to very different end results. It also
guarantees that every cluster includes at least one point.

Another very trivial method is random partitions [93]. Every point is put
into a randomly chosen cluster and their centroids are then calculated.
The positive effect is that it avoids selecting outliers from the border areas.
The negative effect is that the resulting centroids are concentrated around
the mean of the dataset. This degrades performance of k-means when the
data is well separated and centroids cannot easily move between clusters.
It also reduces the benefits from repeating k-means because there is very
little variation in the initial solutions, and therefore, also the final solutions
often become identical.

Figure 25. Example of the maxmin heuristic for S3 dataset. The blue dots
are the initial and the red dots the final centroids. The trajectories show
their movement during the k-means iterations.

63

Another popular technique is Maxmin [40], also known as the furthest
point heuristic (see Figure 25). It selects an arbitrary point as the first
centroid and then adds new centroids one by one. At each step, the next
centroid is the point that is furthest (max) from its nearest (min) existing
centroid. Each of the k steps processes the whole dataset, resulting in
O(kN) time complexity. There are different heuristics to choose the first
centroid. For example, in [94], the point furthest from the origin is chosen
as the first centroid. However, this type of methods make the algorithm
deterministic and therefore unsuitable for repeated k-means. In our
implementation in [P4], we select the first centroid randomly to make the
method work better with repeated k-means.

Maxmin has many variants [38,40,94,95]. The most well known is
k-means++ [38] which selects the next centroid probabilistically with
weights based on minimum distance to selected centroids. It is more
randomized and therefore better suitable to use with repeated k-means.

Sorting heuristics sort the data points according to some criteria like
distance to center point [46], density [41], centrality [43] or value for the
attribute of greatest variance [42]. Centroids can be selected from the
sorted list by taking the first k elements, or dividing the list evenly to k
buckets and taking one point from each bucket. These strategies are very
deterministic and therefore not well suited to use with repeated k-means.

Projection-based heuristics sort points similarly as sorting heuristics, but
they use projection as the basis for sorting. Projection can be done using
e.g. principal axis [48] or by taking two random points and using the line
defined by them [49].

5.3	 Results

In papers [P3-P4], we have run benchmarks to study clustering
performance in varying circumstances for the different k-means variants:
normal k-means, advanced initialization techniques and repeated k-means.
Specifically, we have studied the factors of cluster overlap, number of
clusters, dimensionality and unbalance.

64

Figure 26. Illustration of the positive effect of overlap for k-means. The
gray trajectories show the movement of the centroids during the iterations.
In both cases, only one initial centroid is on the rightmost cluster and only
when there is sufficient overlap, one additional centroid can move across
the clusters.

Cluster overlap is the biggest factor for successful clustering (Figures 26-
27). If there is high overlap, k-means iterations work well regardless of the
initialization. If there is no overlap, then the success depends completely
on the initialization technique: if it fails, k-means will also fail.

Figure 27. Performance of k-means increases when overlap increases.
Performance is measured as success rate (%) and CI-values.

65

All k-means variants perform worse when the number of clusters
increases. Success of the k-means depends linearly on the number of
clusters. The more clusters, the more errors there are.

Dimensionality does not have a direct effect. It has a slight effect
on some initialization techniques but k-means iterations are basically
independent on the dimensions. However, with many types of data,
increasing dimensionality also decreases cluster overlap and consequently
reduces k-means performance.

Unbalance of cluster sizes (Figure 28) can be problematic especially
for the random initializations but also for the other techniques. Only the
Maxmin variants with 100 repeats could overcome this problem.

Figure 28. Effect of unbalance for k-means performance demonstrated
using the Unbalance dataset. Random initialization of k-means tends
to put too many centroids in the dense clusters and too few in the
sparse clusters. This results in average CI of 3.9. This dataset cannot be
successfully clustered even with 100 repeats. [P3]

In [P4], we did a benchmark for 9 different k-means initialization
methods: Random partition (Rand-P) [93], Random centroids (Rand-C) [11],
Maxmin [40], kmeans++ [38], Bradley [37], Sorting [46], Projection [49],
Luxburg [39] and Split [P4].

66

Random partition and random centroids are the most trivial and the
oldest and therefore considered as baseline methods. Luxburg and Split
are more complicated and therefore considered standalone clustering
algorithms instead of true initialization methods. The other ones are newer
initialization methods.

We found that:
•	 K-means works better when the clusters overlap. This is the most

important factor to predict the success of k-means. Increased data
dimensionality only indirectly affects results by reducing overlap.

•	 On average, k-means caused errors with about 15% of the clusters
(CI=4.5). By repeating k means 100 times these errors were reduced to
6% (CI=2.0). Repeats are only useful with those initialization methods
that have enough randomness.

Using a better initialization technique (Maxmin), the corresponding
numbers were 6% (CI=2.1) with k-means as such, and 1% (CI=0.7) with 100
repeats.

67

6	 Summary of contributions

In this chapter we give a summary of the original publications. In
publications [P1,P2] we introduced new methods for constructing a kNN
graph. In publication [P2] we also used this graph to speed up Density
Peaks clustering. In publications [P3,P4] we studied the properties and
initialization methods of k-means clustering algorithm.

[P1]: An exact kNN graph can be constructed fast for low-dimensional
data. In case of high-dimensional data, some approximate methods have
been developed. In this publication we developed a new approximate kNN
construction method that is first such to work using space filling curves. In
the experiments, it also performs better than the compared methods. We
also show that errors in the approximate kNN-graphs originate more often
from outlier points. The proposed method provides average speed-up of
100:1 with the 1,000-dimensional datasets. This is 50% more than the best
existing method.

[P2]: Density peaks is a clustering algorithm which is used especially for
non-spherical data. Its use is limited by quadratic time complexity, which
makes it slow for large datasets. In this work, we introduce a new kNN
graph construction method and use it to develop a fast variant of Density
peaks. This Fast density peaks algorithm is also general in the sense that it
can work with all types of data where a distance or similarity between the
data objects can be calculated. The proposed algorithm provides speed-up
of 100:1 compared to the original Density peaks algorithm with only minor
degradation of clustering quality.

[P3]: Although k-means is a very popular algorithm, it has problems
solving some data sets. Previously it has been unclear whether these
problems originate from the algorithm or from the cost function (SSE) that
the algorithm optimizes. In this work, we show that K-means fails even if
SSE itself would work. We show that the problems arise especially in data
where the clusters are well separated. This is unexpected and contrary
to many other algorithms which work better when the clusters are more
clearly separate.

68

[P4]: Performance of k-means is often tried to improve simply by
repeating the algorithm, or by using a more advanced initialization
technique. In this article, we study how well these approaches work,
depending on the properties of the data. We show that when the data has
overlapping clusters, k-means can improve the results of any initialization
technique. However, when the data has well separated clusters, the
performance of k-means depends completely on the initialization. Among
the nine studied initialization techniques, the simple furthest point
heuristic (Maxmin) is shown to work best, reducing the clustering error of
k-means from 15% to 6%, on average.

69

7	 Summary of results

In this section we give a summary of the clustering results from papers
P2-P4. Results are reported in Table 3. We picked the most important
datasets from papers P2 and P3 and run those for selected algorithms. All
datasets can not be accurately represented by centroids and do not have
centroid ground truth. We therefore used the partition version of CI [74]
for evaluation. Processing times are measured as run on a single thread.

We selected two main groups of algorithms. First group consists
mainly of algorithms studied in [P3-P4], which optimize the SSE cost
function: K-means-RandC, Maxmin, Repeated Maxmin and Random swap.
K-means-RandC is the normal k-means algorithm with random centroids
initialization. Maxmin is K-means with Maxmin initialization. Repeated
Maxmin is the case where K-means/Maxmin was repeated 100 times and
best of those results taken as final. Random Swap is chosen as the best
known SSE optimizing algorithm.

Second group of algorithms consists of two variants of the Density
Peaks algorithm. FastDP was introduced in [P2] as a faster variant of
original Density Peaks.

All of the SSE optimizing methods and FastDP are non-deterministic and
contain some randomness. Results for those were therefore run 50 times
and the mean value of those runs are shown in the result table (Table 3).
DensityPeaks is a fully deterministic algorithm, so repeating this doesn’t
produce any different results. FastDP contains some randomness, but this
only manifests in the approximation quality of the kNN graph.

70

Ta
bl

e
3.

 S
um

m
ar

y
of

 r
es

ul
ts

. P
er

fo
rm

an
ce

 is
 m

ea
su

re
d

as
 b

ot
h

CI
 a

nd
 N

M
I.

In
 th

e
ca

se
 o

f C
I,

sm
al

le
r

va
lu

es
 a

re

be
tt

er
. W

ith
 N

M
I v

al
ue

s
ra

ng
e

fr
om

 0
.0

 to
 1

.0
, w

he
re

 la
rg

er
 is

 b
et

te
r.

 E
ac

h
of

 th
e

su
b

ta
bl

es
 h

as
 th

e
sa

m
e

st
ru

ct
ur

e:

Sp
he

ri
ca

l d
at

as
et

s
on

 th
e

le
ft

 s
id

e.
 S

ha
pe

 d
at

as
et

s
on

 th
e

ri
gh

t s
id

e.
 S

SE
-o

pt
im

iz
in

g
al

go
ri

th
m

s
on

 u
pp

er
 p

ar
t.

D
en

si
ty

 P
ea

ks
 v

ar
ia

nt
s

on
 b

ot
to

m
.

CI
s1

s2
s3

s4
a3

un
b

b2
RC

h
W

2
W

64
ag

g
sp

i
fl

a
D

S6
K-

m
ea

ns
-R

an
dC

2.
1

1.
4

1.
2

0.
9

6.
5

3.
9

17
.0

8.
1

11
.1

5.
1

1.
5

1.
0

0.
0

3.
9

M
ax

m
in

0.
6

1.
0

0.
6

1.
1

2.
8

1.
0

7.
4

5.
8

11
.4

20
.6

1.
6

1.
0

0.
0

4.
1

Re
pe

at
ed

 M
ax

m
in

0.
0

0.
0

0.
0

0.
0

0.
6

0.
0

3.
7

2.
1

11
.0

2.
7

1.
0

1.
0

0.
0

4.
0

Ra
nd

om
 s

w
ap

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

8.
1

10
.8

0.
0

1.
0

1.
0

0.
0

4.
0

Fa
st

D
P

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

18
.2

7.
0

0.
0

0.
0

0.
0

0.
0

3.
0

D
en

si
ty

Pe
ak

s
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
18

.0
7.

0
0.

0
0.

0
0.

0
0.

0
3.

0

N
M

I
s1

s2
s3

s4
a3

un
b

b2
RC

h
W

2
W

64
ag

g
sp

i
fl

a
D

S6
K-

m
ea

ns
-R

an
dC

0.
93

0.
90

0.
77

0.
71

0.
95

0.
78

0.
96

0.
98

0.
61

0.
70

0.
85

0.
00

0.
43

0.
53

M
ax

m
in

0.
97

0.
91

0.
78

0.
71

0.
97

0.
79

0.
98

0.
98

0.
60

0.
13

0.
85

0.
00

0.
41

0.
52

Re
pe

at
ed

 M
ax

m
in

0.
99

0.
95

0.
79

0.
72

0.
99

1.
00

0.
99

0.
99

0.
60

0.
72

0.
88

0.
00

0.
40

0.
55

Ra
nd

om
 s

w
ap

0.
99

0.
95

0.
79

0.
72

1.
00

1.
00

1.
00

0.
98

0.
61

0.
75

0.
88

0.
00

0.
40

0.
55

Fa
st

D
P

0.
99

0.
94

0.
79

0.
72

0.
99

1.
00

1.
00

0.
82

0.
62

0.
74

1.
00

1.
00

1.
00

0.
60

D
en

si
ty

Pe
ak

s
0.

99
0.

94
0.

79
0.

72
0.

99
1.

00
1.

00
0.

80
0.

62
0.

72
1.

00
1.

00
1.

00
0.

60

71

Ti
m

e
(s

ec
on

ds
)

s1
s2

s3
s4

a3
un

b
b2

RC
h

W
2

W
64

ag
g

sp
i

fl
a

D
S6

K-
m

ea
ns

-R
an

dC
0

0
0

0
0

0
1

16
4

16
0

0
0

0
M

ax
m

in
0

0
0

0
0

0
1

18
6

4
0

0
0

0
Re

pe
at

ed
 M

ax
m

in
1

1
2

3
3

1
10

8
16

31
52

7
48

4
0

0
0

0
Ra

nd
om

 s
w

ap
5

6
7

7
9

14
10

3
80

03
37

3
18

33
1

0
0

2
Fa

st
D

P
0

0
0

0
0

0
7

80
9

78
0

0
0

0
D

en
si

ty
Pe

ak
s

1
1

1
1

1
1

27
1

26
56

19
8

11
92

0
0

0
0

72

The datasets S1-RCh are spherical datasets. They are expected to be
solved by good SSE optimizing algorithms. The best of these algorithms,
Random Swap can indeed solve all these datasets, except Rch. Density
Peaks variants can also solve almost all spherical datasets. The exception
is the RCh dataset which is high dimensional and has very high overlap
between clusters.

The datasets W2-DS6_8 are non-spherical shape datasets. For these
datasets, SSE optimizing algorithms like k-means are not expected to work
well. This is indeed true in case of most datasets.

The main exception is the W64 dataset where the shapes are similar
as in W2, but are isolated due to the sparsity of high dimensional space.
For this reason, random swap can solve this dataset. Maxmin on the other
hand, performs poorly, even compared to the random centroids method.
This can be explained by the high number of outliers in the dataset which
Maxmin tends to pick as initial centroids (see Fig. 25).

Also, all methods are able to solve the flame dataset, according to the CI
measure. However, the NMI measure shows that the result partitions still
have major differences.

As expected, Density Peaks performs clearly better for all of the shape
datasets. There is no significant difference between the quality of FastDP,
compared to original DensityPeaks. In terms of speed, FastDP is much
faster, with 1:25 mean speedup factor.

73

8	 Conclusions

In this work, we introduced two new methods for fast approximate kNN
graph construction. A method called ZNP works well for high dimensional
numerical data. It uses a combination of space-filling curves and
neighborhood propagation to construct the graph. Second algorithm, RP-
Div has less limitations and works for any kind of data where a distance
measure is available. Both perform well in comparison to previous state of
the art methods.

We used the kNN graph from RP-Div algorithm to speed up the well
known Density Peaks algorithm and allow it to cluster datasets up to
1 million in size. Experiments showed an average speed-up of 91:1 on
datasets of size ≥ 100,000. The algorithm is also very general and works for
all types of data as long as a distance function is provided. As a case study
of using text data, we managed to cluster a Nordic Tweet dataset of size
500,000 in 31 minutes.

K-means is a very popular algorithm, but it often performs poorly
compared to other algorithms like Random Swap or Ward’s method. In this
thesis, we studied the situations when k-means works and when it fails
(Figure 29). The most important factor turned out to be cluster overlap.
When there is more overlap, and less empty space between clusters,
k-means works better. We also provided a formula to estimate overlap
numerically.

Many studies have tried to improve k-means by various strategies.
Better initialization methods or just repeating the algorithm are two most
common ones. We studied how well these work in different situations.
On average, k-means produces errors in about 15% of the clusters. Better
initialization technique (Maxmin) reduced this to 6%. Combining this with
100 repeats reduced the error further to just 1%. However, in case of high
overlap, k-means worked well even without better initialization techniques.
In case of low overlap, it was the initialization technique that solved the
clustering. K-means iterations themselves had only a minor effect.

74

Figure 29. How different properties of a dataset affect the success of
k-means clustering.

The findings of this thesis suggest new research areas to explore:
•	 Lack of overlap is the primary cause of poor k-means performance.

This suggests that performance of k-means might be improved by
artificially introducing more overlap to a dataset which is lacking
it. This would need a suitable way of detecting lack of overlap,
without access to clustering ground truth. Also different overlap
decreasing transformations should be studied, e.g. noise models or
neighborhood embedding.

•	 We were able to improve the speed of Density Peaks using a kNN
graph. Could k-means also be made faster using a kNN graph? In the
assignment step, distances need to be calculated from every point
to all k centroids. This could be reduced to just the kNN neighbors of
the old nearest centroid. This would make the algorithm significantly
faster in case of large k, but would performance degrade too much?

•	 We also showed that errors in the approximate kNN-graph originate
more likely from outlier points, and those can be detected during
runtime. It might be possible to use this to improve results of any
approximate kNN-graph algorithm by focusing a more extensive
search on outlier points.

75

References

[1] S. Fortunato, Community detection in graphs, Physics reports, 486
(2010), pp. 75—174.

[2] L. Fu and E. Medico, FLAME, a novel fuzzy clustering method for the
analysis of DNA microarray data, BMC bioinformatics, 8 (2007), p. 3.

[3] K. Lu, S. Xia, and C. Xia, Clustering based road detection method, in
Control Conference (CCC), 2015 34th Chinese, IEEE, 2015, pp. 3874—
3879.

[4] Y. Zhang, G. Li, X. Xie, and Z. Wang, A new algorithm for fast and
accurate moving object detection based on motion segmentation by
clustering, in Machine Vision Applications (MVA), 2017 Fifteenth IAPR
International Conference on, IEEE, 2017, pp. 444—447.

[5] A. Rodriguez and A. Laio, Clustering by fast search and find of density
peaks, Science, 344 (2014), pp. 1492—1496.

[6] H. Liu, H. Guan, J. Jian, X. Liu, and Y. Pei, Clustering based on words
distances, Cluster Computing, (2017), pp. 1—9.

[7] B. Wang, J. Zhang, Y. Liu, and Y. Zou, Density peaks clustering based
integrate framework for multi-document summarization, CAAI
Transactions on Intelligence Technology, 2 (2017), pp. 26—30.

[8] A. Clauset, M. E. Newman, and C. Moore, Finding community structure
in very large networks, Physical Review E, 70 (2004), p. 066111.

[9] S. Kaski, J. Nikkila, J. Sinkkonen, L. Lahti, J. E. Knuuttila, and C. Roos,
Associative clustering for exploring dependencies between functional
genomics data sets, IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2 (2005), pp. 203—216.

[10] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern
Recognition Letters, 31 (2010), pp. 651—666.

[11] J. MacQueen et al., Some methods for classification and analysis
of multivariate observations, in Proceedings of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1,
Oakland, CA, USA, 1967, pp. 281—297.

[12] E. Forgy, Cluster analysis of multivariate data: Efficiency vs.
interpretability of classification, Biometrics, 21 (1965), pp. 768—769.

76

[13] J. H. Ward Jr, Hierarchical grouping to optimize an objective function,
Journal of the American Statistical Association, 58 (1963), pp. 236—
244.

[14] P. Fränti, Genetic algorithm with deterministic crossover for vector
quantization, Pattern Recognition Letters, 21 (2000), pp. 61—68.

[15] P. Fränti, Efficiency of random swap clustering, Journal of Big Data, 5
(2018), p. 13.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm
for discovering clusters in large spatial databases with noise, in AAAI
conference on Knowledge Discovery and Data Mining, 1996, pp.
226—231.

[17] D. Comaniciu and P. Meer, Mean shift: A robust approach toward
feature space analysis, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24 (2002), pp. 603—619.

[18] A. K. Jain and R. C. Dubes, Algorithms for clustering data, Prentice-Hall,
Inc., 1988.

[19] Y. Qin, Z. L. Yu, C.-D. Wang, Z. Gu, and Y. Li, A Novel clustering method
based on hybrid K-nearest-neighbor graph, Pattern Recognition,
(2018), pp. 1—14.

[20] B. J. Frey and D. Dueck, Clustering by passing messages between data
points, science, 315 (2007), pp. 972—976.

[21] C.-D. Wang, J.-H. Lai, C. Y. Suen, and J.-Y. Zhu, Multi-exemplar affinity
propagation, IEEE transactions on Pattern Analysis and Machine
Intelligence, (2013), pp. 2223—2237.

[22] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, Support vector
clustering, Journal of Machine Learning Research, 2 (2001), pp. 125—
137.

[23] I. S. Dhillon, Y. Guan, and B. Kulis, Kernel k-means: spectral clustering
and normalized cuts, in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge Discovery and Data Mining,
2004, pp. 551—556.

[24] D. Yan, L. Huang, and M. I. Jordan, Fast approximate spectral
clustering, in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge Discovery and Data Mining, 2009,
pp. 907—916.

77

[25] P. Fränti, O. Virmajoki, and V. Hautamäki, Fast agglomerative clustering
using a k-nearest neighbor graph, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28 (2006), pp. 1875—1881.

[26] Y. Chen, L. Zhou, S. Pei, Z. Yu, Y. Chen, X. Liu, J. Du, and N. Xiong, Knn-
block dbscan: Fast clustering for large-scale data, IEEE Transactions
on Systems, Man, and Cybernetics: Systems, (2019).

[27] M. Du, S. Ding, and H. Jia, Study on density peaks clustering based on
k-nearest neighbors and principal component analysis, Knowledge-
Based Systems, 99 (2016), pp. 135—145.

[28] X. Zhu, Semi-supervised learning with graphs, PhD thesis, Carnegie
Mellon University, Language Technologies Institute, School of
Computer Science, 2005.

[29] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, Fast
approximate nearest-neighbor search with k-nearest neighbor graph,
in IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, vol. 22, 2011, p. 1312.

[30] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Computation, 15 (2003),
pp. 1373—1396.

[31] V. Hautamäki, I. Kärkkäinen, and P. Fränti, Outlier Detection Using
k-Nearest Neighbour Graph, in International Conference on Pattern
Recognition (3), 2004, pp. 430—433.

[32] M. Connor and P. Kumar, Fast construction of k-nearest neighbor
graphs for point clouds, IEEE Transactions on Visualization and
Computer Graphics, 16 (2010), pp. 599—608.

[33] S. Sieranoja and P. Fränti, Fast random pair divisive construction of
kNN graph using generic distance measures, in Proceedings of the
2018 International Conference on Big Data and Computing, 2018,
pp. 95—98.

[34] L. Morissette and S. Chartier, The k-means clustering technique:
General considerations and implementation in Mathematica,
Tutorials in Quantitative Methods for Psychology, 9 (2013), pp. 15—
24.

78

[35] J. Liang, L. Bai, C. Dang, and F. Cao, The K-Means-Type Algorithms
Versus Imbalanced Data Distributions, IEEE Transactions on Fuzzy
Systems, 20 (2012), pp. 728—745.

[36] A. Hinneburg and D. A. Keim, Optimal grid-clustering : Towards
breaking the curse of dimensionality in high-dimensional clustering,
in Proceedings of the 25 th International Conference on Very Large
Databases, 1999, 1999, pp. 506—517.

[37] P. S. Bradley and U. M. Fayyad, Refining initial points for k-means
clustering, in International Conference on Machine Learning, 1998,
pp. 91—99.

[38] D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful
seeding, in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics, 2007, pp. 1027—1035.

[39] U. Von Luxburg et al., Clustering stability: an overview, Foundations
and Trends in Machine Learning, 2 (2010), pp. 235—274.

[40] T. F. Gonzalez, Clustering to minimize the maximum intercluster
distance, Theoretical Computer Science, 38 (1985), pp. 293—306.

[41] D. Steinley and M. J. Brusco, Initializing k-means batch clustering: A
critical evaluation of several techniques, Journal of Classification, 24
(2007), pp. 99—121.

[42] M. B. Al-Daoud, A new algorithm for cluster initialization, in World
Enformatika Conference, 2005.

[43] F. Cao, J. Liang, and G. Jiang, An initialization method for the K-Means
algorithm using neighborhood model, Computers & Mathematics
with Applications, 58 (2009), pp. 474—483.

[44] M. E. Celebi, H. A. Kingravi, and P. A. Vela, A comparative study of
efficient initialization methods for the k-means clustering algorithm,
Expert Systems with Applications, 40 (2013), pp. 200—210.

[45] M. M.-T. Chiang and B. Mirkin, Intelligent choice of the number of
clusters in k-means clustering: an experimental study with different
cluster spreads, Journal of Classification, 27 (2010), pp. 3—40.

[46] J. A. Hartigan and M. A. Wong, Algorithm AS 136: A k-means clustering
algorithm, Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28 (1979), pp. 100—108.

79

[47] J. M. Pena, J. A. Lozano, and P. Larranaga, An empirical comparison
of four initialization methods for the k-means algorithm, Pattern
Recognition Letters, 20 (1999), pp. 1027—1040.

[48] X. Wu and K. Zhang, A better tree-structured vector quantizer, in Data
Compression Conference, IEEE, 1991, pp. 392—401.

[49] S. Sieranoja and P. Fränti, Random projection for k-means clustering,
in International Conference on Artificial Intelligence and Soft
Computing, Springer, 2018, pp. 680—689.

[50] M. E. Celebi and H. A. Kingravi, Deterministic initialization of the
k-means algorithm using hierarchical clustering, International
Journal of Pattern Recognition and Artificial Intelligence, 26 (2012), p.
1250018.

[51] J. He, M. Lan, C.-L. Tan, S.-Y. Sung, and H.-B. Low, Initialization of cluster
refinement algorithms: A review and comparative study, in 2004 IEEE
International Joint Conference on Neural Networks (IEEE Cat. No.
04CH37541), vol. 1, IEEE, 2004, pp. 297—302.

[52] P. Indyk, High-dimensional computational geometry, PhD thesis,
Stanford University, Palo Alto, CA, 2000.

[53] C. Zhong, M. Malinen, D. Miao, and P. Fränti, A fast minimum spanning
tree algorithm based on k-means, Information Sciences, 295 (2015),
pp. 1—17.

[54] L. Sengupta and P. Fränti, Predicting difficulty of tsp instances using
mst, in Proceedings of the IEEE International Conference on Industrial
Informatics (INDIN), Helsinki, Finland, 2019, pp. 848—852.

[55] D. Dua and C. Graff, UCI machine learning repository, 2017.
[56] D. Steinley, Local optima in K-means clustering: what you don’t know

may hurt you., Psychological Methods, 8 (2003), p. 294.
[57] I. Kärkkäinen and P. Fränti, Dynamic local search algorithm for the

clustering problem, Tech. Rep. A-2002-6, Department of Computer
Science, University of Joensuu, Joensuu, Finland, 2002.

[58] P. Fränti and O. Virmajoki, Iterative shrinking method for clustering
problems, Pattern Recognition, 39 (2006), pp. 761—775.

80

[59] P. Fränti, R. Mariescu-Istodor, and C. Zhong, XNN graph, in Joint
IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR), vol. 10029, Springer, 2016, pp. 207—217.

[60] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: A new data clustering
algorithm and its applications, Data Mining and Knowledge Discovery,
1 (1997), pp. 141—182.

[61] M. Rezaei and P. Fränti, Set matching measures for external cluster
validity, IEEE Transactions on Knowledge and Data Engineering, 28
(2016), pp. 2173—2186.

[62] A. Gionis, H. Mannila, and P. Tsaparas, Clustering aggregation, ACM
Transactions on Knowledge Discovery from Data (TKDD), 1 (2007),
pp. 4—es.

[63] H. Chang and D.-Y. Yeung, Robust path-based spectral clustering,
Pattern Recognition, 41 (2008), pp. 191—203.

[64] M. Laitinen, J. Lundberg, M. Levin, and A. Lakaw, Utilizing Multilingual
Language Data in (Nearly) Real Time: The Case of the Nordic Tweet
Stream, Journal of universal computer science, 23 (2017), pp. 1038—
1056.

[65] M. Steinbach, L. Ertoz, and V. Kumar, The challenges of clustering
high dimensional data. New Vistas in Statistical Physics: Applications
in Econophysics, Bioinformatics, and Pattern Recognition, 207312
(2003).

[66] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the Surprising
Behavior of Distance Metrics in High Dimensional Spaces, in
Proceedings of the 8th International Conference on Database Theory,
ICDT ‘01, London, UK, 2001, Springer-Verlag, pp. 422—434.

[67] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, What is the nearest
neighbor in high dimensional spaces?, in Proceedings of the 26th
International Conference on Very Large Databases, Cario, Egypt,
2000.

[68] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and
D. Papadopoulos, Locally adaptive metrics for clustering high
dimensional data, Data Mining and Knowledge Discovery, 14 (2007),
pp. 63—97.

81

[69] E. Chávez and G. Navarro, A probabilistic spell for the curse of
dimensionality, in Workshop on Algorithm Engineering and
Experimentation, vol. 2153, Springer, 2001, pp. 147—160.

[70] N. Gali, R. Mariescu-Istodor, D. Hostettler, and P. Fränti, Framework for
syntactic string similarity measures, Expert Systems with Applications,
129 (2019), pp. 169—185.

[71] V. I. Levenshtein, Binary codes capable of correcting deletions,
insertions, and reversals, in Soviet Physics Doklady, vol. 10, 1966,
pp. 707—710.

[72] S. Jimenez, C. Becerra, A. Gelbukh, and F. Gonzalez, Generalized
mongue-elkan method for approximate text string comparison,
in International Conference on Intelligent Text Processing and
Computational Linguistics, Springer, 2009, pp. 559—570.

[73] L. Kaufman and P. J. Rousseeuw, Clustering by means of medoids.
Statistical data analysis based on the l1 norm, Y. Dodge, Ed, (1987),
pp. 405—416.

[74] P. Fränti and M. Rezaei, Generalizing centroid index to different
clustering models, in Joint IAPR International Workshops on Statistical
Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), Springer, 2016, pp. 285—296.

[75] P. Fränti, M. Rezaei, and Q. Zhao, Centroid index: cluster level similarity
measure, Pattern Recognition, 47 (2014), pp. 3034—3045.

[76] T. Debatty, P. Michiardi, O. Thonnard, and W. Mees, Scalable graph
building from text data, in Proceedings of the 3rd International
Workshop on Big Data, Streams and Heterogeneous Source Mining:
Algorithms, Systems, Programming Models and Applications, 2014,
pp. 120—132.

[77] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, Scalable k-NN graph
construction for visual descriptors, in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 1106—
1113.

[78] A. Flexer and J. Stevens, Mutual proximity graphs for improved
reachability in music recommendation, Journal of New Music
Research, 47 (2018), pp. 17—28.

82

[79] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An Algorithm for Finding
Best Matches in Logarithmic Expected Time, ACM Transactions on
Mathematical Software (TOMS), 3 (1977), pp. 209—226.

[80] O. Virmajoki and P. Fränti, Divide-and-conquer algorithm for creating
neighborhood graph for clustering, in Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on, vol. 1,
IEEE, 2004, pp. 264—267.

[81] J. Chen, H.-r. Fang, and Y. Saad, Fast approximate k NN graph
construction for high dimensional data via recursive Lanczos
bisection, The Journal of Machine Learning Research, 10 (2009),
pp. 1989—2012.

[82] C. Fu and D. Cai, EFANNA : An Extremely Fast Approximate
Nearest Neighbor Search Algorithm Based on kNN Graph, CoRR,
abs/1609.07228 (2016).

[83] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, Fast kNN Graph
Construction with Locality Sensitive Hashing, in Machine Learning and
Knowledge Discovery in Databases, Springer, 2013, pp. 660—674.

[84] W. Dong, C. Moses, and K. Li, Efficient k-nearest neighbor graph
construction for generic similarity measures, in Proceedings of the
20th International Conference on World Wide Web, ACM, 2011,
pp. 577—586.

[85] G. M. Morton, A computer oriented geodetic data base and a new
technique in file sequencing, International Business Machines
Company, 1966.

[86] J. A. Orenstein and T. H. Merrett, A class of data structures for
associative searching, in Proceedings of the 3rd ACM SIGACT-SIGMOD
symposium on Principles of Database Systems, ACM, 1984, pp. 181—
190.

[87] H. Tropf and H. Herzog, Multidimensional Range Search in Dynamically
Balanced Trees., ANGEWANDTE INFO., (1981), pp. 71—77.

[88] N. Ailon and B. Chazelle, The Fast Johnson-Lindenstrauss Transform
and Approximate Nearest Neighbors, SIAM Journal on Computing, 39
(2009), pp. 302—322.

[89] Z. Yang, J. Peltonen, and S. Kaski, Optimization equivalence of
divergences improves neighbor embedding, in International
Conference on Machine Learning, 2014, pp. 460—468.

[90] N. Galiauskas and J. Žilinskas, On Multidimensional Scaling with
City-Block Distances, In International Conference on Learning and
Intelligent Optimization, Springer, 2014, pp. 82—87.

[91] J. Wang, Y. Zhang, and X. Lan, Automatic cluster number selection by
finding density peaks, in Computer and Communications (ICCC), 2016
2nd IEEE International Conference on, IEEE, 2016, pp. 13—18.

[92] J. Hou and M. Pelillo, A new density kernel in density peak based
clustering, in Pattern Recognition (ICPR), 2016 23rd International
Conference on, IEEE, 2016, pp. 468—473.

[93] S. Lloyd, Least squares quantization in PCM, IEEE Transactions on
Information Theory, 28 (1982), pp. 129—137.

[94] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang, A new initialization
technique for generalized Lloyd iteration, IEEE Signal Processing
Letters, 1 (1994), pp. 144—146.

[95] F. Cao, J. Liang, and L. Bai, A new initialization method for categorical
data clustering, Expert Systems with Applications, 36 (2009),
pp. 10223—10228.

[96] H. J. Curti and R. S. Wainschenker, FAUM: Fast Autonomous
Unsupervised Multidimensional classification, Information Sciences,
462 (2018), pp. 182—203.

PAPER 2
S. Sieranoja and P. Fränti,
“Fast and general density peaks clustering”,
Pattern Recognition Letters,
128, 551-558, December 2019.
https://doi.org/10.1016/j.patrec.2019.10.019

https://doi.org/10.1016/j.patrec.2019.10.019

Pattern Recognition Letters 128 (2019) 551–558

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Fast and general density peaks clustering
✩

Sami Sieranoja ∗, Pasi Fränti
School of Computing, University of Eastern Finland, Box 111, Joensuu FIN-80101, Finland

a r t i c l e i n f o

Article history:
Received 16 November 2018
Revised 7 August 2019
Accepted 18 October 2019
Available online 19 October 2019

Keywords:
Data clustering
Density peaks
k-nearest neighbors (kNN)
Large-scale data

a b s t r a c t

Density peaks is a popular clustering algorithm, used for many different applications, especially for non-
spherical data. Although powerful, its use is limited by quadratic time complexity, which makes it slow
for large datasets. In this work, we propose a fast density peaks algorithm that solves the time complexity
problem. The proposed algorithm uses a fast and generic construction of approximate k-nearest neighbor
graph both for density and for delta calculation. This approach maintains the generality of density peaks,
which allows using it for all types of data, as long as a distance function is provided. For a dataset of
size 10 0,0 0 0, our approach achieves a 91:1 speedup factor. The algorithm scales up for datasets up to 1
million in size, which could not be solved by the original algorithm at all. With the proposed method,
time complexity is no longer a limiting factor of the density peaks clustering.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Clustering algorithms aim at grouping points so that the points
in the same group are more similar to each other than points in
other groups. Clustering can serve as an efficient exploratory data
analysis tool in the fields such as physics [1] and bioinformatics
[2] , or as a preprocessing tool for other algorithms in e.g. road
detection [3] and motion segmentation [4] .

Traditional clustering methods like k-means are constrained
to cluster data with spherical clusters. Since the clusters in real
life data are not always restricted to follow spherical shapes, new
methods have been introduced to cluster data having arbitrary
shape clusters. These include density based clustering [2,5,6] ,
graph based methods [1,7,8] , exemplar based clustering [9–11] ,
and support vector clustering [12,13] .

In this paper, we focus on the Density peaks (DensP) [6] clus-
tering algorithm, which detects clusters based on the observation
that cluster centers are usually in dense areas and are surrounded
by points with lower density. The algorithm first calculates den-
sities of all points, and then the distances to their nearest point
with higher density (delta). The cluster centers are selected so that
they have a high value of both delta and density. After that, the
remaining points are allocated (joined) to the clusters by merging
with the nearest higher density point.

✩ Handled by editor Andrea Torsello.
∗ Corresponding author.
E-mail address: samisi@cs.uef.fi (S. Sieranoja).

The algorithm has been widely used for many applications,
including autonomous vehicle navigation [3] , moving object de-
tection [4] , electricity customer segmentation [14] , document
summarization [15] and overlapping community detection [16] .
Although being popular, its use has been limited by the O(N 2)
time complexity. This slowness originates from two different
bottlenecks: the need to calculate density, and to find the nearest
neighbors with higher density. These make the algorithm slow for
very large data sets.

Some attempts have been done to improve the speed of density
peaks. Wang et al. [14] use sampling with adaptive k-means to
reduce the number of data points. Xu et al. [17] also limit the size
of data by using grid-based filtering to remove points in sparse
areas. They reported speed-up factors from 2:1 to 10:1 for data of
sizes N = 50 0 0–10,0 0 0. However, both of these methods work only
with numerical data, which reduces the generality of the original
density peaks algorithm.

In addition to speed-up, there have also been attempts to
improve the quality of density peaks. This has two major direc-
tions: using different density function [18–21] , and using different
strategies to allocate the remaining points to the clusters [20–22] .

In the original density peaks algorithm, the densities are cal-
culated by using a cut-off kernel , where neighborhood is defined
by a given cutoff distance (dc). This defines a dc -radius hyper ball
in the D -dimensional space. The algorithm then counts how many
data points are within this ball.

Several authors have suggested alternatives to the cut-off

kernel. Mehmood et al. [18] use a kernel variant based on

https://doi.org/10.1016/j.patrec.2019.10.019
0167-8655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

552 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

heat-diffusion. Du [19] , Xie et al. [20] and Yaohui [21] all use a
combination of exponential kernel and k nearest neighbors.

Xu et al. [22] proposed a novel joining strategy based on
support vectors. Xie et al. [20] allocates the points using k nearest
neighbors. The points are processed by a breadth first search
starting from the cluster centers. Yaohui [21] proposed to join the
points to the clusters if they are density reachable .

Most of the proposed approaches apply only to numerical data,
which limits the usefulness of density peaks. However, the original
density peaks algorithm does not have such limitation. Instead,
it can operate with any given distance matrix regardless of the
type of data. The only requirement is that some kind of distance
function can be formulated. Du et al. [23] have used density peaks
for a mix of categorical and numerical data, by introducing a new
distance measure. Liu et al. [24] and Wang [15] use density peaks
for text data by vectorizing the input data.

In this work, we focus on solving the slowness problem of the
density peaks. We propose a new fast density peaks algorithm
called FastDP . It first creates a k-nearest neighbor (kNN) graph.
The density and delta values are estimated using this graph. The
standard joining strategy of density peaks is then applied to obtain
the final clustering. The proposed algorithm is significantly faster
than the original density peaks while keeping its generality

Contrary to the existing attempts to speed up density peaks
[14,22] , our approach is not limited to numerical data but it
applies, as such, to any type of data for which a distance function
can be formulated. To demonstrate the algorithm’s capabilities for
non-vectorial data, we apply it for clustering of strings.

Our main contributions are the following:

- We present RP-Div algorithm to create kNN graph fast.
- We utilize the graph to calculate the delta values fast.
- We show that the algorithm applies also to text data.

In terms of the other aspects of the algorithm, we use the
original point allocation (joining) strategy. For density estimation
we use the k-nearest neighbors as proposed in [19] .

2. Density peaks clustering

We first recall the original density peaks algorithm and its
main variations. We use the following definitions:

x Data point
N Number of data points
K Number of clusters
k Number of neighbors in kNN graph.
d (x,y) Distance between data points x and y
kNN (x) The k nearest neighbors of x
Dens (x) Density of the point x
BigBrother (x) Nearest point y to x for which Dens (y) > Dens (x)
Delta (x) Distance to BigBrother (x)
Gamma(x) = Delta(x) ·Dens(x)
Local peak Point x for which BigBrother (x) �∈ kNN(x)
Slope Point that is not a Local peak

2.1. Density

There are two widely used approaches to estimate density:
distance-based and kNN-based . Distance-based approach takes a
distance threshold as a parameter and counts how many points
there are within this distance. Original density peaks algorithm
uses this approach [6] .

The second approach finds the k -nearest neighbors (k -NN),
and then calculates the average distance to the neighbor points
[19] . According to our experiments, there are no significant dif-
ferences which of these approaches to use. They both require
O(N 2) calculations and provide virtually the same clustering

result if correct parameter is used. However, good value for k
is easier to determine than to find a suitable distance thresh-
old [25] . We therefore use the kNN based approach for both
the original variant of density peaks and the proposed fast
variant.

2.2. Density peaks

The density peaks clustering algorithm [6] is based on the
idea that cluster centers have usually a high density, and they
are surrounded by points with lower density. So they have a
large distance to points with higher density. Density peaks uses
two features to determine the clusters: the density ρ and delta δ,
which is the distance to the nearest point having a higher density.
We denote this point as the big brother .

The original algorithm selects k points as the cluster centers
based on ρ and δ. This is because cluster centers are expected to
have a high value for both of them. However, it was not defined
how exactly the selection should be made. Different strategies
have therefore been considered by others. We denote the two
most common as Delta strategy [26] , which selects the points with
highest delta values, and Gamma strategy [26,27] , which uses the
product of the two features (γ = ρδ). Here we apply the gamma
strategy.

One also needs to decide how many points should be selected.
The original paper did not give any solution and left it as a user-
given parameter. Wang et al. [27] proposed to detect a knee point
on the gamma values by finding the intersection of the two lines
to most closely fit the curve. In general, the problem is how to
threshold the selected feature (either δ or γ). This is an open prob-
lem both in centroids-based and density based clustering. Fig. 1
demonstrates the differences between the two selection strategies
(delta and gamma). In this paper, we assume K is given by the
user.

2.3. General distance

Density peaks has been mostly applied for numerical data
in some vector space. However, it is possible to generalize the
method to other non-numeric distance functions as well. Here we
consider text data as a case study.

Two studies exist where string data has also been used. Liu
et al. [24] and Wang [15] apply first string vectorization based on
TF-IDF model. Term frequency (TF) counts how many times a given
word appears in the dataset. It is normalized by counting inverse
document frequency (IDF). This approach converts the strings into
a vector space, and then uses cosine distance to measure the
distance between the two strings.

The TF-IDF approach can be highly useful when clustering
large text documents. However, short text strings contain only few
words, which would result in sparse vectors containing only very
few non-zero elements. Our solution to this is to apply a string
similarity (or distance) measure directly without vectorization.
This is possible because our method does not require the distance
function being in metric space, nor does it rely on any other vector
space properties.

The choice of the string similarity (or distance) measure
depends on the application. We consider here two choices: Lev-
enshtein and Dice. Levenshtein edit distance [28] is the most well
known string distance measure, and we apply it in the context
of short text strings. For tweets, we use Dice coefficient [29] . For
a more comprehensive comparison of the available measures, we
refer to [30] .

S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558 553

Fig. 1. Different cluster selection strategies based on the density-vs-delta plot for
the S4 dataset. Cluster centroids typically have both high density and high distance
to higher density point (delta). Therefore, thresholding based on combination of
delta and density (gamma) is expected to work better than using the delta values
alone.

3. Fast density peaks algorithm

The proposed Fast density peaks method is presented in
Algorithm 1 and demonstrated in Fig. 2 . Source code can be found
on web. 1 It consists of five steps:

1. Create the kNN graph (line 1).
2. Calculate the density values (lines 2–3).
3. Find big brothers (line 6).
4. Identify cluster centers (lines 9–10).
5. Join the remaining points (lines 12–13).

Algorithm 1 FastDensityPeaks (X, k, K).

1 kNNg = RPDiv(X,k,2 ∗k,1%);
2 FOR i = 1 TO Size(X) DO
3 density[i] = 1/meanDist(X[i],kNNg[i]);
4 part[i] = {i};
5
6 [bigBrother, gamma] = findBigBrothers(kNNg,X);
7 // Select K points with largest gamma
8 X = Sort(X,gamma);
9 FOR i = 1 TO K DO
10 centroid[i] = X[i];
11 // Join the remaining points to partitions
12 FOR i = K + 1 TO N DO
13 Merge part[i] and part[bigBrother[i]];
14 RETURN [centroid, part];

First, we calculate the k nearest neighbor graph. The graph is
then used to calculate all the information needed by density peaks
algorithm: (1) density values, (2) distance to the nearest point
with higher density (delta), and, (3) pointer to this nearest neigh-
bor (big brother). Product of density and delta values (gamma) is
used to determine the first K cluster centers (density peaks). The
big brother pointers are then used to join the remaining points to
the same cluster as their big brother.

The algorithm has two computational bottlenecks:

• Constructing the kNN graph
• Finding the big brother points.

Both of these bottlenecks take O(N 2) time if straightforward
solution is used. We next study how to make these two steps
faster without sacrificing the quality of clustering.

1 https://github.com/uef- machine- learning/fastdp .

Fig. 2. Illustration of the proposed Fast density peaks algorithm. (1) For a given data set, the kNN graph is constructed. (2) Densities are calculated as inverse of the mean
distance to the neighbors. (3) Nearest higher density point (big brother) is (in case of black lines) found in the kNN graph; for others (red lines) slower full search is
performed. (4) Cluster centers are identified as the two points that have highest gamma (delta ∗dens) to the big brother. (5) Clusters are formed by joining other points to
the same cluster as their big brother belongs to (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

554 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

3.1. Creating kNN graph by RP-div algorithm

To make density peaks faster, we first generate an approximate
k-nearest neighbor (kNN) graph by using an iterative algorithm
called RP-Div (Algorithm 3). Its preliminary version has been pre-
sented in [31] . The algorithm contains two loops. In the first loop
(lines 1–4), we create a new candidate graph, which is used to
improve the graph obtained from the previous iterations. The new
graph is generated by an algorithm called Random Pair Division
(RP-div) (Algorithm 4).

The algorithm constructs the graph by applying hierarchical
subdivision (demonstrated in Figs. 3 and 4). The dividing works
by first selecting two random points: a and b (Algorithm 4 , lines
5-6). The dataset is then split into two subsets (A and B), so that
subset A contains all points that are closer to the point a , and
subset B all points that are closer to the point b. The dividing
continues recursively (lines 12–13) until the subset size reaches
a predefined threshold (W), e.g. W < 20. Subsets smaller than the
threshold are solved by the O(N 2) brute force algorithm (line 2),
which calculates distances between all possible pairs and updates
the list of k nearest points found (variable kNN).

Algorithm 2 findBigBrothers (kNNg, X, density).

1 FOR i = 1 TO Size(X) DO
2 bigBrotherFound = 0;
3 // See if big brother is found in graph
4 // Loop from nearest to farthest
5 FOR j = 1 TO numNeighbors DO
6 neighbor = kNNg[i][j];
7 IF density[i] < density[neighbor]
8 bigBrother[i] = neighbor;
9 bigBrotherFound = 1;
10 BREAK;
11 // For local peaks (not found in graph)
12 // Run O(N) full search
13 IF bigBrotherFound == 0
14 bigBrother[i] = fullSearch(i,density[i],X);
15 delta[i] = d(X[i],X[bigBrother[i]]);
16 gamma[i] = delta[i] ∗density[i];
17 RETURN [bigBrother, gamma];

Algorithm 3 RPDiv (X, k, W, stop).

1 REPEAT
2 RandomPairDivision(X,kNN,W);
3 diff= Changes(kNN);
4 UNTIL diff < 10%
5 REPEAT
6 RandomPairDivision(X,kNN,W);
7 NNDES(X,kNN);
8 diff= Changes(kNN);
9 UNTIL diff < stop;
10 RETURN kNN;

Algorithm 4 RandomPairDivision (X, kNN,
Size).

1 IF size(X) < Size THEN
2 BruteForce(X,kNN);
3 RETURN;
4 ELSE
5 a = X[random(1,N)];
6 b = X[random(1,N)];
7 FOR i = 1 TO N DO
8 IF d(x,a) < d(x,b) THEN
9 A = A ∪ x
10 ELSE
11 B = B ∪ x;
12 RandomPairDivision(A,kNN,Size);
13 RandomPairDivision(B,kNN,Size);

Fig. 3. The RP-div algorithm recursively subdivides the dataset of size N = 37 by
first choosing two random points (a,b). The dataset is split based on which of the
two points is nearer. After the first split, the size of the subset A is smaller than
threshold W = 20, and is solved by brute force. The subset B is further divided into
two more subsets, which both are smaller than W and now solved by brute force.

Fig. 4. After repeating the random pair division, a new solution is obtained. This is
solution is merged with the previous one to form a new improved kNN graph.

One iteration of the algorithm produces a crude approximation
of the kNN graph. The graph is improved by repeating the hier-
archical subdivision several times (Fig. 4) using different random
pairs for splitting. As a result, several different kNN graphs are
created. Every new graph is used to improve the previous solution
by adopting those k-nearest neighbor pointers that are shorter
than in the previous graph.

The first loop (line 1) in Algorithm 3 continues until the
proportion of changed edges drops below 10% (line 4). In the
second loop (line 5), we apply the same iterative process as in the
first loop, but at this time, we use the NNDES algorithm [32] to
examine every point’s neighbors of neighbors as kNN candidates.
NNDES works better when the graph already has a moderate
quality and is therefore used only at the later iterations. We
continue until the improvement drops below stop = 1% (line 9).

Time bottleneck of the algorithm is the brute force step which
requires O(W 2). Assuming all subsets are exactly of size W , there
will be N/W subsets. The total time complexity of single iteration
of the algorithm is then O(N/W ·W 2) = O(NW). Using W = 2.5 ·k , this
leads to linear O(rkN) time algorithm where the number of repeats
(r) is a small constant.

3.2. Solving the Big brother pointers

Once the kNN graph is constructed, it can be used to speed up
the bottlenecks of density peaks. The densities can be calculated

S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558 555

Fig. 5. Distribution of slope points (gray) and local peaks (red) inside an exam-
ple cluster. One of the local peaks (blue) is the resulting cluster centroid (global
peak). The case of k = 30 (left) and k = 70 (right) are shown. When the number of
neighbors k in the kNN graph is increased, the number of local peaks decrease. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

trivially (lines 2–4 in Algorithm 1), and the nearest higher density
point (big brother) can be found fast (Algorithm 2).

Finding the big brother (Algorithm 2) is a special case of the
nearest neighbor search. However, instead of considering only
the distance, we must also select a point with higher density.
Fortunately, majority of points have their big brothers located
within their kNN neighborhood (line 8). We call them as slope
points , and all others are denoted as local peaks . For slope points,
we can find big brothers fast in O(k) steps simply by analyzing the
kNN graph (lines 5–10).

Local peaks, on the other hand, are local density maxima and
their big brothers cannot be found in the kNN graph. There is no
shortcut to find their big brothers and O(N) full search must there-
fore be performed (lines 11–14). These are also the points among
which the final centroids will be chosen. The time complexity of
this step depends on how many local peaks there are. Assuming
that the proportion of the local peaks is p , the time complexity of
this step is pN 2 + (1 − p) kN = O(pN 2). The speed-up is therefore
inverse proportional to p .

Fig. 5 shows an example of the distribution of the local peak
points with a sample dataset. In general, the higher the value of
k , the less there are peak points, and the faster the search for the
big brothers.

The proportion of local peaks (p) is bound by the number of
neighbors k in the graph. A neighbor of a peak cannot be another
peak. If we have pN local peaks, there will be at least kpN slope
points. Since all points are either local peaks or slopes, we have
the following inequality:

kpN + pN < N

kp + p < 1

p < 1 / (k + 1)

p < 1 /k

Therefore, the time complexity of O(pN 2) can also be written
in terms of k as O(N 2 / k). When combining with the O(rkN) time
complexity of the kNN graph construction (see Section 3.1), this
leads to a total time complexity of O(N 2 / k + rkN) for the whole
algorithm.

4. Experiments

We use parameters stop = 1% and k = 30 for kNN graph gener-
ation in FastDP algorithm, unless otherwise noted.

The experiments were run on Red Hat Enterprise Linux Server
release 7.5 with 96 processing cores of Intel(R) Xeon(R) CPU
E7-4860 v2 @ 3.20GHz and 1.0TB memory. Processing times are
reported as run on single thread.

Fig. 6. The Worms2 dataset contains 35 shapes which depict trails of random
movement in 2D space.

4.1. Datasets

We test the proposed algorithm with the following four
different data types:

• Clustering basic benchmark
• High dimensional random clusters
• Artificial shapes
• Text datasets

We use datasets from the clustering benchmark [33] . So far we
know four algorithms that can cluster all these datasets correctly:
global k-means [34] , genetic algorithm [35] , random swap [36] and
density peaks [6] . We test whether our fast density peaks (FastDP)
can do the same. We report results for the S1–S4 sets [37] and for
the Birch and Birch2 datasets [38] .

To show the capabilities of the proposed method with large
high-dimensional data, we generated three large High dimensional
random clusters datasets, RC1M, RC100k-l and RC100k-l and RC1M.
One hundred centroids were generated from uniform random
distribution, each attribute in range [10..11]. For each cluster, 10 0 0
(RC100k) or 10,0 0 0 (RC1M) points were drawn from Gaussian dis-
tribution. To study the effect of the cluster variance, we generated
two variants for the RC100k dataset: RC100k-h for high variance
(σ 2 = 0.50) and RC100k-l for low variance (σ 2 = 0.05). For the
larger RC1M dataset, the lower variance of 0.05 was used.

Artificial shapes are also used as algorithms minimizing sum-
of-squared errors cannot handle this type of datasets but density
peaks often can. We use three datasets that the original density
peaks is known to succeed: Flame [2] , Aggregation [39] , and Spiral
[40] . Also the dataset DS6_8 provided by the authors of [8] was
used.

Furthermore, we also generated two new artificial shape
datasets: Worms2 (2D) and Worms6 4 (6 4D). The former is shown
in see Fig. 6 . The data contains 25 individual shapes starting from
a random position and moving to a random direction. At each
step, points are drawn from the Gaussian distribution to produce a
cloud around the current position. The cloud has both a low vari-
ance (data) and high variance (noise) component. Their variance
increases gradually at each step. The direction of movement is
continually altered to an orthogonal direction. In case of the 64D

556 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

Table 1
Datasets used in the experiments. In case of text data, average number
of characters is reported as dimensionality.

Dataset Type Size Clusters Dim.

S1 Spherical 5000 15 2
S2 Spherical 5000 15 2
S3 Spherical 5000 15 2
S4 Spherical 5000 15 2
Birch1 (B1) Spherical 100,000 100 2
Birch2 (B2) Spherical 100,000 100 2
RC100k-h (RCh) Spherical 100,000 100 128
RC100k-l (RCl) Spherical 100,000 100 128
RC1M (RCM) Spherical 1,000,000 100 128
Flame (Fla) Shape 240 2 2
Aggregation (Agr) Shape 788 7 2
Spiral (Spi) Shape 312 3 2
DS6_8 (DS6) Shape 2000 8 2
Worms2 (W2) Shape 105,600 35 2
Worms64 (W64) Shape 105,000 25 64
Countries (Cou) Text 6000 48 8.1 c
English words (Eng) Text 466,544 500 9.4 c
Tweets (Twe) Text 544,133 500 90 c

version, the orthogonal direction is selected randomly at each step.
Collision is detected to prevent completely overlapping clusters.

Three text datasets are also used. Countries dataset has 48
clusters consisting of the names of all European countries. Each
cluster contains 50 variations of the country name generated by
adding random modifications to the names. English words dataset 2

contains 466,544 words of length varying from 1 to 45 characters
(9.4 chars on average). Twitter data consists of tweets collected
from Nordic Tweets channel [41] . For the Countries and words
datasets, we use edit distance. For the twitter data, we use Dice
coefficient of bigrams, which is faster than edit distance, especially
for long strings (Table 1).

4.2. Clustering quality

We use the Centroid Index (CI) to measure the success at clus-
ter level [42] , and Normalized Mutual Information (NMI) at point
level [43] . For the current state-of-the-art in measuring clustering
quality we refer to [44] .

Given a ground truth solution (G) and clustering solution (C),
centroid index counts how many real clusters are missing a center,
or alternatively, how many clusters have too many centers. The
CI-value is the higher of these two numbers [42] . Value CI = 0
means that the clustering is correct.

The calculation of CI is done by performing nearest neighbor
mapping between the clusters in C and G based on centroid dis-
tances [42] . After the mapping, we count how many clusters were
not mapped. These non-mapped clusters (orphans) are indicators of
missing clusters. The mapping is done into both directions (C → G
and G → C). The maximum number of orphans is the CI-value:

CI(C, G) = max (Orphans (C → G) , Orphans (G → C)) (1)

In case of shape and text data, center is not a proper repre-
sentative of a cluster. We therefore find the most similar cluster
instead of the nearest centroid. For this, we use Jaccard coefficient,
which calculates how many common points the two clusters have
to the total number of unique points in the two clusters [45] :

S(a, b) =
| a ∩ b |
| b ∪ b | (2)

Normalized mutual information measures the information that
the clustering solution (C) shares with the ground truth (G). Since

2 https://github.com/dwyl/english-words .

Fig. 7. Dependency of the proportion of local peaks on the number of clusters (K).
The corresponding Fast-DensP processing time depends linearly on the data size,
which is N = 10 0 0 ·K .

Table 2
Proportion of local peaks p . When the num-
ber of neighbors k in the kNN graph is in-
creased, the proportion of the local peak points
decreases.

Local peaks (p)

Dataset k = 10 k = 30 k = 70

S1 2.7% 0.3% 0.3%
S2 3.0% 0.3% 0.3%
S3 3.4% 0.5% 0.3%
S4 3.7% 0.6% 0.3%
Birch1 4.8% 1.1% 0.3%
Birch2 4.3% 0.9% 0.2%
RC100k 0.5% 0.2% 0.1%
RC1M 0.2% 0.1% 0.0%
Flame 2.5% 0.8% 0.8%
Aggregation 4.4% 1.5% 0.6%
Spiral 1.3% 1.0% 0.3%
Countries 1.3% 0.7% 0.2%
English words 1.7% 0.2% 0.0%
Tweets 0.7% 0.1% 0.0%

there scale has no upper bound, the result is normalized by the
average of the self-entropies of C and G. The better the clustering,
the closer the value of NMI is to 1. The exact scale varies across the
datasets and it lacks similar intuitive interpretation as the CI-value.

The English words and Twitter data do not have any ground
truth, so for them we only provide qualitative samples to estimate
the clustering quality.

4.3. Efficiency of the delta calculation

We test the efficiency of finding the big brothers by studying
the number of local peak points. We need to perform O(N) time
full search only for the local peak points. For all other points, its
big brother can be found faster in O(k) time simply by taking the
nearest higher density point in its kNN neighborhood. Therefore,
the less local peak points, the faster the algorithm.

Fig. 7 shows the proportion of the local peaks for the subsets
of the Birch2 where one cluster was removed at a time to produce
subsets with number of clusters varying from K = 1–100. The
corresponding data sizes varies from N = 10 0 0 to 10 0,0 0 0. We
observe that the proportion of the peaks increases to about 0.9%
at K = 10 clusters. After that it remains almost constant no matter
how many more clusters there are. The total processing times are
also shown, and it has near-linear dependency on the size of data.

S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558 557

Table 3
Summary of the processing times and clustering quality. The quality of the kNN graph is varied by running the RP-Div algorithm for different number of iterations. Quality is
recorded as NMI. We highlight the first NMI value that is equal (within 0.01 NMI) to the results of OrigDP. The processing times and CI-values are reported for this iteration.

FastDP NMI

Iterations s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe

1 0.97 0.90 0.76 0.69 0.87 0.92 0.05 0.97 0.54 0.64 0.86 0.02 0.52 0.61 0.14 0.51 — —

2 0.99 0.94 0.79 0.72 0.95 1.00 0.16 1.00 0.57 0.91 0.96 0.25 0.59 0.63 0.43 0.70 — —

3 0.99 0.94 0.79 0.72 0.96 1.00 0.27 1.00 0.57 0.99 0.98 0.77 0.59 0.63 0.57 0.76 — —

4 0.99 0.94 0.79 0.72 0.96 1.00 0.37 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.62 0.78 — —

5 0.99 0.94 0.79 0.72 0.96 1.00 0.44 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.65 0.79 — —

10 0.99 0.94 0.79 0.72 0.96 1.00 0.65 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.71 0.79 — —

20 0.99 0.94 0.79 0.72 0.96 1.00 0.82 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.74 0.80 — —

30 0.99 0.94 0.79 0.72 0.96 1.00 0.82 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.73 0.80 — —

OrigDP 0.99 0.94 0.79 0.72 0.96 1.00 0.80 1.00 — 1.00 1.00 1.00 0.60 0.62 0.72 0.78 — —

Processing Time (seconds)

s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe

FastDP 0.04 0.04 0.04 0.04 2.25 1.96 82.97 15.68 713 0.01 0.04 0.01 0.02 3.19 26.47 0.30 2091 1765
OrigDP 0.56 0.57 0.55 0.56 197 282 2656 2658 0.00 0.02 0.00 0.09 210 1310 6.67 — —

Speedup factor 14:1 15:1 14:1 14:1 87:1 144:1 32:1 170:1 — 0:1 1:1 0:1 6:1 66:1 49:1 22:1 — —

CI

s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe

FastDP 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.0 0.0 0.0 0.0 3.1 7.5 0.0 10.8 — —

OrigDP 0.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 — 0.0 0.0 0.0 3.0 7.0 0.0 14.0 — —

Table 4
Example clusters. Some of the 500 clusters for the 466,544 words data.
Twenty samples from each cluster.

Cluster 41 Cluster 43 Cluster 247 Cluster 292

soft-bil Livingstone Slommacky Kurtz
lsoot-grime herringbone crummock Dinarchy
dsweet-toothe Burlingham bummack myriarchy
dsplit-tongue Neowashingtonia mimmock freshly
dblack-visage Upington slammock triarcuated
dsoft-winge Hillingdon bummalos matriarch
dshort-witte Lovington mimmocky mandriarch
dshort-terme Arlington malmock dyarchic
dstout-arme Lexington hommocks myriarch
dstill-fishin Herington earthgrubber BSLArch
gstiff-limbe Stringtown crumhorn Taxiarch
dswift-stealin Arrington malbrouck Bush
gshort-leave milliangstrom krumhorn Ruthi
dsnotty-nose Accrington shammocky Knuth
divory-bille Northington Babcock fleshy
dhot-mettle Farlington plumrock gush
dsoft-goin Ellington fleadock Thushi
gsnowy-winge Hartington cummock Furth
dsharp-tastin Belington Commack flesh-fly
gstove-warmed Conyngham archworker Bosch

The effect of the parameter k in kNN is shown in Table 2 .
With all datasets, the number of local peaks is small already with
k = 10, and reduces to about 0.26% if it is increased to k = 70.

4.4. Results (Speed v. quality)

We implemented two versions of DensP in C: the original ver-
sion [6] denoted as OrigDP , and the proposed method denoted as
FastDP . Both variants use the same kNN-based method for density
estimation. In terms of clustering quality, the only difference orig-
inates from the quality of the kNN graph. In the OrigDP, an exact
kNN is used while FastDP uses approximated version from [31] .

In the experiments, we vary the number of iterations in RP-
DIV (1…30) to obtain different clustering quality. Quality of the
approximated kNN graph increases with the number of iterations,
and the same is expected to happen for the clustering quality.

From the results in Table 3 , we can see that FastDP achieves
similar quality as OrigDP but much faster. This is especially true

Table 5
Two example clusters from twitter data. Four samples from each cluster. Detected
clusters had typically low variation and were mostly produced by bots.

Jobs cluster Weather cluster

We’re #hiring! Click to apply:
Technical Specialist -
https://t.co/SP1NMxyDhp
#Engineering Västra Götaland
County #Job #Jobs

shower rain → light shower snow
temperature down 3 °C → 2 °C
humidity down 64% → 60% wind
9 kmh → 12 kmh

See our latest #kirkkonummi #job
and click to apply: SW
Developer Intern, IoT Device and
Data Management -…
https://t.co/5GEkyiMUlh

overcast clouds → light rain
temperature down 6 °C → 5 °C
humidity up 75% → 93%

If you’re looking for work in
#Sandarne, Gavleborg County,
check out this #job:
https://t.co/KwMj7Mp6rn
#Netherlands #Labor #Hiring

broken clouds → clear sky
temperature up 10 °C → 13 °C
humidity down 66% → 54%

Interested in a #job in #HKI,
Uusimaa? This could be a great
fit: https://t.co/DMYvpOl54i #IT
#Hiring #CareerArc

light intensity drizzle
rain → scattered clouds
temperature up 9 °C → 12 °C
humidity down 100% → 66%
wind 6 kmh → 11 kmh

with large datasets (B1, B2, RCh, RCl, W2, W64) where the O(N 2)
time complexity of OrigDP results in high speedup factors. With
similar size datasets, dimensionality and variance (cluster overlap)
has large effect on the results. In case of W2 and W64, the high
dimensional version requires much more iterations. In case of RCl
vs. RCh, the high variance version requires more iteration.

Overall, the proposed method is much faster than OrigDP. In
case of the birch2 dataset (N = 10 0,0 0 0), the processing time is
reduced from 282 s to 1.96 s with no reduction on quality. In case
of smaller datasets, there is 14:1 improvement in case of S-sets of
size 50 0 0, and no improvement in case of smaller datasets (< 10 0 0
points).

The proposed algorithm was also successful with the largest
datasets (RC1M, English words, Tweets) which the original density
peaks algorithm could not process. The 466,544 strings of the
words dataset were clustered using Levenshtein distance to 500
clusters in 2091 s. Constructing the kNN-graph was the main
bottleneck with 1779 s. This data set does not have a ground truth

558 S. Sieranoja and P. Fränti / Pattern Recognition Letters 128 (2019) 551–558

clustering, but one can verify by seeing Table 4 that the results
contain meaningful clusters.

The Nordic tweets dataset of size 544,133 was also success-
fully clustered with parameters k = 100, stop = 5%, and NNDES
disabled. Two sample clusters are shown in Table 5 , which both
are meaningful for a human observer. In specific, the two par-
ticular clusters were observed to have lower variance, which can
be partly explained by the fact that they were produced by bots
rather than humans. The weather cluster is produced by one single
bot, whereas the jobs cluster contains also human written tweets.

5. Conclusions

Fast density peaks (FastDP) algorithm was proposed. Its main
advantage is that it removes the quadratic time complexity limita-
tion of density peaks and allows clustering of very large datasets.
The speed-up is achieved without any visible effect on the cluster-
ing quality. Experiments showed an average speed-up of 91:1 on
datasets of size ≥ 100k. Clustering a high dimensional numerical
dataset of size 1M took only 12 min. The algorithm works for
all types of data as long as a distance function is provided. We
managed to cluster a Nordic Tweet dataset of size 500k in 31 min.

Declaration of Competing Interest

Authors declare that they have no conflict of interest.

References

[1] S. Fortunato , Community detection in graphs, Phys. Rep. 486 (3–5) (2010)
75–174 .

[2] L. Fu , E. Medico , FLAME, a novel fuzzy clustering method for the analysis of
DNA microarray data, BMC Bioinformatics 8 (1) (2007) 3 .

[3] K. Lu , S. Xia , C. Xia , Clustering based road detection method, in: 34th Chinese
Control Conference (CCC), 2015, IEEE, 2015, pp. 3874–3879 .

[4] Y. Zhang , G. Li , X. Xie , Z. Wang , A new algorithm for fast and accurate mov-
ing object detection based on motion segmentation by clustering, in: IAPR Int.
Conf. on Machine Vision Applications (MVA), 2017, pp. 4 4 4–4 47 .

[5] M. Ester , H.-.P. Kriegel , J. Sander , X. Xu , et al. , A density-based algorithm
for discovering clusters in large spatial databases with noise, Kdd 96 (1996)
226–231 .

[6] A . Rodriguez , A . Laio , Clustering by fast search and find of density peaks, Sci-
ence 344 (6191) (2014) 14 92–14 96 .

[7] C.-D. Wang , J.-H. Lai , J.-Y. Zhu , Graph-based multiprototype competitive learn-
ing and its applications, IEEE Trans. Syst., Man, Cybernet., Part C (6) (2011)
934–946 .

[8] Y. Qin , Z.L. Yu , C.-D. Wang , Z. Gu , Y. Li , A novel clustering method based on
hybrid k-nearest-neighbor graph, Pattern Recognit. 74 (2018) 1–14 .

[9] B.J. Frey , D. Dueck , Clustering by passing messages between data points, Sci-
ence 315 (5814) (2007) 972–976 .

[10] C.-D. Wang , J.-H. Lai , C.Y. Suen , J.-Y. Zhu , Multi-exemplar affinity propagation,
IEEE Trans. Pattern Anal. Mach. Intell. (9) (2013) 2223–2237 .

[11] I.A. Maraziotis , S. Perantonis , A. Dragomir , D. Thanos , K-Nets: clustering
through nearest neighbors networks, Pattern Recognit. 88 (2019) 470–481 .

[12] A. Ben-Hur , D. Horn , H.T. Siegelmann , V. Vapnik , Support vector clustering, J.
Mach. Learn. Res. 2 (Dec) (2001) 125–137 .

[13] C.-D. Wang , J. Lai , Position regularized support vector domain description, Pat-
tern Recognit. (3) (2013) 875–884 .

[14] Y. Wang , Q. Chen , C. Kang , Q. Xia , Clustering of electricity consumption behav-
ior dynamics toward big data applications, IEEE Trans. Smart Grid 7 (5) (2016)
2437–2447 .

[15] B. Wang , J. Zhang , Y. Liu , Y. Zou , Density peaks clustering based integrate
framework for multi-document summarization, CAAI Trans. Intell. Technol. 2
(1) (2017) 26–30 .

[16] X. Bai , P. Yang , X. Shi , An overlapping community detection algorithm based
on density peaks, Neurocomputing 226 (2017) 7–15 .

[17] X. Xu , S. Ding , T. Sun , A fast density peaks clustering algorithm based on
pre-screening, in: Big Data and Smart Computing (BigComp), 2018 IEEE Inter-
national Conference on, IEEE, 2018, pp. 513–516 .

[18] R. Mehmood , G. Zhang , R. Bie , H. Dawood , H. Ahmad , Clustering by fast search
and find of density peaks via heat diffusion, Neurocomputing 208 (October
2016) 210–217 .

[19] M. Du , S. Ding , H. Jia , Study on density peaks clustering based on k-near-
est neighbors and principal component analysis, Knowl. Based Syst. 99 (2016)
135–145 .

[20] J. Xie , H. Gao , W. Xie , X. Liu , P.W. Grant , Robust clustering by detecting density
peaks and assigning points based on fuzzy weighted K -nearest neighbors, Inf.
Sci. 354 (2016) 19–40 .

[21] L. Yaohui , M. Zhengming , Y. Fang , Adaptive density peak clustering based on
K nearest neighbors with aggregating strategy, Knowl. Based Syst. 133 (2017)
208–220 .

[22] X. Xu , S. Ding , T. Sun , A fast density peaks clustering algorithm based on
pre-screening, in: Big Data and Smart Computing (BigComp), 2018 IEEE Inter-
national Conference on, IEEE, 2018, pp. 513–516 .

[23] M. Du , S. Ding , Y. Xue , A novel density peaks clustering algorithm for mixed
data, Pattern Recognit. Lett. 97 (2017) 46–53 .

[24] H. Liu , H. Guan , J. Jian , X. Liu , Y. Pei , Clustering based on words distances,
Cluster Comput. (2017) 1–9 .

[25] P. Fränti , S. Sieranoja , Dimensionally distributed density estimation, in: Int.
Conf. Artificial Intelligence and Soft Computing (ICAISC), Zakopane , Poland,
June 2018, pp. 343–353 .

[26] J. Hou , M. Pelillo , A new density kernel in density peak based clustering, in:
Pattern Recognition (ICPR), 2016 23rd International Conference on, IEEE, 2016,
pp. 468–473 .

[27] J. Wang , Y. Zhang , X. Lan , Automatic cluster number selection by finding den-
sity peaks, in: Computer and Communications (ICCC), 2016 2nd IEEE Interna-
tional Conference on, IEEE, 2016, pp. 13–18 .

[28] V.I. Levenshtein , Binary codes capable of correcting deletions, insertions, and
reversals, Soviet Phys. Doklady 10 (8) (1966) 707–710 .

[29] C. Brew , D. McKelvie , Word-pair extraction for lexicography, in: Proceedings
of the 2nd International Conference on New Methods in Language Processing,
2017, pp. 45–55 .

[30] N. Gali , R. Mariescu-Istodor , D. Hostettler , P. Fränti , Framework for syntactic
string similarity measures, Expert Syst. Appl. 129 (2019) 169–185 .

[31] S. Sieranoja , P. Fränti , Fast random pair divisive construction of kNN graph us-
ing generic distance measures, Int. Conf. on Big Data and Computing (ICBDC),
April 2018 .

[32] W. Dong , C. Moses , K. Li , Efficient k-nearest neighbor graph construction for
generic similarity measures, in: Proceedings of the 20th international confer-
ence on World wide web, ACM, 2011, pp. 577–586 .

[33] P. Fränti , S. Sieranoja , K-means properties on six clustering benchmark
datasets, Appl. Intell. 48 (12) (2018) 4743–4759 .

[34] A. Likas , N. Vlassis , J.J. Verbeek , The global k-means clustering algorithm, Pat-
tern Recognit. 36 (2003) 451–461 .

[35] P. Fränti , Genetic algorithm with deterministic crossover for vector quantiza-
tion, Pattern Recognit. Lett. 21 (1) (20 0 0) 61–68 .

[36] P. Fränti , Efficiency of random swap clustering, J Big Data 5 (13) (2018) 1–29 .
[37] P. Fränti , O. Virmajoki , Iterative shrinking method for clustering problems, Pat-

tern Recognit. 39 (5) (May 2006) 761–765 .
[38] T. Zhang , R. Ramakrishan , M. Livny , BIRCH: a new data clustering algorithm

and its applications, Data Min. Knowl. Discov. 1 (2) (1997) 141–182 .
[39] A. Gionis , H. Mannila , P. Tsaparas , Clustering aggregation, ACM Trans. Knowl.

Discov. Data (TKDD) 1 (1) (2007) 1–30 .
[40] H. Chang , D.Y. Yeung , Robust path-based spectral clustering, Pattern Recognit.

41 (1) (2008) 191–203 .
[41] M. Laitinen , J. Lundberg , M. Leving , A. Lakaw , Utilizing multilingual language

data in (nearly) real time: the case of the Nordic tweet stream, J. Univ. Comput.
Sci. 23 (2017) 1038–1056 .

[42] P. Fränti , M. Rezaei , Q. Zhao , Centroid index: cluster level similarity measure,
Pattern Recognit. 47 (2014) 3034–3045 .

[43] T.O. Kvalseth , Entropy and correlation: some comments, IEEE Trans. Syst., Man
Cybernet. 17 (1987) 517–519 .

[44] M. Rezaei , P. Fränti , Set matching measures for external cluster validity, IEEE
Trans. Knowl. Data Eng. 28 (2016) 2173–2186 .

[45] P. Fränti , M. Rezaei , Generalized centroid index to different clustering mod-
els, in: Joint Int. Workshop on Structural, Syntactic, and Statistical Pattern
Recognition (S + SSPR 2016), Merida, Mexico, LNCS 10029, November 2016,
pp. 285–296 .

PAPER 4
P. Fränti and S. Sieranoja,
“How much k-means can be improved by using better initialization and
repeats?”,
Pattern Recognition,
93, 95-112, 2019.
https://doi.org/10.1016/j.patcog.2019.04.014

Pattern Recognition 93 (2019) 95–112

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

How much can k-means be improved by using better initialization

and repeats?

Pasi Fränti, Sami Sieranoja ∗

Machine Learning Group, School of Computing, University of Eastern Finland, P.O. Box 111, FIN-80101 Joensuu, Finland

a r t i c l e i n f o

Article history:
Received 13 August 2018
Revised 11 March 2019
Accepted 13 April 2019
Available online 15 April 2019

Keywords:
Clustering algorithms
K-means
Initialization
Clustering accuracy
Prototype selection

a b s t r a c t

In this paper, we study what are the most important factors that deteriorate the performance of the k-
means algorithm, and how much this deterioration can be overcome either by using a better initialization
technique, or by repeating (restarting) the algorithm. Our main finding is that when the clusters overlap,
k-means can be significantly improved using these two tricks. Simple furthest point heuristic (Maxmin)
reduces the number of erroneous clusters from 15% to 6%, on average, with our clustering benchmark.
Repeating the algorithm 100 times reduces it further down to 1%. This accuracy is more than enough for
most pattern recognition applications. However, when the data has well separated clusters, the perfor-
mance of k-means depends completely on the goodness of the initialization. Therefore, if high clustering
accuracy is needed, a better algorithm should be used instead.

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

K-means (KM) algorithm [1–3] groups N data points into k clus-
ters by minimizing the sum of squared distances between every
point and its nearest cluster mean (centroid). This objective func-
tion is called sum-of-squared errors (SSE). Although k-means was
originally designed for minimizing SSE of numerical data, it has
also been applied for other objective functions (even some non-
numeric).

Sometimes the term k-means is used to refer to the clustering
problem of minimizing SSE [4–7] . However, we consider here k-
means as an algorithm . We study how well it performs as a clus-
tering algorithm to minimize the given objective function. This ap-
proach follows the recommendation in [8] to establish a clear dis-
tinction between the clustering method (objective function) and the
clustering algorithm (how it is optimized).

In real-life applications, the selection of the objective function
is much more important. Clustering results depend primarily on
the selected objective function, and only secondarily on the se-
lected algorithm. Wrong choice of the function can easily reverse
the benefit of a good algorithm so that a proper objective function
with a worse algorithm can provide better clustering than good
algorithm with wrong objective function. However, it is an open

∗ Corresponding author.
E-mail addresses: pasi.franti@uef.fi (P. Fränti), sami.sieranoja@uef.fi,

samisi@cs.uef.fi (S. Sieranoja).

question how much clustering results are biased because of using
an inferior algorithm.

There are other algorithms that are known, in many situa-
tions, to provide better clustering results than k-means. However,
k-means is popular for good reasons. First, it is simple to imple-
ment. Second, people often prefer to use an extensively studied al-
gorithm whose limitations are known rather than a potentially bet-
ter, but less studied, algorithm that might have unknown or hid-
den limitations. Third, the local fine-tuning capability of k-means
is very effective, and for this reason, it is also used as part of bet-
ter algorithms such as the genetic algorithm [9,10] , random swap
[11,12] , particle swarm optimization [13] , spectral clustering [14] ,
and density clustering [15] . Therefore, our results can also help
better understand those more complex algorithms that rely on the
use of k-means.

K-means starts by selecting k random data points as the initial
set of centroids, which is then improved by two subsequent steps.
In the assignment step , every point is put into the cluster of the
nearest centroid. In the update step , the centroid of every cluster
is recalculated as the mean of all data points assigned to the clus-
ter. Together, these two steps constitute one iteration of k-means.
These steps fine-tune both the cluster borders and the centroid lo-
cations. The algorithm is iterated a fixed number of times, or until
convergence (no further improvement is obtained). MacQueen also
presented sequential variant of k-means [2] , where the centroid is
updated immediately after every single assignment.

K-means has excellent fine-tuning capabilities. Given a rough
allocation of the initial cluster centroids, it can usually optimize

https://doi.org/10.1016/j.patcog.2019.04.014
0031-3203/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

96 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Fig. 1. K-means is excellent in fine-tuning cluster borders locally but fails to re-
locate the centroids globally. Here a minus sign (−) represents a centroid that is
not needed, and a plus sign (+) a cluster where more centroids would be needed.
K-means cannot do it because there are stable clusters in between.

their locations locally. However, the main limitation of k-means is
that it rarely succeeds in optimizing the centroid locations globally.
The reason is that the centroids cannot move between the clusters
if their distance is big, or if there are other stable clusters in be-
tween preventing the movements, see Fig. 1 . The k-means result
therefore depends a lot on the initialization. Poor initialization can
cause the iterations to get stuck into an inferior local minimum.

Fortunately, finding the exact optimum is not always impor-
tant. In pattern recognition applications, the goal can be merely
to model the distribution of the data, and the clustering result is
used as a part in a more complex system. In [16] , the quality of the
clustering was shown not to be critical for the speaker recognition
performance when any reasonable clustering algorithm, including
repeated k-means, was used.

However, if the quality of clustering is important then k-means
algorithm has problems. For example, if we need to solve the num-
ber of clusters, the goodness of the algorithm matters much more.
Experiments with three different indexes (WB, DBI, Dunn) have
shown that k-means rarely achieves the correct number of clus-
ters whereas random swap succeeded in most cases [17] . Similar
observations were made with stability-based approach in [18] .

To compensate for the mentioned weaknesses of k-means, two
main approaches have been considered: (1) using a better initial-
ization, (2) repeating k-means several times by different initial so-
lution. Numerous initialization techniques have been presented in
the literature, including the following:

• Random points
• Furthest point heuristic
• Sorting heuristic
• Density-based
• Projection-based
• Splitting technique

Few comparative studies exists [19–22] , but there is no consen-
sus of which technique should be used. A clear state-of-the-art is
missing. Pena et al. [19] studied four basic variants: random cen-
troids [1] and MacQueen’s variant of it [2] , random partition and
Kaufman’s variant of the Maxmin heuristic [23] . Their results show
that random partition and Maxmin outperform the random cen-
troid variants with the three datasets (Iris, Ruspini, Glass).

He et al. [20] studied random centroids, random perturbation of
the mean [24] , greedy technique [25] , Maxmin [26] , and Kaufman’s

variant of Maxmin [23] . They observed that the Maxmin variants
provide slightly better performance. Their argument is that the
Maxmin variants are based on distance optimization, which tends
to help k-means provide better cluster separation.

Steinley and Brusco [21] studied 12 variants including com-
plete algorithms like agglomerative clustering [27] and global k-
means [28] . They ended up recommending these two algorithms
and Steinley’s variant [29] without much reservation. The first two
are already complete stand-alone algorithms themselves and not
true initialization techniques, whereas the last one is a trivial im-
provement of the random partition.

Steinley and Brusco also concluded that agglomerative cluster-
ing should be used only if the size, dimensionality or the number
of clusters is big; and that global k-means (GKM) [28] should be
used if not enough memory to store the N 2 pairwise distances.
However, these recommendations are not sound. First, agglom-
erative clustering can be implemented without storing the dis-
tance matrix [30] . Second, GKM is extremely slow and not prac-
tical for bigger datasets. Both these alternatives are also stan-
dalone algorithms and they provide better clustering even without
k-means.

Celebi et al. [22] performed the most extensive comparison
so far with 8 different initialization techniques on 32 real and
12,228 synthetic datasets. They concluded that random centroids
and Maxmin often perform poorly and should not be used, and
that there are significantly better alternatives with comparable
computational requirements. However, their results do not clearly
point out a single technique that would be consistently better than
others.

The detailed results in [22] showed that a sub-sampling and
repeat strategy [31] performs consistently in the best group and
k-means ++ performs generally well . For small datasets Bradley’s
sub-sampling strategy or greedy variant of k-means ++ was recom-
mended. For large data, split-based algorithm was recommended.

The second major improvement, besides the initializations, is to
repeat k-means [32] . The idea is simply to restart k-means several
times from different initial solution to produce several candidate
solutions, and then keeping the best result found as the final so-
lution. This approach requires that the initialization technique pro-
duces different starting solutions by involving some randomness
in the process. We call this variant repeated k-means (RKM). The
number of repeats is typically small like R = 20 in [33] .

Many researchers consider the repeats as an obvious and neces-
sary improvement to the k-means at the cost of increased process-
ing time. Bradley and Fayyad [31] used slightly different variant
by combining the repeats and sub-sampling to avoid the increase
in the processing time. Besides these papers, it is hard to find any
systematic study how the repeats affect on the k-means. For exam-
ple, none of the review papers investigate the effect of the repeats
on the performance.

To sum up, existing literature provides merely relative com-
parisons between the selected initialization techniques. They lack
clear answers of the significance of the results, and present no
analysis on which type of data the techniques work and fail. Many
of the studies also use classification datasets, which have limited
suitability for studying the clustering performance.

We made a brief survey about how recent research papers ap-
ply k-means. Random centroids [5,34,35] seems to be the most
popular initialization method, along with k-means ++ [6,33,36] .
Some papers do not specify how they initialize [37] , or it had to
be concluded indirectly. For example, Boutsidis [5] used the de-
fault method available in MATLAB, which was random centroids in
the 2014a version and k-means ++ starting from the 2014b version.
The method in [38] initializes both the centroids and the partition
labels at random. However, as they apply the centroid step first,
the random partition is effectively applied.

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 97

Fig. 2. Three examples of clustering result when using SSE cost function. Gaussian cluster is split into several spherical clusters (left); mismatch of the variance causes the
larger cluster to be split (middle); mismatch of the cluster sizes does not matter if the clusters are well-separated.

The number of k-means repeats varies from a relatively small
amount of 10–20 [5,33,35] to a relatively high value of 100 [36] .
The most extreme example is [34] where 20 h time limit is ap-
plied. Although they stop iterating if the running time grows twice
as that of their proposed algorithm, it is still quite extensive. Sev-
eral papers do not repeat k-means at all [6,7,37] .

The choice of the initialization and the number of repeats might
also vary depending on the motivation. The aim of using k-means
can be to have a good clustering result, or to provide merely a
point of comparison. In the first case, all the good tricks are used,
such as more repeats and better initialization. In the second case,
some simpler variant is more likely applied. A counter-example is
in [34] where serious effort s seem to be made to ensure all algo-
rithms have the best possible performance.

In this paper we study the most popular initialization heuris-
tics. We aim at answering the following questions. First, to what
extent k-means can be improved by a better initialization tech-
nique? Second, can the fundamental weakness of k-means be elim-
inated simply by repeating the algorithm several times? Third, can
we predict under which conditions k-means works, and which it
fails?

In a recent study [39] , it was shown that k-means performs
poorly when the clusters are well separated. Here we will answer
how much a better initialization or repeats can compensate for this
weakness. We will also show that dimensionality does not matter
for most variants, and that unbalance of cluster sizes deteriorates
the performance of most initializations.

The rest of the paper is organized as follows. In Section 2 , we
define the methodology and data. We also give brief review of
the properties of the standard k-means algorithm. Different ini-
tialization techniques are then studied in Section 3 . Experimental
analysis is performed in Section 4 , and conclusions are drawn in
Section 5 .

2. Performance of k-means

Following the recommendation of Jain [8] , we make a clear dis-
tinction between the clustering method and algorithm. Clustering
method refers to the objective function, and clustering algorithm
to the process optimizing it. Without this distinction, it would be
easy to draw wrong conclusions.

For example, k-means has been reported to work poorly with
unbalanced cluster sizes [40] , and that it can cause large clusters to
be wrongly split and smaller clusters wrongly merged [41] . These
observations themselves are correct but they miss the root cause,
which is the SSE objective function. Even an optimal algorithm
minimizing SSE would end up with the same incorrect result. Such
observations therefore relate to the objective function, and not to
the k-means algorithm .

Fig. 2 demonstrates the situation. An algorithm minimizing SSE
would find spherical clusters regardless of the data. If the data con-
tain non-spherical clusters, they would be divided into spherical
sub-clusters, usually along the direction of the highest variance.
Clusters of variable sizes would also cause large clusters to be split,
and smaller ones to be merged. In these cases, if natural clusters
are wanted, a better clustering result could be achieved by using
an objective function based on Mahalanobis distance [42] or Gaus-
sian mixture model [43] instead of SSE.

2.1. Datasets

In this paper, we focus on the algorithmic performance of k-
means rather than the choice of the objective function. We use the
clustering basic benchmark [39] as all these datasets can be clus-
tered correctly with SSE. Therefore, any clustering errors made by
k-means must originate from the properties of the algorithm, and
not from the choice of wrong objective function. The datasets are
summarized in Table 1 . They are designed to vary the following
properties as defined in [39] :

• Cluster overlap
• Number of clusters
• Dimensionality
• Unbalance of cluster sizes

2.2. Methodology

To measure the success of the algorithm, the value of the objec-
tive function itself is the most obvious measure. Existing literature
reviews of k-means use either SSE [19,22] , or the deviation of the
clusters [20] , which is also a variant of SSE. It is calculated as:

SSE =
N ∑

i =1

∥∥x i − c j
∥∥2

(1)

where x i is a data point and c j is its nearest centroid. In [39] , SSE
is also measured relative to the SSE-value of the ground truth so-
lution (SSE opt):

ε − ratio =
(SSE − SS E opt)

SS E opt
(2)

If the ground truth is known, external indexes such as adjusted
Rand index (ARI), Van Dongen (VD), variation of information (VI) or
normalized mutual information (NMI) can also be used [22] . A com-
parative study of several suitable indexes can be found in [44] . The
number of iterations have also been studied in [19,22] , and the
time complexities reported in [22] .

The problem of SSE, and most of the external indexes, is that
the raw value does not tell how significant the result is. We there-
fore use Centroid Index (CI) [45] , which indicates how many cluster

98 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 1
Basic clustering benchmark [39] . The data is publicly available here: http://cs.uef.fi/sipu/datasets/ .

Dataset Varying Size Dimensions Clusters Per cluster

A Number of clusters 30 0 0–750 0 2 20–50 150
S Overlap 50 0 0 2 15 333
Dim Dimensions 1024 32–1024 16 64
G2 Dimensions + overlap 2048 2–1024 2 1024
Birch Structure 10 0,0 0 0 2 100 10 0 0
Unbalance Balance 6500 2 8 10 0–20 0 0

Fig. 3. Performance of k-means with the A2 dataset: CI = 4, SSE = 3.08 (�10 10),
ε = 0.52.

centroids are wrongly located. Specifically, the value CI = 0 implies
that the clustering structure is correct with respect to the ground
truth.

An example is shown in Fig. 3 , where k-means provides
SSE = 3.08 ×10 10 , which is 52% higher than that of the ground
truth. But what do these numbers really mean? How significant is
the difference? On the other hand, the value CI = 4 tells that ex-
actly four real clusters are missing a centroid.

Based on CI, a success rate (%) was also defined in [39] to mea-
sure the probability of finding the correct clustering. For example,
when running k-means 50 0 0 times with dataset A2 (Fig. 3), CI = 0
was never reached, and thus, its success rate is 0%. Another exam-
ple with dataset S2 (Fig. 4) results in success rate of 1/6 = 17%.

The success rate has an important implication. Any value higher
than 0% indicates that the correct clustering can be found simply
by repeating k-means. For a success rate p , the expected number of
repeats is 1/ p. For instance, p = 50% indicates that expected number
of repeats is 2; and p = 1% indicates 100 repeats. Even with as low
value as p = 0.1% the correct solution is expected to be found in
10 0 0 repeats. This is time consuming, but feasible. However, for
some of our datasets the success rate is so low that the number
repeats would be unreasonably high. For example, even 20 0,0 0 0
repeats produces 0% success rate in our experiments with some
datasets.

2.3. Properties of k-means

We next briefly summarize the main properties of the k-means
algorithm. Generally the clustering problem is the easier the more
the clusters are separated. However, in [39] it was found that for
k-means it is just the opposite; the less overlap the worse the clus-

tering performance, see Fig. 5 . This is a fundamental weakness of
the k-means algorithm.

In [39] , it was also found that the number of errors has linear
dependency on the number of clusters (k). For example, the CI-
values for the A sets with k = 20, 35, 50 clusters were measured
as CI = 2.5, 4.5, 6.5, respectively. The relative CI-values (CI/ k) cor-
respond to a constant of 13% of centroids being wrongly located.
Results with the subsets of Birch2 (varying k from 1 to 100) con-
verge to about 16% when k approaches to 100, see Fig. 6 .

Two series of datasets are used to study the dimensionality:
DIM and G2. The DIM sets have 16 well separated clusters in
high-dimensional space with dimensionality varying from D = 32
to 1024. Because of clear cluster separation, these datasets should
be easy for any good clustering algorithm to reach CI = 0 and 100%
success rate. However, k-means again performs poorly; it obtains
the values CI = 3.6 and 0% success rate regardless of the dimen-
sionality. The reason for the poor performance is again the lack of
cluster overlap, and not the dimensionality.

The results with the G2 sets confirmed the dependency be-
tween the dimensionality and the success rate. We allocated four
centroids with 3:1 unbalance so that the first cluster had three
centroids and the second only one. We then ran k-means and
checked whether it found the expected 2:2 allocation by moving
one of the three centroids to the second group. The results in Fig. 7
show that the overlap is the mediating factor for the success rate:
the more overlap, the lower the success rate of k-means.

The cluster size unbalance was also shown in [39] to result in
poor performance. The main reason for this was the random ini-
tialization, which cannot pick the initial centroids in a balanced
way. Another reason was the k-means iterations which fail to im-
prove the initial solution due to lack of cluster overlap.

The effect of the different properties of data on k-means can be
summarized as follows:

Property: Effect:
Cluster overlap Overlap is good
Number of clusters Linear dependency
Dimension No direct effect
Unbalance Bad

3. K-means initialization techniques

Next we study how much these problems of k-means can be
solved by the following two improvements:

• Better initialization
• Repeating k-means

K-means is a good algorithm for local fine-tuning but it has se-
rious limitation to relocate the centroids when the clusters do not
overlap. It is therefore unrealistic to expect the clustering problem
to be solved simply by inventing a better initialization for k-means.
The question is merely, how much a better initialization can com-
pensate for the weakness of k-means.

Any clustering algorithm could be used as an initialization
technique for k-means. However, solving the location of initial
centroids is not significantly easier than the original clustering

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 99

Fig. 4. Centroid index measures how many real clusters are missing a centroid (+), or how many centroids are allocated to wrong cluster (−). Six examples are shown for
S2 dataset.

Fig. 5. Success rate (%) of k-means, measured as the probability of finding correct clustering, improves when the cluster overlap increases.

0 %

5 %

10 %

15 %

20 %

0 10 20 30 40 50 60 70 80 90 100

Number of clusters (k)

R
el

at
iv

e
C

I-v
al

ue

Birch2
subsets

K-means

Repeated
k-means

Fig. 6. CI-value of k-means increases linearly with k , and relative CI converges to
16% with the Birch2 subsets.

problem itself. Therefore, for an algorithm to be considered as ini-
tialization technique for k-means, in contrast to being a standalone
algorithm, we set the following requirements:

1. Simple to implement
2. Lower (or equal) time complexity than k-means
3. No additional parameters

First, the algorithm should be trivial, or at least very easy to
implement. Measuring implementation complexity can be subjec-
tive. The number of functions and the lines of code were used in
[16] . Repeated k-means was counted to have 5 functions and 162
lines of C-code. In comparison, random swap [11,12] , fast agglomer-
ative clustering variant [30] , and sophisticated splitting algorithm
[46] had 7, 12 and 22 functions, and 226, 317 and 947 lines of
codes, respectively. Random initialization had 2 functions and 26
lines of code.

Second, the algorithm should have lower or equal time com-
plexity compared to k-means. Celebi et al. [22] categorizes the al-
gorithms to linear, log-linear and quadratic based on their time
complexities. Spending quadratic time cannot be justified as the
fastest agglomerative algorithms are already working in close to
quadratic time [30] . A faster O(N log N) time variant also exists
[47] but it is significantly more complex to implement and requires
to calculate k-near neighbors (KNN). K-means requires O(gkN) time,
where g is the number of iterations and typically varies from 20 to
50.

The third requirement is that the algorithm should be free
of parameters; others than k . For instance, there are algorithms
[25,48] that select the first centroid using some simple rule, and
the rest greedily by cluster growing, based on whether the point
is within a given distance. Density-connectivity criterion was also
used in [49] . Nevertheless, this approach requires one or more
threshold parameters.

100 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 2
Summary of the initialization techniques compared in this paper. Time refers to the aver-
age processing time with the A3 dataset (N = 7500, k = 50). Randomized refers to whether
the technique include randomness naturally. Randomness will be needed for the repeated
k-means variant later.

Technique Ref. Complexity Time Randomized Parameters

Random partitions [3] O(N) 10 ms Yes –

Random centroids [1,2] O(N) 13 ms Yes –

Maxmin [54] O(kN) 16 ms Modified –

kmeans ++ [59] O(kN) 19 ms Yes –

Bradley [31] O(kN + Rk 2) 41 ms Yes R = 10, s = 10%
Sorting heuristic [62] O(N log N) 13 ms Modified –

Projection-based [72] O(N log N) 14 ms Yes –

Luxburg [50] O(kN log k) 29 ms Yes –

Split [46,68] O(N log N) 67 ms Yes k = 2

Fig. 7. The effect of overlap for the success of k-means with the G2 datasets. The
numbers circled are for the three sample datasets shown above. The dataset names
are coded as G2-DIM-SD, where DIM refers to the dimensions and SD to the stan-
dard deviation; the higher the SD, the more the two clusters overlap.

The most common heuristics are summarized in Table 2 . We
categorize them roughly into random, furthest point, sorting , and
projection-based heuristics. Two standalone algorithms are also
considered: Luxburg [50] and Split algorithm. For a good review of
several others we refer to [51] .

3.1. Random centroids

By far the most common technique is to select k random data
objects as the set of initial centroids [1,2] . It guarantees that ev-
ery cluster includes at least one point. We use shuffling method
by swapping the position of every data point with another ran-
domly chosen point. This takes O(N) time. After that, we take the
first k points from the array. This guarantees that we do not select

the same point twice, and that the selection is independent on the
order of the data. For the random number generator we use the
method in [52] . We refer to this initialization method as random
centroids .

Slightly different variant in [2] selects simply the first k data
points. This is the default option in the Quick Cluster in IBM SPSS
Statistics [53] . If the data is in random order the result is effec-
tively the same as random centroids, except that it always provides
the same selection.

We note that the randomness is actually a required property
for the repeated k-means variant. This is because we must be able
to produce different solutions at every repeat. Some practitioners
might not like the randomness and prefer deterministic algorithms
always producing the same result. However, both of these goals
can actually be achieved if so wanted. We simply use pseudo-
random number generator with the same seed number . In this way,
single runs of k-means will produce different result but the overall
algorithm still produces always the same result for the same input.

3.2. Random partitions

An alternative to random centroids is to generate random par-
titions. Every point is put into a randomly chosen cluster and their
centroids are then calculated. The positive effect is that it avoids
selecting outliers from the border areas. The negative effect is that
the resulting centroids are concentrated in the central area of the
data due to the averaging. According to our observations, the tech-
nique works well when the clusters are highly overlapped but per-
forms poorly otherwise, see Fig. 8 .

According to [19] , the random partition avoids the worst case
behavior more often than the random centroids. According to our
experiments, this is indeed the case but only when the clusters
have high overlap. The behavior of the random partition is also
more deterministic than that of random centroids. This is because
the centroids are practically always near the center of the data. Un-
fortunately, this also reduces the benefits of the repeated k-means
because there is very little variation in the initial solutions, and
therefore, also the final solutions often become identical.

Steinley [29] repeats the initialization 50 0 0 times and selects
the one with the smallest SSE. However, repeating only the ini-
tialization does not fix the problem. Instead, it merely slows down
the initialization because it takes 50 0 0 �N steps, which is typically
much more than O(kN).

Thiesson et al. [24] calculate the mean point of the data set and
then add random vectors to it. This effectively creates initial cen-
troids like a cloud around the center of the data, with very similar
effect as the random partition. The size of this cloud is a parame-
ter. If it is set up high enough, the variant becomes similar to the
random centroids technique, with the exception that it can select
points also from empty areas.

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 101

Fig. 8. Initial centroids created by random partition (left), by Steinley’s variant (middle), and the final result after the k-means iterations (right).

Fig. 8 shows the effect of the random partition and Steinley’s
variant. Both variants locate the initial centroids near the center
of the data. If the clusters have low overlap, k-means cannot pro-
vide enough movement and many of the far away clusters will lack
centroids in the final solution.

3.3. Furthest point heuristic (Maxmin)

Another popular technique is the furthest point heuristic [54] .
It was originally presented as standalone 2-approximate clustering
algorithm but has been widely used to initialize k-means. It selects
an arbitrary point as the first centroid and then adds new centroids
one by one. At each step, the next centroid is the point that is
furthest (max) from its nearest (min) existing centroid. This is also
known as Maxmin [19,21,22,55] .

Straightforward implementation requires O(k 2 N) time but it can
be easily reduced to O(kN) as follows. For each point, we main-
tain pointer to its nearest centroid. When adding a new centroid,
we calculate the distance of every point to this new centroid. If
the new distance is smaller than to the previous nearest, then it
is updated. This requires N distance calculations. The process is re-
peated k times, and the time complexity is therefore O(kN) in total,
which is the same as one iteration of k-means. Further speedup
can be achived by searching for the furthest point in just a subset
of the data [56] .

There are several alternative ways to choose the first cen-
troid. In the original variant the selection is arbitrary [54] . In [55] ,
the furthest pair of points are chosen as the first two centroids.

Another variant selects the one with maximum distance to the ori-
gin [57] because it is likely to be located far from the center. Max-
imum density has also been used [51,58] .

K-means ++ [59] is a randomized variant of the furthest point
heuristic. It chooses the first centroid randomly and the next ones
using a weighted probability p i = cost i /SUM(cost i), where cost i is
the squared distance of the data point x i to its nearest centroids.
This algorithm is an O(log k)-approximation to the problem. We
also implement k-means ++ for our tests because of its popularity.

Chiang and Mirkin [55] recalculate all the centroids after updat-
ing the partitions, and the next centroid is selected as the farthest
from the recently added centroid. Slightly more complex variant
[23] selects the point that decreases the objective function most. It
requires calculation of all distances between every pair of points,
which takes O(N 2) time. Thus, it does not qualify our criteria for
k-means initialization. With the same amount of computation we
can already run implement agglomerative clustering algorithm.

Other authors also weight the distances by the density of the
point [51,58] . This reduces the probability that outliers are se-
lected. Erisoglu et al. [60] use cumulative distance to all previous
centroids instead of the maxmin criterion. However, this performs
worse because it can easily choose two nearby points provided
that they have large cumulative distance to all other centroids [61] .

We use here a variant that selects the first point randomly
[54,59] . This adds randomness to the process as required by the
repeated k-means variant. The next centroids we select using the
original maxmin criterion, i.e. choosing the point with biggest dis-
tance to its nearest centroid.

102 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Fig. 9. Example of the maxmin heuristic for S3 dataset. The blue dots are the initial
and the red dots the final centroids. The trajectories show their movement during
the k-means iterations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Maxmin technique helps to avoid worst case behavior of the
random centroids, especially when the cluster sizes have serious
unbalance. It also has tendency to pick up outlier points from the
border areas, which leads to slightly inferior performance in the
case of datasets with high overlap (S3 and S4). However, k-means
usually works better with such datasets [39] , which compensates
for the weakness of Maxmin. Fig. 9 demonstrates the performance
of the Maxmin technique.

3.4. Sorting heuristics

Another popular technique is to sort the data points according
to some criterion. Sorting requires O(N log N) time, which is less
than that of one k-means iteration, O(kN), assuming that log N ≤ k .
After sorting, k points are selected from the sorted list using one
of the following heuristics:

• First k points.
• First k points while disallowing points closer than ε to already

chosen centroids.
• Every (N / k)th point (uniform partition)

For the sorting, at least the following criteria have been consid-
ered:

• Distance to center point [62]
• Density [21,63]
• Centrality [64]
• Attribute with the greatest variance [65]

Hartigan and Wong [62] sort the data points according to their
distance to the center of the data. The centroids are then selected
as every N / k th point in this order. We include this variant in our
tests. To have randomness, we choose a random data point as a
reference point instead of the center. This heuristic fulfills our re-
quirements: it is fast, simple, and requires no additional parame-
ters.

Astrahan [63] calculates density as the number of other points
within a distance d 1 . First centroid is the point with the highest

density, and the remaining k -1 centroids are chosen at a decreas-
ing order, with the condition that they are not closer than distance
d 2 from an already chosen centroid. Steinley and Brusco [21] rec-
ommends using the average pairwise distance (pd) both for d 1 and
d 2 . This makes the technique free from parameters but it is still
slow, O(N 2) time, for calculating the pairwise distances.

It would be possible to simplify this technique further and use
random sampling: select N pairs of points, and use this subsam-
ple to estimate the value of pd . However, the calculation of the
densities is still the bottleneck, which prevents this approach from
meeting the requirements for k-means initialization as such.

Cao et al. [64] proposed a similar approach. They use a primary
criterion (cohesion) to estimate how central a point is (how far
from boundary). Secondary threshold criterion (coupling) is used
to prevent centroids from being neighbors.

Al-Daoud [65] sorts the data points according to the dimension
with the largest variance. The points are then partitioned into k
equal size clusters. Median of each cluster is selected instead of the
mean. This approach belongs to a more general class of projection-
based techniques where the objects are mapped to some linear
axis such as diagonal or principal axis.

The sorting heuristic would work if the clusters were well sep-
arated, and all have different criterion value (such as the distance
from center point). This actually happens with the very high di-
mensional DIM datasets in our benchmark. However, with most
other datasets the clusters tend to be randomly located in respect
to the center point, and it is unlikely that all the clusters would
have different criterion values. What happens in practice, is that
the selected centroids are just random data points in the space,
see Fig. 10 .

3.5. Projection-based heuristics

Sorting heuristics can also be seen as a projection of the points
into a one-dimensional (non-linear) curve in the space. Most cri-
teria would just produce an arbitrary curve connecting the points
randomly, and lacking convexity or any sensible shape. However,
several linear projection-based techniques have been considered in
the literature:

• Diagonal axis [65]
• Single axis [66,67]
• Principal axis [46,67–71]
• Two random points [72]
• Furthest points [72]

After the projection is performed, the points are partitioned
into k equal size clusters similarly as with the sorting-based
heuristics.

Yedla et al. [66] sort the points according to their distance to
origin, and then select every N / k th point. If the origin is the center
of data, this is essentially the same technique as in [62] . If the at-
tributes are non-negative, then this is essentially the same as pro-
jecting the data to the diagonal axis. Such projection is trivial to
implement by calculating the average of the attribute values. It has
also been used for speeding-up nearest neighbor searches in clus-
tering in [73] .

Al-Daoud [65] sorts the points according to the dimension with
the largest variance. The points are then partitioned into k equal
size clusters. Median of each cluster is selected instead of the
mean. This adapts to the data slightly better than just using the
diagonal.

A more common approach is to use principal axis , which is the
axis of projection that maximizes variance. It has been used ef-
fectively in divisive clustering algorithms [46,67–71] . Calculation of
the principal axis takes O(DN)-O(D 2 N) depending on the variant

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 103

Fig. 10. Examples of sorting and projection-based techniques.

Fig. 11. Examples of the two projection-based heuristics for A2 dataset: random points (left), and the furthest point projections (right) [72] .

[46] . A more complex principal curve has also been used for clus-
tering [74] .

We consider two simple variants: random and two furthest
points projection as studied in [72] . The first heuristic takes two
random data points and projects to the line passing by these two
reference points. The key idea is the randomness; single selection
may provide poor initialization but when repeating several times,
the chances to find one good initialization increases, see Fig. 11 .
We include this technique into our experiments and refer to it as
Projection .

The second heuristic is slightly more deterministic but still ran-
dom. We start by selecting a random point, and calculate its fur-
thest point. The projection axis is the line passing by these two ref-
erence points. We again rely on randomness, but now the choices
are expected to be more sensible, potentially providing better re-
sults using fewer trials. However, according to [72] this variant
does not perform any better than the simpler random heuristic.

Projection works well if the data has one-dimensional structure.
In [72] , projective value is calculated to estimate how well a given
projection axis models the data. From our data, Birch2 and G2 have
high projective values and suitable for projection-based technique.
However, with all other datasets, the projection does not make
much more sense than the naïve sorting heuristics, see Fig. 10 .

We also note that projection-based techniques also general-
ize to segmentation-based clustering, where k -1 dividing planes
are searched simultaneously using dynamic programming [74,75] .
These clustering results usually require fine-tuning by k-means at
the final step, but nevertheless, they are standalone algorithms.

3.6. Density-based heuristics

Density was already used both with the furthest point and the
sorting heuristics, but the concept deserves a little bit further dis-
cussion. The idea of using density itself is appealing but it is not

trivial how to calculate the density, and how to use it in cluster-
ing. Especially since the initialization technique should be fast and
simple.

The main bottleneck of the algorithms is how to calculate the
density is estimated for the points. There are three common ap-
proaches for this:

• Buckets
• ε-radius circle
• k-nearest neighbors (KNN)

The first approach divides the space by a regular grid, and
counts the frequency of the points in every bucket [76] . The den-
sity of a point is then inherited from the bucket it is in. This ap-
proach is feasible in low-dimensional space but would become im-
practical in higher-dimensional spaces. In [61] , the problem is ad-
dressed by processing the dimensions independently in a heuris-
tic manner. Other authors have used kd-tree [51,57] or space-filling
curve [77] to partition the space into buckets containing roughly
the same number of points. In [51,57] , the number of buckets is
10 �k .

The other two approaches calculate the density for every point
individually. The traditional one is to define a neighborhood us-
ing a cutoff threshold (ε-radius), and then counting the number
of other points within this neighborhood [21,63,64,78] . The third
approach finds the k-nearest neighbors of a point [79] , and then
calculates the average distance to the points within this neighbor-
hood. Lemke and Keller calculate the density between every pair
of points [49] .

The bottleneck of the last two approaches is that we need to
find the points that are within the neighborhood. This requires
O(N 2) distance calculations in both cases. Several speed-up tech-
niques and approximate variants exist [80,81] but none that is both
fast and simple to implement. Calculating density values only for
a subset of size SQRT(N) would reduce the complexity to O(N 1.5)

104 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

depending whether the distances are calculated to all points or
only within the subset. In [82] , density is calculated in each di-
mension separately, and then final approximation is obtained by
summing up the individual densities. This allows rapid O(DN) time
estimation with more accurate estimation than the sub-sampling
approach.

Once calculated, the density can be used jointly with the fur-
thest point heuristic, with the sorting heuristic, or some of their
combination. For example, in [51] the furthest point heuristic was
modified by weighting the distance by its density so that outliers
are less likely chosen. The density peaks algorithm in [78] finds for
every point its nearest neighbor with higher density. It then ap-
plies sorting heuristic based on one of the two features: density
and the distance to its neighbor. The method works as a standalone
algorithm and does not require k-means at all.

Luxburg [50] first selects k ∗SQRT(k) preliminary clusters using
k-means and then eliminates the smallest ones. After this, the fur-
thest point heuristic is used to select the k clusters from the pre-
liminary set of clusters. When minimizing SSE, the size of the clus-
ters correlates to their density. Thus, Luxburg’s technique indirectly
implements a density-based approach which favors clusters of high
density. We include this technique in our experiments although it
does not satisfy our simplicity criterion.

We also note that there are several standalone clustering algo-
rithms based on density [49,78,83,84] . However, they do not fit to
our requirements for speed and simplicity. If combined with the
faster density estimation in [82] , some of these techniques could
be made competitive also in speed.

3.7. Splitting algorithm

Split algorithm puts all points into a single cluster, and then it-
eratively splits one cluster at a time until k clusters are reached.
This approach is seemingly simple and tempting to consider for
initializing k-means. However, there are two non-trivial design
choices to make: which cluster to split, and how to split it. We
therefore consider split mainly as a standalone algorithm, but dis-
cuss briefly some existing techniques that have been used within
k-means.

Linde et al. [85] uses binary split for initialization of their LBG
algorithm in the vector quantization context. Every cluster is split
by replacing the original centroid c by c + ε and c - ε, where ε refers
to a random vector. Splitting every cluster avoids the question of
which cluster to split but it does not have any real speed benefit.
In [46] , ε was calculated as the standard deviation of the points in
the cluster, in each dimension separately.

Projection-based approaches are also suitable for the splitting
algorithm. The idea is to divide a chosen cluster according to a
hyperplane perpendicular to the projection axis. It is possible to
find the optimal choice of the cluster to be split, and the opti-
mal location of the hyperplane in O(N) time [46,68] . This results
in a fast, O(N �log N �log k) time algorithm, but the implementation
is quite complex. It requires 22 functions and 947 lines of codes,
compared to 5 functions and 162 lines in repeated k-means [16] .

There is also a split-kmeans variant that applies k-means itera-
tion after every split in [46] , later popularized under the name Bi-
secting k-means in document clustering [86] . However, this would
increase the time complexity to O(k 2 N), which equals to O(N 2) if
k ≈ SQRT(N). Tri-level k-means [87] performs the clustering in two
stages. It first creates less clusters than k , and then splits the clus-
ters with highest variation before applying the traditional k-means.
All these variants are definitely standalone algorithms, and do not
qualify as an initialization technique here.

In this paper, we therefore implement a simpler variant. We
always select the biggest cluster to be split. The split is done by
selecting two random points in the cluster. K-means is then ap-

Fig. 12. General principle of repeated k-means (RKM). The key idea is that the ini-
tialization includes randomness to produce different solutions at every repeat.

plied but only within the cluster that was split as done in [68] .
The main difference to the bisecting k-means [86] and its original
split + kmeans variant in [46] , is that the time complexity sums up
to only O(N �log N); a proof can be easily derived from the one in
[46] .

3.8. Repeated k-means

Repeated k-means performs k-means multiple times starting
with different initialization, and then keeping the result with low-
est SSE-value. This is sometimes referred as multi-start k-means .
The basic idea of the repeats is to increase the probability of suc-
cess. Repeated k-means can be formulated as a probabilistic algo-
rithm as follows. If we know that k-means with a certain initializa-
tion technique will succeed with a probability of p , the expected
number of repeats (R) to find the correct clustering would be:

R = 1 /p

In other words, it is enough that k-means succeeds even some-
times (p > 0). It is then merely a question of how many repeats
are needed. Only if p ≈0 the number of repeats can be unrealisti-
cally high. For example, standard k-means with random centroids
succeeds 6–26% of the time with the S1-S4 datasets. These corre-
sponds to R = 7 to 14 repeats, on average.

If the initialization technique is deterministic (no randomness),
then it either succeeds (p = 100%) or fails (p = 0%) every time. To
justify the repeats, a basic requirement is that there is some ran-
domness in the initialization so that the different runs produce dif-
ferent results. Most techniques have the randomness implicitly. The
rest of the techniques we modify as follows:

• Rand-P Already included
• Rand-C Already included
• Maxmin First centroid randomly
• Kmeans ++ Already included
• Bradley Already included
• Sorting Reference point randomly
• Projection Reference points randomly
• Luxburg Already included
• Split Split centroids randomly

Repeats add one new parameter R . Since p is not known in
practice, we cannot derive value for R automatically. In this paper,
we use R = 100 unless otherwise noted. Fig. 12 shows the overall
scheme of the repeated k-means.

Repeating k-means also multiplies the processing time by a fac-
tor of R . It is possible to compensate for this by dividing the data

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 105

into random subsets. For instance, if we divide the data into R sub-
sets of size N / R , the total processing time would be roughly the
same as that of a single run.

For example, Bradley and Fayyad [31] apply k-means for a sub-
sample of size N / R , where R = 10 was recommended. Each sample
is clustered by k-means starting with random centroids. However,
instead of taking the best clustering of the repeats, a new dataset
is created from the R �k centroids. This new dataset is then clus-
tered by repeated k-means (R repeats). The total time complexity
is R �k �(N / R) + R �k 2 = kN + Rk 2 , where the first part comes from
clustering the sub-samples, and the second part from clustering
the combined set. If k = SQRT(N), then this would be N 1. 5 + RN .
Overall, the algorithm is fast and satisfies the criteria for initializa-
tion technique.

Bahmani et al. [88] have a similar approach. They repeat k-
means ++ R = O (log N) times to obtain R �k preliminary centroids,
which are then used as a new dataset for clustering by standard k-
means. They reported that R = 5 would be sufficient for the num-
ber of repeats. In our experiments, we consider the Bradley and
Fayyad [31] as an initialization, and use R = 100 repeats as with all
techniques.

4. Experimental results

We study next the overall performance of different initialization
techniques, and how the results depend on the following factors:

• Overlap of clusters
• Number of clusters
• Dimensions
• Unbalance of cluster sizes

The overall results (CI-values and success rates) are summarized
in Table 3 . We also record (as fails) how many datasets provide
success rate p = 0%. This means that the algorithm cannot find the
correct clustering even with 50 0 0 repeats. We test the following
methods:

• Rand-P
• Rand-C
• Maxmin
• kmeans ++
• Bradley
• Sorting
• Projection
• Luxburg
• Split

4.1. Overall results

CI-values : Random partition works clearly worse (CI = 12.4)
than the random centroids (CI = 4.5). Bradley and sorting heuris-
tics are slightly better (CI = 3.1 and 3.3), but the maxmin heuris-
tics (Maxmin and kmeans ++) are the best among the true ini-
tialization techniques (CI = 2.2 and 2.3). The standalone algorithms
(Luxburg and Split) are better (CI = 1.2 and 1.2), but even they pro-
vide the correct result (CI = 0) only for the easiest dataset: DIM32.

Success rates : The results show that Maxmin is a reason-
able heuristic. Its average success rate is 22% compared to 5%
of random centroids. It also fails (success rate = 0%) only in case
of three datasets; the datasets with a high number of clusters
(A3, Birch1, Birch2). Random partition works with S2, S3 and S4
but fails with all the other 8 datasets. The standalone algorithms
(Luxburg and Split) provide 40% success rates, on average, and fail
only with Birch1 and Unbalance.

Effect of iterations : From the initial results we can see that
Luxburg and Bradley are already standalone algorithms for which

k-means brings only little improvement. The average CI-value of
Luxburg improves only from 1.7 to 1.2 (∼30%), and Bradley from
3.4 to 3.1 (∼10%). The latter is more understandable as k-means is
already involved in the iterations. Split heuristic, although a stan-
dalone algorithm, leaves more space for k-means to improve (61%).

Number of iterations : The main observation is that the easier
the dataset, and the better the initialization, the fewer the itera-
tions needed. The differences between the initialization vary from
20 (Luxburg) to 36 (Rand-C); with the exception of random parti-
tion (Rand-P), which takes 65 iterations.

4.2. Cluster overlap

The results with the S1–S4 datasets (Table 3) demonstrate the
effect of the overlap in general: the less overlap, the worse the
k-means’ performance. Some initialization techniques can compen-
sate for this weakness. For example, the maxmin variants and the
standalone algorithms reduce this phenomenon but do not remove
it completely. They provide better initial solution with S1 (less
overlap) than with S4 (more overlap), but the final result after the
k-means iterations is still not much different. An extreme case is
DIM32, for which all these better techniques provide correct solu-
tion. However, they do it even without k-means iterations!

Further tests with G2 confirm the observation, see Fig. 13 .
When overlap is less than 2%, the k-means iterations do not help
much and the result depends mostly on the initialization. If the
correct clustering is found, it is found without k-means. Thus, the
clustering is solved by a better algorithm, not by better k-means
initialization. In case of high overlap, k-means reaches almost the
same result (about 88% success rate) regardless of how it was ini-
tialized.

4.3. Number of clusters

The results with the A1–A3 datasets (Table 3) show that the
more there are clusters the higher the CI-value and the lower the
success rate. This phenomenon holds for all initialization tech-
niques and it is not specific to k-means algorithm only. If an
algorithm provides correct clustering with success rate p for a
dataset of size k , then p is expected to decrease when k increases.
Fig. 14 confirms this dependency with the Birch2 subsets. Projec-
tion heuristic is the only technique that manages to capture the
hidden 1-dimensional structure in this data. The success rate of all
other true initialization techniques eventually decreases to 0%.

Fig. 15 shows that the CI-value has a near linear dependency
on the number of clusters. In most cases, the relative CI-value con-
verges to a constant when k approaches its maximum (k = 100). An
exception is Luxburg, which is less sensitive to the increase of k ;
providing values CI = (0.82, 1.25, 1.42, 1.54) for k = (25, 50, 75, 100).
Besides this exception, we conclude that the performance has lin-
ear dependency on k regardless of the initialization technique.

4.4. Dimensions

We tested the effect of dimensions using the DIM and G2
datasets. Two variants (Maxmin, Split) solve the DIM sets al-
most every time (99–100%), whereas Kmeans ++ and Luxburg solve
them most of the times (≈95%), see Fig. 16 . Interestingly, they find
the correct result by the initialization and no k-means iterations
are needed. In general, if the initialization technique is able to
solve the clustering, it does it regardless of the dimensionality.

The sorting and projection heuristics are exceptions in this
sense; their performance actually improves with the highest di-
mensions. The reason is that when the dimensions increase, the
clusters eventually become so clearly separated that even such

106 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 3
Average CI-values before and after k-means iterations, success rates, and the number of iterations performed. The results are
averages of 50 0 0 runs. Fail records for how many datasets the correct solution was never found (success rate = 0%). From DIM
datasets we report only DIM32; the results for the others are practically the same. Note: The values for Impr. and Aver. columns
are calculated from precise values and not from the shown rounded values. (For interpretation of the references to color in the
Table the reader is referred to the web version of this article.)

CI-values (initial)

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver.

Rand-P 12.5 14.0 12.8 14.0 19.0 32.9 48.1 7.0 96.0 96.6 13.1 33.3
Rand-C 5.3 5.5 5.4 5.4 7.3 12.7 18.2 4.6 36.6 36.6 5.8 13.0
Maxmin 1.3 2.9 6.1 6.8 2.1 4.1 5.0 0.9 21.4 9.6 0.0 5.5
kmeans ++ 1.7 2.3 3.2 3.3 3.1 5.6 7.9 0.8 21.3 10.4 0.1 5.4
Bradley 1.0 0.7 0.6 0.5 1.5 3.4 5.3 3.3 5.7 13.6 1.7 3.4
Sorting 3.3 3.7 4.1 4.4 4.9 10.4 15.6 4.0 34.1 7.2 1.7 8.5
Projection 3.0 3.4 3.9 4.2 4.5 9.8 15.2 4.0 33.7 1.0 1.1 7.6
Luxburg 0.8 0.8 1.1 1.3 0.9 1.1 1.2 4.2 5.6 1.7 0.0 1.7
Split 0.5 0.8 1.4 1.4 1.3 2.4 3.5 4.5 12.0 2.7 0.0 2.8

CI-values (final)

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Impr.

Rand-P 3.3 0.6 1.2 0.4 6.0 10.7 17.9 4.0 11.3 75.6 5.3 12.4 63%
Rand-C 1.8 1.4 1.3 0.9 2.5 4.5 6.6 3.9 6.6 16.6 3.6 4.5 65%
Maxmin 0.7 1.0 0.7 1.0 1.0 2.6 2.9 0.9 5.5 7.3 0.0 2.2 62%
kmeans ++ 1.0 0.9 1.0 0.8 1.5 2.9 4.2 0.5 4.9 7.2 0.1 2.3 57%
Bradley 0.9 0.6 0.5 0.4 1.3 3.0 4.8 3.5 4.6 12.5 1.6 3.1 11%
Sorting 1.3 1.1 1.0 0.7 1.5 3.6 5.5 4.0 5.7 4.3 1.4 2.7 69%
Projection 1.2 0.9 0.8 0.6 1.2 3.3 5.2 4.0 5.3 0.2 0.9 2.2 71%
Luxburg 0.5 0.4 0.6 0.4 0.6 0.9 1.0 4.0 2.7 1.6 0.0 1.2 29%
Split 0.2 0.3 0.4 0.4 0.5 1.1 1.8 4.0 2.8 1.6 0.0 1.2 61%

Success-%

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Fails

Rand-P 0% 47% 5% 63% 0% 0% 0% 0% 0% 0% 0% 10% 8
Rand-C 3% 11% 12% 26% 1% 0% 0% 0% 0% 0% 0% 5% 6
Maxmin 37% 16% 36% 9% 15% 1% 0% 22% 0% 0% 100% 22% 3
kmeans ++ 21% 24% 18% 30% 7% 0% 0% 51% 0% 0% 88% 22% 4
Bradley 21% 46% 49% 64% 7% 0% 0% 0% 0% 0% 2% 17% 5
Sorting 12% 20% 22% 36% 10% 0% 0% 0% 0% 12% 15% 12% 4
Projection 16% 29% 30% 42% 18% 0% 0% 0% 0% 92% 34% 24% 4
Luxburg 52% 60% 45% 61% 45% 33% 31% 0% 0% 17% 95% 40% 2
Split 78% 75% 62% 64% 51% 17% 5% 0% 0% 10% 99% 42% 2

Number of iterations

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver.

Rand-P 32 37 37 39 43 58 76 36 228 130 3 65
Rand-C 20 24 27 40 22 26 27 33 117 48 5 36
Maxmin 13 19 24 37 20 18 20 4 92 43 2 26
kmeans ++ 14 19 24 35 17 20 22 13 89 43 2 27
Bradley 13 12 13 17 12 17 19 24 77 45 2 23
Sorting 17 21 25 37 19 24 26 38 104 33 3 32
Projection 15 20 25 35 17 24 25 36 99 6 3 28
Luxburg 9 12 17 27 11 12 12 33 62 23 2 20
Split 7 11 19 27 12 16 18 35 65 27 2 22

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

Max
Min

KMplu
s

Brad
ley

Proj
ec

t

Sort
ing

Proj
RP

Spli
t

Low overlap

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

Max
Min

KMplu
s

Brad
ley

Proj
ec

t

Sort
ing

Proj
RP

Spli
t

High overlap

Fig. 13. Average success rates for all G2 datasets before (gray) and after k-means (white). The datasets were divided into two categories: those with low overlap < 2% (left),
and those with high overlap ≥2% (right).

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 107

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

Su
cc

es
s

ra
te

Maxmin
Luxburg

KM++

Split

Bradley

Projection

SortingRand-C

Fig. 14. Dependency of the success rate and the number of clusters when using the
subsets of Birch2 (B2-sub).

0%

5%

10%

15%

20%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

R
el

at
iv

e
C

I-v
al

ue

Rand-C

Maxmin

Luxburg

KM++

Split

Sorting

Bradley

Projection

Fig. 15. Dependency of the relative CI-values (CI/ k) and the number of clusters
when using the subsets of Birch2 (B2-sub).

naïve heuristics will be able to cluster the data. In general, the rea-
son for success or failure is not the dimensionality but the cluster
separation.

The results with G2 confirm the above observation, see Fig. 16 .
With the lowest dimensions, k-means iterations work because
some cluster overlap exists. However, for higher dimensions the
overlap eventually disappears and the performance starts to de-
pend mainly on the initialization. We also calculated how much
the success rate correlates with the dimensions and the overlap.
The results in Table 4 show that the final result correlates much
stronger with the overlap than with the dimensionality.

Since there is causality between dimensions and overlap, it is
unclear whether the dimensionality has any role at all. To test this
further, we generated additional datasets with D = 2–16 and com-
pared only those with overlap = 2%, 4%, 8%. The results showed
that success of the k-means iterations do not depend on the di-
mensions even when the clusters overlap.

To sum up, our conclusion is that k-means iterations cannot
solve the problem when the clusters are well separated. All tech-
niques that solve these datasets, do it already by the initialization
technique without any help of k-means. When there is overlap, k-
means works better. But even then, the performance does not de-
pend on the dimensionality.

4.5. Unbalance

Unbalance dataset shows one weakness of k-means. The prob-
lem is not the different densities as such, but the unbalance of
cluster sizes together with the separation of the clusters. If no cen-
troids are selected from the sparse area, k-means iterations man-
age to move only one centroid into this area, and all other cen-
troids will remain in the dense area, see Fig. 17 . The probability
that a single random centroid would be selected from the sparse
area is p = 50 0/650 0 = 7%. To pick all required five centroids from
the sparse area would happen with probability of 0.01%, 1 i.e. only
once every 8430 runs.

Besides Rand-C and Rand-P, sorting and projection heuristics,
Luxburg and Split algorithms all fail with this data by allocating
most centroids to the dense area. Bradley works only slightly bet-
ter and often allocates two centroids to the sparse area. Maxmin
heuristics work best because they rely more on distances than
on frequencies. K-means ++ typically misses one centroid whereas
Maxmin does the opposite and allocates one too many centroids in
the sparse area. They provide success rates of 22% (Maxmin) and
51% (KM ++), in contrast to the other techniques that result in 0%
success.

To sum up, success depends mainly on the goodness of the ini-
tialization; k-means iterations can do very little with this kind of
data. If the correct clustering is found, it is found mainly without
k-means.

4.6. Repeats

We next investigate to what extent the k-means performance
can be improved by repeating the algorithm several times. Table 5
summarizes the results. We can see that significant improvement
is achieved with all initialization techniques. When the success
rate of a single run of k-means is 2% or higher, CI = 0 can always be
reached thanks to the repeats. However, none of the variants can
solve all datasets. Overall performance of the different initialization
techniques can be summarized as follows:

• Random partition is almost hopeless and the repeats do not
help much. It only works when the clusters have strong overlap.
But even then, k-means works relatively well anyway regardless
of the initialization.

• Random centroids is improved from CI = 4.5 to 2.1, on average,
but still it can solve only three datasets (S2, S3, S4). Two other
datasets (S1, A1) could be solved with significantly more re-
peats, but not the rest.

• Maxmin variants are the best among the simple initialization
techniques providing CI = 0.7, on average, compared to 2.1 of
Rand-C. They still fail with four datasets. K-means ++ is not sig-
nificantly better than the simpler Maxmin.

• The standalone algorithms (Luxburg and Split) are the best.
They provide average value of CI = 1.2 without the repeats, and
CI = 0.4 with 100 repeats. They fail only with the Unbalance
datasets.

The improvement from the repeats is achieved at the cost
of increased processing time. We used the fast k-means variant
[89] that utilizes the activity of the centroids. For the smaller data
sets the results are close to real-time, but with the largest dataset
(Birch1, N = 10 0,0 0 0), the 10 0 repeats can take from 10–30 min.

We extended the tests and ran 20 0,0 0 0 repeats for A3 and Un-
balance datasets. The results in Table 6 show that Maxmin would
need 216 repeats to reach CI = 0 with A3, on average, whereas k-
means ++ would require 8696 repeats even though it finds CI = 1

1 (8
5
)
p 5 (1 − p) 3 .

108 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 4
Correlation of success rate with increasing overlap (left) and dimensions (right) with
the G2 datasets (3:3 centroid allocation test). Red > 0.60, Yellow = 0.30–0.53.

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg

Initial

Projection

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg
Final

Projection

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Bradley

MaxminRand-C

LuxburgInitial

Rand-P

Split
Sorting

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-P Maxmin

Bradley

Luxburg

Final

Split
Sorting

Rand-C

Fig. 16. Dependency of success rate on the dimensions when no overlap (DIM sets), and with overlap (G2 datasets). The results of G2 are average success rates for all
sd = 10–100 (G2-D-sd) with a given dimension D, before and after k-means.

already after 138 repeats. The results also show that Unbalance
dataset is difficult for almost all initialization techniques but the
maxmin heuristics are most suitable for this type of data.

4.7. Summary

We make the following observations:

• Random partition provides an initial solution of similar qual-
ity regardless of overlap, but the errors in initial solution can
be better fixed by k-means iterations when clusters have high
overlap. In this case it can even outperform random centroids.
However, repeats do not improve the results much, especially
with sets having many clusters (A3, Birch2).

• Cluster overlap is the biggest factor. If there is high overlap,
k-means iterations work well regardless of the initialization.
If there is no overlap, then the success depends completely
on the initialization technique: if it fails, k-means will also
fail.

• Practically all initialization techniques perform worse when the
number of clusters increases. Success of the k-means depends
linearly on the number of clusters. The more clusters, the more
errors there are, before and after the iterations.

• Dimensionality does not have a direct effect. It has a slight ef-
fect on some initialization techniques but k-means iterations
are basically independent on the dimensions.

• Unbalance of cluster sizes can be problematic especially for the
random initializations but also for the other techniques. Only

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 109

Table 5
Performance of the repeated k-means (100 repeats). The last two columns show the average results of all datasets without repeats (KM) and
with repeats (RKM). (For interpretation of the references to color in the Table the reader is referred to the web version of this article.)

the maxmin variants with 100 repeats can overcome this prob-
lem.

Table 7 summarizes how the four factors affect the different ini-
tialization techniques and the k-means iterations.

5. Conclusions

On average, k-means caused errors with about 15% of the clus-
ters (CI = 4.5). By repeating k-means 100 times this errors was
reduced to 6% (CI = 2.0). Using a better initialization technique
(Maxmin), the corresponding numbers were 6% (CI = 2.1) with k-
means as such, and 1% (CI = 0.7) with 100 repeats. For most pat-
tern recognition applications this accuracy is more than enough
when clustering is just one component within a complex system.

The most important factor is the cluster overlap. In general,
well separated clusters make the clustering problem easier but
for k-means it is just the opposite. When the clusters overlap, k-
means iterations work reasonably well regardless of the initial-
ization. This is the expected situation in most pattern recognition
applications.

The number of errors have a linear dependency on the number
of clusters (k): the more clusters, the more errors k-means makes,
but the percentage remains constant. Unbalance of cluster sizes is
more problematic. Most initialization techniques fail, and only the
maxmin heuristics worked in this case. The clustering result then
depends merely on the goodness of the initialization technique.

Dimensionality itself is not a factor. It merely matters how the
dimensions affect the cluster overlap. With our data, the clus-
ters became more separated when the dimensions were increased,

110 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 6
Number of repeats in RKM to reach certain CI-level. Missing values (−)
indicate that this CI-level was never reached during the 20 0,0 0 0 repeats.

A3
CI-value

Initialization 6 5 4 3 2 1 0

Rand-P – – – – – – –

Rand-C 2 4 11 54 428 11,111 –

Maxmin 1 3 14 216
Kmeans ++ 1 2 3 14 138 8696
Bradley 1 2 8 58 1058 33,333
Sorting 1 2 4 13 73 1143 –

Projection 1 2 3 9 46 581 18,182
Luxburg 1 3
Split 1 2 9
Unbalance
CI-value

Initialization 6 5 4 3 2 1 0

Rand-P 1 97 8333 – –

Rand-C 1 16 69 1695 100k
Maxmin 1 4
Kmeans ++ 1 2
Bradley 1 3 6 70 1471
Sorting 1 – – – –

Projection 1 935 16,667 – –

Luxburg 1 59 16,667 – –

Split 1 9524 – – –

Table 7
How the four factors have effect on the performance of the initialization and on
the k-means iterations.

Method Overlap Clusters Dimension Unbalance

Rand-P No effect Constant No effect Very bad
Rand-C No effect Constant No effect Very bad
Maxmin Bad Constant No effect A bit worse
kmeans ++ A bit worse Constant No effect A bit worse
Bradley Good Constant No effect Bad
Sorting A bit worse Constant No effect Very bad
Projection A bit worse Constant No effect Very bad
Luxburg A bit worse Minor effect No effect Very bad
Split A bit worse Constant No effect Very bad
KM iterations Good Constant No effect No effect

which in turn worsened the k-means performance. Besides this in-
direct effect, the dimensions did not matter much.

With real data the effect might be just the opposite. If the fea-
tures (attributes) are added in the order of their clustering capa-
bility, it is expected that the clusters would become more overlap-
ping when adding more features. As a result, k-means would start
to work better but the data itself would become more difficult to
cluster, possibly losing the clustering structure. And vice versa, if
good feature selection is applied, the clusters can be more sepa-
rated, which has the danger that k-means would start to perform
worse.

Based on these observations, choosing an initialization tech-
nique like Maxmin can compensate for the weaknesses of k-means.
With unbalanced cluster sizes it might work best overall. However,
it is preferable to repeat the k-means 10–100 times; each time tak-
ing a random point as the first centroids and selecting the rest
using the Maxmin heuristic. This will keep the number of errors
relatively small.

However, the fundamental problem of k-means still remains
when the clusters are well separated. From all the tested combi-
nations, none was able to solve all the benchmark datasets despite
them being seemingly simple. With 100 repeats, Maxmin and k-
means ++ solved 7 datasets (out of the 11), thus being the best ini-
tialization techniques. The better standalone algorithms (Luxburg
and Split) managed to solve 9.

Fig. 17. Examples of the initialization technique on the Unbalance dataset. The only
techniques that do not badly fail are the maxmin heuristics. The numbers indicate
the order in which the centroids are selected.

To sum up, if the clusters overlap, the choice of initialization
technique does not matter much, and repeated k-means is usually
good enough for the application. However, if the data has well-
separated clusters, the result of k-means depends merely on the
initialization algorithm.

In general, the problem of initialization is not any easier than
solving the clustering problem itself. Therefore, if the accuracy of
clustering is important, then a better algorithm should be used.
Using the same computing time spent for repeating k-means, a
simple alternative called random swap (RS) [12] solves all the
benchmark datasets. Other standalone algorithms that we have
found able to solve all the benchmark sets include genetic algo-
rithm (GA) [10] , the split algorithm [46] , split k-means [46] , and

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 111

density peaks [78] . Agglomerative clustering [30] solves 10 out
of 11.

References

[1] E. Forgy , Cluster analysis of multivariate data: efficiency vs. interpretability of
classification, Biometrics 21 (1965) 768–780 .

[2] J. MacQueen , Some methods for classification and analysis of multivariate ob-
servations, in: Berkeley Symposium on Mathematical Statistics and Probability,
1, Statistics University of California Press, Berkeley, Calif., 1967, pp. 281–297 .

[3] S.P. Lloyd , Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2)
(1982) 129–137 .

[4] L. Wang , C. Pan , Robust level set image segmentation via a local correntropy-
-based k-means clustering, Pattern Recognit. 47 (2014) 1917–1925 .

[5] C. Boutsidis , A. Zouzias , M.W. Mahoney , P. Drineas , Randomized dimensional-
ity reduction for k-means clustering, IEEE Trans. Inf. Theory 61 (2, February)
(2015) 1045–1062 .

[6] M. Capo , Perez A , J.A. Lozano , An efficient approximation to the k-means clus-
tering for massive data, Knowl.-Based Syst. 117 (2017) 56–69 .

[7] Z. Huang , N. Li , K. Rao , C. Liu , Y. Huang , M. Ma , Z. Wang , Development of a
data-processing method based on Bayesian k-means clustering to discriminate
aneugens and clastogens in a high-content micronucleus assay, Hum. Exp. Tox-
icol. 37 (3) (2018) 285–294 .

[8] A.K. Jain , Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31
(2010) 651–666 .

[9] K. Krishna , Murty M.N , Genetic k-means algorithm, IEEE Trans. Syst. Man Cy-
bern. Part B 29 (3) (1999) 433–439 .

[10] P. Fränti , Genetic algorithm with deterministic crossover for vector quantiza-
tion, Pattern Recognit. Lett. 21 (1) (20 0 0) 61–68 .

[11] P. Fränti , J. Kivijärvi , Randomized local search algorithm for the clustering
problem, Pattern Anal. Appl. 3 (4) (20 0 0) 358–369 .

[12] P. Fränti , Efficiency of random swap clustering, J. Big Data 5 (13) (2018) 1–29 .
[13] S. Kalyani , K.S. Swarup , Particle swarm optimization based K-means clustering

approach for security assessment in power systems, Expert Syst. Appl. 32 (9)
(2011) 10839–10846 .

[14] D. Yan , L. Huang , M.I. Jordan , Fast approximate spectral clustering, ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min. (2009) 907–916 .

[15] L. Bai , X. Cheng , J. Liang , H. Shen , Y. Guo , Fast density clustering strate-
gies based on the k-means algorithm, Pattern Recognit. 71 (2017) 375–
386 .

[16] T. Kinnunen , I. Sidoroff, M. Tuononen , P. Fränti , Comparison of clustering meth-
ods: a case study of text-independent speaker modeling, Pattern Recognit. Lett.
32 (13, October) (2011) 1604–1617 .

[17] Q. Zhao , P. Fränti , WB-index: a sum-of-squares based index for cluster validity,
Data Knowl. Eng. 92 (July) (2014) 77–89 .

[18] M. Rezaei and P. Fränti Can the number of clusters be solved by external in-
dex? manuscript. (submitted)

[19] J.M Peña , J.A. Lozano , P. Larrañaga , An empirical comparison of four initializa-
tion methods for the k-means algorithm, Pattern Recognit. Lett. 20 (10, Octo-
ber) (1999) 1027–1040 .

[20] J. He , M. Lan , C-L Tan , S-Y Sung , H-B Low , Initialization of Cluster Refinement
Algorithms: a review and comparative study, IEEE Int. Joint Conf. Neural Netw.
(2004) .

[21] D. Steinley , M.J. Brusco , Initializing k-means batch clustering: a critical evalua-
tion of several techniques, J. Classification 24 (2007) 99–121 .

[22] M.E. Celebi , H.A. Kingravi , P.A. Vela , A comparative study of efficient initial-
ization methods for the k-means clustering algorithm, Expert Syst. Appl. 40
(2013) 200–210 .

[23] L. Kaufman , P. Rousseeuw , Finding Groups in data: An introduction to Cluster
Analysis, Wiley Interscience, 1990 .

[24] B. Thiesson, C. Meek, D.M. Chickering, and D. Heckerman, Learning mixtures
of Bayesian networks, Technical Report MSR-TR-97-30 Cooper & Moral, 1997.

[25] J.T. Tou , R.C. Gonzales , Pattern Recognition Principles, Addison-Wesley, 1974 .
[26] T.F. Gonzalez , Clustering to minimize the maximum intercluster distance,

Theor. Comput. Sci. 38 (2–3) (1985) 293–306 .
[27] J.H. Ward , Hierarchical grouping to optimize an objective function, J. Am. Stat.

Assoc. 58 (301) (1963) 236–244 .
[28] A. Likas , N. Vlassis , J. Verbeek , The global k-means clustering algorithm, Pat-

tern Recognit. 36 (2003) 451–461 .
[29] D. Steinley , Local optima in k-means clustering: what you don’t know may

hurt you, Psychol. Methods 8 (2003) 294–304 .
[30] P. Fränti , T. Kaukoranta , D.-F. Shen , K.-S. Chang , Fast and memory efficient im-

plementation of the exact PNN, IEEE Trans. Image Process. 9 (5, May) (20 0 0)
773–777 .

[31] P. Bradley , U. Fayyad , Refining initial points for k-means clustering, in: Inter-
national Conference on Machine Learning, San Francisco, 1998, pp. 91–99 .

[32] R.O. Duda , P.E. Hart , Pattern Classification and Scene Analysis, John Wiley and
Sons, New York, 1973 .

[33] M. Bicego , M.A.T. Figueiredo , Clustering via binary embedding, Pattern Recog-
nit. 83 (2018) 52–63 .

[34] N. Karmitsa , A.M. Bagirov , S. Taheri , Clustering in large data sets with
the limited memory bundle method, Pattern Recognit. 83 (2018) 245–

259 .
[35] Y. Zhu , K.M. Ting , M.J. Carman , Grouping points by shared subspaces for effec-

tive subspace clustering, Pattern Recognit. 83 (2018) 230–244 .

[36] P.B. Frandsen , B. Calcott , C. Mayer , R. Lanfear , Automatic selection of parti-
tioning schemes for phylogenetic analyses using iterative k-means clustering
of site rates, BMC Evol. Biol. 15 (13) (2015) .

[37] D.G. Márquez , A. Otero , P. Félix , C.A. García , A novel and simple strategy for
evolving prototype based clustering, Pattern Recognit. 82 (2018) 16–30 .

[38] L. Huang , H.-Y. Chao , C.-D. Wang , Multi-view intact space clustering, Pattern
Recognit. 86 (2019) 344–353 .

[39] P. Fränti , S. Sieranoja , K-means properties on six clustering benchmark
datasets, Appl. Intel. 48 (12) (2018) 4743–4759 .

[40] L. Morissette , S. Chartier , The k-means clustering technique: general consider-
ations and implementation in Mathematica, Tutor. Quant. Methods Psychol. 9
(1) (2013) 15–24 .

[41] J. Liang , L. Bai , C. Dang F. Cao , The k-means-type algorithms versus imbal-
anced data distributions, IEEE Trans. Fuzzy Syst. 20 (4, August) (2012) 728–
745 .

[42] I. Melnykov , V. Melnykov , On k-means algorithm with the use of Mahalanobis
distances, Stat. Probab. Lett. 84 (January) (2014) 88–95 .

[43] V. Melnykov , S. Michael , I. Melnykov , Recent developments in model-based
clustering with applications, in: M. Celebi (Ed.), Partitional Clustering Algo-
rithms, Springer, Cham, 2015 .

[44] M. Rezaei , P. Fränti , Set-matching methods for external cluster validity, IEEE
Trans. Knowl. Data Eng. 28 (8, August) (2016) 2173–2186 .

[45] P. Fränti , M. Rezaei , Q. Zhao , Centroid index: cluster level similarity measure,
Pattern Recognit. 47 (9) (2014) 3034–3045 .

[46] P. Fränti , T. Kaukoranta , O. Nevalainen , On the splitting method for VQ code-
book generation, Opt. Eng. 36 (11, November) (1997) 3043–3051 .

[47] P. Fränti , O. Virmajoki , V. Hautamäki , Fast agglomerative clustering using a k-n-
earest neighbor graph, IEEE Trans. Pattern Anal. Mach. Intel. 28 (11, November)
(2006) 1875–1881 .

[48] G.H. Ball , D.J. Hall , A clustering technique for summarizing multivariate data,
Syst. Res. Behav. Sci. 12 (2, March) (1967) 153–155 .

[49] O. Lemke , B. Keller , Common nearest neighbor clustering: a benchmark, Algo-
rithms 11 (2) (2018) 19 .

[50] U.V. Luxburg , Clustering stability: an overview, Found. Trends Mach. Learn. 2
(3) (2010) 235–274 .

[51] S.J. Redmond , C. Heneghan , A method for initialising the K-means clustering
algorithm using kd-trees, Pattern Recognit. Lett. 28 (8) (2007) 965–973 .

[52] S. Tezuka , P.L Equyer , Efficient portable combined Tausworthe random number
generators, ACM Trans. Model. Comput. Simul. 1 (1991) 99–112 .

[53] M.J. Norušis , IBM SPSS Statistics 19 Guide to Data Analysis, Prentice Hall, Upper
Saddle River, New Jersey, 2011 .

[54] T. Gonzalez , Clustering to minimize the maximum intercluster distance, Theor.
Comput. Sci. 38 (2–3) (1985) 293–306 .

[55] M.M.-T. Chiang , B. Mirkin , Intelligent choice of the number of clusters in
k-means clustering: an experimental study with different cluster spreads, J.
Classification 27 (2010) 3–40 .

[56] J. Hämäläinen , T. Kärkkäinen , Initialization of big data clustering using distri-
butionally balanced folding, Proceedings of the European Symposium on Arti-
ficial Neural Networks, Comput. Intel. Mach. Learn.-ESANN (2016) .

[57] I. Katsavounidis , C.C.J. Kuo , Z. Zhang , A new initialization technique for gener-
alized Lloyd iteration, IEEE Signal Process Lett. 1 (10) (1994) 144–146 .

[58] F. Cao , J. Liang , L. Bai , A new initialization method for categorical data cluster-
ing, Expert Syst. Appl. 36 (7) (2009) 10223–10228 .

[59] D. Arthur , S. Vassilvitskii , K-means ++ : the advantages of careful seeding,
ACM-SIAM Symp. on Discrete Algorithms (SODA’07), January 2007 .

[60] M. Erisoglu , N. Calis , S. Sakallioglu , A new algorithm for initial cluster centers
in k-means algorithm, Pattern Recognit. Lett. 32 (14) (2011) 1701–1705 .

[61] C. Gingles , M. Celebi , Histogram-based method for effective initialization of
the k-means clustering algorithm, Florida Artificial Intelligence Research So-
ciety Conference, May 2014 .

[62] J.A . Hartigan , M.A . Wong , Algorithm AS 136: a k-means clustering algorithm, J.
R. Stat. Soc. C 28 (1) (1979) 100–108 .

[63] M.M. Astrahan , Speech Analysis by Clustering, Or the Hyperphome Method,
Stanford Artificial Intelligence Project Memorandum AIM-124, Stanford Univer-
sity, Stanford, CA, 1970 .

[64] F. Cao , J. Liang , G. Jiang , An initialization method for the k-means algorithm
using neighborhood model, Comput. Math. Appl. 58 (2009) 474–483 .

[65] M. Al-Daoud , A new algorithm for cluster initialization, in: World Enformatika
Conference, 2005, pp. 74–76 .

[66] M. Yedla , S.R. Pathakota , T.M. Srinivasa , Enhancing k-means clustering algo-
rithm with improved initial center, Int. J. Comput. Sci. Inf. Technol. 1 (2) (2010)
121–125 .

[67] T. Su , J.G. Dy , In search of deterministic methods for initializing k-means and
gaussian mixture clustering, Intel. Data Anal. 11 (4) (2007) 319–338 .

[68] X. Wu , K. Zhang , A better tree-structured vector quantizer, in: IEEE Data Com-
pression Conference, Snowbird, UT, 1991, pp. 392–401 .

[69] C.-M. Huang , R.W. Harris , A comparison of several vector quantization code-
book generation approaches, IEEE Trans. Image Process. 2 (1) (1993) 108–112 .

[70] D. Boley , Principal direction divisive partitioning, Data Min. Knowl. Discov. 2
(4) (1998) 325–344 .

[71] M.E. Celebi , H.A. Kingravi , Deterministic initialization of the k-means algorithm
using hierarchical clustering, Int. J. Pattern Recognit Artif Intell. 26 (07) (2012)
1250018 .

[72] S. Sieranoja , P. Fränti , Random projection for k-means clustering, in: Int. Conf.
Artificial Intelligence and Soft Computing (ICAISC), Zakopane, Poland, June
2018, pp. 6 80–6 89 .

112 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

[73] S.-W. Ra , J.-K. Kim , A fast mean-distance-ordered partial codebook search algo-
rithm for image vector quantization, IEEE Trans. Circuits Syst. 40 (September)
(1993) 576–579 .

[74] I. Cleju , P. Fränti , X. Wu , Clustering based on principal curve, in: Scandina-
vian Conf. On Image Analysis, LNCS, vol. 3540, Springer, Heidelberg, 2005,
pp. 872–881 .

[75] X. Wu , Optimal quantization by matrix searching, J. Algorithms 12 (4) (1991)
663–673 .

[76] M.B. Al-Daoud , S.A. Roberts , New methods for the initialisation of clusters, Pat-
tern Recognit. Lett. 17 (5) (1996) 451–455 .

[77] P. Gourgaris , C. Makris , A Density Based K-Means Initialization Scheme, EANN
workshops, Rhodes Island, Greece, 2015 .

[78] A. Rodriquez , A. Laio , Clustering by fast search and find of density peaks, Sci-
ence 344 (6191) (2014) 14 92–14 96 .

[79] P. Mitra , C. Murthy , S.K. Pal , Density-based multiscale data condensation, IEEE
Trans. Pattern Anal. Mach. Intel. 24 (6) (2002) 734–747 .

[80] S. Sieranoja , P. Fränti , Constructing a high-dimensional kNN-graph using a
Z-order curve, ACM J. Exp. Algorithmics 23 (1, October) (2018) 1–21 1.9: .

[81] W. Dong , C. Moses , K. Li , Efficient k-nearest neighbor graph construction for
generic similarity measures, in: Proceedings of the ACM International Confer-
ence on World wide web, ACM, 2011, pp. 577–586 .

[82] P. Fränti , S. Sieranoja , Dimensionally distributed density estimation, in: Int.
Conf. Artificial Intelligence and Soft Computing (ICAISC), Zakopane , Poland,
June 2018, pp. 343–353 .

[83] H.J. Curti , R.S. Wainschenker , FAUM: fast Autonomous Unsupervised Multidi-
mensional classification, Inf. Sci. 462 (2018) 182–203 .

[84] J. Xie , Z.Y. Xiong , Y.F. Zhang , Y. Feng , J. Ma , Density core-based clustering algo-
rithm with dynamic scanning radius, Knowl.-Based Syst. 142 (2018) 68–70 .

[85] Y. Linde , A. Buzo , R.M. Gray , An algorithm for vector quantizer design, IEEE
Trans. Commun. 28 (1, January) (1980) 84–95 .

[86] M. Steinbach , G. Karypis , V. Kumar , A comparison of document clustering tech-
niques, in: KDD workshop on text mining, vol. 40 0, Boston, 20 0 0, pp. 525–526 .

[87] S-S. Yu , S-W. Chu , C-M. Wang , Y-K. Chan , T-C. Chang , Two improved k-means
algorithms, Appl. Soft Comput. 68 (2018) 747–755 .

[88] B. Bahmani , B. Mosley , A. Vattani , R. Kumar , S. Vassilvitski , Scal-
able k-means ++ , Proc. VLDB Endow. 5 (7) (2012) 622–633 .

[89] T. Kaukoranta , P. Fränti , O. Nevalainen , A fast exact GLA based on code vector
activity detection, IEEE Trans. Image Process. 9 (8, August) (20 0 0) 1337–1342 .

Pasi Fränti received his MSc and PhD degrees from the University of Turku, 1991
and 1994 in Science. Since 20 0 0, he has been a professor of Computer Science at
the University of Eastern Finland (UEF). He has published 81 journals and 167 peer
review conference papers, including 14 IEEE transaction papers. His main research
interests are in machine learning, data mining, pattern recognition including clus-
tering algorithms and intelligent location-aware systems. Significant contributions
have also been made in image compression, image analysis, vector quantization and
speech technology.

Sami Sieranoja received the B.Sc. and M.Sc. degrees in University of Eastern Fin-
land, 2014 and 2015. Currently he is a doctoral student at the University of Eastern
Finland. His research interests include neighborhood graphs and data clustering.

uef.fi

PUBLICATIONS OF
THE UNIVERSITY OF EASTERN FINLAND

Dissertations in Forestry and Natural Sciences

ISBN 978-952-61-3644-8
ISSN 1798-5668

Clustering algorithms can find patterns in

data by separating it into groups consisting
of similar objects. In this thesis we present

new methods for data clustering and analyze
the performance of existing methods.

The results allow to apply clustering based
data analysis on big datasets and provide

important information on the limitations of
existing methods.

SAMI SIERANOJA

	Blank Page
	UEF_Vaitoskirja_401_Sami_Sieranoja_LUMET_sisus_NETTI_20_11_17.pdf
	Abstract
	Acknowledgements
	1	Introduction
	1.1	Better clustering by using a kNN graph
	1.2	Clustering with k-means

	2	Data and similarity
	2.1	Spherical data
	2.2	Shape data
	2.3	Text data
	2.4	Properties of data
	2.5	Similarity or distance
	2.6	Cost functions
	2.7	Measuring clustering quality

	3	kNN graph
	3.1	Exact methods and the problem of dimensionality
	3.2	Neighborhood Propagation
	3.3	Z-order neighborhood propagation
	3.4	Random point division

	4	Density Peaks clustering using a kNN graph
	4.1	Density Peaks
	4.2	Fast Density Peaks using a kNN graph

	5	k-means
	5.1	Repeated k-means (RKM)
	5.2	Initialization methods
	5.3	Results

	6	Summary of contributions
	7	Summary of results
	8	Conclusions
	References
	Figure 1. Constructing a kNN graph (k=4) for data can reveal the cluster structure of the data. In case of completely separated clusters (left), the connected components of the graph form the clusters. In case of more overlapping clusters (right), the clu
	Figure 2. Three examples of clustering results when using the SSE cost function. A Gaussian cluster is split into several spherical clusters (left); mismatch of the variance causes the larger cluster to be split (middle); mismatch of cluster sizes does no
	Figure 3. K-means initializes the centroids to random positions (blue dots). The algorithm then iteratively tunes the locations of the centroids until it converges to a local optimum solution (red dots). Success of the algorithm depends on the initial cen
	Figure 4. Some of the spherical datasets used in this thesis. [P3]
	Figure 5. Variants of the G2 dataset and their distance histograms. The first peak is for the distances inside the clusters, the second for distances between clusters. When variance of clusters is increased, they become more overlapped and the distance hi
	Figure 6. Distance histograms of selected (spherical) datasets. If data has clusters, this usually shows up as peaks in the distance histogram. The first peak contains the smallest distances which are typically inside clusters. Other peaks contain distanc
	Figure 7. Shape datasets contain non-spherical data. They are not suitable to cluster with k-means, but can be better clustered using density based methods such as Density Peaks or DBSCAN.
	Figure 8. Histograms for shape data do not have as clear first peak as spherical datasets. This is because, contrary to spherical datasets, points in the same cluster can be very far from each other. Points belong to the same cluster when other points, wh
	Figure 9: Overlap measured for the G2-2-30 dataset. [P3]
	Figure 10: Example of a typical k-means result for the A2 dataset. The corresponding measures for this are: CI=4, SSE=3.08. [P3]
	Figure 11. The kNN graph is formed by finding the k-nearest neighbors for all points in the dataset. Therefore any kNN search method can also be used to construct a kNN graph. However, the reverse is not possible since in the kNN search problem the query
	Figure 12. Example of k=10 nearest neighbors for the words porpoise, tortoise and portoise. This is part of a larger edit distance kNN graph on 466,544 words dataset. Here only the neighbors of the three words are shown. All distances in the graph are 2,
	Figure 13. kNN searching in kd-tree.
	Figure 14. Volume of a hypersphere in relation to volume of a same width hypercube goes to zero very quickly as dimensionality increases. This comes mainly from the O(D!) gamma function which is the denominator in the formula. Number of points are expecte
	Figure 15. Bit-interleaving is used to produce the Z-values.
	Figure 16. Space filling curves impose an ordering for multidimensional discrete space. The Z-order -curve (left) and Hilbert curve (right) are the two most common space filling curves. Both are self-similar, which means that the same pattern repeats recu
	Figure 17. Multiple different z-orderings are needed to produce a high quality kNN graph. Error points are shown as black rectangles. [P1]
	Figure 18. The RP-div algorithm recursively subdivides the dataset of size N=37 by first choosing two random points (a,b). The dataset is split based on which of the two points is nearer. After the first split, the size of the subset A is smaller than thr
	Figure 19. After repeating the random pair division, a new solution is obtained. This solution is merged with the previous one to form a new improved kNN graph. [P2]
	Figure 20. Different cluster selection strategies based on the density-vs-delta plot for the S4 dataset. Cluster centroids typically have both high density and high distance to a higher density point (delta). Therefore, thresholding based on a combination
	Figure 21. Illustration of the Fast Density Peaks algorithm. (1) For a given data set, the kNN graph is constructed. (2) Densities are calculated as inverse of the mean distance to the neighbors. (3) Nearest higher density point (big brother) is (in case
	Figure 22. Distribution of slope points (gray) and local peaks (red) inside an example cluster. One of the local peaks (blue) is the resulting cluster centroid (global peak). The case of k=30 (left) and k=70 (right) are shown. When the number of neighbor
	Figure 23. The k-means algorithm.
	Figure 24: General principle of repeated k-means (RKM). The key idea is that the initialization includes randomness to produce different solutions at every repeat.
	Figure 25. Example of the maxmin heuristic for S3 dataset. The blue dots are the initial and the red dots the final centroids. The trajectories show their movement during the k-means iterations.
	Figure 26. Illustration of the positive effect of overlap for k-means. The gray trajectories show the movement of the centroids during the iterations. In both cases, only one initial centroid is on the rightmost cluster and only when there is sufficient o
	Figure 27. Performance of k-means increases when overlap increases. Performance is measured as success rate (%) and CI-values.
	Figure 28. Effect of unbalance for k-means performance demonstrated using the Unbalance dataset. Random initialization of k-means tends to put too many centroids in the dense clusters and too few in the sparse clusters. This results in average CI of 3.9.
	Figure 29. How different properties of a dataset affect the success of k-means clustering.

