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Abstract

Increase in the amount, variety and complexity of data has made it more 
difficult	to	understand	or	process	information.	Data	clustering	provides	
one way to help in these challenges. The aim of clustering is to group 
objects of a dataset so that the objects in the same group are more similar 
to each other than objects in other groups. It can be used to summarize 
data,	find	patterns	or	preprocess	data	for	other	algorithms.	

Thousands of clustering algorithms have been developed over the 
years	and	many	new	ones	are	introduced	each	year,	but	one	of	the	first	
clustering algorithms, k-means, is still used very widely today. It is known 
to have problems, but it has been unknown in which conditions it works 
and when it fails. In this thesis, we study the situations when it succeeds 
and when it fails, investigating properties of the data such as dataset 
size, dimensionality and overlap of clusters. We also study the most 
common ways of improving performance of k-means, such as repeating 
the	algorithm	or	using	better	initialization.	We	find	that	lack	of	overlap	of	
clusters is the most common property of data that causes k-means to fail. 
Combining a better initialization technique with repeating the algorithm 
100 times can reduce errors from 15% to 1%.

Large datasets are problematic for many clustering algorithms which 
become	too	slow	or	inefficient	to	cluster	them.	One	way	to	speed	up	
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clustering algorithms is to use a structure called kNN graph which 
connects every object to the k most similar objects in the same dataset. 
In this thesis, we have developed two fast methods for constructing the 
kNN	graph.	The	first	is	targeted	for	high	dimensional	data.	It	constructs	
the graph by using one-dimensional mapping with a Z-order curve. The 
second is more general and can work for any type of data where a distance 
function	is	defined.	It	works	by	hierarchical	random	point	division.	We	use	
the kNN graph to speed up a clustering algorithm called Density Peaks. 
This faster variant can cluster data of one million in size and achieves a 
speedup of 91:1 for datasets of size 100,000 or more.

Universal Decimal Classification: 004.021, 004.421, 004.6, 004.93, 519.1, 
519.237.8

Library of Congress Subject Headings: Data mining; Data sets; Big data; 
Cluster	analysis;	Automatic	classification;	Algorithms

Yleinen suomalainen ontologia: tiedonlouhinta; big data; klusterianalyysi; 
graafit;	algoritmit
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1 Introduction

As part of the ongoing digitalization, there has been an increase in the 
amount, variety and complexity of data. In this setting, there arises many 
challenges	in	understanding	data	and	processing	it	in	an	efficient	way.	Data	
clustering provides one way to help in these challenges. 

Clustering algorithms aim at grouping objects of a dataset so that the 
objects in the same group are more similar to each other than objects 
in	other	groups.	Clustering	can	serve	as	an	efficient	exploratory	data	
analysis	tool	in	fields	such	as	physics	[1]	and	bioinformatics	[2],	or	as	a	
preprocessing tool for other algorithms in e.g. road detection [3] and 
motion segmentation [4].

Clustering can work on any type of data such as images [5], text [P2,6,7], 
products	[8],	people	[1]	or	genes	[9].	Different	algorithms	have	different	
limitations, but generally the only thing that is needed for clustering to 
work is a way of calculating either similarity or distance between the data 
objects.

Many clustering techniques can be divided into a cost function which 
defines	the	goal	of	clustering	and	an	algorithm	which	optimizes	the	cost	
function [10]. The Sum of squared errors (SSE) is one of the most well 
known cost function. Algorithms that optimize this include k-means [11,12], 
Ward’s method [13], Genetic algorithm [14] and Random Swap [15]. 
Some clustering algorithms are heuristics that do not optimize any clearly 
defined	goal	or	cost	function.	These	include	the	Density	Peaks	algorithm	
[5], DBSCAN [16] and Mean Shift [17].

K-means	optimizes	the	SSE	by	first	selecting	an	initial	k random data 
points	to	represent	the	clusters.	Then	it	iteratively	fine-tunes	the	location	
of those points in a hill climbing manner, always improving the SSE in 
each	iteration	until	convergence.	Ward’s	method	optimizes	the	SSE	by	first	
putting each point in separate clusters and repeatedly merging the pair 
of clusters with a smallest increase in SSE until there is only one cluster. 
From	a	user	perspective,	the	main	difference	to	k-means	is	that	Ward’s	
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method returns clustering for all possible numbers of clusters, whereas for 
k-means	the	number	of	clusters	needs	to	be	fixed	as	a	parameter.

One limitation of the traditional SSE optimizing algorithms like k-means 
is that it works well mainly with spherical data, i.e. data consisting of 
roughly ball shaped clusters, and cannot recognize non-spherical shapes 
like cigars [18], spirals or nested clusters [10]. Since the clusters in real life 
do not always follow spherical shapes, new methods have been introduced 
to cluster data having arbitrary shape clusters. These include density based 
clustering [16,5,2], graph based methods [1,19], exemplar based clustering 
[20,21], support vector clustering [22] and kernel k-means [23].

DBSCAN [16] and Density Peaks [5] are examples of density based 
heuristics. DBSCAN detects core points which lie in high density areas. 
It then merges points into the same cluster if they are within R-radius of 
a core point. All other points are considered outliers. The Density Peaks 
method	forms	clusters	by	first	detecting	peaks	of	density	as	cluster	
centers, i.e. those points that are located in a high density area and have 
large distance to higher density points. Other points are merged to the 
same cluster with the nearest higher density point.

1.1 Better clustering by using a kNN graph

The current trend of ever larger datasets is a problem for many clustering 
algorithms	which	become	slow	or	inefficient	for	big	datasets.	In	both	
Density Peaks and Ward’s method, a major bottleneck is the calculation 
of the full distance matrix which requires O(N2) calculations and memory 
space. Spectral clustering has even higher complexity of O(N3) [24].

One way to improve clustering algorithms, both in terms of speed 
and quality, is to use a structure called kNN graph (Figure 1). It is a data 
structure where objects are connected to the k most similar objects in 
the same dataset. It has been used to speed up Ward’s method to O(n log 
n) complexity [25]. Also DBSCAN has been enhanced using a kNN graph 
[26]. Density peaks has been previously improved by using a kNN graph in 
terms of quality [27], and recently in terms of speed also [P2].  In addition 
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to their use in clustering, kNN graph has also many other applications 
such	as	classification	[28],	k-nearest	neighbor	search	[29],	dimensionality	
reduction [30], outlier detection [31] and computer graphics [32].

Figure 1. Constructing a kNN graph (k=4) for data can reveal the cluster 
structure of the data. In case of completely separated clusters (left), the 
connected components of the graph form the clusters. In case of more 
overlapping	clusters	(right),	the	cluster	structure	is	more	difficult	to	
determine from the graph.

The trivial brute-force algorithm constructs a kNN-graph in O(N2) time 
by calculating distances between all pairs of points and selecting the 
k smallest distances for every point. This can be practical for small 
datasets consisting of up to tens of thousands of points. However, for 
larger datasets, consisting of millions of points, the brute-force algorithm 
becomes too slow.

In Chapter 3 we present two fast methods for constructing a kNN graph. 
The	first,	called	Z-order neighborhood propagation (ZNP) [P1], uses one-
dimensional mapping with a Z-order curve to construct an initial graph 
and then improves this using neighborhood propagation. This has been 
targeted for and tested with high dimensional data sets. 

The second method, called Random Pair Division (RP-Div) [33], constructs 
an initial graph hierarchically by random point division and improves this 
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using neighborhood propagation. It is more general than the ZNP method 
and	can	work	with	any	type	of	data	where	a	distance	function	is	defined.	In	
[P2], we show a way of using it to speed up the Density Peaks algorithm.

1.2 Clustering with k-means

The k-means algorithm was introduced already in 1965 by Forgy [12]. 
And although thousands of clustering algorithms have been developed 
since then [10], k-means is still the most widely used. It is well known that 
k-means has problems [18,34-36]. For example, it does not work well with 
unbalanced data sizes [18,34,35] or when the data has outliers [18]. It has 
also been unclear which errors of k-means originate from the SSE cost 
function and which from the iterative process of the algorithm.

To counter the problems of k-means, it has been proposed to either 
repeat the algorithm multiple times [37] or use better initial centroids [38-
41]. K-means++ [38] is the most well known initialization method and is 
almost as popular as the original k-means [P4]. Some of the initialization 
methods [39] are so complex that they can be considered new algorithms 
themselves.

One	problem	of	k-means	is	that	it	may	produce	significantly	worse	
results, in terms of the SSE cost function, compared to algorithms like 
Ward’s or Random Swap. This problem is often referred to as k-means 
getting stuck in a local minimum [18], but it does not tell much about the 
problem. Since clustering is a NP hard problem, no practical algorithms can 
guarantee an optimal solution. Yet, k-means is still commonly used and 
quite often with satisfactory results. This raises the question: What are the 
conditions when k-means works and when does it fail? 
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Figure 2. Three examples of clustering results when using the SSE cost 
function. A Gaussian cluster is split into several spherical clusters (left); 
mismatch of the variance causes the larger cluster to be split (middle); 
mismatch of cluster sizes does not matter if the clusters are well-
separated. [P4]

Often, analysis of the properties of k-means can be misleading. 
Examples,	like	the	first	two	cases	in	Figure	2,	are	often	presented	as	
problems of k-means [34,35]. However, these problems originate from the 
SSE optimization function. Even better algorithms fail to solve the correct 
clustering with these datasets if they minimize SSE. The problems of 
k-means	algorithm	itself	are	completely	different	and	will	be	studied	in	this	
thesis.

A slightly better way to explain the problems of k-means is the claim of 
its strong dependency on the initial solution [10]. This is true, as k-means 
is	a	local	fine-tuner	that	improves	the	given	input	solution.	Originally	only	
random partitions and random centroids initializations were considered 
as part of k-means. Later a large number of heuristic solutions have been 
proposed [38-50] to provide better initialization for k-means. 

However,	providing	a	good	initialization	is	almost	as	difficult	as	the	
original clustering problem itself. The main problem for a clustering 
algorithm to solve is the cluster allocation problem, which is to allocate 
one centroid for each cluster.  This is a combinatory problem in nature. If 
the centroids are located inside the correct clusters, k-means can surely 
tune	the	centroid	locations	(see	Figure	3).	The	challenge	is	how	to	find	the	
correct allocation.
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Although the main challenge of clustering remains unsolved, there are 
several open questions that we can answer in this thesis: Are the existing 
initialization strategies any better than random choice? How much better? 
And in what conditions do they succeed?

Besides better initialization, another typical approach is to repeat 
k-means multiple times. This trick is also known as multi-start in 
optimization literature. It merely requires that there is randomness in 
the	initialization	so	that	different	results	can	be	obtained.	It	can	indeed	
work	when	each	repeat	has	some	chance	to	find	the	correct	clustering.	
For example, if we throw a dice aiming to get the number 6, we have 
only p=1/6 to succeed. However, if we repeat this process six times, the 
percentage of success has been increased already to p’=1-(1-p) 6=66.5%. 
Repeating k-means works in a similar way, but there are some open 
questions: How much does the repeating improve results of k-means 
clustering? When does it work and when not?

Figure 3. K-means initializes the centroids to random positions (blue dots). 
The algorithm then iteratively tunes the locations of the centroids until it 
converges to a local optimum solution (red dots). Success of the algorithm 
depends on the initial centroids. In the left example, one of the clusters is 
incorrectly assigned two centroids. In the right example the initial location 
of the centroids is better and the algorithm converges to the globally 
optimal solution.
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Clustering algorithms may work well for some types of data and fail 
for others. It is not generally known why and when clustering methods 
fail. In chapter 5 we study this problem in the case of k-means clustering 
algorithm. In particular, we study the situations when it fails, investigating 
properties of the data such as dataset size, number of clusters, unbalance, 
dimensionality and overlap of clusters. 

We also study the most common ways of improving performance of 
k-means. The simplest way is to just repeat the algorithm multiple times 
with	different	random	initialization	[P4]. The other way is to use better 
algorithms	[38,40,47,51]	to	provide	the	initialization,	which	is	fine-tuned	by	
k-means.
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2 Data and similarity

This thesis has two main emphasis points: clustering methods and 
k-nearest neighbors (kNN). They both belong to a large class of 
computational problems called proximity problems.	Indyk	defined	these	
as	problems	whose	definitions	involve	the	notion	of	distance	between	
data	points	[52].	We	define	proximity	problems	as	all	problems	where	
either distance or similarity is the primary property of the data used in 
defining	the	problem.	These	problems	include	the	closest pair problem [52], 
minimum spanning tree [53], furthest pair [52], furthest neighbor [52] and 
travelling salesman problem [54]. Because the notion of distance is at the 
heart of these problems, they are all applicable to the same data sets.

Having suitable datasets and understanding the characteristics of those 
datasets forms the basis of algorithm performance evaluation. In case of 
clustering	algorithms,	classification	datasets	from	UCI	[55]	are	often	used	
in	benchmarking.	Classification	and	clustering	are	related	because	they	
both divide the data into a certain number of disjoint groups. Still, we 
refrain from using those datasets because they do not allow systematic 
control	of	data	properties.	Also,	classification	and	clustering	are	different	
problems. Clustering is used for many purposes like exploration and data 
summarization.	Consequently,	it	often	reveals	different	structures	from	the	
data	than	what	classification	class	labels	define.	
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Table 1. Datasets used in this thesis (abbreviation in brackets). In case of 
text datasets, dimensionality is measured as the number of characters (c).

Dataset Type Clusters Dim. Size Ref.
A1-A3 spherical 20,35,50 2 3000-7500 [57]
S1-S4 spherical 15 2 5000 [58]

Dim32-1024 spherical 16 32-1024 1024 [25]
G2 spherical 2 2-1024 2048 [59]

Birch1 (b1) spherical 100 2 100,000 [60]
Birch2 (b2) spherical 100 2 100,000 [60]

Unbalance (unb) spherical 8 2 6500 [61]
RC100k-h (RCh) spherical 100 128 100,000 [P2]
RC100k-l (RCl) spherical 100 128 100,000 [P2]
RC1M (RCm) spherical 100 128 1 million [P2]

Worms2D (W2) shape 35 2 105,600 [P2]
Worms64D (W64) shape 25 64 105,00 [P2]

Flame	(fla) shape 2 2 240 [2]
Aggregation (agg) Shape 7 2 788 [62]

Spiral (spi) shape 3 2 312 [63]
DS6_8 (DS6) shape 8 2 2000 [19]

Countries text 48 8.1 c 6000 [P2]
English words text - 9.4 c 466,544 -

Tweets text - 90 c 544,133 [64]

There has been a clear lack of good benchmark datasets. Previously only 
Steinley created properly controlled datasets [56], but he did not publish 
the data. Contrary to this, the datasets documented in this thesis are all 
publicly available1, with the exception of the tweets dataset and DS6_8.

In this section, we introduce the datasets that have been studied in this 
thesis and analyze their properties. We have mainly applied clustering of 
three	different	types	of	data:	spherical	data,	shape	data	and	text	data.	In	
sections	2.1-2.3,	we	discuss	the	different	types	of	data.	In	section	2.4	we	
discuss the properties of data that are relevant for clustering. In section 2.5 

1 http://cs.uef.fi/sipu/datasets/
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we	show	different	ways	of	calculating	distance	or	similarity.	In	chapter	2.6	
we	define	the	goals	of	clustering.	In	chapter	2.7	we	discuss	how	to	evaluate	
the results of clustering.

Figure 4. Some of the spherical datasets used in this thesis. [P3]
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2.1 Spherical data

Most of the spherical datasets were documented in [P3] as part of the 
clustering basic benchmark (see Figure 4). They have been selected so 
that the SSE objective function can be used for clustering them. They are 
challenging enough that most simple heuristics will fail, but easy enough 
that a good clustering algorithm can solve them.

All	of	the	spherical	datasets	are	artificially	generated	data.	Therefore,	they	
have also ground truth clustering, which correctly represents the original 
parameters used in generating the dataset, i.e. the number of Gaussian 
distributions and their center points. The ground truth also matches both the 
SSE optimal clustering (see Chapter 2.6) for the dataset and human intuition. 
For real world data and applications there is often no single correct clustering.

One way to analyze properties of a dataset is to use histograms of the 
pairwise distance values. Steinbach et al. [65] used histograms to estimate 
whether the data have clusters. See Figures 5-6 for examples. In general, 
clusters with varying densities and distances from each other will produce 
multiple peaks, and overlap causes the peaks to merge. Histogram  is a 
convenient way to represent a dataset, especially for high dimensional 
datasets	that	are	difficult	to	visualize	otherwise.

Figure 5. Variants of the G2 dataset and their distance histograms. The 
first	peak	is	for	the	distances	inside	the	clusters,	the	second	for	distances	
between clusters. When variance of clusters is increased, they become 
more	overlapped	and	the	distance	histograms	finally	merge	into	one.
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Figure 6. Distance histograms of selected (spherical) datasets. If data has 
clusters,	this	usually	shows	up	as	peaks	in	the	distance	histogram.	The	first	
peak contains the smallest distances which are typically inside clusters. 
Other	peaks	contain	distances	between	clusters.	If	clusters	have	different	
densities, this may show up as more than one peak of intra-cluster 
distances, such as in case of the unbalance dataset: local distances in the 
dense	clusters,	local	distances	in	the	sparse	clusters,	and	the	flat	area	for	
the global distances.

2.2 Shape data

The	shape	datasets	used	in	this	thesis	(Figure	7-8)	are	also	artificial	
numerical datasets. They do not constrain to spherical clusters but 
contain any kind of shapes that still appear as distinct clusters to a human 
observer. The shapes include ellipses, concave shapes and squiggly, worm 
like, lines. 

The Worms2D dataset  is one example of a shape dataset. It was 
produced for article [P2]. It consists of 105,600 points in 35 shapes 
(clusters) which depict trails of random movement in 2D space. The data 
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contains 35 individual shapes that start from a random position and move 
towards a random direction. At each step, points are drawn from the 
Gaussian distribution to produce a cloud around the current position. The 
direction of movement is continually altered to an orthogonal direction 
and collision detected to prevent completely overlapping clusters. In 
previous	works	[19,62,63],	artificial	shape	data	has	mainly	restricted	to	two	
dimensional datasets. We also generated a high dimensional (64D) version 
of the Worms dataset where shapes depict random movement in high 
dimensional space.

Figure 7. Shape datasets contain non-spherical data. They are not suitable 
to cluster with k-means, but can be better clustered using density based 
methods such as Density Peaks or DBSCAN.
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Figure 8. Histograms	for	shape	data	do	not	have	as	clear	first	peak	as	
spherical datasets. This is because, contrary to spherical datasets, points 
in the same cluster can be very far from each other. Points belong to the 
same cluster when other points, which are near each other, form a “chain” 
between them. This is highlighted in the case of the spiral dataset.

2.3 Text data

The text datasets (Table 2) contain short text strings. The countries dataset 
is	artificially	generated	and	has	a	ground	truth	clustering	where	country	
names like Spain, Moldova and Hungary are considered true centroids 
and	other	strings	are	randomly	modified	versions	of	these.	The	other	two,	
English	words	and	Tweets	contain	real	life	data	and	have	no	specific	correct	
clustering, but can still be clustered in a meaningful way.
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Table 2. Ten random samples from each of the text datasets.

Words Countries Tweets

hemilaminectomy hkujndiyry

Kristersson pratar om bidragstak. Vad 
är bidrag enligt Moderaterna? Viktigt 

att säga är att färre nu lever på försö… 
https://t.co/tpuEGiHIcr

noninterdependently bipain TO-MORRO   https://t.co/4d2lMoXJsb

overtheorized ulovezsa

I’m kidding this is how I’m going to sleep 
tonight not knowing which of the 25 

Dinguses America’s Dingus Sweetheart… 
https://t.co/h6Sr7QDhX8

inselberge osloenia

@tedlieu And who is enforcing the 
application of international human rights 
laws in the United States, with the big… 

https://t.co/629M8v3KnU

tonn mosldova
Are they hosting with snipers aiming at 

them? Why are they so uncomfortable?  
#esc2018

Cuculiformes celn And if #UK doesn’t get to sing again I’M 
SUING! #Eurovision

Hillard nynthecrands

Haha!! Ni som har barn, har ni sett 
Djurparken på HBO? På Toonix  Vilken 

jävla pärla alltså. Kolla in! https://t.co/
j7iQFRB3jF

dichromatic mkonmtnegrv Er så lættis å se hvordan politimenn tror 
de er guder. Bedre enn alle andre

domesticized snorwac @_chaigal Hahahahahahahahha

attemperate acedoniax
Wind 0,0 m/s NNW. Barometer 1019,0 

hPa, Rising slowly. Temperature 10,9 °C. 
Rain today 3,6 mm. Humidity 69%

2.4 Properties of data

In papers [P2,P3,P4] we studied how well clustering algorithms work in 
different	circumstances.	Specifically,	we	focused	on	the	following	four	
aspects of data: (1) Number of clusters, (2) dimensionality, (3) overlap and 
(4) unbalance. 

The clustering-problem is generally understood to become more 
difficult	as	the	number of clusters increases. However, at least in case 
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of k-means, the relationship between the number of clusters and the 
difficulty	is	not	previously	known.	In	[P3]	we	will	show	that	the	difficulty	for	
k-means grows linearly with the number of clusters.

The dimensionality of data makes many computational problems more 
difficult	[66,67].	This	has	also	been	noted	in	case	of	k-means	[36]	and	the	
clustering problem in general [68]. The dimensionality of data is usually 
understood to be the number of attributes in the data representation 
(e.g. elements in a vector). However, some data may have low intrinsic 
dimensionality although the data representation has high dimensionality. 
In some cases, this can be automatically detected with tools like principal 
component analysis or based on variance of distances [69].

Intuitively, overlap can be understood as an inverse of separation, a 
measure of how close clusters are to each other or if there is a lack of 
empty space between them.  It is often assumed that clustering algorithms 
perform better when clusters are more separated (less overlap) [65,22]. We 
vary the overlap property using the S-sets and G2 sets.

In [P3]	we	introduced	a	formal	definition	for	overlap	(Figure	9).	We	
measure overlap by calculating the distance from every point x to its 
nearest centroid (d1) and to its nearest point in another cluster (d2). If any 
point from another cluster is closer to x than its own centroid (d1>d2), then 
the point is considered an evidence of overlap. Overlap of the dataset is 
then	defined	as	the	number	of	evidences	relative	to	the	total	number	of	
points:

  (1)
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Figure 9: Overlap measured for the G2-2-30 dataset. [P3]

The unbalance of cluster sizes means that some clusters in the dataset 
have much more points than others. Most datasets studied in this thesis 
contain clusters of roughly same size. The exception is the Unbalance 
dataset (Figure 4) which has 20:1 size ratio between the smallest and 
the largest cluster. Since the clusters with fewer points have also larger 
variance, the dataset has strong unbalance also in density.

Using	artificial	datasets	allows	to	systematically	control	these	properties	
of the data. The number of clusters can be varied using the A1-A3 datasets 
and subsets of the birch2. Overlap increases steadily in the variants of the 
S-sets (S1-S4); also the RC100k has high and low overlap versions. The Dim-
datasets	contain	clearly	separated	clusters	with	different	dimensionality	
(32 < D < 1024). The G2 sets vary both dimensionality and overlap, but only 
in the special case of two clusters. 
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2.5 Similarity or distance

Many	different	distance	measures	have	been	developed,	but	the	Euclidean	
distance	(Equation	1)	is	still	the	most	widely	used.	It	is	defined	for	vector	
data of  dimensions:

  (2)

A more general distance measure is the Minkowski distance, which is 
almost identical, but takes the additional parameter p:

  (3)

Here Euclidean distance corresponds to Minkowski distance with .  
Other forms of the Minkowski distance are Manhattan distance with 

 and Chebyshev distance with . Use of values  are less 
common, but have been shown to work better for high dimensional data 
[66].

Algorithms	are	often	designed	to	work	with	only	specific	distance	
measures. For example, the k-means algorithm can work with any forms 
of the Minkowski distance, but the SSE cost function is properly optimized 
only using the Euclidean distance. Some other methods such as Density 
Peaks [5] can take a full distance matrix as input and do not even need 
access to the original data or distance measure.

In this thesis, we use text datasets in addition to numerical ones to 
test	how	algorithms	work	when	the	type	of	data	is	very	different.	A	large	
number	of	different	text	similarity	measures	have	been	introduced;	we	
point to [70] for a good review. Most commonly used measure for text data 
is edit distance [71]. It calculates the minimum number of edit operations 
needed to transform a string x to string y. The edit operations include 
insertion, deletion, and substitution. 

However, edit distance has time complexity of O(n2) for strings of length 
n and is therefore slow for larger strings. Set matching based measures 
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like	the	Dice	coefficient	[72]	can	work	faster,	in	linear	time	(assuming	
set	representation	is	precalculated).	In	Dice	coefficient,	each	string	is	
represented as a set of bigrams.  For example, word string would become 
{st, tr, ri, in, ng}. Similarity is measured as the size of the intersection 
divided by the average cardinality of the two sets:

  (4)

2.6 Cost functions

Clustering algorithms can use a cost function to determine the goodness of 
clustering. These include the mean squared error (MSE) and mean absolute 
error (MAE). The mean squared error is the most popular. Another variant 
of it is the sum of squared errors (SSE), which is almost equal but lacks the 
scaling	via	division	with	data	size.	Given	a	dataset	X = {x1, x2...,xN} and a list 
of	cluster	centroids	C = {c1, c2...,ck}, where cj is the nearest centroid to xi, the 
MSE	is	defined	as:

  (5)

Mean absolute error is similar, but without the squaring. It has been used 
especially	for	the	k-medoids	algorithm	[73].	It	is	defined	as:

  (6)

In	the	above	two	cases	the	only	difference	is	in	how	distance	between	
data point xi and nearest centroid cj is calculated. Euclidean distance 
(L2) is used in case of MSE and L1 in case of MAE. But often these can be 
substituted with some other distance function. For example, the MATLAB 
implementation of k-means allows to choose from the following distance 
functions: L2, L1, cosine, correlation and hamming.
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2.7 Measuring clustering quality

After a dataset has been clustered, there remains the question of how 
good is the clustering? For real usage scenarios, this question cannot 
usually be answered since the correct clustering is generally unknown. Still, 
in	case	of	artificial	data	with	known	ground	truth,	it	is	possible	to	compare	
the result of clustering algorithms to the ground truth in order to test how 
well the algorithms perform.

Many ways exist to measure clustering quality. The Normalized Mutual 
Index (NMI) and Adjusted Rand Index (ARI) are two of the most popular ones. 
For a good review, we point to [61]. However, these commonly used quality 
measures have the problem that the values they produce (such as 0.79 or 
0.54)	don’t	have	a	clear	meaning	and	are	difficult	to	interpret.

For this reason, we use the Centroid Index (CI) instead [74,75] as our 
primary measure of success. The CI values provide a clear understanding 
of how many real clusters have errors.  That is, how many clusters are 
missing a centroid (see Figure 10). 

Given a ground truth solution (G) and a clustering solution (C), Centroid 
Index counts how many real clusters are missing a center. This calculation 
is done by performing a nearest neighbor mapping between the clusters 
in C and G. The nearest neighbor mapping is done in both directions, C→G 
and G→C. The clusters that aren’t the nearest neighbor of any cluster in the 
other solution are considered orphans. The number of orphans is counted 
for each mapping and the maximum number is taken as the CI-value. This 
provides	a	much	clearer	intuition	about	the	result.	Specifically,	if	CI=0,	we	
conclude that the result is correct clustering. We can say then that the 
algorithm solves the problem. 



40

Figure 10: Example of a typical k-means result for the A2 dataset. The 
corresponding measures for this are: CI=4, SSE=3.08. [P3]
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3 kNN graph

Given a set of N points X = {x1, x2...,xN} in some D-dimensional space S, 
the k-nearest neighbor problem (kNN)	is	to	find	the	k points in X that are 
closest to a given query point q ∈ S according to some distance function 
d. A search for the k nearest neighbors for all points in X yields a directed 
graph called kNN-graph (Figure 11) where the vertices correspond to points 
in the data set and edges connect each point to its k nearest points in the 
data set.

Figure 11.	The	kNN	graph	is	formed	by	finding	the	k-nearest	neighbors	for	
all points in the dataset.  Therefore any kNN search method can also be 
used to construct a kNN graph. However, the reverse is not possible since 
in the kNN search problem the query point (q) can be any unknown point 
outside the original dataset.

In	the	example	in	Figure	11,	the	graph	is	created	for	an	artificial	dataset	
consisting of points on a 2D plane. However, it can also be created for any 
type of data as long as there is some way to calculate distance or similarity 
between the data objects. Consequently, it has been used for many 
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different	types	of	data,	including	text	[76],	images	[77]	and	music	[78].	An	
example of a kNN graph for small words is shown in Figure 12.

Figure 12. Example of k=10 nearest neighbors for the words porpoise, 
tortoise and portoise.  This is part of a larger edit distance kNN graph on 
466,544 words dataset. Here only the neighbors of the three words are 
shown. All distances in the graph are 2, except those marked by number 1. 
[33]

3.1 Exact methods and the problem of dimensionality

Exact kNN graph can be calculated fast for datasets that are either small 
in size or low dimensional. For large and high dimensional datasets there 
exists	no	efficient	exact	methods.	In	these	cases	approximate	methods	are	
needed.

For small datasets, the brute-force algorithm can be used to construct a 
kNN-graph in O(N2) time. It works simply by calculating distances between 
all pairs of points and selecting the k smallest distances for every point. 

Faster methods exist for low dimensional data. For example, kd-trees 
[79] or z-order curve [32] can be used to calculate a kNN graph in O(n log n) 
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time. However, all these methods fail for high dimensional data. To 
understand why this happens, consider the following example of kd-trees.

Figure 13. kNN searching in kd-tree.

Kd-trees are constructed by recursively dividing the data space on 
the median point of a selected dimension, altering the dimension on 
each division (Figure 13). This results in a tree which consists of nested 
hyperrectangles.	Searches	in	this	tree	involve	finding	a	candidate	set	of	
kNN points and then checking all points inside the smallest hyperrectangle 
that encloses the ball of kNN candidates. This works well in 2D cases 
because the rectangle is usually not much larger than the circle. 

However, as dimensionality increases, the ratio of sphere volume to 
cube volume goes rapidly towards zero (see Figure 14). Already with 10 
dimensions the volume of the hyperspehere is only 0.25% of the volume 
of a same width hypercube. If there are k=9 points in the candidate kNN 
ball, then it is expected that 9/0.25%=4000 points would be inside a similar 
width hypercube.
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Figure 14. Volume of a hypersphere in relation to volume of a same width 
hypercube goes to zero very quickly as dimensionality increases. This 
comes mainly from the O(D!) gamma function which is the denominator in 
the formula. Number of points are expected to be in relation to volume of 
container.	Therefore,	assuming	uniform	distribution	and	fixed	number	of	
points inside a hypersphere, the number of points inside a hypercube is 
expected to grow exponentially as dimensionality increases.

In addition to kd-trees, many other exact search methods, such as 
z-order search [32], mean order partial distance search [80] and principal 
axis trees [80] work using a similar approach of searching the contents of  
a	hyperrectangle	containing	the	kNN	ball.	The	main	difference	between	
these methods is in how the hyperrectangles are constructed. Therefore, 
all of them generalize poorly for high dimensional data. For this reason, 
approximation methods are needed in case of high dimensional data.
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3.2 Neighborhood Propagation

Neighborhood propagation is one method to construct an approximate 
kNN-graph. It works by repeatedly measuring distance from each point 
of a graph to all of its neighbors’ neighbors and keeping the ones with 
k smallest distance. It is based on the observation that if a point y is a 
neighbor of x and point z is a neighbor of y, then z is also likely to be 
a neighbor of x.	Different	variants	of	neighborhood	propagation	have	
been used in many approximate kNN graph construction methods 
[P1,P2,29,78,81-83]	to	refine	the	quality	of	the	graph	after	constructing	an	
initial coarse approximation using some other method. 

Nearest Neighbor Descent (NNDES) developed by Dong et. al. [84] is one 
variant of neighborhood propagation which also works as a standalone 
method. It starts from a random kNN graph and gradually builds an 
approximate	kNN	graph	by	refining	it	with	neighborhood	propagation.	
Compared with other methods like those using principal component 
analysis	(PCA)	[77,81],	it	has	the	benefit	that	it	doesn’t	require	the	data	
to be in numerical form. Since the process only requires a distance or 
similarity measure, it can work with almost any type of data.

The algorithm iteratively improves the quality of the graph. In each 
iteration,	the	neighbors	of	neighbors	are	tested	for	each	point	x ∈ X.	If	any	
of them are closer than the furthest of the current neighbors, the neighbor 
list	is	updated	accordingly.	The	algorithm	is	iterated	until	a	specified	stop	
condition	is	met.	For	example,	it	can	be	run	just	for	a	fixed	number	of	
iterations or as long as the method is able to improve the graph.

Since each point has k2 neighbors of neighbors, the propagation 
requires O(k2N) distance calculations per iteration. The total time 
complexity is therefore O(k2NI) where I represents the number of iterations 
and is a small number, usually roughly 20. 

This time complexity makes the method very slow for kNN graphs with 
a large number of neighbors (e.g. k=100). For this reason, in [P1] we run 
the neighborhood propagation only for m nearest neighbors where m	< k. 
We used the rule m	=	√jk, where j is a small number. We used the value 
j=10. Therefore, in case of a graph with k=10 neighbors, NNDES would be 
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run for the m=√jk=√(10*10)=10	nearest	neighbors.	And	in	case	of	graph	
with k=100 neighbors, NNDES would be run for the m=√jk=√(10*100)=32	
nearest neighbors. This way, the time complexity per iteration can be kept 
linear for k, at O(m2N)=O(kjN). Although the NNDES search gets run for the 
m nearest neighbors, it is the values of the whole k nearest neighbors that 
gets updated. 

3.3 Z-order neighborhood propagation

In this section we summarize the Z-order neighborhood propagation (ZNP) 
method from [P1], which constructs an approximate kNN-graph for high-
dimensional data. It uses one-dimensional mapping with a Z-order curve 
to construct an initial graph and then continues to improve this using the 
NNDES algorithm. 

Figure 15. Bit-interleaving is used to produce the Z-values.

The Z-order curve (Figures 15-16) is a function which maps 
multidimensional points to one dimension by interlacing the bits of the 
binary representation of the vector components. This one-dimensional 
value is referred to as Z-value. When multidimensional points are ordered 
by their Z-values, this order is called the Z-order. The Z-order curve has 
been independently invented by Morton [85], Orenstein [86] and Tropf and 
Herzog [87]. The Z-order curve has been previously used to construct a 
kNN graph, but only for low-dimensional data [32].
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Figure 16.	Space	filling	curves	impose	an	ordering	for	multidimensional	
discrete space. The Z-order -curve (left) and Hilbert curve (right) are the two 
most	common	space	filling	curves.	Both	are	self-similar,	which	means	that	
the	same	pattern	repeats	recursively	in	three	different	levels	on	the	8x8	
grid. [P1]

A kNN graph can be constructed using the z-ordering of points (see 
Figure 17) by processing the points using a sliding window along the 
z-order. The exact distance is then calculated between all points inside the 
sliding window. This produces a low quality approximation of a kNN graph. 
This approximation can be improved by repeating the process multiple 
times for a randomly transformed data set. A simple transformation is to 
shift the pointset to a random direction. 



48

Figure 17.	Multiple	different	z-orderings	are	needed	to	produce	a	high	
quality kNN graph. Error points are shown as black rectangles. [P1]

The Z-order curve has been previously used to construct a kNN graph, 
but only for low-dimensional data [32]. Applying it for a higher number of 
dimensions can be problematic. One of the problems is that the z-values 
become very large with a high number of dimensions. For example, for 
a	data	set	with	dimensionality	D = 1000,	and	bit-length	b = 32	bits	per	
dimension,	the	Z-values	would	need	to	be	represented	by	D ⋅ b = 32000	
bit integers. Calculating, storing and comparing such large integers would 
become a bottleneck in the algorithm.
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To speed up the z-value handling in case of high dimensional data, 
we introduced a simple dimensionality reduction method. It works by 
dividing the dimensions into random subsets with roughly equal sizes and 
then constructing new subvectors corresponding to the subsets of the 
dimensions. Each subvector is mapped to one dimension by projecting 
them to the diagonal axis. 

This process is related to Johnson-Lindenstraus transform (JLT) [88], 
Neighborhood embedding [89] and Multidimensional Scaling [90]. The 
main	difference	with	JLT	and	Multidimensional	Scaling	is	that	they	
aim to preserve the distances between points in the projected space, 
whereas we are concerned only on preserving the neighbor connections. 
Neighborhood embedding on the other hand, aims at dimensionality 
reduction while preserving the neighbor connections, but it is used mainly 
for visualization purposes. 

3.4 Random point division

ZNP, the Z-order method, was fast but restricted to vectorial data and 
only tested with Minkowski distance measures. In this section, we present 
another algorithm called Random Point Division (RP-Div) which doesn’t have 
this limitation and can work for any type of data as long as a distance or 
similarity measure is provided. It has been documented in article [P2] and 
somewhat more extensively in [33]. To demonstrate its generality, we have 
used it with short strings (~10 chars) and Levenshtein distance or longer 
strings (~140 chars) and dice distance with bigrams.  

The RP-Div algorithm constructs the graph by applying hierarchical 
subdivision	(demonstrated	in	Figures 18-19).	The	dividing	works	by	first	
selecting two random points: a and b. The dataset is then split into two 
subsets (A and B), so that subset A contains all points that are closer to the 
point a, and subset B all points that are closer to the point b. The dividing 
continues	recursively	until	the	subset	size	reaches	a	predefined	threshold	
(W), e.g. W < 20. Subsets smaller than the threshold are solved by the O(N2) 
brute force algorithm, which calculates distances between all possible pairs 
and updates the list of k nearest points found.
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One iteration of the algorithm produces a crude approximation of 
the kNN graph. The graph is improved by repeating the hierarchical 
subdivision	several	times	(Figure	19)	using	different	random	pairs	for	
splitting.	As	a	result,	several	different	kNN	graphs	are	created.	Every	new	
graph is used to improve the previous solution by adopting those k nearest 
neighbor pointers that are shorter than in the previous graph. 

The random pair division provides a moderate quality approximation 
(50-80% accuracy) of a kNN graph fast. But if a higher quality graph is 
wanted,	we	use	the	NNDES	algorithm	[84]	to	refine	the	graph	further.	

Figure 18. The RP-div algorithm recursively subdivides the dataset of size 

N=37	by	first	choosing	two	random	points	(a,b).	The	dataset	is	split	based	
on	which	of	the	two	points	is	nearer.	After	the	first	split,	the	size	of	the	
subset A is smaller than threshold W=20, and is solved by brute force. The 
subset B is further divided into two more subsets, which both are smaller 
than W and now solved by brute force. [P2]
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Figure 19. After repeating the random pair division, a new solution is 
obtained. This solution is merged with the previous one to form a new 
improved kNN graph. [P2]



52



53

4 Density Peaks clustering using a kNN graph

Density	Peaks	is	a	popular	clustering	algorithm,	used	for	many	different	
applications, especially for non-spherical data. Although powerful, its 
use is limited by quadratic time complexity, which makes it slow for large 
datasets. In [P2], we propose a fast density peaks algorithm that solves the 
time complexity problem. 

The proposed algorithm speeds up the density and delta calculation of 
density peaks by using a kNN graph. The graph is constructed using the 
random point division method presented in chapter 3.4. This approach 
maintains the generality of density peaks, which allows using it for all types 
of data, as long as a distance function is provided. 

4.1 Density Peaks

The Density Peaks clustering algorithm [5] is based on the idea that cluster 
centers have usually a high density, and they are surrounded by points 
with lower density. So they have a large distance to points with higher 
density. Density Peaks uses two features to determine the clusters: the 
density	ρ	and	delta	δ,	which	is	the	distance	to	the	nearest	point	having	a	
higher density. We denote this point as the big brother. 

The Density Peaks method has four main steps:
1. Calculate the density values
2. Find big brothers
3. Identify cluster centers
4. Join the remaining points

The original Density Peaks article [5] did not specify exactly how clusters 
should	be	selected	based	on	ρ	and	δ	(step	three).	Different	approaches	
have been considered. For example, it could be done manually by the 
analyst using a density vs. delta plot (Figure 20). In [P2] we follow the 
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gamma strategy [91,92], which uses the product of the two features 
(γ = ρδ).	Cluster	centroids	are	then	selected	as	the	k points with the highest 
γ	value	(Figure	20).	After	the	cluster	centroids	(density	peaks)	have	been	
determined, the big brother pointers are used to merge the remaining 
points to the same cluster as their big brother (step four).

Figure 20.	Different	cluster	selection	strategies	based	on	the	density-vs-
delta plot for the S4 dataset. Cluster centroids typically have both high 
density and high distance to a higher density point (delta). Therefore, 
thresholding based on a combination of delta and density (gamma) is 
expected to work better than using the delta values alone. [P2]

4.2 Fast Density Peaks using a kNN graph

The Density Peaks algorithm has two computational bottlenecks:
• Calculating the densities
• Finding the big brother points.

In the original Density Peaks, these steps required comparing all possible 
pairs of points and thus took O(N2) time. However, both of these steps 
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can be calculated fast by using a kNN graph (Figure 21). Still, kNN graph 
construction itself also takes O(N2) by using a straightforward brute force 
method. 

Figure 21. Illustration of the Fast Density Peaks algorithm. (1) For a given 
data set, the kNN graph is constructed. (2) Densities are calculated as 
inverse of the mean distance to the neighbors. (3) Nearest higher density 
point (big brother) is (in case of gray lines) found in the kNN graph. For 
others (red lines) a slower full search is performed. (4) Cluster centers are 
identified	as	the	two	points	that	have	highest	gamma	(delta*dens)	value.	
(5) Clusters are formed by joining other points to the same cluster as with 
their big brother. [P2]

Faster methods for kNN graph construction exist. We use the random 
point division method presented in chapter 3.4 because it can work for 
any type of data. It is also faster than NNDES [84] which is the only other 
generic kNN graph construction method [33].

The graph can be used to calculate all the information needed by 
Density Peaks. Density values can be calculated trivially by taking the 
inverse of mean distance of the k nearest neighbors. The graph can also be 
used	to	find	most	of	the	big	brother	points.	

Finding the big brother is a special case of the nearest neighbor search. 
However, instead of considering only the distance, we must also select a 
point with higher density. Fortunately, the majority of points have their 
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big brothers located within their kNN neighborhood. We call them slope 
points, and all others are denoted as local peaks. For slope points, we can 
find	big	brothers	fast	in	O(k) steps simply by analyzing the kNN graph.

Local peaks, on the other hand, are local density maxima and their big 
brothers	cannot	be	found	in	the	kNN	graph.	There	is	no	shortcut	to	find	
their big brothers and O(N) full search must therefore be performed. These 
are	also	the	points	among	which	the	final	centroids	will	be	chosen.	

The time complexity of the big brother search depends on how many 
local peaks there are. Assuming that the proportion of the local peaks is p, 
the time complexity of this step is pN2 + (1-p)kN = O(pN2). The speed-up is 
therefore inversely proportional to p.

Figure 22. Distribution of slope points (gray) and local peaks (red) inside 
an example cluster.  One of the local peaks (blue) is the resulting cluster 
centroid (global peak). The case of k=30 (left) and k=70 (right) are shown. 
When the number of neighbors k in the kNN graph is increased, the 
number	of	local	peaks	decrease. [P2]

Figure 22 shows an example of the distribution of the local peak points 
with an example dataset. In general, the higher the value of k, the less 
there are peak points, and the faster is the search for the big brothers.

The proportion of local peaks (p) is bound by the number of neighbors 
(k) in the graph. A neighbor of a peak cannot be another peak. If we have 
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pN  local peaks, there will be at least kpN slope points. Since all points are 
either local peaks or slopes, we have the following inequality:

  (7)

Therefore, the time complexity of O(pN2) can also be written in terms of k 
as O(N2/k). When combining with the O(rkN) time complexity of the kNN 
graph construction (see Section 3.4), this leads to a total time complexity of 
O(N2/k + rkN), where r is a small number. 
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5 k-means

The k-means algorithm [11,12,93] groups N data points into k clusters 
by minimizing the sum of squared distances between every point and 
its nearest cluster center (centroid). This objective function is called sum-
of-squared errors	(SSE).	For	a	dataset	X = {x1, x2...,xN} and a list of cluster 
centroids	C = {c1, c2...,ck},	it	is	defined	as:

  (8)

where xi is the data point and cj is its nearest centroid.

Figure 23. The k-means algorithm.

K-means	optimizes	this	objective	by	first	selecting	k random data points 
as	the	initial	centroids	and	then	iteratively	fine-tuning	those	locations	
(see Figure 3). Each iteration consists of two steps, the assignment step 
and the update step. In the assignment step, every point is put into the 
cluster whose centroid is closest. In the update step, the centroids are 
re-calculated by taking the mean of all data points assigned to the same 
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cluster.	The	iterations	continue	a	fixed	number	of	times	or	until	no	further	
improvement is obtained (convergence).

The success of k-means depends on the goodness of the initial centroids 
(see Figure 3). Selecting random centroids can sometimes provide good 
enough	initial	centroids	so	that	k-means	can	fine	tune	them	to	a	correct	
solution. For simple datasets, it is enough to repeat the algorithm several 
times	to	find	the	correct	solution	(Chapter	5.1).	For	more	challenging	
datasets this approach is not enough. For these situations, many have 
suggested new techniques to provide better initial centroids (Chapter 5.2). 

In	Chapter	5.3	we	discuss	how	the	different	approaches	of	applying	
k-means (normal, repeated, better initialization) perform depending on the 
properties of the datasets.

5.1 Repeated k-means (RKM)

Repeated	k-means	performs	k-means	multiple	times	starting	with	different	
initialization, and then keeping the result with lowest SSE-value. This 
is sometimes referred to as multi-start k-means. The basic idea of the 
repeats is to increase the probability of success. Repeated k-means can be 
formulated as a probabilistic algorithm as follows. If we know that k-means 
with a certain initialization technique will succeed with a probability of p, 
the expected number of repeats (R)	to	find	the	correct	clustering	would	be:

  

In other words, it is enough that k-means succeeds even sometimes (p>0). 
It is then merely a question of how many repeats are needed. Only if p	≈	0	
the number of repeats can be unrealistically high. For example, standard 
k-means with random centroids succeeds 6-26% of the time with the S1-S4 
datasets. These correspond to R=7 to 14 repeats, on average.

If the initialization technique is deterministic (no randomness), then it 
either succeeds (p=100%) or fails (p=0%) every time. To justify the repeats, 
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a basic requirement is that there is some randomness in the initialization 
so	that	the	different	runs	produce	different	results.

 
K-means

Initialize
Repeat

100 times

Figure 24: General principle of repeated k-means (RKM). The key idea is 
that	the	initialization	includes	randomness	to	produce	different	solutions	
at every repeat.

5.2 Initialization methods

Any clustering algorithm could be used as an initialization technique 
for k-means. However, solving the location of initial centroids is not 
significantly	easier	than	the	original	clustering	problem	itself.	Therefore,	
for an algorithm to be considered as initialization technique for k-means, 
in	contrast	to	being	a	standalone	algorithm,	it	should	fulfil	three	
requirements [P4]:

• Be simple to implement
• Have lower (or equal) time complexity than k-means
• Be free of additional parameters

Random centroids [11,12] is the most common initialization technique. 
It simply selects k random data objects as the set of initial centroids. This 
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can be done fast, in O(N) steps. It is well suitable to repeating k-means 
since	different	random	centroids	lead	to	very	different	end	results.	It	also	
guarantees that every cluster includes at least one point.

Another very trivial method is random partitions [93]. Every point is put 
into a randomly chosen cluster and their centroids are then calculated. 
The	positive	effect	is	that	it	avoids	selecting	outliers	from	the	border	areas.	
The	negative	effect	is	that	the	resulting	centroids	are	concentrated	around	
the mean of the dataset. This degrades performance of k-means when the 
data is well separated and centroids cannot easily move between clusters. 
It	also	reduces	the	benefits	from	repeating	k-means	because	there	is	very	
little	variation	in	the	initial	solutions,	and	therefore,	also	the	final	solutions	
often become identical.

Figure 25. Example of the maxmin heuristic for S3 dataset. The blue dots 
are	the	initial	and	the	red	dots	the	final	centroids.	The	trajectories	show	
their movement during the k-means iterations.
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Another popular technique is Maxmin [40], also known as the furthest 
point	heuristic	(see	Figure	25).	It	selects	an	arbitrary	point	as	the	first	
centroid and then adds new centroids one by one. At each step, the next 
centroid is the point that is furthest (max) from its nearest (min) existing 
centroid. Each of the k steps processes the whole dataset, resulting in 
O(kN)	time	complexity.	There	are	different	heuristics	to	choose	the	first	
centroid. For example, in [94], the point furthest from the origin is chosen 
as	the	first	centroid.	However,	this	type	of	methods	make	the	algorithm	
deterministic and therefore unsuitable for repeated k-means. In our 
implementation in [P4],	we	select	the	first	centroid	randomly	to	make	the	
method work better with repeated k-means.

Maxmin has many variants [38,40,94,95]. The most well known is 
k-means++ [38] which selects the next centroid probabilistically with 
weights based on minimum distance to selected centroids. It is more 
randomized and therefore better suitable to use with repeated k-means.

Sorting heuristics sort the data points according to some criteria like 
distance to center point [46], density [41], centrality [43] or value for the 
attribute of greatest variance [42]. Centroids can be selected from the 
sorted	list	by	taking	the	first	k	elements,	or	dividing	the	list	evenly	to	k 
buckets and taking one point from each bucket. These strategies are very 
deterministic and therefore not well suited to use with repeated k-means.

Projection-based heuristics sort points similarly as sorting heuristics, but 
they use projection as the basis for sorting. Projection can be done using 
e.g. principal axis [48] or by taking two random points and using the line 
defined	by	them	[49].	

5.3 Results

In papers [P3-P4], we have run benchmarks to study clustering 
performance	in	varying	circumstances	for	the	different	k-means	variants:	
normal k-means, advanced initialization techniques and repeated k-means. 
Specifically,	we	have	studied	the	factors	of	cluster	overlap,	number	of	
clusters, dimensionality and unbalance.
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Figure 26.	Illustration	of	the	positive	effect	of	overlap	for	k-means.	The	
gray trajectories show the movement of the centroids during the iterations. 
In both cases, only one initial centroid is on the rightmost cluster and only 
when	there	is	sufficient	overlap,	one	additional	centroid	can	move	across	
the clusters.

Cluster overlap is the biggest factor for successful clustering (Figures 26-
27). If there is high overlap, k-means iterations work well regardless of the 
initialization. If there is no overlap, then the success depends completely 
on the initialization technique: if it fails, k-means will also fail.

Figure 27. Performance of k-means increases when overlap increases. 
Performance is measured as success rate (%) and CI-values.
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All k-means variants perform worse when the number of clusters 
increases. Success of the k-means depends linearly on the number of 
clusters. The more clusters, the more errors there are.

Dimensionality	does	not	have	a	direct	effect.	It	has	a	slight	effect	
on some initialization techniques but k-means iterations are basically 
independent on the dimensions. However, with many types of data, 
increasing dimensionality also decreases cluster overlap and consequently 
reduces k-means performance. 

Unbalance of cluster sizes (Figure 28) can be problematic especially 
for the random initializations but also for the other techniques. Only the 
Maxmin variants with 100 repeats could overcome this problem.

Figure 28.	Effect	of	unbalance	for	k-means	performance	demonstrated	
using the Unbalance dataset. Random initialization of k-means tends 
to put too many centroids in the dense clusters and too few in the 
sparse clusters. This results in average CI of 3.9. This dataset cannot be 
successfully clustered even with 100 repeats. [P3]

In [P4],	we	did	a	benchmark	for	9	different	k-means	initialization	
methods: Random partition (Rand-P) [93], Random centroids (Rand-C) [11], 
Maxmin [40], kmeans++ [38], Bradley [37], Sorting [46], Projection [49], 
Luxburg [39] and Split [P4].
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Random partition and random centroids are the most trivial and the 
oldest and therefore considered as baseline methods. Luxburg and Split 
are more complicated and therefore considered standalone clustering 
algorithms instead of true initialization methods. The other ones are newer 
initialization methods.

We found that:
• K-means works better when the clusters overlap. This is the most 

important factor to predict the success of k-means. Increased data 
dimensionality	only	indirectly	affects	results	by	reducing	overlap.

• On average, k-means caused errors with about 15% of the clusters 
(CI=4.5). By repeating k means 100 times these errors were reduced to 
6% (CI=2.0). Repeats are only useful with those initialization methods 
that have enough randomness.

Using a better initialization technique (Maxmin), the corresponding 
numbers were 6% (CI=2.1) with k-means as such, and 1% (CI=0.7) with 100 
repeats.



67

6 Summary of contributions

In this chapter we give a summary of the original publications.  In 
publications [P1,P2] we introduced new methods for constructing a kNN 
graph. In publication [P2] we also used this graph to speed up Density 
Peaks clustering. In publications [P3,P4] we studied the properties and 
initialization methods of k-means clustering algorithm.

[P1]: An exact kNN graph can be constructed fast for low-dimensional 
data. In case of high-dimensional data, some approximate methods have 
been developed. In this publication we developed a new approximate kNN 
construction	method	that	is	first	such	to	work	using	space	filling	curves.	In	
the experiments, it also performs better than the compared methods. We 
also show that errors in the approximate kNN-graphs originate more often 
from outlier points. The proposed method provides average speed-up of 
100:1 with the 1,000-dimensional datasets. This is 50% more than the best 
existing method. 

[P2]: Density peaks is a clustering algorithm which is used especially for 
non-spherical data. Its use is limited by quadratic time complexity, which 
makes it slow for large datasets. In this work, we introduce a new kNN 
graph construction method and use it to develop a fast variant of Density 
peaks. This Fast density peaks algorithm is also general in the sense that it 
can work with all types of data where a distance or similarity between the 
data objects can be calculated. The proposed algorithm provides speed-up 
of 100:1 compared to the original Density peaks algorithm with only minor 
degradation of clustering quality. 

[P3]: Although k-means is a very popular algorithm, it has problems 
solving some data sets. Previously it has been unclear whether these 
problems originate from the algorithm or from the cost function (SSE) that 
the algorithm optimizes. In this work, we show that K-means fails even if 
SSE itself would work. We show that the problems arise especially in data 
where the clusters are well separated. This is unexpected and contrary 
to many other algorithms which work better when the clusters are more 
clearly separate. 



68

[P4]: Performance of k-means is often tried to improve simply by 
repeating the algorithm, or by using a more advanced initialization 
technique. In this article, we study how well these approaches work, 
depending on the properties of the data. We show that when the data has 
overlapping clusters, k-means can improve the results of any initialization 
technique. However, when the data has well separated clusters, the 
performance of k-means depends completely on the initialization. Among 
the nine studied initialization techniques, the simple furthest point 
heuristic (Maxmin) is shown to work best, reducing the clustering error of 
k-means from 15% to 6%, on average.
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7 Summary of results

In this section we give a summary of the clustering results from papers 
P2-P4. Results are reported in Table 3. We picked the most important 
datasets from papers P2 and P3 and run those for selected algorithms. All 
datasets can not be accurately represented by centroids and do not have 
centroid ground truth. We therefore used the partition version of CI [74] 
for evaluation.  Processing times are measured as run on a single thread. 

We selected two main groups of algorithms. First group consists 
mainly of algorithms studied in [P3-P4], which optimize the SSE cost 
function: K-means-RandC, Maxmin, Repeated Maxmin and Random swap. 
K-means-RandC is the normal k-means algorithm with random centroids 
initialization. Maxmin is K-means with Maxmin initialization. Repeated 
Maxmin is the case where K-means/Maxmin was repeated 100 times and 
best	of	those	results	taken	as	final.	Random	Swap	is	chosen	as	the	best	
known SSE optimizing algorithm. 

Second group of algorithms consists of two variants of the Density 
Peaks algorithm. FastDP was introduced in [P2] as a faster variant of 
original Density Peaks.

All of the SSE optimizing methods and FastDP are non-deterministic and 
contain some randomness. Results for those were therefore run 50 times 
and the mean value of those runs are shown in the result table (Table 3). 
DensityPeaks is a fully deterministic algorithm, so repeating this doesn’t 
produce	any	different	results.		FastDP	contains	some	randomness,	but	this	
only manifests in the approximation quality of the kNN graph.
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The datasets S1-RCh are spherical datasets. They are expected to be 
solved by good SSE optimizing algorithms. The best of these algorithms, 
Random Swap can indeed solve all these datasets, except Rch. Density 
Peaks variants can also solve almost all spherical datasets. The exception 
is the RCh dataset which is high dimensional and has very high overlap 
between clusters. 

The datasets W2-DS6_8 are non-spherical shape datasets. For these 
datasets, SSE optimizing algorithms like k-means are not expected to work 
well. This is indeed true in case of most datasets. 

The main exception is the W64 dataset where the shapes are similar 
as in W2, but are isolated due to the sparsity of high dimensional space. 
For this reason, random swap can solve this dataset. Maxmin on the other 
hand, performs poorly, even compared to the random centroids method. 
This can be explained by the high number of outliers in the dataset which 
Maxmin tends to pick as initial centroids (see Fig. 25). 

Also,	all	methods	are	able	to	solve	the	flame	dataset,	according	to	the	CI	
measure. However, the NMI measure shows that the result partitions still 
have	major	differences.	

As expected, Density Peaks performs clearly better for all of the shape 
datasets.	There	is	no	significant	difference	between	the	quality	of	FastDP,	
compared to original DensityPeaks. In terms of speed, FastDP is much 
faster, with 1:25 mean speedup factor. 
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8 Conclusions

In this work, we introduced two new methods for fast approximate kNN 
graph construction. A method called ZNP works well for high dimensional 
numerical	data.	It	uses	a	combination	of	space-filling	curves	and	
neighborhood propagation to construct the graph. Second algorithm, RP-
Div has less limitations and works for any kind of data where a distance 
measure is available. Both perform well in comparison to previous state of 
the art methods. 

We used the kNN graph from RP-Div algorithm to speed up the well 
known Density Peaks algorithm and allow it to cluster datasets up to 
1 million in size. Experiments showed an average speed-up of 91:1 on 
datasets	of	size	≥	100,000.	The	algorithm	is	also	very	general	and	works	for	
all types of data as long as a distance function is provided. As a case study 
of using text data, we managed to cluster a Nordic Tweet dataset of size 
500,000 in 31 minutes.

K-means is a very popular algorithm, but it often performs poorly 
compared to other algorithms like Random Swap or Ward’s method. In this 
thesis, we studied the situations when k-means works and when it fails 
(Figure 29). The most important factor turned out to be cluster overlap. 
When there is more overlap, and less empty space between clusters, 
k-means works better. We also provided a formula to estimate overlap 
numerically. 

Many studies have tried to improve k-means by various strategies. 
Better initialization methods or just repeating the algorithm are two most 
common	ones.	We	studied	how	well	these	work	in	different	situations.	
On average, k-means produces errors in about 15% of the clusters. Better 
initialization technique (Maxmin) reduced this to 6%. Combining this with 
100 repeats reduced the error further to just 1%. However, in case of high 
overlap, k-means worked well even without better initialization techniques. 
In case of low overlap, it was the initialization technique that solved the 
clustering.	K-means	iterations	themselves	had	only	a	minor	effect.	
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Figure 29.	How	different	properties	of	a	dataset	affect	the	success	of	
k-means clustering.

The	findings	of	this	thesis	suggest	new	research	areas	to	explore:	
• Lack of overlap is the primary cause of poor k-means performance. 

This suggests that performance of k-means might be improved by 
artificially	introducing	more	overlap	to	a	dataset	which	is	lacking	
it. This would need a suitable way of detecting lack of overlap, 
without	access	to	clustering	ground	truth.	Also	different	overlap	
decreasing transformations should be studied, e.g. noise models or 
neighborhood embedding.

• We were able to improve the speed of Density Peaks using a kNN 
graph. Could k-means also be made faster using a kNN graph? In the 
assignment step, distances need to be calculated from every point 
to all k centroids. This could be reduced to just the kNN neighbors of 
the	old	nearest	centroid.	This	would	make	the	algorithm	significantly	
faster in case of large k, but would performance degrade too much? 

• We also showed that errors in the approximate kNN-graph originate 
more likely from outlier points, and those can be detected during 
runtime. It might be possible to use this to improve results of any 
approximate kNN-graph algorithm by focusing a more extensive 
search on outlier points.
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a b s t r a c t 

Density peaks is a popular clustering algorithm, used for many different applications, especially for non- 
spherical data. Although powerful, its use is limited by quadratic time complexity, which makes it slow 
for large datasets. In this work, we propose a fast density peaks algorithm that solves the time complexity 
problem. The proposed algorithm uses a fast and generic construction of approximate k-nearest neighbor 
graph both for density and for delta calculation. This approach maintains the generality of density peaks, 
which allows using it for all types of data, as long as a distance function is provided. For a dataset of 
size 10 0,0 0 0, our approach achieves a 91:1 speedup factor. The algorithm scales up for datasets up to 1 
million in size, which could not be solved by the original algorithm at all. With the proposed method, 
time complexity is no longer a limiting factor of the density peaks clustering. 

© 2019 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Clustering algorithms aim at grouping points so that the points 
in the same group are more similar to each other than points in 
other groups. Clustering can serve as an efficient exploratory data 
analysis tool in the fields such as physics [1] and bioinformatics 
[2] , or as a preprocessing tool for other algorithms in e.g. road 
detection [3] and motion segmentation [4] . 

Traditional clustering methods like k-means are constrained 
to cluster data with spherical clusters. Since the clusters in real 
life data are not always restricted to follow spherical shapes, new 
methods have been introduced to cluster data having arbitrary 
shape clusters. These include density based clustering [2,5,6] , 
graph based methods [1,7,8] , exemplar based clustering [9–11] , 
and support vector clustering [12,13] . 

In this paper, we focus on the Density peaks ( DensP ) [6] clus- 
tering algorithm, which detects clusters based on the observation 
that cluster centers are usually in dense areas and are surrounded 
by points with lower density. The algorithm first calculates den- 
sities of all points, and then the distances to their nearest point 
with higher density ( delta ). The cluster centers are selected so that 
they have a high value of both delta and density. After that, the 
remaining points are allocated ( joined ) to the clusters by merging 
with the nearest higher density point. 

✩ Handled by editor Andrea Torsello. 
∗ Corresponding author. 
E-mail address: samisi@cs.uef.fi (S. Sieranoja). 

The algorithm has been widely used for many applications, 
including autonomous vehicle navigation [3] , moving object de- 
tection [4] , electricity customer segmentation [14] , document 
summarization [15] and overlapping community detection [16] . 
Although being popular, its use has been limited by the O( N 2 ) 
time complexity. This slowness originates from two different 
bottlenecks: the need to calculate density, and to find the nearest 
neighbors with higher density. These make the algorithm slow for 
very large data sets. 

Some attempts have been done to improve the speed of density 
peaks. Wang et al. [14] use sampling with adaptive k-means to 
reduce the number of data points. Xu et al. [17] also limit the size 
of data by using grid-based filtering to remove points in sparse 
areas. They reported speed-up factors from 2:1 to 10:1 for data of 
sizes N = 50 0 0–10,0 0 0. However, both of these methods work only 
with numerical data, which reduces the generality of the original 
density peaks algorithm. 

In addition to speed-up, there have also been attempts to 
improve the quality of density peaks. This has two major direc- 
tions: using different density function [18–21] , and using different 
strategies to allocate the remaining points to the clusters [20–22] . 

In the original density peaks algorithm, the densities are cal- 
culated by using a cut-off kernel , where neighborhood is defined 
by a given cutoff distance ( dc ). This defines a dc -radius hyper ball 
in the D -dimensional space. The algorithm then counts how many 
data points are within this ball. 

Several authors have suggested alternatives to the cut-off

kernel. Mehmood et al. [18] use a kernel variant based on 

https://doi.org/10.1016/j.patrec.2019.10.019 
0167-8655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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heat-diffusion. Du [19] , Xie et al. [20] and Yaohui [21] all use a 
combination of exponential kernel and k nearest neighbors. 

Xu et al. [22] proposed a novel joining strategy based on 
support vectors. Xie et al. [20] allocates the points using k nearest 
neighbors. The points are processed by a breadth first search 
starting from the cluster centers. Yaohui [21] proposed to join the 
points to the clusters if they are density reachable . 

Most of the proposed approaches apply only to numerical data, 
which limits the usefulness of density peaks. However, the original 
density peaks algorithm does not have such limitation. Instead, 
it can operate with any given distance matrix regardless of the 
type of data. The only requirement is that some kind of distance 
function can be formulated. Du et al. [23] have used density peaks 
for a mix of categorical and numerical data, by introducing a new 
distance measure. Liu et al. [24] and Wang [15] use density peaks 
for text data by vectorizing the input data. 

In this work, we focus on solving the slowness problem of the 
density peaks. We propose a new fast density peaks algorithm 
called FastDP . It first creates a k-nearest neighbor (kNN) graph. 
The density and delta values are estimated using this graph. The 
standard joining strategy of density peaks is then applied to obtain 
the final clustering. The proposed algorithm is significantly faster 
than the original density peaks while keeping its generality 

Contrary to the existing attempts to speed up density peaks 
[14,22] , our approach is not limited to numerical data but it 
applies, as such, to any type of data for which a distance function 
can be formulated. To demonstrate the algorithm’s capabilities for 
non-vectorial data, we apply it for clustering of strings. 

Our main contributions are the following: 

- We present RP-Div algorithm to create kNN graph fast. 
- We utilize the graph to calculate the delta values fast. 
- We show that the algorithm applies also to text data. 

In terms of the other aspects of the algorithm, we use the 
original point allocation (joining) strategy. For density estimation 
we use the k-nearest neighbors as proposed in [19] . 

2. Density peaks clustering 

We first recall the original density peaks algorithm and its 
main variations. We use the following definitions: 

x Data point 
N Number of data points 
K Number of clusters 
k Number of neighbors in kNN graph. 
d ( x,y ) Distance between data points x and y 
kNN ( x ) The k nearest neighbors of x 
Dens ( x ) Density of the point x 
BigBrother ( x ) Nearest point y to x for which Dens ( y ) > Dens ( x ) 
Delta (x) Distance to BigBrother (x) 
Gamma(x) = Delta(x) ·Dens(x) 
Local peak Point x for which BigBrother ( x ) �∈ kNN( x ) 
Slope Point that is not a Local peak 

2.1. Density 

There are two widely used approaches to estimate density: 
distance-based and kNN-based . Distance-based approach takes a 
distance threshold as a parameter and counts how many points 
there are within this distance. Original density peaks algorithm 
uses this approach [6] . 

The second approach finds the k -nearest neighbors ( k -NN), 
and then calculates the average distance to the neighbor points 
[19] . According to our experiments, there are no significant dif- 
ferences which of these approaches to use. They both require 
O( N 2 ) calculations and provide virtually the same clustering 

result if correct parameter is used. However, good value for k 
is easier to determine than to find a suitable distance thresh- 
old [25] . We therefore use the kNN based approach for both 
the original variant of density peaks and the proposed fast 
variant. 

2.2. Density peaks 

The density peaks clustering algorithm [6] is based on the 
idea that cluster centers have usually a high density, and they 
are surrounded by points with lower density. So they have a 
large distance to points with higher density. Density peaks uses 
two features to determine the clusters: the density ρ and delta δ, 
which is the distance to the nearest point having a higher density. 
We denote this point as the big brother . 

The original algorithm selects k points as the cluster centers 
based on ρ and δ. This is because cluster centers are expected to 
have a high value for both of them. However, it was not defined 
how exactly the selection should be made. Different strategies 
have therefore been considered by others. We denote the two 
most common as Delta strategy [26] , which selects the points with 
highest delta values, and Gamma strategy [26,27] , which uses the 
product of the two features ( γ = ρδ). Here we apply the gamma 
strategy. 

One also needs to decide how many points should be selected. 
The original paper did not give any solution and left it as a user- 
given parameter. Wang et al. [27] proposed to detect a knee point 
on the gamma values by finding the intersection of the two lines 
to most closely fit the curve. In general, the problem is how to 
threshold the selected feature (either δ or γ ). This is an open prob- 
lem both in centroids-based and density based clustering. Fig. 1 
demonstrates the differences between the two selection strategies 
(delta and gamma). In this paper, we assume K is given by the 
user. 

2.3. General distance 

Density peaks has been mostly applied for numerical data 
in some vector space. However, it is possible to generalize the 
method to other non-numeric distance functions as well. Here we 
consider text data as a case study. 

Two studies exist where string data has also been used. Liu 
et al. [24] and Wang [15] apply first string vectorization based on 
TF-IDF model. Term frequency (TF) counts how many times a given 
word appears in the dataset. It is normalized by counting inverse 
document frequency (IDF). This approach converts the strings into 
a vector space, and then uses cosine distance to measure the 
distance between the two strings. 

The TF-IDF approach can be highly useful when clustering 
large text documents. However, short text strings contain only few 
words, which would result in sparse vectors containing only very 
few non-zero elements. Our solution to this is to apply a string 
similarity (or distance) measure directly without vectorization. 
This is possible because our method does not require the distance 
function being in metric space, nor does it rely on any other vector 
space properties. 

The choice of the string similarity (or distance) measure 
depends on the application. We consider here two choices: Lev- 
enshtein and Dice. Levenshtein edit distance [28] is the most well 
known string distance measure, and we apply it in the context 
of short text strings. For tweets, we use Dice coefficient [29] . For 
a more comprehensive comparison of the available measures, we 
refer to [30] . 
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Fig. 1. Different cluster selection strategies based on the density-vs-delta plot for 
the S4 dataset. Cluster centroids typically have both high density and high distance 
to higher density point (delta). Therefore, thresholding based on combination of 
delta and density (gamma) is expected to work better than using the delta values 
alone. 

3. Fast density peaks algorithm 

The proposed Fast density peaks method is presented in 
Algorithm 1 and demonstrated in Fig. 2 . Source code can be found 
on web. 1 It consists of five steps: 

1. Create the kNN graph (line 1). 
2. Calculate the density values (lines 2–3). 
3. Find big brothers (line 6). 
4. Identify cluster centers (lines 9–10). 
5. Join the remaining points (lines 12–13). 

Algorithm 1 FastDensityPeaks (X, k, K). 

1 kNNg = RPDiv(X,k,2 ∗k,1%); 
2 FOR i = 1 TO Size(X) DO 
3 density[i] = 1/meanDist(X[i],kNNg[i]); 
4 part[i] = {i}; 
5 
6 [bigBrother, gamma] = findBigBrothers(kNNg,X); 
7 // Select K points with largest gamma 
8 X = Sort(X,gamma); 
9 FOR i = 1 TO K DO 
10 centroid[i] = X[i]; 
11 // Join the remaining points to partitions 
12 FOR i = K + 1 TO N DO 
13 Merge part[i] and part[bigBrother[i]]; 
14 RETURN [centroid, part]; 

First, we calculate the k nearest neighbor graph. The graph is 
then used to calculate all the information needed by density peaks 
algorithm: (1) density values, (2) distance to the nearest point 
with higher density (delta), and, (3) pointer to this nearest neigh- 
bor ( big brother ). Product of density and delta values (gamma) is 
used to determine the first K cluster centers (density peaks). The 
big brother pointers are then used to join the remaining points to 
the same cluster as their big brother. 

The algorithm has two computational bottlenecks: 

• Constructing the kNN graph 
• Finding the big brother points. 

Both of these bottlenecks take O( N 2 ) time if straightforward 
solution is used. We next study how to make these two steps 
faster without sacrificing the quality of clustering. 

1 https://github.com/uef- machine- learning/fastdp . 

Fig. 2. Illustration of the proposed Fast density peaks algorithm. (1) For a given data set, the kNN graph is constructed. (2) Densities are calculated as inverse of the mean 
distance to the neighbors. (3) Nearest higher density point (big brother) is (in case of black lines) found in the kNN graph; for others (red lines) slower full search is 
performed. (4) Cluster centers are identified as the two points that have highest gamma (delta ∗dens) to the big brother. (5) Clusters are formed by joining other points to 
the same cluster as their big brother belongs to (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.1. Creating kNN graph by RP-div algorithm 

To make density peaks faster, we first generate an approximate 
k-nearest neighbor (kNN) graph by using an iterative algorithm 
called RP-Div ( Algorithm 3 ). Its preliminary version has been pre- 
sented in [31] . The algorithm contains two loops. In the first loop 
(lines 1–4), we create a new candidate graph, which is used to 
improve the graph obtained from the previous iterations. The new 
graph is generated by an algorithm called Random Pair Division 
( RP-div ) ( Algorithm 4 ). 

The algorithm constructs the graph by applying hierarchical 
subdivision (demonstrated in Figs. 3 and 4 ). The dividing works 
by first selecting two random points: a and b ( Algorithm 4 , lines 
5-6). The dataset is then split into two subsets (A and B), so that 
subset A contains all points that are closer to the point a , and 
subset B all points that are closer to the point b. The dividing 
continues recursively (lines 12–13) until the subset size reaches 
a predefined threshold ( W ), e.g. W < 20. Subsets smaller than the 
threshold are solved by the O( N 2 ) brute force algorithm (line 2), 
which calculates distances between all possible pairs and updates 
the list of k nearest points found (variable kNN). 

Algorithm 2 findBigBrothers (kNNg, X, density). 

1 FOR i = 1 TO Size(X) DO 
2 bigBrotherFound = 0; 
3 // See if big brother is found in graph 
4 // Loop from nearest to farthest 
5 FOR j = 1 TO numNeighbors DO 
6 neighbor = kNNg[i][j]; 
7 IF density[i] < density[neighbor] 
8 bigBrother[i] = neighbor; 
9 bigBrotherFound = 1; 
10 BREAK; 
11 // For local peaks (not found in graph) 
12 // Run O(N) full search 
13 IF bigBrotherFound == 0 
14 bigBrother[i] = fullSearch(i,density[i],X); 
15 delta[i] = d(X[i],X[bigBrother[i]]); 
16 gamma[i] = delta[i] ∗density[i]; 
17 RETURN [bigBrother, gamma]; 

Algorithm 3 RPDiv (X, k, W, stop). 

1 REPEAT 
2 RandomPairDivision(X,kNN,W); 
3 diff= Changes(kNN); 
4 UNTIL diff < 10% 
5 REPEAT 
6 RandomPairDivision(X,kNN,W); 
7 NNDES(X,kNN); 
8 diff= Changes(kNN); 
9 UNTIL diff < stop; 
10 RETURN kNN; 

Algorithm 4 RandomPairDivision (X, kNN, 
Size). 

1 IF size(X) < Size THEN 
2 BruteForce(X,kNN); 
3 RETURN; 
4 ELSE 
5 a = X[random(1,N)]; 
6 b = X[random(1,N)]; 
7 FOR i = 1 TO N DO 
8 IF d(x,a) < d(x,b) THEN 
9 A = A ∪ x 
10 ELSE 
11 B = B ∪ x; 
12 RandomPairDivision(A,kNN,Size); 
13 RandomPairDivision(B,kNN,Size); 

Fig. 3. The RP-div algorithm recursively subdivides the dataset of size N = 37 by 
first choosing two random points (a,b). The dataset is split based on which of the 
two points is nearer. After the first split, the size of the subset A is smaller than 
threshold W = 20, and is solved by brute force. The subset B is further divided into 
two more subsets, which both are smaller than W and now solved by brute force. 

Fig. 4. After repeating the random pair division, a new solution is obtained. This is 
solution is merged with the previous one to form a new improved kNN graph. 

One iteration of the algorithm produces a crude approximation 
of the kNN graph. The graph is improved by repeating the hier- 
archical subdivision several times ( Fig. 4 ) using different random 
pairs for splitting. As a result, several different kNN graphs are 
created. Every new graph is used to improve the previous solution 
by adopting those k-nearest neighbor pointers that are shorter 
than in the previous graph. 

The first loop (line 1) in Algorithm 3 continues until the 
proportion of changed edges drops below 10% (line 4). In the 
second loop (line 5), we apply the same iterative process as in the 
first loop, but at this time, we use the NNDES algorithm [32] to 
examine every point’s neighbors of neighbors as kNN candidates. 
NNDES works better when the graph already has a moderate 
quality and is therefore used only at the later iterations. We 
continue until the improvement drops below stop = 1% (line 9). 

Time bottleneck of the algorithm is the brute force step which 
requires O( W 2 ). Assuming all subsets are exactly of size W , there 
will be N/W subsets. The total time complexity of single iteration 
of the algorithm is then O( N/W ·W 2 ) = O( NW ). Using W = 2.5 ·k , this 
leads to linear O( rkN ) time algorithm where the number of repeats 
( r ) is a small constant. 

3.2. Solving the Big brother pointers 

Once the kNN graph is constructed, it can be used to speed up 
the bottlenecks of density peaks. The densities can be calculated 
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Fig. 5. Distribution of slope points (gray) and local peaks (red) inside an exam- 
ple cluster. One of the local peaks (blue) is the resulting cluster centroid (global 
peak). The case of k = 30 (left) and k = 70 (right) are shown. When the number of 
neighbors k in the kNN graph is increased, the number of local peaks decrease. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

trivially (lines 2–4 in Algorithm 1 ), and the nearest higher density 
point (big brother) can be found fast ( Algorithm 2 ). 

Finding the big brother ( Algorithm 2 ) is a special case of the 
nearest neighbor search. However, instead of considering only 
the distance, we must also select a point with higher density. 
Fortunately, majority of points have their big brothers located 
within their kNN neighborhood (line 8). We call them as slope 
points , and all others are denoted as local peaks . For slope points, 
we can find big brothers fast in O( k ) steps simply by analyzing the 
kNN graph (lines 5–10). 

Local peaks, on the other hand, are local density maxima and 
their big brothers cannot be found in the kNN graph. There is no 
shortcut to find their big brothers and O( N) full search must there- 
fore be performed (lines 11–14). These are also the points among 
which the final centroids will be chosen. The time complexity of 
this step depends on how many local peaks there are. Assuming 
that the proportion of the local peaks is p , the time complexity of 
this step is pN 2 + (1 − p ) kN = O( pN 2 ). The speed-up is therefore 
inverse proportional to p . 

Fig. 5 shows an example of the distribution of the local peak 
points with a sample dataset. In general, the higher the value of 
k , the less there are peak points, and the faster the search for the 
big brothers. 

The proportion of local peaks ( p ) is bound by the number of 
neighbors k in the graph. A neighbor of a peak cannot be another 
peak. If we have pN local peaks, there will be at least kpN slope 
points. Since all points are either local peaks or slopes, we have 
the following inequality: 

kpN + pN < N 

kp + p < 1 

p < 1 / ( k + 1 ) 

p < 1 /k 

Therefore, the time complexity of O( pN 2 ) can also be written 
in terms of k as O( N 2 / k ). When combining with the O( rkN ) time 
complexity of the kNN graph construction (see Section 3.1 ), this 
leads to a total time complexity of O( N 2 / k + rkN ) for the whole 
algorithm. 

4. Experiments 

We use parameters stop = 1% and k = 30 for kNN graph gener- 
ation in FastDP algorithm, unless otherwise noted. 

The experiments were run on Red Hat Enterprise Linux Server 
release 7.5 with 96 processing cores of Intel(R) Xeon(R) CPU 
E7-4860 v2 @ 3.20GHz and 1.0TB memory. Processing times are 
reported as run on single thread. 

Fig. 6. The Worms2 dataset contains 35 shapes which depict trails of random 
movement in 2D space. 

4.1. Datasets 

We test the proposed algorithm with the following four 
different data types: 

• Clustering basic benchmark 
• High dimensional random clusters 
• Artificial shapes 
• Text datasets 

We use datasets from the clustering benchmark [33] . So far we 
know four algorithms that can cluster all these datasets correctly: 
global k-means [34] , genetic algorithm [35] , random swap [36] and 
density peaks [6] . We test whether our fast density peaks ( FastDP ) 
can do the same. We report results for the S1–S4 sets [37] and for 
the Birch and Birch2 datasets [38] . 

To show the capabilities of the proposed method with large 
high-dimensional data, we generated three large High dimensional 
random clusters datasets, RC1M, RC100k-l and RC100k-l and RC1M. 
One hundred centroids were generated from uniform random 
distribution, each attribute in range [10..11]. For each cluster, 10 0 0 
(RC100k) or 10,0 0 0 (RC1M) points were drawn from Gaussian dis- 
tribution. To study the effect of the cluster variance, we generated 
two variants for the RC100k dataset: RC100k-h for high variance 
( σ 2 = 0.50) and RC100k-l for low variance ( σ 2 = 0.05). For the 
larger RC1M dataset, the lower variance of 0.05 was used. 

Artificial shapes are also used as algorithms minimizing sum- 
of-squared errors cannot handle this type of datasets but density 
peaks often can. We use three datasets that the original density 
peaks is known to succeed: Flame [2] , Aggregation [39] , and Spiral 
[40] . Also the dataset DS6_8 provided by the authors of [8] was 
used. 

Furthermore, we also generated two new artificial shape 
datasets: Worms2 (2D) and Worms6 4 (6 4D). The former is shown 
in see Fig. 6 . The data contains 25 individual shapes starting from 
a random position and moving to a random direction. At each 
step, points are drawn from the Gaussian distribution to produce a 
cloud around the current position. The cloud has both a low vari- 
ance (data) and high variance (noise) component. Their variance 
increases gradually at each step. The direction of movement is 
continually altered to an orthogonal direction. In case of the 64D 
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Table 1 
Datasets used in the experiments. In case of text data, average number 
of characters is reported as dimensionality. 

Dataset Type Size Clusters Dim. 

S1 Spherical 5000 15 2 
S2 Spherical 5000 15 2 
S3 Spherical 5000 15 2 
S4 Spherical 5000 15 2 
Birch1 (B1) Spherical 100,000 100 2 
Birch2 (B2) Spherical 100,000 100 2 
RC100k-h (RCh) Spherical 100,000 100 128 
RC100k-l (RCl) Spherical 100,000 100 128 
RC1M (RCM) Spherical 1,000,000 100 128 
Flame (Fla) Shape 240 2 2 
Aggregation (Agr) Shape 788 7 2 
Spiral (Spi) Shape 312 3 2 
DS6_8 (DS6) Shape 2000 8 2 
Worms2 (W2) Shape 105,600 35 2 
Worms64 (W64) Shape 105,000 25 64 
Countries (Cou) Text 6000 48 8.1 c 
English words (Eng) Text 466,544 500 9.4 c 
Tweets (Twe) Text 544,133 500 90 c 

version, the orthogonal direction is selected randomly at each step. 
Collision is detected to prevent completely overlapping clusters. 

Three text datasets are also used. Countries dataset has 48 
clusters consisting of the names of all European countries. Each 
cluster contains 50 variations of the country name generated by 
adding random modifications to the names. English words dataset 2 

contains 466,544 words of length varying from 1 to 45 characters 
(9.4 chars on average). Twitter data consists of tweets collected 
from Nordic Tweets channel [41] . For the Countries and words 
datasets, we use edit distance. For the twitter data, we use Dice 
coefficient of bigrams, which is faster than edit distance, especially 
for long strings ( Table 1 ). 

4.2. Clustering quality 

We use the Centroid Index (CI) to measure the success at clus- 
ter level [42] , and Normalized Mutual Information (NMI) at point 
level [43] . For the current state-of-the-art in measuring clustering 
quality we refer to [44] . 

Given a ground truth solution (G) and clustering solution (C), 
centroid index counts how many real clusters are missing a center, 
or alternatively, how many clusters have too many centers. The 
CI-value is the higher of these two numbers [42] . Value CI = 0 
means that the clustering is correct. 

The calculation of CI is done by performing nearest neighbor 
mapping between the clusters in C and G based on centroid dis- 
tances [42] . After the mapping, we count how many clusters were 
not mapped. These non-mapped clusters ( orphans ) are indicators of 
missing clusters. The mapping is done into both directions (C → G 
and G → C). The maximum number of orphans is the CI-value: 

CI(C, G ) = max ( Orphans ( C → G ) , Orphans ( G → C ) ) (1) 

In case of shape and text data, center is not a proper repre- 
sentative of a cluster. We therefore find the most similar cluster 
instead of the nearest centroid. For this, we use Jaccard coefficient, 
which calculates how many common points the two clusters have 
to the total number of unique points in the two clusters [45] : 

S(a, b) = 
| a ∩ b | 
| b ∪ b | (2) 

Normalized mutual information measures the information that 
the clustering solution (C) shares with the ground truth (G). Since 

2 https://github.com/dwyl/english-words . 

Fig. 7. Dependency of the proportion of local peaks on the number of clusters ( K ). 
The corresponding Fast-DensP processing time depends linearly on the data size, 
which is N = 10 0 0 ·K . 

Table 2 
Proportion of local peaks p . When the num- 
ber of neighbors k in the kNN graph is in- 
creased, the proportion of the local peak points 
decreases. 

Local peaks ( p ) 

Dataset k = 10 k = 30 k = 70 

S1 2.7% 0.3% 0.3% 
S2 3.0% 0.3% 0.3% 
S3 3.4% 0.5% 0.3% 
S4 3.7% 0.6% 0.3% 
Birch1 4.8% 1.1% 0.3% 
Birch2 4.3% 0.9% 0.2% 
RC100k 0.5% 0.2% 0.1% 
RC1M 0.2% 0.1% 0.0% 
Flame 2.5% 0.8% 0.8% 
Aggregation 4.4% 1.5% 0.6% 
Spiral 1.3% 1.0% 0.3% 
Countries 1.3% 0.7% 0.2% 
English words 1.7% 0.2% 0.0% 
Tweets 0.7% 0.1% 0.0% 

there scale has no upper bound, the result is normalized by the 
average of the self-entropies of C and G. The better the clustering, 
the closer the value of NMI is to 1. The exact scale varies across the 
datasets and it lacks similar intuitive interpretation as the CI-value. 

The English words and Twitter data do not have any ground 
truth, so for them we only provide qualitative samples to estimate 
the clustering quality. 

4.3. Efficiency of the delta calculation 

We test the efficiency of finding the big brothers by studying 
the number of local peak points. We need to perform O( N ) time 
full search only for the local peak points. For all other points, its 
big brother can be found faster in O(k) time simply by taking the 
nearest higher density point in its kNN neighborhood. Therefore, 
the less local peak points, the faster the algorithm. 

Fig. 7 shows the proportion of the local peaks for the subsets 
of the Birch2 where one cluster was removed at a time to produce 
subsets with number of clusters varying from K = 1–100. The 
corresponding data sizes varies from N = 10 0 0 to 10 0,0 0 0. We 
observe that the proportion of the peaks increases to about 0.9% 
at K = 10 clusters. After that it remains almost constant no matter 
how many more clusters there are. The total processing times are 
also shown, and it has near-linear dependency on the size of data. 
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Table 3 
Summary of the processing times and clustering quality. The quality of the kNN graph is varied by running the RP-Div algorithm for different number of iterations. Quality is 
recorded as NMI. We highlight the first NMI value that is equal (within 0.01 NMI) to the results of OrigDP. The processing times and CI-values are reported for this iteration. 

FastDP NMI 

Iterations s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe 

1 0.97 0.90 0.76 0.69 0.87 0.92 0.05 0.97 0.54 0.64 0.86 0.02 0.52 0.61 0.14 0.51 — —

2 0.99 0.94 0.79 0.72 0.95 1.00 0.16 1.00 0.57 0.91 0.96 0.25 0.59 0.63 0.43 0.70 — —

3 0.99 0.94 0.79 0.72 0.96 1.00 0.27 1.00 0.57 0.99 0.98 0.77 0.59 0.63 0.57 0.76 — —

4 0.99 0.94 0.79 0.72 0.96 1.00 0.37 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.62 0.78 — —

5 0.99 0.94 0.79 0.72 0.96 1.00 0.44 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.65 0.79 — —

10 0.99 0.94 0.79 0.72 0.96 1.00 0.65 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.71 0.79 — —

20 0.99 0.94 0.79 0.72 0.96 1.00 0.82 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.74 0.80 — —

30 0.99 0.94 0.79 0.72 0.96 1.00 0.82 1.00 0.57 1.00 1.00 1.00 0.60 0.62 0.73 0.80 — —

OrigDP 0.99 0.94 0.79 0.72 0.96 1.00 0.80 1.00 — 1.00 1.00 1.00 0.60 0.62 0.72 0.78 — —

Processing Time (seconds) 

s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe 

FastDP 0.04 0.04 0.04 0.04 2.25 1.96 82.97 15.68 713 0.01 0.04 0.01 0.02 3.19 26.47 0.30 2091 1765 
OrigDP 0.56 0.57 0.55 0.56 197 282 2656 2658 0.00 0.02 0.00 0.09 210 1310 6.67 — —

Speedup factor 14:1 15:1 14:1 14:1 87:1 144:1 32:1 170:1 — 0:1 1:1 0:1 6:1 66:1 49:1 22:1 — —

CI 

s1 s2 s3 s4 B1 B2 RCh RCl RCM Fla Agg Spi DS6 W2 W64 Cou Eng Twe 

FastDP 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.0 0.0 0.0 0.0 3.1 7.5 0.0 10.8 — —

OrigDP 0.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 — 0.0 0.0 0.0 3.0 7.0 0.0 14.0 — —

Table 4 
Example clusters. Some of the 500 clusters for the 466,544 words data. 
Twenty samples from each cluster. 

Cluster 41 Cluster 43 Cluster 247 Cluster 292 

soft-bil Livingstone Slommacky Kurtz 
lsoot-grime herringbone crummock Dinarchy 
dsweet-toothe Burlingham bummack myriarchy 
dsplit-tongue Neowashingtonia mimmock freshly 
dblack-visage Upington slammock triarcuated 
dsoft-winge Hillingdon bummalos matriarch 
dshort-witte Lovington mimmocky mandriarch 
dshort-terme Arlington malmock dyarchic 
dstout-arme Lexington hommocks myriarch 
dstill-fishin Herington earthgrubber BSLArch 
gstiff-limbe Stringtown crumhorn Taxiarch 
dswift-stealin Arrington malbrouck Bush 
gshort-leave milliangstrom krumhorn Ruthi 
dsnotty-nose Accrington shammocky Knuth 
divory-bille Northington Babcock fleshy 
dhot-mettle Farlington plumrock gush 
dsoft-goin Ellington fleadock Thushi 
gsnowy-winge Hartington cummock Furth 
dsharp-tastin Belington Commack flesh-fly 
gstove-warmed Conyngham archworker Bosch 

The effect of the parameter k in kNN is shown in Table 2 . 
With all datasets, the number of local peaks is small already with 
k = 10, and reduces to about 0.26% if it is increased to k = 70. 

4.4. Results (Speed v. quality) 

We implemented two versions of DensP in C: the original ver- 
sion [6] denoted as OrigDP , and the proposed method denoted as 
FastDP . Both variants use the same kNN-based method for density 
estimation. In terms of clustering quality, the only difference orig- 
inates from the quality of the kNN graph. In the OrigDP, an exact 
kNN is used while FastDP uses approximated version from [31] . 

In the experiments, we vary the number of iterations in RP- 
DIV (1…30) to obtain different clustering quality. Quality of the 
approximated kNN graph increases with the number of iterations, 
and the same is expected to happen for the clustering quality. 

From the results in Table 3 , we can see that FastDP achieves 
similar quality as OrigDP but much faster. This is especially true 

Table 5 
Two example clusters from twitter data. Four samples from each cluster. Detected 
clusters had typically low variation and were mostly produced by bots. 

Jobs cluster Weather cluster 

We’re #hiring! Click to apply: 
Technical Specialist - 
https://t.co/SP1NMxyDhp 
#Engineering Västra Götaland 
County #Job #Jobs 

shower rain → light shower snow 
temperature down 3 °C → 2 °C 
humidity down 64% → 60% wind 
9 kmh → 12 kmh 

See our latest #kirkkonummi #job 
and click to apply: SW 
Developer Intern, IoT Device and 
Data Management -…
https://t.co/5GEkyiMUlh 

overcast clouds → light rain 
temperature down 6 °C → 5 °C 
humidity up 75% → 93% 

If you’re looking for work in 
#Sandarne, Gavleborg County, 
check out this #job: 
https://t.co/KwMj7Mp6rn 
#Netherlands #Labor #Hiring 

broken clouds → clear sky 
temperature up 10 °C → 13 °C 
humidity down 66% → 54% 

Interested in a #job in #HKI, 
Uusimaa? This could be a great 
fit: https://t.co/DMYvpOl54i #IT 
#Hiring #CareerArc 

light intensity drizzle 
rain → scattered clouds 
temperature up 9 °C → 12 °C 
humidity down 100% → 66% 
wind 6 kmh → 11 kmh 

with large datasets (B1, B2, RCh, RCl, W2, W64) where the O( N 2 ) 
time complexity of OrigDP results in high speedup factors. With 
similar size datasets, dimensionality and variance (cluster overlap) 
has large effect on the results. In case of W2 and W64, the high 
dimensional version requires much more iterations. In case of RCl 
vs. RCh, the high variance version requires more iteration. 

Overall, the proposed method is much faster than OrigDP. In 
case of the birch2 dataset ( N = 10 0,0 0 0), the processing time is 
reduced from 282 s to 1.96 s with no reduction on quality. In case 
of smaller datasets, there is 14:1 improvement in case of S-sets of 
size 50 0 0, and no improvement in case of smaller datasets ( < 10 0 0 
points). 

The proposed algorithm was also successful with the largest 
datasets (RC1M, English words, Tweets) which the original density 
peaks algorithm could not process. The 466,544 strings of the 
words dataset were clustered using Levenshtein distance to 500 
clusters in 2091 s. Constructing the kNN-graph was the main 
bottleneck with 1779 s. This data set does not have a ground truth 
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clustering, but one can verify by seeing Table 4 that the results 
contain meaningful clusters. 

The Nordic tweets dataset of size 544,133 was also success- 
fully clustered with parameters k = 100, stop = 5%, and NNDES 
disabled. Two sample clusters are shown in Table 5 , which both 
are meaningful for a human observer. In specific, the two par- 
ticular clusters were observed to have lower variance, which can 
be partly explained by the fact that they were produced by bots 
rather than humans. The weather cluster is produced by one single 
bot, whereas the jobs cluster contains also human written tweets. 

5. Conclusions 

Fast density peaks (FastDP) algorithm was proposed. Its main 
advantage is that it removes the quadratic time complexity limita- 
tion of density peaks and allows clustering of very large datasets. 
The speed-up is achieved without any visible effect on the cluster- 
ing quality. Experiments showed an average speed-up of 91:1 on 
datasets of size ≥ 100k. Clustering a high dimensional numerical 
dataset of size 1M took only 12 min. The algorithm works for 
all types of data as long as a distance function is provided. We 
managed to cluster a Nordic Tweet dataset of size 500k in 31 min. 
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a b s t r a c t 

In this paper, we study what are the most important factors that deteriorate the performance of the k- 
means algorithm, and how much this deterioration can be overcome either by using a better initialization 
technique, or by repeating (restarting) the algorithm. Our main finding is that when the clusters overlap, 
k-means can be significantly improved using these two tricks. Simple furthest point heuristic (Maxmin) 
reduces the number of erroneous clusters from 15% to 6%, on average, with our clustering benchmark. 
Repeating the algorithm 100 times reduces it further down to 1%. This accuracy is more than enough for 
most pattern recognition applications. However, when the data has well separated clusters, the perfor- 
mance of k-means depends completely on the goodness of the initialization. Therefore, if high clustering 
accuracy is needed, a better algorithm should be used instead. 

© 2019 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

K-means (KM) algorithm [1–3] groups N data points into k clus- 
ters by minimizing the sum of squared distances between every 
point and its nearest cluster mean ( centroid ). This objective func- 
tion is called sum-of-squared errors (SSE). Although k-means was 
originally designed for minimizing SSE of numerical data, it has 
also been applied for other objective functions (even some non- 
numeric). 

Sometimes the term k-means is used to refer to the clustering 
problem of minimizing SSE [4–7] . However, we consider here k- 
means as an algorithm . We study how well it performs as a clus- 
tering algorithm to minimize the given objective function. This ap- 
proach follows the recommendation in [8] to establish a clear dis- 
tinction between the clustering method (objective function) and the 
clustering algorithm (how it is optimized). 

In real-life applications, the selection of the objective function 
is much more important. Clustering results depend primarily on 
the selected objective function, and only secondarily on the se- 
lected algorithm. Wrong choice of the function can easily reverse 
the benefit of a good algorithm so that a proper objective function 
with a worse algorithm can provide better clustering than good 
algorithm with wrong objective function. However, it is an open 
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question how much clustering results are biased because of using 
an inferior algorithm. 

There are other algorithms that are known, in many situa- 
tions, to provide better clustering results than k-means. However, 
k-means is popular for good reasons. First, it is simple to imple- 
ment. Second, people often prefer to use an extensively studied al- 
gorithm whose limitations are known rather than a potentially bet- 
ter, but less studied, algorithm that might have unknown or hid- 
den limitations. Third, the local fine-tuning capability of k-means 
is very effective, and for this reason, it is also used as part of bet- 
ter algorithms such as the genetic algorithm [9,10] , random swap 
[11,12] , particle swarm optimization [13] , spectral clustering [14] , 
and density clustering [15] . Therefore, our results can also help 
better understand those more complex algorithms that rely on the 
use of k-means. 

K-means starts by selecting k random data points as the initial 
set of centroids, which is then improved by two subsequent steps. 
In the assignment step , every point is put into the cluster of the 
nearest centroid. In the update step , the centroid of every cluster 
is recalculated as the mean of all data points assigned to the clus- 
ter. Together, these two steps constitute one iteration of k-means. 
These steps fine-tune both the cluster borders and the centroid lo- 
cations. The algorithm is iterated a fixed number of times, or until 
convergence (no further improvement is obtained). MacQueen also 
presented sequential variant of k-means [2] , where the centroid is 
updated immediately after every single assignment. 

K-means has excellent fine-tuning capabilities. Given a rough 
allocation of the initial cluster centroids, it can usually optimize 

https://doi.org/10.1016/j.patcog.2019.04.014 
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Fig. 1. K-means is excellent in fine-tuning cluster borders locally but fails to re- 
locate the centroids globally. Here a minus sign ( −) represents a centroid that is 
not needed, and a plus sign ( + ) a cluster where more centroids would be needed. 
K-means cannot do it because there are stable clusters in between. 

their locations locally. However, the main limitation of k-means is 
that it rarely succeeds in optimizing the centroid locations globally. 
The reason is that the centroids cannot move between the clusters 
if their distance is big, or if there are other stable clusters in be- 
tween preventing the movements, see Fig. 1 . The k-means result 
therefore depends a lot on the initialization. Poor initialization can 
cause the iterations to get stuck into an inferior local minimum. 

Fortunately, finding the exact optimum is not always impor- 
tant. In pattern recognition applications, the goal can be merely 
to model the distribution of the data, and the clustering result is 
used as a part in a more complex system. In [16] , the quality of the 
clustering was shown not to be critical for the speaker recognition 
performance when any reasonable clustering algorithm, including 
repeated k-means, was used. 

However, if the quality of clustering is important then k-means 
algorithm has problems. For example, if we need to solve the num- 
ber of clusters, the goodness of the algorithm matters much more. 
Experiments with three different indexes (WB, DBI, Dunn) have 
shown that k-means rarely achieves the correct number of clus- 
ters whereas random swap succeeded in most cases [17] . Similar 
observations were made with stability-based approach in [18] . 

To compensate for the mentioned weaknesses of k-means, two 
main approaches have been considered: (1) using a better initial- 
ization, (2) repeating k-means several times by different initial so- 
lution. Numerous initialization techniques have been presented in 
the literature, including the following: 

• Random points 
• Furthest point heuristic 
• Sorting heuristic 
• Density-based 
• Projection-based 
• Splitting technique 

Few comparative studies exists [19–22] , but there is no consen- 
sus of which technique should be used. A clear state-of-the-art is 
missing. Pena et al. [19] studied four basic variants: random cen- 
troids [1] and MacQueen’s variant of it [2] , random partition and 
Kaufman’s variant of the Maxmin heuristic [23] . Their results show 
that random partition and Maxmin outperform the random cen- 
troid variants with the three datasets (Iris, Ruspini, Glass). 

He et al. [20] studied random centroids, random perturbation of 
the mean [24] , greedy technique [25] , Maxmin [26] , and Kaufman’s 

variant of Maxmin [23] . They observed that the Maxmin variants 
provide slightly better performance. Their argument is that the 
Maxmin variants are based on distance optimization, which tends 
to help k-means provide better cluster separation. 

Steinley and Brusco [21] studied 12 variants including com- 
plete algorithms like agglomerative clustering [27] and global k- 
means [28] . They ended up recommending these two algorithms 
and Steinley’s variant [29] without much reservation. The first two 
are already complete stand-alone algorithms themselves and not 
true initialization techniques, whereas the last one is a trivial im- 
provement of the random partition. 

Steinley and Brusco also concluded that agglomerative cluster- 
ing should be used only if the size, dimensionality or the number 
of clusters is big; and that global k-means (GKM) [28] should be 
used if not enough memory to store the N 2 pairwise distances. 
However, these recommendations are not sound. First, agglom- 
erative clustering can be implemented without storing the dis- 
tance matrix [30] . Second, GKM is extremely slow and not prac- 
tical for bigger datasets. Both these alternatives are also stan- 
dalone algorithms and they provide better clustering even without 
k-means. 

Celebi et al. [22] performed the most extensive comparison 
so far with 8 different initialization techniques on 32 real and 
12,228 synthetic datasets. They concluded that random centroids 
and Maxmin often perform poorly and should not be used, and 
that there are significantly better alternatives with comparable 
computational requirements. However, their results do not clearly 
point out a single technique that would be consistently better than 
others. 

The detailed results in [22] showed that a sub-sampling and 
repeat strategy [31] performs consistently in the best group and 
k-means ++ performs generally well . For small datasets Bradley’s 
sub-sampling strategy or greedy variant of k-means ++ was recom- 
mended. For large data, split-based algorithm was recommended. 

The second major improvement, besides the initializations, is to 
repeat k-means [32] . The idea is simply to restart k-means several 
times from different initial solution to produce several candidate 
solutions, and then keeping the best result found as the final so- 
lution. This approach requires that the initialization technique pro- 
duces different starting solutions by involving some randomness 
in the process. We call this variant repeated k-means (RKM). The 
number of repeats is typically small like R = 20 in [33] . 

Many researchers consider the repeats as an obvious and neces- 
sary improvement to the k-means at the cost of increased process- 
ing time. Bradley and Fayyad [31] used slightly different variant 
by combining the repeats and sub-sampling to avoid the increase 
in the processing time. Besides these papers, it is hard to find any 
systematic study how the repeats affect on the k-means. For exam- 
ple, none of the review papers investigate the effect of the repeats 
on the performance. 

To sum up, existing literature provides merely relative com- 
parisons between the selected initialization techniques. They lack 
clear answers of the significance of the results, and present no 
analysis on which type of data the techniques work and fail. Many 
of the studies also use classification datasets, which have limited 
suitability for studying the clustering performance. 

We made a brief survey about how recent research papers ap- 
ply k-means. Random centroids [5,34,35] seems to be the most 
popular initialization method, along with k-means ++ [6,33,36] . 
Some papers do not specify how they initialize [37] , or it had to 
be concluded indirectly. For example, Boutsidis [5] used the de- 
fault method available in MATLAB, which was random centroids in 
the 2014a version and k-means ++ starting from the 2014b version. 
The method in [38] initializes both the centroids and the partition 
labels at random. However, as they apply the centroid step first, 
the random partition is effectively applied. 
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Fig. 2. Three examples of clustering result when using SSE cost function. Gaussian cluster is split into several spherical clusters (left); mismatch of the variance causes the 
larger cluster to be split (middle); mismatch of the cluster sizes does not matter if the clusters are well-separated. 

The number of k-means repeats varies from a relatively small 
amount of 10–20 [5,33,35] to a relatively high value of 100 [36] . 
The most extreme example is [34] where 20 h time limit is ap- 
plied. Although they stop iterating if the running time grows twice 
as that of their proposed algorithm, it is still quite extensive. Sev- 
eral papers do not repeat k-means at all [6,7,37] . 

The choice of the initialization and the number of repeats might 
also vary depending on the motivation. The aim of using k-means 
can be to have a good clustering result, or to provide merely a 
point of comparison. In the first case, all the good tricks are used, 
such as more repeats and better initialization. In the second case, 
some simpler variant is more likely applied. A counter-example is 
in [34] where serious effort s seem to be made to ensure all algo- 
rithms have the best possible performance. 

In this paper we study the most popular initialization heuris- 
tics. We aim at answering the following questions. First, to what 
extent k-means can be improved by a better initialization tech- 
nique? Second, can the fundamental weakness of k-means be elim- 
inated simply by repeating the algorithm several times? Third, can 
we predict under which conditions k-means works, and which it 
fails? 

In a recent study [39] , it was shown that k-means performs 
poorly when the clusters are well separated. Here we will answer 
how much a better initialization or repeats can compensate for this 
weakness. We will also show that dimensionality does not matter 
for most variants, and that unbalance of cluster sizes deteriorates 
the performance of most initializations. 

The rest of the paper is organized as follows. In Section 2 , we 
define the methodology and data. We also give brief review of 
the properties of the standard k-means algorithm. Different ini- 
tialization techniques are then studied in Section 3 . Experimental 
analysis is performed in Section 4 , and conclusions are drawn in 
Section 5 . 

2. Performance of k-means 

Following the recommendation of Jain [8] , we make a clear dis- 
tinction between the clustering method and algorithm. Clustering 
method refers to the objective function, and clustering algorithm 
to the process optimizing it. Without this distinction, it would be 
easy to draw wrong conclusions. 

For example, k-means has been reported to work poorly with 
unbalanced cluster sizes [40] , and that it can cause large clusters to 
be wrongly split and smaller clusters wrongly merged [41] . These 
observations themselves are correct but they miss the root cause, 
which is the SSE objective function. Even an optimal algorithm 
minimizing SSE would end up with the same incorrect result. Such 
observations therefore relate to the objective function, and not to 
the k-means algorithm . 

Fig. 2 demonstrates the situation. An algorithm minimizing SSE 
would find spherical clusters regardless of the data. If the data con- 
tain non-spherical clusters, they would be divided into spherical 
sub-clusters, usually along the direction of the highest variance. 
Clusters of variable sizes would also cause large clusters to be split, 
and smaller ones to be merged. In these cases, if natural clusters 
are wanted, a better clustering result could be achieved by using 
an objective function based on Mahalanobis distance [42] or Gaus- 
sian mixture model [43] instead of SSE. 

2.1. Datasets 

In this paper, we focus on the algorithmic performance of k- 
means rather than the choice of the objective function. We use the 
clustering basic benchmark [39] as all these datasets can be clus- 
tered correctly with SSE. Therefore, any clustering errors made by 
k-means must originate from the properties of the algorithm, and 
not from the choice of wrong objective function. The datasets are 
summarized in Table 1 . They are designed to vary the following 
properties as defined in [39] : 

• Cluster overlap 
• Number of clusters 
• Dimensionality 
• Unbalance of cluster sizes 

2.2. Methodology 

To measure the success of the algorithm, the value of the objec- 
tive function itself is the most obvious measure. Existing literature 
reviews of k-means use either SSE [19,22] , or the deviation of the 
clusters [20] , which is also a variant of SSE. It is calculated as: 

SSE = 
N ∑ 

i =1 

∥∥x i − c j 
∥∥2 

(1) 

where x i is a data point and c j is its nearest centroid. In [39] , SSE 
is also measured relative to the SSE-value of the ground truth so- 
lution ( SSE opt ): 

ε − ratio = 
( SSE − SS E opt ) 

SS E opt 
(2) 

If the ground truth is known, external indexes such as adjusted 
Rand index (ARI), Van Dongen (VD), variation of information (VI) or 
normalized mutual information (NMI) can also be used [22] . A com- 
parative study of several suitable indexes can be found in [44] . The 
number of iterations have also been studied in [19,22] , and the 
time complexities reported in [22] . 

The problem of SSE, and most of the external indexes, is that 
the raw value does not tell how significant the result is. We there- 
fore use Centroid Index (CI) [45] , which indicates how many cluster 
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Table 1 
Basic clustering benchmark [39] . The data is publicly available here: http://cs.uef.fi/sipu/datasets/ . 

Dataset Varying Size Dimensions Clusters Per cluster 

A Number of clusters 30 0 0–750 0 2 20–50 150 
S Overlap 50 0 0 2 15 333 
Dim Dimensions 1024 32–1024 16 64 
G2 Dimensions + overlap 2048 2–1024 2 1024 
Birch Structure 10 0,0 0 0 2 100 10 0 0 
Unbalance Balance 6500 2 8 10 0–20 0 0 

Fig. 3. Performance of k-means with the A2 dataset: CI = 4, SSE = 3.08 ( �10 10 ), 
ε = 0.52. 

centroids are wrongly located. Specifically, the value CI = 0 implies 
that the clustering structure is correct with respect to the ground 
truth. 

An example is shown in Fig. 3 , where k-means provides 
SSE = 3.08 ×10 10 , which is 52% higher than that of the ground 
truth. But what do these numbers really mean? How significant is 
the difference? On the other hand, the value CI = 4 tells that ex- 
actly four real clusters are missing a centroid. 

Based on CI, a success rate (%) was also defined in [39] to mea- 
sure the probability of finding the correct clustering. For example, 
when running k-means 50 0 0 times with dataset A2 ( Fig. 3 ), CI = 0 
was never reached, and thus, its success rate is 0%. Another exam- 
ple with dataset S2 ( Fig. 4 ) results in success rate of 1/6 = 17%. 

The success rate has an important implication. Any value higher 
than 0% indicates that the correct clustering can be found simply 
by repeating k-means. For a success rate p , the expected number of 
repeats is 1/ p. For instance, p = 50% indicates that expected number 
of repeats is 2; and p = 1% indicates 100 repeats. Even with as low 
value as p = 0.1% the correct solution is expected to be found in 
10 0 0 repeats. This is time consuming, but feasible. However, for 
some of our datasets the success rate is so low that the number 
repeats would be unreasonably high. For example, even 20 0,0 0 0 
repeats produces 0% success rate in our experiments with some 
datasets. 

2.3. Properties of k-means 

We next briefly summarize the main properties of the k-means 
algorithm. Generally the clustering problem is the easier the more 
the clusters are separated. However, in [39] it was found that for 
k-means it is just the opposite; the less overlap the worse the clus- 

tering performance, see Fig. 5 . This is a fundamental weakness of 
the k-means algorithm. 

In [39] , it was also found that the number of errors has linear 
dependency on the number of clusters ( k ). For example, the CI- 
values for the A sets with k = 20, 35, 50 clusters were measured 
as CI = 2.5, 4.5, 6.5, respectively. The relative CI-values (CI/ k ) cor- 
respond to a constant of 13% of centroids being wrongly located. 
Results with the subsets of Birch2 (varying k from 1 to 100) con- 
verge to about 16% when k approaches to 100, see Fig. 6 . 

Two series of datasets are used to study the dimensionality: 
DIM and G2. The DIM sets have 16 well separated clusters in 
high-dimensional space with dimensionality varying from D = 32 
to 1024. Because of clear cluster separation, these datasets should 
be easy for any good clustering algorithm to reach CI = 0 and 100% 
success rate. However, k-means again performs poorly; it obtains 
the values CI = 3.6 and 0% success rate regardless of the dimen- 
sionality. The reason for the poor performance is again the lack of 
cluster overlap, and not the dimensionality. 

The results with the G2 sets confirmed the dependency be- 
tween the dimensionality and the success rate. We allocated four 
centroids with 3:1 unbalance so that the first cluster had three 
centroids and the second only one. We then ran k-means and 
checked whether it found the expected 2:2 allocation by moving 
one of the three centroids to the second group. The results in Fig. 7 
show that the overlap is the mediating factor for the success rate: 
the more overlap, the lower the success rate of k-means. 

The cluster size unbalance was also shown in [39] to result in 
poor performance. The main reason for this was the random ini- 
tialization, which cannot pick the initial centroids in a balanced 
way. Another reason was the k-means iterations which fail to im- 
prove the initial solution due to lack of cluster overlap. 

The effect of the different properties of data on k-means can be 
summarized as follows: 

Property: Effect: 
Cluster overlap Overlap is good 
Number of clusters Linear dependency 
Dimension No direct effect 
Unbalance Bad 

3. K-means initialization techniques 

Next we study how much these problems of k-means can be 
solved by the following two improvements: 

• Better initialization 
• Repeating k-means 

K-means is a good algorithm for local fine-tuning but it has se- 
rious limitation to relocate the centroids when the clusters do not 
overlap. It is therefore unrealistic to expect the clustering problem 
to be solved simply by inventing a better initialization for k-means. 
The question is merely, how much a better initialization can com- 
pensate for the weakness of k-means. 

Any clustering algorithm could be used as an initialization 
technique for k-means. However, solving the location of initial 
centroids is not significantly easier than the original clustering 
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Fig. 4. Centroid index measures how many real clusters are missing a centroid ( + ), or how many centroids are allocated to wrong cluster ( −). Six examples are shown for 
S2 dataset. 

Fig. 5. Success rate (%) of k-means, measured as the probability of finding correct clustering, improves when the cluster overlap increases. 

0 %

5 %

10 %

15 %

20 %

0 10 20 30 40 50 60 70 80 90 100

Number of clusters (k)

R
el

at
iv

e 
C

I-v
al

ue

Birch2
subsets

K-means

Repeated
k-means

Fig. 6. CI-value of k-means increases linearly with k , and relative CI converges to 
16% with the Birch2 subsets. 

problem itself. Therefore, for an algorithm to be considered as ini- 
tialization technique for k-means, in contrast to being a standalone 
algorithm, we set the following requirements: 

1. Simple to implement 
2. Lower (or equal) time complexity than k-means 
3. No additional parameters 

First, the algorithm should be trivial, or at least very easy to 
implement. Measuring implementation complexity can be subjec- 
tive. The number of functions and the lines of code were used in 
[16] . Repeated k-means was counted to have 5 functions and 162 
lines of C-code. In comparison, random swap [11,12] , fast agglomer- 
ative clustering variant [30] , and sophisticated splitting algorithm 
[46] had 7, 12 and 22 functions, and 226, 317 and 947 lines of 
codes, respectively. Random initialization had 2 functions and 26 
lines of code. 

Second, the algorithm should have lower or equal time com- 
plexity compared to k-means. Celebi et al. [22] categorizes the al- 
gorithms to linear, log-linear and quadratic based on their time 
complexities. Spending quadratic time cannot be justified as the 
fastest agglomerative algorithms are already working in close to 
quadratic time [30] . A faster O( N log N ) time variant also exists 
[47] but it is significantly more complex to implement and requires 
to calculate k-near neighbors (KNN). K-means requires O( gkN ) time, 
where g is the number of iterations and typically varies from 20 to 
50. 

The third requirement is that the algorithm should be free 
of parameters; others than k . For instance, there are algorithms 
[25,48] that select the first centroid using some simple rule, and 
the rest greedily by cluster growing, based on whether the point 
is within a given distance. Density-connectivity criterion was also 
used in [49] . Nevertheless, this approach requires one or more 
threshold parameters. 
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Table 2 
Summary of the initialization techniques compared in this paper. Time refers to the aver- 
age processing time with the A3 dataset ( N = 7500, k = 50). Randomized refers to whether 
the technique include randomness naturally. Randomness will be needed for the repeated 
k-means variant later. 

Technique Ref. Complexity Time Randomized Parameters 

Random partitions [3] O( N ) 10 ms Yes –

Random centroids [1,2] O( N ) 13 ms Yes –

Maxmin [54] O( kN ) 16 ms Modified –

kmeans ++ [59] O( kN ) 19 ms Yes –

Bradley [31] O( kN + Rk 2 ) 41 ms Yes R = 10, s = 10% 
Sorting heuristic [62] O( N log N ) 13 ms Modified –

Projection-based [72] O( N log N ) 14 ms Yes –

Luxburg [50] O( kN log k ) 29 ms Yes –

Split [46,68] O( N log N ) 67 ms Yes k = 2 

Fig. 7. The effect of overlap for the success of k-means with the G2 datasets. The 
numbers circled are for the three sample datasets shown above. The dataset names 
are coded as G2-DIM-SD, where DIM refers to the dimensions and SD to the stan- 
dard deviation; the higher the SD, the more the two clusters overlap. 

The most common heuristics are summarized in Table 2 . We 
categorize them roughly into random, furthest point, sorting , and 
projection-based heuristics. Two standalone algorithms are also 
considered: Luxburg [50] and Split algorithm. For a good review of 
several others we refer to [51] . 

3.1. Random centroids 

By far the most common technique is to select k random data 
objects as the set of initial centroids [1,2] . It guarantees that ev- 
ery cluster includes at least one point. We use shuffling method 
by swapping the position of every data point with another ran- 
domly chosen point. This takes O( N ) time. After that, we take the 
first k points from the array. This guarantees that we do not select 

the same point twice, and that the selection is independent on the 
order of the data. For the random number generator we use the 
method in [52] . We refer to this initialization method as random 
centroids . 

Slightly different variant in [2] selects simply the first k data 
points. This is the default option in the Quick Cluster in IBM SPSS 
Statistics [53] . If the data is in random order the result is effec- 
tively the same as random centroids, except that it always provides 
the same selection. 

We note that the randomness is actually a required property 
for the repeated k-means variant. This is because we must be able 
to produce different solutions at every repeat. Some practitioners 
might not like the randomness and prefer deterministic algorithms 
always producing the same result. However, both of these goals 
can actually be achieved if so wanted. We simply use pseudo- 
random number generator with the same seed number . In this way, 
single runs of k-means will produce different result but the overall 
algorithm still produces always the same result for the same input. 

3.2. Random partitions 

An alternative to random centroids is to generate random par- 
titions. Every point is put into a randomly chosen cluster and their 
centroids are then calculated. The positive effect is that it avoids 
selecting outliers from the border areas. The negative effect is that 
the resulting centroids are concentrated in the central area of the 
data due to the averaging. According to our observations, the tech- 
nique works well when the clusters are highly overlapped but per- 
forms poorly otherwise, see Fig. 8 . 

According to [19] , the random partition avoids the worst case 
behavior more often than the random centroids. According to our 
experiments, this is indeed the case but only when the clusters 
have high overlap. The behavior of the random partition is also 
more deterministic than that of random centroids. This is because 
the centroids are practically always near the center of the data. Un- 
fortunately, this also reduces the benefits of the repeated k-means 
because there is very little variation in the initial solutions, and 
therefore, also the final solutions often become identical. 

Steinley [29] repeats the initialization 50 0 0 times and selects 
the one with the smallest SSE. However, repeating only the ini- 
tialization does not fix the problem. Instead, it merely slows down 
the initialization because it takes 50 0 0 �N steps, which is typically 
much more than O( kN ). 

Thiesson et al. [24] calculate the mean point of the data set and 
then add random vectors to it. This effectively creates initial cen- 
troids like a cloud around the center of the data, with very similar 
effect as the random partition. The size of this cloud is a parame- 
ter. If it is set up high enough, the variant becomes similar to the 
random centroids technique, with the exception that it can select 
points also from empty areas. 
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Fig. 8. Initial centroids created by random partition (left), by Steinley’s variant (middle), and the final result after the k-means iterations (right). 

Fig. 8 shows the effect of the random partition and Steinley’s 
variant. Both variants locate the initial centroids near the center 
of the data. If the clusters have low overlap, k-means cannot pro- 
vide enough movement and many of the far away clusters will lack 
centroids in the final solution. 

3.3. Furthest point heuristic (Maxmin) 

Another popular technique is the furthest point heuristic [54] . 
It was originally presented as standalone 2-approximate clustering 
algorithm but has been widely used to initialize k-means. It selects 
an arbitrary point as the first centroid and then adds new centroids 
one by one. At each step, the next centroid is the point that is 
furthest (max) from its nearest (min) existing centroid. This is also 
known as Maxmin [19,21,22,55] . 

Straightforward implementation requires O( k 2 N ) time but it can 
be easily reduced to O( kN ) as follows. For each point, we main- 
tain pointer to its nearest centroid. When adding a new centroid, 
we calculate the distance of every point to this new centroid. If 
the new distance is smaller than to the previous nearest, then it 
is updated. This requires N distance calculations. The process is re- 
peated k times, and the time complexity is therefore O( kN ) in total, 
which is the same as one iteration of k-means. Further speedup 
can be achived by searching for the furthest point in just a subset 
of the data [56] . 

There are several alternative ways to choose the first cen- 
troid. In the original variant the selection is arbitrary [54] . In [55] , 
the furthest pair of points are chosen as the first two centroids. 

Another variant selects the one with maximum distance to the ori- 
gin [57] because it is likely to be located far from the center. Max- 
imum density has also been used [51,58] . 

K-means ++ [59] is a randomized variant of the furthest point 
heuristic. It chooses the first centroid randomly and the next ones 
using a weighted probability p i = cost i /SUM( cost i ), where cost i is 
the squared distance of the data point x i to its nearest centroids. 
This algorithm is an O(log k )-approximation to the problem. We 
also implement k-means ++ for our tests because of its popularity. 

Chiang and Mirkin [55] recalculate all the centroids after updat- 
ing the partitions, and the next centroid is selected as the farthest 
from the recently added centroid. Slightly more complex variant 
[23] selects the point that decreases the objective function most. It 
requires calculation of all distances between every pair of points, 
which takes O( N 2 ) time. Thus, it does not qualify our criteria for 
k-means initialization. With the same amount of computation we 
can already run implement agglomerative clustering algorithm. 

Other authors also weight the distances by the density of the 
point [51,58] . This reduces the probability that outliers are se- 
lected. Erisoglu et al. [60] use cumulative distance to all previous 
centroids instead of the maxmin criterion. However, this performs 
worse because it can easily choose two nearby points provided 
that they have large cumulative distance to all other centroids [61] . 

We use here a variant that selects the first point randomly 
[54,59] . This adds randomness to the process as required by the 
repeated k-means variant. The next centroids we select using the 
original maxmin criterion, i.e. choosing the point with biggest dis- 
tance to its nearest centroid. 
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Fig. 9. Example of the maxmin heuristic for S3 dataset. The blue dots are the initial 
and the red dots the final centroids. The trajectories show their movement during 
the k-means iterations. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Maxmin technique helps to avoid worst case behavior of the 
random centroids, especially when the cluster sizes have serious 
unbalance. It also has tendency to pick up outlier points from the 
border areas, which leads to slightly inferior performance in the 
case of datasets with high overlap (S3 and S4). However, k-means 
usually works better with such datasets [39] , which compensates 
for the weakness of Maxmin. Fig. 9 demonstrates the performance 
of the Maxmin technique. 

3.4. Sorting heuristics 

Another popular technique is to sort the data points according 
to some criterion. Sorting requires O( N log N ) time, which is less 
than that of one k-means iteration, O( kN ), assuming that log N ≤ k . 
After sorting, k points are selected from the sorted list using one 
of the following heuristics: 

• First k points. 
• First k points while disallowing points closer than ε to already 

chosen centroids. 
• Every ( N / k )th point (uniform partition) 

For the sorting, at least the following criteria have been consid- 
ered: 

• Distance to center point [62] 
• Density [21,63] 
• Centrality [64] 
• Attribute with the greatest variance [65] 

Hartigan and Wong [62] sort the data points according to their 
distance to the center of the data. The centroids are then selected 
as every N / k th point in this order. We include this variant in our 
tests. To have randomness, we choose a random data point as a 
reference point instead of the center. This heuristic fulfills our re- 
quirements: it is fast, simple, and requires no additional parame- 
ters. 

Astrahan [63] calculates density as the number of other points 
within a distance d 1 . First centroid is the point with the highest 

density, and the remaining k -1 centroids are chosen at a decreas- 
ing order, with the condition that they are not closer than distance 
d 2 from an already chosen centroid. Steinley and Brusco [21] rec- 
ommends using the average pairwise distance ( pd ) both for d 1 and 
d 2 . This makes the technique free from parameters but it is still 
slow, O( N 2 ) time, for calculating the pairwise distances. 

It would be possible to simplify this technique further and use 
random sampling: select N pairs of points, and use this subsam- 
ple to estimate the value of pd . However, the calculation of the 
densities is still the bottleneck, which prevents this approach from 
meeting the requirements for k-means initialization as such. 

Cao et al. [64] proposed a similar approach. They use a primary 
criterion ( cohesion ) to estimate how central a point is (how far 
from boundary). Secondary threshold criterion ( coupling ) is used 
to prevent centroids from being neighbors. 

Al-Daoud [65] sorts the data points according to the dimension 
with the largest variance. The points are then partitioned into k 
equal size clusters. Median of each cluster is selected instead of the 
mean. This approach belongs to a more general class of projection- 
based techniques where the objects are mapped to some linear 
axis such as diagonal or principal axis. 

The sorting heuristic would work if the clusters were well sep- 
arated, and all have different criterion value (such as the distance 
from center point). This actually happens with the very high di- 
mensional DIM datasets in our benchmark. However, with most 
other datasets the clusters tend to be randomly located in respect 
to the center point, and it is unlikely that all the clusters would 
have different criterion values. What happens in practice, is that 
the selected centroids are just random data points in the space, 
see Fig. 10 . 

3.5. Projection-based heuristics 

Sorting heuristics can also be seen as a projection of the points 
into a one-dimensional (non-linear) curve in the space. Most cri- 
teria would just produce an arbitrary curve connecting the points 
randomly, and lacking convexity or any sensible shape. However, 
several linear projection-based techniques have been considered in 
the literature: 

• Diagonal axis [65] 
• Single axis [66,67] 
• Principal axis [46,67–71] 
• Two random points [72] 
• Furthest points [72] 

After the projection is performed, the points are partitioned 
into k equal size clusters similarly as with the sorting-based 
heuristics. 

Yedla et al. [66] sort the points according to their distance to 
origin, and then select every N / k th point. If the origin is the center 
of data, this is essentially the same technique as in [62] . If the at- 
tributes are non-negative, then this is essentially the same as pro- 
jecting the data to the diagonal axis. Such projection is trivial to 
implement by calculating the average of the attribute values. It has 
also been used for speeding-up nearest neighbor searches in clus- 
tering in [73] . 

Al-Daoud [65] sorts the points according to the dimension with 
the largest variance. The points are then partitioned into k equal 
size clusters. Median of each cluster is selected instead of the 
mean. This adapts to the data slightly better than just using the 
diagonal. 

A more common approach is to use principal axis , which is the 
axis of projection that maximizes variance. It has been used ef- 
fectively in divisive clustering algorithms [46,67–71] . Calculation of 
the principal axis takes O( DN )-O( D 2 N ) depending on the variant 
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Fig. 10. Examples of sorting and projection-based techniques. 

Fig. 11. Examples of the two projection-based heuristics for A2 dataset: random points (left), and the furthest point projections (right) [72] . 

[46] . A more complex principal curve has also been used for clus- 
tering [74] . 

We consider two simple variants: random and two furthest 
points projection as studied in [72] . The first heuristic takes two 
random data points and projects to the line passing by these two 
reference points. The key idea is the randomness; single selection 
may provide poor initialization but when repeating several times, 
the chances to find one good initialization increases, see Fig. 11 . 
We include this technique into our experiments and refer to it as 
Projection . 

The second heuristic is slightly more deterministic but still ran- 
dom. We start by selecting a random point, and calculate its fur- 
thest point. The projection axis is the line passing by these two ref- 
erence points. We again rely on randomness, but now the choices 
are expected to be more sensible, potentially providing better re- 
sults using fewer trials. However, according to [72] this variant 
does not perform any better than the simpler random heuristic. 

Projection works well if the data has one-dimensional structure. 
In [72] , projective value is calculated to estimate how well a given 
projection axis models the data. From our data, Birch2 and G2 have 
high projective values and suitable for projection-based technique. 
However, with all other datasets, the projection does not make 
much more sense than the naïve sorting heuristics, see Fig. 10 . 

We also note that projection-based techniques also general- 
ize to segmentation-based clustering, where k -1 dividing planes 
are searched simultaneously using dynamic programming [74,75] . 
These clustering results usually require fine-tuning by k-means at 
the final step, but nevertheless, they are standalone algorithms. 

3.6. Density-based heuristics 

Density was already used both with the furthest point and the 
sorting heuristics, but the concept deserves a little bit further dis- 
cussion. The idea of using density itself is appealing but it is not 

trivial how to calculate the density, and how to use it in cluster- 
ing. Especially since the initialization technique should be fast and 
simple. 

The main bottleneck of the algorithms is how to calculate the 
density is estimated for the points. There are three common ap- 
proaches for this: 

• Buckets 
• ε-radius circle 
• k-nearest neighbors (KNN) 

The first approach divides the space by a regular grid, and 
counts the frequency of the points in every bucket [76] . The den- 
sity of a point is then inherited from the bucket it is in. This ap- 
proach is feasible in low-dimensional space but would become im- 
practical in higher-dimensional spaces. In [61] , the problem is ad- 
dressed by processing the dimensions independently in a heuris- 
tic manner. Other authors have used kd-tree [51,57] or space-filling 
curve [77] to partition the space into buckets containing roughly 
the same number of points. In [51,57] , the number of buckets is 
10 �k . 

The other two approaches calculate the density for every point 
individually. The traditional one is to define a neighborhood us- 
ing a cutoff threshold ( ε-radius), and then counting the number 
of other points within this neighborhood [21,63,64,78] . The third 
approach finds the k-nearest neighbors of a point [79] , and then 
calculates the average distance to the points within this neighbor- 
hood. Lemke and Keller calculate the density between every pair 
of points [49] . 

The bottleneck of the last two approaches is that we need to 
find the points that are within the neighborhood. This requires 
O( N 2 ) distance calculations in both cases. Several speed-up tech- 
niques and approximate variants exist [80,81] but none that is both 
fast and simple to implement. Calculating density values only for 
a subset of size SQRT( N ) would reduce the complexity to O( N 1.5 ) 
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depending whether the distances are calculated to all points or 
only within the subset. In [82] , density is calculated in each di- 
mension separately, and then final approximation is obtained by 
summing up the individual densities. This allows rapid O( DN ) time 
estimation with more accurate estimation than the sub-sampling 
approach. 

Once calculated, the density can be used jointly with the fur- 
thest point heuristic, with the sorting heuristic, or some of their 
combination. For example, in [51] the furthest point heuristic was 
modified by weighting the distance by its density so that outliers 
are less likely chosen. The density peaks algorithm in [78] finds for 
every point its nearest neighbor with higher density. It then ap- 
plies sorting heuristic based on one of the two features: density 
and the distance to its neighbor. The method works as a standalone 
algorithm and does not require k-means at all. 

Luxburg [50] first selects k ∗SQRT( k ) preliminary clusters using 
k-means and then eliminates the smallest ones. After this, the fur- 
thest point heuristic is used to select the k clusters from the pre- 
liminary set of clusters. When minimizing SSE, the size of the clus- 
ters correlates to their density. Thus, Luxburg’s technique indirectly 
implements a density-based approach which favors clusters of high 
density. We include this technique in our experiments although it 
does not satisfy our simplicity criterion. 

We also note that there are several standalone clustering algo- 
rithms based on density [49,78,83,84] . However, they do not fit to 
our requirements for speed and simplicity. If combined with the 
faster density estimation in [82] , some of these techniques could 
be made competitive also in speed. 

3.7. Splitting algorithm 

Split algorithm puts all points into a single cluster, and then it- 
eratively splits one cluster at a time until k clusters are reached. 
This approach is seemingly simple and tempting to consider for 
initializing k-means. However, there are two non-trivial design 
choices to make: which cluster to split, and how to split it. We 
therefore consider split mainly as a standalone algorithm, but dis- 
cuss briefly some existing techniques that have been used within 
k-means. 

Linde et al. [85] uses binary split for initialization of their LBG 
algorithm in the vector quantization context. Every cluster is split 
by replacing the original centroid c by c + ε and c - ε, where ε refers 
to a random vector. Splitting every cluster avoids the question of 
which cluster to split but it does not have any real speed benefit. 
In [46] , ε was calculated as the standard deviation of the points in 
the cluster, in each dimension separately. 

Projection-based approaches are also suitable for the splitting 
algorithm. The idea is to divide a chosen cluster according to a 
hyperplane perpendicular to the projection axis. It is possible to 
find the optimal choice of the cluster to be split, and the opti- 
mal location of the hyperplane in O( N ) time [46,68] . This results 
in a fast, O( N �log N �log k ) time algorithm, but the implementation 
is quite complex. It requires 22 functions and 947 lines of codes, 
compared to 5 functions and 162 lines in repeated k-means [16] . 

There is also a split-kmeans variant that applies k-means itera- 
tion after every split in [46] , later popularized under the name Bi- 
secting k-means in document clustering [86] . However, this would 
increase the time complexity to O( k 2 N ), which equals to O( N 2 ) if 
k ≈ SQRT( N ). Tri-level k-means [87] performs the clustering in two 
stages. It first creates less clusters than k , and then splits the clus- 
ters with highest variation before applying the traditional k-means. 
All these variants are definitely standalone algorithms, and do not 
qualify as an initialization technique here. 

In this paper, we therefore implement a simpler variant. We 
always select the biggest cluster to be split. The split is done by 
selecting two random points in the cluster. K-means is then ap- 

Fig. 12. General principle of repeated k-means (RKM). The key idea is that the ini- 
tialization includes randomness to produce different solutions at every repeat. 

plied but only within the cluster that was split as done in [68] . 
The main difference to the bisecting k-means [86] and its original 
split + kmeans variant in [46] , is that the time complexity sums up 
to only O( N �log N ); a proof can be easily derived from the one in 
[46] . 

3.8. Repeated k-means 

Repeated k-means performs k-means multiple times starting 
with different initialization, and then keeping the result with low- 
est SSE-value. This is sometimes referred as multi-start k-means . 
The basic idea of the repeats is to increase the probability of suc- 
cess. Repeated k-means can be formulated as a probabilistic algo- 
rithm as follows. If we know that k-means with a certain initializa- 
tion technique will succeed with a probability of p , the expected 
number of repeats ( R ) to find the correct clustering would be: 

R = 1 /p 

In other words, it is enough that k-means succeeds even some- 
times ( p > 0). It is then merely a question of how many repeats 
are needed. Only if p ≈0 the number of repeats can be unrealisti- 
cally high. For example, standard k-means with random centroids 
succeeds 6–26% of the time with the S1-S4 datasets. These corre- 
sponds to R = 7 to 14 repeats, on average. 

If the initialization technique is deterministic (no randomness), 
then it either succeeds ( p = 100%) or fails ( p = 0%) every time. To 
justify the repeats, a basic requirement is that there is some ran- 
domness in the initialization so that the different runs produce dif- 
ferent results. Most techniques have the randomness implicitly. The 
rest of the techniques we modify as follows: 

• Rand-P Already included 
• Rand-C Already included 
• Maxmin First centroid randomly 
• Kmeans ++ Already included 
• Bradley Already included 
• Sorting Reference point randomly 
• Projection Reference points randomly 
• Luxburg Already included 
• Split Split centroids randomly 

Repeats add one new parameter R . Since p is not known in 
practice, we cannot derive value for R automatically. In this paper, 
we use R = 100 unless otherwise noted. Fig. 12 shows the overall 
scheme of the repeated k-means. 

Repeating k-means also multiplies the processing time by a fac- 
tor of R . It is possible to compensate for this by dividing the data 
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into random subsets. For instance, if we divide the data into R sub- 
sets of size N / R , the total processing time would be roughly the 
same as that of a single run. 

For example, Bradley and Fayyad [31] apply k-means for a sub- 
sample of size N / R , where R = 10 was recommended. Each sample 
is clustered by k-means starting with random centroids. However, 
instead of taking the best clustering of the repeats, a new dataset 
is created from the R �k centroids. This new dataset is then clus- 
tered by repeated k-means ( R repeats). The total time complexity 
is R �k �( N / R ) + R �k 2 = kN + Rk 2 , where the first part comes from 
clustering the sub-samples, and the second part from clustering 
the combined set. If k = SQRT( N ), then this would be N 1. 5 + RN . 
Overall, the algorithm is fast and satisfies the criteria for initializa- 
tion technique. 

Bahmani et al. [88] have a similar approach. They repeat k- 
means ++ R = O (log N ) times to obtain R �k preliminary centroids, 
which are then used as a new dataset for clustering by standard k- 
means. They reported that R = 5 would be sufficient for the num- 
ber of repeats. In our experiments, we consider the Bradley and 
Fayyad [31] as an initialization, and use R = 100 repeats as with all 
techniques. 

4. Experimental results 

We study next the overall performance of different initialization 
techniques, and how the results depend on the following factors: 

• Overlap of clusters 
• Number of clusters 
• Dimensions 
• Unbalance of cluster sizes 

The overall results (CI-values and success rates) are summarized 
in Table 3 . We also record (as fails ) how many datasets provide 
success rate p = 0%. This means that the algorithm cannot find the 
correct clustering even with 50 0 0 repeats. We test the following 
methods: 

• Rand-P 
• Rand-C 
• Maxmin 
• kmeans ++ 
• Bradley 
• Sorting 
• Projection 
• Luxburg 
• Split 

4.1. Overall results 

CI-values : Random partition works clearly worse (CI = 12.4) 
than the random centroids (CI = 4.5). Bradley and sorting heuris- 
tics are slightly better (CI = 3.1 and 3.3), but the maxmin heuris- 
tics (Maxmin and kmeans ++ ) are the best among the true ini- 
tialization techniques (CI = 2.2 and 2.3). The standalone algorithms 
(Luxburg and Split) are better (CI = 1.2 and 1.2), but even they pro- 
vide the correct result (CI = 0) only for the easiest dataset: DIM32. 

Success rates : The results show that Maxmin is a reason- 
able heuristic. Its average success rate is 22% compared to 5% 
of random centroids. It also fails (success rate = 0%) only in case 
of three datasets; the datasets with a high number of clusters 
(A3, Birch1, Birch2). Random partition works with S2, S3 and S4 
but fails with all the other 8 datasets. The standalone algorithms 
(Luxburg and Split) provide 40% success rates, on average, and fail 
only with Birch1 and Unbalance. 

Effect of iterations : From the initial results we can see that 
Luxburg and Bradley are already standalone algorithms for which 

k-means brings only little improvement. The average CI-value of 
Luxburg improves only from 1.7 to 1.2 ( ∼30%), and Bradley from 
3.4 to 3.1 ( ∼10%). The latter is more understandable as k-means is 
already involved in the iterations. Split heuristic, although a stan- 
dalone algorithm, leaves more space for k-means to improve (61%). 

Number of iterations : The main observation is that the easier 
the dataset, and the better the initialization, the fewer the itera- 
tions needed. The differences between the initialization vary from 
20 (Luxburg) to 36 (Rand-C); with the exception of random parti- 
tion (Rand-P), which takes 65 iterations. 

4.2. Cluster overlap 

The results with the S1–S4 datasets ( Table 3 ) demonstrate the 
effect of the overlap in general: the less overlap, the worse the 
k-means’ performance. Some initialization techniques can compen- 
sate for this weakness. For example, the maxmin variants and the 
standalone algorithms reduce this phenomenon but do not remove 
it completely. They provide better initial solution with S1 (less 
overlap) than with S4 (more overlap), but the final result after the 
k-means iterations is still not much different. An extreme case is 
DIM32, for which all these better techniques provide correct solu- 
tion. However, they do it even without k-means iterations! 

Further tests with G2 confirm the observation, see Fig. 13 . 
When overlap is less than 2%, the k-means iterations do not help 
much and the result depends mostly on the initialization. If the 
correct clustering is found, it is found without k-means. Thus, the 
clustering is solved by a better algorithm, not by better k-means 
initialization. In case of high overlap, k-means reaches almost the 
same result (about 88% success rate) regardless of how it was ini- 
tialized. 

4.3. Number of clusters 

The results with the A1–A3 datasets ( Table 3 ) show that the 
more there are clusters the higher the CI-value and the lower the 
success rate. This phenomenon holds for all initialization tech- 
niques and it is not specific to k-means algorithm only. If an 
algorithm provides correct clustering with success rate p for a 
dataset of size k , then p is expected to decrease when k increases. 
Fig. 14 confirms this dependency with the Birch2 subsets. Projec- 
tion heuristic is the only technique that manages to capture the 
hidden 1-dimensional structure in this data. The success rate of all 
other true initialization techniques eventually decreases to 0%. 

Fig. 15 shows that the CI-value has a near linear dependency 
on the number of clusters. In most cases, the relative CI-value con- 
verges to a constant when k approaches its maximum ( k = 100). An 
exception is Luxburg, which is less sensitive to the increase of k ; 
providing values CI = (0.82, 1.25, 1.42, 1.54) for k = (25, 50, 75, 100). 
Besides this exception, we conclude that the performance has lin- 
ear dependency on k regardless of the initialization technique. 

4.4. Dimensions 

We tested the effect of dimensions using the DIM and G2 
datasets. Two variants (Maxmin, Split) solve the DIM sets al- 
most every time (99–100%), whereas Kmeans ++ and Luxburg solve 
them most of the times ( ≈95%), see Fig. 16 . Interestingly, they find 
the correct result by the initialization and no k-means iterations 
are needed. In general, if the initialization technique is able to 
solve the clustering, it does it regardless of the dimensionality. 

The sorting and projection heuristics are exceptions in this 
sense; their performance actually improves with the highest di- 
mensions. The reason is that when the dimensions increase, the 
clusters eventually become so clearly separated that even such 



106 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 

Table 3 
Average CI-values before and after k-means iterations, success rates, and the number of iterations performed. The results are 
averages of 50 0 0 runs. Fail records for how many datasets the correct solution was never found (success rate = 0%). From DIM 
datasets we report only DIM32; the results for the others are practically the same. Note: The values for Impr. and Aver. columns 
are calculated from precise values and not from the shown rounded values. (For interpretation of the references to color in the 
Table the reader is referred to the web version of this article.) 

CI-values (initial) 

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. 

Rand-P 12.5 14.0 12.8 14.0 19.0 32.9 48.1 7.0 96.0 96.6 13.1 33.3 
Rand-C 5.3 5.5 5.4 5.4 7.3 12.7 18.2 4.6 36.6 36.6 5.8 13.0 
Maxmin 1.3 2.9 6.1 6.8 2.1 4.1 5.0 0.9 21.4 9.6 0.0 5.5 
kmeans ++ 1.7 2.3 3.2 3.3 3.1 5.6 7.9 0.8 21.3 10.4 0.1 5.4 
Bradley 1.0 0.7 0.6 0.5 1.5 3.4 5.3 3.3 5.7 13.6 1.7 3.4 
Sorting 3.3 3.7 4.1 4.4 4.9 10.4 15.6 4.0 34.1 7.2 1.7 8.5 
Projection 3.0 3.4 3.9 4.2 4.5 9.8 15.2 4.0 33.7 1.0 1.1 7.6 
Luxburg 0.8 0.8 1.1 1.3 0.9 1.1 1.2 4.2 5.6 1.7 0.0 1.7 
Split 0.5 0.8 1.4 1.4 1.3 2.4 3.5 4.5 12.0 2.7 0.0 2.8 

CI-values (final) 

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Impr. 

Rand-P 3.3 0.6 1.2 0.4 6.0 10.7 17.9 4.0 11.3 75.6 5.3 12.4 63% 
Rand-C 1.8 1.4 1.3 0.9 2.5 4.5 6.6 3.9 6.6 16.6 3.6 4.5 65% 
Maxmin 0.7 1.0 0.7 1.0 1.0 2.6 2.9 0.9 5.5 7.3 0.0 2.2 62% 
kmeans ++ 1.0 0.9 1.0 0.8 1.5 2.9 4.2 0.5 4.9 7.2 0.1 2.3 57% 
Bradley 0.9 0.6 0.5 0.4 1.3 3.0 4.8 3.5 4.6 12.5 1.6 3.1 11% 
Sorting 1.3 1.1 1.0 0.7 1.5 3.6 5.5 4.0 5.7 4.3 1.4 2.7 69% 
Projection 1.2 0.9 0.8 0.6 1.2 3.3 5.2 4.0 5.3 0.2 0.9 2.2 71% 
Luxburg 0.5 0.4 0.6 0.4 0.6 0.9 1.0 4.0 2.7 1.6 0.0 1.2 29% 
Split 0.2 0.3 0.4 0.4 0.5 1.1 1.8 4.0 2.8 1.6 0.0 1.2 61% 

Success-% 

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Fails 

Rand-P 0% 47% 5% 63% 0% 0% 0% 0% 0% 0% 0% 10% 8 
Rand-C 3% 11% 12% 26% 1% 0% 0% 0% 0% 0% 0% 5% 6 
Maxmin 37% 16% 36% 9% 15% 1% 0% 22% 0% 0% 100% 22% 3 
kmeans ++ 21% 24% 18% 30% 7% 0% 0% 51% 0% 0% 88% 22% 4 
Bradley 21% 46% 49% 64% 7% 0% 0% 0% 0% 0% 2% 17% 5 
Sorting 12% 20% 22% 36% 10% 0% 0% 0% 0% 12% 15% 12% 4 
Projection 16% 29% 30% 42% 18% 0% 0% 0% 0% 92% 34% 24% 4 
Luxburg 52% 60% 45% 61% 45% 33% 31% 0% 0% 17% 95% 40% 2 
Split 78% 75% 62% 64% 51% 17% 5% 0% 0% 10% 99% 42% 2 

Number of iterations 

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. 

Rand-P 32 37 37 39 43 58 76 36 228 130 3 65 
Rand-C 20 24 27 40 22 26 27 33 117 48 5 36 
Maxmin 13 19 24 37 20 18 20 4 92 43 2 26 
kmeans ++ 14 19 24 35 17 20 22 13 89 43 2 27 
Bradley 13 12 13 17 12 17 19 24 77 45 2 23 
Sorting 17 21 25 37 19 24 26 38 104 33 3 32 
Projection 15 20 25 35 17 24 25 36 99 6 3 28 
Luxburg 9 12 17 27 11 12 12 33 62 23 2 20 
Split 7 11 19 27 12 16 18 35 65 27 2 22 
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Fig. 13. Average success rates for all G2 datasets before (gray) and after k-means (white). The datasets were divided into two categories: those with low overlap < 2% (left), 
and those with high overlap ≥2% (right). 
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naïve heuristics will be able to cluster the data. In general, the rea- 
son for success or failure is not the dimensionality but the cluster 
separation. 

The results with G2 confirm the above observation, see Fig. 16 . 
With the lowest dimensions, k-means iterations work because 
some cluster overlap exists. However, for higher dimensions the 
overlap eventually disappears and the performance starts to de- 
pend mainly on the initialization. We also calculated how much 
the success rate correlates with the dimensions and the overlap. 
The results in Table 4 show that the final result correlates much 
stronger with the overlap than with the dimensionality. 

Since there is causality between dimensions and overlap, it is 
unclear whether the dimensionality has any role at all. To test this 
further, we generated additional datasets with D = 2–16 and com- 
pared only those with overlap = 2%, 4%, 8%. The results showed 
that success of the k-means iterations do not depend on the di- 
mensions even when the clusters overlap. 

To sum up, our conclusion is that k-means iterations cannot 
solve the problem when the clusters are well separated. All tech- 
niques that solve these datasets, do it already by the initialization 
technique without any help of k-means. When there is overlap, k- 
means works better. But even then, the performance does not de- 
pend on the dimensionality. 

4.5. Unbalance 

Unbalance dataset shows one weakness of k-means. The prob- 
lem is not the different densities as such, but the unbalance of 
cluster sizes together with the separation of the clusters. If no cen- 
troids are selected from the sparse area, k-means iterations man- 
age to move only one centroid into this area, and all other cen- 
troids will remain in the dense area, see Fig. 17 . The probability 
that a single random centroid would be selected from the sparse 
area is p = 50 0/650 0 = 7%. To pick all required five centroids from 
the sparse area would happen with probability of 0.01%, 1 i.e. only 
once every 8430 runs. 

Besides Rand-C and Rand-P, sorting and projection heuristics, 
Luxburg and Split algorithms all fail with this data by allocating 
most centroids to the dense area. Bradley works only slightly bet- 
ter and often allocates two centroids to the sparse area. Maxmin 
heuristics work best because they rely more on distances than 
on frequencies. K-means ++ typically misses one centroid whereas 
Maxmin does the opposite and allocates one too many centroids in 
the sparse area. They provide success rates of 22% (Maxmin) and 
51% (KM ++ ), in contrast to the other techniques that result in 0% 
success. 

To sum up, success depends mainly on the goodness of the ini- 
tialization; k-means iterations can do very little with this kind of 
data. If the correct clustering is found, it is found mainly without 
k-means. 

4.6. Repeats 

We next investigate to what extent the k-means performance 
can be improved by repeating the algorithm several times. Table 5 
summarizes the results. We can see that significant improvement 
is achieved with all initialization techniques. When the success 
rate of a single run of k-means is 2% or higher, CI = 0 can always be 
reached thanks to the repeats. However, none of the variants can 
solve all datasets. Overall performance of the different initialization 
techniques can be summarized as follows: 

• Random partition is almost hopeless and the repeats do not 
help much. It only works when the clusters have strong overlap. 
But even then, k-means works relatively well anyway regardless 
of the initialization. 

• Random centroids is improved from CI = 4.5 to 2.1, on average, 
but still it can solve only three datasets (S2, S3, S4). Two other 
datasets (S1, A1) could be solved with significantly more re- 
peats, but not the rest. 

• Maxmin variants are the best among the simple initialization 
techniques providing CI = 0.7, on average, compared to 2.1 of 
Rand-C. They still fail with four datasets. K-means ++ is not sig- 
nificantly better than the simpler Maxmin. 

• The standalone algorithms (Luxburg and Split) are the best. 
They provide average value of CI = 1.2 without the repeats, and 
CI = 0.4 with 100 repeats. They fail only with the Unbalance 
datasets. 

The improvement from the repeats is achieved at the cost 
of increased processing time. We used the fast k-means variant 
[89] that utilizes the activity of the centroids. For the smaller data 
sets the results are close to real-time, but with the largest dataset 
(Birch1, N = 10 0,0 0 0), the 10 0 repeats can take from 10–30 min. 

We extended the tests and ran 20 0,0 0 0 repeats for A3 and Un- 
balance datasets. The results in Table 6 show that Maxmin would 
need 216 repeats to reach CI = 0 with A3, on average, whereas k- 
means ++ would require 8696 repeats even though it finds CI = 1 

1 (8 
5 
)
p 5 (1 − p) 3 . 
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Table 4 
Correlation of success rate with increasing overlap (left) and dimensions (right) with 
the G2 datasets (3:3 centroid allocation test). Red > 0.60, Yellow = 0.30–0.53. 

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s 

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg

Initial

Projection

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s 

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg
Final

Projection

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s 

ra
te

Bradley

MaxminRand-C

LuxburgInitial

Rand-P

Split
Sorting

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s 

ra
te

Rand-P Maxmin

Bradley

Luxburg

Final

Split
Sorting

Rand-C

Fig. 16. Dependency of success rate on the dimensions when no overlap (DIM sets), and with overlap (G2 datasets). The results of G2 are average success rates for all 
sd = 10–100 (G2-D-sd) with a given dimension D, before and after k-means. 

already after 138 repeats. The results also show that Unbalance 
dataset is difficult for almost all initialization techniques but the 
maxmin heuristics are most suitable for this type of data. 

4.7. Summary 

We make the following observations: 

• Random partition provides an initial solution of similar qual- 
ity regardless of overlap, but the errors in initial solution can 
be better fixed by k-means iterations when clusters have high 
overlap. In this case it can even outperform random centroids. 
However, repeats do not improve the results much, especially 
with sets having many clusters (A3, Birch2). 

• Cluster overlap is the biggest factor. If there is high overlap, 
k-means iterations work well regardless of the initialization. 
If there is no overlap, then the success depends completely 
on the initialization technique: if it fails, k-means will also 
fail. 

• Practically all initialization techniques perform worse when the 
number of clusters increases. Success of the k-means depends 
linearly on the number of clusters. The more clusters, the more 
errors there are, before and after the iterations. 

• Dimensionality does not have a direct effect. It has a slight ef- 
fect on some initialization techniques but k-means iterations 
are basically independent on the dimensions. 

• Unbalance of cluster sizes can be problematic especially for the 
random initializations but also for the other techniques. Only 
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Table 5 
Performance of the repeated k-means (100 repeats). The last two columns show the average results of all datasets without repeats (KM) and 
with repeats (RKM). (For interpretation of the references to color in the Table the reader is referred to the web version of this article.) 

the maxmin variants with 100 repeats can overcome this prob- 
lem. 

Table 7 summarizes how the four factors affect the different ini- 
tialization techniques and the k-means iterations. 

5. Conclusions 

On average, k-means caused errors with about 15% of the clus- 
ters (CI = 4.5). By repeating k-means 100 times this errors was 
reduced to 6% (CI = 2.0). Using a better initialization technique 
(Maxmin), the corresponding numbers were 6% (CI = 2.1) with k- 
means as such, and 1% (CI = 0.7) with 100 repeats. For most pat- 
tern recognition applications this accuracy is more than enough 
when clustering is just one component within a complex system. 

The most important factor is the cluster overlap. In general, 
well separated clusters make the clustering problem easier but 
for k-means it is just the opposite. When the clusters overlap, k- 
means iterations work reasonably well regardless of the initial- 
ization. This is the expected situation in most pattern recognition 
applications. 

The number of errors have a linear dependency on the number 
of clusters ( k ): the more clusters, the more errors k-means makes, 
but the percentage remains constant. Unbalance of cluster sizes is 
more problematic. Most initialization techniques fail, and only the 
maxmin heuristics worked in this case. The clustering result then 
depends merely on the goodness of the initialization technique. 

Dimensionality itself is not a factor. It merely matters how the 
dimensions affect the cluster overlap. With our data, the clus- 
ters became more separated when the dimensions were increased, 
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Table 6 
Number of repeats in RKM to reach certain CI-level. Missing values ( −) 
indicate that this CI-level was never reached during the 20 0,0 0 0 repeats. 

A3 
CI-value 

Initialization 6 5 4 3 2 1 0 

Rand-P – – – – – – –

Rand-C 2 4 11 54 428 11,111 –

Maxmin 1 3 14 216 
Kmeans ++ 1 2 3 14 138 8696 
Bradley 1 2 8 58 1058 33,333 
Sorting 1 2 4 13 73 1143 –

Projection 1 2 3 9 46 581 18,182 
Luxburg 1 3 
Split 1 2 9 
Unbalance 
CI-value 

Initialization 6 5 4 3 2 1 0 

Rand-P 1 97 8333 – –

Rand-C 1 16 69 1695 100k 
Maxmin 1 4 
Kmeans ++ 1 2 
Bradley 1 3 6 70 1471 
Sorting 1 – – – –

Projection 1 935 16,667 – –

Luxburg 1 59 16,667 – –

Split 1 9524 – – –

Table 7 
How the four factors have effect on the performance of the initialization and on 
the k-means iterations. 

Method Overlap Clusters Dimension Unbalance 

Rand-P No effect Constant No effect Very bad 
Rand-C No effect Constant No effect Very bad 
Maxmin Bad Constant No effect A bit worse 
kmeans ++ A bit worse Constant No effect A bit worse 
Bradley Good Constant No effect Bad 
Sorting A bit worse Constant No effect Very bad 
Projection A bit worse Constant No effect Very bad 
Luxburg A bit worse Minor effect No effect Very bad 
Split A bit worse Constant No effect Very bad 
KM iterations Good Constant No effect No effect 

which in turn worsened the k-means performance. Besides this in- 
direct effect, the dimensions did not matter much. 

With real data the effect might be just the opposite. If the fea- 
tures (attributes) are added in the order of their clustering capa- 
bility, it is expected that the clusters would become more overlap- 
ping when adding more features. As a result, k-means would start 
to work better but the data itself would become more difficult to 
cluster, possibly losing the clustering structure. And vice versa, if 
good feature selection is applied, the clusters can be more sepa- 
rated, which has the danger that k-means would start to perform 
worse. 

Based on these observations, choosing an initialization tech- 
nique like Maxmin can compensate for the weaknesses of k-means. 
With unbalanced cluster sizes it might work best overall. However, 
it is preferable to repeat the k-means 10–100 times; each time tak- 
ing a random point as the first centroids and selecting the rest 
using the Maxmin heuristic. This will keep the number of errors 
relatively small. 

However, the fundamental problem of k-means still remains 
when the clusters are well separated. From all the tested combi- 
nations, none was able to solve all the benchmark datasets despite 
them being seemingly simple. With 100 repeats, Maxmin and k- 
means ++ solved 7 datasets (out of the 11), thus being the best ini- 
tialization techniques. The better standalone algorithms (Luxburg 
and Split) managed to solve 9. 

Fig. 17. Examples of the initialization technique on the Unbalance dataset. The only 
techniques that do not badly fail are the maxmin heuristics. The numbers indicate 
the order in which the centroids are selected. 

To sum up, if the clusters overlap, the choice of initialization 
technique does not matter much, and repeated k-means is usually 
good enough for the application. However, if the data has well- 
separated clusters, the result of k-means depends merely on the 
initialization algorithm. 

In general, the problem of initialization is not any easier than 
solving the clustering problem itself. Therefore, if the accuracy of 
clustering is important, then a better algorithm should be used. 
Using the same computing time spent for repeating k-means, a 
simple alternative called random swap (RS) [12] solves all the 
benchmark datasets. Other standalone algorithms that we have 
found able to solve all the benchmark sets include genetic algo- 
rithm (GA) [10] , the split algorithm [46] , split k-means [46] , and 
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density peaks [78] . Agglomerative clustering [30] solves 10 out 
of 11. 
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