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Despite a wide range of applications, coherence theory
of random, nonstationary (pulsed or otherwise) elec-
tromagnetic fields is far from complete. In this work,
we show that full coherence of a nonstationary vecto-
rial field over a spatial volume and a spectral band is
equivalent to the factorization of the cross-spectral den-
sity matrix in the spatiospectral variables. We further
show that in this case the time-domain mutual coher-
ence matrix factors in the spatiotemporal variables and
the field is temporally fully coherent throughout the
volume. The results of this work justify that certain
expressions of random pulsed electromagnetic beams
appearing in the literature can be called coherent-mode
representations. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Factorizability of coherence functions can be regarded as the
very definition of full coherence [1]. In the context of classical,
stationary, scalar optical fields, it has been shown long ago that
complete spatial and temporal coherence in a volume implies
that the mutual coherence function can be expressed as a product
of two functions, one depending on the first space–time point
only and the other on the second point [2, 3]. A similar factor-
ization result was later derived in the space–frequency domain
stating that full spatial coherence in a volume at a certain fre-
quency is equivalent with the factorization of the cross-spectral
density function in the spatial variables [3, 4]. Recently, these re-
sults were extended to stationary electromagnetic fields both in
the frequency domain [5] and in the time domain [6], when full
coherence is described in terms of the electromagnetic degree of
coherence introduced in [7] (see also [8, 9]).

In this work, we analyze random, nonstationary, possibly
pulsed, electromagnetic fields and prove that complete coher-
ence over a spatial volume and spectral band (not at a single fre-
quency) is equivalent with the factorization of the cross-spectral
density matrix into a product of two vector functions which
depend on separate spatiospectral points. We further show that
when this condition is met, the field is also temporally fully
coherent in the volume under consideration and the mutual co-
herence matrix factors in spatiotemporal variables. In free space
the spectral and temporal vector functions obey the Helmholtz
equation and the wave equation, respectively, and are diver-

gence free. The results of this work also justify associating the
term coherent-mode representation to some expansions of the
coherence matrices that have appeared earlier in the literature
[10].

The electric mutual coherence matrix, Γ(r1, r2, t1, t2), encom-
passes the second-order spatiotemporal coherence properties
of a nonstationary (pulsed or nonpulsed) electromagnetic field
at a pair of points, r1 and r2, and instants of time, t1 and t2. In
general, the field may have three orthogonal field components
and the elements of the coherence matrix are given by [10] (for
stationary-field counterpart, see [3])

Γjk(r1, r2, t1, t2) = 〈E∗j (r1, t1)Ek(r2, t2)〉, (j, k) ∈ (x, y, z). (1)

Above, Ej(r, t) and Ek(r, t) are two components of a vectorial
complex analytic signal representing the electric field realization.
In addition, the asterisk denotes complex conjugation and the
angle brackets stand for ensemble averaging. In the case of a
random pulse train, the ensemble may consist of different pulses
or sequences of pulses to account for pulse jitter [11]. Henceforth
we assume free space in which the propagation of the coherence-
matrix elements is governed by the two wave equations

∇2
pΓjk(r1, r2, t1, t2)−

1
c2

∂2

∂t2
p

Γjk(r1, r2, t1, t2) = 0, p ∈ (1, 2),

(2)

where ∇p operates on rp and c is the speed of light in vac-
uum. Furthermore, it follows from the divergence condition of
Maxwell’s equations that each coherence matrix element satisfies
the equation

∑
j

∂1
j Γjk(r1, r2, t1, t2) = 0, (3)

where ∂1
j operates on r1. A relation similar to Eq. (3) exists where

the operator is replaced by ∂2
k . The spectral spatial coherence

properties at (angular) frequencies ω1 and ω2 are described
by the cross-spectral density matrix, W(r1, r2, ω1, ω2), whose
elements are written as

Wjk(r1, r2, ω1, ω2) = 〈E∗j (r1, ω1)Ek(r2, ω2)〉, (4)

where Ej(r, ω) and Ek(r, ω) are the Fourier transforms of the
related (square integrable) time domain realizations. Owing to
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the aforementioned Fourier transform relationship, the space–
frequency and space–time coherence matrices obey the integral
relations [10]

W(r1, r2, ω1, ω2) =
1

4π2

∫∫ ∞

−∞
Γ(r1, r2, t1, t2)

× exp[i(−ω1t1 + ω2t2)]dt1dt2, (5)

Γ(r1, r2, t1, t2) =
∫∫ ∞

0
W(r1, r2, ω1, ω2)

× exp[−i(−ω1t1 + ω2t2)]dω1dω2. (6)

Together with Eqs. (2) and (3), the integral relations imply the
Helmholtz equations

∇2
pWjk(r1, r2, ω1, ω2) +

(ωp

c

)2
Wjk(r1, r2, ω1, ω2) = 0, (7)

with p ∈ (1, 2), and the divergence condition

∑
j

∂1
j Wjk(r1, r2, ω1, ω2) = 0. (8)

Another condition is obtained by replacing ∂1
j with ∂2

k . Equa-
tions (1) and (4) indicate that the matrices Γ(r1, r2, t1, t2) and
W(r1, r2, ω1, ω2) are Hermitian in the sense that

Γjk(r1, r2, t1, t2) = Γ∗kj(r2, r1, t2, t1), (9)

Wjk(r1, r2, ω1, ω2) = W∗kj(r2, r1, ω2, ω1). (10)

The essential difference between the coherence properties of
stationary and nonstationary fields is that for the former the
different frequency components are uncorrelated while for the
latter they may be partially or fully correlated. This important
physical feature needs to be taken into account in deriving the
conditions of complete coherence for nonstationary fields and
sets the following analysis apart from that in [4–6].

We next consider the implications of the following inequality
in the space–frequency domain

〈∣∣ N

∑
p=1

apΛp(rp, ωp)
∣∣2〉 ≥ 0, (11)

which is valid for any N real or complex numbers ap and com-
plex random variables Λp(rp, ωp), defined over any N position
and frequency arguments rp and ωp within an observation do-
main D and frequency range ∆, respectively. We first choose
N = 2, and

Λp(rp, ωp) = δp1Ej(rp, ωp) + δp2Ek(rp, ωp), (12)

where the Kronecker deltas, δp1 and δp2, assign to Λp(rp, ωp)
the j and k field components at r1 and r2, respectively. By sub-
stituting Eq. (12) into inequality (11) and using the notation of
Eq. (4), we obtain the relation

[
a∗1 a∗2

] Wjj(r1, r1, ω1, ω1) Wjk(r1, r2, ω1, ω2)

Wkj(r2, r1, ω2, ω1) Wkk(r2, r2, ω2, ω2)

a1

a2

 ≥ 0.

(13)

The inequality (13) indicates that the related 2 × 2 matrix is
Hermitian and nonnegative definite ([12], Sec. 13.5-3). Thus, the
matrix has a nonnegative determinant ([12], Sec. 13.5-6) which,
together with the Hermiticity property in Eq. (10), implies that

|Wjk(r1, r2, ω1, ω2)|2 ≤Wjj(r1, r1, ω1, ω1)Wkk(r2, r2, ω2, ω2).
(14)

Therefore, we can normalize the spectral coherence matrix ele-
ments by defining

µjk(r1, r2, ω1, ω2) =
Wjk(r1, r2, ω1, ω2)

[Wjj(r1, r1, ω1, ω1)Wkk(r2, r2, ω2, ω2)]1/2 ,

(15)

where

0 ≤ |µjk(r1, r2, ω1, ω2)| ≤ 1, (16)

for all (j, k) ∈ (x, y, z). The lower (upper) limits correspond
to complete noncorrelation (correlation) between the j and k
field components of a nonstationary field at (r1, ω1) and (r2, ω2).
Moreover, µjk(r1, r2, ω1, ω2) satisfies the relation

µjk(r1, r2, ω1, ω2) = µ∗kj(r2, r1, ω2, ω1), (17)

which immediately follows from Eqs. (10) and (15).
The degree of coherence for electromagnetic fields in the

spectral domain has been introduced for stationary fields in
[5] (see also [9]). For beam fields it physically describes the
contrasts of spectral density and polarization modulations in
interference [8]. Alternatively, it can be considered as a measure
for the strengths of correlations between the orthogonal field
components in two points at a single frequency [5]. Following
the latter interpretation we can extend the quantity to the case
of nonstationary three-component fields at two space–frequency
points by defining

µ2(r1, r2, ω1, ω2) =
tr [W(r1, r2, ω1, ω2)W(r2, r1, ω2, ω1)]

trW(r1, r1, ω1, ω1) trW(r2, r2, ω2, ω2)
,

(18)

where tr denotes the trace operation. The degree of coherence,
µ (r1, r2, ω1, ω2), can be written in terms of the correlation coef-
ficients in Eq. (15) as

µ2(r1, r2, ω1, ω2) =

∑jk |µjk(r1, r2, ω1, ω2)|2Wjj(r1, r1, ω1, ω1)Wkk(r2, r2, ω2, ω2)

∑jk Wjj(r1, r1, ω1, ω1)Wkk(r2, r2, ω2, ω2)
.

(19)

In view of Eq. (19), the degree of coherence can be regarded
as an intensity-weighted average of the (squared) magnitudes
of the correlation coefficients paralleling the stationary field
interpretation mentioned above. We further see that the field is
incoherent at two space–frequency points, µ(r1, r2, ω1, ω2) = 0,
if and only if the field components are fully uncorrelated at
these points, i.e., µjk(r1, r2, ω1, ω2) = 0 for all (j, k) ∈ (x, y, z). In
addition, the field is considered fully coherent at two space–time
points,

µ(r1, r2, ω1, ω2) = 1, (20)

if and only if the field components are fully correlated, i.e.,

|µjk(r1, r2, ω1, ω2)| = 1, (21)

for all possible (j, k) combinations.
We next consider the implications of complete coherence,

stated by Eq. (20), on the functional form of the cross-spectral
density matrix. To this end, we set N = 3 in inequality (11)
and consider an additional orthogonal field component, El with



l ∈ (x, y, z), at a third point r3 and frequency ω3 in Λp(rp, ωp).
We thus write

Λp(rp, ωp) = δp1Ej(rp, ωp) + δp2Ek(rp, ωp) + δp3El(rp, ωp).
(22)

Inserting Eq. (22) into Eq. (11), and utilizing Eqs. (4) and (15), we
obtain

[
b∗1 b∗2 b∗3

] 
µ11

jj µ12
jk µ13

jl

µ21
kj µ22

kk µ23
kl

µ31
l j µ32

lk µ33
ll




b1

b2

b3

 ≥ 0, (23)

where bp is an arbitrary complex number connected to ap

via bp = ap(δp1Wpp
jj + δp2Wpp

kk + δp3Wpp
ll ), p ∈ (1, 2, 3).

The abbreviations µ
pq
mn = µmn(rp, rq, ωp, ωq) and Wpp

mm =
Wmm(rp, rp, ωp, ωp), with (m, n) ∈ (j, k, l) and (p, q) ∈ (1, 2, 3),
were introduced for convenience. Inequality (23) implies that
the related 3× 3 matrix is Hermitian and nonnegative definite
and, therefore, has a nonnegative determinant [12]∣∣∣∣∣∣∣∣∣

1 µ12
jk µ13

jl

µ21
kj 1 µ23

kl

µ31
l j µ32

lk 1

∣∣∣∣∣∣∣∣∣ ≥ 0, (24)

where the diagonal elements equal unity since µ
pp
mm = 1. By

making use of Eq. (21) and the Hermiticity relation in Eq. (17),
evaluation of the determinant results in

2Re[µ12
jk µ23

kl µ31
l j ] ≥ |µ

12
jk |

2 + |µ23
kl |

2 + |µ31
l j |

2 − 1, (25)

where Re denotes the real part.
We now assume that the electric field is completely co-

herent throughout a volume D and frequency range ∆, i.e.,
µ(rp, rq, ωp, ωq) = 1 for all (rp, rq) ∈ D and (ωp, ωq) ∈ ∆. This
implies that |µ12

jk | = |µ
23
kl | = |µ

31
l j | = 1 holds for any pair of

space–frequency points (1, 2, 3) and field components (j, k, l).
Consequently, Eq. (25) reduces to

Re[µ12
jk µ23

kl µ31
l j ] ≥ 1. (26)

In view of Eq. (21) the correlation coefficients can be written as

µ
pq
mn = exp(iϕpq

mn), (27)

where the notation ϕ
pq
mn = ϕmn(rp, rq, ωp, ωq) is employed for

the phase factors which are real, by definition, and as a conse-
quence of Eq. (17) satisfy

ϕ
pq
mn = −ϕ

qp
nm. (28)

Upon substituting Eq. (27) in inequality (26), we obtain

cos(ϕ12
jk + ϕ23

kl + ϕ31
l j ) ≥ 1, (29)

which is satisfied only if

ϕ12
jk + ϕ23

kl + ϕ31
l j = 2πM, (30)

where M is an integer. Recall from Eq. (22) that j, k, and l cor-
respond to arbitrary field components at (r1, ω1), (r2, ω2), and
(r3, ω3), respectively. We now fix l as well as the related point r3

and frequency ω3. In order to emphasize this we denote l = L,
r3 = r0, and ω3 = ω0. It follows from Eqs. (27) and (30) that

µjk(r1, r2, ω1, ω2) = exp{i[−ϕLj(r0, r1, ω0, ω1)]}
× exp{i[ϕLk(r0, r2, ω0, ω2)]}. (31)

Inserting this result into Eq. (15) we find

Wjk (r1, r2, ω1, ω2) = ξ∗j (r1, ω1) ξk (r2, ω2) , (32)

where

ξ j (r, ω) = [Wjj (r, r, ω, ω)]1/2 exp[iβ j(r, ω)], (33)

with β j(r, ω) = ϕLj (r0, r, ω0, ω). The quantities r0 and ω0 as
well as the index L are arbitrary parameters effectively setting
the references in the three domains, thereby defining the phase
function β j(r, ω).

It then follows that if a field is fully coherent over a spatial
domain D and spectral band ∆, i.e., Eq. (20) holds for all pairs of
spatiospectral points within these regions, the full cross-spectral
density matrix with the elements described by Eqs. (32) and (33)
can be written in the factored form

W(r1, r2, ω1, ω2) = E∗(r1, ω1)ET(r2, ω2), (34)

where T denotes transpose and

E(r, ω) = [ξx(r, ω), ξy(r, ω), ξz(r, ω)]T. (35)

Conversely, inserting the factored matrix of Eq. (34) into Eq. (19),
we recover the condition in Eq. (20). We therefore conclude
that the factorization of the cross-spectral density matrix in a
spatiospectral volume is equivalent with complete spatiospectral
electromagnetic coherence. This is one of the main results of this
work.

Equations (7) and (8) indicate that the complex vector func-
tion E(r, ω) satisfies the Helmholtz equation

∇2E(r, ω) +
(ω

c

)2
E(r, ω) = 0, (36)

and the divergence condition

∇ · E(r, ω) = 0. (37)

These two results imply that a random, nonstationary, electric
field or pulse train does not necessitate, in the limit of complete
coherence, the use of the cross-spectral density matrix but can
be treated in terms of the field-level vector function E(r, ω). The
ensemble in Eq. (4) may be viewed as consisting of identical
realizations, each equal to E(r, ω).

Consider next some consequences of the above results. We
note that in the literature the cross-spectral density matrix of a
general partially polarized and partially coherent nonstationary
electromagnetic field has been described as a coherent-mode
decomposition of the form [10]

W(r1, r2, ω1, ω2) = ∑
n

λnΦ∗n(r1, ω1)Φ
T
n(r2, ω2), (38)

where λn are nonnegative real coefficients and Φn(r, ω) are or-
thonormal mode functions obeying a homogeneous Fredholm
equation of the second kind. In view of the result in Eq. (34), the
terms in Eq. (38) represent fully coherent fields which are mutu-
ally uncorrelated. This observation justifies the term coherent-
mode representation for the sum in Eq. (38).



We now turn our attention to the form of the time-domain
coherence matrix, Γ(r1, r2, t1, t2), under the condition of full spa-
tiospectral coherence stated by Eq. (20), which is equivalent with
the factorization of the cross-spectral density matrix. Substitut-
ing Eq. (34) in Eq. (6) results in

Γ(r1, r2, t1, t2) = Ẽ∗(r1, t1)Ẽ
T
(r2, t2), (39)

where

Ẽ(r, t) =
∫ ∞

0
E(r, ω) exp(−iωt)dω. (40)

Therefore, the electric mutual coherence matrix factors into two
parts depending exclusively on the points (r1, t1) and (r2, t2),
respectively. The time-domain version of the spectral degree of
coherence in Eq. (18) can be introduced as

γ2(r1, r2, t1, t2) =
tr [Γ(r1, r2, t1, t2)Γ(r2, r1, t2, t1)]

trΓ(r1, r1, t1, t1) trΓ(r2, r2, t2, t2)
, (41)

and we readily find that γ(r1, r2, t1, t2) = 1 holds for the field
represented by the factored matrix of Eq. (39). It follows that a
spatially (within D) and spectrally (within ∆) completely coher-
ent nonstationary field is spatiotemporally fully coherent at all
instants of time. This is in contrast to stationary scalar or elec-
tromagnetic fields where full spatial coherence at all frequencies
does not imply complete temporal coherence [13, 14].

We also observe that due to Eqs. (36), (37), and (40), Ẽ(r, t)
obeys the wave equation and is divergence-free in free space.
These are respectively written as

∇2Ẽ(r, t)− 1
c2

∂2

∂t2 Ẽ(r, t) = 0, (42)

∇ · Ẽ(r, t) = 0. (43)

Thus, in time domain, a (random) fully coherent nonstationary
field can be treated by considering the vector function Ẽ(r, t)
and the analysis of the full coherence matrix is not necessary.

Using Eq. (38) in Eq. (6) results in the following decompo-
sition of the time-domain coherence matrix of a nonstationary
electromagnetic field (see also [10])

Γ (r1, r2, t1, t2) = ∑
n

λ
′
nψ∗n(r1, t1)ψ

T
n (r2, t2) , (44)

where λ
′
n = 2πλn are the weights of the orthonormal time

domain mode functions

ψn(r, t) =
1√
2π

∫ ∞

0
ψn(r, ω) exp(−iωt)dω. (45)

Equation (44) expresses the time-domain coherence function as a
sum of coherence functions representing mutually uncorrelated,
spatiotemporally fully coherent fields. Consequently, we may
regard it as a coherent-mode representation of the time-domain
mutual coherence matrix.

Finally, we note that the case of scalar fields is encountered
as a special case of the above analysis if only a single field com-
ponent is retained. Therefore, complete spatiospectral and spa-
tiotemporal coherence of a nonstationary scalar field over a
volume is equivalent with the factorizations of the spectral and
temporal coherence functions.

In summary, our analysis shows that a random nonstationary
electromagnetic field is completely coherent in a spatiospectral
volume in the sense of Eq. (20), if and only if, the cross-spectral
density matrix factors in the space–frequency variables. This

also implies full temporal coherence and the factorization of
the mutual coherence matrix. In free space the vectorial factor
functions obey the propagation equations of the corresponding
domains and are divergence-free. The results also justify the
extension of the term coherent mode to cover nonstationary
electromagentic fields.
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