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Abstract-The current concern about the ever-escalating demand for energy, exhaustive nature of fossil fuels, global 

warming accompanied by climate change has necessitated the development of an alternate pollution-free mode of 

commute. Electric Vehicles (EV) are an environmentally friendly alternative to reduce the reliance on fossil fuel and 

pollution. For public acceptance of EVs, functionality and accessibility of charging stations is of paramount 

importance. Improper planning of EV charging stations, however, is a threat to the power grid stability. EV charging 

stations must be placed in the transport network in such a way that the safe limit of distribution network parameters 

is not violated. Thus, charging station placement problem is an intricate problem involving convolution of transport 

and distribution networks. A novel and simple approach of formulating the charging station placement problem is 

presented in this work. This approach takes into account integrated cost of charging station placement as well as 

penalties for violating grid constraints. For obtaining an optimal solution of this placement problem, two efficient 

evolutionary algorithms, such as Chicken Swarm Optimization (CSO) and Teaching Learning Based Optimization 

algorithm (TLBO) are amalgamated together thereby extracting the best features of the both algorithms. The 

efficacy of the proposed algorithm is tested by solving selected standard benchmark problems as well as charging 

station placement problem. The result of this hybrid algorithm is further compared with other algorithms used for 

this purpose.  

Keywords-Charging station, Distribution network, Transport network, Optimization, Cost, CSO, TLBO, Hybrid 

algorithm 

Nomenclature  

Decision variables 

b- Bus number where charging station is to be placed 

NFb- Number of fast charging station at bus b 

NSb- Number of slow charging station at bus b 

Sets 

T- Set of nodes of the road network with charging demand 

TS- Set of superimposed nodes 

P- Set of nodes where charging stations are placed 
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S- Set of strong nodes of the distribution network based on voltage stability 

Constant Parameters 

Cinstallation fast- Installation cost of fast charging stations 

Cinstallation slow- Installation cost of fast charging stations 

CPfast-Power consumption of fast charging stations 

CPslow- Power consumption of slow charging stations 

Pelectricity- Per unit cost of electricity 

PVD- Penalty paid by the utility for per unit voltage deviation 

PAENS- Penalty paid by the utility for per unit energy not served 

Tcost EV - Cost of travelling per km for EV 

nfast CS- Maximum number of fast charging stations that can be placed at a particular bus 

nslow CS- Maximum number of fast charging stations that can be placed at a particular bus 

Smin- Lower bound of reactive power limit of each bus 

Smax- Upper bound of reactive power limit of each bus 

Lmax- Loading margin of the network 

ND- Total number of bus of the distribution network 

NT- Total number of nodes of the road network 

Tt- Planning period 

Functions 

Cinstallation- Installation cost of charging station 

Coperation- Operating cost of charging station 

Cpenalty- Penalty paid by utility 

VD penalty- Penalty for voltage deviation 

AENS penalty- Penalty for energy not served 

Ctravel - Travelling distance cost from point of charging station to point of placement of charging station 

Abbreviations 

EV- Electric Vehicle 

AENS- Average Energy Not Served 

VD- Voltage Deviation 

GA-Genetic Algorithm 

PSO-Particle Swarm Optimization 

BA-Bat Algorithm 

DE-Differential Algorithm 

CSO-Chicken Swarm Optimization 

TLBO- Teaching Learning Based Optimization 

Indices 

i- Bus no of the distribution network 
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NCS- Total number of charging stations in the network 

N fast CS- Total number of fast charging stations in the network 

N slow CS- Total number of slow charging stations in the network 

ni-( 0 or 1), ni =1 if CS is at bus ielse ni=0 

Variables 

NF 
i- Number of fast charging station at ithbus 

NS
i- Number of slow charging station at ithbus 

Vi 
base- Voltage of ith bus for base case 

Vi - Voltage of ith bus after placement of charging station 

VD i- Voltage Deviation of ithbus 

Li- Load at ithbus 

Ui -Duration of interruption at ithbus 

Ni- Number of consumer at ithbus 

dCS- Distance between the point of charging demand and point of placement of charging station 

Pgi-  Active power generation of ith bus 

Pdi- Active power demand of ith bus 

Qgi- Reactive power generation of ith bus 

Qdi-Reactive power demand of ith bus 

Vj- Voltage of jth bus 

Yij-  Magnitude of (i,j)th term of bus admittance matrix 

ijθ - Angle of Yij 

iδ - Voltage angle of ith bus 

jδ - Voltage angle of jth bus 

CSO parameters 

RN- Set of roosters 

HN- Set of hens 

CN- Population of chicks 

MN-Set of mother hens 

PN- Population of swarm 

TLBO parameters 

Tk- Teacher 

mk-Mean value of decision variable 

Rt- Random number between 0 and 2 

pop- Population size of learners 

 

 

Jo
urn

al 
Pre-

pro
of



4 

 

1. Introduction 

Generally speaking, both transportation sector and power generation sector are fossil fuel reliant. For example, the 

oil consumption of transport sector will rise by 54% until 2035 [1]. Thus, the research community is constantly 

preoccupied with concerns about the exhaustive nature of fossil fuels as well as greenhouse gas emissions 

responsible for the global change in climate conditions. As a measure to ameliorate the adverse impact of the 

emission of the transportation sector on the environment, the 21st century has witnessed a bold initiative of 

replacement of Internal Combustion Engine (ICE) driven vehicles with EVs. However, range anxiety of the EVs is 

one of the barriers hindering their broad acceptance. The development of fully furnished charging infrastructure is of 

prime importance to facilitate large-scale deployment of EVs. The current pace gives time for electric grid designers 

to adapt with the increasing number of EVs. A sudden replacement of the ICE vehicles with EVs roughly means 

more than doubling the electric power production in the world [2]. Unfortunately, charging station placement 

without careful design and charging management strategies may considerably degrade the operating parameters of 

the distribution network, such as voltage stability, power loss, reliability, etc. [2], [3], [45], [46]. Furthermore, 

uncontrolled charging is detrimental to EV battery life [49], [50]. For a passenger vehicle with a consumption is 0,2 

kWh/km. 10 kW charger can charge 50 km per one hour; 100 kW charger can charge 500 km per one hour, etc. 

Thus, the charger capacity and charging techniques affect driving range and battery lifetime to certain extent.  The 

placement of EV charging stations in the road network must be coordinated with the distribution network. Indeed, 

the optimal placement of EV charging stations has attracted the interest of researchers in the community. Diversity 

in the approaches to problem formulation and optimization algorithms applied for its solution makes the charging 

station placement problem unique and challenging [5]. Tactical formulation of the placement problem and 

employment of efficient algorithms are the two most important topics in the optimal placement of charging stations. 

The complex nature of the charging station placement problem has resulted in the extensive applications of nature-

inspired algorithms in tackling this demanding problem.  

In this paper, a novel optimization algorithm based on the amalgamation of CSO and TLBO is proposed for 

dealing with the above charging station placement problem. CSO is a state-of-the-art evolutionary algorithm that 

mimics the food searching process of chicken, and TLBO mimics the teaching learning procedure. It is expected that 

the hybridization of these two distinguishing algorithms can exploit the strengths of each algorithm, thus yielding 

better optimization results. The present work is a significant extension of the conference paper by Deb et al. [4] with 

the following new scientific contributions: 

1. A single-objective framework of charger placement is developed and validated on test network. 

2. Two different hybridization schemes of the CSO TLBO algorithm are proposed and compared with each other.  

3. The new algorithms are evaluated on the basis of the selected benchmark functions.  

4. The statistical performance comparison is conducted between the CSO TLBO algorithm and other cutting-edge 

methods like GA, PSO, TLBO, and CSO to demonstrate its efficiency and effectiveness.  

5. The impact of the placement of EV charging station loads on different operating parameters of the distribution 

network is analyzed.  
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2. Literature Review 

In the recent years, considerable research endeavour has been devoted to the optimal placement of EV charging 

stations. The existing research work in the paradigm of EV charging station is discussed in this section. 

2.1. Related Work 

The charging station placement is a complicated problem involving objective functions and constraints as well as 

both transport and distribution networks. Deb et al. [5] discussed different modelling approaches, objective 

functions, and constraints deployed in the charging station placement problem. The placement problem is modelled 

either by considering the road network or the distribution network. In some recent research contributions, the 

placement problem has been modelled by superimposing road and distribution networks. Another feature of the 

charging station placement problem is involvement of many objective functions and constraints. Both classical and 

evolutionary optimization algorithms have been used for the solution of this problem. 

In [6]-[10], the charging station placement problem has been solved by only considering transport network. Ge et 

al. [6] presented a placement scheme of EV charging station in a test road network with 48 intersection points. The 

authors considered the cost of user’s loss on the way to charging station as the objective function. The charging 

demand of the nodes and the maximum and minimum number of charging stations at the nodes were regarded as 

constraints in the aforementioned literature. The authors divided the test network into a number of partitions and 

employed GA to compute the optimal number of charging stations for each partition. Liu et al. [7] formulated the 

charging station placement problem considering construction cost and running cost as the objective functions along 

with the highest charging requirement as a constraint. They applied Adaptive Particle Swarm Optimization (APSO) 

to cope with this complex problem and made a comparison of the results of APSO with PSO. The adjustment of 

inertia factor automatically in APSO makes it superior to that of PSO. The efficacy of APSO was validated on a 

road network of Beijing. Bendiabdellah et al. [8] formulated a novel hybrid method combining k means of clustering 

and GA for the charging station placement problem. This algorithm was capable of finding the location and number 

of charging stations, thereby minimizing installation, and travel time cost of EV drivers on their way to the point of 

charging station from the point of charging demand. The efficacy of the hybrid algorithm was validated on a road 

network of Cologne, Germany. Dong et al. [9] formulated the charging station placement problem for the road 

network of Seattle with the minimization of missed trip as the objective function and budget as the constraint. The 

authors applied GA in their solutions. Tu et al. [10] modelled the charging station placement problem for a road 

network of Shenzhen, China considering maximization of travel time of EVs and minimization of waiting time in 

the charging stations as the objective function. The EV range, capacity of charging stations, and charging time were 

regarded to be the constraints in the planning model, and GA was used to obtain the optimal solutions. 

Literature [11]-[16] considered only distribution network while modelling the charging station placement 

problem. Liu et al. [11] formulated the charging station placement problem in a single objective framework with 

cost as the objective function. Firstly, the candidate sites of charging stations were identified based on service radius 

as well as environmental factors, and optimization was next performed. Modified Primal Dual Interior Point 

Algorithm (MPDIPA) was utilized in this work, and the proposed approach was validated on IEEE 123 bus test 

system. Yan et al. [12] considered investment cost as the objective function, power loss limit, and maximum 
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capacity of charging stations as constraints in their planning model. The authors employed HGA based novel 

algorithm involving encoding, genetic operators, and tabu table so as to obtain the optimal solutions. The 

effectiveness of design was validated on IEEE 33 bus distribution network. Phonrattanasak et al. [13] used ACO in 

the similar charging station placement problem. The model developed by them is capable of maximising charging 

serviceability subject to traffic constraints as well as distribution network constraints. Zheng et al. [14] presented a 

unique scheme for charging and battery swapping station placement in IEEE 15 and IEEE 43 bus distribution 

network considering cost as the objective function and power consumption limit, voltage limit, current limit as 

constraints. A modified form of Differential Evolution (DE) was utilized by them. Pazouki et al. [15] considered 

financial, technical, and environmental aspects while formulating the charging station placement problem and 

employed GA as the solution. In the aforementioned planning approach, cost, power loss, reliability, voltage 

penalty, emission were considered as objective functions and bus voltage limit, line current limit, capacity of 

charging station, power balance of the network as constraints. Zhang et al. [16] proposed an integrated planning 

framework for EV charging infrastructure development. The summation of installation cost, operating cost, 

maintenance cost, time cost, and electricity cost was considered as the objective function in their work. They utilized 

Voronoi diagram to find the service region of charging station and optimally allocated the candidate places of 

charging station by PSO. Consideration of the impact of ambient temperature, possession rate of private and public 

charging spot on EV charging station placement is another noteworthy contribution of this work. 

Similarly, literature [17]-[20] modelled the placement problem considering superimposition of transport and 

distribution network. Wang et al. [17] proposed a multi-objective EV charging station planning method, which 

ensured charging service and took into account power loss and voltage deviation of the distribution network. They 

handled this multi-objective problem by using Data Envelopment Analysis (DEA) and a Cross-Entropy based 

method (CE), and compared the performances obtained with PSO. Their results clearly demonstrated the superiority 

of CE over PSO in terms of quality of solution as well as computational time. The proposed approach was validated 

on superimposed IEEE 33 bus distribution network and 25 node road network. Yao et al. [18] modelled the 

placement problem with cost, annualized traffic flow and energy losses as objective functions. A Multi-Objective 

Evolutionary Algorithm (MOEA) was utilized for obtaining the pareto front and the final planning scheme was 

decided by fuzzy logic. Awasthi et al. [19] presented a novel placement scheme of charging station placement for 

the city of Allahabad in India by utilizing hybrid GA PSO. The authors considered cost, active power loss reduction 

index, and reactive power loss reduction index, voltage profile improvement index as objective functions and bus 

voltage limit, line current limit, capacity of charging stations as the constraints. The results presented in their work 

reveal the superiority of hybrid GA PSO over GA and PSO in terms of quality of the solution. Islam et al. [20] 

formulated the charging station placement problem with cost as the objective function and power limits, charging 

station capacity, line current limit as constraints. The authors utilized BLSA to attack this optimization problem. The 

proposed approach was validated on a test network formed by superimposing IEEE 34 bus distribution network and 

the road network of Bangi, Malaysia. Literature [6]-[20] discussed the contributions of different researchers in the 

paradigm of charging station placement thereby revealing the multifarious nature of problem formulation and 

optimization algorithms employed. 
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2.1. Necessity of new meta-heuristics 

During recent years, the paradigm of combinatorial optimization has witnessed the discovery of a number of novel 

meta-heuristic algorithms. Many practical engineering optimization problems are difficult to solve by classical 

algorithms because of their non-linear nature. The charging station placement problem is one of such complex 

problems involving numerous variables, objective functions, and constraints. Hence, there is necessity of devising 

efficient and fast algorithms for the placement problem. CSO and TLBO are two latest evolutionary algorithms 

successfully applied by researchers in solving complex engineering optimization problems. For example, CSO was 

applied to handle feature selection [21], community detection [22], Wireless Sensor Network (WSN) localization 

[23], speed reducer design [24], trajectory optimization [25], etc. Similarly, TLBO was successfully applied for 

parameter optimization of machining process [26], transmission expansion planning [27], economic load dispatch 

problem [28], optimization of heat exchangers [29], optimal configuration of microgrid [30], etc. Therefore, 

motivated by the success of CSO as well as TLBO in coping with such a wide range of optimization problems, these 

two algorithms are amalgamated together to form the hybrid CSO TLBO algorithm. The amalgamation of CSO 

TLBO can improve the quality of solution and speed up convergence towards to the optimal solution. 

3. Problem formulation 

 The charging station placement problem is a typical planning problem involving the interaction between 

transport and distribution networks. Placement and sizing of charging stations are the two prime activities performed 

in the placement problem. From the perspective of EV drivers, the locations of the charging stations must be easily 

accessible and close to the point of charging demand. In addition, the placement of these charging stations should 

not degrade the operating parameters of the distribution network like voltage profile and reliability. Therefore, the 

placement of charging stations in the road network must be coordinated with the distribution network. The literature 

reported in Section 2 shows that researchers have formulated the placement problem in a lot of ways with different 

objective functions and constraints. The problem of charging station placement is formulated in this work as a non-

linear constrained optimization problem. The salient features and the difference of the present formulation from the 

formulation of charging station present in the existing literature are as follows. 

1. The charging station placement problem is modelled in our work under a single objective framework with 

cost as the objective function. The operating parameters of the distribution network are taken into account 

by imposing penalty for violation of the safe limit of the operating parameters. In other words, we model 

the complex placement problem in a simple single objective framework and also consider all the operating 

parameters of the power grid, whose violation may be detrimental to the safe operation of the network. 

2. The reliability of the power distribution network is neglected in most of the recent works related to 

charging station placement. Unfortunately, exclusion of reliability indices while formulating the charging 

station placement problem is a major research gap. In the present work, reliability of the distribution 

network is taken into consideration by imposing penalty for the violation of AENS. 

3. The EV driver’s convenience is also considered by minimizing the cost of travelling from the point of 

charging demand to the charging stations. 
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The decision variables, objective function, and constraints of this placement problem are elaborated in the next 

subsections. 

3.1. Decision variables 

The charging station placement problem is a multi-variable problem. The locations and number of charging 

stations are the outputs. In this analysis, the optimal location and number of both fast and slow charging stations are 

designated as decision variables. Symbolically, the decision variables are as follows. 

• b 

• NFb 

• NSb 

Pb ∈  

The charging stations are placed at the superimposed road and distribution network nodes. Moreover, it is 

assumed that the charging stations will only be placed at the strong nodes of the distribution network, which are not 

vulnerable to voltage instability. Thus, P is a subset of both S and TS. 

3.2. Objective function 

The objective function is on the basis of minimization of overall cost associated with the establishment of 

charging stations. Furthermore, the cost can be subdivided into the direct and indirect cost. Mathematically, the 

objective function yields:  

)( indirectdirect CCMin +                                                                                                                                         (1) 

The direct cost includes the cost directly associated with establishment of charging station like the installation cost 

and operating cost elaborated as: 

operationoninstallatidirect CCC +=                                                                                                                               (2) 

)( onslowinstallatislowCSonfastinstallatifastCSoninstallati CNCNC ×+×=
                                                                                (3) 

tyelectricitslowslowCSfastfastCSoperation TPCPNCPNC ×××+×= )(                                                                                     (4) 

i
F

N

i
ifastCS NnN

D

×=∑
=1

                                                                                                                                                (5) 

i
S

N

i
islowCS NnN

D

×=∑
=1

                                                                                                                                                (6) 

Pini ∈∀=1                                                                                                                                                           (7) 

From (3) and (4), it is clear that the installation and operation cost are dependent on the number of fast and slow 

charging stations to be installed. The installation and operating cost are independent of the location of charging 

stations because of the assumption that the land, floor, building, labour, charger, and electricity cost are same for all 

the nodes of the entire network. 

The indirect cost is the summation of the penalty paid and travel time cost. One of the salient features of this 

problem formulation is distribution network parameters are included by imposing penalties for voltage deviation and 
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AENS. The travel time cost is the additional cost of travelling from the node of charging demand to the node of 

placement of charging station. The various terms associated with the indirect cost are as follows: 

travelpenaltyindirect CCC +=                                                                                                                                          (8)                                                                                                                    

penaltypenaltypenalty AENSVDC +=
                                                                                                                              (9)                                                                                                                          

∑
=

=
DN

i
iVDpenalty VDPVD

2

*

                                                                                                                                           (10)                                                                                          

i
base

ii VVVD −=                                                                                                                                                        (11)                                                     
As illustrated in (8), the voltage deviation is the change in voltage of the buses after the introduction of charging 

station loads. If after the increase of load the voltage of the buses of the distribution network drops to less than 0.9 

per unit, the utility has to pay the penalty for voltage deviation. In our work, the voltage of all the buses of the 

network is computed by forward backward sweep algorithm [31]. 

AENSPAENS AENSpenalty *=
                                                                                                                              

(12)
 

i

ii

N

UL
AENS

∑
∑

=
                                                                                                                                               (13) 

tEVCStravel TdC cos×=
                                                                                                                                           (14) 

 As illustrated in (13), AENS is a load oriented reliability index of distribution network giving an idea how much 

energy is not served during a particular time period. (14) shows that the travel time cost is dependent on the distance 

between the charging point demand and the charging stations. Thus, inference can be drawn that the travel time cost 

is a function of the locations, where charging stations are placed. 

3.3. Constraints
 

The objective function formulated in the previous subsection is minimized in agreement with some inequality and 

equality constraints as follows: 

fastCSFb nN ≤<0
                                                                                                                                                   

(15) 

slowCSSb nN ≤<0
                                                                                                                                                   (16)

 

maxmin SSS i ≤≤                                                                                                                                                        (17) 

maxLL ≤
                                                                                                                                                                  (18) 

The constraints given by (15) and (16) use the maximum and minimum number of fast and slow charging stations 

placed at the candidate locations. (17) considers the upper and lower limit of reactive power. (18) takes into account 

the maximum safe limit of load that can be added to the network.
 

In addition to the aforementioned constraints, the power flow balance equation given by (19) and (20) must be 

considered as an equality constraint. 
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0)cos(
1

=−∑−− −
=

ijjiij

N

j
jidigi YVVPP

D

θδδ                                                                                                                    (19)                                                                                                                

0)cos(
1

=−∑−− −
=

ijjiij

N

j
jidigi YVVQQ

D

θδδ                                                                                                                   (20)       

 

4. Optimization Algorithms 

CSO TLBO algorithm was employed in the present work to deal with the charging station placement problem 

defined in the previous section. An overview of CSO, TLBO and newly developed CSO TLBO algorithm is given in 

this section. 

4.1. CSO 

CSO is a bio-inspired algorithm proposed by Meng et al. [32] in 2014, which is inspired by the behavior of 

chicken swarm, where the intelligence of chicken swarm is effectively utilized to obtain the optimal solution. It 

imitates the hierarchal order in a chicken swarm and the food searching process of the swarm. The population of 

chicken in the group is subdivided into dominant rooster, hens, and chicks depending on the fitness values of the 

chickens. The chickens with the highest fitness value are assigned as roosters, chickens with the least fitness value 

are assigned as chicks, and the chickens with intermediate fitness value are assigned as hens. Establishment of 

mother-child relationship in a random manner is another salient feature of this algorithm. After every G time steps, 

the hierarchal order, and mother-child relationship are updated. Moreover, the algorithm utilizes the natal behavior 

of hens to follow their group mate rooster and chicks to follow their mother. Chickens try to steal the food found by 

others, which gives rise to a competition for food in the group. The algorithm is divided into two steps-Initialization 

and Update. 

In Initialization, the population size and other related parameters of CSO are first defined. The fitness values of the 

population of chicken are evaluated and a hierarchal order is established based on this fitness value as illustrated in 

Fig.1. It is assumed that the number of hens is the highest in the group [32]. All the hens are not mother hens, and 

the mother hens are selected randomly from the set of hens. Despite the fact that each hen can have more than one 

chick, it is assumed that the number of chicks is less than the number of hens [32], [33]. 

 

 

 

 

 

 

 

Fig. 1. Hierarchal relationship in the chicken swarm
 

Utilizing the concepts of set theory, (21) and (22) are deduced:

 

(21) 
HNMN ⊂

RN 

CN 

HN 

MN 
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CNHNRNPN UU=  

(22) 

The food searching capacity of different members of the group actually varies. In the update step, the fitness values 

of the initial population are updated according to the food searching capacities of the different members of the 

group. The update formula of roosters, hens, and chickens are also different, as explained in (23) to (29). The food 

searchingcapacity of roosters depend on their fitness values updated according to formulae:
 

)),0(1( 2
,

1
, σRandnxx t

ji
t

ji +×=+

                                                                                                                            (23)                                                                                          

If fi≤fk 

12 =σ                                                                                                                                                                       (24)                                                                                      

else 

)
)(

exp(2

ε
σ

+
−=

i

ik

f

ff
(25)    

where randn(0,σ2)presents a Gaussian distribution with 0 mean and σ
2 standard deviation. The variable f is the fitness 

value of the corresponding x, and k is randomly selected rooster's index.ϵ is a small positive constant to prevent 

division by zero. 

Hens follow their group mate roosters while searching food. Interestingly, chickens also have a tendency to steal the 

food found by other chickens. Their update algorithm is given as follows: 

)(2)(1 ,,2,,1,
1

,
t

ji
t

jr
t

ji
t

jr
t

ji
t

ji xxrandSxxrandSxx −××+−××+=+                                                                                              (26) 

)
)(

exp(1 1

ε+
−=

i

ri

fabs

ff
S                                                                                                                                         (27) 

)exp(2 2 ir ffS −=                                                                                                                                              (28) 

where randn is a randomly generated number between 0 and 1. ],1[1 Nr ∈  is an index of rooster, which is ith hen's 

group mate. ],1[2 Nr ∈  is an index of rooster or hen randomly chosen such that r1 is not equal to r2. 

The natural tendency of chicks to follow their mother is represented as follows. 

)( ,,,
1

,
t

ji
t

jm
t

ji
t

ji xxFLxx −×+=+

                                                                                                                              
(29) 

where t
jmx ,  represents the position of ithchick's mother. FL is the parameter making the chicks follow its mother. 

FL is generally chosen between 0 and 2. 

The pseudo code of CSO is as shown in Algorithm 1. 

Algorithm 1-Pseudo code of CSO [32] [43] [44] 
Initialize the population of chicken having size N and define other algorithm specific parameters like G, size of RN, 
HN,CN, and MN; 
Evaluate the fitness value of N chicken, t=0 , establish the hierarchal order in the swarm as well as mother child 
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relationship; 
While (t<gen) 
t=t+1; 
If(t%G==0) 
Establish the hierarchal order in the swarm as well as mother child relationship; 
Else 
For i=1:PN 
If i==rooster 
Update its solution by (23); 
End if 
If i==hen 
Update its solution by (24); 
End if 
If i==chick 
Update its solution by (24); 
End if 
Evaluate the new solutions; 
Update the new solutions if they are better than the previous one; 
End for 
End if else 
End while 
 

4.2. TLBO 

TLBO is an evolutionary algorithm introduced by Rao et al. [34]-[36], whichis a population-based optimization 

algorithm mimicking the interactive process of teaching and learning. A class of learners constitutes the population. 

The teacher’s knowledge is being transferred to the learners. The students can learn from their teacher as well as 

their fellow students. The performance of the learners depends on the knowledge and capability of the teacher. The 

algorithm is divided into two phases: 1. Teacher phase and subsequent 2. Learner phase [34]-[36]. 

1. Teacher phase- In this phase, the students learn from the teacher, who is an erudite scholar with profound 

knowledge and skill. The learner having the best fitness in a randomly generated population of teachers is generally 

assigned the role of teacher. Each learner learns from the teacher, and is modified as: 

)( ktkdiff mRTrandZ −×=                                                                                                                                           (30) 

diffoldnew ZZZ +=
                                                                                                                                                    

(31) 

The objective function value for each learner set modified by transfer of knowledge by the teacher is 

recalculated. If the new value of the objective function for any learner is better than the previous one, it is replaced 

by the new value. Otherwise, the old learner is kept as it is. 

2. Learner phase-The learners learn by mutual interactions among themselves. For each learner Zi , any learner Zjis 

chosen arbitrarily in the learner matrix. The objective function values are compared arbitrarily between two 

learners. If the value of the objective function of Ziis lower than the objective function of Z j,the ithlearner yields to:  

)( jioldnew ZZrandZZ −×+=                                                                                                                          (32) 

Otherwise, it becomes: 

)( ijoldnew ZZrandZZ −×+=                                                                                                                            (33) 

The pseudo code of TLBO is given in Algorithm 2. 
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Algorithm 2- Pseudo code of TLBO [34] 
Set k=1; 
Initialize the population size and generate the initial population of students randomly; 
Compute the objective function for all the individuals of the population; 
while(k<gen) 
{Teacher Phase} 
Assign the teacher based on the fitness value; 
for i=1:pop 
Modify each learner by (30), (31); 
Evaluate the new solutions; 
Update the new solutions if they are better than the previous one; 
{End of teacher phase} 
{Learner Phase} 
Choose two learners Zi and Zj,i≠j; 
if(fitness of Zi better than Zj) 
Replace ithlearner by (32); 

Else 

Replace ithlearner by (33); 

End if else 

End for 

k=k+1 

End while 

 

4.3. CSO TLBO 

A novel hybrid algorithm CSO TLBO is proposed in this section. We aimed at a solution that combines the 

advantages of CSO and TLBO. In order to improve TLBO performance, the grading mechanism of CSO was 

introduced in TLBO. Two different hybridization schemes of CSO TLBO were developed, as described in 

Algorithm 3 and Algorithm 4, respectively. In Scheme 1, TLBO was performed in all the generations, and CSO was 

periodically invoked in some generations. It was expected that if CSO was invoked periodically, the utilization rate 

of the population can accelerate. In Scheme 2, either CSO or TLBO was performed in each generation. Due to the 

involvement of too many algorithm specific parameters in CSO, there was a possibility of premature convergence, if 

the parameters were not properly tuned. The solutions obtained by CSO were refined by TLBO. 

Algorithm 3- Pseudo code of  CSOTLBO (Scheme 1) 

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO  

Set t=1 

While (t<gen) 
Activate TLBO 
If (t mod INV)>0 
Activate CSO 
End if 
t=t+1 
End while 

 

Algorithm 4- Pseudo code of  CSOTLBO (Scheme 2) 

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO  
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Set t=1 

While (t<gen) 
Activate CSO 
Activate TLBO 
t=t+1 
End while 
5. Methodology for solution of charging station placement problem by CSO TLBO 

CSO TLBO was employed to cope with the charging station placement problem elaborated in Section 3. The 

systematic procedure for solution of the charging station placement problem by CSO TLBO is as follows. 

Step 1: Initialization 

Step 1.1: Input the road network, distribution network data, upper and lower limits of different constraints, and set 

the different algorithm specific parameters of CSO TLBO like gen, PN, RN, CN, HN, G and INV. 

Step 1.2: Generate feasible initial population randomly.  

The initial feasible population is of the form ]CBA[pop poppoppoplint =  

where 
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The randomly generated initial solution is feasible, if it satisfies all the constraints of charging station placement 

problem explained in Section 3.3. 

Step 1.3: Evaluate the fitness function for the initial population. Arrange the population in the ascending order 

according to the fitness function. 

Step 1.4: For Scheme 1 of combining CSO TLBO, the individual with best fitness value is assigned as the teacher. 

Steps 2a and 3a are followed. For Scheme 2 of combining CSO TLBO RN, HN, and CN are assigned based on the 

fitness value, and Steps 2b and 3b are followed. 

Step 2a:Run TLBO. 

Step 2a.1: Run TLBO, and update the solution based on fitness value. 

Step 2a.2: If the elements popB exceed fastpn , that element is made equal tofastpn . If the elements of popC exceed

slowpn , that element is made equal toslowpn . 

Step 2a.3: Otherwise, check feasibility of the solution. If the solution is infeasible, repeat Step 2a.1 and 2a.2 until a 

feasible solution is obtained. 

Step 3a: Check whether the iteration count t is divisible by INV. If yes, go to Step 3.1. Otherwise, go to Step 3.5. 

Step 3a.1: If t is divisible by INV, run CSO. 
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Step 3a.2: Run CSO, and update the solution based on fitness values. 

Step 3a.3: If the elements popB exceed fastpn , that element is made equal tofastpn . If the elements of popC exceed

slowpn , that element is made equal toslowpn . 

Step 3a.4: Otherwise, check feasibility of the solution. If the solution is infeasible, repeat Step 3.2 and 3.3 until a 

feasible solution is obtained. 

Step 3a.5: Update the iteration count. 

Step 2b: Run CSO 

Step 2b.1: Run CSO, and update the solution based on rank and crowding distance. 

Step 2b.2: If the elements popB exceed fastpn , that element is made equal tofastpn . If the elements of popC exceed

slowpn , that element is made equal toslowpn . 

Step 2b.3: Otherwise, check feasibility of the solution. If the solution is infeasible, repeat Step 2b.1 and 2b.2 until 

feasible solution is obtained. 

Step 3b: Run TLBO 

Step 3b.1: Run TLBO and update the solution based on ranking and crowding distance. 

Step 3b.2: If the elements popB exceed fastpn , that element is made equal tofastpn . If the elements of popC exceed

slowpn , that element is made equal toslowpn . 

Step 3a.3: Otherwise, check feasibility of the solution. If the solution is infeasible repeat Step 3b.1 and 3b.2 until 

feasible solution is obtained. 

Step 3a.4: Update the iteration count. 

Step 4: Check whether the maximum generation count is reached. If true, yield the solution. Otherwise, repeat Step 

2 to Step 4. 

6. Numerical Analysis 

The performances of CSO TLBO in solving some benchmark problems and charging station placement problem 

are demonstrated as follows.  

6.1. Solution of some standard benchmark functions  

Selected benchmark functions listed in Table 1 were attacked using the proposed CSO TLBO. The performance 

of CSO TLBO on the standard benchmark functions was compared with a few state-of-the-art algorithms, such as 

DE, PSO, BA, CSO, and TLBO. The statistical analysis of the results was performed based on a total of 50 

independent runs. The number of iterations was 1000 for the benchmark functions. The algorithm-specific 

parameters used are given in Table 2. 
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Table 1- Benchmark Functions [32] 

ID Benchmark Function Dimension Bound Optimum 

F1 Sphere 20 [-100,100] 0 

F2 Ackley 20 [-32,32] 0 

F3 Griewank 20 [-600,600] 0 

F4 Rastrigin 20 [-5,10] 0 

F5 Axis parallel hyper-ellipsoid 20 [-5.12,5.12] 0 

F6 Step 20 [-100, 100] 0 

F7 Brown 20 [-1, 4] 0 

F8 Exponential 20 [-1, 1] -1 

 

Table 2- Algorithm specific parameters [32] 

Algorithm Parameters 

PSO c1=c2=1.49445,w=0.729 

DE CR=0.9, F=0.6 

BA α=γ=0.9,fmax=2,A0ϵ[0,2], r0ϵ[0,1] 

CSO RN=0.2*PN, HN=0.6*PN, CN=PN-RN-HN, MN=0.1*PN, G=10 

CSO 

TLBO 

RN=0.2*PN, HN=0.6*PN, CN=PN-RN-HN, MN=0.1*PN, G=10, INV=3 

 

Table 3- Statistical comparison of CSO TLBO with other state of art algorithms 

Benchmark function Algorithm Best Worst Mean 

F1 PSO 0 0 0 

DE 0 0 0 

BA 1.867408 2.94197 4.18701 

CSO 0 0 0 

TLBO 0 0 0 

CSO TLBO (Scheme 1) 0 0 0 

CSO TLBO (Scheme 2) 0 0 0 

F2 PSO 0 0 0 

DE 0 0 0 

BA 1.48288 2.59402 3.07403 

CSO 0 0 0 

TLBO 0 0 0 

CSO TLBO (Scheme 1) 0 0 0 
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CSO TLBO (Scheme 2) 0 0 0 

F3 PSO 0 0 0 

DE 0 0 0 

BA 0.004 2.82906 15.42094 

CSO 0 0 0 

TLBO 0 0 0 

CSO TLBO (Scheme 1) 0 0 0 

CSO TLBO (Scheme 2) 0 0 0 

F4 PSO 10.94454 21.26284 41.78822 

DE 8.41884 22.70527 43.9751 

BA 88.44729 121.99296 167.60654 

CSO 0 0 0 

TLBO 0 0 0 

CSO TLBO (Scheme 1) 0 0 0 

CSO TLBO (Scheme 2) 0 0 0 

F5 PSO 0 1.29 8 

DE 0 0 0 

BA 24.34652 39.73613 63.15 

CSO 0 0 0 

TLBO 0 0 0 

CSO TLBO (Scheme 1) 0 0 0 

CSO TLBO (Scheme 2) 0 0 0 

F6 PSO 0 0 0 

DE 0 0 0 

BA 1 3.41 6 

CSO 0 0 0 

TLBO 0 0 0 

CSO TLBO (Scheme 1) 0 0 0 

CSO TLBO (Scheme 2) 0 0 0 

F7 PSO 10.94454 21.26284 41.78822 

DE 0 0 0 

BA 0 0 0 

CSO 0 0 0 

TLBO 0 2.1 5 

CSO TLBO (Scheme 1) 0 0 0 
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CSO TLBO (Scheme 2) 0 0 0 

F8 PSO -1 -1 -1 

DE -1 -1 -1 

BA -0.41494 -0.20415 -0.12952 

CSO -1 -1 -1 

TLBO -1 -1 -1 

CSO TLBO (Scheme 1) -1 -1 -1 

CSO TLBO (Scheme 2) -1 -1 -1 

 

Table 3 reports the results related to statistical comparison of CSO TLBO with other state-of-the-art algorithms. 

The performance of PSO, DE and BA in optimizing the benchmark functions in Table 1 was studied in [32]. It was 

observed that for benchmark function F1, F2, F3,F5, F6,F8, the performance of CSO TLBO was equivalent to PSO, 

DE, TLBO, CSO. For benchmark function F1, F2, F3,F5, F6,F8, the performance of CSO TLBO was much better 

than BA. For benchmark function F4, the performance of CSO TLBO was better than PSO, DE, BA and equivalent 

to CSO and TLBO. For benchmark function F7, the performance of CSO TLBO was better than PSO, TLBO and 

equivalent to DE, BA, and CSO. As a conclusion, the performance of the proposed CSO TLBO algorithm was found 

equal to or better than the selected methods. It was discovered that the performance of the two schemes of 

combining CSO and TLBO was equivalent on the benchmark functions in Table 1. However, the number of function 

evaluation was more for Scheme 2 as compared to Scheme 1,because in Scheme 2, both CSO and TLBO were 

performed in all the generations. 

6.2. Solution of charging station placement problem 

IEEE 33 bus radial distribution network was coupled with 25 node transport network as shown in Fig.2 to 

validate the efficacy of the aforementioned algorithms. The bus data and line data of IEEE 33 bus distribution 

network were taken from [37],[38] and the road network data from [6]. The input parameters related to objective 

function and optimization algorithm were given in Table 4 and Table 5, respectively. It was assumed that the 

superimposed nodes were the candidate locations for placement of charging stations. The EVs were assumed to 

follow the two routes: 

• Route 1- (1-2-3-4-5-6-7-8-9-10-13-11-12-15-16-17-18-20-21-14-22-23-24-25) 
• Route 2-(1-2-3-4-5-6-7-8-9-10-13-11-12-15-16-17-19-20-21-14-22-23-24-25) 

TS={3,28, 14,16,17,23,6,30,26,20} with respect to the distribution network. TS={9,7,11,12,16,22,8,6,5,4} with 

respect to transport network. 

The driving range of EV was 150 km [39],[40], and the EVs followed two routes named Route 1 or Route 2. The 

point of charging demand were computed and given by T={4,7,9,13,15,18,22,25}.Table 4 presents the input 

parameters of the charging station placement problem. Table 5 presents the algorithm specific parameters of 

different popular algorithms for the charging station placement problem. The optimal values of the decision 

variables for minimization of the overall cost and the best value of the fitness function were given in Table 6. The 

optimization was carried out by employing the two schemes of CSO TLBO as mentioned in Section 4.3 and some 
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conventional algorithms like CSO, TLBO, PSO, DE, and GA. The value of the best fitness function obtained by the 

two hybridization schemes of CSO TLBO was 1.4841, which was the least as compared to other solutions. The 

supremacy of CSO TLBO in solving charging station placement problem was clearly revealed from the results 

(Table 6). Figure 3 represents the convergence curve of different algorithms for the best fitness value. It reveals that 

the rate of convergence of both the hybridization schemes of CSO TLBO was better than the others. Another 

important observation from Fig. 3 was that the rate of convergence of Scheme 2 of combining CSO TLBO was 

better than Scheme 1. The main reason behind this was due to improved exploration of search space in Scheme 2 as 

compared to Scheme 1. Figure4 illustrates the location of charging stations in the road network obtained by CSO 

TLBO. Node 9 and 22 of the road network were the location of charging station and point of charging demand of 

EV. Intersection of the point of placement of charging station and charging demand would make it convenient for 

the EV drivers to charge the batteries on their way without having to travel any further distance. EVs having 

charging demand at node 4 ,7 and 13 could access the charging station located at node 8. But for node 15, 18 and 25 

that were the points of charging demand of EV, there was no charging station in their neighborhood. These nodes 

were actually far away from the substation, and the strong buses of the distribution network were far away from 

them. The charging demand arising at these nodes can be satisfied by the charging stations supported by local 

renewable resources or battery swapping stations. 

 

 

 

 

 

 

 

 

 

Fig. 2 Test network [4] 

Table 4- Input parameters of the charging station placement problem [4] 

Parameter Value 

C installationfast 3000 $ 
C installationslow 2500 $ 

CPfast 50 kW 
CPslow 19.2 kW 

Pelectricity 65 $/MWhr 
PVD (VD)2 *1000000)$ 

PAENS 0.18$/MWhr 
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Table 5 Algorithm specific parameters of different state of art algorithms for charging station placement problem 

Algorithm Parameters 

PSO c1=c2=2, w=0.1 

DE CR=0.6, F=1.5 

CSO RN=0.2*PN, HN=0.5*PN, CN=PN-RN-HN, MN=0.3*PN, G=5 

CSO TLBO RN=0.3*PN, HN=0.4*PN, CN=PN-RN-HN, MN=0.3*PN, G=3, INV=5 

 

Table 6 Optimal allocation of charging stations 

Optimization technique Fitness value (best) b NFb NSb 

CSO TLBO( scheme 1) 1.4841 6 1 2 

3 1 3 

23 1 3 

CSO TLBO( scheme 2) 1.4841 6 1 2 

3 1 3 

23 1 3 

CSO 1.4870 6 1 3 

23 1 3 

3 1 2 

TLBO 1.4878 3 1 3 

23 1 3 

28 1 2 

PSO 1.4898 23 1 2 

6 1 3 

3 1 3 

DE 1.4898 23 1 2 

6 1 3 

3 1 3 

GA 1.5075 23 1 2 

3 1 3 

28 1 3 

 

 

Jo
urn

al 
Pre-

pro
of



21 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Convergence curve of different algorithms for the best fitness value 

 

 

 

 

 

 

 

 

Fig. 4 Optimal placement of charging station in the road network obtained by CSO TLBO 

6.3. Impact of charging station on distribution network 

For an extended analysis, the impact of optimal placement of charging stations on different operating parameters 

of the distribution network was analyzed. Table 7 outlines the values of voltage deviation, reliability indices, and 

power loss before and after the placement of charging stations. The values of voltage deviation and power loss after 

the placement of charging stations were increased to 0.0058pu and 0.0053pu, respectively. It was evident that the 

voltage deviation and power loss after the placement of charging stations were within the acceptable limit. As given 

in Table 7, the reliability indices degraded with placement of charging stations. However, even the degraded values 

of reliability indices were far below the dead zone values reported in [41]. Thus, we concluded that the charging 

stations were allocated without compromising the distribution network stability and with making the charging 

stations accessible to EV drivers. 
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Table 7 Value of different operating parameters of distribution network before and after placement of charging 

stations (by CSO TLBO) 

Parameter Before charging station placement After charging station placement 

Voltage Deviation (pu) 0 0.0058 

Reliability SAIFI (interruption/year) 0.0982 0.1383 

SAIDI( hour/year) 0.5048 0.7566 

CAIDI(hour/interruption) 5.1385 5.8704 

AENS(kWhr/yr) 1.9369 2.5233 

Power loss(pu) 0.0021 0.0053 

 

6.4. Statistical comparison of different optimization algorithms 

Statistical comparison of the quality of solutionsand time complexity analysis were performed for all the 

algorithms.The algorithms developed were tested in MATLAB 2016a software installed on a computer with the 

processor of Intel i7 CPU.One of the salient features of the evolutionary algorithm is the random generation of the 

population. As a consequence, different solutions are obtained from independent trials [47], [48]. In order to 

compare the quality of solutions and time complexity of different algorithms, a statistical analysis was done on the 

basis of a total of 50 independent trials. Table 8 provides the statistical comparison of CSO TLBO algorithm with 

other relevant algorithms. The best fitness, worst fitness, and mean fitness of both the hybridization scheme of CSO 

TLBO were found better than those of the other algorithms. The average execution time of CSO TLBO was longer 

than that of the others, which was due to involvement of both CSO and TLBO. The average execution time of 

Scheme 2 of combining CSO TLBO was longer than Scheme 1. Figure 5 illustrates the results of Friedman rank test. 

The CSO TLBO hada better rank thanthree other algorithms. Moreover, the rank of Scheme 2 of combining CSO 

TLBO was higher than that of Scheme 1. Therefore, depite having longer average execution time, the second 

scheme combining CSO TLBO was more competive than the first scheme. Table 9 reports the resultsof paired t test. 

From these results, we could find out that there were differences in the mean value of objective functions of the all 

pairs. In addition, the positive t-value indicated that the mean value of the objective function of CSO TLBO was far 

better (less) than the other algorithms. 
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Table 8 Statistical comparison of CSO TLBO with other algorithms in solving charging station placement problem 

Algorithm Best fitness Worst fitness Mean fitness Average execution 

time (sec) 

CSO TLBO  

(scheme 1) 

1.4841 1.5613 1.5268 31.5 

CSO TLBO  

(scheme 2) 

1.4841 1.5637 1.5241 42.6 

CSO 1.4870 1.5688 1.5430 7.87 

TLBO 1.4878 1.5637 1.5413 25.56 

PSO 1.4898 1.5636 1.5413 18.63 

DE 1.4898 1.6199 1.5497 9.28 

GA 1.5075 1.6199 1.5584 10.12 

 

 

Fig. 5 Friedman rank test for charging station placement problem 
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Table 9 T test results 

Algorithm T value 

CSO TLBO 

(Scheme 1) 

CSO 3.1610 

TLBO 3.7500 

DE 1.9918 

PSO 2.10 

GA 2.05 

CSO TLBO 

(Scheme 2) 

CSO 5.1610 
 

TLBO 3.6324 
 

DE 1.9924 

PSO 3.4534 

GA 3.7800 

 

7. Discussions 

A novel CSO TLBO algorithm was developed in order to solve the EV charging station placement problem. 

Although the existing meta-heuristics techniques have been successful in dealing with many real-world optimization 

problems, it is always recommended to develop new algorithms with superior performances for particular types of 

problems. Moreover, No-Free-Lunch (NFL) states that a single algorithm fails to perform well on all the problems 

[42]. For these reasons, we have proposed a new algorithm for coping with the charging station placement problem. 

Some of the key findings of our work are: 

1. The two schemes of combining CSO and TLBO are equally competitive or even better than the state-of-

the-art algorithms, such as GA, PSO, DE, CSO, TLBO, and BA in optimizing the benchmark functions in 

Table 1. 

2. CSO TLBO outperforms GA, DE, PSO, CSO, and TLBO in solving the problem at hand. However, the 

average execution time of the proposed algorithm is longer than the other state-of-the-art methods. 

3. The convergence rate of the second scheme of combining CSO TLBO is slightly better than the first 

scheme. However, the average execution time and number of function evaluations of the second scheme of 

combining CSO TLBO is longer than the first one. 

4. The proposed approach can optimally allocate the charging stations with the least impact on the electric 

power distribution network while simultaneously considering EV drivers’ conveniences. 

8. Conclusions 

With the ever-increasing popularity of EVs, the establishment of charging infrastructure has become urgent to 

meet the charging demands and consequently abate greenhouse gas emissions. This paper targets at developing the 

charging infrastructure with the minimum cost and without affecting the operating parameters of the distribution 

network. The contribution of our work not only lies in proposing a simple single objective framework for charging 
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station placement problem but also combining swarm intelligence techniques with TLBO. The superiority of the 

proposed hybrid algorithm in attacking charging station placement problem was clearly shown. The optimal 

charging station placement scheme obtained was found efficient enough to be implemented in real-world 

environment. Our future work will focus on dealing with the optimal placement of EV charging and swapping 

stations, planning of V2G enabled charging stations as well as real-time implementation of the planning scheme. 
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Highlights 

• Novel formulation of charging station placement problem considering economic factor, grid 
parameters and drivers’ convenience 

• Two schemes for hybridization of CSO and TLBO 
• Impact of charger placement on power grid 
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Scheme 1 

Algorithm 3- Pseudo code of  CSOTLBO (Scheme 1) 

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO  

Set t=1 

While (t<gen) 
Activate TLBO 
If (t mod INV)>0 
Activate CSO 
End if 
t=t+1 
End while 
 

Scheme 2 

Algorithm 4- Pseudo code of  CSOTLBO (Scheme 2) 

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO  

Set t=1 

While (t<gen) 
Activate CSO 
Activate TLBO 
t=t+1 
End while 
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