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Abstract

Diffuse optical tomography is an imaging modality where an image is obtained by
reconstructing the spatial distributions of optical parameters from near-infrared optical
measurement data. Typically in diffuse optical tomography, distributions of absorption
and scattering parameters are reconstructed. However, if multiple wavelengths are used,
concentration of light absorbing molecules can be estimated. This spectral diffuse optical
tomography utilises a model that connects molecule concentrations and absorption spectra
of the molecules to form the (total) absorption coefficient.

In this thesis, spectral diffuse optical tomography was investigated. A model for de-
scribing light propagation in multi-wavelength diffuse optical tomography was studied and
its numerical approximation was implemented. The inverse problem of estimating the con-
centrations of light absorbing molecules was derived and implemented. The approach was
evaluated using numerical simulations. In addition to known spectra, also uncertainties
in the spectra and compensating the related errors using Bayesian approximation error
modelling were studied.

In the simulations, various concentration and scattering parameter distributions were
reconstructed using the approach. For comparison, a reference set of reconstructions was
computed using a technique in which estimates of optical parameters were first computed,
and chromophore concentrations were estimated from the optical parameters. In the sim-
ulations, the direct estimation technique was consistently found to provide more accurate
reconstructions compared to the reference technique. Furthermore, the Bayesian approxi-
mation error approach was found to successfully reduce errors arising from inaccuracies in
the approximated spectra.
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Tiivistelmä

Diffuusi optinen tomografia on kuvantamismenetelmä, jossa kuva tuotetaan rekon-
struoimalla optisten parametrien alueelliset jakautumat lähi-infrapunamittauksista. Tyy-
pillisesti diffuusissa optisessa tomografiassa rekonstruoidaan absorption ja sironnan jakau-
mat. Useita aallonpituuksia käyttämällä voidaan kuitenkin estimoida valoa absorboivien
molekyylien pitoisuudet. Spektraalissa diffuusissa optisessa tomografiassa hyödynnetään
mallia, jossa kokonaisabsorptiokerroin muodostetaan yhdistämällä molekyylipitoisuudet ja
molekyylien absorptiospektrit.

Tässä pro gradu -tutkielmassa tarkasteltiin spektraalia diffuusia optista tomografiaa.
Työssä tarkasteltiin valon etenemisen mallia usean aallonpituuden diffuusissa optisessa
tomografiassa ja hyödynnettiin mallin numeerista ratkaisua. Työssä johdettiin valoa ab-
sorboivien molekyylien pitoisuuksien estimoinnin käänteisongelma, ja lähestymistapaa tes-
tattiin numeerisilla simulaatioilla. Tunnettujen spektrien lisäksi työssä tarkasteltiin myös
spektrien epätarkkuuksia ja niihin liittyvien virheiden kompensoimista Bayesilaisella ap-
proksimaatiovirhemenetelmällä.

Simulaatioissa rekonstruoitiin useita pitoisuus- ja sirontaparametrijakaumia spektraalia
lähestymistapaa käyttämällä. Rekonstruktiot laskettiin myös vertailumenetelmällä, jossa
optisten parametrien estimaatit laskettiin ensin ja kromoforipitoisuudet estimoitiin opti-
sista parametreistä. Simulaatioissa suora estimointi tuotti johdonmukaisesti tarkempia
rekonstruktioita kuin vertailumenetelmä. Lisäksi Bayesilaisen approksimaatiovirhemene-
telmän todettiin vähentävän arvioitujen spektrien epätarkkuuksista johtuvia virheitä.
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Nomenclature

Abbreviations
BAE Bayesian approximation error
CW Continuous wave
DA Diffusion approximation
DCE Dynamic contrast enhanced
DOT Diffuse optical tomography
DW Diffusion weighted
FEM Finite element methods
MAP Maximum a posteriori
MRI Magnetic resonance imaging
NIR Near-infrared
PET Positron emission tomography
SDIR Spectral derivative image reconstruction
TPSF Temporal point spread function

Symbols
χ Characteristic function of disjoint pixels
ε Approximation error
ηµ Means of optical parameters
ηe Mean of (measurement) noise
ηn Mean of total errors
ηx Means of chromophore concentrations and scattering coefficients
ηελi Approximation error mean at λi
Γ Exitance
Γµ Covariance of optical parameters
Γe Covariance of random noise
Γn Covariance of total noise
Γx Covariance of chromophore concentrations and scattering coefficients
Γελi Approximation error covariance at wavelength λi

Γ̂ Approximated covariance
µ̂ Estimated optical parameters
τ̂ Estimated scattering coefficients
ĉ Estimated concentrations
n̂ Outward unit boundary normal
ŝ′ Light propagation direction
ŝ Scattering direction
x̂ Estimated chromophore concentrations and scattering parameters
κ Diffusion coefficient
κh Discretised diffusion coefficient
λ Wavelength
λRef Reference wavelength
J Jacobian
N Normal distribution
U Uniform distribution
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µ′λis Scattering coefficient at wavelength λi
µ′s Reduced scattering coefficient
µ′s,Ref Reference reduced scattering coefficient
µ Vector containing optical parameters
µa Absorption coefficient
µha Discretised absorption coefficient
µλia Absorption coefficient at wavelength λi
µs Scattering coefficient
µt Light attenuation coefficient
µa,i Absorption coefficient of the i’th chromophore
ν Frequency
Ω Domain
ω Angular modulation frequency of an input signal
∂Ω Boundary
Φ Photon density vector
φ Photon density
π Probability density
σ1, σ2 Standard deviations determining the inclusion size and smoothness
σe Standard deviation of the noise
σx̂j Approximated standard deviation of element j in the estimated parameter vector
c Speed of light in a vacuum
ϕ Nodal basis function
~r Position
ζ Refractive index mismatch coefficient
ζk Step length
A Forward operator
aµa Lower limit of a sampling interval
aµb Upper limit of a sampling interval
Aci Magnitude of a ci inclusion
B FEM matrix
b Scattering power
C FEM matrix
ci Concentration of the i’th chromophore
ci,b Background concentration
D FEM matrix
dΩ′ Differential solid angle element
dj Position of the j’th light source
e Random noise
F Product of (experimental) noise Cholesky decomposition and the forward operator
g Scattering shape parameter
gk Gradient
Hk Approximation of a Hessian matrix
K FEM matrix
L Radiance
Lµ Cholesky decomposition of optical parameters
Le Cholesky decomposition of noise
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Ln Cholesky decomposition of total error
Lx Cholesky decomposition of the prior of the chromophore concentrations and scattering

parameters
n Total error
ND Domain dimension
Ne Number of elements
Nn Number of nodes
Ns Sample size
P Phase function
Q FEM matrix
q Source distribution on the boundary
r1, r2 Elements of a 2D position vector
rN Sample from a normal distribution
S Power of the light sources
t Time
x Vector containing chromophore concentrations and scattering parameters
y Observations
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1 Introduction

There has been increasing interest in utilising electromagnetic fields in biomedical optical imag-
ing since 1990s’, and thus novel techniques such as electrical impedance tomography (EIT) and
diffuse optical tomography (DOT) have been developed. The interest in utilising light arises
from its capability to provide information on tissue chromophores such as oxygenated and de-
oxygenated haemoglobin. Overall, utilising light in biomedical applications is attractive because
measurement systems can be made compact and portable, and light does not pose the same
hazards as other emission types such as x-rays in computed tomography (CT) and positrons
in positron emission tomography (PET). DOT uses near-infrared light (NIR) to image body
structure and function, and it has applications in fields such as functional cortical imaging and
optical mammography [1].

In DOT, the objective is to obtain an image (a reconstruction) of the spatial distribution
of light absorbing chromophores in the target. Images of the target volume are reconstructed
using boundary measurement data, to quantify the spatially distributed optical properties of the
medium. Light attenuation in the medium is assumed to result from both light absorption and
scattering inside the target volume. Commonly, DOT images are spatial distributions of optical
absorption and scattering coefficients in the target volume. These optical parameters can be
used to estimate chromophore distributions when the corresponding chromophore absorption
spectra are known [2].

The image reconstruction problem in DOT, where optical parameters are estimated from
the light measurements, is an ill-posed inverse problem. Ill-posedness means that even small
errors in measurements or modelling can cause large errors in the reconstruction. Solving the
inverse problem requires solutions to the optical forward problem, in which the measurements
are computed with known optical parameters and measurement setup configurations i.e. light
attenuation measurements are determined from known optical parameters.

Although in many cases absorption and scattering coefficients are estimated in DOT, a
lot of interest lies in reconstructing concentrations of light absorbing molecules. Estimation of
chromophores is called spectral diffuse optical tomography [3]. In spectral DOT, a target volume
is scanned using light at multiple wavelengths. Since absorption coefficients of chromophores are
wavelength-dependent, using multiple wavelengths allows differentiating various chromophore
concentrations [3].

Estimation of chromophore concentrations has been conventionally performed as a next step
after optical parameters are estimated [2]. Alternatively, chromophore concentrations and scat-
tering parameters may be directly estimated from the imaging data [4]. This approach expresses
the light transport data as a function of chromophore concentrations and scattering parame-
ters. A study has shown that utilising spectral data and models can reduce noise, improve
tissue water quantification and suppress imaging artifacts when compared to the conventional
method [4]. Spectral DOT commonly assumes that the chromophore absorption spectra are
known. The assumption is not necessarily accurate. Utilising inaccurate absorption spectra
can cause imaging errors [5].

In this thesis, the Bayesian approach to the inverse problem of spectral diffuse optical to-
mography is formulated. The image reconstruction problem is formulated as a minimisation
problem and solved using a Gauss-Newton method. The diffusion approximation (DA) is used
to model light propagation. Uncertainties in the solution are studied using Gaussian approxi-
mations for the posterior densities. Uncertainties in the chromophore spectra and their impact
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on the reconstructed images are studied. Further, modelling of the these uncertainties us-
ing Bayesian approximation error modelling is proposed. The methodology is evaluated using
numerical simulations.

The rest of the thesis is structured as follows. Section 2 reviews the background of spectral
diffuse optical tomography by describing the optical parameters and models needed to perform
spectral DOT imaging, introducing the modelling and numerical implementation used for spec-
tral DOT simulations of this thesis and reviewing relevant clinical applications. In Section 3,
a minimisation problem for solving the spectral DOT problem is formulated and the Gauss-
Newton approach used for solving the minimisation problem is described. Section 4 presents
the set-up and results of the spectral DOT simulations performed in this thesis. Section 5
draws conclusions of the work.
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2 Diffuse optical tomography

2.1 Experimental setup

Diffuse optical tomography is performed using near-infrared (NIR) light sources and detectors
that are attached to the surface of the imaged target [6]. Sources are used to introduce visible
or near-infrared light in the target, and the transmitted light is measured using light sensitive
detectors. In tomographic measurements, the sources and detectors are generally placed around
the target to obtain data from a comprehensive set of angles and directions instead of solely on
one side [1]. For example, DOT imaging of neonatal brain has been performed using a flexible
headband to which the sources and detectors were attached [7].

Three types of imaging systems have been developed for DOT: continuous wave (CW) sys-
tem, time-domain system and frequency domain system [1]. Examples of data types measured
with different systems are presented in Figure 1. In a continuous wave imaging system, the
sources either illuminate the tissue with a constant light intensity or the NIR light signal is
modulated at a low frequency [1]. The signal between a specific source-detector pair is isolated
from the total signal by activating the sources at separate times or by having the sources trans-
mit the signal at different frequencies. The signal from a given light source can be isolated from
the frequency-encoded signal using lock-in amplifiers or Fourier transformation.

In a time-domain system, the light emission from the NIR sources is pulsed and photon
counting detectors are commonly used for signal detection. This enables measuring photon
flight times and approximating the temporal point spread function (TPSF). The TPSF is the
temporal distribution of photons transmitted in a light pulse and it may be used to extract the
target volume optical properties [8].

A frequency-domain system consists of amplitude-modulated sources and is used for deter-
mining the reduction in signal amplitude and phase shift [1]. Compared to the CW system, the
time-domain and frequency-domain systems are capable of imaging large thicknesses of tissue
with a higher resolution [1]. Effective imaging of tissues below 6 cm in depth commonly requires
the use of photon counting detectors and pulsed sources characteristic to a time-domain system
[1]. While time-domain systems are especially sensitive as imaging systems, frequency-domain
systems are more cost-effective and easier to develop.

One of the challenges faced by DOT is a high dependence on surface coupling. Surface
coupling refers to differences in skin contact properties between optical sensors. For example,
the firmness of optical sensor placement has a notable impact on the measurements. Therefore,
a calibration routine to account for the varying surface coupling between optical sensors is
required. Alternatively, a difference imaging approach to DOT can be used to cancel out errors
induced by unknown surface coupling properties [9]. As opposed to absolute imaging, where a
single measurement set is used to image target optical properties, difference imaging estimates
the temporal change in optical parameters from data sets yt1 and yt2 measured at time instants
t1 and t2.
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Figure 1: An illustration of data that may be obtained when a light signal passes through the
target medium. A continuous wave system (top row) measures the decrease in light intensity
(I) versus time (t), a time-domain system (middle row) may be used to measure the temporal
point spread function (TPSF) and the frequency-domain system (bottom row) is sensitive to
the change in light signal amplitude (A) and phase (P).
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2.2 Forward modelling

2.2.1 Light transport modelling

The forward problem in diffuse optical tomography is to solve the measurable data when optical
parameters of the object, measurement configuration and the amount of input light are given.
Absorption is a light-matter interaction mechanism where electromagnetic field energy of light
is converted into internal energy of the medium. In scattering, the propagation direction of light
changes as a result of light interacting with the medium. Scattering has a high contribution
to the total light attenuation, which makes it practical to model near-infrared light transfer
through medium as a diffusive process [10, 11].

Photon transfer through a medium can be modeled with the radiative transfer equation

iω

c
L(~r, ŝ) =− ŝ · ∇L(~r, ŝ)− µtL(~r, ŝ)

+ µs

∫
4π

L(~r, ŝ′)P (ŝ′ · ŝ)dΩ′ + S(~r, ŝ)
(1)

with a boundary condition

L(~r, ŝ) =

{
L0(~r, ŝ), ~r ∈ ∪jdj , s · n̂ < 0

0, ~r ∈ ∂Ω \ ∪jdj , s · n̂ < 0
(2)

where ω is the angular modulation frequency of the input signal, i is the imaginary unit, c
is the speed of light, µt is the attenuation coefficient of the medium, µa is the absorption
coefficient and µs is the scattering coefficient. The attenuation coefficient is the probability of
light extinction in a medium through absorption or scattering and is computed as µt = µa+µs.
Further, L(~r, ŝ) is radiance at position ~r towards the direction of unit direction vector ŝ [12].
Radiance L is the spectral radiance Lυ(~r, ŝ) integrated over a frequency interval [υ, υ + ∆υ]

L(~r, ŝ) = Lυ(~r, ŝ)∆υ. (3)

Spectral radiance Lυ(~r, ŝ) is the energy flow through area perpendicular to the flow direction
per solid angle, in a time unit and per temporal frequency. Phase function P (ŝ′ · ŝ) is a
probability density function that describes the probability that light propagating towards the
direction ŝ′ scatters towards unit vector ŝ, dΩ′ is a differential solid angle element around
direction ŝ′. Henyey-Greenstein scattering function is a phase function for isotropic materials.
The three-dimensional form of the Henyey-Greenstein scattering function is

P (ŝ′ · ŝ) =
1

4π

1− g2

(1 + g2 − 2gŝ′ · ŝ)3/2
(4)

and the two-dimensional form is

P (ŝ′ · ŝ) =
1

2π

1− g2

1 + g2 − 2gŝ′ · ŝ
. (5)

The shape of the scattering function is determined by a scattering shape parameter g, g ∈]−1, 1[
[13]. Additional sources in the medium produce energy with the power quantified by the
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function S(~r, ŝ) per volume element, per unit solid angle element and in a unit time instant
([S] = W/(m3sr)). L0(~r, ŝ) is radiance at sources occupying positions dj at the boundary ∂Ω
and n̂ is a normal vector of ∂Ω. The sum of the four terms in the radiative transfer equation
(1) describe how much different factors contribute to the rate of change in radiance. The term
−ŝ · ∇L(~r, ŝ) quantifies the energy divergence out of a volume element, the term −µtL(~r, ŝ)
describes energy loss due to photon extinction, the term µs

∫
4π
L(~r, ŝ′)P (ŝ′ · ŝ)dΩ′ represents

the energy incident on the volume element from the surrounding space and the term S(~r, ŝ)
describes the energy generation from a source in the volume element. [14]

Generally in DOT, the DA of the RTE is used as the model for light propagation [6]. The
DA can be obtained through approximating the radiance L(~r, ŝ), phase function P (ŝ′ · ŝ) and
source power S(~r, ŝ) by truncating the Taylor expansions of these functions [10]. Additionally,
the angular distribution of radiance L(~r, ŝ) is assumed to be nearly uniformly distributed and
the light sources are assumed to be isotropic. In practice, these approximations are valid in a
medium where µa << µs, which is a valid assumption for most biological tissues. The frequency
domain DA is

−∇ · κ(~r)∇φ(~r, ω) +

[
µa(~r) +

iω

c

]
φ(~r, ω) = q0(~r, ω), ~r ∈ Ω (6)

with the boundary condition

φ(~r, ω) +
ζ

2γ
κ(~r)

∂φ(~r, ω)

∂n̂
= q(~r, ω), ~r ∈ ∂Ω, (7)

where

κ(~r) =
1

ND[µa(~r) + µ′s(~r)]
(8)

is the diffusion coefficient at position ~r, µ′s = (1− g)µs is reduced scattering coefficient, φ(~r, ω)
is the photon density at angular modulation frequency ω, q0(~r, ω) is an isotropic light source
inside the medium, ζ is a coefficient that accounts for the refractive index mismatch at the
boundary ∂Ω, n̂ is the outward unit boundary normal, q(~r, ω) is the source distribution at
position ~r on the boundary, γ is a dimension dependent constant that has a value 1

π in 2D and
1
4 in 3D, the domain Ω is limited by the boundary ∂Ω and ND is the dimension of domain Ω
so that ND = 2 for a 2D domain and ND = 3 for a 3D domain. Photon density is radiance
integrated over angular directions

φ(~r, ω) =

∫
Ω

L(~r, ŝ)dŝ. (9)

The measurable quantity in DOT is the exitance Γ. Using the DA, the exitance for a light
source i and a detector j can be obtained from the equation

Γij(~r, ω) =

∫
−κ(~r)

∂φi(~r, ω)

∂n̂
dΩ r ∈ dj , (10)

where n̂ is the outward normal of the boundary at position ~r and dj ∈ ∂Ω are the detector
locations on the boundary [15].
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2.2.2 Finite element implementation

In this work, we use finite element method (FEM) to approximate the solution of the DA. A
domain Ω is divided into Ne elements so that the element vertices connect at one of the Nn
vertex nodes. Photon density φ is approximated as

φ(~r, ω) ≈
Nn∑
j=1

Φj(ω)ϕj(~r, ω) (11)

where ϕj are nodal basis functions of the finite element mesh and Φj(ω) are photon densities in
the nodes of the finite element mesh. The optical absorption, scattering and diffusion coefficients
are approximated as

µa(~r) ≈
Nn∑
k=1

(µa)kϕk(~r) (12)

µ′s(~r) ≈
Nn∑
k=1

(µ′s)kϕk(~r) (13)

κ(~r) ≈
Nn∑
k=1

κkϕk(~r) (14)

where ϕk are piece-wise linear nodal basis functions [15]. A nodal coefficient vector Φ(ω) of
nodal photon densities Φj(ω) can be solved by solving a linear system

[K(κ) +D(µa) +
1

2ζ
B + iωC]Φ(ω) = Q(ω) (15)

where Φ(ω) is a vector of photon densities Φj(ω). Further, K, D, B and C are sparse symmetric
positive definite system matrices of the following form

Kij(κ(~r)) =

N∑
k=1

κk

∫
Ω

ϕk(~r, ω)∇ϕj(~r, ω) · ∇ϕi(~r, ω)d~r (16)

Dij(µa(~r)) =

N∑
k=1

(µa)k

∫
Ω

ϕk(~r, ω)ϕj(~r, ω)ϕi(~r, ω)d~r (17)

Cij =
1

c

∫
Ω

ϕi(~r, ω)ϕj(~r, ω)d~r (18)

Bij =

∫
∂Ω

ϕi(~r, ω)ϕj(~r, ω)d~r (19)

Qi =

∫
Ω

q0(~r, ω)ϕi(~r, ω)d~r. (20)

The FEM matrix equation (15) is derived in Appendix I. [16, 17]
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2.3 Applications

Various applications of DOT have been studied till date. Conventionally, DOT together with
correct modelling of light transport has been utilised in few applications and these studies
have mostly concentrated on single-wavelength DOT and estimating absorption and scattering.
In spectral DOT, approximate light attenuation models, such as linear and exponential, have
typically been used. Nonetheless, also these studies indicate the potential of DOT in variety of
applications.

One of the most interesting applications of DOT is brain imaging. Blood oxygenation map-
ping by spectral DOT can be used for tracking haemodynamic responses. A haemodynamic
response is a regional oxygenation change in the brain due to oxygen consumption of neural
activity. Due to its haemodynamic sensitivity, spectral DOT has been evaluated in studies as a
potential functional cortical imaging technique [18]. In a functional imaging study, the neural
activity from a finger tapping task was visible in a DOT reconstruction as a regional and tem-
poral increase of optical absorbance in the motor cortex [19]. Other experiments have trialed
spectral DOT in real-time monitoring of epileptic seizure generation and propagation [20], map-
ping the resting-state networks of the brain and mapping cortical responses to different word
stimuli in set-ups where a subject hears or reads a word, imagines themselves speaking a word
or is tasked with generating a verb that is associated with a given word [21]. While functional
imaging is conventionally performed using positron emission tomography (PET) or functional
MRI, DOT is a potential noninvasive and portable alternative to the established imaging tech-
niques. Besides functional imaging, spectral DOT reconstructions may have diagnostic value in
anatomical imaging. In one case, a cerebral haemorrhage was located in an infant brain using
spectral DOT. The hemorrhage was detected because of a regional blood volume increase and
an oxygenation decrease [22]. In another study, spectral DOT was successfully used to detect
a perinatal stroke both with and without the assistance of MRI-guided stroke localisation [23].

In addition to imaging brain, DOT can be applied in breast tissue imaging (optical mam-
mography). Optical mammography is a prospective diagnostic tool for detection and character-
isation of breast tumors as blood volume or oxygenation maps produced in DOT imaging can
reveal tumors by exploiting the increased vascularisation of a tumor and because breast tumors
appear to have higher concentrations of both oxy- and deoxyhemoglobin compared to the back-
ground in a spectral DOT image [1, 24]. Spectral DOT has been demonstrated to be capable
of detecting breast tumors and potentially distinguishing malignant tumors from benign ones
as malignant tumors have higher concentrations of total hemoglobin and oxyhemoglobin and
higher scattering than benign tumors [25]. Optical mammography could be performed to assess
tissue angiogenesis and thus improve the accuracy of early cancer diagnosis [26] or to monitor
the patient’s response to neoadjuvant hormone therapy of breast cancer [27].

Synovial inflammation associated with arthritis causes the metabolic demand of a synovial
tissue to increase and thus makes the tissue hypoxic. The hypoxia is distinguishable in a spectral
DOT image and may indicate that the joint is arthritic [28]. One study concluded that DOT
images could be utilised in detecting and monitoring joint diseases such as osteoporosis and
osteoarthritis [29] while another demonstrated that DOT could provide additional diagnostic
value in the early stages of rheumatoid arthritis [30]. Other applications of DOT include for
example, small animal imaging and muscle oxygenation monitoring [31].
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3 Inverse problem

3.1 Bayesian image reconstruction in diffuse optical tomography

The inverse problem of DOT is to estimate distributions of the optical parameters when input
light and measured data are given. There are two methodologies to reconstruct the imaging
target: absolute imaging and difference imaging. In absolute imaging, distributions of opti-
cal parameters are estimated using one set of measurement data. In difference imaging, the
difference in the optical parameters between two time instants is estimated. Difference imag-
ing reduces artefacts because the imaging errors cancel out. However, the images often have
low contrast. One of the imaging artefacts is cross-talk, which is a phenomenon where char-
acteristics of a parameter distribution appear in an image depicting another parameter e.g.
deoxyhemoglobin inclusion being visible in an oxygemoglobin image or absorption inclusion
appearing in the scattering coefficient reconstruction.

In both the absolute imaging method and the difference imaging method, the inverse prob-
lem is solved using methods of computational optimisation. Both of the problems are ill-posed
and therefore they need to be approached in the framework of inverse problems. The approaches
to solving these inverse problems are for example regularisation methods such as Tikhonov reg-
ularisation and total variation regularisation, and a Bayesian approach. In this thesis, absolute
imaging is studied in the Bayesian framework.

Let us denote discrete absorption and scattering vector as

µ =

(
µa
µ′s

)
∈ R2N , (21)

where N is the number of unknown absorption or scattering coefficients and the measurement
vector as

y =

(
Re log(Γ)
Im log(Γ)

)
∈ RM (22)

where Γ is the measured exitance (equation (10)) and M is the amount of elements in the
measurement vector y. In this work, we use an observation model

y = A(µ) + e (23)

where e is random measurement noise and A is discretized forward operator which maps the
optical parameters µ to observations y. [15] In the Bayesian framework, all variables y, µ and
e are considered as random variables. The solution to the inverse problem is the posterior
probability density π(µ|y) which according to the Bayes’ formula is

π(µ|y) =
π(µ)π(y|µ)

π(y)
, (24)

where π(µ) is the prior density, π(y|µ) is the likelihood density and π(y) is the normalization
constant. Because π(y) is constant for a given measurement, the posterior probability density
π(µ|y) is proportional to

π(µ|y) ∝ π(µ)π(y|µ). (25)
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If the random variables µ and e are uncorrelated, this becomes

π(µ|y) ∝ π(µ)πe(y −A(µ)), (26)

where πe is the probability density of the noise e. In this work, we use Gaussian models for the
prior π(µ) and measurement noise πe(e)

µ ∼ N (ηµ,Γµ), e ∼ N (ηe,Γe), (27)

with means ηµ ∈ R2N and ηe ∈ RM and covariance matrices Γµ ∈ R2N×2N and Γe ∈ RM×M .
When Gaussian probability densities are substituted into the expression (26), the posterior
density π(µ|y) can be written in the form

π(µ|y) ∝ exp

{
− 1

2
(y −A(µ)− ηe)TΓ−1

e (y −A(µ)− ηe)−
1

2
(µ− ηµ)TΓ−1

µ (µ− ηµ)

}
(28)

In this thesis, a maximum a posteriori estimate for the parameters is computed. The
maximum a posteriori estimate µ̂ is the maximum point of the posterior density π(µ|y)

µ̂ = arg max
µ

π(µ|y)

= arg min
µ
{||Le(y −A(µ))||2 + ||Lµ(µ− ηµ)||2}

(29)

where Le ∈ RM×M and Lµ ∈ R2N×2N are the Cholesky decompositions of the inverse covariance
matrices Γ−1

e = LTe Le and Γ−1
µ = LTµLµ [32, 33]. Further, in this work it is assumed that mean

of the noise is zero, that is ηe = 0. The Gaussian Ornstein-Uhlenbeck prior was used to
construct matrix Γµ [34].

The minimisation problem (29) can be solved iteratively by using for example Gauss-Newton
method, where the estimates are updated by

µ(k+1) =µ(k) + ζk(F ′T (µ(k))F ′(µ(k)) + LTµLµ)−1

· (F ′T (µ(k))(Ley − F (µ(k)))− LTµLµ(µ(k) − ηµ))

=µ(k) + ζkH
−1
k (−gk)

=µ(k) + ζk∆µk

(30)

where F (µ) = LeA(µ), ζk is the step length determining how much the search direction ∆µk
affects the estimate µ(k+1), Hk is an approximation of Hessian matrix and gk is the gradient
[35]. By representing the differential function F ′ with the Jacobian matrix J ∈ RM×2N , the
update ∆µk may be solved from the equation

Hk∆µk = −gk
(J TJ + LTµLµ)∆µk = J T (Ley − LeA(µ(k)))− LTµLµ(µ(k) − ηµ)

(31)

where

J =
(
dF (µ)
dµa

dF (µ)
dµ′
s
.
)

(32)
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3.2 Spectral diffuse optical tomography

In spectral diffuse optical tomography, the aim is to estimate concentrations of chromophores
and scattering parameters from multi-wavelength measurements [4]. Chromophore absorp-
tion coefficients are dependent on the light signal wavelength which makes multi-wavelength
measurements able to discern different chromophores based on their unique absorption spec-
tra. Individual chromophores with concentration distributions ci and wavelength-dependent
absorption coefficients µa,i(λ) form a total absorption coefficient distribution [36]

µa(λ) =

k∑
i=1

ciµa,i(λ). (33)

Wavelength dependency of optical scattering can be modeled using Mie scattering model, where
scattering coefficient at wavelength λ is

µ′s(λ) = µ′s,Ref

( λ

λRef

)−b
, (34)

where µ′s,Ref is the reference scattering coefficient at wavelength λRef and b is the scattering
power.

3.2.1 Previous studies on spectral DOT

Various approaches have been studied to solve the spectral DOT inverse problem. A case where
the spectral DOT images were reconstructed using Tikhonov regularisation was compared to
a case where the Euclidean norm in the Tikhonov regularisation term was replaced with a
Manhattan norm (L1 regularisation) [37]. The L1 regularisation term is non-differentiable
and to solve this issue, three alternative reconstruction algorithms suited for L1 regularised
estimation were introduced. Spectral DOT imaging using L1 regularisation instead of Tikhonov
regularisation was found to reduce cross-talk while maintaining a consistent image contrast.
Another novel regularisation alternative was introduced in a study where spectral reconstruction
was performed using a method where Tikhonov weights were incorporated into the Jacobian
matrix whereas conventionally the weights were accounted for separately from the Jacobian
[38]. The results showed that combining Tikhonov weights with the Jacobian could reduce
cross-talk.

Magnetic resonance imaging (MRI) guided DOT can have a higher spatial accuracy com-
pared to conventional DOT [39]. In an in vivo study, prior data from dynamic contrast enhanced
(DCE) and diffusion weighted (DW) MRI images were used to construct regularisation matri-
ces for the spectral DOT minimization problem. Including the DCE and DW prior data into
spectral DOT reconstruction reduced absolute bias errors of the estimated total hemoglobin
and water concentrations in a tumor. Other studies have shown that incorporating MRI or
x-ray prior data into the reconstruction process could improve the spatial resolution of the im-
ages and make the localisation of inclusions more accurate [40, 41]. Including a prior has been
shown to make the reconstruction characterise the true phantom composition more accurately
[42, 43].

In another study, modifications to the observation model and prior data enabled estimation
of chromophore volume fractions alongside the chromophore concentrations [44]. The in vivo
clinical experiments showed that tumors were distinct in both 1000 nm and 6000 nm diameter
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particle volume fraction images and that a malignant tumor could be told apart from a benign
tumor as it had a higher volume fraction than the benign tumor. Furthermore, it has been
proposed that spectral data could be utilised to minimise coupling effects of optical fibres [45,
46].

In [47], the data subset algorithm was utilized in spectral DOT to resolve memory capacity
issues due to the large size of 3D measurement data. The algorithm divided the measurement
data set into slices and identified the three slices with the highest least squares norms of the
difference between measured data and approximated model data. The three selected slices were
assumed to have the largest effect on the reconstructions and were used in the reconstruction
process instead of the complete data set. Images reconstructed using the data subset algo-
rithm and images reconstructed using the complete data set were found to be qualitatively and
quantitatively comparable while the data subset algorithm utilized memory more efficiently.

3.2.2 Wavelength selection

Reconstruction accuracy can be enhanced by imaging the target with an optimal set of wave-
lengths [3, 48]. The wavelengths should be selected to maximise parameter distinguishability
and minimise cross-talk.

A criteria for selecting the optimal wavelengths was obtained by deriving a residual norm
from the non-uniqueness condition of the spectral DOT inverse problem to quantify the unique-
ness of the inverse problem and consequently the parameter distinguishability [3]. The optimal
wavelengths were chosen so that they maximise the inverse problem solution uniqueness by
maximising the residual norm.

A second criteria aimed to determine that each chromophore concentration contributed
equally to the measurement data [3]. It was shown that the measurement data dependency
on a single parameter was proportional to the smoothness of the singular value distribution of
a matrix that contained the absorption coefficients of individual chromophores for all applied
wavelengths. As a result, the condition number of the absorption coefficient matrix quantified
the singular value distribution smoothness. Selecting wavelengths that minimised the condition
number guided the measurements towards being equally dependent on all chromophores.

A third criterion was formulated under the objective that the selected wavelengths should
enable the accurate estimation of chromophore concentrations even when the absorption spectra
used in the reconstruction were inaccurate [5]. An approximation of error due to spectral
inaccuracy in chromophore concentration distributions was defined as a function of absorption
coefficients and approximated absorption coefficient errors. The optimal wavelengths were
selected so that they minimized the norm of the approximated chromophore concentration
error vector.

Simulations have shown that applying wavelength optimization to spectral DOT provided
an equally good image quality and reduced cross-talk compared to when a large number of wave-
lengths was sampled from the full spectrum (650 to 930 nm) [49]. The results suggested that
spectral DOT images could be reconstructed with the accuracy of full spectrum measurements
while maintaining the computational efficiency of using small wavelength sets.

3.2.3 Bayesian approach to spectral DOT

In this work we formulate and solve the inverse problem of spectral DOT in a Bayesian frame-
work. Relation between chromophore concentrations and absorption and scattering parameters
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is modelled using equations (33) and (34). Using the notation

x =


c1
c2
c3

µ′s,Ref

b

 (35)

to represent the concentrations and scattering parameters, the observation model becomes

y = A(x) + e. (36)

If the observations y are known and the goal is to estimate the parameter x, we can follow the
similar formulation of the inverse problem in a Bayesian framework as in the case of a single-
wavelength DOT presented in Section 3.1. As a result, the MAP estimate for determining
chromophore concentrations and scattering can be solved by minimising

x̂ = arg min
x
{||Le(y −A(x))||2 + ||Lx(x− ηx)||2}. (37)

where Lx ∈ R5N×5N is the Cholesky decomposition of the inverse prior covariance matrix and
ηx is the expected value of x. The Gauss-Newton update for solving x̂ is

x(k+1) =x(k) + ζk(F ′T (x(k))F ′(x(k)) + LTxLx)−1

· (F ′T (x(k))(Ley − F (x(k)))− LTxLx(x(k) − ηx))

=x(k) + ζkH
−1
k (−gk)

=x(k) + ζk∆xk

(38)

with the notation F (x) = LeA(x). The Jacobian representation of function F ′ yields the
equation

Hk∆xk = −gk
(J TJ + LTxLx)∆xk = J T (Ley − LeA(x(k)))− LTxLx(x(k) − ηx).

(39)

Derivation of the Jacobian matrix J is presented in Appendix II.

3.3 Bayesian approximation error modelling

In most of the previous studies, the absorption spectra of the chromophores have been assumed
to be known. This however, is not necessary a valid assumption. In this thesis, we consider the
modeling errors caused by uncertainties in the absorption spectra.

Bayesian approximation error (BAE) approach can be used to correct errors caused by
inaccuracies in the observation model. An observation model

y = Ã(x, µ̃a,i) + ε+ e (40)

expands the model (36) to include the approximation error
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ε = A(x, µa,i)− Ã(x, µ̃a,i), (41)

between forward solution A(x, µa,i) when the true absorption spectra is used, and solution

Ã(x, µ̃a,i) when the absorption spectra is fixed to some (possibly inaccurate) value. Similarly
as earlier, let us model unknown parameters and noise as Gaussian distributed. Let us denote
total error as

n = ε+ e. (42)

By modeling the approximation error as a Gaussian distributed random variable with ex-
pected value of ηε and covariance Γε and ignoring the mutual dependence of the approximation
errors and unknowns, the total error n is Gaussian distributed with expected value ηn and
covariance Γn defined as

ηn = ηε + ηe (43)

Γn = Γε + Γe. (44)

With approximation error model, the MAP estimate can be solved from a minimisation problem

x̂ = arg min
x
{||Ln(y − Ã(x, µ̃a,i)− ηn)||2 + ||Lx(x− ηx)||2} (45)

where LTnLn = Γ−1
n . [50, 51]

The approximation error mean ηε and covariance Γε can be determined by sampling as
follows. Ns samples of approximation error realizations {ε(1) . . . ε(Ns)} can be generated. Each
realization ε(l) is computed as

ε(l) = A(l)(x, µa,i)− Ã(l)(x, µ̃a,i) (46)

ε = Y ∗ − Y (47)

where Ã(l)(x, µ̃a,i) is optical measurements computed with fixed chromophore absorption coef-
ficients and A(l)(x, µa,i) is simulated measurements with chromophore absorption coefficients
drawn from a uniform distribution U(aµa , bµa). The approximation error mean ηε and covari-
ance Γε can be approximated from these error samples as

ηε =
1

Ns

Ns∑
l=1

ε(l) (48)

Γε =
1

Ns − 1

Ns∑
l=1

(
ε(l) − ηε

)(
ε(l) − ηε

)T
(49)

The simulation of the approximation error statistics can be time consuming. However, it can
be done off-line before the experiments and can be utilised as long as it can be considered valid
for the setup.
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3.4 Credibility intervals

In order to assess the reliability of the estimates, the posterior distribution is approximated
locally by a Gaussian distribution. For a Gaussian distribution, the true value of xj is within
the interval [x̂j − 3σx̂j , x̂j + 3σx̂j ] with a probability of 99.7%, which is chosen to be the
credibility interval utilized in this work.

By approximating the forward model A using second order Taylor series, the posterior
distribution can be approximated

πx|y(x|y) ∼ N (η̂, Γ̂), (50)

where covariance matrix Γ̂ is

Γ̂ = (J(x̂)TΓ−1
e J(x̂) + Γ−1

x )−1, (51)

and x̂ is the MAP estimate. The standard deviation σx̂j is the square root of the j’th diagonal

element in the approximated covariance matrix Γ̂ [33]

σx̂j =

√
Γ̂(j, j). (52)

22



Table 1: Background values for oxygenated blood concentration c1, deoxygenated blood concen-
tration c2, fat concentration c3, reference scattering coefficient µ′s,Ref and scattering power b,
Gaussian function inclusion amplitudes A and standard deviations σ1 and σ2 of each parameter.

c1 c2 c3 µs,Ref b
background 0.007 0.006 0.03 1 0.25

A 0.06 0.06 1 4
σ1, σ2 4 4 3 7

4 Simulations

4.1 Data Simulation

Spatial distributions of three chromophores that appear in human body tissue were simulated.
The selected chromophores were oxygenated blood, deoxygenated blood and fat. Distributions
of oxygenated blood concentration c1, deoxygenated blood concentration c2, fat concentration
c3, reference scattering coefficient µ′s,Ref and scattering power b were generated in a circular
finite element mesh with 2251 nodes, 4350 two-dimensional triangle elements, domain with a
radius of 25mm, and the optical parameters were presented using a piece-wise linear basis.
The domain was encircled by 16 sources and 16 detector optodes, modeled as Gaussian surface
patches with a 2 mm width, located at equi-spaced angular intervals on the boundary. Each
of the c1, c2, µ′s,Ref and b distributions contained a circular Gaussian inclusion. The amplitude
of the Gaussian inclusion was adjusted to control the optical parameter values. The size of
the inclusion was controlled by adjusting the standard deviation of the Gaussian distribution.
The background optical parameters and amplitude and standard deviation used to create the
inclusions are given in Table 1. The c3 distribution contained no inclusion and was solely
determined by the background fat concentration c3,b so that at any given coordinate (r1, r2)
the fat concentration was c3(r1, r2) = c3,b. Next, absorption coefficients µa and scattering
coefficients µ′s at wavelengths 700, 800 and 900 nm were determined using equations (33) and
(34). The chromophore absorption coefficients at each wavelength are given in Table 2 [32].
The reference wavelength λRef in equation (34) was set to 700 nm. The frequency domain DOT
data y was generated from the µa and the µ′s distributions using FEM with Toast++ software
forward solver [16]. Finally, random noise with zero mean and standard deviation σe was added
to the data. In the simulations, σe was either 10%, 1%, 0.1% or 0.01% of the noiseless signal,
added separately for each measurement data element

yi = yi,0 + σerN |yi,0|, (53)

where yi,0 is the i’th element of vector y without random noise and rN ∼ N (0, 1).

4.2 Image reconstruction

The parameters c1, c2, c3, µ′s,Ref and b were estimated from the observation data y using
the Gauss-Newton method (38). To avoid committing the inverse crime, the images were
reconstructed in a different mesh than the mesh used for data generation. The inverse problem
was solved in a mesh that consisted of 1933 nodes and 3726 elements.
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Table 2: Chromophore absorption coefficients for oxygenated blood µa,1 (mm−1), deoxygenated
blood µa,2 (mm−1) and fat µa3 (mm−1) at wavelengths 700, 800 and 900 nm.

µa,1 µa,2 µa,3
700 nm 0.9871 0.1713 0.070
800 nm 0.4496 0.4632 0.075
900 nm 0.4754 0.7155 0.080

Gaussian Ornstein-Uhlenbeck prior was used to construct covariance matrix Γµ [34]. The
mean of the prior distribution of each parameter was set to be the background value of the
corresponding parameter. The prior standard deviation of parameters c1 and c2 was

σci =
1

3
(max(ci)−mode(ci)), (54)

i ∈ {1, 2}, and likewise for scattering parameters µ′s,Ref and b. The prior standard deviation of
c3 was selected to be 0.001 and the prior characteristic length was 8 mm. The measurement
error statistics were assumed to be known and modeled as explained in Section 4.1

Four different test problems were studied where a single setting was varied:

1. background oxygenated blood concentration was varied c1,b = 0.001, 0.01, 0.04

2. noise level was varied σe = 10%, 1%, 0.1%, 0.01%

3. the position of the inclusion in c1 distribution was varied

4. the number of inclusions in c1 distribution was varied

In addition to visual inspection, the reconstructions were compared by calculating the rel-
ative errors of the concentrations and the scattering parameters. The relative errors (RE) of
the concentrations were computed as

RE =
||ci − ĉi,FWD||

||ci||
· 100%, i ∈ {1, 2, 3} (55)

where ci is a simulated distribution of chromophore concentration and ĉi,FWD is an estimated
concentration distribution interpolated into the forward mesh. The relative error was computed
the same way for scattering parameters µ′s,Ref and b.

4.2.1 Comparison to a two-step approach

The reconstructions were compared against reconstructions obtained using a two-step recon-
struction method. In the two-step approach, the optical parameters µa and µ′s were estimated
as presented in Section 3.1. The prior means of µa and µ′s were selected to be the respective
background true values of µa and µ′s. The prior standard deviations were computed similarly as
the prior standard deviations for concentrations in equation (54). The additive noise was mod-
elled similarly as in the direct approach. After the optical parameters were estimated at each
wavelength, the chromophore concentrations and scattering parameters were estimated from
the absorption and scattering coefficients. For the chromophore concentrations, an observation
model
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µλ1
a

µλ2
a

µλ3
a

 =

0.9781I 0.1713I 0.0700I
0.4496I 0.4632I 0.0750I
0.4754I 0.7155I 0.0800I

c1c2
c3


⇔ µa = H1c,

(56)

where µλ1
a , µλ2

a and µλ3
a are the Gauss-Newton estimates of the absorption coefficients with

wavelengths λ1 = 700 nm, λ2 = 800 nm and λ3 = 900 nm, was used. Similarly, for the
scattering parameters an observation model

ln(µ′λ1
s )

ln(µ′λ2
s )

ln(µ′λ3
s )

 =

I − ln
(

700
700

)
I

I − ln
(

800
700

)
I

I − ln
(

900
700

)
I

(ln(µ′s,Ref)

b

)
⇔ µ′s,ln = H2τ,

(57)

where ln(µ′λ1
s ), ln(µ′λ2

s ) and ln(µ′λ3
s ) are the Gauss-Newton estimates of the scattering coeffi-

cients, was used. A logarithm of the exponent of scattering power was used to make the model
linear. These observation models were used to estimate the parameters c1, c2, c3, µ′s,Ref and
b from the optical parameters µa and µ′s by least squares estimation. The two-step estimates
of chromophore concentrations and scattering parameters were computed by least squares es-
timation

ĉ = (HT
1 H1)−1HT

1 µa (58)

τ̂ = (HT
2 H2)−1HT

2 µ
′
s,ln. (59)

where µa is a vector of parameters µλia , ı ∈ {1, 2, 3}, and µ′s,ln contains the parameters ln(µ′λis ).

4.3 Absorption spectra uncertainties and approximation error mod-
elling

The inverse problem was studied in situations where there were uncertainties in the absorption
spectra of the chromophores. Specifically, two test problems where approximation error was
present in the reconstructions were studied. In the first study, only one of the parameters con-
tained uncertainties, and in the second, approximation error affected all three concentrations.

In order to obtain the BAE statistics, a set of approximation error realizations ελ2
was

generated using equation (47) so that each data set Ã(l)(x, µ̃a,i) of exitance values (10) was
computed using uniformly sampled chromophore absorption coefficients µ̃a,i ∼ U(aµa , bµa),
where

aµa = 0.5µa,i(λ) (60)

bµa = 1.5µa,i(λ) (61)

and µa,i is the absorption coefficient for 800 nm wavelength light (Table 2). Absorption coef-
ficients for 700 nm and 900 nm wavelengths were fixed to the accurate values, as presented in
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Table 2. Another set ε123 was created by sampling all nine chromophore absorption coefficients
from uniform distributions, which were defined similarly as in Equations (60) and (61) for all
three absorption coefficients µa,1, µa,2 and µa,3. The sample size Ns was selected to be 10000.

The sets ε2 and ε123 were used to generate approximation error statistics (ηελ1 , Γελ1 ) and
(ηελ123 , Γελ123 ) as explained in the Section 3.3.. These statistics were utilized in the minimisation
problem with BAE approach separately (equation (45)). The inverse problem was solved in
two test cases:

1. the c1 absorption coefficient at 800 nm was 50% higher than the corresponding value used
in solving the inverse problem

2. all three absorption coefficients at 800 nm were 50% higher than the corresponding values
used in solving the inverse problem.

4.4 Results

4.4.1 Varying background oxygenated blood concentration

Reconstructed chromophore concentrations and scattering parameters of the study where the
background oxygenated blood concentration was varied are shown in Figure 2. In the figure,
reconstructions obtained using the proposed direct approach, where the concentrations were
estimated directly from the data, are shown, and they are compared with reconstructions
obtained with the two-step approach. Further, the relative errors of the estimates obtained using
the direct approach are given in Table 3. The results show that increasing the background value
of oxygenated blood concentration decreased the cross-talk in the µ′s,Ref and c3 reconstructions.
We expect that the cross-talk is mostly caused by large difference between background and
inclusion values. This is supported by a study shown in Appendix III where it was seen that
adjustments that reduce the difference between the minimum and maximum values of the true
concentration distributions in general appear to decrease cross-talk.

When comparing the direct approach to the two-stage approach, it can be seen that gen-
erally, the proposed single-stage approach provides better quality reconstructions. This is
especially evident in situations where the concentration difference between an inclusion and the
background was large.

Figure 3 shows cross-sectional graphs of the true values and direct estimates from Figure 2
with credibility intervals to evaluate the accuracy of the estimates. The estimates were within
the credibility interval in nearly every case, which suggests that the estimates are reliable.

4.4.2 Varying noise

Figure 4 shows direct and two-step reconstructions of the chromophore concentrations and
scattering parameters with a varying noise level σe. The relative errors of the estimates obtained
using the direct approach are given in Table 3. As it can be seen, the reconstruction accuracy
is the highest around noise level σe = 1%. A higher noise level caused inclusions to appear
reduced, while a lower noise level created an artefact that showed dispersed objects across
the target volume. It can be expected that on a high noise level (10%), the reconstructed
inclusions were less distinguishable because the measurement data becomes more corrupted by
the noise. On low noise levels (0.1% and 0.01%) the inclusions were difficult to distinguish
because modelling errors start to have a more significant effect.
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Figure 2: Varying background values of distribution c1. Simulated distributions (true) of
oxygenated blood concentration c1 (1st column), deoxygenated blood concentration c2 (2nd
column), fat concentration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column)
and scattering power b (5th column) followed by direct estimation reconstructions (I) and two-
step reconstructions (II) when background oxygenated blood concentration c1,b is varied. In
the top three rows, background value of oxygenated blood concentration was 0.001, in the next
three rows 0.01 and in the last three rows 0.04.
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Figure 3: Varying background values of distribution c1. Direct estimation reconstructions and
cross-sectional graphs of oxygenated blood concentration c1 (1st column), deoxygenated blood
concentration c2 (2nd column), fat concentration c3 (3rd column), reference scattering coeffi-
cient µ′s,Ref (4th column) and scattering power b (5th column) when background oxygenated
blood concentration c1,b is varied. In the top three rows, background value of oxygenated blood
concentration was 0.001, in the next three rows 0.01 and in the last three rows 0.04. The cross-
sectional graphs display the true values as blue lines, estimated values as dashed lines and the
credibility interval as red dotted lines.
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Figure 4: Varying noise level. Simulated distributions (true) of oxygenated blood concentration
c1 (1st column), deoxygenated blood concentration c2 (2nd column), fat concentration c3 (3rd
column), reference scattering coefficient µ′s,Ref (4th column) and scattering power b (5th col-
umn) followed by direct estimation reconstructions (I) and two-step reconstructions (II) when
noise level is varied. In the second and the third row, noise level was 10%, in the next two rows
1%, then 0.1% for the third pair of rows, and 0.01% in the last three rows.
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Table 3: Relative errors RE (%) of estimated chromophore concentrations and scattering pa-
rameters, when concentration c1,b, noise level σe, position of inclusions in c1 distribution and
number of inclusions in c1 distribution is varied. The parameter c1 is oxygenated blood con-
centration, c2 is deoxygenated blood concentration, c3 is fat concentration, µ′s,Ref is reference
scattering coefficient, b is scattering power and (r1, r2) are the coordinates of the c1 inclusion
center.

REc1 (%) REc2 (%) REc3 (%) REµ′
s,Ref

(%) REb (%)

c1,b = 0.001 84 57 17 19 36
c1,b = 0.01 36 49 6.3 12 33
c1,b = 0.04 5.1 31 0.67 6.4 16
σe = 10% 51 53 0.13 16 48
σe = 1% 54 60 10 15 36
σe = 0.1% 64 87 27 21 53
σe = 0.01% 81 95 15 28 84

(r1, r2) = (12.5, 0) 50 55 8.4 14 39
(r1, r2) = (−18, 7) 62 61 8.7 15 40

(r1, r2) = (0, 0) 41 63 9.8 14 40
#inclusions = 1 59 52 10 14 36
#inclusions = 2 64 61 16 21 50
#inclusions = 3 48 85 21 30 64

The two-step reconstructions portrayed the inclusions with lower accuracy and displayed
dispersion artefacts and reduction in inclusion magnitude. These effects were similar to the
effects seen in the directly estimated reconstructions.

Figure 5 shows the cross-sectional graphs of the true values, direct estimates and credibility
intervals of the noise level variation simulations. The estimates mostly fall within the credibility
interval when the noise level is in the 0.1%− 10% range, while the dispersion artefact impairs
the reliability of the estimates with 0.01% noise level.

4.4.3 Varying location of an inclusion

In Figure 6, direct and two-step reconstructions of the chromophore concentrations and scat-
tering parameters are shown while the position of the oxygenated blood inclusion was varied.
Further, the relative errors of the estimates obtained using the single-step approach are given
in Table 3. Especially in the case of two-step reconstruction, the reconstructed inclusion was
depicted with lower accuracy in the center of the target volume that is further away from the
optical probes. The direct method retained its accuracy more consistently regardless of the
inclusion position when compared to the two-step method. The phenomenon where the inclu-
sions in the oxygenated blood distribution are reconstructed more accurately near the sources
and detectors (near the boundary) is typical in DOT measurements.

Figure 7 displays cross-sectional graphs of the true values, direct estimates and credibility
intervals when the position of the oxygenated blood inclusion was varied. The estimates are
shown to be within the credibility interval, which suggests that the estimates are reliable.

30



Figure 5: Varying noise level. Direct estimation reconstructions and cross-sectional graphs of
oxygenated blood concentration c1 (1st column), deoxygenated blood concentration c2 (2nd
column), fat concentration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column)
and scattering power b (5th column) when noise level is varied. In the second and the third
row, noise level was 10%, in the next two rows 1%, then 0.1% for the third pair of rows, and
0.01% in the last three rows. The cross-sectional graphs display the true values as blue lines,
estimated values as dashed lines and the credibility interval as red dotted lines.
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Figure 6: Varying inclusion position. Simulated distributions (true) of oxygenated blood con-
centration c1 (1st column), deoxygenated blood concentration c2 (2nd column), fat concentra-
tion c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column) and scattering power
b (5th column) followed by direct estimation reconstructions (I) and two-step reconstructions
(II) when background c1 inclusion position is varied.
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Figure 7: Varying inclusion position. Direct estimation reconstructions and cross-sectional
graphs of oxygenated blood concentration c1 (1st column), deoxygenated blood concentration
c2 (2nd column), fat concentration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th
column) and scattering power b (5th column) when background c1 inclusion position is varied.
The cross-sectional graphs display the true values as blue lines, estimated values as dashed lines
and the credibility interval as red dotted lines.
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Table 4: Relative errors RE (%) of estimated chromophore concentrations and scattering pa-
rameters in the approximation error modelling tests. The parameter c1 is oxygenated blood
concentration, c2 is deoxygenated blood concentration, c3 is fat concentration, µ′s,Ref is ref-
erence scattering coefficient and b is scattering power. Reference denotes the reference case
where the absorption coefficients were accurate. In cases −, ελ1

, and ελ123
the forward problem

is solved using a 50% higher absorption coefficient for oxygenated blood (Inaccurate µa,1) or for
all chromophores (Inaccurate µa,1, µa,2 and µa,3) at 800 nm compared to the inverse problem.
The parameters are reconstructed using either no BAE correction (−) or using BAE correction
(ελ1

and ελ123
) where ελ1

and ελ123
represent two different sets of BAE statistics.

REc1 (%) REc2 (%) REc3 (%) REµ′
s,Ref

(%) REb (%)

Reference 51 51 9.4 14 39
Inaccurate µa,1

− 60 61 60 14 33
ελ1 49 50 0.57 14 40
ελ123

52 59 0.23 7.9 19
Inaccurate µa,1,
µa,2 and µa,3

− 67 72 110 15 35
ελ1

49 50 0.62 14 40
ελ123

52 58 0.22 7.9 19

4.4.4 Varying the number of inclusions

Figure 8 shows the direct and two-step reconstructions when the number of inclusions was
increased from 1 to 3. The relative errors of the estimates obtained using the single-stage
approach are given in Table 3. Increasing the amount of c1 inclusions exacerbated the cross-
talk. Inclusions located close to each other had the tendency to appear as a single object. This
is most likely due to the diffuse nature of the imaging modality, and could perhaps be slightly
improved by utilising different prior information.

The Figure 9 shows the simulated parameters, directly estimated parameters and the credi-
bility intervals of these estimates from Figure 8 respectively on a cross-sectional line across the
target space. The cross-sectional graphs show that the direct estimates mostly fall within their
credibility intervals.

4.4.5 Modelling of spectral uncertainties

Figure 10 shows direct reconstructions of parameters c1, c2, c3, µ′s,Ref and b when the absorp-
tion coefficient of either only oxygenated blood at 800 nm or each chromophore at 800 nm
was increased 50% and when the parameters were estimated with or without correcting them
through BAE modelling. The corrected reconstructions were computed using either the ελ1

set
or the ελ123

set as a basis for generating the approximation error statistics. Table 4 contains
the relative errors for each estimated parameter.

As it can be seen, inaccurate approximation of absorption spectra causes approximation
errors to occur in the reconstructions. Estimation errors were present whether the absorption
spectrum inaccuracy occurred solely in the spectrum of oxygenated blood or consistently in the
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Figure 8: Varying number of inclusions. Simulated distributions (true) of oxygenated blood
concentration c1 (1st column), deoxygenated blood concentration c2 (2nd column), fat con-
centration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column) and scattering
power b (5th column) followed by direct estimation reconstructions (I) and two-step reconstruc-
tions (II) when the number of c1 inclusions is varied.
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Figure 9: Varying number of inclusions. Direct estimation reconstructions and cross-sectional
graphs of oxygenated blood concentration c1 (1st column), deoxygenated blood concentration
c2 (2nd column), fat concentration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th
column) and scattering power b (5th column) when the number of c1 inclusions is varied. The
cross-sectional graphs display the true values as blue lines, estimated values as dashed lines and
the credibility interval as red dotted lines.
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Figure 10: Simulated distributions of oxygenated blood concentration c1, deoxygenated blood
concentration c2, fat concentration c3, reference scattering coefficient µ′s,Ref and scattering
power b. The two top rows display the true values of the parameters and a reference case
where the absorption coefficients were accurate. In cases −, ελ1 , and ελ123 the forward problem
is solved using a 50% higher absorption coefficient for one chromophore that is oxygenated
blood (3 middle rows) or for all chromophores (3 bottom rows) at 800 nm compared the inverse
problem. The parameters are reconstructed using either no BAE correction (−) or using BAE
correction (ελ1

, and ελ123
) where ελ1

and ελ123
represent two different sets of BAE statistics.
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spectra of all three chromophores. The estimation errors were reduced when BAE modelling
was applied. The BAE corrected estimates were closer to the reference case and depicted the
inclusions more accurately compared to cases where no BAE modelling was used or where ελ1

statistics were used instead of ελ123
. The reconstructions generated using ελ123

statistics in
Figure 10 showed lower contrast but less artefacts when compared to both the reconstruction
without BAE modelling and the ελ1 reconstructions. The generation of the BAE statistics ηε
and Γε involved simulating measurement data using uniformly sampled absorption coefficients.
The results implied that the optimal BAE statistics are obtained when the sampling interval
matches the true range of absorption spectrum deviations.
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5 Discussion and conclusions

In this work the spectral DOT inverse problem was approached in a Bayesian framework.
Concentrations of chromophores were directly estimated from simulated DOT data, and the
reconstructions were compared to a two-stage approach where they were estimated from absorp-
tion reconstructions at multiple wavelengths. The reliability of the parameter estimates was
evaluated by studying estimated credibility intervals. Furthermore, a Bayesian approximation
error approach to model uncertainties in absorption spectra was proposed.

It was observed that the direct estimation approach was able to reconstruct simulated
inclusions with higher accuracy than the two-step approach. This is consistent with prior
spectral DOT studies and the projection that spectral implementation should decrease noise
and reduce the ill-posedness of the problem [4]. The parameter estimates were found to settle
within corresponding credibility intervals in most situations. This result is reasonable, because
the estimates were expected to be within the credibility interval with a 99.7% likelihood.

When studying uncertainties in the absorption spectra, it was noticed that deviations in
chromophore absorption spectra between data generation and image reconstruction caused a
clear error in each of the reconstructions. It was further noticed that the Bayesian approxima-
tion error modelling successfully corrected these errors.

This work presents the first simulations utilising the Bayesian approach for spectral DOT.
The results can be regarded to give a general idea of the performance of the approach. However,
there are few other aspects that could be still studied and improved. For example in the
simulations, modeling errors caused by discretisations could be potential source of errors in the
reconstructions. In this work, the inverse crime was avoided by using different discretisations
in the forward and inverse problems, and thus the results can be regarded reliable. However,
finer discretisations could lead to improved image quality. Furthemore, in this work the forward
model was the diffusion approximation. That is generally regarded as an accurate model in
DOT. However, if the target domain would be smaller or in the presence of low-scattering
inclusions, modelling light propagation using the radiative transfer equation would be required
[10].

In order to study the proposed methodology more thoroughly, subsequent studies could
investigate spectral DOT imaging with alternative source-detector configurations such as cov-
ering only a half of the boundary with sources and detectors, or decreasing or increasing the
number of optical probes. In addition, different target sizes or ways to reduce cross-talk could
be studied.

In conclusion, it was shown that a Bayesian approach to spectral DOT can be used to
provide good quality reconstructions of chromophore concentrations and scattering parame-
ters. Further, the methodology enables examining the reliability of these reconstructions and
modelling uncertainties related to the absorption spectra.
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Appendix

Appendix I

In order to derive the FE-approximation of the DA (6), we first derive the variational form of
the DA and then formulate the FE-approximation. In order to derive the variational form, the
diffusion approximation (6) is first multiplied by a test function ψ(~r) and integrated over the
domain Ω.∫

Ω

−∇ · κ(~r)∇φ(~r, ω)ψ(~r) +

[
µa(~r) +

iω

c

]
φ(~r, ω)ψ(~r)d~r =

∫
Ω

q0(~r, ω)ψ(~r)d~r (62)

The expression
∫

Ω
−∇ · κ(~r)∇φ(~r, ω)ψ(~r)d~r is expanded using Green’s second identity and

substituted into equation (62), resulting in the equation

∫
Ω

κ(~r)∇φ(~r, ω) · ∇ψ(~r)d~r −
∫
∂Ω

κ(~r)
∂φ(~r, ω)

∂n̂
ψ(~r)dS+∫

Ω

[
µa(~r) +

iω

c

]
φ(~r, ω)ψ(~r)d~r =

∫
Ω

q0(~r, ω)ψ(~r)d~r

(63)

The term

κ(~r)
∂φ(~r, ω)

∂n̂
=

2γ

ζ
(q(~r, ω)− φ(~r, ω)) (64)

given by the boundary condition (7) is substituted into equation (63), resulting in

∫
Ω

κ(~r)∇φ(~r, ω) · ∇ψ(~r)d~r −
∫
∂Ω

2γ

ζ
(q(~r, ω)− φ(~r, ω))ψ(~r)dS

+

∫
Ω

[
µa(~r) +

iω

c

]
φ(~r, ω)ψ(~r)d~r =

∫
Ω

q0(~r, ω)ψ(~r)d~r

(65)

which can be rearranged, giving the variational form of the DA

∫
Ω

κ(~r)∇φ(~r, ω) · ∇ψ(~r) +

[
µa(~r) +

iω

c

]
φ(~r, ω)ψ(~r)d~r +

∫
∂Ω

2γ

ζ
φ(~r, ω)ψ(~r)dS

=

∫
Ω

q0(~r, ω)ψ(~r)d~r +

∫
∂Ω

2γ

ζ
q(~r, ω)ψ(~r)dS.

(66)

To derive the FE-approximation, we approximate the photon density in a piecewise linear basis

φ(~r, ω) =

N∑
j=1

Φj(ω)ϕj(~r), (67)

where φj are finite element basis functions, and choose basis functions φi as test functions.

ψ(~r) = ϕi(~r) (68)
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Furthermore, we approximate the absorption, scattering and diffusion in a piece-wise linear
basis

µa(~r) =

N∑
k=1

(µa)kϕk(~r) (69)

µ′s(~r) =

N∑
k=1

(µ′s)kϕk(~r) (70)

κ(~r) =

N∑
k=1

κkϕk(~r). (71)

If we use the collimated source model,∫
∂Ω

2γ

ζ
q(~r, ω)ϕk(~r)dS = 0, (72)

equation (66) becomes

N∑
j=1

((∫
Ω

N∑
k=1

κkϕk(~r)∇ϕj(~r) · ∇ϕi(~r) +

[ N∑
k=1

(µa)kϕk(~r) +
iω

c

]
ϕj(~r)ϕi(~r)d~r

+

∫
∂Ω

2γ

ζ
ϕj(~r)ϕi(~r)dS

)
Φj(ω)

)
=

∫
Ω

q0(~r, ω)ϕi(~r)d~r

(73)

Further, the FE-approximation of the DA with a collimated source model can be written in the
form

(K(κ(~r)) +D(µa(~r)) +
2γ

ζ
B + iωC)Φ(ω) = Q(ω) (74)

where

Kij(κ(~r)) =

N∑
k=1

κk

∫
Ω

ϕk(~r)∇ϕj(~r) · ∇ϕi(~r)d~r (75)

Dij(µa(~r)) =

N∑
k=1

(µa)k

∫
Ω

ϕk(~r)ϕj(~r)ϕi(~r)d~r (76)

Cij =
1

c

∫
Ω

ϕj(~r)ϕi(~r)d~r (77)

Bij =

∫
∂Ω

ϕj(~r)ϕi(~r)d~r (78)

Qij =

∫
Ω

q0(~r, ω)ϕi(~r)d~r (79)
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Appendix II

The Jacobian matrix for the spectral DOT can be formulated as follows. The size of the
Jacobian depends on the number of different wavelengths used in the measurements and the
number of chromophores that are accounted for in modeling the absorption coefficient (33).
For three wavelengths λ1, λ2 and λ3 and three chromophores with concentrations c1, c2 and
c3, the Jacobian would consist of 15 blocks of Jacobian matrices corresponding to different
chromophores and data at different wavelengths

J =


dFλ1
dc1

dFλ1
dc2

dFλ1
dc3

dFλ1
dµ′
s,Ref

dFλ1
db

dFλ2
dc1

dFλ2
dc2

dFλ2
dc3

dFλ2
dµ′
s,Ref

dFλ2
db

dFλ3
dc1

dFλ3
dc2

dFλ3
dc3

dFλ3
dµ′
s,Ref

dFλ3
db

 , (80)

J ∈ R3M×5N , where function Fλk is the forward operator of DOT as in equation (38) with

wavelength set to λ = λk, k ∈ {1, 2, 3}. The chain rule expands the function
dFλk
dc1

into a
product

dFλk
dc1

=
dFλk
dµa

dµa
dc1

. (81)

The differential function
dFλk
dµa

is evaluated numerically and the function dµa
dc1

is

dµa
dc1

=
d

dc1
(c1µa,1 + c2µa,2 + c3µa,3) (82)

=
d

dc1
c1µa,1 (83)

= µa,1
d

dc1
c1 (84)

= µa,1IN (85)

Equation (81) becomes

dFλk
dc1

=
dFλk
dµa

µa,1I =
dFλk
dµa

µa,1 (86)

Similarly, the functions
dFλk
dc2

and
dFλk
dc3

are

dFλk
dc2

=
dFλk
dµa

µa,2 (87)

dFλk
dc3

=
dFλk
dµa

µa,3. (88)

Chain rule for differential functions
dFλk
dµ′
s,Ref

and
dFλk
db states that
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dFλk
dµ′s,Ref

=
dFλk
dµ′s

dµ′s
dµ′s,Ref

(89)

dFλk
db

=
dFλk
dµ′s

dµ′s
db

. (90)

The differential function
dFλk
dµ′
s

is evaluated numerically like the function
dFλk
dµa

. The j’th row

and i’th column element of matrix
dµ′
s

dµ′
s,Ref

is

∂µ′s,i
∂µ′s,Ref,j

=
∂

∂µ′s,Ref,j

(
µ′s,Ref,i

(
λk
λRef

)−bi)
(91)

=

0, j 6= i(
λk
λRef

)−bi
, j = i

(92)

Matrix
dµ′
s

dµ′
s,Ref

is of the form

dµ′s
dµ′s,Ref

=



(
λk
λRef

)−b1
0 . . . 0

0
(
λk
λRef

)−b2
. . . 0

...
...

. . .
...

0 0 . . .
(
λk
λRef

)−bN


(93)

and function
dFλk
dµ′
s,Ref

in equation (89) is consequently

dFλk
dµ′s,Ref

=
dFλk
dµ′s



(
λk
λRef

)−b1
0 . . . 0

0
(
λk
λRef

)−b2
. . . 0

...
...

. . .
...

0 0 . . .
(
λk
λRef

)−bN


. (94)

The j’th row and i’th column element of matrix
dµ′
s

db is

∂µ′s,i
∂bj

=
∂

∂bj

(
µ′s,Ref,i

(
λk
λRef

)−bi)
(95)

=

0, j 6= i

−µ′s,Ref,i ln
(
λk
λRef

)(
λk
λRef

)−bi
, j = i

(96)
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and the complete matrix is

dµ′s
db

=


−µ′s,Ref,1 ln

(
λk
λRef

)(
λk
λRef

)−b1
. . . 0

...
. . .

...

0 . . . −µ′s,Ref,N ln
(
λk
λRef

)(
λk
λRef

)−bN
 (97)

Equation (90) takes the form

dFλk
db

=
dFλk
dµ′s

ln

(
λk
λRef

)
−µ′s,Ref,1

(
λk
λRef

)−b1
. . . 0

...
. . .

...

0 . . . −µ′s,Ref,N

(
λk
λRef

)−bN
 . (98)
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Appendix III

Figure 11 shows both the direct and the two-step reconstructions of c1, c2, c3, µ′s,Ref and b with
different simulated deoxygenated blood background values c2,b. Figures 12 and 13 display the
direct and two-step reconstructions of the parameter distributions when inclusion magnitudes
of oxygenated blood and deoxygenated blood, respectively, are varied. These additional simula-
tions support the finding that µ′s,Ref cross-talk is reduced when the true inclusion-to-background
contrast of a chromophore concentration is lower.
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Figure 11: Varying background values of distribution c2. Simulated distributions (true) of
oxygenated blood concentration c1 (1st column), deoxygenated blood concentration c2 (2nd
column), fat concentration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column)
and scattering power b (5th column) followed by direct estimation reconstructions (I) and two-
step reconstructions (II) when background deoxygenated blood concentration c2,b is varied. In
the top three rows, background value of deoxygenated blood concentration was 0.001, in the
next three rows 0.01 and in the last three rows 0.04.
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Figure 12: Varying c1 inclusion magnitude. Simulated distributions (true) of oxygenated blood
concentration c1 (1st column), deoxygenated blood concentration c2 (2nd column), fat con-
centration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column) and scattering
power b (5th column) followed by direct estimation reconstructions (I) and two-step reconstruc-
tions (II) when oxygenated blood concentration at the inclusion is varied. In the top three rows,
the inclusion magnitude of oxygenated blood is 0.3, in the next three rows 0.6 and in the last
three rows 0.9.
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Figure 13: Varying c2 inclusion magnitude. Simulated distributions (true) of oxygenated blood
concentration c1 (1st column), deoxygenated blood concentration c2 (2nd column), fat con-
centration c3 (3rd column), reference scattering coefficient µ′s,Ref (4th column) and scattering
power b (5th column) followed by direct estimation reconstructions (I) and two-step reconstruc-
tions (II) when deoxygenated blood concentration at the inclusion is varied. In the top three
rows, the inclusion magnitude of deoxygenated blood is 0.3, in the next three rows 0.6 and in
the last three rows 0.9.
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[42] J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. Dalla Mora, J. Derouard, and
J.-M. Dinten, “Chromophore decomposition in multispectral time-resolved diffuse optical
tomography,” Biomedical Optics Express, vol. 8, no. 10, pp. 4772–4787, 2017.

51



[43] E. Ferocino, G. Di Sciacca, L. Di Sieno, A. Dalla Mora, A. Pifferi, S. Arridge, F. Martelli,
P. Taroni, and A. Farina, “Spectral approach to time domain diffuse optical tomography
for breast cancer: Validation on meat phantoms,” in European Conferences on Biomedical
Optics, Optical Society of America, 2019.

[44] C. Li, S. R. Grobmyer, L. Chen, Q. Zhang, L. L. Fajardo, and H. Jiang, “Multispectral
diffuse optical tomography with absorption and scattering spectral constraints,” Applied
Optics, vol. 46, no. 34, pp. 8229–8236, 2007.

[45] H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral
derivative data in spectral near infrared tomography,” in Optical Tomography and Spec-
troscopy of Tissue IX, International Society for Optics and Photonics, vol. 7896, 2011,
p. 78960I.

[46] H. Xu, B. W. Pogue, R. Springett, and H. Dehghani, “Spectral derivative based image
reconstruction provides inherent insensitivity to coupling and geometric errors,” Optics
Letters, vol. 30, no. 21, pp. 2912–2914, 2005.

[47] S. Srinivasan, B. W. Pogue, H. Dehghani, F. Leblond, and X. Intes, “Data subset al-
gorithm for computationally efficient reconstruction of 3-d spectral imaging in diffuse
optical tomography,” Optics Express, vol. 14, no. 12, pp. 5394–5410, 2006.

[48] A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman,
and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength
optimization,” Applied Optics, vol. 44, no. 11, pp. 2082–2093, 2005.

[49] M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in
spectral near-infrared optical tomography improves accuracy while reducing data acquisi-
tion and computational burden,” Journal of Biomedical Optics, vol. 13, no. 5, p. 054 037,
2008.

[50] M. Mozumder, T. Tarvainen, S. R. Arridge, J. Kaipio, and V. Kolehmainen, “Compen-
sation of optode sensitivity and position errors in diffuse optical tomography using the
approximation error approach,” Biomedical Optics Express, vol. 4, no. 10, pp. 2015–2031,
2013.

[51] J. Tick, A. Pulkkinen, and T. Tarvainen, “Modelling of errors due to speed of sound
variations in photoacoustic tomography using a Bayesian framework,” Biomedical Physics
& Engineering Express, vol. 6, no. 1, p. 015 003, 2019.

52


