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Measurement of intensity and polarization beatings in the interference
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We experimentally study the intensity and polarization beatings of interfering independent optical fields. Using
the tools of intensity interferometry, we measure the beating harmonicity time and the degree of randomness of
the polarization beating for several combinations of light fields with Poissonian and Gaussian statistics. The
degree of randomness is represented by the effective thickness of a ring on the Poincaré sphere within which
the tip of the Poincaré vector moves. The method is based on two-photon detection, allowing femtosecond-scale
variations of light intensity and polarization to be experimentally characterized. The research contributes to both
fundamental and applied aspects of electromagnetic optics.
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I. INTRODUCTION

Polarimetric characterization of optical beams is necessary
in the diversity of topics concerning classical and quantized
light [1,2]. The traditional concepts cover the Jones vector,
Stokes parameters, Poincaré sphere, Mueller matrices, and
degree of polarization, for instance [3,4]. Concerning the
highly nonparaxial fields, possibly with an evanescent-wave
contribution, several novel polarimetric descriptors such as the
polarimetric dimension [5], degree of intensity anisotropy [6],
and nonregularity [7] have recently been introduced. Interfer-
ence is another fundamental attribute of light with important
applications, e.g., in optical communication and information
processing [3], laser cavity design [8], correlation imaging
[9], spectroscopy [10], and metrology [11]. In the context of
electromagnetic (vectorial) light, interference may show up as
an intensity modulation or polarization-state variation or both,
a fact which has had significant implications in the description
of electromagnetic coherence [12,13].

Despite extensive literature concerning both interference
and polarimetry, interference of electromagnetic beams with
different frequencies has not been much studied. In such
a case the total field exhibits wave beating, in which both
the intensity and polarization state may vary periodically as
well as randomly in time. For independent light beams this
effect was recently theoretically analyzed in Ref. [14]. It was
shown that the beating can be considered essentially harmonic
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within a certain beating harmonicity time which depends
on the beam bandwidths [14]. If the beams have different
polarization states, the polarization evolution of the total field
can be described by a rotating Poincaré vector that draws a
randomized circular trajectory, forming with time a ring on
the Poincaré sphere. The thickness of the ring was predicted
to depend on the statistics that the interfering fields obey [14].

In this Rapid Communication, we experimentally study the
beating effects in the interference of independent optical fields
and measure the beating harmonicity time and the thickness
of the polarization ring on the Poincaré sphere, using opti-
cal sources that obey Gaussian and Poissonian statistics. In
the experiments, we utilize a Michelson interferometer and
a semiconductor photomultiplier tube working in the two-
photon absorption regime, which allows ultrafast variations of
light intensity and polarization to be detected and statistically
characterized [15–17]. The results of this work contain an
experimental verification of the theoretical results in Ref. [14].

II. THEORETICAL BACKGROUND

Let two interfering monochromatic electromagnetic waves
have the same polarization states, but different frequencies.
The intensity of the superposition field is in this case a
harmonic function of time with a period

Tb = 2π/|ω1 − ω2|, (1)

where ω1 and ω2 are the angular frequencies of the waves
[14,17]. If the waves also have different polarization states,
then not only the intensity, but also the polarization of the total
field varies with the same period Tb. The polarization beating
is a continuous periodic change of the polarization state that
can be represented on the Poincaré sphere by a continuous
rotation of the Poincaré vector whose tip traces a circular
trajectory [14,17].
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If the interfering fields are not monochromatic, but have
some well separated spectra, the beating period can still be
calculated from Eq. (1), but with ω1 and ω2 being replaced by
the center frequencies of the fields. However, the beating is no
longer fully predictable, because the amplitudes and phases
of the interfering fields fluctuate. The beating predictabil-
ity (harmonicity) can be studied by measuring the intensity
autocorrelation function 〈I (t )I (t + τ )〉 [18] of a polarization
component of the total field to which both interfering waves
contribute. The autocorrelation function may oscillate, but the
value of its envelope decreases when the intensity correlation
disappears. The function can be normalized as

m(τ ) = 〈I (t )I (t + τ )〉 − 〈I (t )〉2

〈I2(t )〉 − 〈I (t )〉2
, (2)

to obtain m(0) = 1 and m(τ → ∞) = 0. The beating har-
monicity time, denoted by τbh, can be defined by requiring
that the envelope of m(τ ) decreases to 1/2 at τ = τbh.

For independent fields with Gaussian spectra and Gaussian
statistics, one can obtain

τbh ≈ 2(I1 + I2)

I1�ω1 + I2�ω2
, (3)

where I1 and I2 are the average intensities and �ω1 and �ω2

the spectral widths [full widths at half maxima (FWHM)]
of the interfering waves [14]. The beating harmonicity time
can be shorter than the beating period, which at equal I1

and I2 requires that |ω1 − ω2| < �ω1 + �ω2. It is also re-
markable that, if one of the beams is nearly monochromatic
so that �ω1 � �ω2 and we still have I1 = I2, the beating
harmonicity time is approximately equal to the coherence time
of the beam with the wider spectrum. This result is explained
by the fact that the phase and amplitude fluctuations of the
quasimonochromatic component are slow, and the beating
deviates from harmonic only because of random variations of
the broadband component that, on average, take place during
the field’s coherence time. If the intensities considerably
differ, the function m(τ ) is only weakly modulated by beating
and describes mostly the self-correlation of the strong field.
Therefore, in order to measure purely the beating process, the
intensities of the interfering components should be set equal.
Although Eq. (3) is derived for fields with Gaussian statistics,
the experiments show, as we will see in Sec. III, that it holds
also if one or both fields obey Poissonian statistics.

The polarization beating is conveniently described in terms
of the Poincaré vector S = (S1, S2, S3), whose length S0

and the three vector components are equal to the instan-
taneous Stokes parameters S0 = |Ex|2 + |Ey|2, S1 = |Ex|2 −
|Ey|2, S2 = 2 Re{E∗

x Ey}, and S3 = 2 Im{E∗
x Ey} [1,14]. Here,

Ex and Ey can be any two orthogonal vector components of the
total electric field E. If the beating waves are monochromatic
and polarized along the x and y axis, the Poincaré vector S
rotates at a constant speed in a plane perpendicular to the axis
S1 with a period given by Eq. (1). If the wave intensities are
the same, the rotation plane coincides with the S2S3 plane, as
shown in Fig. 1(a). If the fields are polychromatic, the vector S
fluctuates during rotation, and the trajectory of its tip forms a
torus, or a ring, with a certain effective thickness σ on the unit-
radius Poincaré sphere [see Fig. 1(b)]. The Poincaré vector

FIG. 1. Polarization beating of orthogonally polarized, equal-
intensity light waves with different center frequencies illustrated on
the Poincaré sphere. In (a) the waves are monochromatic and in
(b) polychromatic. The path of the rotating Poincaré vector in (b) is
not perfectly circular, filling with time a ring area with effective
thickness σ .

is in this case normalized to have a unit length by dividing
the Stokes parameters with the total intensity of the field. The
quantity σ characterizes the randomness of the rotation of the
Poincaré vector. It has been shown in Ref. [14] that σ can be
expressed in terms of the instantaneous intensities I1 and I2

of the interfering orthogonally polarized fields by calculating
the rms value of the projection of the Poincaré vector on the
direction s⊥ perpendicular to the ring, i.e.,

σ =
√

3
〈(S · s⊥)2〉〈

S2
0

〉 =
√

3

〈
I2
1

〉 + 〈
I2
2

〉 − 2〈I1I2〉〈
I2
1

〉 + 〈
I2
2

〉 + 2〈I1I2〉
. (4)

Above, the normalization factor
√

3/〈S2
0〉 is introduced for

the fields obeying Gaussian statistics with 〈I1〉 = 〈I2〉 to have
σ = 0 if the fields correlate and σ = 1 if they are statistically
independent [14]. The maximum value of 1 implies that the
orientation of the Poincaré vector is fully unpredictable, and
the trajectory of its tip, with time, fills the whole Poincaré
sphere.

If the fields are of the Poissonian statistics and their inten-
sities are high, the instantaneous intensities of the interfering
waves are essentially constant (the signal-to-noise ratio is
high [3]) and the thickness of the ring approaches zero for
both mutually correlated and independent fields. Indeed, as
long as the field intensities are constant, the Poincaré vector
draws a perfect circle, even though its rotation speed randomly
changes in time. If, on the other hand, one of the (independent)
fields obeys Gaussian statistics and the other one Poissonian
statistics, the ring thickness σ takes the value of

√
3/5 [14].

Indeed, if the first field has Gaussian statistics, we obtain
〈I2

1 〉 = 2〈I1〉2, and if the second field is of Poissonian statistics,
we obtain 〈I2

2 〉 = 〈I1〉2 and 〈I1I2〉 = 〈I1〉〈I2〉. Substituting these
results into Eq. (4) and setting 〈I1〉 = 〈I2〉 gives σ = √

3/5.

III. EXPERIMENTAL RESULTS

Equations (2) and (4) are written in terms of the intensity
correlation functions that can be measured, e.g., by using
intensity interferometry and two-photon detection [16,17].
The experimental setup employed in this work is shown in
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FIG. 2. Experimental setup used to measure the beating har-
monicity time. OF: optical fiber; P: polarizer; BS: beam splitter; M:
mirror; L: lens; and PMT: photomultiplier tube. The photomultiplier
tube operates in the two-photon absorption regime as long as the
light frequency ω and the detector band gap Eg satisfy the condition
Eg/2 � h̄ω � Eg, as shown by the inset. VB and CB stand for the
valence and the conduction band, respectively.

Fig. 2. Two independent orthogonally polarized optical beams
with center wavelengths λ1 and λ2 are combined with a
polarizing beam splitter and delivered to a Michelson inter-
ferometer in a polarization-maintaining single-mode optical
fiber. A polarizer (P) is used at the input of the interferometer
to enable the two beams to produce interference fringes. Its
transmission axis is set to an angle at which the powers of the
transmitted beams are equal. The beam splitter of the interfer-
ometer is polarization insensitive. The output beam of the in-
terferometer is focused into a semiconductor photomultiplier
tube (Hamamatsu H7421-50) with a band-gap wavelength of
900 nm. The detector operates in the two-photon absorption
regime in the spectral range of λ ∈ [900 nm, 1800 nm] (see
the inset of Fig. 2). The length of one interferometer arm
can be tuned by moving the mirror at the arm end. The time
difference τ that appears in the intensity correlation function
〈I (t )I (t + τ )〉 of Eq. (2) is determined by the length difference
�l of the interferometer’s arms via τ = 2�l/c. The measured
two-photon-absorption signal at each τ can be written in terms
of the instantaneous intensities I (t ) and I (t + τ ) of the beams
coming from the two arms as [17]

J (τ ) = A[〈I2(t )〉 + 〈I2(t + τ )〉 + 4〈I (t )I (t + τ )〉]
+ B cos(ωavτ ) + C cos(2ωavτ ), (5)

where A, B, and C are proportionality coefficients whose form
is not relevant. The last two rapidly oscillating terms can be
filtered out by averaging, e.g., by Fourier-transforming the
signal and removing the spectral powers around ωav and 2ωav,
where ωav = (ω1 + ω2)/2. The first two terms are equal and
independent of τ . They can be measured by blocking the
beam in one of the arms and measuring J (τ ). The intensity
correlation function 〈I (t )I (t + τ )〉 can therefore be written in

FIG. 3. The photomultiplier signal J (τ ) (green line) and its
filtered version (red line) measured for an amplified spontaneous
emission of an Er-doped fiber. The dashed line is an approximate
envelope function for the red curve. The inset in the left corner shows
the light spectrum (red) that is split into two Gaussian peaks (dashed
lines). The right-corner inset shows a zoomed-in part of the green
curve. The quantities τb and τbh are the beating period and the beating
harmonicity time, respectively. The black solid curve shows fitting to
the red curve, as explained in the text, and �τ = 20 fs.

terms of the filtered signal Jf (τ ) as 〈I (t )I (t + τ )〉 = DJf (τ ) +
F , where D and F are constants.

A. Beating harmonicity time

In the first example, we use the two emission bands of an
Er-doped fiber amplifier, each generating amplified sponta-
neous emission (ASE) obeying Gaussian statistics. Figure 3
shows the source spectrum with the two bands fitted by two
dashed Gaussian curves (see the inset in the left corner). The
generated ASE light can therefore be treated as a superposi-
tion of two optical fields with the center wavelengths λ1 ≈
1532 nm and λ2 ≈ 1553 nm and bandwidths �λ1 ≈ 6 nm
and �λ2 ≈ 21 nm (�ω1 = 4.8 THz and �ω2 = 16.4 THz).
The intensities of these two fields can be evaluated as I i ≈
S0i�λi, where S0i is the peak spectral power density of band i.
These calculations give I1/I2 = 24/22 ≈ 1 and Eq. (3) results
in τbh ≈ 4/(�ω1 + �ω2) ≈ 190 fs. The beating harmonicity
time turns out to be shorter than the beating period that in
accordance with Eq. (1) is τb ≈ 380 fs.

To verify these results experimentally, we coupled the ASE
light to the input fiber of the interferometer in Fig. 2 and
measured J (τ ). The power was kept below 1 mW to ensure
a quadratic dependence of the photomultiplier signal on the
input power [17]. The result is shown in Fig. 3 by the green
line, a fragment of which is shown also in the second inset
for τ ∈ [0, 50] fs. The red line depicts the filtered signal J (τ )
that is equal to the intensity correlation function obtained
from the green curve and scaled in the vertical direction by
tuning D and F . The resulting red curve crosses the center
points between the neighboring maxima and minima of the
rapidly oscillating green curve. The envelope of the red curve
is shown by the dashed line. The measured beating harmonic-
ity time is shown in the figure. Its value is measured with
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FIG. 4. The photomultiplier signal J (τ ) (green line) and its fil-
tered and scaled version (red line) measured for a field composed
of interfering laser beams with the wavelengths of λ1 = 1480 nm
and λ2 = 1310 nm obeying Gaussian and Poissonian statistics, re-
spectively. Their bandwidths are �λ1 and �λ2. The inset shows a
zoomed-in part of the measured curve J (τ ). The quantities τb and τbh

are the beating period and the beating harmonicity time, respectively.
The width 2τbh of the red curve is measured with an uncertainty of
�τ = 180 fs.

an uncertainty determined by �τ = 20 fs shown in Fig. 3.
Thus, we have τbh = 190 ± 10 fs. This corresponds to the
value obtained above from Eq. (3). In addition, the measured
beating period is τb ≈ 380 fs consistently with the theoretical
estimate. This value was obtained by fitting the red line with
the curve C1 + C2 exp (− ln 2τ 2/τ 2

bh ) cos2(πτ/τb), where C1

and C2 are constants. The fitting curve is shown in the figure
by the black solid line. The uncertainty in the measurement
of τb is also on the order of 10 fs. These results demonstrate
good agreement between the theory and the measurements.

Then we examined interference of two orthogonally polar-
ized beams radiated by independent laser diodes, of which one
obeys Gaussian statistics (L1480G1, Thorlabs) and the other
Poissonian statistics (L1310P5DFB, Thorlabs). Their center
wavelengths and bandwidths are λ1 ≈ 1480 nm, �λ1 ≈ 7 nm,
λ2 ≈ 1310 nm, and �λ2 ≈ 0.1 nm, respectively. In terms
of angular frequencies, the bandwidths are �ω1 = 6.0 THz
and �ω2 = 0.1 THz. The powers (intensities) of the two
beams were set equal. Since �ω2 � �ω1, Eq. (3) yields
τbh ≈ 4/�ω1 ≈ 667 fs. The beating harmonicity time is now
much longer than the beating period τb ≈ 38 fs. The measured
signal (green curve) and the intensity correlation function
(red curve) are shown in Fig. 4. The inset shows a zoomed
part of the green curve from which the beating period of
38 fs can be seen. The measured beating harmonicity time is
τbh = 660 ± 90 fs corresponding to the one calculated above.
Again the theoretical results match well to the experimental
ones. In addition, they suggest that Eq. (3) is accurate also for
fields obeying Poissonian statistics.

In order to confirm the validity of Eq. (3) for single-
frequency laser beams both obeying Poissonian statistics,
we replaced the first laser diode (L1489G1) with a single-
frequency one radiating at λ1 = 1550 nm (L1550P5DFB,
Thorlabs). Its bandwidth is �λ1 ≈ 0.1 nm (�ω1 = 78 GHz).

FIG. 5. The photomultiplier signal J (τ ) (green line) and its
locally time-averaged version (red line) measured piecewise for a
field composed of interfering laser beams with the wavelengths of
λ1 = 1550 nm and λ2 = 1310 nm, both obeying Poissonian statis-
tics. Their bandwidths are �λ1 ≈ �λ2 ≈ 0.1 nm. The insets show
two zoomed-in parts of the measured curve J (τ ). The quantities τb

and τbh are the beating period and the beating harmonicity time,
respectively. The full width at half maximum of the red curve is
measured using a Gaussian fitting curve (dotted line), which gives
2τbh = 48 fs with an uncertainty of �τ = 6 ps.

With I1 = I2, we use Eq. (3) to obtain τbh ≈ 4/(�ω1 +
�ω2) ≈ 22 ps while the beating period from Eq. (1) is τb =
28 fs. For scanning τ from −τbh to τbh, the length difference
of the interferometer must be scanned over a distance of about
7 mm with a precision of at least 200 nm. The scanning speed
of the device does not allow the measurement to be done
in a reasonably short time (demanding more than 10 h). To
accelerate the measurement, we scanned τ from −90 to 90 ps
in several steps separated by about 10 ps. In each step, τ was
scanned over an interval of 120 fs with a high resolution, and
then the mirror was shifted by a distance of 1.5 mm without
measurements to the next position. The measurement results
are shown in Fig. 5 by the piecewise plotted green curve.
The insets illustrate the curve segments measured at two steps
around τ = −15 ps and τ = 25 ps. We connected the middle
points of all the measured segments (average values of the
signal) with straight red lines, as shown in the figure, and
obtained an approximate scaled intensity correlation function.
The measured beating harmonicity time is τbh = 24 ± 3 ps
(see Fig. 5) that matches well 22 ps obtained in the calculation.
Also for beams with Poissonian statistics, the agreement
between the theory and measurements is good. The results
support the previous remark that Eq. (3) holds for Poissonian
statistics as well.

B. Polarization-ring thickness

Next, we verify our predictions on the dependence of the
polarization-ring thickness σ given by Eq. (4) on the statistics
of the interfering beams. In the experiments, two independent
light beams with orthogonal polarizations were combined into
a single beam, using a polarizing beam splitter, and sent
directly to the two-photon detector. Let the beams be x and
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FIG. 6. Side view of the polarization ring (green) subtended by
the Poincaré vector on the Poincaré sphere for (a) σ = 0.2, (b) σ =
0.75, and (c) σ = 1.

y polarized having the instantaneous intensities Ix and Iy,
respectively. Since the beams have orthogonal polarizations
and different wavelengths, their focal spots do not overlap per-
fectly at the entrance of the photomultiplier tube. Therefore,
the signal we measure is

J = A
[〈

I2
x

〉 + 〈
I2
y

〉 + a〈IxIy〉
]
, (6)

where a is an unknown coefficient that takes into account
the imperfect overlap of the focal spots. By blocking one of
the beams at a time, we measure the signals Jx = A〈I2

x 〉 and
Jy = A〈I2

y 〉. Since 〈IxIy〉 = (J − Jx − Jy)/(Aa), we use Eq. (4)
to obtain

σ =
√

3
(Jx + Jy)(a + 2) − 2J

(Jx + Jy)(a − 2) + 2J
. (7)

In total, 34 measurements per quantity are done in each exper-
iment. In the first experiment we use two Poissonian single-
frequency Thorlabs’ lasers L1550P5DFB (x polarized, λ1 =
1550 nm) and L1310P5DFB (y polarized, λ2 = 1310 nm),
both with 0.5 mW power, and measure the parameter a. To
ensure that the beam powers are equal, we tune them until
Jx ≈ Jy. In the experiments, the monitored signals are Jx =
4596 ± 62 and Jy = 4611 ± 72, where 62 and 72 are standard
deviations. Then we measure J = 11837 ± 155, and requiring
σ = 0, which holds for independent beams with Poissonian
statistics [see below Eq. (4)], obtain a = 0.57 ± 0.01 from
Eq. (7). We repeat the measurement by changing the power
levels of the lasers and obtain σ values close to 0. As an
example, in an experiment at a low power (0.2 mW), we
obtained Jx = 918 ± 32, Jy = 895 ± 32, and J = 2315 ± 50,
from which it follows that σ = 0.2 ± 0.2. We note that at
this power level, the lasers already operate close to the laser
threshold conditions, at which the intensity fluctuations are
more pronounced. The thickness of the green ring on the
surface of the Poincaré sphere in Fig. 6(a) corresponds to
σ = 0.2.

In the next experiment, we replace the diode L1550P5DFB
with an x-polarized multimode laser diode L1480G1 (λ1 =

1480 nm) that obeys Gaussian statistics. Since the new wave-
length is close to the previous one and we do not change
the setup, the parameter a stays approximately the same. As
an example, at a power level of 0.3 mW for the beams, we
measured Jx = 2960 ± 60, Jy = 1483 ± 39, and J = 5316 ±
73. Insertion of these values into Eq. (7) gives σ = 0.7 ± 0.1.
In another measurement, we changed the power levels and
obtained Jx = 4051 ± 92, Jy = 2147 ± 48, and J = 7301 ±
106, from which it follows that σ = 0.8 ± 0.1. Figure 6(b)
shows a green ring with a thickness of 0.75 on the Poincaré
sphere. The measured values of σ are in good agreement with
the theoretical prediction of σ = √

3/5 ≈ 0.77 for two fields
with different, Gaussian and Poissonian, statistics.

To complete the experiments, we also measured σ for light
composed of two beams with Gaussian statistics, in which
case σ = 1 must hold. In the setup, we used the same x-
polarized multimode diode L1480G1 as in the above example
and a new, fiber-coupled broadband Agilent 83438A erbium
ASE source (the center wavelength is 1550 nm) with the out-
put polarized in the y direction. The center wavelengths of the
sources are closer to each other than in the above examples,
resulting in an improved overlap of the laser spots at the
entrance of the photodetector. We remeasured the parameter
a, using a Poissonian fiber-coupled single-frequency laser at a
1550 nm wavelength (Agilent HP 81689A) instead of the ASE
source and requiring that σ = √

3/5 for equal laser powers. In
this measurement, we obtained Jx = 1070 ± 36, Jy = 502 ±
24, and J = 2104 ± 34, which implied a = 1.01 ± 0.09. Re-
placing the Poissonian source with the Gaussian one and
setting the power levels at the detector to be approximately
0.1 mW, we measured Jx = 659 ± 26, Jy = 615 ± 28, and
J = 1597 ± 44. Using Eq. (7) we then obtained σ = 1.0 ±
0.1 [see Fig. 6(c)], thus verifying the prediction of equally
probable instantaneous polarization states for such fields.

IV. CONCLUSIONS

In this Rapid Communication, we measured the beating
harmonicity times and the polarization-ring thicknesses on
the Poincaré sphere for several superpositions of independent
light beams with different center frequencies. The obtained
experimental results matched well to the theoretically ob-
tained values not only for beams with Gaussian statistics, for
which the theory was originally formulated, but also when one
or both of the beams obey Poissonian statistics. We expect
that the results offer fundamental insights into the polarimetric
properties of light and electromagnetic interference.
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