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Abstract-The current concern about the ever-escalating deérfarenergy, exhaustive nature of fossil fuelspgl
warming accompanied by climate change has neceskithe development of an alternate pollution-fresde of
commute. Electric Vehicles (EV) are an environmiinfaendly alternative to reduce the reliancefossil fuel and
pollution. For public acceptance of EVs, functidtyaland accessibility of charging stations is ofrgraount
importance. Improper planning of EV charging stagichowever, is a threat to the power grid stahilivV charging
stations must be placed in the transport netwoduich a way that the safe limit of distributionwetk parameters
is not violated. Thus, charging station placemenblem is an intricate problem involving convolutiof transport
and distribution networks. A novel and simple apmto of formulating the charging station placemeawblem is
presented in this work. This approach takes intmaet integrated cost of charging station placenasntvell as
penalties for violating grid constraints. For ohtag an optimal solution of this placement problemg efficient
evolutionary algorithms, such as Chicken Swarm @jttion (CSO) and Teaching Learning Based Optititina
algorithm (TLBO) are amalgamated together therekiyaeting the best features of the both algorithifise
efficacy of the proposed algorithm is tested byisg selected standard benchmark problems as wetharging
station placement problem. The result of this hykaigorithm is further compared with other algamthused for
this purpose.

Keywords-Charging station, Distribution network, Transpodtwork, Optimization, Cost, CSO, TLBO, Hybrid
algorithm

Nomenclature

Decision variables

b- Bus nhumber where charging station is to be placed

Nrp- Number of fast charging station at bus

Ng,- Number of slow charging station at Hus

Sets

T- Set of nodes of the road network with chargingded

TS Set of superimposed nodes

P- Set of nodes where charging stations are placed



S Set of strong nodes of the distribution netwoakdd on voltage stability
Constant Parameters

Cinsallation fast- INstallation cost of fast charging stations

Cinstalnation sow~ Installation cost of fast charging stations

CPs-Power consumption of fast charging stations

CPgow- Power consumption of slow charging stations

Paectriciy- Per unit cost of electricity

Pyp- Penalty paid by the utility for per unit voltadeviation

Paens Penalty paid by the utility for per unit energytrserved

Teostev - Cost of travelling per km for EV

Nist cs Maximum number of fast charging stations that lsamplaced at a particular bus
Nyowcs Maximum number of fast charging stations thatloamplaced at a particular bus
Shin- Lower bound of reactive power limit of each bus

Srex- Upper bound of reactive power limit of each bus

Lo LOading margin of the network

Np- Total number of bus of the distribution network

Nt~ Total number of nodes of the road network

T Planning period

Functions

Cinstallation- Installation cost of charging station

Coperation- Operating cost of charging station

Coenaity- Penalty paid by utility

VD penaity- Penalty for voltage deviation

AENS oy~ Penalty for energy not served

Crave - Travelling distance cost from point of chargstgtion to point of placement of charging station
Abbreviations

EV- Electric Vehicle

AENS- Average Energy Not Served

VD- Voltage Deviation

GA-Genetic Algorithm

PSO-Particle Swarm Optimization

BA-Bat Algorithm

DE-Differential Algorithm

CSO-Chicken Swarm Optimization

TLBO- Teaching Learning Based Optimization

Indices

i- Bus no of the distribution network



Ncs Total number of charging stations in the network

N tas cs~ Total number of fast charging stations in thenoek
Ngowcs Total number of slow charging stations in theargek
ni-( 0 or 1),m =1 if CS is at bugelsen;=0

Variables

Nk'- Number of fast charging station 8biis

N<- Number of slow charging station &bis

V; "= v/oltage of I" bus for base case

V; - Voltage of I bus after placement of charging station
VD ;- Voltage Deviation of'ibus

Li- Load at f'bus

U; -Duration of interruption atbus

N;- Number of consumer dftus

dcs Distance between the point of charging demandpait of placement of charging station
Pg- Active power generation ofbus

Pg- Active power demand ofibus

Qqi- Reactive power generation Sfbus

Qq-Reactive power demand &t bus

V- Voltage ofi" bus

Y- Magnitude of (i,j}' term of bus admittance matrix

6” - Angle of Y;
0. - Voltage angle of'l bus

J, - Voltage angle of] bus

CSO parameters

RN- Set of roosters

HN- Set of hens

CN- Population of chicks

MN-Set of mother hens

PN- Population of swarm

TLBO parameters

T~ Teacher

m-Mean value of decision variable
R- Random number between 0 and 2

pop- Population size of learners



1. Introduction

Generally speaking, both transportation sector@mer generation sector are fossil fuel reliant. &ample, the
oil consumption of transport sector will rise by%4until 2035 [1]. Thus, the research community ésstantly
preoccupied with concerns about the exhaustivermatd fossil fuels as well as greenhouse gas eomssi
responsible for the global change in climate cood#. As a measure to ameliorate the adverse impfathe
emission of the transportation sector on the enwirent, the 21st century has witnessed a bold tiniiaof
replacement of Internal Combustion Engine (ICEyei vehicles with EVs. However, range anxiety & BVS is
one of the barriers hindering their broad acceptambe development of fully furnished charging asfructure is of
prime importance to facilitate large-scale deplogtmaf EVs. The current pace gives time for eleagricl designers
to adapt with the increasing number of EVs. A suddeplacement of the ICE vehicles with EVs roughigans
more than doubling the electric power productionttie world [2]. Unfortunately, charging station qaent
without careful design and charging managementegfies may considerably degrade the operating peteamof
the distribution network, such as voltage stahilippwer loss, reliability, etc. [2], [3], [45], [46Furthermore,
uncontrolled charging is detrimental to EV batthifg [49], [50]. For a passenger vehicle with a somption is 0,2
kWh/km. 10 kW charger can charge 50 km per one;;hbd® kKW charger can charge 500 km per one hoar, et
Thus, the charger capacity and charging technigéfest driving range and battery lifetime to cemtaixtent. The
placement of EV charging stations in the road nétwoust be coordinated with the distribution netiwvdndeed,
the optimal placement of EV charging stations hémeed the interest of researchers in the comiyubiversity
in the approaches to problem formulation and opétidn algorithms applied for its solution makes ttharging
station placement problem unique and challenginy T&actical formulation of the placement problemdan
employment of efficient algorithms are the two miagportant topics in the optimal placement of cliaggstations.
The complex nature of the charging station placemerblem has resulted in the extensive applicati@ihnature-
inspired algorithms in tackling this demanding pewi.

In this paper, a novel optimization algorithm basedthe amalgamation of CSO and TLBO is proposed fo
dealing with the above charging station placemeablem. CSO is atate-of-the-art evolutionary algorithm that
mimics the food searching process of chicken, atBia mimics the teaching learning procedure. Ibipexted that
the hybridization of these two distinguishing algons can exploit the strengths of each algoritttmis yielding
better optimization results. The present work ssgaificant extension of the conference paper bl Bieal. [4] with
the following new scientific contributions:

1. A single-objective framework of charger placeirisrmeveloped and validated on test network.

2. Two different hybridization schemes of the CSKBD algorithm are proposed and compared with edlelro

3. The new algorithms are evaluated on the badiseo$elected benchmark functions.

4. The statistical performance comparison is cotatlbetween the CSO TLBO algorithm and other cgtédge

methods like GA, PSO, TLBO, and CSO to demonsttatefficiency and effectiveness.

5. The impact of the placement of EV charging etatbads on different operating parameters of fetridution

network is analyzed.



2. Literature Review

In the recent years, considerable research endedasubeen devoted to the optimal placement of B&fging

stations. The existing research work in the paradif EV charging station is discussed in this secti

2.1. Related Work

The charging station placement is a complicatedlpro involving objective functions and constraiats well as
both transport and distribution networks. Deb et [&] discussed different modelling approaches,edtye

functions, and constraints deployed in the chargiagion placement problem. The placement probeemadelled
either by considering the road network or the ifistion network. In some recent research contringj the
placement problem has been modelled by superimgosiad and distribution networks. Another featufethe

charging station placement problem is involvemdnnany objective functions and constraints. Botissical and
evolutionary optimization algorithms have been ueedhe solution of this problem.

In [6]-[10], the charging station placement probleas been solved by only considering transport otwGe et
al. [6] presented a placement scheme of EV chargfiatjon in a test road network with 48 interseatimints. The
authors considered the cost of user’'s loss on e tow charging station as the objective functiohe Tharging
demand of the nodes and the maximum and minimumbeumf charging stations at the nodes were regaaded
constraints in the aforementioned literature. Ththars divided the test network into a number atippans and
employed GA to compute the optimal number of chaggitations for each partition. Liu et al. [7] farkated the
charging station placement problem considering ttaason cost and running cost as the objectivections along
with the highest charging requirement as a comgtrahey applied Adaptive Particle Swarm Optimiaat{APSO)
to cope with this complex problem and made a coisparof the results of APSO with PSO. The adjustntén
inertia factor automatically in APSO makes it sugeto that of PSO. The efficacy of APSO was vaidhon a
road network of Beijing. Bendiabdellah et al. [8frhulated a novel hybrid method combining k medndustering
and GA for the charging station placement probl&his algorithm was capable of finding the locataond number
of charging stations, thereby minimizing instatyatji and travel time cost of EV drivers on their wayhe point of
charging station from the point of charging demafie efficacy of the hybrid algorithm was validatedl a road
network of Cologne, Germany. Dong et al. [9] foratel the charging station placement problem forrtiee
network of Seattle with the minimization of missteigh as the objective function and budget as thestraint. The
authors applied GA in their solutions. Tu et aD][Inodelled the charging station placement probfema road
network of Shenzhen, China considering maximizatbtravel time of EVs and minimization of waitirtigne in
the charging stations as the objective functiore EN range, capacity of charging stations, andgihgrtime were
regarded to be the constraints in the planning made GA was used to obtain the optimal solutions.

Literature [11]-[16] considered only distributionetavork while modelling the charging station placene
problem. Liu et al. [11] formulated the chargingti&in placement problem in a single objective fresmek with
cost as the objective function. Firstly, the caatkdsites of charging stations were identified Baseservice radius
as well as environmental factors, and optimizatwas next performed. Modified Primal Dual Interiooift
Algorithm (MPDIPA) was utilized in this work, andié proposed approach was validated on IEEE 123dsis

system. Yan et al. [12] considered investment essthe objective function, power loss limit, andximaum



capacity of charging stations as constraints inr thlanning model. The authors employed HGA baseudeh

algorithm involving encoding, genetic operatorsd a@abu table so as to obtain the optimal solutiofise

effectiveness of design was validated on IEEE 38 distribution network. Phonrattanasak et al. [i$3d ACO in

the similar charging station placement problem. Tiael developed by them is capable of maximisinarging

serviceability subject to traffic constraints adives distribution network constraints. Zheng et[&#] presented a
unique scheme for charging and battery swappintjostglacement in IEEE 15 and IEEE 43 bus distidout
network considering cost as the objective functiomd power consumption limit, voltage limit, currdimhit as

constraints. A modified form of Differential Evolah (DE) was utilized by them. Pazouki et al. [I®nsidered
financial, technical, and environmental aspectslevfdrmulating the charging station placement peabland

employed GA as the solution. In the aforementiopé&ghning approach, cost, power loss, reliabilitg/tage

penalty, emission were considered as objectivetifome and bus voltage limit, line current limit, peecity of

charging station, power balance of the network @ssttaints. Zhang et al. [16] proposed an integrgi@nning

framework for EV charging infrastructure developmemhe summation of installation cost, operatingstco
maintenance cost, time cost, and electricity cas vonsidered as the objective function in theirkwdhey utilized

Voronoi diagram to find the service region of chaggstation and optimally allocated the candidaizces of

charging station by PSO. Consideration of the impa@ambient temperature, possession rate of migat public
charging spot on EV charging station placement@lzer noteworthy contribution of this work.

Similarly, literature [17]-[20] modelled the placent problem considering superimposition of transgord
distribution network. Wang et al. [17] proposed altirobjective EV charging station planning methadhich
ensured charging service and took into account péwgs and voltage deviation of the distributionwark. They
handled this multi-objective problem by using D&avelopment Analysis (DEA) and a Cross-Entropy Hase
method (CE), and compared the performances obtaitbd®SO. Their results clearly demonstrated thifgesority
of CE over PSO in terms of quality of solution asllvas computational time. The proposed approachwaidated
on superimposed IEEE 33 bus distribution networld &5 node road network. Yao et al. [18] modelled th
placement problem with cost, annualized traffiormland energy losses as objective functions. A Muoljective
Evolutionary Algorithm (MOEA) was utilized for olitang the pareto front and the final planning sckewas
decided by fuzzy logic. Awasthi et al. [19] presshta novel placement scheme of charging statiocepiant for
the city of Allahabad in India by utilizing hybri@A PSO. The authors considered cost, active powgsrleduction
index, and reactive power loss reduction indextagd profile improvement index as objective funesi@nd bus
voltage limit, line current limit, capacity of clging stations as the constraints. The results pteden their work
reveal the superiority of hybrid GA PSO over GA &80 in terms of quality of the solution. Islamakt [20]
formulated the charging station placement probleith wost as the objective function and power limisarging
station capacity, line current limit as constraiftse authors utilized BLSA to attack this optintiaa problem. The
proposed approach was validated on a test netwonkefd by superimposing IEEE 34 bus distributiorwoek and
the road network of Bangi, Malaysia. Literature-[B]] discussed the contributions of different msbers in the
paradigm of charging station placement thereby akewvg the multifarious nature of problem formulati@and

optimization algorithms employed.



2.1. Necessity of new meta-heuristics
During recent years, the paradigm of combinatarfimization has witnessed the discovery of a nunabaovel
meta-heuristic algorithms. Many practical enginegroptimization problems are difficult to solve biassical
algorithms because of their non-linear nature. €harging station placement problem is one of summpex
problems involving numerous variables, objectivactions, and constraints. Hence, there is necessitievising
efficient and fast algorithms for the placementigean. CSO and TLBO are two latest evolutionary Athms
successfully applied by researchers in solving dempngineering optimization problems. For exam@i80 was
applied to handle feature selection [21], commudiggection [22], Wireless Sensor Network (WSN) |zedion
[23], speed reducer design [24], trajectory optatian [25], etc. Similarly, TLBO was successfullgpdied for
parameter optimization of machining process [2@n$mission expansion planning [27], economic |degatch
problem [28], optimization of heat exchangers [28jtimal configuration of microgrid [30], etc. Tldore,
motivated by the success of CSO as well as TLBEbping with such a wide range of optimization peshs, these
two algorithms are amalgamated together to formhyterid CSO TLBO algorithm. The amalgamation of CSO
TLBO can improve the quality of solution and speedconvergence towards to the optimal solution.
3. Prablem formulation

The charging station placement problem is a typmanning problem involving the interaction betwee
transport and distribution networks. Placementsimithg of charging stations are the two prime atitis performed
in the placement problem. From the perspective\bfdEvers, the locations of the charging stationsstrbe easily
accessible and close to the point of charging dememaddition, the placement of these chargingjastia should
not degrade the operating parameters of the disimilb network like voltage profile and reliabilitfherefore, the
placement of charging stations in the road netwoulst be coordinated with the distribution netwdrke literature
reported in Section 2 shows that researchers faweufated the placement problem in a lot of wayshwlifferent
objective functions and constraints. The problensharging station placement is formulated in thwkvas a non-
linear constrained optimization problem. The sdlfeatures and the difference of the present foatah from the
formulation of charging station present in the gxigliterature are as follows.

1. The charging station placement problem is modeheour work under a single objective framework with
cost as the objective function. The operating patans of the distribution network are taken intocamt
by imposing penalty for violation of the safe linoit the operating parameters. In other words, weeho
the complex placement problem in a simple singjeailve framework and also consider all the oparati
parameters of the power grid, whose violation maylétrimental to the safe operation of the network.

2. The reliability of the power distribution network neglected in most of the recent works related to
charging station placement. Unfortunately, exclnsid reliability indices while formulating the cliang
station placement problem is a major research gaphe present work, reliability of the distributio
network is taken into consideration by imposingadgnfor the violation of AENS.

3. The EV driver's convenience is also considered hgimizing the cost of travelling from the point of

charging demand to the charging stations.



The decision variables, objective function, andst@ints of this placement problem are elaborateithé next
subsections.

3.1. Decision variables
The charging station placement problem is a mutiable problem. The locations and number of cimgrgi

stations are the outputs. In this analysis, thex@tlocation and number of both fast and slow ghay stations are
designated as decision variables. Symbolicallydénasion variables are as follows.

b
e Ng
¢ Ng
bOP

The charging stations are placed at the superingposad and distribution network nodes. Moreoverisit
assumed that the charging stations will only begdiaat the strong nodes of the distribution netwathkich are not
vulnerable to voltage instability. ThuB,is a subset of botBandTS.

3.2. Objective function

The objective function is on the basis of minimiaatof overall cost associated with the establishirmef

charging stations. Furthermore, the cost can beligided into the direct and indirect cost. Matheicedty, the
objective function yields:

Min (Cgirect + Cindirect) 1)

The direct cost includes the cost directly assediatith establishment of charging station like itstallation cost
and operating cost elaborated as:

Cdirect = Cinstallation + Coperation (2)
Cinstaliation = (N fastcs X Cingatationfast T Ngowcs ¥ Cinstatationsiow) 3)
Coperation (N 1a5cs XCPrag ¥ Ng,cs XCPy, )X Phectriciny X Tt 4
Np _

NfastcszznileF ®)
i=1
Np _

Nsoncs :Zni x Ng 6)
i=1

n=10i0P ()

From (3) and (4), it is clear that the installateomd operation cost are dependent on the humkfesbénd slow
charging stations to be installed. The installataond operating cost are independent of the locatfocharging
stations because of the assumption that the léoat, building, labour, charger, and electricitystare same for all
the nodes of the entire network.

The indirect cost is the summation of the penaltid@and travel time cost. One of the salient fesgtwf this

problem formulation is distribution network paraerstare included by imposing penalties for voltdgeiation and



AENS. The travel time cost is the additional coktravelling from the node of charging demand te tiode of

placement of charging station. The various terrssaated with the indirect cost are as follows:
Ci ndirect = Cpenalty + Ctravel (8)

C penalty =VD penalty + AENSpenaIty

©)
ND
VD ety = Rp * D VD,
s (10)
—\ybase _y,/
VD, =V,P% —v (11)

As illustrated in (8), the voltage deviation is tbigange in voltage of the buses after the intradoadf charging
station loads. If after the increase of load thikage of the buses of the distribution network drog less than 0.9
per unit, the utility has to pay the penalty fordtage deviation. In our work, the voltage of albtbuses of the
network is computed by forward backward sweep #lgar[31].
AENS iy = Prens ¥ AENS
(12)
Z L U;
2N 13)

Ctravel = dCS xTcoiEV

AENS =

(14)
As illustrated in (13), AENS is a load orientediability index of distribution network giving ardéa how much

energy is not served during a particular time mkr{@4) shows that the travel time cost is dependerihe distance
between the charging point demand and the chasiatgpns. Thus, inference can be drawn that thestitame cost
is a function of the locations, where chargingistet are placed.

3.3. Constraints

The objective function formulated in the previoudbsection is minimized in agreement with some iadigguand

equality constraints as follows:

0< NFb < nfastCS (15)
O< NSb = ndowCS (16)
Smin < S < Smax 791
L < Ly as)

The constraints given by (15) and (16) use the mari and minimum number of fast and slow chargirdgicts

placed at the candidate locations. (17) considezsupper and lower limit of reactive power. (1&eminto account
the maximum safe limit of load that can be addethéonetwork.

In addition to the aforementioned constraints, poever flow balance equation given by (19) and (&W)st be

considered as an equality constraint.



Np
Ry=Ra~Vi 2V}, c0s6-0, 6)=0 4o

Np
Qgi —QiV, jzzlijij Cosal_a-j—eij )=0 (20)

4, Optimization Algorithms

CSO TLBO algorithm was employed in the present workleal with the charging station placement pnoble
defined in the previous section. An overview of CSQOBO and newly developed CSO TLBO algorithm igegi in
this section.
4.1. CSO

CSO is a bio-inspired algorithm proposed by Mengle{32] in 2014, which is inspired by the behavad
chicken swarm, where the intelligence of chickerasw is effectively utilized to obtain the optimailstion. It
imitates the hierarchal order in a chicken swarrd #re food searching process of the swarm. The lptipn of
chicken in the group is subdivided into dominardster, hens, and chicks depending on the fithekesaf the
chickens. The chickens with the highest fithessi@are assigned as roosters, chickens with thé figasss value
are assigned as chicks, and the chickens withnrgdiate fitness value are assigned as hens. Edtatgnt of
mother-child relationship in a random manner istheosalient feature of this algorithm. After ev&time steps,
the hierarchal order, and mother-child relationsdnig updated. Moreover, the algorithm utilizes nlagéal behavior
of hens to follow their group mate rooster and ksito follow their mother. Chickens try to steat tood found by
others, which gives rise to a competition for fandhe group. The algorithm is divided into twopdnitialization
and Update.
In Initialization, the population size and othelated parameters of CSO are first defined. Theeéignvalues of the
population of chicken are evaluated and a hierdroiter is established based on this fithess vakiglustrated in
Fig.1. It is assumed that the number of hens ishtgkest in the group [32]. All the hens are nottimeo hens, and
the mother hens are selected randomly from thefde¢ns. Despite the fact that each hen can have than one

chick, it is assumed that the number of chickess than the number of hens [32], [33].

Fig. 1. Hierarchal relationship in the chicken swar

Utilizing the concepts of set theory, (21) and (2&) deduced:

MN O HN 1)
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PN=RNUHNUCN

(22)
The food searching capacity of different memberthefgroup actually varies. In the update stepfithess values
of the initial population are updated accordingtlie food searching capacities of the different memiof the
group. The update formula of roosters, hens, aitkehs are also different, as explained in (23)2®). The food

searchingcapacity of roosters depend on theirdgnalues updated according to formulae:

X =% x 1+ Randn(0,0%))

(23)
If fi<f,
o?=1 (24)
else

o= exp%) (25)

whererandn(0,6°)presents a Gaussian distribution with 0 meandrstandard deviation. The varialflis the fitness
value of the corresponding andk is randomly selected rooster's indeis a small positive constant to prevent
division by zero.

Hens follow their group mate roosters while searghbod. Interestingly, chickens also have a tengéa steal the

food found by other chickens. Their update algariik given as follows:

X t=xt j+SIxrandx(xiy =X | )+S2xrandx(X; ;=X ;) (26)
SL=ex ~fu 27
P bs( 0 +£) (27)
S2 =exp(f,, — f;) (28)

whererandn is a randomly generated number between 0 antiI[l, N] is an index of rooster, which i8 hen's
group mater 2[4 N] is an index of rooster or hen randomly chosen shati1 is not equal t@2.

The natural tendency of chicks to follow their nmtls represented as follows.

t+1

XIJ _X1 +FLX(XmJ |,j) (29)

where !, ; represents the position dtchick's motherFL is the parameter making the chicks follow its neoth

m, j
FL is generally chosen between 0 and 2.

The pseudo code of CSO is as shown in Algorithm 1.

Algorithm 1-Pseudo code of CSO [32] [43] [44]

Initialize the population of chicken having size N and define other algorithm specific parameters like G, size of RN,
HN,CN, and MN;

Evaluate the fitness value of N chicken, t=0 , establish the hierarchal order in the swarm as well as mother child

11



relationship;

While (t<gen)

t=t+1;

1f(1%G==0)

Establish the hierarchal order in the swarm as well as mother child relationship;

Else

For i=1:PN

If i==rooster

Update its solution by (23);

End if

Ifi==hen

Update its solution by (24);

End if

If i==chick

Update its solution by (24);

End if

Evaluate the new solutions;

Update the new solutions if they are better than the previous one;

End for

End if else

End while

4.2. TLBO
TLBO is an evolutionary algorithm introduced by Rebal. [34]-[36], whichis a population-based op#ation
algorithm mimicking the interactive process of ta@ag and learning. A class of learners constittiespopulation.
The teacher’s knowledge is being transferred toleaeners. The students can learn from their teaabeavell as
their fellow students. The performance of the lessrdepends on the knowledge and capability ofaheher. The
algorithm is divided into two phases: 1. Teachaagghand subsequent 2. Learner phase [34]-[36].
1. Teacher phase- In this phase, the students feamm the teacher, who is an erudite scholar witbfqund
knowledge and skill. The learner having the basefis in a randomly generated population of teadsegenerally
assigned the role of teacher. Each learner leaons the teacher, and is modified as:
Z s =randx(T, ~-Rm,) (30)
Zoew = Zod T L (31)
The objective function value for each learner seidified by transfer of knowledge by the teacher is
recalculated. If the new value of the objectivection for any learner is better than the previons,at is replaced
by the new value. Otherwise, the old learner ig kst is.
2. Learner phase-The learners learn by mutualaotens among themselves. For each leafneany learnegjis
chosen arbitrarily in the learner matrix. The objer function values are compared arbitrarily betwewo
learners. If the value of the objective functiorz@$ lower than the objective function Zﬁ,theithlearner yields to:
Znew = Zog trand x(Z; = Z;) (32)
Otherwise, it becomes:
Zew = Zog Trand x(Z; - Z;) (33)

The pseudo code of TLBO is given in Algorithm 2.

12



Algorithm 2- Pseudo code of TL BO [34]

Set k=1;

Initialize the population size and generate the initial population of students randomly;

Compute the abjective function for all the individuals of the population;

while(k< gen)

{Teacher Phase}

Assign the teacher based on the fithess val ue;

for i=1:pop

Modify each learner by (30), (31);

Evaluate the new solutions;

Update the new solutions if they are better than the previous one;

{End of teacher phase}

{Learner Phase}

Choose two learners Z;and Z,,i#j;

if(fitness of Z better than Z))

Replacei"learner by (32);

Else

Replace i"learner by (33);

End if else

End for

k=k+1

End while

4.3.CSO TLBO

A novel hybrid algorithm CSO TLBO is proposed instlsection. We aimed at a solution that combines th
advantages of CSO and TLBO. In order to improve OLBerformance, the grading mechanism of CSO was
introduced in TLBO. Two different hybridization smhes of CSO TLBO were developed, as described in
Algorithm 3 and Algorithm 4, respectively. In Scherh, TLBO was performed in all the generations, @8® was
periodically invoked in some generations. It wapexted that if CSO was invoked periodically, thidaation rate
of the population can accelerate. In Scheme 2eei@8O or TLBO was performed in each generatiore uthe
involvement of too many algorithm specific parameia CSO, there was a possibility of prematureveogence, if

the parameters were not properly tuned. The solsitidtained by CSO were refined by TLBO.

Algorithm 3- Pseudo code of CSOTLBO (Scheme 1)

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO

Sett=1

While (t<gen)

Activate TLBO

If (t mod INV)>0

Activate CSO

End if

t=t+1

End while

Algorithm 4- Pseudo code of CSOTLBO (Scheme 2)

Initialize the population size, gen and the other al gorithm specific parameters of CSO TLBO
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Sett=1

While (t<gen)

Activate CSO

Activate TLBO

t=t+1

End while

5. M ethodology for solution of charging station placement problem by CSO TLBO

CSO TLBO was employed to cope with the chargingstaplacement problem elaborated in Section 3. The
systematic procedure for solution of the chargilagien placement problem by CSO TLBO is as follows.
Step 1: Initialization
Step 1.1: Input the road network, distribution natevdata, upper and lower limits of different coasits, and set
the different algorithm specific parameters of CH@O like gen, PN, RN, CN, HN, G andINV.

Step 1.2: Generate feasible initial population camky.

The initial feasible population is of the formop, =[ Ape,BpopCpop ]

Pi1 P12 P13 .. P Nfastp,  Nfastp,  Nfastp, - Nrastp,
P21 P22 P23 - P, Nfastp,,  Nfastp, Nfestp; -+ Nfastp,
where Apgy =| P31 P32 P33 - Pam | Bpop =| Nfasp,  Nfasp,  Nfasp,; - Niastps,
pF’Nl pPNZ pPN3 pF’Nm Nfag'ple NfasppNz NfasppNg Nfaspme
NS‘OWPM NS‘OWP12 NS‘OWP13 NS‘OWPIm
NS‘OWP21 N5|0Wp22 N5|0Wp23 NS‘OWPZm
Cpop = Nsiowps, Nsiowps, Neowps; - Nslowpy,
NgOWpPNl NdOVVpPNz NS'OWpPNs NgOWpPNm

The randomly generated initial solution is feasilifat satisfies all the constraints of chargington placement
problem explained in Section 3.3.

Step 1.3: Evaluate the fitness function for thdiahipopulation. Arrange the population in the amting order
according to the fitness function.

Step 1.4: For Scheme 1 of combining CSO TLBO, titvidual with best fitness value is assigned &stdacher.
Steps 2a and 3a are followed. For Scheme 2 of ¢onthCSO TLBO RN, HN, and CN are assigned basethen
fitness value, and Steps 2b and 3b are followed.

Step 2a:Run TLBO.

Step 2a.1: Run TLBO, and update the solution basditness value.

Step 2a.2: If the elements,,, exceed,g,, that element is made equalntgy, . If the elements ofc,, exceed
ngowp » that element is made equahtg,, .

Step 2a.3: Otherwise, check feasibility of the 8otu If the solution is infeasible, repeat Stepl2and 2a.2 until a
feasible solution is obtained.

Step 3a: Check whether the iteration couns divisible byINV. If yes, go to Step 3.1. Otherwise, go to Step 3.5.
Step 3a.l: It is divisible bylNV, run CSO.
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Step 3a.2: Run CSO, and update the solution baséthess values.

Step 3a.3: If the elements,,, exceedy,g,, that element is made equalnigy, . If the elements ofc,, exceed
Ngowp » that element is made equahtg,y, -

Step 3a.4: Otherwise, check feasibility of the 8ol If the solution is infeasible, repeat Ste@ 8nd 3.3 until a
feasible solution is obtained.

Step 3a.5: Update the iteration count.

Step 2b: Run CSO

Step 2b.1: Run CSO, and update the solution basednk and crowding distance.

Step 2b.2: If the elementB,,, exceechtq,, that element is made equalntgy, . If the elements ofc,, exceed

ngowp » that element is made equahtg,, .

Step 2b.3: Otherwise, check feasibility of the #olu If the solution is infeasible, repeat Step12and 2b.2 until
feasible solution is obtained.

Step 3b: Run TLBO

Step 3b.1: Run TLBO and update the solution baseaduking and crowding distance.

Step 3b.2: If the elements,,, exceedhtq,, that element is made equalntgy, . If the elements ofc,, exceed

ngowp » that element is made equahig,, .

Step 3a.3: Otherwise, check feasibility of the Sotu If the solution is infeasible repeat Step13and 3b.2 until
feasible solution is obtained.
Step 3a.4: Update the iteration count.
Step 4: Check whether the maximum generation count is echi true, yield the solution. Otherwise, rep8tep
2 to Step 4.

6. Numerical Analysis

The performances of CSO TLBO in solving some beraskmroblems and charging station placement problem
are demonstrated as follows.

6.1. Solution of some standard benchmark functions

Selected benchmark functions listed in Table 1 vegt&cked using the proposed CSO TLBO. The perfoocma
of CSO TLBO on the standard benchmark functions emmpared with a few state-of-the-art algorithmghsas
DE, PSO, BA, CSO, and TLBO. The statistical analysf the results was performed based on a totdOof
independent runs. The number of iterations was 1fa®0the benchmark functions. The algorithm-specifi

parameters used are given in Table 2.
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Table 1- Benchmark Functions [32]

ID Benchmark Function Dimension Bound Optimum
F1 Sphere 20 [-100,100] 0
F2 Ackley 20 [-32,32] 0
F3 Griewank 20 [-600,600] 0
F4 Rastrigin 20 [-5,10] 0
F5 Axis parallel hyper-ellipsoid 20 [-5.12,5.12] 0
F6 Step 20 [-100, 100] 0
F7 Brown 20 [-1, 4] 0
F8 Exponential 20 [-1, 1] -1
Table 2- Algorithm specific parameters [32]
Algorithm Parameters
PSO c1=c2=1.49445,w=0.729
DE CR=0.9, F=0.6
BA a=y=0.9,%,.=2,A0€[0,2], 1¢[0,1]
CsO RN=0.2*PN, HN=0.6*PN, CN=PN-RN-HN, MN=0.1*PN=G0
CsoO RN=0.2*PN, HN=0.6*PN, CN=PN-RN-HN, MN=0.1*PN, G=1\V=3
TLBO
Table 3- Statistical comparison of CSO TLBO witheat state of art algorithms
Benchmark function Algorithm Best Worst Mean
F1 PSO 0 0 0
DE 0 0 0
BA 1.867408 2.94197 4.18701
CSO 0 0 0
TLBO 0 0 0
CSO TLBO (Scheme 1 0 0 0
CSO TLBO (Scheme 2 0 0 0
F2 PSO 0 0 0
DE 0 0 0
BA 1.48288 2.59402 3.07403
CSO 0 0 0
TLBO 0 0 0
CSO TLBO (Scheme 1 0 0 0
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CSO TLBO (Scheme 2 0 0 0
F3 PSO 0 0 0
DE 0 0 0
BA 0.004 2.82906 15.42094
CSO 0 0 0
TLBO 0 0 0
CSO TLBO (Scheme 1 0 0 0
CSO TLBO (Scheme 2 0 0 0
F4 PSO 10.94454 21.26284 41.78822
DE 8.41884 22.70527 43.9751
BA 88.44729 121.99296 167.60654
CSO 0 0 0
TLBO 0 0 0
CSO TLBO (Scheme 1 0 0 0
CSO TLBO (Scheme 2 0 0
F5 PSO 0 1.29 8
DE 0 0 0
BA 24.34652 39.73613 63.15
CSsO 0 0 0
TLBO 0 0 0
CSO TLBO (Scheme 1 0
CSO TLBO (Scheme 2 0
F6 PSO 0 0 0
DE 0 0 0
BA 1 3.41 6
CSsO 0 0 0
TLBO 0 0 0
CSO TLBO (Scheme 1 0 0 0
CSO TLBO (Scheme 2 0 0 0
F7 PSO 10.94454 21.26284 41.78822
DE 0 0 0
BA 0 0 0
CSsO 0 0 0
TLBO 0 2.1 5
CSO TLBO (Scheme 1 0 0 0
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CSO TLBO (Scheme 2 0 0 0
F8 PSO -1 -1 -1
DE -1 -1 -1
BA -0.41494 -0.20415 -0.12952
CSO -1 -1 -1
TLBO -1 -1 -1
CSO TLBO (Scheme 1 -1 -1 -1
CSO TLBO (Scheme 2 -1 -1 -1

Table 3 reports the results related to statisticahparison of CSO TLBO with other state-of-theagdorithms.
The performance of PSO, DE and BA in optimizing bleechmark functions in Table 1 was studied in [B2vas
observed that for benchmark function F1, F2, F3H&E8, the performance of CSO TLBO was equivaemSO,
DE, TLBO, CSO. For benchmark function F1, F2, F3,F5,F8, the performance of CSO TLBO was much bette
than BA. For benchmark function F4, the performapic€SO TLBO was better than PSO, DE, BA and edaita
to CSO and TLBO. For benchmark function F7, thdgrerance of CSO TLBO was better than PSO, TLBO and
equivalent to DE, BA, and CSO. As a conclusion,gegormance of the proposed CSO TLBO algorithm fwasd
equal to or better than the selected methods. ¥ diacovered that the performance of the two scheaie
combining CSO and TLBO was equivalent on the berahrfunctions in Table 1. However, the number afcfion
evaluation was more for Scheme 2 as compared tensetl,because in Scheme 2, both CSO and TLBO were
performed in all the generations.

6.2. Solution of charging station placement problem

IEEE 33 bus radial distribution network was coupieidh 25 node transport network as shown in Fig2 t
validate the efficacy of the aforementioned aldms. The bus data and line data of IEEE 33 busillision
network were taken from [37],[38] and the road r@kvdata from [6]. The input parameters relateadlgective
function and optimization algorithm were given imable 4 and Table 5, respectively. It was assumad ttie
superimposed nodes were the candidate locationpld@ement of charging stations. The EVs were asdutn
follow the two routes:

e Route 1- (1-2-3-4-5-6-7-8-9-10-13-11-12-15-16-17218B21-14-22-23-24-25)
¢ Route 2-(1-2-3-4-5-6-7-8-9-10-13-11-12-15-16-1721821-14-22-23-24-25)

TS={3,28, 14,16,17,23,6,30,26,20} with respecthe distribution network. TS={9,7,11,12,16,22,8,6}5yith
respect to transport network.

The driving range of EV was 150 km [39],[40], ahé tEVs followed two routes named Route 1 or Roufeh2
point of charging demand were computed and givenTbi4,7,9,13,15,18,22,25}.Table 4 presents the tnpu
parameters of the charging station placement pmoblEable 5 presents the algorithm specific pararaetéd
different popular algorithms for the charging siatiplacement problem. The optimal values of theisitat
variables for minimization of the overall cost ahe& best value of the fithess function were giveTable 6. The

optimization was carried out by employing the tvebhesmes of CSO TLBO as mentioned in Section 4.3samge
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conventional algorithms like CSO, TLBO, PSO, DEJ #&A. The value of the best fithess function obdity the
two hybridization schemes of CSO TLBO was 1.484hjctv was the least as compared to other solutidhs.
supremacy of CSO TLBO in solving charging statidacpment problem was clearly revealed from theltgsu
(Table 6). Figure 3 represents the convergencesanfrdifferent algorithms for the best fitness \allt reveals that
the rate of convergence of both the hybridizatichesnes of CSO TLBO was better than the others. bfamot
important observation from Fig. 3 was that the mfteconvergence of Scheme 2 of combining CSO TLB& w
better than Scheme 1. The main reason behind tesdwe to improved exploration of search spacele®e 2 as
compared to Scheme 1. Figure4 illustrates the ilmtaif charging stations in the road network oledity CSO
TLBO. Node 9 and 22 of the road network were tr@ation of charging station and point of chargingnded of
EV. Intersection of the point of placement of chiaggstation and charging demand would make it coiaré for
the EV drivers to charge the batteries on their wdtyhout having to travel any further distance. ENaving
charging demand at node 4 ,7 and 13 could accesshtirging station located at node 8. But for ntilel8 and 25
that were the points of charging demand of EV,ghgas no charging station in their neighborhoodesehnodes
were actually far away from the substation, andsdtieng buses of the distribution network weredamy from
them. The charging demand arising at these nodedeasatisfied by the charging stations supportedobal

renewable resources or battery swapping stations.

Fig. 2 Test network [4]
Table 4- Input parameters of the charging statiangment problem [4]

Parameter Value
C ingallationfast 3000 $
C installationslow 2500 $
CPrast 50 kW
CI:)slow 19.2 kW
Patectricity 65 $/MWhr
Pwo (VD)? *1000000)$
Paens 0.18%/MWhr
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Table 5 Algorithm specific parameters of differstdte of art algorithms for charging station plaeatrproblem

Algorithm Parameters

PSO cl=c2=2, w=0.1

DE CR=0.6, F=1.5

Cso RN=0.2*PN, HN=0.5*PN, CN=PN-RN-HN, MN=0.3*PN=6
CSO TLBO RN=0.3*PN, HN=0.4*PN, CN=PN-RN-HN, MN=0BN, G=3, INV=5

Table 6 Optimal allocation of charging stations

Optimization technique | Fitness value (best) b Nep Nsp
CSO TLBO( scheme 1)| 1.4841 6 1
3 1 3
23 1 3
CSO TLBO( scheme 2)| 1.4841 6 1
3 1 3
23 1 3
CSsO 1.4870 6 1 3
23 1 3
3 1 2
TLBO 1.4878 3 1 3
23 1 3
28 1 2
PSO 1.4898 23 1 2
6 1 3
1 3
DE 1.4898 23 1 2
6 1 3
1 3
GA 1.5075 23 1 2
3 1 3
28 1
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Fig. 4 Optimal placement of charging station in tbad network obtained by CSO TLBO

6.3. Impact of charging station on distribution network

For an extended analysis, the impact of optimatgatzent of charging stations on different operaiagameters
of the distribution network was analyzed. Tableuflines the values of voltage deviation, reliapilibdices, and
power loss before and after the placement of chgrgiations. The values of voltage deviation andgrdoss after
the placement of charging stations were increasé2l@058pu and 0.0053pu, respectively. It was ewideat the
voltage deviation and power loss after the placéménharging stations were within the acceptalbét! As given
in Table 7, the reliability indices degraded witagement of charging stations. However, even thygatked values
of reliability indices were far below the dead zoraues reported in [41]. Thus, we concluded that ¢harging
stations were allocated without compromising thstridiution network stability and with making theathing

stations accessible to EV drivers.



Table 7 Value of different operating parameterdisfribution network before and after placementlwdrging
stations (by CSO TLBO)

Parameter Before charging station placenjent  Aftarging station placement
Voltage Deviation (pu) 0 0.0058
Reliability SAIFI (interruption/year) 0.0982 0.1383
SAIDI( hour/year) 0.5048 0.7566
CAIDI(hour/interruption) 5.1385 5.8704
AENS(KWhr/yr) 1.9369 2.5233
Power loss(pu) 0.0021 0.0053

6.4. Statistical comparison of different optimization algorithms

Statistical comparison of the quality of solutiondatime complexity analysis were performed for thé
algorithms.The algorithms developed were testeMATLAB 2016a software installed on a computer witte
processor of Intel i7 CPU.One of the salient fezgusf the evolutionary algorithm is the random gatien of the
population. As a consequence, different solutiores @btained from independent trials [47], [48]. dnder to
compare the quality of solutions and time compiegit different algorithms, a statistical analysiassdone on the
basis of a total of 50 independent trials. Tabler@ides the statistical comparison of CSO TLBCQoatym with
other relevant algorithms. The best fitness, wiiis¢ss, and mean fitness of both the hybridizatioheme of CSO
TLBO were found better than those of the other rdlgms. The average execution time of CSO TLBO \eager
than that of the others, which was due to involvetraf both CSO and TLBO. The average execution toghe
Scheme 2 of combining CSO TLBO was longer than ®ehg. Figure 5 illustrates the results of Friedmeaank test.
The CSO TLBO hada better rank thanthree other élgns. Moreover, the rank of Scheme 2 of combinG®0
TLBO was higher than that of Scheme 1. Therefoepitd having longer average execution time, therséc
scheme combining CSO TLBO was more competive tharitst scheme. Table 9 reports the resultsokepaitest.
From these results, we could find out that thereevaifferences in the mean value of objective fiomd of the all
pairs. In addition, the positive t-value indicatldt the mean value of the objective function of0CH.BO was far

better (less) than the other algorithms.
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Table 8 Statistical comparison of CSO TLBO witheasthlgorithms in solving charging station placenyaoblem

Algorithm Best fitness Worst fitness Mean fitness vekage execution
time (sec)
CSO TLBO 1.4841 1.5613 1.5268 315
(scheme 1)
CSO TLBO 1.4841 1.5637 1.5241 42.6
(scheme 2)
CsO 1.4870 1.5688 1.5430 7.87
TLBO 1.4878 1.5637 1.5413 25.56
PSO 1.4898 1.5636 1.5413 18.63
DE 1.4898 1.6199 1.5497 9.28
GA 1.5075 1.6199 1.5584 10.12
Friedman Rank test
23.12
15.68
13.52
8
5
1.28 1.15 I
i’ ) ]
S D 5 &o N & o
& & <
& &
& &
SRS
R
& &

Fig. 5 Friedman rank test for charging station plaent problem
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Table 9 T test results

Algorithm T value
CSO TLBO CSO 3.1610
(Scheme 1) TLBO 3.7500
DE 1.9918

PSO 2.10

GA 2.05
CSO TLBO CSO 5.1610
(Scheme 2) TLBO 3.6324
DE 1.9924
PSO 3.4534
GA 3.7800

7. Discussions

A novel CSO TLBO algorithm was developed in ordersblve the EV charging station placement problem.
Although the existing meta-heuristics techniquesehaeen successful in dealing with many real-wogtmization
problems, it is always recommended to develop rnigarithms with superior performances for particutgses of
problems. Moreover, No-Free-Lunch (NFL) states thatngle algorithm fails to perform well on alktiproblems
[42]. For these reasons, we have proposed a newitalg for coping with the charging station placemeroblem.
Some of the key findings of our work are:

1. The two schemes of combining CSO and TLBO are égeaimpetitive or even better than the state-of-
the-art algorithms, such as GA, PSO, DE, CSO, TLB@] BA in optimizing the benchmark functions in
Table 1.

2. CSO TLBO outperforms GA, DE, PSO, CSO, and TLBGsatving the problem at hand. However, the
average execution time of the proposed algorithloriger than the other state-of-the-art methods.

3. The convergence rate of the second scheme of camgh@SO TLBO is slightly better than the first
scheme. However, the average execution time andveuof function evaluations of the second scheme of
combining CSO TLBO is longer than the first one.

4. The proposed approach can optimally allocate thegihg stations with the least impact on the eiectr
power distribution network while simultaneously satering EV drivers’ conveniences.

8. Conclusions

With the ever-increasing popularity of EVs, theablishment of charging infrastructure has becongenir to
meet the charging demands and consequently abegaetgruse gas emissions. This paper targets atogawglthe
charging infrastructure with the minimum cost anithaut affecting the operating parameters of th&ritiution

network. The contribution of our work not only ligsproposing a simple single objective framewark ¢harging
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station placement problem but also combining swant@lligence techniques with TLBO. The superioritf the
proposed hybrid algorithm in attacking chargingtista placement problem was clearly shown. The oglim
charging station placement scheme obtained wasdfaefficient enough to be implemented in real-world
environment. Our future work will focus on dealimgth the optimal placement of EV charging and swagp
stations, planning of V2G enabled charging statemsvell as real-time implementation of the plagréscheme.
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Highlights
Novel formulation of charging station placementhgemn considering economic factor, grid

parameters and drivers’ convenience
» Two schemes for hybridization of CSO and TLBO

* Impact of charger placement on power grid



Scheme 1

Algorithm 3- Pseudo code of CSOTLBO (Scheme 1)

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO

Sett=1

While (t<gen)

Activate TLBO

I (t mod INV)>0

Activate CSO

End if

t=t+1

End while

Scheme 2

Algorithm 4- Pseudo code of CSOTLBO (Scheme 2)

Initialize the population size, gen and the other algorithm specific parameters of CSO TLBO

Sett=1

While (t<gen)

Activate CSO

Activate TLBO

t=t+1

End while
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