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Abstract: Age-related macular degeneration (AMD) is an eye disease in which retinal pigment
epithelium (RPE) cells play a crucial role in maintaining retinal homeostasis and photoreceptors’
functionality. During disease progression, there is increased inflammation with nucleotide-binding
domain, leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome activation, oxidative
stress, and impaired autophagy in RPE cells. Previously, we have shown that the dietary supplement
Resvega reduces reactive oxygen species (ROS) production and induces autophagy in RPE cells. Here,
we investigated the ability of Resvega to prevent NLRP3 inflammasome activation with impaired
protein clearance in human RPE cells. Cell viability was measured using the lactate dehydrogenase
(LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Enzyme-
linked immunosorbent assays (ELISA) were utilized to determine the secretion of cytokines, NLRP3,
and vascular endothelial growth factor (VEGF). Caspase-1 activity was measured with a fluorescent
labeled inhibitor of caspase-1 (FLICA; FAM-YVAD-FMK) and detected microscopically. Resvega
improved the cell membrane integrity, which was evident as reduced LDH leakage from cells.
In addition, the caspase-1 activity and NLRP3 release were reduced, as was the secretion of two
inflammatory cytokines, interleukin (IL)-1β and IL-8, in IL-1α-primed ARPE-19 cells. According to
our results, Resvega can potentially reduce NLRP3 inflammasome-mediated inflammation in RPE
cells with impaired protein clearance.

Keywords: Resvega; resveratrol; antioxidant; NLRP3 inflammasome; caspase-1; IL-1β; ARPE-19 cell;
RPE cell; autophagy

1. Introduction

Age-related macular degeneration (AMD) is an eye disease that leads to severely
impaired central vision mainly as a consequence of the degeneration of retinal pigment
epithelial (RPE) cells [1]. RPE cells, which are crucial for the maintenance of photoreceptor
functionality and retinal homeostasis, are prone to inflammation, increased oxidative stress,
and impaired autophagy [1,2]. Generally, AMD is divided into dry and wet forms [1]. The
damage of RPE cells is typical for both disease forms but abnormal neovascularization
is a clinical hallmark in wet AMD [1]. Chronic inflammation is involved in both disease
forms [2].

Changes in the reactive oxygen species (ROS) production, nucleotide-binding domain,
leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome activation, and autophagy
mutually interact with each other [3–8]. For example, increased ROS production should
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trigger autophagy in order to protect the cell from acute oxidative stress [6,9]. Instead,
overwhelming ROS production and impaired autophagy can result in inflammasome
activation [3,5,7,8,10–14]. On the other hand, functional autophagy is needed to remove
inflammasome components after the activation process [5,15,16]. Autophagy-mediated
removal of damaged organelles and protein aggregates also reduces ROS production and
indirectly suppresses the activation of the inflammasome [1,5,8,13,17]. NLRP3 expression
has been detected in the eyes of patients suffering from either dry or wet AMD but not in
those of unaffected control subjects [18].

NLRP3 belongs to the cytosolic NLR (nucleotide-binding domain, leucine-rich repeat)
protein receptors that recognize danger signals and contribute to the pathogenesis under-
pinning AMD [1,2,18,19]. NLRP3 activation leads to the oligomerization of the NLRP3
inflammasome complex, in which apoptosis-associated speck-like protein containing a
caspase-recruitment domain (ASC) links NLRP3 with pro-caspase-1, resulting in the activa-
tion of caspase-1 and the cleavage of pro-interleukin (IL)-1β and/or pro-IL-18 into their
mature secreted forms [2,12,20,21]. Pro-IL-1β expression is absent under normal conditions
and requires a priming signal mediated through a Toll-like receptor (TLR) or a cytokine
receptor [18,22]. Pathogen or damage-associated molecular patterns (PAMPs or DAMPs)
represent activation signals to NLRP3. In AMD, many factors, such as ROS production,
lysosomal destabilization, purinergic receptor X7 (P2X7) activation, increased extracellular
adenosine triphosphate (ATP), K+-efflux with Ca2+-influx are all able to induce NLRP3 acti-
vation [2,3,5,8,11,18,23–26]. We have previously shown that the disrupted protein clearance
induced by proteasome (MG-132; MG) and autophagy (bafilomycin A1; BafA) inhibitors
results in the activation of the NLRP3 inflammasome and IL-1β secretion through increased
ROS production in ARPE-19 cells [4,10].

Resvega (Laboratoires Théa, Clermont-Ferrand, France) is a mixture including omega-
3 fatty acids (eicosapentaenoic acid (EPA) 30% w/w; docosahexaenoic acid (DHA) 15%
w/w; docosapentaenoic acid (DPA) 4% w/w), vitamins C (19% w/w) and E (2% w/w), trans-
resveratrol (2% w/w), lutein (1% w/w), zeaxanthin (0.2% w/w), copper (0.1% w/w), and zinc
(1% w/w). In comparison to the Age-Related Eye Disease Study (AREDS) formulations,
Resvega has resveratrol as an additional component [27,28]. In previous studies on ARPE-
19 cells, Resvega has reduced hydroquinone-mediated ROS production and promoted
autophagy during impaired protein clearance [29,30]. Resveratrol alone has been shown
to induce autophagy and evoke anti-inflammatory responses in RPE cells as well inhibit
NLRP3 expression, caspase-1 activation, and IL-1β secretion in a mouse model of acute
lung injury [31,32].

In this study, we investigated the ability of Resvega to alleviate NLRP3 inflammasome
activation in human RPE cells with disrupted protein clearance since this plays a major
role in the pathogenesis of AMD [18]. Resvega reduced IL-1β and NLRP3 secretion
concurrently with reduced caspase-1 activity, evidence that it may potentially alleviate
NLRP3 inflammasome activation.

2. Materials and Methods
2.1. Cell Culture and Treatments

The experiments were conducted using the ARPE-19 cell line (ATCC). Cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) with nutrient mixture F-12 (1:1)
(Life Technologies, Paisley, UK) with the addition of 2 mM L-glutamine (Life Technologies,
Paisley, UK), 100 U/mL penicillin with 100 µg/mL streptomycin (Life Technologies, Grand
Island, NY, USA), and 10% fetal bovine serum (GE Healthcare Life Sciences, South Logan,
UT, USA). The cells were seeded onto 12-well plates (Costar, Corning Inc., Kennebunk, ME,
USA) at a density of 200,000 cells per well and grown for three days in serum-containing
medium at +37 ◦C, 5% CO2.

The experiments were performed in growth medium without a serum supplement.
First, ARPE-19 cells were exposed to different concentrations of Resvega (0.1–100 µM;
Laboratoires Théa, Clermont-Ferrand, France) based on the concentrations of resveratrol
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for 24 h at +37 ◦C, 5% CO2. Resvega concentrations 0.1–25 µM were selected for further
investigations. The cells were primed with recombinant human IL-1α (4 ng/mL, R&D
Systems, Minneapolis, MN, USA) for 24 h at +37 ◦C, 5% CO2 to induce the expression of
NLRP3 and the pro-IL-1β and pro-caspase-1, as described previously [4,16,18]. Thereafter,
Resvega, containing omega-3 fatty acids (EPA 30% w/w; DHA 15% w/w; DPA 4% w/w),
resveratrol (2% w/w), vitamins C (19% w/w) and E (2% w/w), copper (0.1% w/w), zinc (1%
w/w), lutein (1% w/w), and zeaxanthin (0.2% w/w), was added 1 h before the proteasome
inhibitor MG-132 (MG; 5 µM, Calbiochem, San Diego, CA, USA) and both were left on cell
cultures concurrently for another 24 h. Subsequently, the autophagy inhibitor bafilomycin
A1 (BafA; 50 nM, Cayman chemicals, Michigan, MI, USA) was added for additional 24 h.
Resvega concentrations of 0.1, 1, 10 and 25 µM were included in viability assays, with
Resvega 10 and 25 µM being chosen for measurement of cytokines IL-6 and IL-8, and
Resvega 10 µM for IL-1β, NLRP3, caspase-1, ATP, and vascular endothelial growth factor
(VEGF) measurements. Resvega was diluted by dimethyl sulfoxide (DMSO; 0.5% v/v,
Medintech Inc., Corning, Manassas, VA, USA) which served as the diluent control to
Resvega. Untreated cells served as controls for IL-1α-primed cells, and IL-1α for IL-1α-
primed cells with inflammasome activators MG-132 and BafA. After the exposures, half of
the medium was collected and centrifuged (Biofuge Fresco Heraeus Instruments, Newport
Pagnell, UK) at 381 g for 10 min at +4 ◦C. The lactate dehydrogenase (LDH) release and the
secretion of cytokines, NLRP3, ATP, and VEGF were determined from medium samples.
Cells and the rest of the medium were subjected to the thiazolyl blue tetrazolium bromide
(MTT) assay.

In the caspase-1 activity measurement, the cells were seeded onto 8-well plates (Lab-
Tek™ Chamber Slide System, Thermo Fisher Scientific, Rochester, NY, USA) at a density of
40,000 cells per well and grown for two days in serum-containing medium at +37 ◦C, 5%
CO2. The cells were primed with IL-1α (4 ng/mL) for 24 h at +37 ◦C, 5% CO2. Subsequently,
the cells were exposed to 10 µM Resvega for 1 h, followed by a treatment with MG-132
(MG; 5 µM) for another 24 h. Thereafter, bafilomycin A1 (BafA; 50 nM) was added for an
additional 6 h and incubated for the last hour concurrently with a fluorescently labeled
inhibitor of caspase-1 (FLICA; 1× FAM-YVAD-FMK, ImmunoChemistry Technologies LLC,
Bloomington, MN, USA). DMSO (1% v/v), in which Resvega was dissolved, serving as the
diluent control upon MG-132 and BafA treatments with IL-1α-priming, and IL-1α was used
as a control for MG-132 and BafA treatments on IL-1α-primed cells. After all exposures, the
cells were washed (2 × 10 min at + 37 ◦C, 5% CO2) using the kit-specific washing buffer,
and fixed with 4% paraformaldehyde (PFA) for 15 min at room temperature. Nuclei were
stained using the Hoechst 33342 dye (NucBlue Live Cell Stain, Life Technologies, Eugene,
OR, USA). After the stainings, the Mowiol (Sigma, St. Louis, MO, USA) mounting medium
was added and pictures were taken on the next day using the Zeiss ApoTome.2 Imager M2
microscope with the Zen pro 2012 program (Carl Zeiss Microscopy GmbH, Jena, Germany).

2.2. Cell Viability Assays

Lactate dehydrogenase (LDH) release was analyzed from medium samples immedi-
ately after the treatments using a commercial kit (CytoTox96® Non-Radioactive Cytotoxicity
Assay, Promega, Madison, WI, USA). Absorbance values were determined at a wavelength
of 490 nm in a spectrophotometer BioTek ELx808 with the Gen-5 2.04 program (BioTek
Instruments Inc., Winooski, VT, USA).

Cellular metabolic activity was determined using the thiazolyl blue tetrazolium bro-
mide (MTT) assay (Sigma-Aldrich, St Louis, MO, USA). After the treatments, 25 µL MTT
salt (10 mg/mL) was added to the cells for 3 h at +37 ◦C, 5% CO2. The assay was performed
as described previously [29]. Absorbance values were determined using the spectropho-
tometer at a wavelength of 560 nm.
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2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

An enzyme-linked immunosorbent assay (ELISA) was used to measure the amounts
of pro-inflammatory cytokines IL-6, IL-8, and IL-1β from medium samples using BD
OtpEIATM Human ELISA Kits (BD Biosciences, San Diego, CA, USA). NLRP3 was assayed
in the medium using the Human NACHT, LRR and PYD domains-containing protein 3
(NLRP3/c1orf7/CIAS1/NALP3/PYPAF1) ELISA kit (Cusabio Biotech co., LTD, Wuhan,
Hubei Province, China) and VEGF using the DuoSet Human VEGF kit (R&D Systems,
Minneapolis, MN, USA). Absorbance values were detected at a wavelength of 450 nm with
a correction at 655 nm using a microplate reader Bio-Rad Model 550 with the Microplate
Manager 5.2 program (Bio-Rad Laboratories Inc., Hercules, CA, USA).

2.4. ATP Measurement

Extracellular ATP levels were measured from medium samples using a commercial
kit according to the manufacturer’s instructions (Promega, Madison, WI, USA). The lu-
minescence signal was detected using BioTek Cytation3 imaging reader with Gen-5 3.03
program (Instruments Inc., Winooski, VT, USA).

2.5. Statistical Analyses

All data were analyzed using the GraphPad Prism program 7.04 (GraphPad Software,
San Diego, CA, USA) and pairwise comparisons between study groups were performed
using the Mann–Whitney U-test. Results are shown as mean ± standard error of means
(SEM). Differences were considered as statistically significant with p-values lower than 0.05
(* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3. Results
3.1. Resvega Preserves the Cell Membrane Integrity upon Impaired Protein Clearance

First, we investigated the effect of Resvega on the cell viability in ARPE-19 cells using
LDH and MTT assays (Figure 1). Resvega was well-tolerated from a concentration of 0.1 to
25 µM but cytotoxicity was shown from a 50 µM concentration of Resvega according to
the LDH assay (Figure 1A). A low concentration (0.1 µM) of Resvega had no additional
effect on the MTT assay but concentrations of 1–25 µM improved the MTT salt processing
(Figure 1B). Metabolic activity declined from 50 µM Resvega concentration. Based on
the cell viability assays, Resvega concentrations of 0.1–25 µM were selected for further
experiments to study the cell viability of IL-1α-primed ARPE-19 cells with impaired protein
clearances induced by the proteasome and autophagy inhibitors MG-132 and bafilomycin
A1, respectively [16]. Resvega at 10 µM significantly reduced the lactate dehydrogenase
(LDH) release from RPE cells with the disrupted intracellular clearance when compared to
cells exposed to MG and BafA with the DMSO solvent (Figure 2A). Furthermore, the lower
Resvega concentrations (0.1–1 µM) or the highest concentration (25 µM) had no effect on
the LDH release. According to the thiazolyl blue tetrazolium bromide (MTT) assay, the
disrupted protein clearance compromised the metabolic activity of ARPE-19 cells, and
Resvega had no ability to prevent that phenomenon (Figure 2B).

3.2. Resvega Reduces the IL-8 Secretion from IL-1α-Primed ARPE-19 Cells upon Dysfunctional
Cellular Clearance

Next, we studied the effect of Resvega on the production of pro-inflammatory cy-
tokines. IL-1α induced the release of IL-6, which was significantly reduced by MG-132 and
BafA treatments with DMSO control (Figure 3A). Similarly, IL-1α induced the secretion
of IL-8, which remained unchanged after the addition of MG-132 and BafA (Figure 3B).
Resvega (10 µM) exerted no additional effect on the IL-6 secretion but the 25 µM con-
centration increased IL-6 release when compared to MG-132 and BafA treatments with
DMSO (Figure 3A). A lower Resvega concentration (10 µM) significantly reduced the
IL-8 secretion (Figure 3B) but it was not visible on cells exposed to 25 µM Resvega when
compared to IL-1α-primed ARPE-19 cells exposed to MG-132 and BafA with DMSO. Since
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10 µM Resvega maintained the integrity of the cell membrane and reduced the secretion of
IL-8 in these ARPE-19 cells, we selected this concentration for further studies.
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3.3. Resvega Alleviates the NLRP3 Inflammasome Activation in IL-1α-Primed ARPE-19 Cells
Which Have Impaired Protein Clearance

We have previously shown that dysfunctional protein clearance could be induced
by the proteasome and autophagy inhibitors MG-132 and BafA, respectively; this then
activates the NLRP3 inflammasome, resulting in the activation of caspase-1 and the subse-
quent secretion of IL-1β and NLRP3 from human RPE cells [10,16]. In the present study,
Resvega reduced the release of IL-1β and NLRP3 in the same cell model (Figure 4). Resvega
also reduced the intracellular caspase-1 activity, which was determined using a specific
fluorochrome inhibitor of caspase-1 (FLICA, FAM-YVAD-FMK; Figure 5, Figures S1–S3).
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Figure 5. The effect of Resvega (R10 µM; DMSO 1% v/v) on the caspase-1 activity in conjunction
with MG-132 (MG; 5 µM) and bafilomycin A1 (BafA; 50 nM) exposure in IL-1α-primed ARPE-19
cells. The caspase-1 activity was investigated using a specific fluorochrome inhibitor of caspase-1
(FLICA, FAM-YVAD-FMK) and detected in a fluorescent microscope (Zeiss ApoTome.2 Imager
M2 microscope). A green fluorescent signal (pointed as an example by a red arrow) indicates the
presence of active caspase-1 attached to the FAM-YVAD-FMK-probe. Nuclei were stained using
the blue Hoechst 33342 dye. Resvega was diluted by DMSO which served as the diluent control to
Resvega, and IL-1α for IL-1α-primed cells with inflammasome activators MG-132 and BafA. One
representative picture is presented from each group (a more extensive combination of pictures is
included in the Supplementary Materials; Figures S1–S3).

3.4. Resvega Increases Extracellular ATP Levels in IL-1α-Primed ARPE-19 Cell Cultures upon
Exposure to Proteasome and Autophagy Inhibitors

In our previous study, MG-132 and BafA treatments induced the release of ATP from
IL-1α-primed ARPE-19 cells [4]; here, we wanted to examine whether Resvega has an effect
on this. As seen in Figure 6, Resvega further increased the levels of extracellular ATP from
the cells with impaired protein clearance. The increase was statistically significant and
1.7 times higher in the presence of Resvega than without it.
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was diluted by DMSO which served as the diluent control to Resvega. Data are combined from
3 independent experiments containing 3 parallel samples per group in each experiment. Results are
shown as mean ± SEM and analyzed using the Mann–Whitney U-test. **** p < 0.0001.

3.5. Resvega Reduces IL-1α-Induced VEGF Secretion

We have previously shown that changes in redox balance upon hypoxic conditions
induce VEGF secretion in ARPE-19 cells [33]. Our data show that IL-1α significantly in-
creased the release of VEGF and MG-132 (MG) with bafilomycin A1 (BafA) having no
additional effect on said property (Figure 7). Resvega significantly reduced VEGF secretion
when compared to cells with disrupted cellular clearance without Resvega supplementa-
tion. The level to which Resvega reduced VEGF was significantly lower than that detected
in untreated cells or in cells exposed to IL-1α alone.
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Figure 7. The effect of Resvega (R10 µM; DMSO 0.5% v/v) on the vascular endothelial growth factor
(VEGF) secretion in IL-1α-primed ARPE-19 cells treated with MG-132 (MG; 5 µM) and bafilomycin A1
(BafA; 50 nM). Results are compared to the untreated control group, which was set to be 1. Resvega
was diluted by DMSO which served as the diluent control to Resvega. Untreated cells served as
controls for IL-1α-primed cells, and IL-1α for IL-1α-primed cells with inflammasome activators MG-
132 and BafA. Data are combined from 3 independent experiments containing 3 parallel samples per
group in each experiment. Results are shown as mean ± SEM and analyzed using the Mann–Whitney
U-test. ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns—not significant.
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4. Discussion

During aging, there is an accumulation of protein aggregates in the retina, which is
a major risk factor for AMD [1,34]. The impaired protein clearance in RPE cells results
in increased oxidative stress and inflammation through the activation of the NLRP3 in-
flammasome [1,10,12,16,17]. The nutritional supplement Resvega has many components
(omega-3 fatty acids, vitamins C and E, resveratrol, lutein, zeaxanthin, copper, and zinc)
that belong to the normal antioxidant defense of the retina [35,36]. In the present study,
Resvega was well-tolerated until 25 µM concentration. It is in line with our previous
study where we saw that 25 µM Resvega alone did not compromise cell viability [30].
We have previously shown that Resvega can improve cell viability determined by both
MTT and LDH assays during hydroquinone-induced oxidative stress or MG-132 exposure
on ARPE-19 cells [29,30]. In the present study, Resvega preserved the integrity of cell
membranes with disrupted protein clearance but had no effect on the cellular metabolic
activity measured using the MTT assay. This is in line with observations of antiapoptotic
treatments, where an improvement in cell membrane conditions appeared before the MTT
assay revealed any changes in mitochondrial activity [37,38].

IL-1α induced the secretion of IL-6 in accordance with previous findings in brain
endothelial cells [39]. The level of IL-6 was reduced by MG-132, a well-known NF-κB
inhibitor, with bafilomycin [40]. We have previously shown that hydroquinone-mediated
NF-κB inhibition resulted in diminished IL-6 levels, where Resvega returned to the control
level independently of NF-κB activation [29]. In the present study, 10 µM Resvega had
no additional effect on the IL-6 release upon MG-132 and BafA treatments. Instead, the
higher 25 µM concentration increased IL-6 secretion as Resvega did upon hydroquinone
exposure. It is possible that Resvega activates the p62–Kelch ECH associating protein 1
(Keap-1)–Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, whereas in the present
study, that pathway was already disrupted and blocked by the proteasome and autophagy
inhibitors. The lower 10 µM Resvega concentration was probably not able to induce the
p62–Keap-1–Nrf2 pathway, but as shown previously, 25 µM Resvega is able to induce
autophagy and could increase IL-6 release through p62–Keap-1–Nrf2 [29,30,41–43]. When
working properly, p62 induces the release of Nrf2 from its suppressor, Keap-1, and Nrf2 is
able to induce the expression of IL-6 [41,44].

In the present study, Resvega prevented the secretion of both IL-1β and IL-8 induced
by the dysfunctional intracellular clearance in IL-1α-primed ARPE-19 cells. This is in
line with our previous report where we demonstrated that the IL-8 release was secondary
to the inflammasome activation and IL-1β secretion [10]. In another study, BafA further
enhanced the IL-8 production when added together with IL-1β to RPE cells [45]. Our
results do not exclude the possibility that the diminished IL-8 release results from a
Resvega-mediated inhibition of the inflammasome. The reduced release of IL-1β and
NLRP3, as well as the alleviated caspase-1 activity, support this proposal. In macrophages,
resveratrol and omega-3 fatty acids were able to reduce NLRP3 inflammasome activation
concurrently with induced autophagy [46–48]. Resveratrol and omega-3 fatty acids are
known to inhibit NF-κB translocation to the nucleus and diminish inflammasome activation
due to the prevention of its priming [32,48]. On the other hand, resveratrol and vitamin
C have been shown to reduce ROS production and NLRP3 inflammasome activity in
mouse lung tissue and macrophages, respectively [32,49]. The absence of copper has been
shown to suppress NLRP3 inflammasome activation in macrophages [50]. In contrast,
the depletion of zinc induced NLRP3 activation in macrophages and increased zinc level
inhibited inflammasome activation through reduced ROS production in human peritoneal
mesothelial cells [51,52].

The IL-1 cytokines are capable of mediating angiogenesis by inducing the produc-
tion of VEGF, which is also a potential activator of the NLRP3 inflammasome in RPE
cells [53,54]. In the present study, VEGF was released after the IL-1α treatment prior to the
NLRP3 activation and the secretion of IL-1β. Proteasome and autophagy inhibitors did not
exacerbate IL-1α-induced VEGF release but Resvega was able to reduce it to levels even
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lower than present in untreated control cells. The secretions of IL-1β and VEGF were both
reduced in the present study, a finding in accordance with observations that the inhibition
of VEGF can inhibit the secretion of IL-1β [55]. Furthermore IL-1β has been observed to
induce VEGF secretion, leading to the hypothesis that diminished levels of IL-1β may
result in reductions in the release of VEGF [56]. Resveratrol and vitamin C have been
shown to reduce VEGF expression in RPE cells [57–59]. Ivanescu et al. demonstrated that
orally administered Resvega reduced VEGF expression and choroidal neovascularization
in a mouse model [60]. Likewise, lutein and zeaxanthin prevented VEGF-mediated neovas-
cularization in human retinal microvascular endothelial cells and diminished VEGF levels
in the retina of rats [61,62]. These results suggest that Resvega could have beneficial effects
in wet AMD where excessive neovascularization is a problem. However, VEGF is also
necessary for RPE cell viability and functionality since it maintains retinal integrity [63].
In addition, RPE-derived VEGF supports choriocapillaris development, survival, and
remodeling, which are important for visual function [64,65]. Therefore, the potential an-
tiangiogenic effects of Resvega will need to be taken into account on a case-by-case basis.
The local microenvironment that contributes to the VEGF release and neovascularization
in AMD contains a plethora of factors, such as proinflammatory cytokines, chemokines,
complement factors, macrophages, and microglia cells [66,67]. Additionally, RPE cells
release ATP into the subretinal space; this compound is involved in the cooperation be-
tween RPE cells with photoreceptors [68]. In human epidermal keratinocyte cells, ATP
has been shown to confer protection from oxidative stress by activating the antioxidant
defense system [69]. At odds with our findings, it has been reported that extracellular ATP
activates the P2X7 receptor, which results in VEGF release [70]. In addition, P2X7 receptor
activity maintains a high ATP level and also induces NLRP3 inflammasome activation [26].
We have previously shown that there was an increase in the extracellular levels of ATP
following inflammasome activation of cells with disrupted protein clearance [4]. In the
present study, Resvega increased the level of extracellular ATP but concurrently decreased
VEGF release and NLRP3 inflammasome activation.

We present evidence that Resvega can reduce NLRP3 inflammasome-mediated in-
flammation and VEGF production in human RPE cells; these are beneficial responses when
searching for options and mechanisms to alleviate RPE cell-related stress.

5. Conclusions

Resvega alleviates NLRP3 inflammasome activation in human ARPE-19 cells upon
dysfunctional protein clearance. This study warrants further investigations in vitro and
in vivo.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
921/10/1/67/s1, Figure S1: IL-1α-priming did not increase caspase-1 activity in ARPE-19 cells.
Caspase-1 activity was measured using a cell-permeable fluorochrome inhibitor of caspase-1 (FLICA,
FAM-YVAD-FMK). A green fluorescent signal indicates active caspase-1 attached to the FAM-YVAD-
FMK-probe. Nuclei were stained using the blue Hoechst 33342 dye. Pictures were detected using a
fluorescent microscope (Zeiss ApoTome.2 Imager M2 microscope). Figure S2: MG-132 (MG; 5 µM)
and bafilomycin A1 (BafA; 50 nM) exposure with DMSO control induced caspase-1 activity in IL-
1α-primed ARPE-19 cells. Caspase-1 activity was measured using the fluorochrome inhibitor of
caspase-1 (FLICA, FAM-YVAD-FMK). A green fluorescent signal indicates active caspase-1 attached
to the FAM-YVAD-FMK-probe. Nuclei were stained using the blue Hoechst 33342 dye. Pictures were
captured by a fluorescent microscope (Zeiss ApoTome.2 Imager M2 microscope). Figure S3: Resvega
(R10µM) decreased MG-132 (MG; 5 µM) and bafilomycin A1 (50 nM; BafA)-induced caspase-1 activity
in IL-1α-primed ARPE-19 cells. Caspase-1 activity was measured using the fluorochrome inhibitor of
caspase-1 (FLICA, FAM-YVAD-FMK). A green fluorescent signal indicates active caspase-1 attached
to the FAM-YVAD-FMK-probe. Nuclei were stained using the blue Hoechst 33342 dye. Pictures were
captured by a fluorescent microscope (Zeiss ApoTome.2 Imager M2 microscope).

https://www.mdpi.com/2076-3921/10/1/67/s1
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