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Abstract. As environmental monitoring systems increasingly automate
the assimilation of data resulting from measurement implemented by en-
vironmental sensor networks, but also data processing as well as knowl-
edge extraction from processed data and explicit knowledge representa-
tion, the technical components of such systems can automatically obtain
and maintain higher levels of situation awareness, i.e. awareness about
the state of the monitored part of reality. In order to increase confidence
in the correctness of situation awareness maintained by such systems it
is important to explicitly model provenance. We present an alignment
of the PROV ontology with ontologies used in a software framework for
situation awareness in environmental monitoring, called Wavellite. The
extended vocabulary enables the explicit representation of provenance in
Wavellite applications. We demonstrate the implementation for a con-
crete scenario.
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1 Introduction

Endsley defined situation awareness as the “perception of the elements in the en-
vironment within a volume of time and space, the comprehension of their mean-
ing, and the projection of their status in the near future” [8]. Over decades,
situation awareness has been receiving considerable attention in various com-
munities, e.g. human factors and ergonomics [19, 20, 3, 21]. Whether situation
awareness is purely an “individual psychological phenomenon” [22] or is dis-
tributed between human and technical agents continues to be debated [19, 9, 21,
22]. However, applications of situation awareness theory and systems have been
largely limited to military and security domains [19, 18].

Recently, Stocker et al. [23, 27, 25] have adopted Situation Theory [2, 7] and
technologies [14] for situation awareness in environmental monitoring. Today,
environmental monitoring systems often rely on environmental sensor networks
[12] to implement the measurement [10] of properties of physical phenomena
over time and space. Data resulting from measurement is assimilated, processed,
and analyzed in order to obtain information about the monitored environment.



Environmental monitoring systems are arguably not just technical systems. In
fact, on one hand the monitored entities are often organisms or entire ecosystems
and on the other hand people are part of environmental monitoring systems, in
roles such as technicians, scientists, or citizens. Thus, environmental monitoring
systems may perhaps be described as (enviro-)sociotechnical systems [29].

Situations are structured parts of reality [7]. The concept of situation is in-
teresting in environmental monitoring for at least three reasons. First, the entity
that is monitored is a part of reality. For instance, in urban air pollution mon-
itoring the particular volume of urban ambient air is the monitored entity and
is a part of reality. Second, the entity is structured. Following our example, the
structure of the particular volume of urban ambient air is defined by the rela-
tions among the objects that are constituents of the entity, such as particulates
and gases. It is properties of such objects that are typically measured. Third,
environmental monitoring amounts to gaining information about the monitored
part of reality, i.e. about situations.

In environmental monitoring, situation awareness is, traditionally, in the
mind of people, typically experts. Here, Endsley’s model is particularly suit-
able. However, as the technical components of environmental monitoring systems
become increasingly more “intelligent,” distributed situation awareness models
[21] are of interest as well. Indeed, as the technical components increasingly im-
plement data assimilation and processing as well as knowledge extraction and
representation, the technical parts can arguably hold higher levels of situation
awareness—shared with people, such as scientists.

With increasing automation of data assimilation and processing and knowl-
edge extraction and representation in environmental monitoring systems, it be-
comes important to automatically model (data) provenance. Provenance enables
tracing the processes involved in producing data and knowledge and increases
confidence in the correctness of situation awareness obtained and maintained by
environmental monitoring systems, in particular that of their technical parts.
Our aim in this paper is to extend an alignment of ontologies [28] used in a
software framework for situation awareness in environmental monitoring, called
Wavellite, with the PROV Ontology (PROV-O) [15]. As our main contribution,
we present the alignment and discuss its application for a concrete example.

2 Materials and Methods

Wavellite1 [27, 23, ?] is designed to support the implementation of data assim-
ilation, data processing, knowledge extraction, and knowledge representation.
Assimilation is, often, for data resulting in measurement implemented by envi-
ronmental sensor networks. Such data are sensor observations, which are aligned
with the term Observation of the Semantic Sensor Network (SSN) ontology
[4]. Processing is for dataset observations, which are aligned with the term
Observation of the RDF Data Cube Vocabulary (QB) [6]. Knowledge is for

1 http://uef.fi/envi/projects/wavellite



situations and is, specifically, situational knowledge. Situational knowledge is
extracted from dataset observations and is represented as Situation, which is
a term of the Situation Theory Ontology (STO) [14].

An alignment of these three ontologies, plus OWL-Time [13] and GeoSPARQL
[17] for the representation of time and space, respectively, has been proposed in
[28]. This alignment forms the Wavellite Core Ontology (WCO) which we ex-
tended with Wavellite terms (e.g. SensorObservation) to form the Wavellite
Entity Ontology (WEO). Here we modify WCO to include PROV-O and pro-
pose an alignment, consisting of a set of axioms, between the PROV-O and
WEO. As a result, PROV-O joins the WCO family of upper ontologies used
in Wavellite to represent data, knowledge, metadata, and now provenance. We
used Protégé2 to create the alignment.

PROV is a specification for provenance designed for the representation of the
origins of digital objects in form of descriptions “of the entities and activities
involved in producing and delivering or otherwise influencing a given object” [11].
In PROV, provenance is, generally, of entities, which can be physical, digital, or
conceptual. Entities can be derived from other entities and they are generated by
activities. Activities are the processes through which entities come into existence.
Associated with activities are agents, which can be, e.g., persons or, of most
interest here, software.

In addition to the ontology alignment, we also extend Wavellite such that
the software framework supports the representation of provenance in concrete
applications. Thus, provenance records can be persisted and retrieved in a similar
manner as sensor observations, dataset observations, and situations are persisted
and retrieved in Wavellite.

3 Results

In this section we briefly describe the main elements of the alignment. Sensor
observation, dataset observation, and situation are digital objects and, thus,
PROV-O entities. Aligning sensor observations with PROV-O is extensively ad-
dressed in [5]. The authors propose an alignment that aims at reconciling differ-
ent aspects of modelling sensor observations in the SSN ontology (constrained
by its alignment to the DOLCE Ultralite ontology [16]), OGC Observations
and Measurements [1], and PROV-O. As a consequence, the resulting alignment
relies on the introduction of several additional classes.

We follow [5] by adopting a lightweight subset of the alignment axioms. In
particular, SSN Observation is a sub class of PROV Entity; SSN Stimulus is
a sub class of PROV Activity; and SSN Sensor is a sub class of PROV Agent.
Sensor observations are generated by stimuli, are attributed to sensors, and stim-
uli are associated with sensors. Thus, the SSN object property observedBy used
to relate observations and sensors is a sub property of PROV wasAttributedTo.
In Wavellite, sensor observations are not derived from entities.

2 http://protege.stanford.edu



Wavellite implements operators that translate sensor observations into dataset
observations [?]. Translation is an operation. Operators are software and thus
PROV agents. Operations are PROV activities. Operations are associated with
operators. Dataset observations may be derived from sensor observations, are
attributed to operators, and are generated by operations. Wavellite also imple-
ments operators that process a source set of dataset observations into a target
set of dataset observations. Thus, dataset observations may also be derived from
dataset observations. Such operators are associates for the processing operation,
which uses and generates dataset observations. For instance, the Aggregate op-
erator with function mean and time period hour is a PROV agent and associate
for the aggregation activity that uses source sets of dataset observations within
one hour window and generates a singleton target set with hourly mean dataset
observations. Finally QB DataSet is a PROV Entity and datasets can thus be
derived from datasets.

STO objects, notably situations, elementary infons, relations, individuals,
attributes, and values are PROV entities. Any of these objects may be derived
from dataset observations. In this case, extraction (or acquisition) operations
(PROV activities) that are associated with extractors, the operators (PROV
agents), use dataset observations and generate STO objects. For instance, a
classification operation may be associated with a machine learning operator and
classify (use) dataset observations to generate (information about) an individual
involved in a situations. However, any STO object may also be derived from STO
objects. For instance, given information for storms and the location of drivers,
a system may infer information for situations in which drivers are at higher risk
due to storms [24].

In Wavellite, PROV-O enables the explicit representation of metadata de-
scribing the origin of sensor observations, dataset observations, and situations.
This is particularly interesting at the derivation layer of the Wavellite archi-
tecture, where applications can implement arbitrary complex chains of dataset
processing. By modelling datasets and dataset observations as PROV entities,
we can explicitly model the derivation of datasets and dataset observations from
other datasets and dataset observations, respectively, as well as the responsi-
ble processes (activities) and involved software (agents). However, provenance
is interesting also at the situation layer of the Wavellite architecture, where ap-
plications implement the representation of situational knowledge acquired (ex-
tracted) from dataset observations. Here provenance enables Wavellite to relate
situational knowledge with the dataset observations from which it is derived
and with the agents, e.g. data-driven or physically-based models, and activities
involved in knowledge acquisition.

4 Discussion

This section discusses a concrete example. The scenario builds on related work
[26, 27] and can be summarized as follows. The pavement of a road section is
measured for vibration by a sensor network consisting of accelerometers installed
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Fig. 1. Sensor observation ex:44b that resulted in measurement of road pavement
vibration by accelerometer sensing device ex:sd1 on October 24, 2014 at 19:36:57.546
with observation value -0.044921875.

into the ground at one side of the road. Occasionally, vehicles travel the road
section and modify the vibration pattern measured by sensors. Using a trained
artificial neural network, such patterns can be classified in order to detect and
characterize vehicles, for instance as ‘light’ or ‘heavy’.

Figure 1 is an example sensor observation in this scenario. As expected, the
example relies on the SSN ontology to model (meta-)data about the observation,
and on OWL-Time for temporal data. Figure 2 displays the provenance infor-
mation for the example sensor observation in Figure 1. The sensor observation
ex:44b is modelled as a PROV Entity that was generated by the ex:vibration
PROV Activity (SSN Stimulus) and was attributed to the ex:sd1 PROV
Agent (SSN SensingDevice). Given the shared node ex:44b, it can easily be
seen how to join the two graphs shown in figures 1 and 2.
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Fig. 2. Provenance information for the example sensor observation. Modelled are in
particular the involved PROV entity, activity, agent and relations among them.

Sensor observations are translated to dataset observations. Figure 3 shows the
result of such translation for our example sensor observation. Dataset observation



ex:3bc relates to dataset ex:d1 as well as to time and the acceleration value via
two component properties. The graph includes provenance information. It states
that the dataset observation was generated by the ex:so2do (sensor observation
to dataset observation) translation activity associated with the ex:dse (dataset
engine) agent. Perhaps more interestingly, the graph also states that the dataset
observation ex:3bc was derived from the sensor observation ex:44b.
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Fig. 3. Dataset observation ex:3bc of dataset ex:d1 with component properties for
time and acceleration value. The dataset observation was derived from the sensor ob-
servation ex:44b and generated in a translation activity associated to a certain agent.

In the discussed scenario, for a specified time window length and at regular
time intervals, dataset observations in time domain are processed to vibration
patterns in frequency domain [27]. Vibration patterns are dataset observations
with component property for time and one for each represented frequency compo-
nent. Vibration patterns are then classified using trained Multi-Layer Perceptron
artificial neural networks in order to detect and characterize vehicles travelling
on the road section. Characterization determines whether the observed vehicle
is light or heavy. Vehicles are individuals in situations. We can model such sit-
uations as supporting an infon with vehicle-at-relation and two objects, one
for the individual vehicle and the other for the temporal location.

Figure 4 is an example. The situation supports an infon which states that
a vehicle travelling on the road section was detected at 20:05:36 and was char-
acterized as being light. The example also includes provenance information for
the vehicle individual. It states that the individual was derived from the ex:aa3

PROV Entity (which an expanded graph would additionally type as dataset ob-
servation) and that it was generated in the ex:classification PROV Activity

associated with the ex:se (situation engine) PROV Agent.

The discussed example demonstrates how the provenance of information for
objects observed in real world situations by an environmental monitoring system
can be traced through a complex data processing chain down to the original
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Fig. 4. Situation supporting a vehicle-at-relation infon involving two objects, an
individual light vehicle and a temporal location. The graph also includes provenance
information for the vehicle individual.

sensor observations. Provenance also tracks the activities and agents involved in
transforming entities. Systems can query the RDF data according to whether
the interest is for situational knowledge or for the provenance of such knowledge.

5 Conclusion

We presented an alignment of a suite of ontologies useful to situation-aware en-
vironmental monitoring systems with PROV-O, the W3C provenance ontology.
Related work on the alignment of the SSN ontology and PROV-O proved use-
ful here. We have presented a basic alignment of PROV-O with entities beyond
sensor observations required in situation-aware environmental monitoring sys-
tems, namely dataset observations and situations. Note that such alignment is
independent of concrete software implementations, such as Wavellite.

The discussed example for situations involving vehicles travelling a road sec-
tion demonstrates how systems can annotate, during processing, sensor observa-
tions, datasets and their observations, and situations with provenance informa-
tion. Provenance can thus support making transparent the often complex data
processing and knowledge extraction chains implemented in situation-aware en-
vironmental monitoring systems.

There exist several directions for future work. On one hand, our alignment
consists of only few key axioms. More work can be done to study how to improve
the alignment. It is also interesting to study the possible advantages of adopting
the alignment proposed by Compton et al. in its entirety. On the other hand, the
ideas and implementation presented here can be developed for a concrete system
and application. The data and provenance information resulting in such a system
can be used to more concretely study the potential of provenance information
in a situation-aware environmental monitoring system.
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