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ABSTRACT

This work deals with modeling the spectral and temporal coherence properties of
pulsed random light fields. First, we develop an iterative mathematical technique
which can be used to form an ensemble of spectral and temporal complex pulses for
the construction of the related coherence functions. The proposed model is based
on the information of the spectrum of individual pulses and the average temporal
length of the pulse ensemble. In particular, we apply the algorithm to simulate
pulses of the free-electron laser facility at Stanford. Utilizing the pulses from the
algorithm, we examine the coherence properties of the laser facility which turns out
to emit quasi-stationary pulse trains.

Second, a new time-domain pseudo-modal expansion is presented for random,
quasi-stationary scalar light pulses. The expansion is an elegant approach to the
study of pulse coherence as it requires only the average spectrum and the mean
temporal intensity of the pulse train. The proposed modal expansion is applied
to the case of a self-amplified spontaneous emission based free-electron laser. The
new time-domain pseudo-modal representation is extended to quasi-stationary par-
tially polarized electromagnetic beams. A novel harmonic mode representation for
statistically stationary partially polarized electromagnetic beams is also presented.

Third, we elaborate on the interpretation of autocorrelation measurements for
free-electron lasers and the information that can be extracted from such experiments.
We also propose a field cross-correlation method which can provide additional in-
formation on a pulsed field.

Universal Decimal Classification: 535, 537.87, 621.375.826
Keywords: Photonics; Coherence (Optics); Light; Electromagnetic fields; Polarization;
Pulsed radiation; Laser pulses, Ultrashort; Free-electron lasers; Mathematical models; Al-
gorithms; Computer simulation
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1 Introduction

Life on the earth exists due to the presence of light. In colloquial language, the
term ‘light’ is used for the part of the electromagnetic spectrum that is visible to the
naked human eye. The spectral range that stimulates the sensation of sight lies in
the 400 nm to 800 nm wavelength region, approximately. In scientific terms, light
not only refers to the tiny stretch of the electromagnetic spectrum visible to the
unaided eye but it also encompasses the wavelengths from the radio and microwave
regions down to the ultraviolet (UV) and x-ray regimes [1].

When light from a single-mode laser is shined on a two pinhole aperture, high
contrast interference fringes (alternating regions of low and high intensity) appear
on the observation screen. However, if light from natural sources, such as the sun
or wood fire or an artificial thermal source of radiation, for example, an incandes-
cent bulb, is incident on a two pinhole mask, the fringe pattern is either extremely
weak or even invisible. This simple experiment which is commonly called Young’s
double-pinhole experiment shows that light from man-made and natural sources
differ from each other. In the case of a laser, the light fields at different points across
the beam are correlated, and therefore, they interfere perfectly creating a set of dark
and bright intensity fringes, while for a natural source, the field is often uncorrelated
and hence there is no interference. This characteristic of light to create interference
fringes was decisive in proving the wave nature of light [2,3] and is called coherence.

Coherence is a fundamental property of light fields. It can be classified broadly
into two categories: spatial and temporal coherence. While Young’s double-pinhole
experiment describes the spatial coherence properties of an optical field, the classic
Michelson’s interferometer characterizes the temporal coherence of light. Spatial
coherence refers to the correlation of an optical field at two different spatial points.
Temporal coherence refers to the ability of a wave to interfere at two temporal points.
In order words, spatial coherence implies how consistent the wavefront of an optical
field is and temporal coherence usually entails how narrowband a field is. All
light fields have random fluctuations. These fluctuations take place typically on
the femtosecond (10−15 s) time scale. It is not possible to observe the instantaneous
fluctuations of an optical field with the eye or measure these directly with a detector.
Therefore, the properties of optical fields are studied in an averaged sense with the
help of correlation functions within the framework of optical coherence theory [4].
The correlation functions describe the extent of statistical unison in the light field at
a single spatial point or at two different points in space and time. The correlation
among the field components manifests itself in the form of interference phenomenon
leading to intensity fringes in a Young’s double-pinhole or Michelson’s experiment.
The visibility of the fringes is a measure of the strength of the correlations, i.e.,
coherence, of an optical field [4, 5]. In essence, optical coherence theory studies the
randomness of light fields in terms of physically observable quantities [6].

Moreover, light from some sources like a continuous-wave laser or sunlight has
fluctuations whose characteristics stay essentially the same over the time and hence
the fields from such sources are called statistically stationary. For pulsed lasers, the
character of fluctuations change in time and the fields emanating from such sources
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are called non-stationary optical fields.
Studies on the coherence of light fields can be dated back to the latter half of the

nineteenth century when Verdet observed that sunlight vibrates in unison within a
small region [7]. Zernike introduced the degree of coherence which provides a quan-
titative measure for the correlations of an optical field [8]. Wolf laid the foundations
of modern coherence theory in the space–time domain for stationary fields [9–11].
Later, the coherence properties of stationary fields were formulated in the space–
frequency domain [12–16]. Many important optical fields are non-stationary. Al-
though the formalisms developed for the stationary fields were extended in some
studies to the more generalized case of non-stationary fields [17–20], yet the coher-
ence of non-stationary fields has not got as much attention as that of the stationary
light fields. In this thesis, we address this unexplored domain. We utilize the coher-
ence theory of non-stationary light to investigate the coherence properties of pulsed
fields.

Since the first demonstration of laser in 1960 [21], there has been a continuous
development towards fabrication of such light sources which can generate coher-
ent radiation at short wavelengths with femtosecond duration. With conventional
lasers, femtosecond pulses can be generated which provide the requisite temporal
resolution for the study of ultrafast processes. The spatial resolution is linked with
the wavelength and with the traditional lasers which are based on the excitation and
de-excitation of the atoms and molecules, generation of shorter wavelengths down
to the nanometer scale is not a feasible task. First, the reflectivity of the mirrors falls
off drastically for shorter wavelengths making the construction of an efficient optical
cavity difficult and, second, a large amount of pumping is required to achieve the
population inversion by raising the inner shell electrons to higher energy levels [22].
Therefore, over the years, researchers explored alternate possibilities to generate ra-
diation in the extreme wavelength regions. The years of development and research
gave rise to the free-electron lasers (FELs). Unlike the conventional lasers whose out-
put wavelength range is confined by the discrete energy levels, FELs have a beam
of free electrons which serves as the pump and the gain medium simultaneously.
In an FEL, the beam of free electrons travels at a relativistic speed in an undulator
(a periodic arrangement of magnets). By changing the period of the undulator, the
wavelength of the emitted radiation can be tuned on a wide scale. Especially the
FELs operating in the x-ray region which are called as x-ray FELs (XFELs) are im-
portant in the modern scientific research in the fields like material science, biology,
and condensed matter physics. The radiation from an XFEL has a wavelength of
the order of a few angstroms (which is in the size range of atoms) and thus enables
to study the structure of materials on an angstrom level [23]. Apart from provid-
ing atomic level spatial resolution, x-rays have weak interaction with materials that
enables imaging of thick specimens [24]. The FELs equip the scientists with a tun-
ability on an unprecedented scale from the microwave down to the extreme UV and
x-ray regions. The FELs typically deliver approximately 1012 photons in about 100 fs
pulses. The extremely bright and ultrashort pulses can enable to detect and record
the motion of atoms and molecules, a prodigious task which was not possible with
the third-generation synchrotron sources [25]. In addition to high brightness and
ultrashort pulse durations, FELs have nearly perfect transverse coherence which
makes them useful in experiments like coherent diffraction imaging. Due to the
ever growing importance of these fourth-generation light sources, we have focused
on studying the coherence properties of the FELs. A description of the FELs, their
operational principle, and applications is given elsewhere in the thesis.
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In the literature, coherent-mode representations have been commonly employed
for treating partially coherent optical fields. In the coherent-mode representation, a
partially coherent field is expressed as an incoherent sum of fully coherent modes
[26]. Such modal expansions were already presented for stationary [15,16] and non-
stationary scalar fields [27, 28]. There are, however, many important pulsed optical
sources, for example, FELs, which emit quasi-stationary random pulses and there
had not been a convenient modal expansion for such pulsed fields. In this thesis,
we present a novel modal expansion for quasi-stationary, random pulses where the
modes can be obtained by using the knowledge of the average pulse intensity and
the mean spectrum only. For electromagnetic beams, we present a time-domain
harmonic modal expansion which is an extension of an earlier work for the scalar
stationary beams [29]. We also propose a pseudo-modal decomposition for pulsed,
quasi-stationary, partially polarized electromagnetic beams. The proposed mode
representations can find applications in the cases where the structures that interact
with partially coherent light are on a wavelength or sub-wavelength scale.

This thesis is organized as follows. In Chapter 2, we describe the concept of com-
plex analytic signal and the basics of the coherence theory of non-stationary scalar
fields. Chapter 2 contains an elucidation of the traditional coherent-mode represen-
tation method for stationary and non-stationary scalar fields. We introduce here a
novel pseudo-modal (the modes are not orthonormal) time-domain representation
for quasi-stationary random pulses. We briefly present the notion of the Gaussian
Schell model (GSM) and a description of an iterative Fourier transform algorithm
(IFTA) that can be used to construct ensembles of spectral and temporal pulses. For
studying the spectral and temporal coherence properties of pulsed light sources,
such ensembles are then used to construct the correlation functions in the spectral
and temporal domains.

Chapter 3 deals with the basics of electromagnetic coherence. We elaborate the
concepts of coherence matrices and the degree of polarization. Chapter 3 also con-
tains the electromagnetic extension to the modal representation methods presented
in Chap. 1 for stationary, non-stationary, and quasi-stationary optical fields.

Chapter 4 describes the coherence measurements of pulsed light. In Chap. 4,
we present a comprehensive discussion on the challenges involved in the charac-
terization of ultrashort optical pulses. It also addresses the intricacies involved in
the coherence measurements of pulsed fields that need to be considered in practical
investigations.

Chapter 5 includes a description of the FELs, their operational principle and
applications. Some results from the IFTA are presented in the chapter. In addi-
tion, it briefly describes the simulation results that were obtained with the three-
dimensional time-dependent code GENESIS for the FELs. Finally, the conclusions
drawn from the work and the future prospects are summarized in Chapter 6.

The major findings of this thesis are:

• An iterative technique which can be used to construct ensembles of complex
spectral and temporal fields for a pulsed light source.

• A new time-domain pseudo-modal expansion for quasi-stationary pulsed scalar
fields.

• An elegant harmonic time-domain coherent-mode expansion for stationary
partially polarized electromagnetic beams.
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• A novel pseudo-modal expansion for quasi-stationary partially polarized elec-
tromagnetic beams in time domain.

• New insights on the autocorrelation and cross-correlation measurements of
pulsed sources.

4



2 Coherence of non-stationary scalar fields

In statistical optics, random optical fields can be generally divided into two cate-
gories: stationary [4, 5, 30] and non-stationary [18–20]. If the average behavior of
the fluctuations in an optical field does not change with time, the field is said to
be stationary [4, 5]. If the random characteristics of the field change over time, for
example, in the case of optical pulses, then the field is non-stationary.

2.1 COMPLEX ANALYTIC SIGNAL

A real-valued scalar function can be associated with a complex function which
greatly facilitates the mathematical treatment of optical signals. Let us consider a
real-valued scalar function Vr(r, t), where r denotes the position vector, t is the time,
and the subscript r signifies that Vr(r, t) is a real function. The function Vr(r, t) may
correspond to any Cartesian electric or magnetic component of the electromagnetic
field. If Vr(r, t) is square integrable (with respect to time), then it can be expressed as
a superposition of harmonic functions of different frequencies via a Fourier integral

Vr(r, t) =
∫ ∞

−∞
Ṽr(r, ω) exp(−iωt)dω, (2.1)

where the spectral function Ṽr(r, ω) is obtained by taking the inverse of Eq. (2.1)

Ṽr(r, ω) =
1

2π

∫ ∞

−∞
Vr(r, t) exp(iωt)dt. (2.2)

Equation (2.1) holds for pulses but for non-pulsed non-stationary and stationary
light, it can be interpreted in terms of generalized functions [4].

As Vr(r, t) is a real-valued function, Eq. (2.2) implies that Ṽr(r,−ω) = Ṽ∗r (r, ω)
which connotes that the negative frequency components carry no additional infor-
mation that is not already contained in the positive ones. The asterisk ∗ denotes the
complex conjugate. Employing this observation, Eq. (2.1) is rewritten as

Vr(r, t) = 2Re
[∫ ∞

0
Ṽr(r, ω) exp(−iωt)dω

]
, (2.3)

where Re denotes the real part. Using the function Vr(r, t), the associated complex
analytic signal V(r, t) is expressed as

V(r, t) = 2
∫ ∞

0
Ṽr(r, ω) exp(−iωt)dω. (2.4)

The concept of complex analytic signal is attributed to Gabor [4, 31]. The real func-
tion is related to the complex analytic signal by

Vr(r, t) = Re [V(r, t)] =
1
2
[V(r, t) + V∗(r, t)] . (2.5)

5



The complex analytic signal and the associated complex spectral amplitude can be
represented by a Fourier transform pair

V(r, t) =
∫ ∞

0
Ṽ(r, ω) exp(−iωt)dω, (2.6)

Ṽ(r, ω) =
1

2π

∫ ∞

−∞
V(r, t) exp(iωt)dt. (2.7)

The lower limit in Eq. (2.6) is justified by the definition that Ṽ(r, ω) = 2Ṽr(r, ω)
for ω > 0 and Ṽ(r, ω) = 0 otherwise. We employ the complex analytic signal
representation throughout the thesis.

2.2 COHERENCE FUNCTIONS

Typically light sources found in nature or used in the laboratories are composed
of numerous tiny radiators (atoms, molecules) each emitting spontaneously with a
finite spectral bandwidth. At a certain instant of time, one can not be sure which
radiator is active and which one is in a dormant state. The probabilistic nature of
emission manifests itself in the form of rapid fluctuations in the total field. The total
field is a sum of all the fields from the individual radiators. The fluctuations occur
typically on a femtosecond time scale and hence cannot be detected by the naked
eye or even with the fastest detectors. Therefore, the average statistical behavior of
light is studied using correlation functions. This area of optics which deals with
the statistical analysis of the average behavior of optical fields is termed as optical
coherence theory [4, 30].

In this section, the correlation functions for non-stationary fields in the space–
time and space–frequency domains are introduced utilizing the complex analytic
signal representation described in Sec. 2.1.

2.2.1 Non-stationary fields in the space–time domain

Mutual coherence function (MCF) is a fundamental quantity in the study of optical
coherence [4, 10, 30]. The MCF describes the two-point space–time correlation of
a field. To elucidate this concept, consider V(r1, t1) and V(r2, t2) which are the
complex scalar amplitudes of a non-stationary (pulsed) field at two spatial points r1
and r2 and at two instants of time t1 and t2. The MCF is expressed as [18–20, 28, 32]

Γ(r1, r2, t1, t2) = 〈V∗(r1, t1)V(r2, t2)〉, (2.8)

where the angle brackets 〈〉 denote the average taken over an ensemble {V(r, t)} of
space–time realizations. The average is defined by

〈g(r, t)〉 = lim
N→∞

1
N

N

∑
n=1

gn(r, t), (2.9)

where gn(r, t) represents an individual realization in the ensemble.
If we consider the field at a single spatial point and the temporal coherence prop-

erties are spatially uniform, then for the sake of brevity, we can drop r dependence
in Eq. (2.8) and rewrite it in the form

Γ(t1, t2) = 〈V∗(t1)V(t2)〉. (2.10)

6



Also it is clear from the above definition that the MCF is Hermitian

Γ(t2, t1) = Γ∗(t1, t2). (2.11)

It is also continuous and square integrable with respect to t1 and t2∫∫ ∞

−∞
|Γ(t1, t2)|2dt1dt2 < ∞. (2.12)

Properties (2.11) and (2.12) imply that the MCF is a Hilbert–Schmidt kernel [4]. In
addition, the MCF is non-negative definite in the sense that

N

∑
i=1

N

∑
j=1

a∗i ajΓ(ti, tj) ≥ 0, (2.13)

where N is a positive integer and a1, a2,..., aN are arbitrary complex numbers. The
general form of the square-integrability and the non-negative definiteness condi-
tions expressed in Eqs. (2.12) and (2.13) can be written as [28]∫∫

D

∫∫ ∞

−∞
|Γ(r1, r2, t1, t2)|2dt1dt2d3r1d3r2 < ∞, (2.14)

∫∫
D

∫∫ ∞

−∞
f ∗(r1, t1) f (r2, t2)Γ(r1, r2, t1, t2)dt1dt2d3r1d3r2 ≥ 0, (2.15)

where D is the spatial domain under consideration and f (r, t) is an arbitrary func-
tion.

When Eq. (2.8) is calculated at a single spatio–temporal point (r, t), then it gives
the temporal intensity I(r, t)

I(r, t) = Γ(r, r, t, t) = 〈|V(r, t)|2〉, (2.16)

which shows that non-stationary fields have time-dependent intensity.
The intensity-normalized MCF is called the complex degree of coherence and is

given by [12, 33]

γ(r1, r2, t1, t2) =
Γ(r1, r2, t1, t2)√
I(r1, t1)I(r2, t2)

, (2.17)

with the magnitude bounded in the interval

0 ≤ |γ(r1, r2, t1, t2)| ≤ 1. (2.18)

If |γ(r1, r2, t1, t2)| = 1, it signifies that the field is fully coherent at the points (r1, t1)
and (r2, t2) while |γ(r1, r2, t1, t2)| = 0 shows that the field is completely incoher-
ent. The intermediate values correspond to partial spatio–temporal coherence of the
field.

2.2.2 Non-stationary fields in the space–frequency domain

The complex analytic signal representation introduced in Sec. 2.1 provides an en-
semble of realizations in the space–frequency domain. The ensemble {Ṽ(r, ω)} can
be used to construct the cross-spectral density (CSD) function [18, 28]

W(r1, r2, ω1, ω2) = 〈Ṽ∗(r1, ω1)Ṽ(r2, ω2)〉, (2.19)
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which gives the correlation between the frequency components ω1 and ω2 at two
spatial points. Equation (2.19) computed at a single frequency and at a single point
gives the spectral density of the field

S(r, ω) = W(r, r, ω, ω) = 〈|Ṽ(r, ω)|2〉. (2.20)

Analogously to Eq. (2.17) of time domain, Eq. (2.19) is normalized to get the complex
spectral degree of coherence [12]

µ(r1, r2, ω1, ω2) =
W(r1, r2, ω1, ω2)√
S(r1, ω1)S(r2, ω2)

, (2.21)

which satisfies the condition

0 ≤ |µ(r1, r2, ω1, ω2)| ≤ 1, (2.22)

where the lower limit corresponds to complete incoherence and the upper limit
to full coherence of the field at positions r1, r2 and at frequencies ω1, ω2. The
intermediate values of |µ(r1, r2, ω1, ω2)| indicate partial spatio–spectral coherence of
the field.

The MCF and the CSD functions are connected by

Γ(r1, r2, t1, t2) =
∫∫ ∞

0
W(r1, r2, ω1, ω2) exp [i (ω1t1 −ω2t2)]dω1dω2, (2.23)

and

W(r1, r2, ω1, ω2) =
1

(2π)2

∫∫ ∞

−∞
Γ(r1, r2, t1, t2) exp [−i (ω1t1 −ω2t2)]dt1dt2. (2.24)

Equations (2.23) and (2.24) constitute a form of the generalized Wiener–Khintchine
theorem which can be readily derived by utilizing Eqs. (2.6), (2.7), (2.8), and (2.19).

2.2.3 Stationary fields

For stationary fields, the average fluctuations of the field remain the same over time,
and the MCF of such a field depends on the time arguments only via their difference
∆t = t2 − t1. The MCF of stationary fields can be expressed in the form [4, 30]

Γ(r1, r2, ∆t) = 〈V∗(r1, t)V(r2, t + ∆t)〉t, (2.25)

where the subscript t stands for time average which is computed as

〈 f (t)〉t = lim
T→∞

1
2T

∫ T

−T
f (t)dt. (2.26)

As remarked in the beginning of Sec. 2.2 that the fluctuations in optical fields typ-
ically occur on a femtosecond scale and are too rapid for a detector to measure. In
practice, detectors integrate the signal over time, i.e., the quantity 〈 f (t)〉t defined
in Eq. (2.26), is measured. Since we may regard an optical field as ergodic, the
time-average in Eq. (2.25) is equal to the ensemble average [4].

The averaged intensity of a stationary field at a point r is defined by

I(r) = Γ(r, r, 0), (2.27)
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and it is time independent. Analogously to Eq. (2.17), Eq. (2.25) is normalized by

γ(r1, r2, ∆t) =
Γ(r1, r2, ∆t)√

Γ(r1, r1, 0)Γ(r2, r2, 0)
. (2.28)

The quantity γ(r1, r2, τ) is the complex degree of coherence for stationary fields and
it is bounded in the interval

0 ≤ |γ(r1, r2, ∆t)| ≤ 1, (2.29)

where the extreme values have similar meanings as described in the following text
of Eq. (2.18).

Using Eq. (2.7) in the context of stationary fields leads to

〈Ṽ(r1, ω)Ṽ(r2, ω′)〉 = W(r1, r2, ω)δ(ω−ω′), (2.30)

where the CSD function is

W(r1, r2, ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2, ∆t) exp (iω∆t)d∆t, (2.31)

and the Dirac delta function is

δ(ω−ω′) =
1

2π

∫ ∞

−∞
exp

[
−i
(
ω−ω′

)
t
]

dt. (2.32)

The inverse of the CSD function reads as

Γ(r1, r2, ∆t) =
∫ ∞

0
W(r1, r2, ω) exp (−iω∆t)dω. (2.33)

Equations (2.31) and (2.33) above are regarded as the generalized Wiener–Khintchine
theorem for stationary fields.

The CSD function computed at a single spatial point r gives the spectral density
of the field

S(r, ω) = W(r, r, ω), (2.34)

analogously to Eq. (2.20). The CSD is normalized by

µ(r1, r2, ω) =
W(r1, r2, ω)√

S(r1, ω)S(r2, ω)
, (2.35)

to get the spectral degree of spatial coherence [5]. The quantity is bounded in the
interval 0 ≤ |µ(r1, r2, ω)| ≤ 1, for all values of the arguments r1, r2, and ω with
physical meanings the same as described below Eq. (2.22) but at a frequency ω.

2.3 COHERENT-MODE REPRESENTATION

In the early 1980’s, it was shown that the CSD function of a stationary scalar op-
tical field of any state of coherence can be expressed in terms of the CSD func-
tions of fields, or modes, which are spatially fully coherent in the frequency do-
main [13, 15, 16]. Full description of the propagation, interaction and scattering of
a random optical field is computationally quite arduous when performed in terms
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of coherence functions. Since the CSD function of a completely coherent field fac-
tors in spatial variables [14], the modal method allows to express the correlation
functions in terms of deterministic fields which are numerically easier to analyze
compared to the coherence functions. In this section, first we discuss the basic
idea of the coherent-mode representation of a stationary field and then present the
mode representation of a non-stationary pulsed field in the time and frequency do-
mains [27, 28].

2.3.1 Stationary fields

Since the CSD function W(r1, r2, ω) is Hermitian, continuous, and square-integrable
with respect to the spatial variable in a volume D, it is a Hilbert-Schmidt kernel
[4]. Also the CSD function is nonnegative definite [4]. These properties admit the
CSD function can be expressed in terms of a (uniformly and absolutely convergent)
Mercer series of the form [4, 13, 15]

W(r1, r2, ω) =
∞

∑
m=1

λm(ω)ψ∗m(r1, ω)ψm(r2, ω), (2.36)

where λm(ω) are frequency dependent, real, and non-negative eigenvalues and
ψm(r, ω) are the eigenfunctions of the frequency-domain Fredholm integral equa-
tion ∫

D
W(r1, r2, ω)ψm(r1, ω)d3r1 = λm(ω)ψm(r2, ω). (2.37)

The eigenfunctions ψm(r, ω) are orthonormal∫
D

ψ∗m(r, ω)ψn(r, ω)d3r = δmn, (2.38)

where δmn is the Kronecker delta symbol. We introduce

W(m)(r1, r2, ω) = ψ∗m(r1, ω)ψm(r2, ω), (2.39)

for which the magnitude of the spectral degree of spatial coherence, defined by
Eq. (2.35), is unity for all r1, r2 ∈ D and at all ω. Now, in terms of Eq. (2.39),
Eq. (2.36) can be modified as

W(r1, r2, ω) =
∞

∑
m=1

λm(ω)W(m)(r1, r2, ω), (2.40)

which demonstrates that the CSD function of the field can be represented as a sum
of the CSD functions of fully coherent modes.

2.3.2 Non-stationary pulsed fields

The mode decomposition introduced in the preceding section does not hold for
fields which are statistically non-stationary. In this section, we aim to derive the
coherent-mode representation for a non-stationary pulsed field in the time and fre-
quency domains [27, 28].
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Temporal domain

Let us consider a pulsed field defined on the finite interval, t ∈ [−T/2, T/2], outside
of which the field is assumed to vanish. The field can be expressed in terms of the
Karhunen–Loéve expansion [4, 29]

E(t) =
∞

∑
m=1

cmψm(t), (2.41)

with the coefficients {cm} being uncorrelated random variables,

〈c∗mcn〉 = αmδmn, (2.42)

where αm are real, nonnegative numbers. The eigenfunctions ψm(t) are orthonormal

∫ T/2

−T/2
ψ∗m(t)ψn(t)dt = δmn, (2.43)

and the uncorrelated coefficients are given by

cm =
∫ T/2

−T/2
E(t)ψ∗m(t)dt. (2.44)

Substitution of Eq. (2.41) into Eq. (2.10) leads to the expansion for the MCF

Γ(t1, t2) =
∞

∑
m=1

αmψ∗m(t1)ψm(t2), (2.45)

where αm are the eigenvalues and ψm(t) are the eigenfunctions of the Fredholm
integral equation

∫ T/2

−T/2
Γ(t1, t2)ψm(t1)dt1 = αmψm(t2). (2.46)

As mentioned in Sec. 2.2.1, the MCF is a non-negative definite Hilbert–Schmidt
kernel. This property ensures that the expansion for the MCF given by Eq. (2.45) is
a Mercer series [4, 15].

Substitution of t1 = t2 = t in Eq. (2.45), integration and utilization of the or-
thonormality of the eigenfunctions, Eq. (2.43), links the eigenvalues to the temporal
intensity defined in Eq. (2.16) (ignoring the spatial dependence)

∞

∑
m=1

αm =
∫ T/2

−T/2
I(t)dt. (2.47)

The modulus of the MCF is related to the eigenvalues by the relation

∞

∑
m=1

α2
m =

∫∫ T/2

−T/2
|Γ(t1, t2)|2 dt1dt2, (2.48)

which can be readily derived by using Eq. (2.45) in conjunction with Eq. (2.43).
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Figure 2.1: Schematic illustration of a quasi-stationary source.

Frequency domain

Substitution of Eq. (2.45) into Eq. (2.24), ignoring the spatial dependence, yields the
coherent-mode representation in the frequency domain

W(ω1, ω2) =
∞

∑
m=1

α′mψ∗m(ω1)ψm(ω2), (2.49)

where the coefficients α′m are the eigenvalues and ψm(ω) are the eigenfunctions of
the frequency-domain Fredholm integral equation∫ ∞

0
W(ω1, ω2)ψm(ω1)dω1 = α′mψm(ω2). (2.50)

The spectral eigenfunctions ψm(ω) are given by

ψm(ω) =
1√
2π

∫ T/2

−T/2
ψm(t) exp (iωt)dt, (2.51)

obeying the orthonormality condition∫ ∞

0
ψ∗m(ω)ψn(ω)dω = δmn. (2.52)

The coefficients of the spectral domain CMD are related to those of the time domain
expansion by the relation α′m = αm/2π.

The eigenvalues in the frequency domain are related to the spectral density and
the modulus square of the CSD by the relations

∞

∑
m=1

α′m =
∫ ∞

0
S(ω)dω, (2.53)

and
∞

∑
m=1

α′
2
m =

∫∫ ∞

0
|W(ω1, ω2)|2dω1dω2. (2.54)

Equations (2.53) and (2.54) are the frequency-domain analogs of Eqs. (2.47) and
(2.48), respectively.

2.3.3 Quasi-stationary fields

Let us consider a non-stationary pulsed (or non-pulsed) source whose complex de-
gree of temporal coherence depends only on the time difference, ∆t = t2 − t1, and
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the coherence time is short compared to the width of the average temporal intensity.
In addition, the temporal intensity varies slowly over the coherence time. In other
words, the temporal intensity is a slow function of time while the complex degree of
coherence is a fast function of ∆t as schematically shown in Fig. 2.1. The field from
such a source is termed as quasi-stationary [32] and can be regarded as the temporal
analog of quasi-homogenous fields [4]. Equation (2.17) evaluated at a single spatial
point allows to write the MCF as

Γ(t1, t2) =
√

I(t1)I(t2)γ(t1, t1) ≈ I(t̄)γ(∆t) = Γ(t̄, ∆t), (2.55)

where t̄ = (t1 + t2)/2 is the average time and γ(∆t) is the complex degree of tem-
poral coherence whose effective width is a measure for the coherence time. In the
second step, we used the assumption that the temporal intensity is a slow function
in comparison with the variation of the degree of coherence which implies that the
intensity distribution is essentially constant inside the interval where the degree is
significant, I(t1) ≈ I(t2) ≈ I(t̄).

Next we consider pulsed sources within the interval [−T/2, T/2]. As before, the
field is taken zero outside of this temporal region. In the frequency domain, let us
introduce the average frequency, ω̄ = (ω1 + ω2)/2, and the difference frequency
variable, ∆ω = ω2 − ω1. Then using the coordinate transformation from the vari-
ables ω1 and ω2 to the average and difference coordinates, the Wiener–Khintchine
theorem of Eq. (2.24) (without r dependence) transforms into the form

W(ω̄, ∆ω) =
1

(2π)2

∫ T

−T

∫ − |∆t|
2 + T

2

|∆t|
2 −

T
2

Γ(t̄, ∆t) exp [i (∆ωt̄ + ω̄∆t)]dt̄d∆t. (2.56)

Substitution of Eq. (2.55) into Eq. (2.56) leads to

W(ω̄, ∆ω) =
1

2π

∫ T

−T
P(∆t; ∆ω)γ(∆t) exp(iω̄∆t)d∆t, (2.57)

where

P(∆t; ∆ω) =
1

2π

∫ − |∆t|
2 + T

2

|∆t|
2 −

T
2

I(t̄) exp(i∆ωt̄)dt̄. (2.58)

As γ(∆t) is a narrow function for quasi-stationary fields and I(t̄) is negligibly small
at the distances on the order of the coherence time from the boundaries of the time
window [−T/2, T/2], we can approximate P(∆t; ∆ω) ≈ P(0; ∆ω) in the integrand
of Eq. (2.56). This leads to

W(ω̄, ∆ω) = s(ω̄) Ĩ(∆ω), (2.59)

where

s(ω̄) =
1

2π

∫ T

−T
γ(∆t) exp (iω̄∆t)d∆t, (2.60)

and

Ĩ(∆ω) =
1

2π

∫ T/2

−T/2
I(t̄) exp (i∆ωt̄)dt̄. (2.61)
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We can also write Eq. (2.59) in the form

W(ω̄, ∆ω) = S(ω̄)µ(∆ω), (2.62)

where the spectral density is given by

S(ω̄) = W(ω̄, 0) = s(ω̄) Ĩ(0), (2.63)

and the complex degree of spectral coherence is

µ(∆ω) =
W(ω̄, ∆ω)

S(ω̄)
=

Ĩ(∆ω)

Ĩ(0)
. (2.64)

Utilizing Eqs. (2.47), (2.53), (2.61), and (2.63), it is evident that s(ω̄) is the normalized
spectrum expressed as,

s(ω̄) =
S(ω̄)∫ ∞

0 S(ω̄)dω̄
. (2.65)

Equation (2.64) signifies that to compute the degree of spectral coherence, µ(∆ω), for
a quasi-stationary field information only on the temporal intensity, I(t), is needed
whereas Eq. (2.60) shows that the normalized spectrum, s(ω̄), is specified by the
degree of temporal coherence, γ(∆t), alone.

2.3.4 Representation for the MCF of quasi-stationary pulsed fields

In this section, we describe a new time-domain method introduced in Publication II
which expresses the MCF of a quasi-stationary pulsed field in terms of deterministic
quasi-monochromatic functions. To elaborate this method, let us first consider a
stationary random field within the time interval, t ∈ [−T/2, T/2]. If the coherence
time of the field under consideration is much less than T, then the eigenvalues of
Eq. (2.46) are known to be [29]

αm ≈ 2πSs(ωm). (2.66)

The subscript s in Ss(ωm) refers to stationarity and ωm = m2π/T, with m being
a positive integer, which affirms the orthogonality of the corresponding eigenfunc-
tions,

ψm(t) ≈
1√
T

exp (−iωmt), (2.67)

within [−T/2, T/2]. In terms of Eqs. (2.66) and (2.67), the coherent-mode expansion
for the MCF expressed in Eq. (2.45) becomes

Γ(t1, t2) = Γ(∆t) =
∞

∑
m=1

[
2πSs(ωm)

T

]
exp (−iωm∆t), (2.68)

which is the positive-frequency part of the complex Fourier series of Γ(∆t) [34]. The
series (2.68) also constitutes an approximative time-domain coherent-mode expan-
sion for the stationary fields.

The technique to obtain an approximative time-domain expansion for stationary
fields can be applied to the degree of temporal coherence of quasi-stationary pulsed
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fields. In terms of the envelope representation [35], the complex degree of temporal
coherence of a quasi-stationary field can be decomposed into a rapidly oscillating
part and a slowly varying envelope γA(∆t) as

γ(∆t) = γA(∆t) exp (−iω0∆t), (2.69)

where ω0 can be any frequency within the spectrum. The slowly changing part
obeys the Hermiticity condition, γ∗A(∆t) = γA(−∆t). Since the width of γA(∆t) is
much smaller than the length T of the interval, we can express it approximately in
a form of the coherent-mode representation

γA(∆t) =
∞

∑
m=−∞

αmψ∗m(t1)ψm(t2), (2.70)

with the eigenfunctions ψm(t) given in Eq. (2.67). Substitution of the eigenfunctions
into the time-domain Fredholm integral equation, i.e., Eq. (2.46), with γA(∆t) as
the kernel, multiplication by ψ∗n(t2) and integration with respect to t2 yields the
eigenvalues

αm =
1
T

∫ T/2

−T/2

∫ T/2

−T/2
γA(∆t) exp (iωm∆t)dt1dt2, (2.71)

where we have used the orthonormality of the eigenfunctions expressed in Eq. (2.43).
In terms of the average, t̄, and difference, ∆t, coordinates, Eq. (2.71) can be cast into
the form

αm =
∫ T

−T

(
1− |∆t|

T

)
γA(∆t) exp (iωm∆t)d∆t. (2.72)

It follows from the Hermiticity of γA(∆t) that the coefficients αm of Eq. (2.72) are
real, i.e., α∗m = αm. As it was remarked in Sec. 2.3.3 that the complex degree of
coherence is a narrow function of the variable ∆t, the factor ∆t/T can be discarded
in this case, and Eq. (2.72) simplifies into the form

αm ≈
∫ T

−T
γA(∆t) exp (iωm∆t)d∆t. (2.73)

The eigenvalues are related to the normalized spectrum given in Eq. (2.60) by the
relation

αm ≈ 2πs(ωm + ω0), (2.74)

which is obtained by using Eq. (2.69) in Eq. (2.73).
In terms of Eq. (2.69), the MCF given in Eq. (2.55) can be modified as

Γ(t1, t2) = I(t̄)γA(∆t) exp (−iω0∆t). (2.75)

If we define a function

φm(t) =
√

I(t)ψm(t) exp(−iω0t), (2.76)

then Eq. (2.75) with an approximation, t̄ ≈ t1 ≈ t2, leads to a new time-domain
representation for the MCF of the quasi-stationary pulsed field

Γ(t1, t2) =
∞

∑
m=−∞

αmφ∗m(t1)φm(t2). (2.77)
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Substitution of the orthonormal eigenfunctions ψm(t) from Eq. (2.67) into Eq. (2.76)
yields

φm(t) =

√
I(t)
T

exp [−i(ω0 + ωm)t], (2.78)

which are seen to be quasi-monochromatic, frequency shifted functions of identical
shape and are non-orthonormal within the interval, t ∈ [−T/2, T/2]. Therefore,
Eq. (2.77) is not the traditional coherent-mode decomposition rather it can be re-
garded as a pseudo-mode representation [36, 37] expressing the MCF as a superpo-
sition of quasi-monochromatic and deterministic mode functions.

In comparison to the traditional coherent-mode decomposition in Sec. 2.3.2, the
new time-domain method is a more efficient technique to represent the MCF of
quasi-stationary pulsed sources as the coherence properties of the source can be in-
vestigated by making use of the mean spectrum and the average temporal intensity
only. To practically demonstrate the validity of our new time-domain decomposi-
tion, the method was applied in Publication II to study the coherence properties of
an x-ray free-electron laser (XFEL) source [38]. The degree of temporal coherence
constructed from the spectral and temporal information was found to be in perfect
agreement with the exact results obtained directly from the known MCF.

2.4 GAUSSIAN SCHELL MODEL

A pulsed source for which the temporal degree of coherence depends on the vari-
ables t1 and t2 only via their difference is termed as a Schell-model source [4,39,40].
In addition to this property, if the intensity distribution is Gaussian and the de-
gree of coherence is also a Gaussian function, then such a source is called pulsed
Gaussian Schell-model (GSM) source.

The MCF of a Schell-model source is written as

Γ(t1, t2) =
√

I(t1)I(t2)γ(∆t). (2.79)

For a pulsed GSM source, the temporal intensity I(t) has a Gaussian distribution,

I(t) = I0 exp
[
−2t2/T2

]
, (2.80)

where I0 is the peak intensity and T represents the pulse length. The degree of
coherence γ(∆t) in Eq. (2.79) is also a Gaussian function

γ(∆t) = exp
[
− (∆t)2 /(2T2

γ)
]
, (2.81)

where Tγ characterizes the width of the complex degree of temporal coherence and
may be called the coherence time.

2.5 IFTA FOR THE CONSTRUCTION OF THE FEL REALIZATIONS

Temporal counterpart of the iterative Fourier transform algorithm (IFTA) [41] was
employed in Publication I to construct an ensemble of FEL pulses in the spectral and
temporal domains using the measured spectra of an XFEL at the Linac coherent light
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Figure 2.2: Flowchart of the iterative Fourier transform algorithm. The experimen-
tally measured spectrum of the nth field realization is represented by Sn(Ω), φn(Ω)
is the random spectral phase, In(t) is the temporal intensity, and φn(t) is the phase
in the time domain. The intensity In(t) is multiplied by a Gaussian filtering func-
tion to get I′n(t). Using IFT, the spectrum S′n(Ω) is estimated. Many iterations of the
algorithm are run until the condition S′n(Ω) = Sn(Ω) is reached.

source (LCLS) [38]. In this section, we elucidate the algorithm that was employed in
Publication I.

In the first step of the algorithm (see Fig. 2.2), we associate a random phase φ(Ω)
to the square root of a measured spectrum, Sn(Ω), of the nth field realization to get a
complex spectral field. The spectral field is Fourier transformed to get the temporal
field. The phase of the temporal field, φ(t), is left untouched and the temporal am-
plitude is multiplied by a Gaussian filtering function to get a Gaussian distribution
for the temporal intensity, In(t). In the subsequent step of the algorithm, the tempo-
ral field is converted back to the spectral domain via the inverse Fourier transform
(IFT). A spectral constraint is applied to the spectral field obtained via IFT by setting
the spectrum to the measured spectrum, i.e., S′n(Ω) = Sn(Ω), and the phase is left
undisturbed. The process is iterated as long as needed until the estimated spectrum
converges to the experimentally measured spectrum. The one-dimensional phase-
retrieval algorithm does not possess a unique solution [42], however, the simulated
ensemble of spectral and temporal field realizations matches the experimentally
measured spectral and temporal characteristics of the FEL in a statistically averaged
sense.

The IFTA results in an ensemble of realizations in the spectral and temporal
domains. These ensembles were then utilized in Publication I to construct the CSD,
MCF, and the complex degrees of spectral and temporal coherence [20] for the XFEL
source. A Gaussian filtering function in the time domain was used to get the average
temporal intensity of the ensemble of the Gaussian form. However, if the mean
temporal intensity of the source is known to be different from the Gaussian form,
then an appropriate filtering function for such a source should be used in the IFTA.
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A similar approach has been earlier used for generating FEL pulses based on the
knowledge of the average spectrum and mean pulse duration [43]. In [43], instead of
the measured spectrum of the individual realization, the averaged spectrum is used
to get a complex spectral field which is then Fourier transformed to the temporal
domain. In essence, the authors in [43] employ a single loop of the IFTA that we
described.

In our case, we investigated the coherence properties of the XFEL facility at LCLS
and the results demonstrated that this particular FEL emits quasi-stationary pulse
trains with low spectral and temporal coherence. However, our proposed model can
be applied to any other pulsed light source which may emit pulse trains with any
degree of spectral and temporal coherence.
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3 Coherence of non-stationary electromagnetic fields

In this chapter, we describe the correlation matrices in the time and frequency do-
mains, the degree of coherence, the degree of polarization, and the coherent-mode
decomposition for non-stationary electromagnetic beams. We also present a novel
time-domain method for expressing the temporal modes of stationary and pulsed
quasistationary beams that was developed in Publication III.

3.1 COHERENCE MATRICES

To describe the temporal correlation matrix, consider a fluctuating, non-stationary
electromagnetic beam propagating in the positive z-direction. Employing the for-
malism described in Sec. 2.1 for the transverse components, Ex(t) and Ey(t), the
beam at a fixed spatial point is represented by the vectorial zero-mean complex an-
alytic signal, E(t) = [Ex(t) Ey(t)]T, where T stands for the transpose. The temporal
correlation of the electromagnetic beam is described by the mutual coherence matrix
(MCM) [4, 44]

Γ(t1, t2) = 〈E∗(t1)ET(t2)〉, (3.1)

where the angle brackets denote ensemble averaging over a set of realizations. In
practice, the members of the ensemble can be the individual pulses of a pulse train
emanating from a pulsed light source. The MCM is Hermitian in the sense that
Γ†(t1, t2) = Γ(t2, t1), where the dagger † denotes conjugate transpose. The MCM
also satisfies the non-negative definiteness condition [4, 44]. The elements of the
MCM are given by Γij(t1, t2) = 〈E∗i (t1)Ej(t2)〉, (i, j) ∈ (x, y), and the degree of
correlation between the field components at the time instants t1 and t2 is

γij(t1, t2) =
Γij(t1, t2)√
Ii(t1)Ij(t2)

, (i, j) ∈ (x, y), (3.2)

where Ii(t) = Γii(t, t) is the intensity of the ith component. The total temporal
intensity of the beam is

I(t) = tr[Γ(t, t)], (3.3)

where tr denotes the trace. The electromagnetic degree of temporal coherence
γ(t1, t2) is defined in squared form as [45]

γ2(t1, t2) =
tr[Γ†(t1, t2)Γ(t1, t2)]

I(t1)I(t2)
, (3.4)

which is bounded in the interval 0 ≤ |γ(t1, t2)| ≤ 1, where zero refers to the com-
plete incoherence while unity signifies full coherence at t1 and t2.

Equal-time MCM is called the polarization matrix [4, 5, 9, 11] expressed as

J(t) = Γ(t, t), (3.5)
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with the elements given by Jij(t) = Γij(t, t) = 〈E∗i (t)Ej(t)〉, (i, j) ∈ (x, y). The
polarization matrix is purely Hermitian, J†(t) = J(t). The diagonal elements of
J(t) give the intensities of the x and y electric field components and the normalized
off-diagonal elements provide a measure of the equal-time correlation between the
orthogonal components, i.e.,

jxy(t) =
Jxy(t)√

Jxx(t)Jyy(t)
, (3.6)

with 0 ≤ |jxy(t)| ≤ 1. The upper bound of |jxy(t)| refers to a full correlation of the x
and y electric field components while the lower bound indicates a complete lack of
correlation.

To develop the correlation matrices in the spectral domain, we Fourier transform
the time-domain field [see Sec. 2.1]

E(ω) =
1

2π

∫ ∞

−∞
E(t) exp (iωt)dt. (3.7)

The spectral realizations obtained via Eq. (3.7) can be used to define the cross-
spectral density matrix (CSDM) as

W(ω1, ω2) = 〈E∗(ω1)ET(ω2)〉. (3.8)

The CSDM is Hermitian, W†(ω1, ω2) = W(ω2, ω1), and non-negative definite [44].
The elements of the CSDM are Wij(ω1, ω2) = 〈E∗i (ω1)Ej(ω2)〉, (i, j) ∈ (x, y), and the
degree of correlation between the spectral field components at ω1 and ω2 is

µij(ω1, ω2) =
Wij(ω1, ω2)√
Si(ω1)Sj(ω2)

, (i, j) ∈ (x, y), (3.9)

where Si(ω) = Wii(ω) is the spectral density of the ith component. The total spectral
density of the field is

S(ω) = tr[W(ω, ω)]. (3.10)

The spectral degree of coherence for the electromagnetic beam, µ(ω1, ω2), is defined
in the form [46]

µ2(ω1, ω2) =
tr[W†(ω1, ω2)W(ω1, ω2)]

S(ω1)S(ω2)
, (3.11)

with 0 ≤ |µ(ω1, ω2)| ≤ 1. Analogously to the complex degree of temporal coher-
ence, |µ(ω1, ω2)| = 0 represents complete incoherence while |µ(ω1, ω2)| = 1 shows
full coherence of the field components at ω1 and ω2.

The equal-frequency CSDM leads to the spectral polarization matrix, Φ(ω),
which contains the spectral polarization properties of the electromagnetic field and
is given by the relation

Φ(ω) = W(ω, ω). (3.12)

20



The diagonal elements of Φ(ω) are the spectral densities Si(ω) = Φii(ω), i ∈ (x, y),
while the normalized off-diagonal elements give a measure of the equal-frequency
correlation between the orthogonal components

φxy(ω) =
Φxy(ω)√

Φxx(ω)Φyy(ω)
, (3.13)

with 0 ≤ |φxy(ω)| ≤ 1. The upper bound corresponds to full correlation between
the x and y field components at a single frequency and the lower bound signifies a
complete absence of correlation.

Substituting the spectral realization E(ω) from Eq. (3.7) into Eq. (3.8) and using
the definition of MCM given in Eq. (3.1), we get a relation between the CSDM and
the MCM

W(ω1, ω2) =
1

(2π)2

∫∫ ∞

−∞
Γ(t1, t2) exp [−i (ω1t1 −ω2t2)]dt1dt2, (3.14)

and

Γ(t1, t2) =
∫∫ ∞

0
W(ω1, ω2) exp [i (ω1t1 −ω2t2)]dω1dω2. (3.15)

Equations (3.14) and (3.15) constitute the Wiener–Khintchine theorem for a non-
stationary electromagnetic beam at a fixed spatial point. By considering the field at
two spatial points r1 and r2, we arrive at the generalized Wiener–Khintchine theorem

W(r1, r2, ω1, ω2) =
1

(2π)2

∫∫ ∞

−∞
Γ(r1, r2, t1, t2) exp [−i (ω1t1 −ω2t2)]dt1dt2, (3.16)

and

Γ(r1, r2, t1, t2) =
∫∫ ∞

0
W(r1, r2, ω1, ω2) exp [i (ω1t1 −ω2t2)]dω1dω2. (3.17)

In Sec. 3.3.2, we employ Eq. (3.17) to derive the time-domain coherent-mode repre-
sentation for a non-stationary, pulsed electromagnetic beam.

3.2 DEGREE OF POLARIZATION

In a fully polarized beam, the orthogonal components of the electric vector E(t) are
completely correlated, |jxy(t)| = 1, and hence the corresponding 2× 2 polarization
matrix has the form [4, 44]

Jpol(t) =
[

B(t) C(t)
C∗(t) D(t)

]
, (3.18)

where B(t) ≥ 0, D(t) ≥ 0, and B(t)D(t)− |C(t)|2 = 0. In a completely unpolarized
beam, the orthogonal components have no correlation, |jxy(t)| = 0, and the diagonal
elements are equal, Ix(t) = Iy(t). The polarization matrix for a fully unpolarized
beam can be written as

Junpol(t) = A(t)
[

1 0
0 1

]
, (3.19)
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where A(t) ≥ 0. Utilizing Eqs. (3.18) and (3.19), the polarization matrix of any
electromagnetic beam can be expressed as a summation of two polarization matrices
each corresponding to a fully polarized and a fully unpolarized beam [5, 44]

J(t) = Jpol(t) + Junpol(t). (3.20)

The degree of polarization is defined as the ratio of the intensity of the polarized
part of the beam to the total intensity [5, 44]. It is mathematically expressed as

P(t) =
tr[Jpol(t)]

tr[J(t)]
=

√
1− 4det[J(t)]

tr2[J(t)]
, (3.21)

and satisfies 0 ≤ P(t) ≤ 1. The lower limit indicates a fully unpolarized beam,
the upper limit corresponds to a completely polarized beam, and the intermediate
values signify partial polarization.

3.3 COHERENT-MODE DECOMPOSITION OF ELECTROMAGNETIC
BEAMS

In Chap. 2, we presented an overview of the coherent-mode decomposition (CMD)
for random, scalar, stationary and non-stationary beams. The theory presented
therein is not sufficient to describe the coherence properties of partially polarized,
partially coherent electromagnetic beams. In this section, we discuss the CMD for
stationary and non-stationary electromagnetic beams.

3.3.1 Stationary fields

Gori et al. introduced the 2× 2 beam coherence-polarization (BCP) matrix for the
description of quasi-monochromatic, partially polarized, partially spatially coherent
beams [47, 48]. The BCP matrix is an equal-time mutual coherence matrix evalu-
ated at two different spatial points. Employing the BCP matrix, the CMD was ana-
lyzed for partially spatially coherent, partially polarized beams [49]. Later on, Tervo
and co-workers introduced a CMD for stationary, partially coherent electromagnetic
fields in the space–frequency domain [50].

Since the CSDM of a random electromagnetic field is a non-negative definite,
Hilbert–Schmidt kernel [45], it can be represented in a volume D of interest as a
Mercer series in the form

W(r1, r2, ω) =
∞

∑
m=1

λm(ω)φ∗m(r1, ω)φT
m(r2, ω), (3.22)

where λm(ω) are the (positive) frequency-dependent eigenvalues and φm(r, ω) are
the (column-vector) eigenfunctions of the Fredholm integral equation∫

D
φT

m(r1, ω)W(r1, r2, ω)d3r1 = λm(ω)φT
m(r2, ω). (3.23)

The eigenfunctions φm(r, ω) can be taken orthonormal∫
D

φT
m(r, ω)φ∗n(r, ω)d3r = δmn. (3.24)
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We can express the CMD of Eq. (3.22) as

W(r1, r2, ω) =
∞

∑
m=1

λm(ω)W(m)(r1, r2, ω), (3.25)

where W(m)(r1, r2, ω) = φ∗m(r1, ω)φT
m(r2, ω). Parallelling Eq. (3.11) for non-stationary

fields, the electromagnetic spectral degree of coherence for stationary electromag-
netic beams is given in the squared form by [46, 50]

µ2(r1, r2, ω) =
tr[W†(r1, r2, ω)W(r1, r2, ω)]

S(r1, ω)S(r2, ω)
, (3.26)

where S(r, ω) = tr[W(r, r, ω)]. Substitution of W(m)(r1, r2, ω) in Eq. (3.26) implies
|µ(r1, r2, ω)| = 1, indicating that W(m)(r1, r2, ω) corresponds to the CSDM of a (spec-
trally) spatially fully coherent beam. Therefore, we may regard Eq. (3.22) as a rep-
resentation of the CSDM in terms of mutually uncorrelated, spatially fully coherent
modes.

3.3.2 Non-stationary fields

In random stationary polychromatic electromagnetic fields, the frequency compo-
nents have no correlation and the formulation is at a certain frequency. For non-
stationary fields, the spectral coherence matrix depends on the two-frequency vari-
ables ω1 and ω2; and due to its properties, it can be expressed in the form of a
Mercer’s type series [51]

W(r1, r2, ω1, ω2) =
∞

∑
m=1

λmΦ∗m(r1, ω1)Φ
T
m(r2, ω2), (3.27)

where λm are the eigenvalues and Φ(r, ω) are the eigenfunctions of the vectorial
Fredholm integral equation∫ ∞

0

∫
D

ΦT
m(r1, ω1)W(r1, r2, ω1, ω2)d2r1dω1 = λmΦT

m(r2, ω2). (3.28)

The eigenfunctions can be assumed orthonormal∫ ∞

0

∫
D

ΦT
m(r, ω)Φ∗n(r, ω)d3rdω = δmn. (3.29)

The time-domain CMD is obtained by substitution of Eq. (3.27) into Eq. (3.17)
leading to the MCM of the form

Γ(r1, r2, t1, t2) =
∞

∑
m=1

λ′mΨ∗m(r1, t1)Ψ
T
m(r2, t2), (3.30)

where λ′m are the eigenvalues and Ψm(r, t) are the eigenfunctions of the vectorial
time-domain Fredholm integral equation∫ ∞

−∞

∫
D

ΨT
m(r1, t1)Γ(r1, r2, t1, t2)d2r1dt1 = λ′mΨT

m(r2, t2). (3.31)
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The eigenfunctions are given by

Ψm(r, t) =
∫ ∞

0
Φ(r, ω) exp (−iωt)dω. (3.32)

and obey the orthonormality condition [51]∫ ∞

−∞

∫
D

ΨT
m(r, t)Ψ∗n(r, t)d2rdt = δmn. (3.33)

The eigenvalues λ′m are related to those of the spectral CMD by the relation

λ′m = 2πλm, (3.34)

where the 2π factor comes from the orthonormality requirement of the temporal
eigenfunctions. Equations (3.27) and (3.30) show that both the CSDM and MCM of
a non-stationary electromagnetic beam can be expressed as incoherent sums of fully
coherent modes with suitable weights.

3.4 MODE DECOMPOSITIONS FOR STATIONARY AND PULSED
QUASISTATIONARY ELECTROMAGNETIC FIELDS

In Publication III, we introduced a novel time-domain harmonic mode expansion
for stationary electromagnetic fields. The new method is an extension of the earlier
work concerning the mode decomposition of random scalar fields [29]. The second
important result of Publication III is the derivation of a pseudo-mode representation
for pulsed quasistationary electromagnetic fields.

3.4.1 Stationary fields

Consider a stationary electromagnetic beam, E(t) = [Ex(t) Ey(t)]T, within a finite
time interval [−T/2, T/2]. Due to stationarity, the field is not zero outside of the
interval. It was shown in Publication III that the MCM of the field can be represented
in the form

Γ(t1, t2) =
∞

∑
m=1

αmE∗m(t1)ET
m(t2), (3.35)

where αm are the eigenvalues and Em(t) are the orthonormal eigenfunctions of the
Fredholm integral equation

∫ T/2

−T/2
ET

m(t1)Γ(t1, t2)dt1 = αmET
m(t2). (3.36)

Although not explicitly shown, the MCM of Eq. (3.35) depends on ∆t only.
If the width of the MCM is small compared with the length T of the time window,

then the eigenfunctions are, to a good approximation, harmonic functions given by

Em(t) = Em(t)um, Em(t) =
1√
T

exp (−iωmt), (3.37)
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where um is a unit column vector that specifies the state of the polarization, the sub-
script m ∈ [1, ∞), and ωm = mω0, with ω0 = 2π/T. The corresponding eigenvalues
are given by

αm = 2πuT
mΦ(ωm)u∗m, (3.38)

where Φ(ωm) is the spectral polarization matrix [52] given by the Fourier transform
relation

Φ(ω) =
1

2π

∫ T

−T
Γ(∆t) exp (iω∆t)d∆t. (3.39)

3.4.2 Pulsed quasistationary fields

In Sec. 2.3.3, we described quasistationary scalar fields. We noted that the com-
plex degree of temporal coherence of such a field depends on the time difference
only. Analogously to the scalar case, for vectorial pulsed quasistationary beams, the
correlation coefficients defined in Eq. (3.2) depend on the time difference ∆t only.
In addition, the intensity distributions of the components are much broader than
the extensions of the correlations and are essentially uniform over the region where
γij(∆t), (i, j) ∈ (x, y), are significant. Under these conditions, the MCM can be
expressed in the form

Γ(t̄, ∆t) = I1/2(t̄)γγγ(∆t)I1/2(t̄), (3.40)

where t̄ is the average time coordinate and

I(t̄) =
[

Ix(t̄) 0
0 Iy(t̄)

]
, (3.41)

γγγ(∆t) =
[

γxx(∆t) γxy(∆t)
γyx(∆t) γyy(∆t)

]
. (3.42)

Invoking the slowly-varying envelope representation, we can express

γγγ(∆t) = γγγA(∆t) exp (−iω0∆t) , (3.43)

where ω0 is a frequency within the spectrum. In Publication III, it is demonstrated
that the matrix γγγA(∆t) is a nonnegative definite Hilbert-Schmidt kernel and it can
be expressed as a Mercer series

γγγA(∆t) =
∞

∑
m=1

α
(A)
m E∗m(t1)ET

m(t2), (3.44)

where the vectors Em(t) are given by Eq. (3.37) and the weighting coefficients are

α
(A)
m = 2πuT

ms(ωm + ω0)u∗m, (3.45)

with

s(ωm) =
1

2π

∫ T

−T
γγγA(∆t) exp (iωm∆t)d∆t. (3.46)
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Utilizing Eq. (3.43) and Eq. (3.44) in Eq. (3.40), the MCM of a quasistationary pulsed
beam assumes the form

Γ(t1, t2) =
∞

∑
m=−∞

α
(A)
m E∗m(t1)ET

m(t2), (3.47)

where the temporal modes are given by

Em(t) =

√
I(t)
T

um exp [−i(ωm + ω0)t]. (3.48)

We remark that the modes in the representation of Eq. (3.35) are orthonormal within
[−T/2, T/2], therefore, it can be regarded as a coherent-mode representation of
stationary electromagnetic beams. For pulsed quasistationary beams, Eq. (3.47) is a
pseudo-modal representation as the temporal modes are not orthonormal.

The modal expansion techniques presented in Publication III are useful in the
study of stationary and quasistationary electromagnetic beams as the field can be
expressed in the time domain in terms of deterministic mode functions. The quan-
tities required for the construction of the expansion, the average intensity and the
spectral information, are measurable.
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4 Coherence measurements of pulsed light

The coherence properties of pulsed sources, such as FELs, mode-locked lasers, and
supercontinuum sources, are described with the aid of two-time and two-frequency
correlation functions in the time and frequency domains, respectively. Therefore,
measurement of the coherence properties of pulsed optical fields [53, 54] is difficult
in comparison to that of the stationary fields where the temporal coherence prop-
erties depend on the time difference only and the frequency components are un-
correlated. The conventional interferometric schemes which are usually employed
for the analysis of pulsed sources can only measure the time-integrated correlation
functions and hence do not provide the two-point measure for the coherence of
pulsed fields.

In this chapter, we elucidate the coherence measurements of pulsed light [42,
55]. First, we describe the challenges involved in the characterization of ultrashort
pulses. In the proceeding sections, we present an overview of the complexities in
the measurement of the two-time and two-frequency correlation functions followed
by a discussion on the determination of the time-integrated degree of coherence,
autocorrelation, and cross-correlation for the pulse diagnostics.

4.1 CHALLENGES INVOLVED IN THE CHARACTERIZATION OF UL-
TRASHORT PULSES

What are the shortest engineered events? Possibly the answer would be ultrashort
pulses. This section elucidates the complexities involved in characterizing ultrashort
pulses.

A pulse can be represented with a complex analytic signal, V(t), discussed in
Sec. 2.1. The characterization of a pulse means that V(t) is determined on the time
interval in which the pulse exits. Characterization of an ultrashort pulse would re-
quire a detector with a response time on the order of the temporal length of the
pulse. Even the fastest detectors available have a response time in the picosecond
range, therefore, detectors are too slow to directly measure an ultrashort pulse [55].
Determination of the amplitude and phase of the associated electric field of a pulse
requires techniques that can overcome the impediment of the detectors for measur-
ing ultrashort events, for example, the femtosecond pulses.

In the investigation of the coherence properties of a partially coherent, pulsed
non-stationary field, one needs to characterize a large number of pulses, and then
calculate the ensemble average, 〈V∗(t)V(t′)〉, of the pulses to measure their correla-
tions. Ensemble averaging is needed as the output pulses from a partially coherent
source are different from one another and each pulse can be considered as a mem-
ber of an ensemble. In particular, measuring only a single pulse does not provide
sufficient information of a random pulsed source.

With the first demonstration of mode-locking in a HeNe laser in the 1960s [56]
and the subsequent development of laser sources with femtosecond pulse dura-
tion, characterization of ultrashort pulses has been an evolving area of research.
Over the course of time, a number of techniques have been developed to address
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this domain. Some of the commonly used schemes for characterizing ultrashort
pulses are outlined by Walmsley and Dorrer [55] in the review paper. Advanced
techniques like frequency-resolved optical gating (FROG) and spectral phase inter-
ferometry for direct electric field reconstruction (SPIDER) can be used to obtain all
information about the complex waveforms of pulses in the temporal and spectral
domain. For example, in the case of partially coherent pulse trains, schemes like
FROG or SPIDER, can be used to measure an ensemble of realizations (pulses) and
then numerically average them to obtain information about the mean pulse dura-
tion and correlation functions (spectral and temporal). Therefore, characterization
of ultrashort pulses is much more complex than the time-integrated measurements
of stationary and quasi-stationary fields [53, 54]. The remainder of this chapter is
devoted to a discussion on the aforementioned intricacy involved in the coherence
measurements of partially coherent, pulsed non-stationary fields.

4.2 TWO-TIME AND TWO-FREQUENCY
CORRELATION FUNCTIONS

Michelson interferometer is commonly used to measure the temporal coherence of
both stationary [4] and pulsed light [53, 54]. In the standard setup for pulses, the
Michelson interferometer measures the time-integrated degree of temporal coher-
ence which may not provide a complete picture of the temporal coherence prop-
erties. This is due to the fact that the temporal coherence of non-stationary fields
depends on the two time variables t1 and t2, and the mean intensity of the field
is also time dependent [19]. For pulsed quasi-stationary fields such as those em-
anating from SASE based FELs where the coherence time is much shorter than
the temporal length of the pulse, the standard time-integrated measurements are
adequate [53, 54], but for pulsed fields which are more temporally coherent, e.g.,
monochromatized FEL beams considered in [57], and the pulses from a seeded FEL,
one needs to perform time-resolved measurements to get the two-time MCF. The
intricate subtlety associated with the coherence measurements of non-stationary
sources is elaborated in this section.

For pulsed sources having shot-to-shot fluctuations, a modified Michelson inter-
ferometer with tilted mirrors was proposed by Papadakis et al. [58]. Recently, it was
demonstrated that the time-resolved measurements with the modified equal path-
length Michelson interferometer can provide sufficient and necessary information to
construct the two-time MCF of non-stationary fields [53]. The two-frequency CSD
can be obtained from the MCF by using the Wiener-Khintchine theorem of Eq. (2.24).

In the conventional Michelson’s interferometry, a light beam is halved into two
parts by a 50 : 50 beam splitter. One part of the beam is delayed with respect to the
other, either by an axial movement or a small tilt of the mirror. The time-separated
copies are made to interfere on a screen and depending on the temporal coherence
of the incident beam, an interference pattern is observed. Next we analyze a pulse-
train version of this method.

Let us assume that V0(t) represents a single pulse (in a train) input to the Michel-
son interferometer schematically shown in Fig. 4.1. A beam splitter divides the pulse
into two replicas which travel towards the mirrors M1 and M2. A translation of M1
and M2 introduces a delay between the pulses propagating in the two arms of the
interferometer. The time-separated replicas are then combined on the screen B.
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Figure 4.1: Schematic representation of a Michelson’s interferometer. An incoming
pulse V0(t) is divided into two equal parts by the beam splitter. The two replicas,
that are reflected from the mirrors M1 and M2, are combined on a screen B. In
the setup illustrated here, M1 is displaced by a distance d/2 from the equilibrium
position towards the beam splitter while M2 is shifted away by the same amount.
The displacement of the mirrors introduces a delay between the replicas of a single
pulse.

In the setup illustrated in Fig. 4.1, M1 is moved a distance d/2 from the equi-
librium position (indicated by the dotted lines) towards the beam splitter and the
mirror M2 is displaced by a distance d/2 away from the beam splitter. If c denotes
the speed of light in vacuum, then a shift of d/2 in the arms of the interferometer
corresponds to a time delay of ∆t = 2d/c between the two halves of the incident
pulse. The output field at the detector is

V(t, ∆t) =
1
2
[V0(t− ∆t/2) + V0(t + ∆t/2)], (4.1)

and the temporal intensity of a single pulse is Is(t, ∆t) = |V(t, ∆t)|2.
In the case of a pulse train, we average the temporal intensity over the ensemble,

I(t, ∆t) = 〈|V(t, ∆t)|2〉, which can be written as

I(t, ∆t) =
1
4
{I0(t− ∆t/2) + I0(t + ∆t/2) + 2Re [Γ0(t, ∆t)]} , (4.2)

where Re [Γ0(t, ∆t)] denotes the real part of the MCF which is defined as Γ0(t, ∆t) =
〈V∗0 (t−∆t/2)V0(t + ∆t/2)〉. Introducing the complex degree of temporal coherence
from Eq. (2.17) (without r dependence), Eq. (4.2) takes the form

I(t, ∆t) =
1
4
{

I0(t− ∆t/2) + I0(t + ∆t/2)

+ 2
√

I0(t− ∆t/2)I0(t + ∆t/2)|γ0(t, ∆t)| cos[α(t, ∆t)]
}

, (4.3)

where α(t, ∆t) is the argument of γ0(t, ∆t). Equation (4.3) shows that measurement
of the intensities I(t, ∆t) and I0(t) gives information about the magnitude and phase
of γ0(t, ∆t). Using the envelope representation for γ0(t, ∆t), we can write

γ0(t, ∆t) = |γ0(t, ∆t)| exp
{

i
[
α′ (t, ∆t)−ω0∆t

]}
, (4.4)

α′ (t, ∆t) = ω0∆t + α (t, ∆t) . (4.5)
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Equation (4.3) in terms of Eq. (4.4) becomes

I(t, ∆t) =
1
4
{

I0(t− ∆t/2) + I0(t + ∆t/2)

+ 2
√

I0(t− ∆t/2)I0(t + ∆t/2)|γ0(t, ∆t)| cos[α′(t, ∆t)−ω0∆t]
}

. (4.6)

In the above interference law, the square-root factor, |γ0(t, ∆t)|, and α′(t, ∆t) are
slowly varying while the term ω0∆t is a fast varying function. As a consequence,
the intensity is cosine modulated and its envelope varies slowly. This results, for all
t as a function of ∆t, in dark and bright fringes on the observation screen B.

The contrast of the interference pattern observed on the screen B varies as a func-
tion of ∆t. As ∆t increases, the interference pattern becomes dimmer and dimmer,
until at a certain ∆t, it totally disappears. The extreme value of ∆t for which the
interference pattern diminishes may be called the coherence time [4, 5].

The cosine term in Eq. (4.3) can take on values in the interval [−1 1]. The ad-
jacent maximum and minimum intensities as a function of ∆t on the screen are,
respectively, given by

Imax(t, ∆t) =
1
4

[
I0(t− ∆t/2) + I0(t + ∆t/2)

+ 2
√

I0(t− ∆t/2)I0(t + ∆t/2)|γ0(t, ∆t)|
]
, (4.7)

and

Imin(t, ∆t) =
1
4

[
I0(t− ∆t/2) + I0(t + ∆t/2)

− 2
√

I0(t− ∆t/2)I0(t + ∆t/2)|γ0(t, ∆t)|
]
. (4.8)

The fringe visibility or the contrast of the interference pattern is defined as [4]

ν(t, ∆t) =
Imax(t, ∆t)− Imin(t, ∆t)
Imax(t, ∆t) + Imax(t, ∆t)

. (4.9)

Inserting from Eqs. (4.7) and (4.8) to Eq. (4.9) leads to

ν(t, ∆t) =
2
√

I0(t− ∆t/2)I0(t + ∆t/2)
I0(t− ∆t/2) + I0(t + ∆t/2)

|γ0(t, ∆t)|, (4.10)

which shows that the visibility of the interference fringes gives a quantitative mea-
sure of the modulus of the degree of temporal coherence [53, 54]. The quantity
|γ0(t, ∆t)| can be calculated by measuring the average intensities I(t, ∆t) and I0(t)
(in order to obtain the visibility). The phase of γ0(t, ∆t) is specified by the fringe
positions of the interference patterns.

If the pulses are ultrashort, then there are not fast enough detectors which can
provide time-resolved measurements. The available detectors integrate the intensity
over a finite time interval so (some of) the information on the time-dependence of
the intensity, and subsequently, about the two-time coherence of the pulsed light
is lost. Therefore, the measurement of the two-time (and two-frequency) correla-
tion functions for non-stationary fields is more demanding than that of statistically
stationary and quasi-stationary fields.
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4.3 TIME-INTEGRATED CORRELATION FUNCTIONS

A quantity which is easily measurable with the Michelson interferometer even with
slow detectors is the time-integrated MCF which can be defined as

Γ0(∆t) =
∫ ∞

−∞
Γ0(t, ∆t)dt, (4.11)

and the corresponding time-integrated complex degree of coherence is

γ0(∆t) =
Γ0(∆t)
Γ0(0)

, (4.12)

where Γ0(0) =
∫ ∞
−∞ I0(t)dt is the total pulse energy. If we integrate the interference

distribution in Eq. (4.2) with respect to time t, we obtain

I(∆t) =
∫ ∞

−∞
I(t, ∆t)dt

=
1
2

∫ ∞

−∞
I0(t)dt +

1
2

Re
[∫ ∞

−∞
Γ0(t, ∆t)dt

]
=

1
2

Γ0(0) +
1
2

Re
[
Γ0(∆t)

]
=

1
2

Γ0(0) {1 + |γ0(∆t)| cos [α(∆t)]} , (4.13)

where α(∆t) is the argument of the integrated degree of coherence, γ0(∆t). Express-
ing the interference term in relation (4.13) in an envelope form similar to the one
which was utilized in Eq. (4.6), results in interference fringes. We get the absolute
value of γ0(∆t) from the visibility of the interference pattern and its phase from the
position of the fringes on the detector.

4.4 AUTOCORRELATION AND CROSS-CORRELATION
MEASUREMENTS

In the literature, the FEL temporal coherence experiments are performed in a differ-
ent way than the approach mentioned in Sec. 4.3. The temporal coherence properties
of the FEL pulse trains are commonly studied with the aid of linear autocorrelation
measurements [59–61]. The field autocorrelation A(∆t) for a pulse V(t) is given by

A(∆t) =
∫ ∞

−∞
V∗(t− ∆t/2)V(t + ∆t/2)dt. (4.14)

In the papers [59–61], the autocorrelation functions of the individual pulses are cal-
culated and then their magnitudes are averaged. In essence, the autocorrelation for
an ensemble of pulses is calculated in the FEL experiments as 〈|A(∆t)|〉 which re-
sults in losing the phase information, while the more plausible way to estimate the
coherence of pulse trains is with the modulus of the ensemble-averaged autocorre-
lation, |〈A(∆t)〉|.

Some authors claim that a plot of 〈|A(∆t)|〉 as a function of the time delay ∆t
provides a measure of the average pulse duration [61, 62] while retaining the phase
information of the autocorrelation functions in averaging, 〈A(∆t)〉, leads to the loss
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of information on the temporal duration of the pulses. In Publication IV, we have
addressed this issue and elaborated about the knowledge that can be retrieved from
the autocorrelation measurements. We will see next that, 〈A(∆t)〉 gives an estimate
about the average spectrum of the pulse train. Substitution of Eq. (2.6) (without r
dependence) into Eq. (4.14) leads to

A(∆t) =
∫ ∞

0
|Ṽ(ω)|2 exp (−iωt)dω, (4.15)

which shows that the field autocorrelation measurement for a single pulse yields the
spectrum of the pulse. The result in Eq. (4.15) is the autocorrelation theorem [42]
which does not enable to compute the field V(t), because the spectral phase is
not included so V(t) can not be determined uniquely. This implies that there are
numerous pulses that could yield the same spectrum [42]. If the autocorrelation
experiment is done for a partially coherent pulse train and then ensemble-averaged,
we get

〈A(∆t)〉 =
∫ ∞

0
〈|Ṽ(ω)|2〉 exp (−iωt)dω, (4.16)

which yields the average spectrum of the partially coherent pulse train.
A plot of the temporal ultrashort XFEL (SASE based) pulses simulated via GEN-

ESIS [63] is shown in Fig. 4.2. The average wavelength is 0.15 nm (8.27 keV). We see
that the pulses fluctuate from shot-to-shot and have complicated intensity variations
due to the start-up from shot noise.

In Figure 4.3, the red line is a plot of the autocorrelation function, |〈A(∆t)〉|, and
the blue line is calculated by taking the absolute value of the autocorrelation for
each pulse and then ensemble averaging, 〈|A(∆t)|〉. The blue curve shows a smooth
coherence spike on a pedestal which indicates low coherence of the pulse train as
discussed in Publication IV.

Another technique that can be used for the characterization of pulses is the field
cross-correlation measurement. The main difference between the autocorrelation
and cross-correlation is that in the former method a pulse is split into two replicas
which are correlated, while the latter correlates two different pulses Vi(t) and Vj(t)
from the source. The cross-correlation function is

X(∆t) =
∫ ∞

−∞
V∗i (t− ∆t/2)Vj(t + ∆t/2)dt, (4.17)

which can be re-written in the form

X(∆t) =
∫ ∞

0
V∗i (ω)Vj(ω) exp (−iωt)dω, (4.18)

by using the Fourier transform relation given in Eq. (2.6) (without r dependence).
The field cross-correlation retains the spectral phase information which can be used
to compute the spectral fields and the corresponding CSD function as demonstrated
in Publication IV.

The cross-correlation method is feasible for the diagnostics of pulsed sources
with a high repetition rate because this scheme requires two different pulses from
the source. For FELs, the cross-correlation technique may not be feasible as the
repetition rate is not as high and too long delay line would be needed for the cor-
relation measurements. For example, the European XFEL has a repetition rate of
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Figure 4.2: Individual temporal realizations simulated via GENESIS.
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Figure 4.3: Autocorrelation function calculated for a set of XFEL pulses simulated
via GENESIS. The red line is the usual autocorrelation function which is calculated
by ensemble averaging the single-shot autocorrelation and then taking its absolute
value. The blue line corresponds to the autocorrelation of individual realizations
calculated by taking the absolute value of the individual autocorrelation functions
and then ensemble averaging.

27000 flashes per second which is the highest among all existing XFELs [64], and
thus, cross-correlation experiments would require impractically long delay line of
about 11.10 km.
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5 Coherence of free-electron lasers

This chapter deals with the coherence properties of free-electron lasers (FELs). In
the first section, we describe the basics of the FELs. In the subsequent sections,
we present an overview of the research on the coherence of FEL radiation and an
analysis of the results obtained in Publication I.

5.1 FREE-ELECTRON LASERS

Conventional lasers, first developed in the 1960s, are based on the excitation and de-
excitation of atoms and molecules in bound atomic and molecular states, and hence,
the output wavelength range is not widely tunable. In the 1970s, the possibility to
generate coherent radiation from an electron beam subjected to an undulator was
explored. Free-electron lasers are based on the emission of radiation from a rela-
tivistic electron beam propagating through a spatially periodic magnetic undulator.
John Madey first studied the gain of an electron beam through a periodic magnetic
undulator [65] which is considered as the foundation of the FEL. The first operation
of an FEL amplifier was demonstrated by Elias et al. [66] and an oscillator was also
build for the FEL in the infrared region [67].

The gain medium of an FEL is a beam of free electrons. Due to the unique gain
medium, unlike the conventional lasers, the FEL radiation is theoretically tunable on
a wide wavelength range from the infrared down to the extreme ultraviolet and x-
ray regions. With growing interest in sources which can produce coherent radiation
in the x-ray regime, a scheme of the self-amplification of the spontaneous emission
(SASE) of radiation was proposed by Kondratenko and Saldin [68], and Bonifacio,
Pellegrini, and Narducci [69]. The SASE mechanism is a viable technique for gen-
erating coherent radiation in the x-ray region because the construction of an optical
cavity for shorter wavelengths is not a feasible solution as the reflectivity of mirrors
falls off drastically for short wavelengths [70, 71]. In a SASE based FEL, the electron
beam passes through a long undulator and the spontaneously emitted radiation at
the entrance of the laser is amplified in a single pass without the need of a feedback
cavity. Free-electron lasers based on this mechanism are termed as SASE FELs and
these single-pass lasers can produce intense radiation in the x-ray regime. The FELs
with output in the x-ray regime are appropriately named as XFELs.

Due to the high brilliance (the number of photons emitted per second, area and
a solid angle within 0.1% of bandwidth [64, 71]), almost perfect transverse coher-
ence [71], and extremely short femtosecond pulses, XFELs enable research in the
important areas like structural biology, physics, and material science. A typical
XFEL can deliver photons per pulse about three orders of magnitude higher than
those generated by third-generation synchrotron sources (synchrotron sources based
on insertion devices like wigglers and undulators are classified as third-generation
synchrotron sources [72]). The unprecedented brilliance and the femtosecond dura-
tion of the XFEL pulses can outrun the radiation damage and thus enable imaging of
protein molecules and other biological specimen [73–80]. The XFELs are useful for
research in the area of condensed matter physics as the techniques like x-ray pho-
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ton correlation spectroscopy (XPCS) can now be employed to study the equilibrium
dynamics of atoms on an unprecedented spatial and temporal scale [81–86]. The in-
tense XFEL pulses are used to study the electron dynamics and space charge effects
when materials are exposed to x-rays [87,88]. All of these techniques described here
rely on the coherence properties of the XFEL radiation. Hence, investigation of the
coherence of XFELs is of fundamental importance for utilizing these sources in the
coherence based experiments.

5.1.1 Operational principle of the free-electron laser

A free-electron laser consists of three main components (see Fig. 5.1): An electron
gun that provides a stream of electrons, an accelerator which accelerates the electron
beam to relativistic speeds, and a periodic arrangement of magnets called an undu-
lator. When the electron beam which propagates at a relativistic speed after exiting
the accelerator enters the undulator, the beam experiences a periodically varying
magnetic field, and follows a curved path. An accelerating charge emits electromag-
netic radiation and therefore, the deflected electron beam emits a stream of photons.
The electron beam is then deflected to a dump via bending magnets at the exit of the
undulator [71, 89]. If the undulator is helical, the electron beam traverses a helical
path, and in the case of a planar undulator, the electron beam follows a sinusoidal
trajectory in a plane perpendicular to the direction of the magnetic field [90, 91].

Figure 5.1: Schematic representation of a SASE based FEL. The electron gun gen-
erates a beam of electrons which acquire a relativistic speed in the linear accelerator.
The relativistic electron beam encounters a periodically varying magnetic field in-
side the undulator and emits electromagnetic radiation. The spent electron beam
then gets deflected to a dump while the FEL radiation propagates to the experimen-
tal station.

An FEL has two operation regimes: high-gain linear and saturation. As the
electron beam and the radiation co-propagate through the undulator, the radiation
power increases exponentially along the length of the undulator. This region is
called the linear regime of the FEL operation. Once, the power saturates, the expo-
nential growth ceases further along the undulator, and the FEL is then said to be
operating in the saturation (or nonlinear) regime [92, 93].

5.1.2 The FEL collective instability

The electrons in a bunch are spatially randomly distributed at the entrance of the
undulator. The randomly distributed electrons emit photons which do not have any
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The electrons at the entrance

of the undulator are randomly

distributed and radiate

incoherently.

The electrons are bunched at

radiation wavelengths due to the

FEL instability and radiate in

phase, i.e., coherent emission.

Figure 5.2: Schematic illustration of the FEL instability. The electrons have a ran-
dom distribution as they enter the undulator. Inside the undulator, the electrons
and the radiation field interact which causes the electrons to group into longitudinal
slices which are separated on the order of the radiation wavelength. The electrons
inside a single slice “microbunch” radiate in phase due to which the output inten-
sity is greatly increased, that is, the intensity of the radiation field is proportional to
the number of electrons in the microbunch.

phase relation with one another. However, as the radiation field propagates in the
undulator, it interacts with the electron bunch. The electrons that are in phase with
the electromagnetic field, gain energy and are accelerated, while those electrons
which are out of phase with the field, lose energy, and are, therefore, decelerated
[70]. The energy modulation of the electron bunches causes the electrons to group
into micro-bunches on the order of the radiation wavelength. This longitudinal
density modulation of the electron beam is called FEL’s collective instability [25]. A
simpler schematic illustration of the microbunching of electrons in the undulator is
given in Fig. 5.2.

Electrons which are grouped within a micro-bunch radiate in phase [70] due to
which the intensity of the radiation increases quadratically with the number of emit-
ters, i.e., electrons in the microbunch. Typically each microbunch has 109 electrons
which radiate coherently [71]. Due to the phenomenon of instability, the radiation
from the FELs surpass the intensity of third-generation synchrotron sources by sev-
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eral orders of magnitude.
Figure 5.2 also schematically demonstrates that the radiation from an FEL has a

high degree of transverse coherence because the electrons that are grouped within
each microbunch oscillate and radiate in unison [94]. In addition to the microbunch-
ing phenomenon, the FEL amplifier serves as a linear filter for transverse radiation
modes. Only the modes with the higher gain are amplified. This mode selection is
another key reason for the high transverse coherence of the FELs.

5.1.3 X-ray free-electron laser facilities

With the ever increasing demand for generating coherent radiation with high bright-
ness at angstrom wavelengths, FELs attracted a lot of interest from the scientific com-
munity. Pellegrini put a proposal for the construction of an XFEL using the linear
accelerator at the SLAC National Accelerator Laboratory [95]. Based on Pellegrini’s
proposal, the first XFEL operating in the hard x-ray region, the Linac Coherent Light
Source (LCLS) at Stanford, lased in 2009 [96]. Another hard x-ray FEL in Japan called
SACLA (SPring-8 Angstrom Compact free electron LAser) became operational in
2011 and achieved lasing at 10.3 keV (0.12 Å) [97]. FERMI at Trieste, Italy, is a soft
x-ray FEL facility that can deliver ultrashort pulses (10–100 fs) with high transverse
and longitudinal coherence [98,99]. FLASH (Free-electron LASer in Hamburg) is the
world’s first soft x-ray facility [89]. The European XFEL at Hamburg became oper-
ational in May, 2017. The newly built European XFEL can produce extremely short
femtosecond pulses (< 100 fs) in the 0.26− 24.8 keV range (4.7− 0.05 nm wave-
length region) with a repetition rate of 27000 pulses per second [64]. FLASH and
the European XFEL facilities are managed by the Deutsches Elektronen-Synchrotron
(DESY). South Korea recently commissioned its first hard x-ray FEL source at Po-
hang Accelerator Laboratory, PAL-XFEL which lased at 8.60 keV (0.144 nm) [100].
Currently, a new XFEL facility is near the commissioning phase at Paul Scherrer
Institute (PSI) in Switzerland [101]. These seven XFEL facilities will equip the scien-
tific community with the brightest probe to investigate the nanoworld of atoms and
molecules on the elusive ultrashort and ultrafast angstrom–femtosecond scale.

5.2 COHERENCE OF FELS

Coherence is one of the fundamental properties of FEL sources that has made these
devices useful in techniques like serial femtosecond crystallography (SFX) [74], x-
ray holographic imaging [102], and XPCS [84, 85]. Most of the FEL experiments
depend on the coherence properties of the radiation [23]. Effect of the FEL coherence
on the outcome of such experiments has not been extensively studied. Therefore,
investigation of the coherence of FELs is a topic of prime interest for the scientific
community. In this section, we present an overview of the coherence properties of
FELs that has been carried out in the literature.

The radiation in a SASE based FEL starts from the shot noise in the electron
beam. Therefore, a number of transverse modes are excited as the electron beam
enters the undulator. The fundamental mode overlaps the electron beam the most
and is amplified the most, while the higher order modes grow relatively weaker
until the onset of saturation [70, 90]. In other words, a SASE based FEL amplifier
behaves as a spatial and temporal filter for the shot noise fluctuations in the electron
beam resulting in high transverse coherence. Due to startup from the shot noise
such FELs have shot to shot variations in wavelength and pulse energy [71] which
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is very different from the conventional lasers. The longitudinal coherence of SASE
FELs is poor [93]. As the FEL radiation travels along the undulator, the longitudinal
and transverse coherence builds and reaches a maximum level until the end of the
linear regime of operation [70, 92]. The longitudinal coherence of the FEL [60] is
measured usually with a split and delay unit [103].

The classic Young’s double-slit or double-pinhole experiment [3] is commonly
employed for characterizing the transverse coherence properties of FELs operating
in the far-UV region to the extreme UV and soft x-ray wavelengths [60, 94, 104, 105].
Ischebeck et al. developed an in-vacuum setup to study the transverse coherence of
the FEL operating at 100 nm wavelength at DESY. The measurements showed that
the vacuum ultraviolet (VUV) radiation from the FEL at DESY is highly spatially
coherent [94]. Singer et al. analyzed the transverse coherence properties of FLASH
operating at 13.7 nm using a set of horizontal and vertical slits with different sepa-
rations at a distance of 20 m from the source [104]. The analysis showed that FLASH
has a high degree of transverse coherence with a coherence length of about 300 µm
and the transverse coherence properties of the FLASH beam are isotropic along the
horizontal and vertical axis. Measurement of the coherence properties of FLASH at
a wavelength of 8 nm was performed at a distance of 70 m from the source [60]. The
beam spot size at the pinhole apertures’ position was 10× 10 µm2 (full width of the
half maximum of a Gaussian function). The coherence length was determined to be
about 6.2± 0.9 µm in the horizontal and 8.7± 1.0 µm in the vertical direction. Using
a split and delay unit based on wavefront division [103], the temporal coherence
time was estimated to be 1.75± 0.01 fs, which for a radiation of 8 nm wavelength is
equivalent to about 65.5 wavecycles. Further measurements of the temporal coher-
ence of FLASH for wavelengths λ = 32 nm to λ = 8 nm exhibited a decrease in the
coherence time from 6± 0.5 fs for λ = 32 nm to 2.9± 0.5 fs for λ = 8 nm. Transverse
coherence length was estimated to be 2.3 mm (rms) for λ = 24 nm, while the beam
size was recorded to be 2.5 mm [59]. Vartanyants et al. used an aperture array (see
Fig. 5.3) with different pinhole separations to investigate the coherence properties
of the XFEL at LCLS at λ = 1.6 nm and a pulse duration of approximately 300
fs [105]. The apertures were placed at a distance of about 139.4 m downstream from
the source. The spot size (FWHM) of the focused beam at the apertures was about
5.7± 0.4 µm in the horizontal and 17.3± 2.4 µm in the vertical direction. The trans-
verse coherence length along the vertical direction was found to be 17 µm. Because
a single aperture cannot withstand the energetic x-ray photons, the measurement
was done in a ’diffraction before destruction mode’. After each shot, the aperture
was moved to a new position and the interference pattern was recorded. The degree
of transverse coherence was estimated to be 56% and the temporal coherence time
was found to be 0.55 fs. The Young’s double-pinhole experimental setup, based on
the diffract and destroy principle, for the measurement of the coherence properties
of intense pulses, such as x-rays, is diagrammatically shown in Fig. 5.3. A thick
beamstop protects the camera from direct exposure to the FEL beam.

With the current state-of-the art, Young’s interferometry is practically not vi-
able for XFELs operating in the hard x-ray region due to the difficulty in fabricat-
ing apertures which can endure the radiation damage due to the impinging ener-
getic x-ray photons. Analyzing the coherence properties of hard x-ray pulses using
Young’s double-pinhole experiment is challenging as it requires preparing a set of
apertures and re-aligning the interferometer after each shot as the aperture is de-
stroyed by a single exposure. To overcome these difficulties, different approaches
have been proposed to study the coherence of the hard x-ray FELs [106–108]. For the
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Figure 5.3: Pictorial demonstration of the Young’s double-pinhole experiment for
measuring the coherence properties of an XFEL in the diffract and destroy mode.
The rectangular beamstop shields the camera from direct exposure to the x-ray
pulses.

x-ray regime of XFELs, transverse and longitudinal coherence measurements have
been performed by using the coherent diffraction speckle patterns from colloidal
nanoparticles using small-angle scattering geometry (SAXS) and gold nanopowder
using wide-angle scattering geometry (WAXS).

Apart from the coherent diffraction methods which estimates the coherence
properties of hard x-ray FEL beams based on diffraction pattern from nanoparti-
cles, the intensity correlations, that is, Hanbury Brown–Twiss interferometry (HBT),
might be another tenable technique for analysis of the coherence of XFELs in the
hard x-ray region. For the FEL in Hamburg (commonly called FLASH) operating
in the extreme ultraviolet region, HBT has been performed which corroborated that
the FEL beam has a high degree of transverse coherence (about 80%) [109]. Recently,
HBT interferometry has been performed for the hard x-ray FEL facility LCLS oper-
ating at a wavelength of 1.5 Å [110]. Unlike the interferometry in [109] which was
performed without the use of a sample in the path of the FEL beam, the latest setup
employs a colloidal crystal sample placed in the path of the monochromatized XFEL
beam. The diffracted intensities from the sample are recorded on a pixel detector.
The diffraction based HBT interferometry demonstrated that LCLS has almost full
transverse coherence of about 80% and its monochromatized beam has a temporal
coherence time of 7.5 fs.

In addition to the autocorrelation based on wavefront division which geomet-
rically splits a pulse to produce its’ two jitter-free replicas [103], Michelson inter-
ferometry based on amplitude division is another technique which can be used for
the measurement of the spatial and temporal coherence properties of FELs in the
XUV regime [111]. Utilizing the interferometer developed in [111], spatio–temporal
properties of monochromatized beam of FLASH were measured at a wavelength of
13.5 nm [57]. The temporal coherence was estimated to be 59± 8 fs which corre-
sponds to about 1300 wavecycles. The transverse coherence lengths were measured
to be approximately 12% of the beam size in the horizontal and 15% of the beam
size in the vertical direction. The coherence measurements of various FEL facilities
are summarized in Table 5.1.

As the FEL amplifier filters out the modes with high loss and only a few trans-
verse modes survive the SASE process, it is logical to apply the CMD for analyzing
the coherence properties of FELs [114]. In the temporal domain, the FEL radiation
has a number of longitudinal coherent modes which do not have phase relation with
each other. The FELs based on SASE mechanism have poor temporal coherence. Dif-
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Table 5.1: Coherence measurements of different FEL facilities. Here, λ is the op-
erating wavelength of the FEL, lc is the transverse coherence length, the % values
show the degree of transverse coherence, Tc is the coherence time, T represents the
pulse duration, and SDU stands for a split and delay unit. . The horizontal and ver-
tical directions of the beam cross-section are represented by H and V, respectively.
The single asterisk ∗ refers to the fundamental while double asterisks ∗∗ to the 3rd
harmonic of the wavelength.

Facility λ [nm] lc, % Tc [fs] T [fs] Information
FLASH 23.9 63% 6 SDU
[112]
FLASH 13.7 300 µm (H), double-slit,
[104] 250 µm (V) beam radius

890 µm
FLASH 32 ∗ 2.3 mm 6± 0.5 autocorrelator,
[59]

24 42% 6± 0.5 30 beam size
8 ∗ 2.9± 0.5 2.5 mm (rms)
8 ∗∗ 2.4± 0.5

FLASH 8 6.25± 0.9 µm (H), 1.75± 0.01 100 double-pinhole,
[60] SDU,

8.7± 1 µm (V) beam size
10× 10 µm2

LCLS 1.6 56% 0.6 300 double-pinhole
[105]
LCLS 0.137 fully coherent 2± 1 29± 14 nanoparticles,
[106] monochromator
LCLS 0.138 93 % 2.2 29 nanoparticles,
[107] monochromator
SACLA 0.206 1.7± 0.2 µm (H) nanoparticles,
[108] 1.3± 0.1 µm (V) beam size

1.8 µm (H)
1.3 µm (V)

SACLA 0.155 79% 0.1 5.2 nanoparticles
[113]
FLASH 80 % 50 HBT
[109]
LCLS 0.155 80% 7.5 10 HBT
[110] monochromator
FLASH 13.5 12% (H) 59± 9 100-150 Michelson
[57] 15% (V) interferometer,

(of beam diameter) monochromator
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ferent schemes have been suggested for improving the partial temporal coherence
of the SASE based FELs. For instance, one approach is to seed the SASE based FEL
with a temporally coherent seed source, the SASE radiation will have imprints of the
seed’s coherence and the temporal fluctuations due to the noise in the electron beam
can be suppressed. This seeding scheme would improve the temporal coherence of
the SASE based FELs. A number of schemes for improving the temporal coherence
of XFELs are listed by McNeil and Thompson in the Review [115] and Feldhaus et
al. in [70]. In the literature, the FELs are modeled with the GSM, for instance in the
Refs. [59, 104, 116].

5.3 AN ITERATIVE MODEL TO SIMULATE FEL PULSES

In Publication I, we analyzed the spectral and temporal coherence properties of
the XFEL source at LCLS Stanford. First, using IFTA (discussed in Sec. 2.5), we con-
structed an ensemble of complex pulses in both domains using the measured spectra
of individual pulses recorded for the XFEL. We utilized the ensemble of the simu-
lated XFEL pulses to construct the two-frequency CSD and two-time MCF functions.
The normalized correlation functions illustrated that the spectral coherence width
of the XFEL source under consideration is very narrow compared to the average
spectral width of the pulses and the coherence time is short compared to the aver-
age pulse duration. This demonstrated that the XFEL at LCLS emits quasistationary
pulse trains with low spectral and temporal coherence. Our result regarding the
quasistationarity of the XFEL conforms with the physics of the SASE based XFELs.
A SASE based XFEL, like the one at the LCLS Stanford, amplifies the shot noise
fluctuations in the electron beam density and as a consequence of this nature of
the SASE process, the output pulses have shot-to-shot variations. These fluctuations
manifest in the form of low spectral and temporal coherence of the pulses.

In Publication I, our analysis also proved that the XFEL source obeys the Gaus-
sian Schell model (GSM). Our findings concerning the applicability of the GSM to
the XFEL sources corroborated the earlier results [116] on modeling these sources
with the classic GSM.

The iterative model developed in Publication I is an elegant way to simulate an
ensemble of spectral and temporal pulses not only for the XFEL facilities but it is
also equally suitable to mimic the output of any other pulsed light source. The
proposed model is based on the knowledge of the spectra of individual pulses and
the mean pulse duration which can be easily measured.

5.4 FEL SIMULATIONS WITH GENESIS

In Publication IV , we simulated the output of the European XFEL SASE-1 undulator
with the three-dimensional (3D) time-dependent simulation code Genesis [63]. We
generated a set of 100 time-domain pulses (like those shown in Fig. 4.2) for the
SASE-1 undulator and Fourier transformed the set of the simulated pulses to get
an ensemble of pulses in the spectral domain. Utilizing the ensemble of the time
and frequency domain pulses, we calculated the complex degrees of temporal and
spectral coherence, respectively, which are narrow lines as shown in Fig. 5.4.

As illustrated in Fig. 5.4, the width of the complex degree of temporal coher-
ence (0.13 fs) is short compared to the mean pulse duration (0.70 fs). In the spectral
domain, the width of the complex degree of spectral coherence (0.40 PHz) is short
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Figure 5.4: The complex degrees of temporal and spectral coherence computed for
the European XFEL SASE-1. An ensemble of 100 temporal and spectral realizations
was utilized to calculate the correlation functions.

in comparison to the average spectral width of the pulses (4.47 PHz). Therefore,
based on the results in Publication IV, we conclude that the European XFEL SASE-1
undulator emits quasistationary pulse trains. As already mentioned the SASE based
FELs have large shot-to-shot fluctuations due to start-up from the shot noise in the
electron beam. As a consequence, these FELs have low spectral and temporal coher-
ence and can be classified as quasistationary. Hence, the results of the simulation
are in excellent agreement with the underlying physics of the SASE based FELs.

The FELs considered in this work, that is, LCLS at Stanford (Sec. 5.3) and the
European XFEL at Hamburg (Sec. 5.4), are based on the SASE principle. Analysis
of their coherence properties using IFTA and Genesis provides qualitatively similar
results.
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6 Conclusions

This thesis deals with the second-order coherence theory of pulsed light. The out-
put fields of many important light sources, like pulsed lasers, have time-dependent
random fluctuations and such sources are routinely employed in a large array of
scientific applications. Although considerable work has been done in the coher-
ence theory of stationary optical fields, yet the coherence of non-stationary light has
not attracted much interest despite its ever increasing importance. To address this
important area of the coherence theory, in this work, we developed novel modal ex-
pansions which can be utilized to explore the coherence properties of pulsed optical
fields.

In this chapter, we present a summary of the main results of this thesis, and, the
future prospects of the techniques developed herein for the analysis of the coherence
properties of pulsed optical fields.

6.1 SUMMARY OF THE MAIN RESULTS

In Publication I, we investigated the spectral and temporal coherence properties of
a free-electron laser facility. We need an ensemble of realizations in the spectral and
temporal domain to construct the correlation functions in both domains. To obtain a
set of spectral and temporal realizations (electric fields), we introduced an iterative
Fourier transform algorithm (IFTA), imposing constraints both in time (Gaussian
form for the mean temporal evolution of the pulse train) and frequency (measured
spectra of pulses) domain. The iterative model we presented is based on the knowl-
edge of the spectra of individual pulses and the average pulse duration. The ensuing
simulated complex pulsed fields from our model form an ensemble that matches the
measured results in the time and frequency domain and thus represent the actual
realizations from the FEL in a statistically averaged sense. In Publication I, we then
used our model to study the second-order coherence properties of the Linac Co-
herent Light Source (LCLS) at Stanford. Our analysis demonstrated that the SASE
based FEL at Stanford emits quasi-stationary pulse trains with limited spectral and
temporal coherence. Importantly, our work not only provided an improved itera-
tive scheme for modeling pulsed light sources but it also corroborated the earlier
works in the field by demonstrating that FELs typically obey the Gaussian Schell-
model. Our proposed model is not limited only to the analysis of quasi-stationary
pulsed sources but it can be applied equally well to study the coherence properties
of other pulsed sources which may emit pulse trains with a lower or higher degree
of correlation.

In Publication II, we proposed a new time-domain method for studying the
coherence properties of a quasi-stationary train of random pulses. In the litera-
ture, several modal representations have been introduced for stationary and non-
stationary, pulsed, scalar as well as electromagnetic fields. Publication II dealt
with the formulation of a new modal expansion for quasi-stationary, pulsed optical
fields in a finite time interval. We demonstrated that the MCF of a quasi-stationary
field can be represented to a good approximation as a sum of fully deterministic,
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quasi-monochromatic temporal functions of identical form and centered at differ-
ent frequencies. In comparison with the traditional mode representations which
necessitate the solution of a Fredholm integral equation, the new pseudo-modal
representation is easier to implement as it requires only the information on the av-
erage spectrum and mean temporal intensity of a quasi-stationary pulsed field. The
new time-domain method developed in Publication II was applied to a SASE based
FEL which emits quasi-stationary pulse trains. We achieved an excellent agree-
ment between the exact and the new approximative complex degree of coherence
for the FEL source. The application of the pseudo-mode time-domain technique to
a quasi-stationary FEL confirmed its validity for modeling the coherence properties
of partially coherent sources.

Although a mode representation for scalar stationary beams in terms of scalar
harmonic functions has already been suggested about four decades ago, an elec-
tromagnetic extension was missing. Publication III addresses two important un-
explored problems. First, we introduced a harmonic coherent-mode expansion for
stationary partially polarized electromagnetic beams for which the coherence time
is much shorter than the length of the time interval in which the field is considered.
Second, we provided an extension of the pseudo-modal time-domain method of
Publication II from the scalar to the vector case. The vectorial extension of the time-
domain expansion can be used to study the electromagnetic coherence properties of
quasi-stationary sources, like SASE based FELs and supercontinuum light.

Publication IV concerns with the field interference techniques for pulsed light.
In the literature, the linear autocorrelation experiment is mostly used to measure
the coherence properties of FELs. Some literatures mention that first by measuring
the single-shot autocorrelations, then disregarding the phase information (i.e. taking
the absolute value), and finally ensemble averaging the single-shot autocorrelations
results in a pedestal shaped curve which gives information about the average pulse
length. In Publication IV, we demonstrated that, in general, the field autocorrelation
measurements provide information only on the average pulse spectrum. However,
for the special case of Schell-model sources, the field interferometric methods also
yield time-domain information. We also propose a field cross-correlation scheme
which can provide both the amplitude and spectral phase of the individual pulses.
The cross-correlation method is suitable in the coherence studies of pulsed sources
with high repetition rate. A long delay line will be required for the cross-correlation
measurements if the repetition rate is low and for such a case, autocorrelation is the
appropriate interferometric technique.

In a nutshell, the main new contributions of this work are:

• Introduction of an IFTA model to construct ensembles of complex electric
fields in the spectral and temporal domains for pulsed light sources.

• A new time-domain pseudo-modal representation for quasi-stationary pulsed
scalar fields which was applied to a SASE based FEL.

• A novel time-domain coherent-mode representation for stationary partially
polarized electromagnetic beams in terms of harmonic fields.

• A new time-domain pseudo-modal expansion for quasi-stationary partially
polarized electromagnetic beams.

• Analysis of field interferometric techniques for pulsed light.
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6.2 FUTURE PROSPECTS

There is a continuous development to improve the longitudinal coherence of the
FELs. Seeded FELs are being planned and some are already in operation. The
seeded FELs can have nearly perfect longitudinal and transverse coherence. Other
FELs like the one at Fermi facility, Trieste, which are based on high-gain har-
monic generation method also have improved longitudinal coherence. The meth-
ods developed in the thesis can be applied to the currently commissioned and any
other future FEL to get a better understanding of their coherence properties. This
would strengthen the contributions of these fourth-generation light sources to sci-
ence by enabling new discoveries in a wide range of fields such as structural biology,
physics, and material science. Success of the experiments like coherent-diffraction
imaging and XPCS performed with the FELs depends on a better comprehension of
the coherence properties of these sources. The present work adds a valuable set of
knowledge to this domain of science which is useful not only in the present but also
in the foreseeable future.

The mode decomposition of quasi-stationary, scalar and electromagnetic random
pulsed fields developed in this thesis are applicable not only to the radiation from
the FELs but can also be applied to many other types of pulsed fields. For example,
it would be of interest to explore the use of the proposed modal techniques in mod-
eling the coherence properties of pulsed excimer lasers and the pulses generated
by electro–optical modulation of an LED or the radiation from a superluminescent
diode. For stationary LEDs, which are spatially quasi-homogeneous, a correspond-
ing model could be formulated in the spatial–frequency domain. Then the spatial
and the temporal models could be combined for investigating the coherence prop-
erties of temporally modulated LEDs.

At present, XFELs have low repetition rates. When XFEL sources with higher
repetition rates become available, the field cross-correlation scheme can be utilized
to get insights on their pulse characteristics and coherence properties.
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Abstract: A model for the coherence properties of free-electron lasers
(FELs) in time and frequency domains is introduced within the framework
of classical second-order coherence theory of nonstationary light. An
iterative phase-retrieval algorithm is applied to construct an ensemble of
field realizations in both domains, based on single-pulse spectra measured
at the Linac Coherent Light Source (LCLS) in self-amplified spontaneous
emission mode. Such an ensemble describes the specific FEL pulse train
in a statistically averaged sense. Two-time and two-frequency correlation
functions are constructed, demonstrating that the hard X-ray free-electron
laser at LCLS in this case behaves as a quasistationary source with low
spectral and temporal coherence. We also show that the Gaussian Schell
model provides a good description of this FEL.
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9. G. Grübel and F. Zontone, “Correlation spectroscopy with coherent x-rays,” J. Alloys Comp. 362, 3–11 (2004).

10. R. Mitzner, B. Siemer, M. Neeb, T. Noll, F. Siewert, S. Rolling, M. Rutkowski, A. A. Sorokin, M. Richter, P.
Juranic, K. Tiedtke, J. Feldhaus, W. Eberhardt, and H. Zacharias,“Spatio-temporal coherence of free electron
laser pulses in the soft x-ray regime,” Opt. Express 16, 19909–19919 (2008).

11. A. Singer, F. Sorgenfrei, A. P. Mancuso, N. Gerasimova, O. M. Yefanov, J. Gulden, T. Gorniak, T. Senkbeil, A.
Sakdinawat, Y. Liu, D. Attwood, S. Dziarzhytski, D. D. Mai, R. Treusch, E. Weckert, T. Salditt, A. Rosenhahn,
W. Wurth, and I. A. Vartanyants, “Spatial and temporal coherence properties of single free-electron laser pulses,”
Opt. Express 20, 17480–17495 (2012).

12. C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. L. F. Lehmkühler, I. Steinke, M. Sprung, W.
Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and
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J. Söderström,“Measuring the temporal coherence of a high harmonic generation setup employing a Fourier
transform spectrometer for the VUV/XUV,” Nucl. Instrum. Meth. Phys. A 768, 84–88 (2014).

26. M. Makita, P. Karvinen, D. Zhu, P. N. Juranic, J. Grünert, S. Cartier, J. H. Jungmann-Smith, H. T. Lemke, A.
Mozzanica, S. Nelson, L. Patthey, M. Sikorski, S. Song, Y. Feng, and C. David, “High-resolution single-shot
spectral monitoring of hard x-ray free-electron laser radiation,” Optica 2, 912–916 (2015).

27. A. M. Kondratenko and E. L. Saldin, “Generation of coherent radiation by a relativistic electron beam in an
undulator,” Part. Acceler. 10, 207–216 (1980).
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1. Introduction

Owing to their high brightness, ultrashort pulse duration, and high degree of transverse spatial
coherence, X-ray free-electron lasers (XFELs) [1–3] enable novel research in material science,
structural biology, and condensed matter physics [4]. Most of the experimental techniques uti-
lize the coherent fraction of the radiation, including methods such as serial femtosecond crys-
tallography (SFX) [5,6], coherent X-ray diffraction imaging (CXDI) [7], X-ray holography [8],
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and X-ray photon correlation spectroscopy (XPCS) [9]. Hence a thorough understanding of the
coherence properties of XFELs [10–13] is of paramount importance.

In this paper we present a numerical method for generating ensembles of pulses representing
beams such as those produced by XFELs. These mathematically constructed fields describe the
statistical properties of the pulse train in an ensemble-averaged sense. Rather than assuming
average spectral and temporal data as in [14], we employ actual measured spectra of individual
pulses together with partial knowledge of their average time-domain intensity to construct the
spectral phases and the temporal pulse realizations. The XFEL pulses, being rather incoherent
in time but originating within similar stochastic conditions, are each represented by an ensemble
of realizations. The train of pulses is subsequently statistically governed by a collection of such
ensembles, one for each measured spectrum. For the field reconstruction, we apply a temporal-
domain counterpart of the spatial iterative Fourier-transform algorithm (IFTA) [15]. The one-
dimensional phase retrieval problem does not possess a unique solution [16], and in our case
we only have at our disposal the average pulse length in the time domain. The solution would
be non-unique even if, in addition to the spectrum, we had access to the individual temporal
intensity of each measurement. In our statistical analysis we use this ambiguity to advantage to
build ensembles of field realizations for the measured pulses. In the phase retrieval process the
correct spectrum is obtained by using it as an explicit condition in the frequency domain. Due to
lack of detailed information, the mean temporal intensity is constructed to be Gaussian with the
known average pulse length. This is accomplished by employing in the time domain a Gaussian
weighting function whose width is appropriately adjusted as the iteration proceeds. Each of the
ensuing fields may be regarded as a physically admissible XFEL pulse realization with exact
correspondence in the time and frequency domains. Moreover, the ensembles representing the
pulses statistically match the experimentally measured spectral and temporal results, and the
ensemble associated with the whole pulse train can thereby be expected to faithfully reproduce
the statistics of the XFEL source. From the overall ensemble of spectral and temporal field
realizations we then construct two-frequency and two-time correlation functions [17], which
describe pulse trains of partial spectral and temporal coherence fully within the framework of
the classical second-order coherence theory of nonstationary light.

In previous investigations [10–13], time-domain coherence of XFEL pulse trains has been
considered using a temporal correlation function that depends only on time delay. Such an
approach is adequate for stationary fields [18], whereas two-time correlation functions and
time-resolved measurements are needed to completely characterize the temporal coherence
properties of pulse trains [19, 20]. We illustrate our model using spectra of individual XFEL
pulses measured at the Linac Coherent Light Source (LCLS), which turns out to behave as a
quasistationary source despite the femtosecond-scale pulse duration. In addition, the coherence
properties of the XFEL source are found to match extremely closely the predictions of the
Gaussian Schell model [18, 21].

2. Correlation functions

We denote the frequency-domain and time-domain (scalar, complex) electric fields of the nth in-
dividual pulse in a pulse train by En(ω −ω0) and En(t), respectively. The mean frequency [18]
of the pulse train is given by ω0 =

∫ ∞
0 ωS2(ω)dω/

∫ ∞
0 S2(ω)dω , where S(ω) is the average

spectrum defined below. Introducing further Ω = ω −ω0, we may write the spectral field rep-
resentation of an individual pulse in the form

En(Ω) =
√

Sn(Ω)exp [iφn(Ω)] , (1)
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where Sn(Ω) = |En(Ω)|2 represents the spectral density of the pulse and φn(Ω) is its spectral
phase. In the envelope representation, the temporal field is

En(t) = An(t)exp(−iω0t) , (2)

where

An(t) =
√

In(t)exp [iφn(t)] =
∫ ∞

−∞
En(Ω)exp(−iΩt)dΩ, (3)

and In(t) = |En(t)|2 = |An(t)|2 is the temporal intensity profile of an individual pulse, φn(t)
being the envelope phase.

By regarding the individual pulses (which generally are of different spectral and temporal
form) as members of a statistical ensemble, we may introduce correlation functions in both
spectral and temporal domains. In the second-order coherence theory of nonstationary light, the
appropriate spectral correlation function is the two-frequency cross-spectral density function
(CSD), defined as an ensemble average

W (Ω1,Ω2) = 〈E∗(Ω1)E(Ω2)〉= 1
N

N

∑
n=1

E∗
n (Ω1)En(Ω2), (4)

where N is the number of pulses in the ensemble. We may also view the CSD as a function of the
average and difference coordinates Ω = 1

2 (Ω1 +Ω2) and ΔΩ = Ω2 −Ω1. The mean spectrum
of the pulse train is given by S(Ω) =W (Ω,0) and its complex degree of spectral coherence is
defined as

μ(Ω,ΔΩ) =
W (Ω,ΔΩ)

√
S(Ω−ΔΩ/2)S(Ω+ΔΩ/2)

. (5)

Considered as a function of ΔΩ, the characteristic breadth of |μ(Ω,ΔΩ)| provides the spectral
coherence width of the pulse train at frequency Ω.

Time-domain correlations of nonstationary fields are characterized by the two-time mutual
coherence function (MCF), defined as

Γ(t1, t2) = 〈E∗(t1)E(t2)〉= exp [−iω0 (t2 − t1)]
1
N

N

∑
n=1

A∗
n(t1)An(t2). (6)

We may express the MCF in terms of the average and difference coordinates t = 1
2 (t1 + t2) and

Δt = t2− t1. Then the mean temporal intensity is given by I(t) = Γ(t,0) and the complex degree
of temporal coherence is defined as

γ(t,Δt) =
Γ(t,Δt)

√
I(t −Δt/2)I(t +Δt/2)

. (7)

Again, if we consider |γ(t,Δt)| as a function of Δt, its width is a measure of the coherence time
at time instant t. We emphasize that the spectral coherence width may depend strongly on Ω
and the coherence time on t; extreme variations occur, for instance, in supercontinuum pulse
trains [22, 23].

Time-resolved measurements of the temporal (and spectral) intensity and phase of individual
ultrashort pulses are possible in the visible region, which in principle allow a direct construction
of the two-time and two-frequency correlation functions. Measurement of the temporal proper-
ties of XFEL pulses has been intensively studied [24]. However, to our knowledge there are no
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methods that can provide the required temporal resolution or information about the temporal
phase. Coherence measurements yielding time-integrated results in Michelson-type interfero-
metric setups have been performed [25], but they do not enable the construction of the full
two-time MCF. This raises the question what information can be extracted from such measure-
ments.

It follows at once from Eqs. (2)–(4) and (6) that the CSD and MCF are related by the gener-
alized Wiener–Khintcine theorem as

Γ(t1, t2) = exp [−iω0(t2 − t1)]
∫∫ ∞

−∞
W (Ω1,Ω2)exp [i(Ω1t1 −Ω2t2)]dΩ1dΩ2, (8)

which, if the average and difference coordinates are used, becomes

Γ(t,Δt) = exp(−iω0Δt)
∫∫ ∞

−∞
W (Ω,ΔΩ)exp [−i(ΩΔt +ΔΩt)]dΩdΔΩ. (9)

Inverting this expression, we find that the mean spectrum of the pulse train is given by

S(Ω) =
1

(2π)2

∫∫ ∞

−∞
Γ(t,Δt)exp [i(ω0 +Ω)Δt]dtdΔt. (10)

Since temporally integrated Michelson-type measurements provide us with the quantity

Γ̄(Δt) =
1

2π

∫ ∞

−∞
Γ(t,Δt)dt, (11)

the average spectrum may be written in the form

S(ω̄ −ω0) =
1

2π

∫ ∞

−∞
Γ̄(Δt)exp(iω̄Δt)dΔt, (12)

where ω̄ = (ω1 +ω2)/2. This result is formally equivalent with the classic Wiener–Khintchine
theorem for stationary light [18]. However, instead of the MCF for stationary fields, we con-
sider here the time integral of the two-time MCF. Equation (12) shows that the mean spectrum
of a pulse train is obtained from time-integrated Michelson interferometer measurements. In
reverse, the time-integrated MCF can be obtained from the mean spectrum according to

Γ̄(Δt) =
∫ ∞

0
S(ω̄ −ω0)exp(−iω̄Δt)dω̄ . (13)

The characteristic width of the normalized form of the temporally integrated MCF,

γ̄(Δt) = Γ̄(Δt)/Γ̄(0), (14)

may then be considered as a measure of the effective coherence time of the pulse train.

3. Iterative Fourier-transform algorithm (IFTA)

Our model for constructing ensembles of pulses, illustrated in Fig. 1, is based on the knowledge
of a large number of spectra of individual pulses that have been measured for XFEL source at
LCLS using full pulse energy of ∼ 2 mJ, repetition rate of 120 Hz, mean photon energy of
∼ 8.37 keV, and pulse length of 34 fs (corresponding to a FWHM of 40 fs). More details of
the experiment can be found in [26]. In the time domain we assume that the mean temporal
evolution of the pulse train is of the Gaussian form

I(t) = I0 exp
(−2t2/T 2) , (15)
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where the mean pulse duration is T = 34 fs. Nevertheless, shorter Gaussian pulses and also any
non-Gaussian mean pulse shapes, which could arise in different FEL operation regimes, could
be considered equally well by using an appropriate average pulse shape. Under such conditions
the pulse train might exhibit different statistics, but the method presented here would still be
fully applicable.

S  (Ω), φ    (Ω)

temporal constraintsspectral constraints

FT

IFT

n

S      (Ω), φ    (Ω)nm    nm

I    (t), φ    (t)nm  nm

I    (t), φ    (t)nm nm´

 nm

´   

Fig. 1. Flow chart of the temporal iterative Fourier-transform algorithm (IFTA).

In the initialization stage of the algorithm we associate with the (measured) pulse spectrum
Sn(Ω) of the nth field realization a random phase distribution φn1(Ω) to generate the initial
spectral field En1(Ω) =

√
Sn1(Ω)exp [iφn1(Ω)], as in [14]. We then use Eq. (3) to transform

into the time domain, which gives An1(t) =
√

In1(t)exp [iφn1(t)]. The temporal constraints in
Fig. 1 mean that the time-domain intensity distribution of the pulse is multiplied by a Gaussian
function of the same form as in Eq. (15), but with the width given by m× 37 fs, where m is
the order of the iteration round in question. Starting from T = 37 fs and increasing the width
at each iteration step (so that eventually the Gaussian is almost flat) was found to lead to the
average intensity whose e−2-width is 34 fs. The temporal phase of the field is left untouched
implying that the time-domain field at this stage is A′

n1(t) =
√

I′n1(t)exp [iφn1(t)]. We next make
use of the inverse of Eq. (3), i.e.,

E ′
n1(Ω) =

1
2π

∫ ∞

−∞
A′

n1(t)exp(iΩt)dt, (16)

to convert back into the frequency domain. Here we set the spectrum to its measured form but
leave the phase as it is, thus obtaining En2(Ω) =

√
Sn2(Ω)exp [iφn2(Ω)]. The iterative process

is continued as long as needed for the results to converge, i.e., until we achieve the situation
S′nm(Ω) = |E ′

nm(Ω)|2 ≈ Sn(Ω).

4. Results and discussion

The algorithm results in an ensemble of pulse realizations with individual spectra that match
the measured ones but have certain spectral phase distributions as well as temporal intensity
profiles and phases that differ from one another. The CSD and MCF are then constructed using
Eqs. (4) and (6). A single execution of the IFTA algorithm was found to lead to a temporal pulse
of varying complicated shape, which depends on the chosen random initial spectral phase. This
demonstrates a low degree of phase correlations for the individual XFEL pulses, defined as

Φ(Ω1,Ω2) = 〈exp [−iφ(Ω1)]exp [iφ(Ω2)]〉

=
1
L

L

∑
l=1

exp [−iφl(Ω1)]exp [iφl(Ω2)] (17)
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and

Θ(t1, t2) = exp(−iω0Δt)〈exp [−iφ(t1)]exp [iφ(t2)]〉

= exp(−iω0Δt)
1
L

L

∑
l=1

exp [−iφl(t1)]exp [iφl(t2)] (18)

in the spectral and temporal domains, respectively. The summation here is taken over L real-
izations obtained for an individual measured spectrum. To construct the CSD and MCF using
Eqs. (4) and (6), we therefore average over a grand ensemble consisting of L realizations for
each of the M single spectral pulse measurements in the pulse train. These final ensembles, both
in time and frequency domains, thus contain a total of N = M×L realizations.

−6 −4 −2 0 2 4
0

1

Ω [1016 Hz]

 S
 [a

.u
.] −0.2 0 0.2

0

1

ΔΩ [ 1015 Hz]

|Φ
|

Fig. 2. Experimentally measured spectrum (solid red line) of a single pulse and the mean
spectrum (solid blue line) of 1100 measured pulses. The mean spectrum equals the average
spectrum calculated through IFTA. The inset shows the magnitude of the normalized av-
erage spectral phase-correlation function Φ constructed with 200 spectral field realizations
related to the single-pulse spectrum.

−100 −50 0 50 100
0

1
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1

Δt [fs]
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Fig. 3. Temporal intensity distribution (red line) constructed by averaging over 20 field
realizations computed by IFTA with different phases associated with the single measured
pulse shown in Fig. 2. The mean temporal intensity (blue line) is found by reconstructing
with IFTA 20 realizations of varying phase profiles for each of the 1100 measured spectra,
to obtain 22000 time-domain realizations, and averaging. The inset shows the magnitude
of the normalized temporal phase-correlation function Θ calculated by averaging over 200
realizations with the same measured spectrum.

Numerical results, averaged over M = 1100 measured pulses with L = 20 realizations for
each, are shown in Figs. 2 and 3. The spectral phase correlation function Φ of a single pulse,
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Fig. 4. Absolute values of the CSD (top, shown also in terms of the related photon energies
E and ΔE) and the MCF (bottom) corresponding to 22000 reconstructed pulse realizations.
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Fig. 5. Complex degrees of spectral (top) and temporal (bottom) coherence of the XFEL
pulses. The top figure is shown also in terms of the associated photon energies E and ΔE.

displayed in the inset of Fig. 2, is constructed using Eq. (17) with L = 200 realizations (for bet-
ter accuracy) and averaged over the frequencies. We see that its effective width in ΔΩ is only
a tiny fraction of the mean spectral spread of the pulses. The corresponding temporal intensity
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distributions, together with the time-averaged phase correlation function given by Eq. (18), are
illustrated in Fig. 3. Clearly, the effective width of Θ in Δt is a small fraction of the mean tem-
poral pulse duration. Like most FELs operating today, this source is based on self-amplification
of spontaneous emission (SASE) [27]. Spontaneous gain gives rise to variations from bunch
to bunch leading to large shot-to-shot spectral diversity, as seen from Fig. 2, and indicating a
low degree of spectral coherence. This fact is reflected in the CSD and MCF plots displayed in
Fig. 4, which appear as narrow horizontal lines (note the different scales on the horizontal and
vertical axes).

The normalized CSD and MCF, defined by Eqs. (5) and (7), respectively, are shown in Fig. 5.
They confirm the low spectral and temporal coherence and the almost stationary nature of the
XFEL pulse train. The width of |μ(Ω,ΔΩ)| in the ΔΩ direction (spectral coherence width) is
nearly independent of Ω, i.e., |μ(Ω,ΔΩ)| ≈ |μ(ΔΩ)|, and similarly, the width of |γ(t,Δt)| in
the Δt direction (coherence time) is nearly independent of t, i.e., |γ(t,Δt)| ≈ |γ(Δt)|. In this
case, |γ(Δt)| is essentially the integrated quantity γ̄(Δt) in Eq. (14). Figure 6 shows |μ(ΔΩ)|
and |γ(Δt)|, averaged over Ω and t, respectively, together with Gaussian fits. Since the spectral
coherence width is small compared to the average spectral spread and the coherence time is
short compared to the mean pulse duration, this FEL behaves as a quasistationary source in the
language of second-order coherence theory of nonstationary light.

We can approximate the XFEL pulse train using the Gaussian Schell model [18, 21, 28, 29].
The mean intensity then is given by the Gaussian function I(t) of Eq. (15) (with duration T ),
the spectrum has a Gaussian form

S(Ω) = S0 exp
(−2Ω2/Σ2) , (19)
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Fig. 6. Widths of the averaged normalized CSD (top) and the MCF (bottom) as functions of
the difference coordinates. The dots represent the data points given by IFTA and the solid
lines are Gaussian fits.
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and we take Gaussian distributions for the complex degrees of spectral and temporal coherence,

μ(Ω,ΔΩ) = exp
(−ΔΩ2/2Σ2

μ
)
, (20)

γ(t,Δt) = exp
(−Δt2/2T 2

γ
)

exp(−iω0Δt) , (21)

respectively. The parameters T , Σ, Σμ , and Tγ are not independent. In the quasistationary case,
when Σ � Σμ , T � Tγ , and the time–bandwidth product TΣ � 1, the relations Σμ = 2/T and
Tγ = 2/Σ hold [29]. A Gaussian fit of the average spectrum shown in Fig. 2 gives Σ = 4.35×
1016 Hz. Hence, with T = 34 fs, we have TΣ = 1500, Σμ = 5.9×1013 Hz, and Tγ = 0.046 fs.
Figure 6 displays the mean cross-sections |μ(ΔΩ)| and |γ(Δt)| of the absolute values of the
normalized CSD and MCF. The Gaussian fits give Σμ ≈ 5.7× 1013 Hz and Tγ ≈ 0.046 fs, in
excellent agreement with the Gaussian Schell model. The widths of Gaussian functions in Fig. 6
correspond to a drop from the peak values of unity to e−0.5 when the non-zero tails were taken
into account.

5. Conclusions

We have introduced an iterative mathematical technique for the construction of ensembles of
pulses in both spectral and temporal domains. The model is based on spectral measurements
of individual pulses and on knowledge of the mean pulse duration. Such ensembles were used
to construct two-time and two-frequency correlation functions that fully describe the second-
order coherence properties of the pulse train. In an explicit example we considered a particular
FEL, which turned out to emit quasistationary pulse trains (with low spectral and temporal co-
herence). In addition, the source was found to obey the Gaussian Schell model. We emphasize,
however, that the method put forward here is applicable to any other FEL, some of which are
likely to be far more coherent, and in fact to any other pulsed laser source.
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