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ABSTRACT

Microwave imaging or tomography (MWT) has profound applications in through-
wall imaging, ultra-wideband ground-penetrating radar, biomedical imaging, and
industrial process imaging. It is due to the relatively high penetration depth of
microwave radiation and its non-ionizing properties. This thesis discusses indus-
trial process imaging with a focus on developing fast and efficient reconstruction
schemes. In industrial process imaging, an array of microwave sensors with a low
number of sensors is a preferred choice as it supports fast data acquisition. In such a
scenario, the inverse problems related to MWT become severely ill-posed. Therefore,
image reconstruction in MWT in such situations becomes challenging.

In this work, the inversion technique based on neural network methodology for
real-time parameter estimation in MWT for its application in the industrial drying
system is studied. The imaging modality is applied to estimate the moisture content
distribution in a porous material such as polymer foam. For database generation,
moisture distribution is realized using a parametric model derived from the ex-
perimentally available dielectric characterization data of the polymer foam. Then,
for each moisture realization corresponding scattered fields are calculated using
the two-dimensional method of moments based forward electromagnetic scattering
model. The methodology is tested with numerical and experimental data under
static conditions from the developed MWT prototype system. Results show that
the neural network strategy gives good estimation accuracy and can be a potential
candidate towards industrial process imaging with MWT.

In addition, inversion schemes based on the statistical inversion framework using
sample-based prior for the joint parameter estimation of the real and imaginary
parts of the dielectric constant are developed and tested. Secondly, a structural
prior model based on the diffraction tomography algorithm is also developed. The
structural prior model improves the accuracy of the statistical inversion framework
under different pragmatic moisture distribution scenarios. Developed methods are
evaluated with numerical experiments and with the real data from the developed
MWT experimental sensor prototype.

Universal Decimal Classification: 528.8.042, 519.233.2, 004.032.26, 519.226, 517.983

INSPEC Thesaurus: Microwave imaging, Tomography, Parameter estimation, Neural net-
works (Computer science), Bayesian statistical decision theory, Integral equations, Green’s
functions

Yleinen suomalainen ontologia: mikroaallot, tomografia, estimointi, neuroverkot, bayesi-
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1 Introduction

Microwave tomography (MWT) is a form of imaging technique in which one aims
to determine the dielectric properties or characterize an unknown object through
electromagnetic wave-field measurements [1, 2]. Due to relatively high penetra-
tion depth of microwave radiation and its non-ionizing nature, it is widely applied
in areas of through-wall imaging [3, 4], ultra wideband ground penetrating radar
(GPR) [5, 6], biomedical imaging [7, 8], and industrial process tomography [9–12].
In MWT, the measurement procedure involves illuminating the target with electro-
magnetic waves (with an operating frequency in the range of 300 MHz to 300 GHz)
and collecting the electromagnetic fields for each such illumination. The presence of
inhomogeneities in the dielectric properties of the object affects the propagation pat-
terns of the microwave signal by altering its amplitude, phase or polarization. Subse-
quently, using the electric/magnetic field data and related reconstruction technique
the object’s shape, location, and material properties (permittivity, conductivity) can
be estimated.

Reconstruction in MWT can be addressed by several inversion methods depend-
ing on the imaging object and measurement configuration. Loosely, the inversion
methods are categorized into qualitative and quantitative reconstruction methods.
The mainstay of both the reconstruction techniques depends on the physical model
of the electromagnetic (EM) wave-phenomena. The EM wave phenomena are gov-
erned by a set of equations known as Maxwell’s equations [13, 14].

Quantitative methods are aimed at retrieving the shape and location of the scat-
terer (or inhomogeneities) inside the imaging domain through a linear approxima-
tion of the electromagnetic wave-propagation model such as Born [15, 16] or Ry-
tov [17] approximation. Some examples of the qualitative methods are the linear
sampling method [18,19], diffraction tomography [20,21], and time-reversal [22–24].
On the other hand, if the values of the electrical properties of the scatterer are de-
sired then quantitative methods with an exact EM scattering model are the pre-
ferred choice. In these methods, the MWT problem is cast into an optimization
problem over parameters representing the unknown electrical properties which are
to be estimated. The reason is that the MWT problem is ill-posed in the sense
of Hadamard [25–28]. Therefore, solution to the problem is not guaranteed to
be unique to the acquired measurement data. The ill-posedness can be treated
by employing different regularization techniques in the optimization framework.
Some examples of these reconstruction techniques include distorted Born iterative
method [29], contrast source inversion method [30], and subspace based optimiza-
tion method [31] or deep-learning based techniques [32, 33]. The general imple-
mentation of the optimization based methods in two-dimensional (2-D) and three-
dimensional (3-D) cases of MWT can be traced from [34, 35].

Microwave tomography for industrial process imaging has different require-
ments from that for medical imaging. The use of MWT in industrial process imaging
and its applications is detailed in [10]. In addition to spatial resolution, high tem-
poral resolution and/or real-time imaging is also imperative. Some examples of
the industrial applications of MWT include imaging of solid or granule flows in a
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Figure 1.1: External view of the HEPHAISTOS microwave oven system. Main
modules of the oven that contains high power microwave waveguide antenna are
represented by numbers tags 1, 2, and 3. Tag 4 is the conveyor belt used for contin-
uous processing of material. Tag 5 represents the microwave filter which is used for
blocking leakage power. Picture courtesy of Weiss Technik Gmbh, Germany.

pipeline, multi-phase flow imaging [36]. This thesis concerns application of MWT in
industrial imaging in specific to determining process parameters (such as moisture
content) connected with microwave heating application which is described next.

1.1 PROCESS IMAGING FOR MICROWAVE HEATING TECHNOLOGY

Microwave heating is a process of heating an object having moisture with high-
frequency EM energy. The heat inside the object is produced due to a complex
thermodynamic process post the interaction of EM energy with the object. Any in-
dustrial microwave heating system consists of at least one microwave power source
(magnetron), waveguide antenna to couple power, microwave cavity where the sam-
ple is processed, and a control system. The microwave power P absorbed in an object
of volume V due to an electric field of strength E is given by [37]

P =
1
2

ωϵ0ϵ′′r |E|2 V, (1.1)

where ω is the angular frequency, ϵ0 is the free space permittivity, and ϵ′′r is the
relative dielectric loss of the object that governs the heating behaviour.

For the large scale batch or continuous processing at an industrial scale, the cav-
ity has distributed sources and its length is made much larger than the wavelength
of the microwaves used. One such technology for an industrial scale heating op-
erations, is HEPHAISTOS (short for high electromagnetic power heated automated
injected structure oven system), as shown in Figure 1.1 [38–40]. The system has 3
modules and is characterized by hexagonal geometry [41]. Each module is equipped
with 6 magnetrons delivering a total power of 12 kW at 2.45 GHz. In addition, it
is equipped with a conveyor belt for continuous processing. Applications of this
microwave heating technology are in the areas of drying porous and non-porous
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materials, sintering of ceramics and curing of carbon fibers. With this unique hexag-
onal design for the cavity, the HEPHAISTOS is able to cater to a homogeneous
EM field distribution. Although a HEPHAISTOS microwave oven provides a rather
homogeneous EM field distribution, the resulting temperature distribution is not
necessarily homogeneous while processing the material. This is due to the dielectric
and thermal properties of the material and standing waves within the cavity. As a
consequence, the microwave heating is not always uniform thereby forming several
spatially distributed hot spots and cold spots inside the object.

Generally, in this system, feedback control allows the manipulation of the tem-
perature distribution in the material to prevent over-heating and thermal-runaway
situation [42]. However, temperature based feedback control (using infrared tem-
perature sensors) may not provide sufficient and stable control in drying applica-
tions as the loss factor of the material is also dependent on moisture content [43]
which may result in uneven levelling and undesired moisture levels at the output.
In drying applications, the goal is generally to maintain a stable product output
moisture level. More so, in cases of non-uniform moisture distribution, the situation
of uneven drying may aggravate [44]. The infrared temperature sensors integrated
with the microwave heating systems are capable of giving information about the
temperature only on the surface of the material. That is not sufficient to provide
the efficient control of microwave sources and therefore the process efficiency can
be improved by the use of the volumetric moisture distribution as measured and
controlled variable in the intelligent controller design [45, 46].

The genesis of controlling the drying process with respect to volumetric spa-
tial moisture distribution stems from the TOMOCON project [47]. In this project,
integration of microwave tomography imaging modality with HEPHAISTOS was
proposed for the estimation of the moisture content in a polymer foam with large
cross-section size and infinite length. Based on the estimated spatial moisture in-
formation in the foam from MWT, the control unit can tune the power of the dis-
tributed microwave sources and pulse duration and achieve the desired uniform
moisture level. Moisture measurement systems explicitly based on microwave ra-
diation have been utilized for the determination of moisture content in a sample
during in-situ or ex-situ measurements [48–54]. However, the techniques reported
are limited to providing small sample sizes only. Therefore, the development of the
MWT sensor array system with a low number of antennas and relevant reconstruc-
tion techniques for estimating the spatial moisture variation (in terms of dielectric
constant) are needed. From the inverse problems point of view, the present problem
is severely ill-posed and challenging due to the limited independent data and the
large cross-section size of the object (under-determined problem).

In this thesis, the focus is on the development of reconstruction schemes for
MWT to accurately estimate the moisture content distribution in a polymer foam.
For the studied microwave drying system employing a conveyor belt and large sam-
ple size, the speed by which the moisture distribution information will be available
from the MWT is a challenge. Being a non-linear problem, image reconstruction
in the MWT is a time-consuming task since it requires solving the forward model
multiple times. The popular choices of such iterative inversion algorithms applied in
microwave tomography are, for example, Levenberg-Marquardt [34], contrast source
inversion [55], and subspace-based optimization method [56]. However, due to the
evaluation of the forward model multiple times, these methods may fail to provide
estimates for real-time for online control [57, 58]. To achieve this goal, we have de-
veloped a reconstruction method relying on a data-driven approach such as neural
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network following the feasibility study reported in [59]. Recent developments in the
use of neural networks for solving general microwave imaging problem are detailed
in [60–67].

Although, neural network framework is fast in providing reconstruction, any
changes for example, in (i) the size of the imaging domain, (ii) the roughness of the
top surface or high randomness (iii) possible values appearing in real cases outside
the simulated range of values of dielectric constant may lead to erroneous recon-
struction. Therefore, in this thesis, as an alternative, the feasibility of the Bayesian
inversion framework is also studied. Under this framework, to obtain accurate re-
constructions for various moisture scenarios, correlated prior model and structural
prior model are proposed, respectively. Most parts of this thesis consist of a sum-
mary of the results from the developed methods published in different journals. The
main contents of the reported publications are described next.

Contents of this thesis

The thesis consists of three publications and their contents are as follows.

1. In the publication I, neural network based reconstruction framework was tested
on the experimental data from the MWT system. The key feature of the publi-
cation I is the parametric modelling of moisture distribution using the experi-
mentally available dielectric characterization data of the polymer foam. Using
the parametric model, different moisture distribution scenarios were gener-
ated. Then, for each moisture realization the corresponding scattered field
was calculated using 2-D method of moment based forward electromagnetic
scattering model. In this way, a numerical dataset was built for training the
neural network.

2. In the publication II, a statistical inversion framework was applied to estimate
the spatial moisture content accurately especially the imaginary part of the di-
electric constant which governs the heating behaviour of the material. Towards
this, a correlated sample-based prior model was presented to incorporate the
correlation of the real part with the imaginary part of the dielectric constant.

3. A coupled reconstruction scheme based on combining the qualitative and
quantitative Bayesian inversion framework was also developed and reported
in the publication III. In this work, the prior information was modified using
high-resolution complementary structural information on the imaging domain
given by the qualitative approach multi-static uniform diffraction tomography
(MUDT) utilizing broadband frequency-domain data.

This thesis is organized as follows: Chapter 2 describes the electromagnetic scat-
tering and inverse problem of microwave tomography. In Chapter 3, neural network
based framework and parametric modelling for moisture distribution is described
and the results of the approach are discussed. In Chapter 4, an overview of the
Bayesian inversion framework is described and correlated prior model results are
presented. Finally, Chapter 5 gives the discussion about the results and final con-
clusions.
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2 Fundamentals of electromagnetic scattering

In this chapter, the fundamental equations of electromagnetic field theory are sum-
marised. Using the fundamental laws, differential and integral equations that pro-
vide the basis for the electromagnetic scattering are derived. Thereafter, a distinction
between the forward problem and inverse problem is given and the MWT imaging
problem addressed in this thesis is briefly introduced.

2.1 GOVERNING EQUATIONS

The theoretical background of electromagnetic radiation and scattering phenom-
ena are based on the mathematical equations proposed by Maxwell in 1873. These
equations are coupled equations involving interrelation between the electric and
magnetic fields. Assuming time-harmonic representation of e+jωt where ω is the
angular frequncy, t is time, and j =

√
−1, the Maxwell’s equations are expressed

as [14]

∇× E⃗ = −jωµH⃗ Faraday’s law of induction (2.1)

∇× H⃗ = jωϵE⃗ + J⃗s Ampere’s circuital law (2.2)

∇ · (ϵE⃗) = ρs Gauss’s Law (2.3)

∇ · (µH⃗) = 0. Gauss’s law for magnetism (2.4)

In Equations (2.1) - (2.4), the corresponding vector fields are

E⃗ = electric field in V/m

H⃗ = magnetic field in A/m

J⃗s = current density in A/m2

and the scalar charge ρs is the electric charge density in C/m3. More precisely,
the electric and magnetic field vectors are the complex-valued phasors represent-
ing magnitude and phasor angle of the time-harmonic fields. Note that the term
Js may represent the electromagnetic sources, for example, transmitting antenna.
The mathematical operators ∇· and ∇× are the divergence and curl operations,
respectively.

The parameters ϵ and µ are the complex dielectric constant/permittivity (F/m)
and permeability (H/m), respectively. For most materials and the material consid-
ered in this work, the permeability µ is equal to free space value. In free space, the
dielectric constant is ϵ0 = 8.845× 10−12 F/m and the permeability is µ0 = 4π × 10−7

H/m. Generally, the complex quantity ϵ is normalised with respect to free space
dielectric constant term, termed as relative dielectric constant ϵr, and given as

ϵr =
ϵ

ϵ0
= ϵ′r − jϵ′′r . (2.5)

This is a dimensionless quantity. Similar normalisation is applicable to the perme-
ability term which is termed here as µr. In general, the constitutive parameters

5



Js

Einc

εr(r)

εb

Ω

Figure 2.1: A current source radiating in the vicinity of a general inhomogeneity.

εr and µr of a medium can be a function of position (homogeneous or inhomoge-
nous medium), applied electric field (linear or non-linear medium) or may vary as
a function of frequency (dispersive or non-dispersive medium) [14].

By combining Equations (2.1) and (2.2) and eliminating the H-fields, the vector
Helmholtz equation

∇×
(

1
µr

∇× �E
)
− k2

0εr�E = −jωµ0�Js, (2.6)

is obtained. In (2.6), k0 = w
√
µ0ε0 = 2π/λ0 is the wavenumber and λ0 is the wave-

length in free space. To derive a unique solution of the vector wave equation,
boundary conditions are needed. A detailed account on boundary conditions in
electromagnetics can be found in [68, 69]. Using the vector wave equation and the
necessary boundary conditions, fields inside and outside a specific domain can be
determined.

Consider an object which in this thesis is referred to as target or scatterer is
placed in a homogeneous background medium with εb that is illuminated by a
wave produced by the source �Js, for example, a transmitting antenna. The scheme
is shown in Figure 2.1. Due to the inhomogeneities εr(r) present inside the object,
the electric fields emitted by the source are affected. The affected field which is the
field measured in the presence of the object is indicated by �Etotal. This is different
from the field generated by the source in the absence of the object which is known
as the incident field and termed here as �Einc. By subtracting the incident field from
the total field, the field scattered around the object can be determined. Thus, the
scattered field �Esct can be expressed as

�Esct = �Etotal − �Einc. (2.7)

Under the assumption that the background medium has a homogeneous relative
permittivty of εb, the incident field can be expressed as

∇×∇× �Einc − k2
0εb�Einc = −jωµ0�Js. (2.8)

Similarly, the total electric field in the presence of non-magnetic scatterer with rela-
tive dielectric constant εr can be solved from

∇×∇× �Etotal − k2
0εr(r)�Etotal = −jωµ0�Js. (2.9)
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Upon substitution of Equation (2.7) in Equation (2.9) and using the incident field
expression, the vector wave equation for the scattered electric field can be solved
from

∇×∇× E⃗sct − k2
0ϵbE⃗sct = k2

0(ϵr(r)− ϵb)E⃗total. (2.10)

From the preceding equation it can interpreted that the scattered field is generated
by a secondary current source in the scatter domain that is induced inside it through
the influence of primary current source J⃗s. This interpretation follows from volume
equivalence principle for electromagnetic scattering [14]. Solving for the scattered
electric field in an unbounded medium requires the field to satisfy at distance r the
Silver-Müller radiation condition for time-harmonic electromagnetic fields is given
as [70]

lim
|r|→∞

[√
ϵ0E⃗(r)× r + |r|√µ0H⃗(r)

]
= 0. (2.11)

2.1.1 Volume integral equation

For an arbitrary electric current distribution Js placed in free space, it is convenient
to evaluate the field by using the concept of dyadic Green’s function [71, 72] which
satisfies

∇×∇× ¯̄G(r,r′)− k2
0

¯̄G(r,r′) = Iδ(r − r′), (2.12)

where I is a unit dyad that is represented by a unit diagonal matrix. The observation
and source points are denoted by the position vectors r 7→ (x, y, z) and r′ 7→ (x′, y′,
z′), respectively. Through the superposition principle, the fields produced by the
current distribution J⃗s can be formulated as

E(r) = jωµ0

∫

Γ
¯̄G(r,r′) · J⃗s(r′) dr′, (2.13)

for a known domain Γ ⊂ R3. In the above integral equation, the explicit expression
of the dyadic Green’s function is given by

¯̄G =

[
¯̄I +

1
k2

0
∇∇

]
G0(r,r′), (2.14)

where G0(r,r′) is the scalar Green’s function of free space whose expression is given
as

G0(r,r′) =
exp{−ik0 |r − r′|}

4π |r − r′| . (2.15)

The dyadic’s Green’s function can be represented in matrix form as

¯̄G(r,r′) =




k2
0 +

∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x k2
0 +

∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y k2
0 +

∂2

∂z2


G0(r,r′). (2.16)

Now using the integral representation in Equation (2.13), the vector-wave equa-
tion can be expressed in an integral form. Let’s consider the scattering scenario
shown in Figure 2.2 where a scatterer denoted by Ω1 with inhomogenous relative
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ϵr(r),µ0

ϵb,µ0

Ω1

TX

RX

RX

RX

Ω

Figure 2.2: Schematic of the scattering problem. The domain Ω1 embeds the scat-
terer which is denoted here as ϵr(r) and is placed in homogeneous background
medium ϵb

.

dielectric constant ϵr(r) is placed in homogeneous domain Ω. The scatterer is illu-
minated by the transmitter (Tx) and the response field is collected by the receivers
(Rx). The scattered electric field for each illumination can be expressed as

E⃗sct(r) = k2
0

∫

Ω1

¯̄G(r,r′) · χ(r′)E⃗total(r′) dr′, ∀ r ∈ Ω, r′ ∈ Ω1 (2.17)

where χ(r) = (ϵr(r′)− ϵb) is the contrast or object function representing the contrast
between the background domain and scatterer domain, respectively. This is known
as a volume integral equation (VIE) that establishes a relationship between the sec-
ondary induced current in the scatter domain and the scattered electric field. Using
the above expression, the total field can also be expressed as

E⃗total(r) = E⃗inc(r) + k2
0

∫

Ω1

dr′ ¯̄G(r,r′) · χ(r′)E⃗total(r′) dr′, ∀ r,r′ ∈ Ω1 (2.18)

where Einc is known a priori since the source is known. Notice that the unknown
quantity E⃗total is both inside and outside of the integral that classifies the integral
equation as a Fredholm 2nd kind integral equation. In engineering literature, it is
also known as the Lippmann-Schwinger equation owing to its origin in quantum
mechanics.

2.1.2 Two-dimensional formulation

In some electromagnetic scattering problems if the scatterer geometry is indepen-
dent of one coordinate axis, the formulation of the problem can be made somewhat
simpler. Without the loss of generality let us assume that the scatterer geometry is
independent of z. Since there is no variation with respect to z, all field quantities
take the z dependence of the excitation. It is usually convenient to decompose the
fields into transverse electric (TE) and transverse magnetic (TM) parts. Afterwards,
the solutions from TM and TE can be combined to complete the overall solution.
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Whether a field is a TE or TM case depends on whether an electric or magnetic
field is transverse to a chosen reference. The reference chosen here is the z-axis, and
consequently the TE case means that the electric field is transverse to the z-axis, that
is, the z component of the electric field is absent, whereas the TM case means that
the magnetic field is transverse to the z-axis.

When the geometry is independent of z-coordinates, the scattering problem can
be solved by employing free space 2-D scalar Green’s function given as [73–75]

G0(r,r′) = − j
4

H2
0
(
k0
∣∣r − r′

∣∣ ), (2.19)

where H2
0 is a Hankel function of second kind and zero order. Therefore, the 2-D

dyadic Green’s function can be written as

¯̄G(r,r′) = − j
4k2

0




k2
0 +

∂2

∂x2
∂2

∂x∂y 0
∂2

∂y∂x k2
0 +

∂2

∂y2 0
0 0 k2

0


H2

0
(
k0
∣∣r − r′

∣∣ ). (2.20)

Practically, the measurement of different polarizations requires sophisticated exper-
imental systems that can differentiate between measured signal polarizations [76].
Therefore, our attention is focused on studying 2-D TM mode configuration only. In
this case, the scattered electric field can be written as [29, 77–80]

Esct(r) = k2
0

∫

Ω1

Gzz(r,r′)χ(r′)Etotalz(r
′) dr′ ∀ r ∈ Ω,r′ ∈ Ω1, (2.21)

where Gzz is the z-component of the dyadic Green’s function. In this work, nu-
merical treatment of the 2-D TM integral equation is provided using the method of
moment (MoM). It is apparent from the preceding equation that the scattered field
is a non-linear functional of the contrast function because the total field itself is a
functional of the object function. In the text to follow, the z notations are dropped.

2.2 FORWARD MODEL FOR MWT

To derive for the forward model, we cast the scattered field equation in the operator
form. In operator form, the scattered electric field on the measurement domain Ω
can be written as

Esct(r) = Go [χEtotal] . (2.22)

On the other hand, the total electric field inside the scattering domain Ω1 can be
represented as

Etotal(r) = Einc(r) + Gin [χEtotal] . (2.23)

In the above two equations, the terms Go and Gin are the external and internal
radiation operators, respectively. Equations (2.22) and (2.23) are also known as data
and domain equations, respectively. Note that the domain equation governs the
wave interaction within the imaging domain Ω1 whereas the data equation gives
the scattered field on Ω for a given contrast function and total field inside Ω1. After
the discretization using MoM, the domain equation using the expression of data
equation can be written as

Esct(r) = Go

[
χ · (I − Gin · χ)−1Einc

]
, (2.24)
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where I is a unit matrix.
On a separate note, as mentioned in Chapter 1, the MWT problem is a severely

ill-posed inverse problem. A part of the ill-posedness is due to the properties of the
forward operator defined in Equation (2.24) [81]. Thus, writing it in a more compact
form leads to

Esct(r) = F (ϵr). (2.25)

The mapping F : ϵr −→ Esct is known as a forward operator which maps the dielec-
tric constant to scattered electric field. The scattered field data can come from real
experiment or may be simulated data while the right side denotes the approximate
physical nature of the problem. Using this forward model, we solve our inverse
problem related to MWT that is discussed in the next two chapters.
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3 Neural network based approach for parameter

estimation

In this chapter, the methodology and results of the neural network approach based
on direct learning as reported in the publication I, are reviewed. In the publication I,
an MWT configuration with antennas located only on top was chosen as a setup to
support fast data acquisition for process tomography. Using ideas from our reported
studies [59,82–84], we built a comprehensive synthetic dataset consisting of different
moisture content distribution scenarios and the corresponding scattered electric field
responses to train the convolutional neural network (CNN).

3.1 DIRECT LEARNING APPROACH FOR MWT

3.1.1 Numerical setup

In Figure 3.1, the 2-D scattering model used for simulating the scattered electric
field data is shown. The 2-D configuration was chosen instead of a 3-D model
as to decrease the overall computational load for generating the dataset especially
when higher frequency and large imaging domain size are considered. In the setup,
we considered a two-dimensional foam domain Ωfoam = [−15, 15] × [0, 7.6] cm
with inhomogenous relative dielectric constant εr = ε′r − jε′′r and surrounded by
background domain Ω consisting of air with εr = 1 − j0. The foam was placed
on the metal plate (as the conveyor belt in the heating system resides on it) and
modelled as a perfect electric conductor (PEC) plane. For this 2-D numerical study,
the antenna sensors are modeled as a z-oriented electric line source [14]; N = 7 such
line sources are placed in a transceiver mode at a distance of d0 = 5cm from the top

z

y

x

7.6 cm

Air

metal plate

1 2 3 4 5 6 7

30 cm

d0

Ωfoam

,

Figure 3.1: Schematic of the MWT setup with antennas denoted by numbers from
1,2,. . .,7.
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surface of the foam. Therefore, the maximum number of measurements that can be
acquired is N × N. Note that the rationale behind the choice of the antenna type
and the number of antennas for this MWT problem are detailed in [85, 86] and not
repeated here to maintain brevity.

The complex-valued scattered electric field under the illumination of TM z-
polarized incident field is governed by the scalar volume integral equations (VIEs)
given in Equation (2.21). The effects of the conducting plane can be included in the
2-D free space Green’s function of the VIEs by the use of half-space Green’s func-
tion [87]. It is defined using image theory principle [68] where an image source is
introduced to account for the reflections from the surface of the conducting plane
and thus the conducting plane can be removed during the numerical computation.
The image source point (denoted here as xim and yim) must have the same magni-
tude as the actual source, its phase must be 180 degrees out of phase from the actual
source and it must be placed below the conducting plane at a depth yim = −y.
Such a system configuration does lead to zero tangential electric field along the
x-direction [13]. The half-space Green’s function includes both the primary contri-
bution GT(r,r′), which is the free space Green’s function, and the secondary contri-
bution GR(rim,r′) due to the image source and can be written as

G(r,r′) = GT(r,r′) + GR(rim,r′). (3.1)

Therefore, the scattered electric field above the conducting plane (i.e., upper half-
space y > 0) is equal to

Esct(r) = k2
0

∫

Ωfoam

[
GT(r,r′) + GR(rim,r′)

]
χ(r′)E(r′) dr′, ∀r ∈ Ω, r′ ∈ Ωfoam. (3.2)

Assuming that the foam is discretized to m × n cells and given the integral equation
for the scattered electric field, we resorted to method-of-moments (MoM) with pulse
basis and point matching technique for its numerical solution [88].

3.1.2 Parametric model for moisture distribution

The dielectric values in relation to different moisture content are based on the dielec-
tric characterization of the polymer foam in a laboratory environment [89]. From
the characterization measurement, a relationship between the wet-basis moisture
content MC and its corresponding real part and the imaginary part of the dielectric
value is obtained and given as

θ = āθ exp
(
b̄θ MC

)
, (3.3)

where θ = {ϵ′r, ϵ′′r } denotes the material parameters. Numerical values for āθ and b̄θ

are given in Table 3.1 where the error bounds for the fitted coefficients are defined
by δaθ

and δbθ
. The moisture content based on the wet-basis can be expressed as

MC =
Wtm − Wtd

Wtm

× 100, (3.4)

where Wtm is the weight of the foam sample after adding the water, and Wtd is the
weight of the dry sample. Thus, the real part of relative dielectric constant vary in
the range of 1.164 - 3.255 and imaginary part vary between 0.017 - 0.276 for wet-basis
moisture content from 0% to 90%.
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Table 3.1: Material model parameters.

āθ δaθ
b̄θ δbθ

ϵ′r 1.085 0.01591 0.01256 0.00062
ϵ′′r 0.03021 0.0025 0.02249 0.0009

Further, it is assumed that the moisture field variation M in the foam is smooth.
To generate such a random field, we utilised an anisotropic covariance structure C
with its elements calculated as [90]

Cij = exp

{
−1

2

(∥∥xi − xj
∥∥2

l2
x

+

∥∥yi − yj
∥∥2

l2
y

)}
. (3.5)

Here, i, j = 1, . . . , Nn and lx, ly are the characteristic length components. Nn = m × n
denotes the number of pixels in the x and y directions, respectively. In practice, the
characteristic lengths affect the moisture distribution in x and y directions. To gen-
erate simulated moisture samples, the uncertainties in the dielectric characterization
is also considered, and hence Equation (3.3) is replaced by

θ = aθ exp(bθ M), (3.6)

where aθ ,bθ are random variables such that aθ ∼U (āθ − δaθ
, āθ + δaθ

) and bθ ∼U (b̄θ −
δbθ

, b̄θ + δbθ
), where U denotes the uniform distribution. Numerical values for δaθ

and δbθ
are given in Table 3.1. The moisture content distribution in each sample M

can be expressed as
M = M∗1+ δMLZ, (3.7)

where 1 is an all-ones vector, L is the lower triangular matrix of the Cholesky fac-
torization of the covariance C, Z is a standard normal random vector, M∗ and δM
are the mean and standard deviation of the moisture content field, respectively. Two
realizations of moisture variation for different characteristics lengths are shown in
Fig. 3.3.

3.1.3 Choice of frequency and dataset generation

Since the antenna sensors can operate between 8 GHz to 12 GHz, a proper choice of
frequency is necessary for estimation. The frequency of the incident field contributes
to the degree of non-linearity of the problem (i.e., the higher the frequency of the
incident field, the shorter the wavelength that may lead to multiple scattering) [91,
92]. The degree of non-linearity of the inverse scattering problems can be analysed
by expanding the inverse term in Equation (2.24) using the Neumann series as

[I − Ginχ]−1 = I + (Ginχ) + (Ginχ)2 + · · ·+ (Ginχ)k. (3.8)

The larger the norm of ∥Ginχ∥, the higher order terms in the series have more in-
fluence. This leads to strong non-linearity and consequently to multiple scattering
effects. To asses the degree of non-linearity of inverse scattering problem with re-
spect to the frequency of incident field, the behavior of the norm of the factor Ginχ
is to be evaluated i.e., ∥Ginχ∥. Applying Cauchy-Schwarz’s inequality to ∥Ginχ∥ one
obtains the upper bound as

∥Ginχ∥ ≤ ∥Gin∥∥χ∥ . (3.9)
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Figure 3.2: Two realisations of the moisture distribution with different characteris-
tic lengths. For top figure (lx = 3cm, and ly = 3cm) and for bottom figure (lx = 30cm,
ly = 7cm), respectively.

Assuming that χ is fixed in the imaging domain, it can be deduced that the degree
of non-linearity of current inverse problem is proportional to ‖Gin‖. It should be
noted that the internal radiation operator is given as [88]

Gin =

{ j
2
[
πk0aH2

1(k0a)− 2j
]

, ∀ m = n
jπka

2 J1(k0a)H2
0

(
k
»
(xm − xn)2 + (ym − yn)2

)
, ∀ m �= n

where H2
1 is the Hankel function of second kind and first order, a is the radius of

equivalent circular region having same area of the discretized cell, and J1 is the
Bessel function of the first kind. It can be deduced from the above expression that
with an increase in frequency (the factor k0a will increase), the behaviour of fac-
tor ‖Ginχ‖ should be of an increasing function as shown in Figure 3.3. Hence, the
non-linearity is proportional to the operating frequency and for this reason, we have
chosen 8.3 GHz frequency for inversion (the electric field response in the experi-
mental MWT scenario at 8.3 GHz was found slightly better than at 8 GHz).

For the scattered field computation using the MoM technique, the foam was
given a moisture distribution realized using the parametric model discussed in the
previous section and it is discretized to m × n = 80 × 20 cells in x and y directions,
respectively. An initial noise-free dataset of 10,000 samples containing complex scat-
tered electric field response and corresponding moisture distribution was then cre-
ated. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% of the maximum scattered field data to the scattering data. Noise was
added following [93] as

Esctnoise = Esct +max(Esct)
N√

2
(υ1 + jυ2), (3.10)

where max(Esct) is the maximum value of the scattered electric field, υ1 ∼ U (−1,1)
and υ2 ∼ U (−1,1) are two real vectors whose elements are sampled from uniform
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Figure 3.3: Behaviour of ‖Ginχ‖ in the frequency range from 8 GHz to 12 GHz.

distribution. The term N denotes the noise level and sampled as N ∼ U (0.01,0.03).
In addition, 2000 samples were generated following the same procedures as a valida-
tion dataset. The noise was added to validation dataset similarly as for the training
samples.

Furthermore, a test dataset with 1000 samples was generated using denser dis-
cretization in MoM computation. A different discretization was chosen to avoid
“inverse crime”, i.e., the use of the same computational model or same grid set-
tings to generate both training and test datasets. Otherwise, the same grid setting
or the computational model may potentially lead to a situation where severe mod-
elling errors are ignored and hence giving a false impression on the accuracy of the
estimates [94].

3.1.4 CNN architecture

In the publication I, a CNN with mapping £†
Θ : Esct −→ ε′r was trained to map from

an input space Esct ∈ CN×N to ε′r ∈ R�×1 (vectorized real part of the dielectric con-
stant ε′r). The mapping satisfies the following pseudo-inverse property [95]

£†
Θ(Esct) ≈ ε′r, (3.11)

whenever scattering data is related to the true parameter of interest. Given the
training data, the learning refers to choosing optimal values for the parameter Θ ∈
{w,b} where w is the weight and and b is the bias of the CNN architecture. These
optimal values are chosen based on a certain loss-functional minimization. Note
that the imaginary part of the dielectric constant was not estimated as to reduce the
overall computational load of the CNN. Otherwise, the number of parameters to be
estimated is doubled and in that scenario the CNN architecture might need to be
changed.

The network architecture used in this work is shown in Figure 3.4 and is moti-
vated by the work [59]. The current CNN architecture has five layers. The input
layer consists of two channels where the real part (channel 1) and imaginary part
(channel 2) of the complex valued scattered electric data, i.e., Esct are given as an in-
put. The convolutional layers L = 1 and L = 2 have 20 and 30 channels, respectively,
with non-linear Rectified Linear Unit (ReLU) activation function. A spatial filter of
size 3 × 3 was chosen for both convolution layers. The fully connected layer L = 3
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Figure 3.4: A simplified view of the architecture of the convolutional neural net-
work used in this study.

has an output of size 340× 1. As for the estimation of ��r(x,y), an adequate reso-
lution of the moisture distribution field of around x× y = 1cm× 0.76cm is chosen
that corresponds to an image with pixels � = 30× 10. Thus, the output layer has a
size of 300× 1.

For the network training process, the Adaptive moment estimation (Adam) opti-
mizer [96] was chosen, with the batch size of 150 samples and epoch setting as 2000.
The learning rates are set to 1× 10−4 throughout the training. All the computations
were performed in a Python library TensorFlow [97] on a local computer with the
configuration of 32 GB access memory, Intel Core(TM) i7-7820HQ central processing
unit, and Nvidia Quadro M2200 graphic unit. The training of the network takes
about 5 h.

3.2 NUMERICAL EVALUATION OF THE CNN APPROACH

This section presents the numerical results of the publication I. For the considered
cases, a noise with N = 0.03 is added to the scattered electric field. Estimation
accuracy was evaluated by comparing the profile similarity index, denoted here as
κ and expressed as

κ =

∫∫

Ωfoam

��rCNN
��rTruedxdy

 ∫∫

Ωfoam

(��rCNN
)2dxdy

 ∫∫

Ωfoam

(��rTrue)
2dxdy

. (3.12)

The term ��rCNN
= ��rCNN

−
¨
��rCNN

∂
, and ��rTrue = ��rTrue −

¨
��rTrue

∂
. The operator �·� is

the mean operator. For the κ, its values vary between 0 and 1. As it gets closer to 1,
the estimated profile is closer to the ground truth.

Case 1: Low, and moderate moisture content

As a first case, we considered test samples with low (0–25%), and moderate (25–
50%) wet-basis moisture contents. Results of the CNN estimations along with the
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Figure 3.5: Low moisture case: top figure shows the true profile and middle figure
is the estimate from the CNN. Bottom figure compares the pixel values for the true
and estimated profile at y = 2.25cm data line.

true cases are shown in Figure 3.5 and Figure 3.6. In addition, in the respective
cases plotted are the pixel values on data line y = 2.25cm for low moisture case
and pixel values on data line y = 3.8cm for moderate moisture. In both cases, the
CNN estimated output closely matches the ground truth. The κ values for low and
moderate moisture cases are found to be 0.9558 and 0.9331, respectively. For both
cases, κ values indicate that estimated profiles are similar to the ground truth. Note
that we interpolated the number of pixels in the true profile to correspond with the
pixels in the estimated profile to calculate κ.

Case 2: High moisture distribution

It is very likely that the moisture variation at the inlet of the drying operation has
high moisture levels. Considering this scenario, two special cases of moisture dis-
tribution with moisture variation between 50% to 70% are considered. The true test
samples and estimated outputs are shown in Figure 3.7 and Figure 3.8. Pixel val-
ues, as similar in the previous case, are compared against the true case and shown
in bottom for respective cases. For both cases, the estimated output is close to the
ground truth. The κ values are found to 0.923 and 0.883 for the respective cases and
values indicate that estimated output is fairly close to the ground truth.

Error estimates

Relative estimation error for the whole test data is shown pixel-wise in Figure 3.9 in
the form of a histogram.
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Figure 3.6: Moderate moisture case: top figure shows the true profile and middle
figure is the estimate from the CNN. Bottom figure compares the pixel values for
the true and estimated profile at y = 3.8cm data line.
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Figure 3.7: High moisture case. Otherwise same caption as in Figure 3.6.
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Figure 3.8: Nearly homogeneous high moisture case: same caption except for the
bottom figure where pixel values are compared for data line y = 5cm.
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Figure 3.9: Difference between the estimated and true values (relative estimation
error) of the real part of the dielectric constant for the total number of 1000 test
samples.

3.3 MEASUREMENT SETUP

The MWT experimental prototype consist of seven WR90 open-ended waveguide
antennas, placed over the foam of width = 50 cm, height = 7.6 cm, and length =
75 cm. The distance of the antenna to the top surface of the polymer foam is 5cm,
and the center to center distance between two adjacent antennas is 5cm. Antennas
are fixed and placed in free space from −15cm to 15cm along the x-axis. The block
diagram of the data acquisition scheme and the MWT system are shown in Fig-
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Figure 3.10: Top: data acquisition scheme for the MWT measurement from the
sensor array with X-band open waveguide antennas. Bottom: prototype of MWT
sensor array used in this study to generate measurement data. This system is devel-
oped at Karlsruhe Institute of Technology, Germany.

ure 3.10. The data acquisition process and image reconstruction process (<1sec) are
entirely automated using MATLAB. The measured scattered electric field data are
acquired at 8.3 GHz frequency at cross-section of z = 0cm and takes around 20 s.
Since the CNN network is trained on electric field data instead of scattering param-
eter (voltages), calibration scheme in [98] is employed for its conversion. Note that
the foam size considered for calibration and later for estimation purposes is the total
length of sensor array geometry in this controlled experimental study.

CNN performance

In the publication I, two experimental test cases are considered. The first target was
a solid PTFE Teflon cylinder with known electrical properties and the second one
was the moisture wet-spot case. While the second choice is obvious the rationale for
choosing the first target material was to test if the estimated dielectric values by the

20



− 15.0 − 7.5 0.0 7.5 15.0
x(cm)

0.0

3.8

7.6

y
(c

m
)

CNN estimated

1.4

1.5

1.6

1.7

1.8

1.9

ε ′r

Figure 3.11: CNN estimation of cylindrical Teflon sample placed inside the foam.
The true location of the target is marked by red-dashed circle.

CNN are correct as the true value is well in the range of our interest. Moreover, it
was also chosen to test the overall generalization capabilities of the trained architec-
ture for identifying targets not seen as a ground truth while its training. The two
cases are described as follows.

• Case 1: PTFE Teflon cylinder. As a first example, we have considered a PTFE
Teflon (ε′r ≈ 2.1) material as a benchmark target. The target has a cylindrical
shape (diameter of 2.25cm and length of approximately 20 cm) and is placed
inside the foam through an incision on the top surface. An approximate lo-
cation of the target inside the foam is centered at (−4.5cm,3.8cm,0cm). Es-
timated result is shown in Figure 3.11. Result shows that the target dielectric
value is satisfactorily estimated by the network but it is slightly overestimated
in the shape. The overestimation of the shape is predominately due to the
smoothness model used in the training.

• Case 2: Moisture wet-spot case. To create the wet-spot moisture target, a spherical
piece of foam of diameter 2.5 and with a 43% wet-basis moisture level (εr ≈
1.81 − j0.079) was chosen. An approximate location of the target inside the
foam is centered at (−3.25cm,1.85cm,0cm). The estimated output from the
CNN is shown in Figure 3.12. Estimated result shows that the network can
satisfactorily locate the wet-spot which is placed around the bottom of the
foam. The estimated real part of the dielectric constant corresponds to the
moisture levels between 37% and 39% of the wet-spot.

− 15.0 − 7.5 0.0 7.5 15.0
x (cm)

0.0

3.8

7.6

y
(c

m
)

CNN estimated

1.2

1.3

1.4

1.5

1.6

1.7

ε ′r

Figure 3.12: CNN estimation of one dominant wet-spot with 43% moisture inside
the foam.
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4 Bayesian inversion method with correlated

sample-based prior and structural prior model

In this chapter, results of the publications II and III covering Bayesian inversion
methodology are presented. The main motivation was to improve the overall esti-
mation quality by exploiting Gaussian smoothness prior model.

4.1 BAYESIAN INVERSION

4.1.1 Construction of the posterior model

Consider an inverse problem of identifying an unknown parameter ϵr ∈ Cm×n given
noisy measurement data Esct ∈ CN×N according to the observation model

Esct = F (ϵr) + ξ, (4.1)

where ξ denotes the additive Gaussian measurement noise component. In publica-
tions II and III, the inverse problem was formulated as a real-valued optimization
problem. Therefore, the complex quantities are treated separately into real and
imaginary parts and concatenated in vector form as

Esct =

(
R {Esct}
I {Esct}

)
∈ R2S×1 (4.2)

and,

ϵr =

(
ϵr′
ϵr′′

)
∈ R2Nn×1. (4.3)

In the expressions (4.2) and (4.3), the term S = N × N is the total number of mea-
surement points and Nn = m × n total number of unknowns.

In the Bayesian inversion framework, the unknown parameters are treated as
random variables, and information about them is expressed in terms of probability
densities. Specifically, the inverse problem can be expressed as given the measure-
ment data, the task is to find the conditional probability density p(ϵr | Esct) for the
unknown ϵr. The conditional probability density is constructed using the Bayes’
theorem as

p(ϵr | Esct) =
p(Esct | ϵr)p(ϵr)

p(Esct)
,

∝ p(Esct | ϵr)p(ϵr),
(4.4)

where p(ϵr | Esct) is the posterior density, p(Esct | ϵr) is the likelihood density which
represents the distribution of the measured data if ϵr is known, and p(ϵr) is the
prior density which contains the prior information available for unknown ϵr. The
denominator is the marginal density of the measured data and plays the role of
normalization constant. It is often ignored since it requires integration over all
possible ϵr space.
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Furthermore, if the noise is assumed to be additive Gaussian with zero mean
and covariance matrix Γξ , the likelihood density can be written as

p(Esct | ϵr) ∝ exp
ß
−1

2

∥∥Lξ(Esct −F (ϵr))
∥∥2
™

, (4.5)

where Lξ is the Cholesky factor of the inverse of the noise covariance matrix. As
a prior information, it is first assumed that the moisture variation is smooth inside
the foam. Such an assumption can be encoded using a Gaussian density with mean
ηϵr and covariance Γϵr as

p(ϵr) ∝ exp
ß
−1

2
∥Lϵr (ϵr − ηϵr )∥2

™
. (4.6)

Here, Lϵr is the Cholesky factor of the inverse of the prior covariance matrix Γϵr .
The prior covariance matrix encodes the spatial smoothness knowledge of the un-
knowns. After multiplying the expressions in (4.5) and (4.6), posterior density is
obtained.

The posterior density contains the complete solution of the inverse problem in
the Bayesian framework and it has a closed form solution only when an observa-
tion model is linear and noise and prior are Gaussian distributed [99]. In case of
non-linear/non-Gaussian densities, posterior density can be explored by employing
sampling methods such as Markov Chain Monte Carlo technique. Albeit, it is com-
putationally expensive technique for high-dimensional problems. Therefore, point
estimates of the posterior density are usually computed and one of the most com-
mon point estimates in tomographic imaging problems is the maximum a posteriori
(MAP) estimate. The MAP estimate can be computed from the posterior as

ϵ̂rMAP = argmax
ϵr

p(ϵr | Esct). (4.7)

Under the assumption of Gaussian densities for likelihood and prior term, the MAP
estimate can be evaluated by an equivalent minimization problem given as

ϵ̂rMAP = argmin
ϵr

{∥Lξ(Esct −F (ϵr))∥2 + ∥Lϵr (ϵr − ηϵr )∥2}. (4.8)

The expression in (4.8) is a regularized non-linear least-square (LS) problem
where the prior norm term acts as a regularization term and it shares close links to
generalized Tikhonov regularization [100]. This minimization problem can be for-
mally solved using the gradient-based optimization method such as Gauss-Newton.
In the Newton type method the minimum point is found iteratively by linearizing
the forward model; resulting in a linear LS solution in each iteration as

ϵrℓ+1 = ϵrℓ + αℓA−1B, (4.9)

where,

A =
[

J⊤ℓ Γ−1
ξ Jℓ + Γ−1

ϵr

]
,

B =
[

J⊤ℓ Γ−1
ξ (Esct −F (ϵrℓ))− Γ−1

ϵr (ϵrℓ − ηϵr )
]
.

The term αℓ is the step length parameter, index ℓ is the iteration number and Jℓ
is a Jacobian matrix (its derivation can be found in [34]) which can be decomposed
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in real and imaginary parts as

J =
(

R {J} I {J}
−I {J} R {J}

)
∈ R2S×2Nn .

The approximate covariance of the posterior density Γpost is given as [99]

Γpost =
[

JT
ℓ Γ−1

ξ Jℓ + Γ−1
ϵr

]−1
, (4.10)

and it indicates the uncertainty associated with the ill-posedness of the solution.

4.1.2 Noise model

Let us denote the noise standard deviations of the real and imaginary parts of the
complex-valued scattered electric field data to be σR and σI , respectively. Under
the assumption that noise between measurement points are independent and not
correlated, the noise covariance can be expressed as

Γξ =

(
σ2
RIS 0S
0S σ2

I IS

)
∈ RS×S, (4.11)

where IS is an S × S identity matrix and 0S is an S × S zero matrix.

4.1.3 Prior modelling

Since the unknown complex-valued dielectric constant was treated as a real-valued
random variable, the Gaussian prior density can be further expressed as [101, 102]

π

([
ϵ′r
ϵ′′r

])
∝ exp

{
− 1

2

(
ϵ′r − ηϵ′r
ϵ′′r − ηϵ′′r

)⊤( Γϵ′r Γϵ′rϵ′′r
Γϵ′′r ϵ′r Γϵ′′r

)−1(
ϵ′r − ηϵ′r
ϵ′′r − ηϵ′′r

)}
. (4.12)

The terms ηϵ′r and ηϵ′′r denote the mean values of the real and imaginary parts of the
dielectric constant, respectively. The matrices Γϵ′r ∈ RNn×Nn and Γϵ′′r ∈ RNn×Nn are
the marginal covariance matrices of real and imaginary parts of dielectric constant,
respectively. Γϵ′rϵ′′r ∈ RNn×Nn and Γϵ′′r ϵ′r ∈ RNn×Nn are the cross-covariance matrices
which embed the correlation between the real and imaginary parts of the complex
dielectric constant parameter.

Uncorrelated real and imaginary parts

If real and imaginary parts of the dielectric constant are treated as statistically un-
correlated i.e., Γϵ′rϵ′′r = Γϵ′′r ϵ′r = 0, then the prior covariance matrix can be written as

Γϵr =

(
Γϵ′r 0Nn

0Nn Γϵ′′r

)
∈ R2Nn×2Nn . (4.13)

As a prior information, we assumed that moisture field variation inside the foam
is smooth and its dielectric values are based on the dielectric characterization data
discussed in Section 3.1.2. Recall that such a random field can be generated using
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squared-exponential (SE) covariance function defined in Equation (3.5) and denoted
as C. Thus, Equation (4.13) can further be expressed as

Γϵr =

(
σ2

ϵ′r
C 0Nn

0Nn σ2
ϵ′′r

C

)
, (4.14)

where σϵ′r and σϵ′′r are the standard deviations for the real and imaginary parts
of dielectric constant, respectively. These standard deviation values are multiplied
with the SE covariance function so to control its overall amplitude variation of the
random field.

4.2 SAMPLE-BASED PRIOR MODEL

The assumption of uncorrelated real and imaginary parts in the prior model may
result in inaccurate parameter estimates [103,104]. Since the imaginary part governs
the heating behaviour, its correct estimation becomes imperative for the present
study. Therefore, to achieve accurate MAP estimates, the key is to construct a joint-
prior model which favors correlation between the real and imaginary parts.

In [105,106], similar problem is addressed using expectation-maximization (EM)
algorithm [107], albeit, it may not be a suitable approach for our high-dimensional
problem with a non-linear observation model. On the other hand, joint reconstruc-
tions in the deterministic inversion methods have been addressed in (i) [108] where
the complex-permittivity in the imaging domain is expressed as a weighted sum
of a few pre-selected permittivities, close to the range of the expected values, and
permittivity weights are obtained using Gauss-Newton inversion (GNI) algorithm;
however the method is mostly valid for practical biomedical applications with lin-
earized inverse scattering model; and (ii) in [109, 110] an approximate ratio is ob-
tained between the real part and imaginary part of the complex permittivity based
on the dielectric characterisation of the material(s) under test and this approximate
ratio served as the prior information in GNI algorithm with total variation multi-
plicative regularizer term. Moreover, the results show improvement by adjusting
the approximate average ratio. However, in our work, the moisture to dielectric re-
lationship is non-linear thus a single average factor for all moisture points may lead
to inaccurate reconstructions.

In the publication II, a sample-based prior model was presented to construct
the prior covariance structure. When the real and imaginary parts of the dielectric
constant are assumed statistically correlated this implies that the cross-covariance
terms Γϵ′rϵ′′r ̸= 0 and Γϵ′′r ϵ′r ̸= 0. To find cross-variances matrices, dependency between
the two random variables should be known. Herein, to establish the correlation
between the random variables and to form the prior covariance structure we used
sample-based densities.

Assume that p = p(ϵr) is the Gaussian density of a random variable ϵr, and that
we have a database X that contains the realizations of ϵr as

X =

ß(
ϵ′r
ϵ′′r

)

1
,
(

ϵ′r
ϵ′′r

)

2
,
(

ϵ′r
ϵ′′r

)

3
, · · · ,

(
ϵ′r
ϵ′′r

)

K

™
, (4.15)

where K is the total number of samples. The aim is to approximate p(ϵr) based on
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Figure 4.1: Real (left) and imaginary (right) parts of the dielectric constant for
samples drawn from uncorrelated smoothness and sample-based prior models.

the X. For this we calculated the sample mean

ηεr =

(
ηε′r
ηε′′r

)
≈ 1

K

K

∑
j=1

(
ε′r
ε′′r

)

j
, (4.16)

and sample covariance

Γεr ≈
1
K

K

∑
j=1

(
ε′r
ε′′r

)

j

(
ε′r
ε′′r

)�

j
−

(
ηε′r
ηε′′r

)(
ηε′r
ηε′′r

)�
. (4.17)

In order to create the dataset X containing different moisture content realizations,
the experimentally obtained mapping as given by Equation (3.6) is applied. A
dataset X with K = 5000 random moisture samples was created. For each sample,
moisture mean and standard deviation were randomized. Also, the characteristic
lengths in each sample were randomized. Using the dataset, prior mean and co-
variance were computed. The samples (or realizations) from the sample-based prior
density can be generated as

εr = ηεr + Lεr Z, (4.18)

where Z is a standard normal random vector. A randomized draw from the sample-
based prior model is shown in Fig. 4.1 (left). Also, the same sample when we
ignore the cross-covariance terms is shown in Fig. 4.1 (right). It is evident that with
the sample-based prior model, similar spatial variations are seen in the real and
imaginary parts. However, with the neglected cross-covariance matrices, real and
imaginary parts show different variations. In the next section, we present numerical
examples that show how the choice of two priors affects the MAP estimates and
overall estimation accuracy.

4.2.1 Numerical evaluation

We considered a two-dimensional imaging domain Ωfoam = [−25, 25]× [−1.5, 1.5]
cm. The 2-D MWT setup is shown in Fig. 4.2 where the sources are represented
by number tags N = 1,2, · · · ,12. To generate the numerical measurement data, a
finite element method (FEM) based COMSOL simulation tool was chosen. Also, we
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Figure 4.2: Schematic of the 2-D MWT setup used in the study.

added a noise of 3% of the peak value of the the numerical scattered field to the
data generated at 8.3 GHz.

In publication II, two moisture scenarios to evaluate the estimation quality for
the proposed sample-based prior model are considered. To calculate the MAP es-
timates with the smoothness prior, we set prior σε′r = 1, and σε′′r = 0.1. The mean
value ηεr in the prior was set to dielectric constant of the dry foam, i.e., 1.16 − j0.01.
As for the observation model F (εr), we choose the MoM computation with a pulse
basis and point-matching testing function. For the MoM computation at 8.3GHz,
we assume that the imaging domain Ωfoam was discretized into 80 × 20 uniform
rectangular pixels. Other computational details are provided in the publication II.
Furthermore, the profile similarity index, κ (see Equation (3.12)) and root mean
square error (RMSE) metrics were calculated to asses the quantitative estimation
performance. As a special case, a foam with top surface as rough was also evalu-
ated. The details of the three cases are as follows.

• Case 1: In this case, a high moisture scenario was considered and its MAP esti-
mation with smoothness prior model and sample-based prior model is shown
in Fig. 4.3 (real part) and Fig. 4.4 (imaginary part). It can be seen that with
both the priors the real part is estimated fairly well. But the estimation of
the imaginary part is much more accurate with the sample-based prior model
with certain moisture regions being clearly indicated. The MAP estimate and
true values for a fixed value y = 0cm along the cross-section of the foam with
±3 posterior standard deviation are plotted in Fig. 4.5. As can be seen from
the graph, for the imaginary part the uncertainty was higher when using just
smoothness prior than with sample-based prior. Furthermore, the improve-
ment in estimation accuracy using sample-based prior model is more evident
from κ and RMSE values shown in Table 4.1.

Table 4.1: RMSE and κ values for the high moisture case.

Prior Smoothness Sample-based
Dielectric ε′r ε′′r ε′r ε′′r
RMSE (%) 1.84 31.91 1.79 8.21

κ 0.9752 0.3490 0.9771 0.9610
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Figure 4.3: High moisture case: MAP estimates with smoothness prior and sample-
based prior model for real part of the dielectric constant. Contour is added to
highlight the dielectric constant values.

• Case 2: In this case, the piece-wise homogeneous moisture distribution in the
foam was assumed. This special case was chosen considering practical interest
where the moisture is sometimes located in bulk in one portion of the foam.
Also, this case was considered to test the generalization capabilities of the
algorithm. As it breaks the smoothness assumption which is otherwise present
in the dataset of samples used to build the sample-based prior covariance
structure. The MAP estimates from the sample-based prior model are shown
in Fig. 4.6 along with the true moisture distribution. The estimation accuracy
can be evaluated from the κ and RMSE values from Table 4.2 and it favours the
sample-based prior model. Note that for this case the MAP with smoothness
prior is not shown here to maintain the brevity of the text.

Table 4.2: RMSE and κ values for the piece-wise homogeneous case.

Prior Smoothness Sample-based
Dielectric ε′r ε′′r ε′r ε′′r
RMSE (%) 5.2 67.82 4.0582 22.83

κ 0.9017 0.5637 0.9398 0.9362

• Case 3: In practise, the top surface of the foam can be rough that means it
may have some uncertainty on the surface. In order to investigate the effect of
the roughness of the surface, we considered a dielectric foam with a randomly
rough surface (RRS) at the top. The random roughness was modeled as follows
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Figure 4.4: High moisture case: MAP estimates for imaginary part of the dielectric
constant.

− 20 − 10 0 10 20

1.25

1.50

1.75

2.00

ε′ r

y = 0 cm
MAP-Smooth

True

MAP ± 3σ

− 20 − 10 0 10 20

1.25

1.50

1.75

2.00

ε′ r

y = 0 cm
MAP-Sample

True

MAP ± 3σ

x (cm)

x (cm)

− 20 − 10 0 10 20

0.05

0.10

ε′
′ r

y = 0 cm
MAP-Smooth

True

MAP ± 3σ

− 20 − 10 0 10 20

0.05

0.10

ε′
′ r

y = 0 cm
MAP-Sample

True

MAP ± 3σ

x (cm)

x (cm)
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denotes ±3 posterior standard deviation, denoted as σ.

30



− 20 − 10 0 10 20
x (cm)

− 1

0

1

y
(c

m
)

ε rdry
ε rmoisture

ε rdry

Ω foam

− 20 − 10 0 10 20
x (cm)

− 1

0

1

y
(c

m
)

MAP with sample-based prior

− 20 − 10 0 10 20
x (cm)

− 1

0

1

y
(c

m
)

1.20

1.40

1.60
ε ′r

0.02

0.04

0.06

ε ′′r
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dielectric constant. The red dashed lines indicate the true boundary of the moisture
profile.
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[111]

y(x) =
M

∑
m=−M

m−βGm cos
(

2πmx + Um

)
, (4.19)

where m is the integer number representing the spatial frequency and β de-
notes the spectral exponent, Gm is sampled from a Gaussian distribution ∼
N (0,σ), and Um ∼U (0,2π) is sampled from the uniform distribution. The ran-
dom rough surface was characterized by the following parameters: σ = 0.15,
and β = 0.8. To obtain the scattered field, a hot-spot with 40% moisture
εr = 1.3785 − j0.0432 with radius 1cm at position (15cm,0cm) was consid-
ered. In the smoothness prior-based MAP estimate, shown in Fig. 4.9 (top),
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Figure 4.8: MAP estimate of the real part with smoothness prior and sample-based
prior of a hot-spot area embedded inside the foam with an assumed rough top
surface with σ = 0.15.
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Figure 4.9: MAP estimate of the imaginary part. Otherwise same caption as in
Figure 4.8.

the imaginary part indicates the presence of strong artifacts. On the other
hand, with the sample-based prior the accuracy is clearly improved. But, with
both prior models, the shadow images are also visible due to the modelling
errors as the MoM forward model assumes mean height of the top surface
only, and not the actual roughness.

4.2.2 Experimental results

In this section, the sample-based prior model is tested on the scattered electric field
data from the experimental MWT data for a wet-spot moisture case in a planar
foam of size 50 × 7.6 × 75 cm. To create the wet-spot moisture target, a spherical
piece of foam of diameter 2.5 ± 0.1 cm and with 46% wet-basis moisture level (εr ≈
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Figure 4.10: Experimental setup of the MWT system with sensors placed on both
sides of the foam. The alignments of the top and bottom antennas are shown on the
bottom left by a green arrow and a portion of the metal plate is removed to enable
wave propagation between the top and bottom antennas.

2.0 − j0.085) was chosen. An approximate location of the target inside the foam is
centered at (−9cm,1.55cm,0cm). The MWT experimental prototype is similar to
that was shown in Chapter 3 but with antennas placed also in the bottom side and
with no metal plate in between. The setup is shown in Fig. 4.10 with the sensor
array represented by number Tag 1 and the polymer foam is shown by number Tag
2 which is surrounded by absorbers as shown by number Tag 3. The measurement
data acquisition setup consists of the solid state switch and VNA which are denoted
by the number Tags 4 and 5, respectively. The location plane of the test target is
shown in right by white dashed lines.

For MAP computation, the standard deviations of the measurement noise was
calculated for 8.3 GHz frequency following the approach used in [112]. The MAP
estimate with the smoothness prior and sample-based prior are shown in Fig. 4.12
for the selected x-y plane at z = 0 cm. With the smoothness prior, the location
of the target and its value are satisfactorily estimated in the real part. However,
the imaginary part shows a completely different spatial variation of the moisture
distribution in the foam. With the sample-based prior, a significant improvement in
the MAP estimate is observed. It is clear that with the sample-based prior approach,
the obtained MAP estimates offer a good reconstruction accuracy in comparison to
the smoothness prior model.

4.3 STRUCTURAL PRIOR MODEL

Often, in MWT, the structural prior knowledge is also used to improve the esti-
mation accuracy. In frequency-domain MWT, ideas on using structural prior knowl-
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Figure 4.11: MAP estimate of the real part with smoothness prior and sample-
based prior of a wet-spot area embedded inside the foam in the experimental study.
The red-dashed line indicate the true mean location of the target.

− 10 − 5 0 5 10
x (cm)

− 2.5

0.0

2.5

y
(c

m
)

MAP with smoothness prior

− 10 − 5 0 5 10
x (cm)

− 2.5

0.0

2.5

y
(c

m
)

MAP with sample-based prior

0.00

0.02

0.04

0.06
ε ′′r

Figure 4.12: MAP estimate of the imaginary part. Otherwise same caption as in
Fig. 4.11.
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edge to improve the reconstruction accuracy are reported in biomedical applications
in [113–115]. In these articles, the structural prior information is extracted from other
imaging modalities such as ultrasound or MRI and used in the construction of prior.
However, considering overall system cost, employing a dual-imaging modality can
be critical in industrial applications. To avoid dual imaging setup, alternative strate-
gies based on radar-based regional imaging [116–118] have been studied and have
proven very effective in improving the image quality. However, the aforementioned
technique utilises mono-static scanning configuration for data acquisition which is
again time-consuming. Using the available electromagnetic measurements (i.e., the
same setup) to form structural prior information is gaining pace and has been tested
with algorithms in time-domain [119, 120] and frequency-domain [121].

In the publication III, we proposed to use the structural knowledge about the
domain from multistatic uniform diffraction tomography (MUDT) algorithm that
conveys the location of the wet-spots and dry part regions inside the foam. In
MUDT, the location of an object inside the imaging domain is determined by the
linear relationship between the relative complex permittivity function and the re-
ceived signal in the spectral domain [122]. In comparison to UDT [123, 124], the
MUDT approach i) eliminates the need for mechanical scanning of the sensor, ii)
provides aliasing-free images by following Nyquist sampling criteria, and can re-
solve multiple targets with significant improvement in the spatial resolution. Using
the support information from the MUDT, varying degree of smoothness was applied
in different regions i.e. in the dry part and inside the wet-spots in the modelling of
prior. The overall inversion strategy is shown in Fig. 4.13. Overall, the objective is
to relax the smoothing constraints in the dry areas along the tangential and normal
directions with respect to the support domain of the targets. To achieve different de-
gree of smoothness, characteristic length (CL) components and standard deviations
terms are chosen separately for dry and wet-spots regions. Specifically, the prior
covariance matrix was modified as

Cij =

ß
Cij(cx1 , cy1

) ∀ i, j ∈Ωd
Cij(cx2 , cy2

) ∀ i, j ∈Ωh, (4.20)

where Ωd and Ωh represent the approximated dry part and wet-spot support re-
gions, respectively. The terms cx1 , cy1

and cx2 , cy2
are the CL components in wet-

spot and dry regions, respectively. Large CL along with small amplitude (standard
deviation) in the dry part will constrain the estimate to have constant neighbour-
hood structure in the domain. This is equivalent to assuming that pixel elements
are more correlated in the dry regions.
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Figure 4.13: General framework of the proposed method. © 2022 IEEE.
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4.3.1 Numerical evaluation

In the publication III, 3-D model with waveguide antennas with similar configu-
ration as in Fig. 4.2 was used to generate the synthetic measurement data. The
model was built in the commercial software CST Studio Suite with time-domain
solver. In the modelling part, the computational domain consisted of a porous foam
Ωfoam = [0, 25]× [−15, 15]× [−4, 4] cm are surrounded by air. Antennas were po-
sitioned with their open-ended center points located at −15cm to 15cm with 5cm
center to center distance along the y-axis. The data was generated in X-band fre-
quency range (from 8 GHz to 12 GHz) with a frequency step of 5MHz and stored in
terms of a scattering matrix of size 14 × 14 (N = 14). We considered two test exam-
ples to evaluate the estimation accuracy with structural smoothness prior. The size
of the targets were considered in terms of wavelength of center frequency (λc = 3cm)
of X-band range. Implementation details of the MUDT are discussed in [122] and
only the main results are shown here. For the MAP estimation, we followed the
same calculation strategy as presented in Section 4.2. Results of this approach are
discussed with the following cases.

Case 1: Two spherical moisture wet-spots

In this case, different moisture levels with radii of 0.67λc are assumed. The first wet-
spot with 35% moisture level is centered at (12.5cm,0cm,0cm) and the second wet-
spot with 25% moisture level (ϵr ≈ 1.48− j0.056) is centered at (12.5cm,10cm,0cm).
In Figure 4.15, localisation information from MUDT is shown. Results show that the
dominant wet-spot is clearly detected, while the drier wet-spot is also visible but
not as strong as the other one as represented by the red dashed circle in top of the
Fig. 4.14 (top).

To calculate the MAP estimate, information from MUDT with K-means segmen-
tation was used in the structural smoothness prior model. In the structural prior, the
CL are set to cx1 = 30cm, and cy1

= 8cm for the dry part (with very small standard
deviation values set for σϵr′ and σϵr′′ ) and for the supported domain of wet-spots,
CL of cx2 = 3cm, and cy2

= 3cm (with standard deviation values set for σϵr′ = 1,
and σϵr′′ = 0.075) are chosen. The sigma values in the wet-spots regions are se-
lected based on the dielectric characterisation data and ±3σ can account for 99%
of the dielectric values in the prior from the set mean value of ηϵr = 1.16 − j0.01.
Also, we calculated the MAP estimate with smoothness prior model with a CL of
cx = 8cm, and cy = 4cm. In the smoothness prior, we set σϵr′ = 1, σϵr′′ = 0.075 and
ηϵr = 1.16 − j0.01. The MAP estimates with smoothness prior model and structural
prior model are shown in Fig. 4.14.

With the smoothness prior, the location of wet-spot is somewhat enlarged and
real part of its dielectric value is underestimated. However, with the structural
smoothness prior, MAP estimate for the real part of the dielectric constant is very
close to true case and also the wet-spot is recovered within the correct domain.
Further, for easier quantitative comparison, pixel values at data line y = 0cm are
compared against the true case and shown in the bottom row of Fig. 4.15. The
structural prior follows the discontinuities and aligns closer to the real value than
the smoothness prior case.
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Figure 4.14: MUDT and MAP estimates for the two wet-spots with different mois-
ture case. The bottom figure shows the comparison of MAP with structural and
smoothness prior model with the true case for the pixel values located at data line
y = 0cm.© 2022 IEEE.

Case 2: Rectangular case

In this scenario, a rectangular distribution for the wet-spot was considered with
a moisture content of 30% (εr ≈ 1.58 − 0.06j) and dimension 2.6λc × 1.3λc × 6.5λc
located at the center of the foam.

The reconstructed image using MUDT is shown in Fig. 4.15 (top). As can be
seen from this figure, the exact boundary of the distribution is not reconstructed.
Although, the K-means segmentation has resulted in covering a slightly larger do-
main.

The MAP estimates are calculated based on the parameter set in the previous
case. The results are shown in Fig. 4.15. The corners/discontinuities are difficult
to estimate with the smoothness prior and more so the estimation shows an irreg-
ularity with stretched boundaries and incorrect level of moisture. As can be seen,
the structural prior detects the irregularity and locates it more accurately than the
smoothness prior. Overall, its performance is more accurate as evident from line
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Figure 4.15: MUDT and MAP estimates for the rectangular distribution case. Oth-
erwise the same caption as in Fig. 4.14.© 2022 IEEE.

graph in the Fig. 4.15 (bottom). Note that even though the CL in the structural
prior are set to the previous case, which does not match with the actual changes,
the estimate is still good.

4.3.2 Experimental results

Three moisture scenarios were considered in the experimental study. Their respec-
tive scattered field data collected from the setup shown in Fig 4.10.

In the first case, a spherical wet-spot with diameter 2.5 ± 0.1 cm and with 45%
wet-basis moisture level (εr ≈ 2.0− 0.092j) was considered. An approximate location
of the irregularity inside the foam is centered at (0cm,−9cm,1.55cm).

From the MUDT image, the structural information is extracted using K-means
segmentation (not shown here) and utilised to form the structural prior model in
which the CL of cx1 = 25cm, and cy1

= 7cm for the dry part and for the supported
domain of wet-spot, CL of cx2 = 3cm, and cy2

= 3cm are chosen. Also, we calculated
the MAP estimates with smoothness prior model with a CL of cx = 8cm, and cy =
4cm. The MAP estimates are shown in middle and last row of Fig. 4.16 (i). Although
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39



− 10− 50510
x (cm)

− 3.8

0

3.8

y
(c

m
)

50% 55%

MUDT

0.0

0.2

0.4

0.6

0.8

1.0

− 10− 50510
x (cm)

− 3.8

0

3.8

y
(c

m
)

MAP with smoothness prior

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ε ′r

− 10− 50510
x (cm)

− 3.8

0

3.8

y
(c

m
)

MAP with structural prior

Figure 4.17: Left: two cubic moisture case: moisture levels of 50% and 55% are
impregnated in the incised foam, respectively. Right: MUDT and MAP estimates
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the wet-spot is somewhat correctly located with both the priors, the estimate with
the structural prior is more accurate than the smoothness prior solution. In addition,
artifacts are also visible in the MAP solution with smoothness prior. Improvement
in the image quality with structural prior can be speculated to be due to suppression
of smooth variations in the background (i.e. the dry part).

In the second experiment, we inserted two wet-spots with moisture percentage
of 50% (εr ≈ 2.2 − 0.1j) and 45% (εr ≈ 1.98 − 0.076j), respectively. The location of
the wet-spot with 50% is centered at (0cm,−3.6cm,1.55cm) and location of the wet-
spot with 45% is the same as in the previous case. In the K-mean segmentation of
the MUDT image, the two regions got merged as the two irregularities are close and
share the same neighbourhood; it then results in forming a nearly ellipsoid region
which is then used in the structural prior. To evaluate the MAP estimate the CL
parameters are kept the same as in the previous case. From the MAP estimates in
Fig. 4.16 (ii), it can be seen that the two wet-spots are retrieved more accurately than
with the smoothness prior even though the structural information from segmenta-
tion indicated a wider domain and CL are set to smaller dimension.

In the third case, two cubic shape pieces are cut out from the foam and infused
with moisture levels of 50% (εr ≈ 2.2 − 0.1j) and 55% (εr ≈ 2.4 − 0.16j) in its full
volume, respectively as shown in Fig. 4.17 (left). For this case, the localization in-
formation from the MUDT was improper mainly due to limited independent data.
This resulted in incomplete structural knowledge of the targets. In the structural
prior, we have set the same CL in both regions similar to the first case. From the
MAP estimations shown in Fig. 4.17 (right), a clear presence of higher moisture is
still indicated, though not in full volume, with structural prior model in comparison
to the smoothness based solution that can only locate moisture presence in the mid-
dle inclusion. The false solution in the smoothness prior model can be speculated
to be due to over-regularisation or smoothing effect. Overall, incorporating struc-
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tural prior model has improved the accuracy of estimated moisture location and its
dielectric properties. We also noticed that even with change in CL to larger values
the results show no significant changes.
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5 Discussions and conclusions

In this thesis, application of microwave tomography (MWT) towards process imag-
ing in the industrial drying system is presented. The imaging modality was applied
to estimate the moisture content in a porous polymer foam in terms of relative
dielectric constant. For the inversion of MWT, the neural network approach and
Bayesian inversion framework with correlated sample-based prior and structural
prior was employed. Both the approaches were tested under the static case con-
ditions with numerical and experimental data from the developed MWT system.
The estimation results are compared against the respective true cases by error met-
rics RMSE and profile similarity index and comparison indicates good estimation
results.

In the publication I, we applied a reconstruction scheme based on a convolu-
tional neural network (CNN) to estimate the moisture content in a polymer foam.
For the training of the network, a numerical database which consists of differ-
ent moisture samples with smooth distribution and corresponding electric field
responses computed using the 2-D method of moment computational technique
was used. The moisture samples were generated using a parametric model de-
rived from the laboratory-based dielectric characterization of the foam. The CNN
architecture was selected empirically which implies that there may exist some other
network architecture that can give relatively better performance. However, our ra-
tionale was to choose a network with fewer layers instead of deep layer networks,
for example, U-Net, that needs extra computational load to give very high accuracy
or super-resolution as needed in microwave medical imaging applications [125,126].
Although our achieved results with numerical data had good accuracy, uncertainties
in the estimations were still pertinent. This was caused mainly due to underlying
uncertainties associated with the dielectric characterization data and higher noise
levels considered in the simulations. Meanwhile, with the experimental data, the
estimated values are found underestimated which are caused due to modeling er-
rors, i.e., 3-D measurements and 2-D forward model. Furthermore, we also observe
that in the estimates the background information, i.e., the dry part is not well distin-
guishable. This is mainly due to the Gaussian based covariance structure used for
generating moisture distribution. One solution is to use covariance structure models
with a scaling factor such as Matérn class [90]. Overall, results showed promising
accuracy with less than ±10% relative estimation error and the method’s potential
to be used for real-time moisture estimation purpose in the industrial drying sys-
tem. For our work, the scope for improvement lies in the uncertainty quantification
(UQ). In general, UQ in deep neural networks is a very active research topic and
several approaches have been proposed and studied, see for example the recent
reviews [127].

Although, the neural network framework is fast in providing a reconstruction,
however, changes for example, in (i) the size of the imaging domain, (ii) the rough-
ness of the top surface or high randomness (iii) possible values appearing in real
cases outside the simulated range of values of dielectric constant may lead to erro-
neous reconstruction. Therefore, in this thesis, as an alternative, the feasibility of the
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classical knowledge-driven inverse problem approach based on the Bayesian inver-
sion framework is also tested and reported in the publications II and III. The main
idea of the publications was to improve the maximum a posteriori (MAP) estimates
by exploiting the prior model.

In the publication II, we proposed a sample-based prior model to favour the joint
estimation of the real and imaginary parts of the dielectric constant. To construct the
sample-based prior model, we used a large dataset consisting of simulated moisture
samples to evaluate the prior mean and built the prior covariance structure. In each
sample, moisture values are chosen based on the parametric model obtained from
the dielectric characterization of the foam. The proposed approach is tested with
2-D numerical microwave tomography data at 8.3 GHz for the considered moisture
scenarios. For the considered test cases, the average estimation error (RMSE ) ob-
tained using smoothness prior model for real and imaginary parts were less than
1% and 11%, respectively. Conversely, with the sample-based prior model the es-
timation error for the imaginary part is reduced to less than 4%. This shows that
in comparison to the uncorrelated smoothness prior a significant improvement in
the estimation result is achieved with the sample-based prior model. Also, the av-
erage profile similarity index for the imaginary part with the smoothness and the
sample-based prior model is 0.48 and 0.9, respectively that clearly highlights the ef-
fectiveness of the sample-based prior model on the overall reconstruction accuracy.
Note that average profile similarity index for the real part for both the prior cases is
0.9.

Further, the developed algorithm was tested on the MWT experimental proto-
type data and reconstruction results are observed to be close to the true case with
the sample-based prior model. However, the overall estimation accuracy is slightly
reduced in comparison to the simulated studies which may be caused due to the
modeling errors. Together with the source modeling error, this discrepancy might
be caused due to the 2-D vs. 3-D Green’s function mismatch when the geometry
of the target is no longer independent of one of the coordinates. In essence, these
errors are predominant for the case when spherical geometries are assumed for
the wet-spots in comparison to infinitely extended scatterer cases (where the gen-
eral performance of the 2-D forward model with line sources is good). A detailed
discussion was provided in [128] for medical imaging applications but is equally
applicable for our application as well. Nonetheless, the source model errors remain
persistent in our study. Thus, one potential way to improve the reconstructions is
to use the Bayesian inversion approach in conjunction with the approximation error
scheme [129] which can accommodate the statistics of these errors resulting in bet-
ter estimates. Further, in the industrial drying system, the foam temperature will
be higher than the room temperature at the exit. Therefore, the dielectric character-
ization of the foam with wet-basis moisture levels at different temperatures can be
helpful in practice. The Bayesian inversion can produce effective results but its im-
plementation for real-time process imaging may be challenging. This is mainly due
to the iterative nature of the inversion algorithm and full-array sensor configuration
(antennas placed on both sides of the target) that is observed to increase the data
acquisition time. Therefore, for real-time implementation limited-view MWT setup
with statistical inversion framework and GPU support is a way forward.

In the publication III, a coupled MWT imaging method was proposed for ob-
taining the location of the moisture and its dielectric constant values in the polymer
foam. The goal was to improve the reconstruction quality of the Bayesian inversion
algorithm by incorporating structural prior information derived from the qualita-
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tive imaging algorithm known as the multi-static diffraction tomographic imaging
algorithm (MUDT). The MUDT was employed to estimate the support domain of
the target based on which the structural smoothness prior model for Bayesian inver-
sion was derived. This way of obtaining structural prior information is effective as
it utilizes the data from the same microwave sensor setup in contrast to the priors
derived for other imaging modalities or radar-based techniques. The validity of the
proposed approach is tested with 3-D synthetic data for pragmatic moisture cases
and compared with that of solution from smoothness prior. In the final steps, the
proposed imaging algorithm was verified with experimental data from the devel-
oped MWT setup and results show that there is a significant increase in accuracy
and in overall image quality. It could be concluded that the proposed combined
method i) eliminates the need to employ multi-frequency reconstruction, ii) unlike
dual-imaging modalities, utilizes the same MWT setup for the estimation of the loca-
tions and dielectric constant levels of the hot-spots, iii) improves the reconstruction
accuracy over the conventional MAP estimate based on smoothness priors. In gen-
eral, the proposed method can be extended for the through-the-wall radar imaging
(TWRI) applications, ground penetrating radar (GPR) applications. In this study,
only isolated regions of moisture were considered during the numerical and exper-
imental study. These situations arise especially at the outlet stage in the drying
process since the foam has been partially dried due to the heating operation. There-
fore, it would be beneficial to integrate MWT at the outlet rather than at the inlet to
fully justify the use of structural prior knowledge. Owning to low contrast values
at the outlet of the drying system, a one-shot single frequency non-linear difference
imaging based on the Bayesian framework and structural prior from time-reversal
imaging [130] with only reflection data (with the antennas only on top) can be uti-
lized towards real-time imaging.

In conclusion, the research presented in this thesis develops inversion techniques
based on neural networks and the Bayesian inversion framework for MWT for its
application in the industrial drying system. The neural network approach is found
suitable for meeting the goals of industrial process tomography such as real-time
image reconstruction and supports fast data acquisition due to single-frequency op-
eration. On the other hand, the Bayesian approach has shown good estimation
accuracy for different cases considered under numerical and experimental study.
Nevertheless, in general, due to the iterative nature of the algorithm and due to the
full-angle setup, its implementation for real-time process imaging may be challeng-
ing especially during the continuous processing mode (target moving on a conveyor
belt). Therefore, testing the Bayesian approach with e.g. limited angle setup and
GPU computing is the way forward. Finally, we envisage that the proposed prior
models in the Bayesian methodology are even applicable for medical applications of
microwave imaging.
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Abstract: The article presents an application of microwave tomography (MWT) in an industrial
drying system to develop tomographic-based process control. The imaging modality is applied
to estimate moisture distribution in a polymer foam undergoing drying process. Our Leading
challenges are fast data acquisition from the MWT sensors and real-time image reconstruction of
the process. Thus, a limited number of sensors are chosen for the MWT and are placed only on top
of the polymer foam to enable fast data acquisition. For real-time estimation, we present a neural
network-based reconstruction scheme to estimate moisture distribution in a polymer foam. Training
data for the neural network is generated using a physics-based electromagnetic scattering model and
a parametric model for moisture sample generation. Numerical data for different moisture scenarios
are considered to validate and test the performance of the network. Further, the trained network
performance is evaluated with data from our developed prototype of the MWT sensor array. The
experimental results show that the network has good accuracy and generalization capabilities.

Keywords: microwave drying; moisture content distribution; microwave tomography; inverse
problems; neural networks

1. Introduction

Controlled/localised heating in industrial microwave oven [1,2] is paramount to
address hot-spot formation and thermal runaway issues [3]. As a consequence, system
efficiency and processed product quality may improve. Presently, we are working on a
type of microwave oven technology called HEPHAISTOS, as shown in Figure 1. The sys-
tem is characterized by hexagonal geometry [4] for the cavity that supports a very high
electromagnetic field homogeneity. Its principal areas of applications are in material pro-
cessing such as thermal curing of fiber composites and drying of porous foams. Specifically,
during drying of a porous polymer foam, thermal runaway and hot-spot formation may
occur [5,6]. Such situations may lead to low-quality processing and may even damage the
industrial unit in case a fire is kindled in the foam. Therefore, automatic online control
of power sources (magnetrons) to obtain a selective heating rate at each stage of the dry-
ing process is one option to eliminate these problems. To apply such precise control of
power sources, non-invasive in situ measurement of the unknown distribution of moisture,
especially dominant wet-spots, inside the material is required. The infrared temperature
sensors integrated with the microwave drying systems are capable of giving information
only on the surface of the material. That is not sufficient to provide efficient control of
microwave sources. Thus, integration of microwave tomography (MWT) imaging modality
operating in X-band range [7] (from 8 GHz to 12 GHz) with the drying system is proposed
(see number Tag 4 in Figure 1) to estimate the moisture content distribution in a polymer
foam. Based on the MWT tomographic output, an intelligent control strategy for power
sources can be derived. Preliminary work in this direction is reported in [8] by the authors.
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Industrial process tomography based on microwave sensors for various applications are
reported in [9,10]. The specific use-case of microwave sensor technology for moisture
measurements in a sample are given in [11–17]; but they are limited in providing moisture
information on the surface or in a small sample size but not the volumetric information as
required for our purpose.

Figure 1. Left: view of the HEPHAISTOS microwave oven system. Right: schematic showing the main modules of the
oven which are represented by numbers tag 1, 2, 3, and 4. Tag 1 is high power microwave waveguide antenna, Tag 2 is
the conveyor belt, and Tag 3 is the metal plate. MWT setup with waveguide antenna is represented by Tag 4. The foam is
shown as dark gray matter and placed on the conveyor belt.

For MWT, real-time image reconstruction is critical to provide a fast input response
for the control system. In addition, the inverse scattering problem that we are solving is
severely ill-posed due to the large object size and inhomogeneous profile. Thus, applying
iterative optimization-based methods like Levenberg–Marquardt [18], contrast source in-
version, and subspace-based optimization methods [19] are time-consuming. An attractive
approach to fulfill the real-time estimation requirement is to use neural networks [20,21].
The first implementation of neural networks, to the best of our knowledge, in solving an
inverse problem in electromagnetics where material properties of multilayered media is
estimated was presented in [22]. In [23,24], artificial neural network is employed for de-
termining the moisture content in wheat and moisture content of commercially important
biomass, respectively.

Recent developments in the use of neural networks for solving general microwave
imaging problem are detailed in [25–30]. In [31], a connection between the optimization
framework and neural network is established and tested to solve nonlinear inverse scatter-
ing problems. However, they are limited to sparse target recovery with full-angle sensor
configuration and a large number of measurements. In this work, an MWT configuration
with antennas located only on top is chosen as a setup to support fast data acquisition.
Secondly, our network is trained using the smoothness parameter model to represent
possible moisture distribution scenarios and is capable of even generalizing sparse targets
as shall be demonstrated by the experimental results. Using ideas from our preliminary
studies [32–35], we build a comprehensive synthetic dataset consisting of different mois-
ture content distribution scenarios and the corresponding scattered electric field responses
using two-dimensional (2-D) method-of-moment formulation. Once the selected network
architecture is trained using this dataset, it is applied to recover the moisture content distri-
bution (in terms of dielectric constant) in real-time. The performance of trained network is
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Industrial process tomography based on microwave sensors for various applications are
reported in [9,10]. The specific use-case of microwave sensor technology for moisture
measurements in a sample are given in [11–17]; but they are limited in providing moisture
information on the surface or in a small sample size but not the volumetric information as
required for our purpose.

Figure 1. Left: view of the HEPHAISTOS microwave oven system. Right: schematic showing the main modules of the
oven which are represented by numbers tag 1, 2, 3, and 4. Tag 1 is high power microwave waveguide antenna, Tag 2 is
the conveyor belt, and Tag 3 is the metal plate. MWT setup with waveguide antenna is represented by Tag 4. The foam is
shown as dark gray matter and placed on the conveyor belt.

For MWT, real-time image reconstruction is critical to provide a fast input response
for the control system. In addition, the inverse scattering problem that we are solving is
severely ill-posed due to the large object size and inhomogeneous profile. Thus, applying
iterative optimization-based methods like Levenberg–Marquardt [18], contrast source in-
version, and subspace-based optimization methods [19] are time-consuming. An attractive
approach to fulfill the real-time estimation requirement is to use neural networks [20,21].
The first implementation of neural networks, to the best of our knowledge, in solving an
inverse problem in electromagnetics where material properties of multilayered media is
estimated was presented in [22]. In [23,24], artificial neural network is employed for de-
termining the moisture content in wheat and moisture content of commercially important
biomass, respectively.

Recent developments in the use of neural networks for solving general microwave
imaging problem are detailed in [25–30]. In [31], a connection between the optimization
framework and neural network is established and tested to solve nonlinear inverse scatter-
ing problems. However, they are limited to sparse target recovery with full-angle sensor
configuration and a large number of measurements. In this work, an MWT configuration
with antennas located only on top is chosen as a setup to support fast data acquisition.
Secondly, our network is trained using the smoothness parameter model to represent
possible moisture distribution scenarios and is capable of even generalizing sparse targets
as shall be demonstrated by the experimental results. Using ideas from our preliminary
studies [32–35], we build a comprehensive synthetic dataset consisting of different mois-
ture content distribution scenarios and the corresponding scattered electric field responses
using two-dimensional (2-D) method-of-moment formulation. Once the selected network
architecture is trained using this dataset, it is applied to recover the moisture content distri-
bution (in terms of dielectric constant) in real-time. The performance of trained network is
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validated with the numerical MWT data for different moisture scenarios. Further, the net-
work is tested on the experimental data from the MWT setup integrated with the drying
unit. Results presented shows that neural network approach can successfully estimate the
moisture content in real-time.

The paper is organized as follows: The forward model for MWT problem and its
formulation is detailed in Section 2. Furthermore, Section 2 also details the parametric
model for generation of moisture distribution. Section 3 details the neural network based
approach in the MWT and numerical results are presented. The experimental setup of the
MWT is detailed in Section 4 and performance of the neural network with the experimental
data is tested. Discussion and concluding remarks are given in Section 5.

2. Problem Formulation

To generate the numerical dataset for the neural network, we begin our discussion
by first unveiling the scattering model of the problem. With reference to the MWT mea-
surement schematic shown in Figure 1, we chose to illustrate the scattering model in the
context of its 2-D configuration. The 2-D configuration is chosen instead of 3-D model as to
decrease the overall computational load for generating the dataset.

2.1. Forward Model

The 2-D cross-section of the MWT setup is shown in Figure 2 with multistatic measure-
ment configuration. In the figure, we consider a two-dimensional foam domain Ωfoam =
[−15, 15] × [0, 7.6] cm with inhomogenous relative dielectric constant εr = ε′r − jε′′r .
The foam is placed on the metal plate (as shown in Tag 4 in Figure 1) which is modeled
here as perfect electric conductor (PEC) plane and surrounded by background domain Ω
consisting of air with εr = 1− j0. For this 2-D numerical study, the waveguide antennas
are modeled as a z-oriented electric line source [36]; 7 such line sources are placed in a
transceiver mode at a distance of 5 cm from the top surface of the foam.

metal plate

7.6 cm

5 cm

30 cm

y

xz

εr(x, y)Ωfoam

1 2 3 4 5 6 7

Figure 2. 2-D schematic of the MWT setup with waveguide antennas denoted by number from 1, 2, . . . 7.

In general, the scattered electric field under the illumination of time-harmonic (time
convention e−jωt with angular frequency ω is used and suppressed) transverse magnetic
(TM) z-polarized incident field is governed by the following coupled scalar volume integral
Equations (VIEs) [37–41]

Esct(r) = k2
∫

Ωfoam

G(r, r′)
(
εr(r′)− 1

)
E(r′)dr′,

∀r ∈ Ω, r′ ∈ Ωfoam.
(1)
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The term Esct is the scattered electric field. The wavenumber of the background
medium is denoted by k. The term G(r, r′) is the free-space Green’s function. The source
and the observation points are denoted by the position vectors r �→ (x, y) and r′ �→ (x′, y′),
respectively. The term E is the total electric field inside the scattering object and is given as

E(r) = Einc(r) + k2
∫

Ωfoam

G(r, r′)
(
εr(r′)− 1

)
E(r′)dr′,

∀r, r′ ∈ Ωfoam,
(2)

where Einc is the incident electric field from the line-source. The effects of the conducting
plane are included in the 2-D free-space Green’s function of the VIEs by the use of half-
space Green’s function [42]. It is defined using image theory principle [43] where an image
source is introduced to account for the reflections from the surface of the conducting plane
and thus the conducting plane can be removed. The image source point (denoted here
as xim and yim) must have the same magnitude as the actual source, its phase must be
180 degree out of phase from the actual source and it must be placed below the conducting
plane at a depth yim = −y. Such a system configuration does lead to zero tangential
electric field [44] along the x-direction. The half-space Green’s function includes both the
primary contribution GT(r, r′), which is the free-space Green’s function, and the secondary
contribution GR(r, r′im) due to the image source and denoted as

G(r, r′) = GT(r, r′) + GR(rim, r′). (3)

Therefore, the scattered electric field above the conducting plane (i.e., upper half-space
y > 0) is equal to

Esct(r) = k2
∫

Ωfoam

GT(r, r′)
(
εr(r′)− 1

)
E(r′)dr′

+ k2
∫

Ωfoam

GR(rim, r′)
(
εr(r′)− 1

)
E(r′)dr′. (4)

Given the integral equation for the scattered electric field and total electric field, we
resorted to discrete dipole approximation with pulse basis and point matching technique,
i.e., method-of-moments (MoM) [45] for its numerical solution. In doing so, the foam
domain is discretized into n cells with dimensions denoted as ∆, so that the dielectric
constant and the total electric field are essentially constant over each cell. The unknown
total electric field inside the domain can be represented using sub-domain pulse-basis
function with unknown weight w as

E(r) =
n

∑
l=1

wlEl(r). (5)

Here, the discretized electric field El is defined as

El(r) =
{
1 ∀(x, y) ∈ cell l
0 otherwise

(6)

Then, Equation (2) is written as

n

∑
l=1

wlEl(r) = Einc(r)−
jk2

4

n

∑
l=1

(εrl − 1)wlEl(r)
∫∫

∆l

H2
0(r, r

′)dr′+

jk2

4

n

∑
l=1

(εrl − 1)wlEl(r)
∫∫

∆l

H2
0(rim, r′)dr′, (7)
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Given the integral equation for the scattered electric field and total electric field, we
resorted to discrete dipole approximation with pulse basis and point matching technique,
i.e., method-of-moments (MoM) [45] for its numerical solution. In doing so, the foam
domain is discretized into n cells with dimensions denoted as ∆, so that the dielectric
constant and the total electric field are essentially constant over each cell. The unknown
total electric field inside the domain can be represented using sub-domain pulse-basis
function with unknown weight w as
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∑
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wlEl(r). (5)

Here, the discretized electric field El is defined as

El(r) =
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0 otherwise

(6)

Then, Equation (2) is written as

n

∑
l=1

wlEl(r) = Einc(r)−
jk2
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∑
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(εrl − 1)wlEl(r)
∫∫
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0(r, r
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∆l
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0(rim, r′)dr′, (7)
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where H2
0 is Hankel function of second kind and zero order. Further, after dot product,

denoted by the operator 〈·〉, of Equation (7) with the test function Em(r), we obtain

n

∑
l=1

wl〈Em(r), El(r)〉 = 〈Em(r), Einc(r)〉 −
jk2

4

n

∑
l=1

(εrl − 1)wl〈Em(r), El(r)〉
∫∫

∆l

H2
0(r, r

′)dr′

+
jk2

4

n

∑
l=1

(εrl − 1)wl〈Em(r), El(r)〉
∫∫

∆l

H2
0(rim, r′)dr′. (8)

Applying point collocation, i.e., choosing the test function as Em(r) = δm(r) where δ
is the delta function, we obtain the following matrix equation of the form

n

∑
l=1

Zmlwl = Eincm = 〈δm(r), Einc(r)〉, (9)

where

Zml = 〈δm(r), El(r)〉+
jk2

4
(εrl − 1)〈δm(r), El(r)〉

∫∫

∆l

H2
0(r, r

′)dr′

− jk2

4
(εrl − 1)〈δm(r), El(r)〉

∫∫

∆l

H2
0(rim, r′)dr′.

The approximate solution of the surface integral in Equation (8), following [46] become

jk2

4

∫∫

∆l

H2
0(r, r

′)dr′ =

{ j
2
[
πkaH2

1(ka)− 2j
]
, ∀ m = l

jπka
2 J1(ka)H2

0

(
k
√
(xm − xl)2 + (ym − yl)2

)
, ∀ m �= l

where H2
1 is the Hankel function of second kind and first order, a is the radius of equivalent

circular region having same area of the discretized cell, and J1 is the Bessel function of
first kind. To solve for the system of linear equations in Equation (9), generalized minimal
residual method (GMRES) [47] is employed. Upon calculation of the unknown weights,
the scattered electric field is evaluated at the transceiver points as

Esct(r) = −j
πk
2

n

∑
l=1

(εrl − 1)wlal J1(kal)
[
H2

0

(
k
√
(x− xl)2 + (y− yl)2

)
−

H2
0

(
k
√
(xim − xl)2 + (yim − yl)2

)]
.

(10)

Note that in Equation (7), the term Einc contains both the transmitted signal and the
reflected signal from the PEC in the absence of the foam.

2.2. Parametric Model for Moisture Distribution

The dielectric values used to represent moisture variations are generated numerically,
based on the dielectric characterization of the polymer foam in laboratory environment.
In the characterization, cavity perturbation method was used for dry sample and measure-
ment at different moisture levels were performed with samples that cover all the cross
section of aWR340 waveguide and using transmission reflection method [48]. The moisture
content is calculated based on the wet-basis, i.e.,

M =
Wm −Wd

Wm
× 100, (11)
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where M is the moisture percentage,Wm is the weight of the foam sample after adding the
water, andWd is the weight of the dry sample. At the first step, we obtained the dielectric
constant associated with the 0% moisture level. Then, a certain amount of water is added
manually and the dielectric constant is recorded in each level. Thus, a relationship between
the wet-basis moisture content Mmeas and its corresponding real part and the imaginary
part of the dielectric value is obtained and given as

θ = āθ exp (b̄θMmeas), (12)

where θ = {ε′r, ε′′r } denotes the material parameters. Numerical values for āθ and b̄θ are
given in Table 1 where the error bounds for the fitted coefficients are defined by δaθ and δbθ .
Based on (12), the real part of relative dielectric constant vary in the range of 1.164–3.255
and imaginary part vary between 0.017–0.276 for wet-basis moisture content from 0% to
90%, respectively.

Table 1. Material model parameters.

āθ δaθ b̄θ δbθ

ε′r 1.085 0.01591 0.01256 0.00062
ε′′r 0.03021 0.0025 0.02249 0.0009

Further, we assume that the moisture field variation M in the foam is smooth. To gen-
erate such a random field, we utilise an anisotropic covariance structure C with its elements
calculated as [49]

Cij = exp

{
−1
2

(∥∥xi − xj
∥∥2

l2x
+

∥∥yi − yj
∥∥2

l2y

)}
. (13)

Here, i, j = 1, . . . ,Nn and lx, ly are the characteristic length components. Nn denotes
the number of pixels. In practice, the characteristic lengths affect the moisture distribution
in x, and y directions. To generate simulated moisture samples, the uncertainties in the
dielectric characterization is also considered, and hence Equation (12) is replaced by

θ = aθ exp (bθM), (14)

where aθ , bθ are random variables such that aθ ∼ U (āθ − δaθ , āθ + δaθ ) and bθ ∼ U (b̄θ − δbθ ,
b̄θ + δbθ ), where U denotes the uniform distribution. Numerical values for δaθ and δbθ are
given in Table 1. The moisture content distribution in each sample M can be expressed as

M = M∗1+ δMLZ, (15)

where 1 is an all-ones vector, L is the lower triangular matrix of the Cholesky factorization
of the covariance C, Z is a standard normal random vector, M∗ and δM are the mean
and standard deviation of the moisture content field, respectively. A pseudo-code for
generating a sample is given below.

In Algorithm 1, the terms xmin = 2 cm, xmax = 30 cm, ymin = 2 cm, and ymax = 7.6 cm
denote the chosen minimum and maximum dimensions in the x and y directions of the
foam domain, respectively. U denotes the uniform distribution. Four randomized draws of
moisture distribution are shown in Figure 3.



Sensors 2021, 21, 6919 6 of 17

where M is the moisture percentage,Wm is the weight of the foam sample after adding the
water, andWd is the weight of the dry sample. At the first step, we obtained the dielectric
constant associated with the 0% moisture level. Then, a certain amount of water is added
manually and the dielectric constant is recorded in each level. Thus, a relationship between
the wet-basis moisture content Mmeas and its corresponding real part and the imaginary
part of the dielectric value is obtained and given as
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Algorithm 1 Pseudocode for generating the moisture distribution. Note that a small
diagonal component is added in matrix C to ensure the positive definiteness.

1: M∗ ∼ U (0, 50) %, δM ∼ U (2, 20) %
2: cx ∼ U (xmin, xmax), cy ∼ U (ymin, ymax)

3: C = AnisotropicCovariance(cx, cy, x, y)
4: L = Cholesky(C)
5: M = M∗ ones(Nn) + δML randn(Nn)
6: Calculate ε′r, ε′′r using Equation (14)
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Figure 3. Four realisation of the moisture distribution with different correlation lengths, and mean and standard deviation
parameters. In the top right figure the characteristic parameter are lx = 3 cm and ly = 7 cm, and for the top left figure
characteristic parameter are lx = 18 cm and ly = 4 cm. Wet-spots (lx = 3 cm, and ly = 3 cm) and nearly homogeneous
moisture distribution (lx = 30 cm, ly = 7 cm, and δM = 2%) are shown in bottom left and right figures, respectively.

3. Inverse Problem: Convolutional Neural Network

In this study, a convolutional neural networks (CNN) is applied to estimate the mois-
ture distribution of porous foam from scattered electric field data. The CNN Hw,b(Esct)
is trained to map from an input space Esct ∈ R7×7×2 to Θ ∈ R300×1 (vectorized moisture
content distribution in terms of real part of the dielectric constant ε′r). The network archi-
tecture used in this work comprises two convolution layers and two fully connected layers.
The network architecture is shown pictorially in Figure 4. The input layer consists of two
channels where the real part (channel 1) and imaginary part (channel 2) of the complex
valued scattered electric data, i.e., Esct are given as an input. The convolutional layers
L = 1 and L = 2 have 20 and 30 channels with non-linear Rectified Linear Unit (ReLU)
activation function and spatial filter of size 3× 3 is chosen for both the layers. The fully
connected layer L = 3 has an output of size 340× 1. As for the estimation of ε′r(x, y),
an adequate resolution of the moisture distribution field of around x× y = 1 cm× 0.76 cm
is chosen. Thus, the output layer has a size of 300× 1. Note here that, moisture distribution
is estimated in terms of real part of the dielectric constant only. Including the imaginary
part of the dielectric constant is straightforward but it will increase the computational load.
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Figure 4. The architecture of the convolutional neural network used in this study.

The convolutional neural network (CNN) is trained using a dataset comprising of
moisture content distribution {Θm} and corresponding scattered electric field parameters
{Esctm}, m = 1, . . . ,Nm. Nm denotes the number of samples in the dataset. The generation
of such a dataset is described below. In the training phase, the goal is to find biases b and
weights w that minimize the discrepancy between {Θ�} and the values estimated by the
network {Hw,b(X�)}. In this work, we minimize the quadratic loss function

f (w, b; {Esct}m) =
1
Nm

Nm

∑
m=1

∥∥Hw,b(Esct)−Θm
∥∥2, (16)

to obtain the network parameters, biases, andweights of the network. For the network train-
ing process, the Adaptive moment estimation (Adam) optimizer [50] is chosen, with the
batch size of 150 samples and epoch setting as 2000. The learning rates are set to 1e-4
through out the training. All the computations were performed in a Python library Ten-
sorFlow [51] on a local computer with the configuration of 32 GB access memory, Intel
Core(TM) i7-7820HQ central processing unit, and Nvidia Quadro M2200 graphic unit.
The training of the network takes about 5 h.

3.1. Training, validation, and test datasets

An initial dataset of Nm = 10, 000 samples containing complex scattered electric field
response and corresponding moisture distribution is built. Here, the scattered electric field
data is generated using 2-D MoMwith pulse basis and point matching techniques at 8.3
GHz frequency and by discretizing the foam into 100× 30 pixels. Note that the lower
frequency point is chosen from X-band as it offers to simulate the 2-D full-wave electromag-
netic simulations with less computational load and low degree of non-linearity [52][53].
The physical parameters ε′r and ε′′r for each sample were drawn using the framework dis-
cussed earlier. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% to the scattering data. The noise is added (following [54]) to each response of the
complex electric field of the dataset as

Esctnoise = Esct +max(Esct)
β√
2
(δ1 + jδ2), (17)
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The convolutional neural network (CNN) is trained using a dataset comprising of
moisture content distribution {Θm} and corresponding scattered electric field parameters
{Esctm}, m = 1, . . . ,Nm. Nm denotes the number of samples in the dataset. The generation
of such a dataset is described below. In the training phase, the goal is to find biases b and
weights w that minimize the discrepancy between {Θ�} and the values estimated by the
network {Hw,b(X�)}. In this work, we minimize the quadratic loss function

f (w, b; {Esct}m) =
1
Nm

Nm

∑
m=1

∥∥Hw,b(Esct)−Θm
∥∥2, (16)

to obtain the network parameters, biases, andweights of the network. For the network train-
ing process, the Adaptive moment estimation (Adam) optimizer [50] is chosen, with the
batch size of 150 samples and epoch setting as 2000. The learning rates are set to 1× 10−4

through out the training. All the computations were performed in a Python library Ten-
sorFlow [51] on a local computer with the configuration of 32 GB access memory, Intel
Core(TM) i7-7820HQ central processing unit, and Nvidia Quadro M2200 graphic unit.
The training of the network takes about 5 h.

3.1. Training, Validation, and Test Datasets

An initial dataset of Nm = 10,000 samples containing complex scattered electric field
response and corresponding moisture distribution is built. Here, the scattered electric
field data is generated using 2-D MoM with pulse basis and point matching techniques at
8.3 GHz frequency and by discretizing the foam into 100× 30 pixels. Note that the lower
frequency point is chosen from X-band as it offers to simulate the 2-D full-wave electro-
magnetic simulations with less computational load and low degree of non-linearity [52,53].
The physical parameters ε′r and ε′′r for each sample were drawn using the framework dis-
cussed earlier. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% to the scattering data. The noise is added (following [54]) to each response of the
complex electric field of the dataset as

Esctnoise = Esct +max(Esct)
β√
2
(δ1 + jδ2), (17)
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moisture content distribution {Θm} and corresponding scattered electric field parameters
{Esctm}, m = 1, . . . ,Nm. Nm denotes the number of samples in the dataset. The generation
of such a dataset is described below. In the training phase, the goal is to find biases b and
weights w that minimize the discrepancy between {Θ�} and the values estimated by the
network {Hw,b(X�)}. In this work, we minimize the quadratic loss function

f (w, b; {Esct}m) =
1
Nm

Nm

∑
m=1

∥∥Hw,b(Esct)−Θm
∥∥2, (16)

to obtain the network parameters, biases, andweights of the network. For the network train-
ing process, the Adaptive moment estimation (Adam) optimizer [50] is chosen, with the
batch size of 150 samples and epoch setting as 2000. The learning rates are set to 1e-4
through out the training. All the computations were performed in a Python library Ten-
sorFlow [51] on a local computer with the configuration of 32 GB access memory, Intel
Core(TM) i7-7820HQ central processing unit, and Nvidia Quadro M2200 graphic unit.
The training of the network takes about 5 h.

3.1. Training, validation, and test datasets

An initial dataset of Nm = 10, 000 samples containing complex scattered electric field
response and corresponding moisture distribution is built. Here, the scattered electric field
data is generated using 2-D MoMwith pulse basis and point matching techniques at 8.3
GHz frequency and by discretizing the foam into 100× 30 pixels. Note that the lower
frequency point is chosen from X-band as it offers to simulate the 2-D full-wave electromag-
netic simulations with less computational load and low degree of non-linearity [52][53].
The physical parameters ε′r and ε′′r for each sample were drawn using the framework dis-
cussed earlier. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% to the scattering data. The noise is added (following [54]) to each response of the
complex electric field of the dataset as

Esctnoise = Esct +max(Esct)
β√
2
(δ1 + jδ2), (17)

Figure 4. The architecture of the convolutional neural network used in this study.

The convolutional neural network (CNN) is trained using a dataset comprising of
moisture content distribution {Θm} and corresponding scattered electric field parameters
{Esctm}, m = 1, . . . ,Nm. Nm denotes the number of samples in the dataset. The generation
of such a dataset is described below. In the training phase, the goal is to find biases b and
weights w that minimize the discrepancy between {Θ�} and the values estimated by the
network {Hw,b(X�)}. In this work, we minimize the quadratic loss function

f (w, b; {Esct}m) =
1
Nm

Nm

∑
m=1

∥∥Hw,b(Esct)−Θm
∥∥2, (16)

to obtain the network parameters, biases, andweights of the network. For the network train-
ing process, the Adaptive moment estimation (Adam) optimizer [50] is chosen, with the
batch size of 150 samples and epoch setting as 2000. The learning rates are set to 1× 10−4

through out the training. All the computations were performed in a Python library Ten-
sorFlow [51] on a local computer with the configuration of 32 GB access memory, Intel
Core(TM) i7-7820HQ central processing unit, and Nvidia Quadro M2200 graphic unit.
The training of the network takes about 5 h.

3.1. Training, Validation, and Test Datasets

An initial dataset of Nm = 10,000 samples containing complex scattered electric field
response and corresponding moisture distribution is built. Here, the scattered electric
field data is generated using 2-D MoM with pulse basis and point matching techniques at
8.3 GHz frequency and by discretizing the foam into 100× 30 pixels. Note that the lower
frequency point is chosen from X-band as it offers to simulate the 2-D full-wave electro-
magnetic simulations with less computational load and low degree of non-linearity [52,53].
The physical parameters ε′r and ε′′r for each sample were drawn using the framework dis-
cussed earlier. Furthermore, five copies of the dataset are created by adding noise between
1% to 3% to the scattering data. The noise is added (following [54]) to each response of the
complex electric field of the dataset as

Esctnoise = Esct +max(Esct)
β√
2
(δ1 + jδ2), (17)
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where max(Esct) is the maximum value of the scattered electric field, the coefficient
δ1 ∼ U (−1, 1) and δ2 ∼ U (−1, 1) are two real vectors whose elements are sampled from
uniform distribution. The term β denotes the noise levels and sampled as β ∼ U (0.01, 0.03).
Thus, leading to the total number of samples in the training dataset set to Nm = 60,000
where the complex electric field values are vectorised in real and imaginary parts. In addi-
tion, 2000 samples are generated following the same procedures as a validation dataset.
The noise is added to validation dataset similarly as for the training samples.

Furthermore, a test dataset with 1000 samples was generated using denser discretiza-
tion in MoM computation. A different discretization was chosen to ignore “inverse crime”,
i.e., the use of the same computational model or same grid settings to generate both train-
ing and test datasets. Otherwise, the same grid setting or the computational model may
potentially lead to a situation where severe modelling errors are ignored and hence giving
false impression on the accuracy of the estimates [55].

3.2. Reconstruction Results

This section gives results to evaluate the performance of the proposed neural network
based estimation scheme. We applied the trained neural network to estimate the moisture
field of the test datasets. The results are shown for four cases with low and moderate
moisture levels, and high and nearly homogeneous moisture case.

3.2.1. Sample with Low, and Moderate Moisture Content

Two test samples with low (0–25%), and moderate (25–50%) wet-basis moisture
contents are chosen as a first test case. As per the dielectric characterization, the real part of
the dielectric constant value in the low moisture case varies approximately between 1.16
and 1.52 and for the moderate moisture case between 1.52 and 2.1. The corresponding
scattered electric fields are measured and given as an input to the trained CNN. The noise
level is set to β = 0.03, see Equation (17). The true test samples and estimated outputs
from the CNN for the low moisture and for the moderate moisture are shown in Figure 5
(left column) and Figure 5 (right column), respectively. Further, to assess the closeness of
the estimates, pixel values on data line z = 2.25 cm for low moisture case and pixel values
on data line z = 3.8 cm for moderate moisture are visualized and shown in the bottom
of Figure 5. In both cases, the CNN estimated output closely matches the ground truth.
Estimation accuracy is evaluated by comparing the profile similarity index, denoted here
as κ, which is evaluated as

κ =

∫∫

Ωfoam

ε′rCNN
ε′rTruedxdy

√∫∫

Ωfoam

(ε′rCNN
)2dxdy

√∫∫

Ωfoam

(ε′rTrue)
2dxdy

. (18)

The term ε′rCNN
= ε′rCNN

−
〈
ε′rCNN

〉
, and ε′rTrue = ε′rTrue −

〈
ε′rTrue

〉
. The operator 〈·〉 is

the mean operator. For the κ, its values vary between 0 and 1. As it gets closer to 1,
the estimated profile is closer to the ground truth. The performance metrics values for low
and moderate moisture cases are shown in Table 2.

Table 2. κ for low and moderate moisture case.

LowMoisture Moderate Moisture

κ 0.9558 0.9361
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Figure 5. Low moisture case (left column): top figure shows the true profile and middle figure is the estimate from the CNN.
Bottom figure compares the pixel values for the true and estimated profile at y = 2.25 cm data line. Moderate moisture case
(right column): same caption of the low moisture case except for the bottom figure where pixel values are compared for
data line y = 3.8 cm.

For both cases, κ values indicate that estimated profiles are similar to the ground truth.
Note that we interpolated the number of pixels in the true profile to correspond with the
pixels in the estimated profile to calculate κ.

3.2.2. Sample with High Moisture Distribution

In the actual drying process, it is very likely that the moisture variation at the inlet has
high moisture levels. Considering this scenario, two special cases of moisture distribution
are considered. In the first case, we consider the moisture levels with variation between
50% to 70% with corresponding real part of dielectric constant between 2.1–2.95. For the
second case, the moisture levels are high but minor variations in the moisture, between 52%
to 55%, is assumed (nearly homogeneous). The corresponding scattered electric fields are
measured and given as an input to the trained CNN. The noise level is set to β = 0.03.
The true test samples and estimated outputs from the CNN for the high moisture case with
high variations and nearly homogeneous are shown in Figure 6 (left column) and Figure 6
(right column), respectively. Pixel values, as similar in the last section, are compared against
the true case and shown in bottom for respective cases. For both cases, the estimated output
is close to the ground truth. The profile similarity index, κ, values as shown in Table 3
indicate that estimated output is fairly close to the ground truth.

Table 3. κ for high moisture case.

High Variation Homogeneous

κ 0.923 0.883
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Figure 5. Low moisture case (left column): top figure shows the true profile and middle figure is the estimate from the CNN.
Bottom figure compares the pixel values for the true and estimated profile at y = 2.25 cm data line. Moderate moisture case
(right column): same caption of the low moisture case except for the bottom figure where pixel values are compared for
data line y = 3.8 cm.

For both cases, κ values indicate that estimated profiles are similar to the ground truth.
Note that we interpolated the number of pixels in the true profile to correspond with the
pixels in the estimated profile to calculate κ.

3.2.2. Sample with High Moisture Distribution

In the actual drying process, it is very likely that the moisture variation at the inlet has
high moisture levels. Considering this scenario, two special cases of moisture distribution
are considered. In the first case, we consider the moisture levels with variation between
50% to 70% with corresponding real part of dielectric constant between 2.1–2.95. For the
second case, the moisture levels are high but minor variations in the moisture, between 52%
to 55%, is assumed (nearly homogeneous). The corresponding scattered electric fields are
measured and given as an input to the trained CNN. The noise level is set to β = 0.03.
The true test samples and estimated outputs from the CNN for the high moisture case with
high variations and nearly homogeneous are shown in Figure 6 (left column) and Figure 6
(right column), respectively. Pixel values, as similar in the last section, are compared against
the true case and shown in bottom for respective cases. For both cases, the estimated output
is close to the ground truth. The profile similarity index, κ, values as shown in Table 3
indicate that estimated output is fairly close to the ground truth.

Table 3. κ for high moisture case.

High Variation Homogeneous

κ 0.923 0.883
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Figure 6. High moisture case with high variation (left column): top figure shows the true profile and middle figure is the
estimate from the CNN. Bottom figure compares the pixel values for the true and estimated profile at y = 3.8 cm data line.
Nearly homogeneous case (right column): same caption except for the bottom figure where pixel values are compared for
data line y = 5 cm.

3.2.3. Error Statistics

In the test dataset, for each sample the noise is added and its level is chosen from
β ∼ U (0.01, 0.03). Estimates of the ε′r for the whole test data are shown pixel-wise in
Figure 7 (top left). Aside, the profile similarity index for each sample is compared against
the respective true case and shown in Figure 7 (top right). The figure also includes a
relative estimation error histogram. Uncertainties in the estimations can be seen mainly
due to uncertainties in dielectric’s characterization (see Table 1) and higher noise levels.
Specifically, with uncertainties in dielectric characterization, samples with same moisture
levels are not unique in dielectric values. Nonetheless, the overall estimation success of the
trained CNN on the test dataset for most samples are fairly good.
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Figure 7. Top left: estimated pixel values of the ε′r(x, y) for the test dataset with 1000 samples. Top right: histogram of
factor κ. Bottom: difference between the estimated and true values (relative estimation error) of the real part of the dielectric
constant for the total number of test samples.

4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

Figure 7. Cont.
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4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

Figure 7. Top left: estimated pixel values of the ε′r(x, y) for the test dataset with 1000 samples. Top right: histogram of
factor κ. Bottom: difference between the estimated and true values (relative estimation error) of the real part of the dielectric
constant for the total number of test samples.

4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

As a first example, we have considered a PTFE Teflon (ε′r ≈ 2.1) material with cylin-
drical shape (diameter of 2.25 cm) and placed inside the foam through an incision on the
top surface. The reason for choosing this target is twofold. First, it will act as a benchmark
target to test if the estimated dielectric values by the CNN are correct as the true value is
well in the range of our interest. An approximate location of the target inside the foam is
centered at (−4.5 cm, 3.8 cm, 0 cm). Second, to test the overall generalization capabilities of
the trained architecture for identifying targets not seen as a ground truth while its training.
The estimated output from the CNN is shown in Figure 9. Estimated result shows that the
target is satisfactorily estimated by the network but it is slightly overestimated in the shape.
The overestimation of the shape is predominately due to the smoothness model used in the
training. However, note that the aim of our work is not accurate shape reconstruction and
finding the locations of dominant of wet-spots is sufficient to design control strategies.
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4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

Figure 7. Top left: estimated pixel values of the ε′r(x, y) for the test dataset with 1000 samples. Top right: histogram of
factor κ. Bottom: difference between the estimated and true values (relative estimation error) of the real part of the dielectric
constant for the total number of test samples.

4. Experimental Setup and Result

In this section, the trained CNN performance is tested on the data from our developed
MWT experimental prototype. The MWT experimental prototype consist of 7 WR90 open-
ended waveguide antennas and placed over the foam of width = 50 cm, height = 7.6 cm,
and length = 75 cm, respectively. The distance of the antenna to the top surface of the
polymer foam is 5 cm, and the center to center distance between two adjacent antennas
is 5 cm. Antennas are fixed and placed in free-space from −15 cm to 15 cm along the x-
axis. For data acquisition, antennas are connected to the Agilent N5224A vector network
analyzer (VNA) via a P9164C 2× 16 USB Solid state switch matrix. Phase stable cables (with
phase stability of 3◦ at maximum frequency) are used for the connection. Communication
between the VNA, switch, and the controlling computer is accomplished through the
Ethernet cable. The block diagram of the data acquisition scheme and the S11 (return-
loss) response of a WR-90 waveguide antenna are shown in Figure 8 top left and top
right, respectively. The data acquisition process and image reconstruction process (<1 s) is
entirely automated using MATLAB. The measured scattered electric field data, in terms
of scattering parameter, is acquired at 8.3 GHz frequency at cross-section of z = 0 cm
and takes around 20 s. Since the CNN network is trained on electric field data instead of
scattering parameter, calibration scheme in [56] is employed for its conversion.

As a first example, we have considered a PTFE Teflon (ε′r ≈ 2.1) material with cylin-
drical shape (diameter of 2.25 cm) and placed inside the foam through an incision on the
top surface. The reason for choosing this target is twofold. First, it will act as a benchmark
target to test if the estimated dielectric values by the CNN are correct as the true value is
well in the range of our interest. An approximate location of the target inside the foam is
centered at (−4.5 cm, 3.8 cm, 0 cm). Second, to test the overall generalization capabilities of
the trained architecture for identifying targets not seen as a ground truth while its training.
The estimated output from the CNN is shown in Figure 9. Estimated result shows that the
target is satisfactorily estimated by the network but it is slightly overestimated in the shape.
The overestimation of the shape is predominately due to the smoothness model used in the
training. However, note that the aim of our work is not accurate shape reconstruction and
finding the locations of dominant of wet-spots is sufficient to design control strategies.
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Figure 8. Top left: data acquisition scheme for the MWT measurement from the sensor array with X-band open waveguide
antennas. Top right: the S11 response of the WR-90 waveguide antenna. Bottom: prototype of MWT sensor array used
in this study to generate measurement data. This system is developed at KIT, Germany and has been integrated with the
HEPHASITOS technology.
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Figure 9. CNN estimation of cylindrical Teflon resin placed inside the foam. The true location of the
target is marked by red-dash circle.

In the second example, we have considered a moisture wet-spot inside the foam.
To create the wet-spot moisture target, a spherical foam of diameter 2.5 and with 43%
wet-basis moisture level (εr ≈ 1.81 − j0.079) is chosen. An approximate location of the
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target inside the foam is centered at (−3.25 cm, 1.85 cm, 0 cm). The estimated output from
the CNN is shown in Figure 10. Estimated result shows that the network can satisfactorily
locate the wet-spot which is placed around the bottom of the foam. The estimated real
part of the dielectric constant corresponds between 37% and 39% of moisture level in
the wet-spot.
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Figure 10. CNN estimation of one dominant wet-spot with 43% moisture inside the foam.

5. Conclusions

In this paper, a neural network based method for the microwave tomography is
developed for real-time moisture estimation in a polymer foam. The neural network is
trained with synthetic data generated using two-dimensional scattering model based on
method of moment formulation. Furthermore, in the scattering model, a parametric model
based on the dielectric characterization of the foam is utilized to generate moisture samples.
The network performance is tested with numerical data and experimental data from the
constructed MWT prototype. Results shows the capability of the present method to be
used in real-time moisture estimation. Here, the studied microwave imaging modality is
applied to recover moisture content distribution inside a porous foam but the framework is
applicable to investigate other material types together with different physical parameters.
In the final stage, the estimated moisture information will be utilized in feed-forward loop
of the intelligent control block of the industrial drying system.

It was observed in the experimental results that the real part of the dielectric constant
in the estimation are slightly underestimated which are caused due to modeling errors, i.e.,
3D measurements and 2D forward model and small uncertainties in the dielectric charac-
terization of the foam, respectively. Henceforth, for our work the scope for improvement
lies in the uncertainty quantification (UQ). In general, UQ in deep neural networks is a very
active research topic and several approaches have been proposed and studied, see, e.g., re-
cent reviews [57,58]. Furthermore, we also observe that in the estimates the background
information, i.e., the dry part is not well distinguishable. This mainly due to the Gaussian
based covariance structure used for generating moisture distribution. One solution is to
use covariance structure models with a scaling factor such as Matérn class [49].
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target inside the foam is centered at (−3.25 cm, 1.85 cm, 0 cm). The estimated output from
the CNN is shown in Figure 10. Estimated result shows that the network can satisfactorily
locate the wet-spot which is placed around the bottom of the foam. The estimated real
part of the dielectric constant corresponds between 37% and 39% of moisture level in
the wet-spot.
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Figure 10. CNN estimation of one dominant wet-spot with 43% moisture inside the foam.

5. Conclusions

In this paper, a neural network based method for the microwave tomography is
developed for real-time moisture estimation in a polymer foam. The neural network is
trained with synthetic data generated using two-dimensional scattering model based on
method of moment formulation. Furthermore, in the scattering model, a parametric model
based on the dielectric characterization of the foam is utilized to generate moisture samples.
The network performance is tested with numerical data and experimental data from the
constructed MWT prototype. Results shows the capability of the present method to be
used in real-time moisture estimation. Here, the studied microwave imaging modality is
applied to recover moisture content distribution inside a porous foam but the framework is
applicable to investigate other material types together with different physical parameters.
In the final stage, the estimated moisture information will be utilized in feed-forward loop
of the intelligent control block of the industrial drying system.

It was observed in the experimental results that the real part of the dielectric constant
in the estimation are slightly underestimated which are caused due to modeling errors, i.e.,
3D measurements and 2D forward model and small uncertainties in the dielectric charac-
terization of the foam, respectively. Henceforth, for our work the scope for improvement
lies in the uncertainty quantification (UQ). In general, UQ in deep neural networks is a very
active research topic and several approaches have been proposed and studied, see, e.g., re-
cent reviews [57,58]. Furthermore, we also observe that in the estimates the background
information, i.e., the dry part is not well distinguishable. This mainly due to the Gaussian
based covariance structure used for generating moisture distribution. One solution is to
use covariance structure models with a scaling factor such as Matérn class [49].
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Correlated Sample-Based Prior in
Bayesian Inversion Framework
for Microwave Tomography

Rahul Yadav , Adel Omrani , Guido Link , Marko Vauhkonen , and Timo Lähivaara

Abstract— When using the statistical inversion framework in
microwave tomography (MWT), generally, the real and imag-
inary parts of the unknown dielectric constant are treated as
uncorrelated and independent random variables. Thereby, in the
maximum a posteriori estimates, the two recovered variables may
show different structural changes inside the imaging domain.
In this work, a correlated sample-based prior model is presented
to incorporate the correlation of the real part with the imagi-
nary part of the dielectric constant in the statistical inversion
framework. The method is used to estimate the inhomogeneous
moisture distribution (as dielectric constant) in a large cross
section of polymer foam. The targeted application of MWT is
in industrial drying to derive intelligent control methods based
on tomographic inputs for selective heating purposes. One of
the features of the proposed method shows how to integrate
lab-based dielectric characterization, often available in MWT
application cases, in the prior modeling. The method is validated
with numerical and experimental MWT data for the considered
moisture distributions.

Index Terms— Correlated sample-based prior, industrial
microwave drying, maximum a posteriori, microwave tomogra-
phy, statistical inversion method.

I. INTRODUCTION

M ICROWAVE tomography (MWT) use-cases in the
industry are mostly for monitoring and inspection

purposes, as reported in [1]–[3]. A new idea is to apply
MWT based control in the industrial microwave heating sys-
tem [4], known as HEPHAISTOS [5], to increase its heating
efficiency and enhance the material processing quality. The
HEPHAISTOS system has a hexagonal design [6] for the
applicator (cavity) that offers a very high uniform electro-
magnetic field inside the cavity. Its main areas of applications
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are in material processing, for example, drying, sintering, and
thermal curing. Often, this system suffers from the problem of
hot-spot formation and overheating (thermal runaway) specifi-
cally while drying materials with low-loss like porous polymer
foam. These situations may degrade the quality of material
processing or may even lead to damage to the industrial unit.
One of the solutions to eliminate the problem of thermal

runaway and hot-spot formation is intelligent control of power
sources (magnetrons) to obtain a selective heating rate at
each stage of the drying process [7], [8]. However, to apply
such a precise microwave power control in situ and nonin-
vasive measurement of the unknown distribution of moisture
inside the porous material is required. The infrared camera
sensors integrated with the microwave drying systems for
process observation are limited to providing information on
the material’s surface only and, hence, not adequate to provide
efficient control of microwave power sources. Thus, integration
of MWT imaging modality [9], [10] with the drying system
was proposed to estimate the moisture content distribution in
a polymer foam. Using the MWT tomographic output, strate-
gies for intelligent control can be derived. The MWT senor
setup consists of open-ended waveguide antennas operating
in the X-band range. The selection of the frequency and the
antenna type for the MWT sensor array are detailed in [11].
For estimating the moisture levels (in terms of dielectric
constant) in a porous material with a large cross-sectional
dimension, we apply a statistical inversion approach [12] based
on the Bayesian framework. Some earlier efforts of using
statistical inversion approaches in MWT have been proposed
in [13]–[16].
In our earlier studies [17], [18] on statistical inversion in

MWT, the real and imaginary parts of the unknown dielectric
constant were treated as independent and uncorrelated random
variables. This assumption led to independent reconstructions
of the real and imaginary parts, causing conflicting and
incorrect moisture level estimates by the real and imaginary
parts. As the imaginary part governs the heating behavior, its
correct estimation becomes imperative when deriving optimal
control algorithms for the drying system. Therefore, to achieve
accurate maximum a posteriori estimates (MAP), the key is to
construct a joint-prior model that favors correlation between
the real and imaginary parts. In [19] and [20], a similar prob-
lem is addressed using the expectation–maximization (EM)
algorithm [21], albeit it may not be a suitable approach for our
high-dimensional problem with a nonlinear observation model.
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On the other hand, joint reconstructions in the deterministic
inversion methods have been addressed in: 1) [22] where
the complex permittivity in the imaging domain is expressed
as a weighted sum of a few pre-selected permittivities, close
to the range of the expected values, and permittivity weights
are obtained using Gauss–Newton inversion (GNI) algorithm;
however, the method is mostly valid for practical biomed-
ical applications with linearized inverse scattering model and
2) in [23] and [24], an approximate ratio is obtained between
the real and imaginary parts of the complex permittivity based
on the dielectric characterization of the material(s) under test,
and this approximate ratio served as the prior information
in the GNI algorithm with the total variation multiplicative
regularizer term. Moreover, the results show improvement
by adjusting the approximate average ratio. However, in our
work, the moisture-to-dielectric relationship is nonlinear; thus,
a single average factor for all moisture points will lead to
inaccurate reconstructions.
In this work, we present a correlated sample-based prior

model, as an extension to our preliminary work [25], to con-
struct the prior covariance structure for the joint-prior Gaussian
density. The method is primarily suitable for the use-case
of MWT when either structural information of the imaging
domain or dielectric behavior of the material under test is
available a priori. For example, in medical applications, the
structure of the body organs and their dielectric properties
are known approximately. In our MWT application, dielectric
characterization of the foam with respect to different moisture
levels (wet-basis) is available. To form the prior covari-
ance structure, first, a database containing possible moisture
distribution is formed with different spatial variations. The
inhomogeneous profile of each sample is modeled using the
squared exponential covariance function, and its dielectric
values are based on the available dielectric characterization
data. Next, the second-order statistics of this database are
calculated to build the joint prior covariance structure. Herein,
the performance of the proposed correlated sample-based
prior model is first evaluated with numerical scattered field
data from the 2-D MWT setup for three moisture scenarios.
Furthermore, we have also evaluated the sample-based prior
model on the scattered electric field data from our developed
prototype of the MWT system. Results presented show the
efficacy of this approach in comparison to the past approach
where parameters are considered uncorrelated.
This article is organized as follows. Section II provides

an overview of the MWT setup and the forward observation
model. Section III details the statistical inversion framework.
Prior construction and sample-based prior model approach are
given in Section IV. In Section V, the results for different real-
istic moisture scenarios are presented using 2-D synthetic data.
Experimental results are investigated in Section VI. Finally,
Section VII shows the concluding remarks.

II. MICROWAVE TOMOGRAPHY: SETUP
AND OBSERVATION MODEL

In this study, we consider a 2-D imaging domain �foam =
[−25, 25] × [−1.5, 1.5] cm with inhomogenous relative
dielectric constant εr = ε ′

r − jε ′′
r , placed in the background

Fig. 1. Schematic of the 2-D MWT setup used in the study.

domain � consisting of free-space with εb = 1 − j0. For
this 2-D numerical study, the open-ended waveguide antennas
are modeled as a line source with an excitation frequency
of 8.3 GHz and are located at a distance of 15 cm from
the top and bottom surfaces of the foam. The 2-D MWT
setup is shown in Fig. 1 where the sources are represented
by number Tags N = 1, 2, . . . , 12. The scattered electric
field E scat under the illumination of time-harmonic (time
convention e− jωt with angular frequency of ω is assumed and
suppressed) TM-polarized incident field is given as [26], [27]

E scat(r) = k2
∫

�foam

G
(
r, r ′)(εr

(
r ′) − εb

)
Etot

(
r ′)dr ′

∀r ∈ �, r ′ ∈ �foam (1)

where k is the wavenumber of the background medium and
G(r, r ′) is the background Green’s function of 2-D line source
(i.e. the Hankel function of the second kind and zeroth order).
The observation and source points are denoted by the position
vectors r �→ (x, y) and r ′ �→ (x′, y′), respectively. The term
Etot is the total electric field inside the domain �foam and is
calculated as

Etot(r) = Einc(r) + k2
∫

�foam

G
(
r, r ′)(εr

(
r ′) − εb

)
Etot

(
r ′)dr ′

∀r, r ′ ∈ �foam (2)

where Einc is the incident electric field.
After discretization [28], [29] for all N transmitter and

receiver, (1) is given as

E scat = Lo(εr )Etot (3)

and (2) as

Etot = [I− Lin(εr )]
−1Einc. (4)

Furthermore, by substituting (4) in (3), the scattered electric
field can then be expressed as

E scat = Lo(εr )[I− Lin(εr )]−1Einc = F (εr ) (5)

where L0 and Lin are short notations for the integral operators
in (1) and (2), respectively. This is known as a forward
observation model that maps the dielectric constant to scattered
electric field where the mapping is denoted by F . As the
total electric field depends on the dielectric constant of the
foam, its mapping with the scattered electric field is nonlinear.
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In (5), the scattered field data can come from real experiment
or may be simulated data, while the right-hand side denotes
the approximate physical nature of the problem. To obtain
estimates using measurement data related to S-parameters,
proper calibration scheme can be used to convert the data into
electric field [30], [31].
In MWT, the aim is to estimate the 2-D dielectric profile

of the porous material given the measurement data E scat.
Generally, this is a severely ill-posed inverse problem mainly
due to the fact that different profiles may map to the same
measurement data. Also, part of the ill-posedness is due to
the properties of the integral operator defined in (5) [32].
Under the quantitative inversion framework, the regularization
term (related to the prior information) can reduce this problem
to some level and improve the estimates. In our case, some
prior information related to the dielectric behavior of the foam
with respect to wet-basis moisture content level is available.
Furthermore, we expect the moisture content distribution to
have smooth distribution in the foam. In this work, to naturally
encode this information in the regularization term, we apply
a statistical inversion approach based on the Bayesian frame-
work. With the Bayesian estimate, it can be quantified which
parameters are more favorable to generate the measurement
data rather than providing fixed estimates that are given in
classical, deterministic, inversion framework.

III. BAYESIAN INVERSION FRAMEWORK

Consider an inverse problem of identifying an unknown
parameter εr ∈ Cm×n given noisy measurement data E scat ∈
CN×N according to the observation model [17], [18]

E scat = F (εr ) + ξ (6)

where ξ denotes the additive measurement noise component.
Herein, the unknown parameter and noise terms are considered
mutually independent. Note that the unknown parameter and
the measurement data are complex quantities and denoted
by C. In this article, the real and imaginary parts are treated
separately as real-valued random variables for the real-valued
optimization problem. They are separated into real and imag-
inary parts and concatenated in the 2-D vector form as

E scat =
(
R

{
E scat

}
I
{

E scat
} )

2S×1
(7)

and

εr =
({

εr ′
i

}{
εr ′′

i

})
2Nn×1

, i = 1, 2, . . . , Nn (8)

where S = N × N and Nn = m × n are the total number of
measurements and the total number of unknowns, respectively.
In statistical inversion, we treat the unknown parameters as

random variables, and information about them is expressed in
terms of probability densities. The inverse problem can then
be expressed as given the measurement data, and the task is
to find the conditional probability density π(εr | E scat) for the
unknown parameter εr . The conditional probability density is

constructed using Bayes’ theorem as

π
(
εr | E scat

) = π
(
E scat | εr

)
π(εr )

π(E scat)
∝ π

(
E scat | εr

)
π(εr ) (9)

where π(εr | E scat) is the posterior density, π(E scat | εr ) is
the likelihood density that represents the distribution of the
measured data if εr is known, and π(εr ) is the prior density
that contains the prior information available for unknown εr .
The denominator is the marginal density of the measured data
and plays the role of normalization constant. It is often ignored
since it requires integration over all possible εr space. In the
next step, we construct the likelihood and prior density terms
and obtain the posterior density.
Let the joint prior model of the unknowns and noise be

π(E scat, εr , ξ). Using Bayes’ theorem repeatedly, the joint dis-
tribution of all associated random variables can be decomposed
as

π
(
E scat, εr , ξ

) = π
(
E scat | εr , ξ

)
π(ξ | εr )π(εr )

= π
(
E scat, ξ | εr

)
π(εr ). (10)

In the case that both εr and ξ are fixed, the measurement in the
model (6) is completely specified, so the conditional density
π(E scat | εr , ξ) is formally given by

π
(
E scat | εr , ξ

) = δ
(
E scat − F (εr ) − ξ

)
(11)

where δ is the Dirac delta distribution. Using (9)–(11), we get
the likelihood model as

π
(
E scat | εr

) =
∫

π
(
E scat, ξ | εr

)
dξ

=
∫

π
(
E scat | εr , ξ

)
π(ξ | εr )dξ

=
∫

δ
(
E scat − F (εr ) − ξ

)
π(ξ | εr )dξ

= πξ |εr

((
E scat − F (εr )

) | εr
)
. (12)

In the quite common case of mutually independent εr and ξ ,
we have πξ |εr (ξ | εr ) = πξ (ξ), where πξ (·) denotes the
distribution of noise. Furthermore, if the noise is assumed to be
additive Gaussian with zero mean and covariance matrix �ξ ,
the likelihood density can be written as

π
(
E scat | εr

) ∝ exp
{
−1
2

(
E scat − F (εr )

)�
�−1

ξ

×(
E scat − F (εr )

)}
(13)

where (·)� denotes the transpose operator. Furthermore

π
(
E scat | εr

) ∝ exp
{
−1
2

(
E scat − F (εr )

)�
L�

ξ Lξ

×(
E scat − F (εr )

)}
(14)

which can then be written in the norm form as

π
(
E scat | εr

) ∝ exp
{
−1
2

∥∥Lξ

(
E scat − F (εr )

)∥∥2} (15)
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where Lξ is the Cholesky factor of the inverse of the
noise covariance matrix. As a prior information, it is first
assumed that the moisture variation is smooth inside the foam.
Such an assumption can be encoded using a Gaussian density
with mean ηεr and covariance �εr as

π(εr ) ∝ exp
{
−1
2

(
εr − ηεr

)�
�−1

εr

(
εr − ηεr

)}
= exp

{
−1
2

∥∥Lεr

(
εr − ηεr

)∥∥2}. (16)

Here, Lεr is the Cholesky factor of the inverse of the prior
covariance matrix �εr . The prior covariance matrix encodes
the spatial smoothness knowledge of the unknowns. After
multiplying the expressions in (15) and (16) and ignoring the
normalization constant in (9), posterior density is obtained that
contains the complete solution of the inverse problem in the
Bayesian framework and can be expressed by point estimates.
One of the most common point estimates in tomographic
imaging problems is the maximum a posteriori (MAP). The
MAP estimate can be computed from the posterior as

ε̂rMAP = argmax
εr

π
(
εr | E scat

)
. (17)

This problem is equivalent to the minimization problem

ε̂rMAP = argmin
εr

{∥∥Lξ

(
E scat − F (εr )

)∥∥2 + ∥∥Lεr

(
εr − ηεr

)∥∥2}
(18)

which is a regularized nonlinear least-square (LS) problem.
In (18), the prior norm term acts as a regularization term, and
it shares close links to generalized Tikhonov regularization.
This minimization problem can be formally solved using
the gradient-based optimization method. In the Newton-type
method, the minimum point is found iteratively by linearizing
the forward model, resulting in a linear LS solution in each
iteration as

εr
+1 = εr

+ α
 A−1B (19)

with

A = (
J T

 �−1

ξ J
 + �−1
εr

)
B = (

J T

 �−1

ξ

(
E scat − F

(
εr


)) − �−1
εr

(
εr


− ηεr

))
where α
 is the step length parameter, index 
 is the iteration
number, and J
 is a Jacobian matrix (its derivation can
be found in [33]), which is decomposed in real (JR) and
imaginary (JI) parts as

J =
[

JR JI
−JI JR

]
2S×2Nn

.

The approximate covariance of the posterior density �post is
given as

�post =
(

J T

 �−1

ξ J
 + �−1
εr

)−1
. (20)

This approximate posterior indicates the uncertainty associated
with the ill-posedness of the solution.

A. Noise Model

Let us denote the noise standard deviations (STD) of the real
and imaginary parts of the complex-valued scattered electric
field data to be σR and σI, respectively. Under the assumption
that noise between measurement points is independent and not
correlated, the noise covariance is then given as

�ξ =
[
σ 2
R
IS 0S

0S σ 2
I
IS

]
(21)

where IS is an S × S identity matrix and 0S is an S × S zero
matrix. In the case of real measurements, the noise covariance
can be estimated by performing repeated measurements.

IV. PRIOR MODELING

In Section III, we defined the general expression for the
prior density in (16). Since the unknown complex-valued
dielectric constant is treated as a real-valued random variable,
the prior density in (16) can be further expressed [34], [35] as

π

([
ε ′

r
ε ′′

r

])
∝ exp

{
−1
2

(
ε ′

r − ηε′
r

ε ′′
r − ηε′′

r

)�(
�ε′

r
�ε′

r ε
′′
r

�ε′′
r ε′

r
�ε′′

r

)−1

×
(

ε′
r − ηε′

r

ε ′′
r − ηε′′

r

)}
. (22)

The terms ηε′
r
and ηε′′

r
denote the mean values of the real and

imaginary parts of the dielectric constant, respectively. The
matrices �ε′

r
∈ RNn×Nn and �ε′′

r
∈ RNn×Nn are the marginal

covariance matrices. �ε′
r ε

′′
r

∈ RNn×Nn and �ε′′
r ε′

r
∈ RNn×Nn

are the cross-covariance matrices of real and imaginary parts
of dielectric constant, which embeds their correlation. The
covariance �εr ∈ R2Nn ×2Nn , assumed to be a positive definite
matrix, is given as

�εr =
(

�ε′
r

�ε′
r ε

′′
r

�ε′′
r ε′

r
�ε′′

r

)
2Nn×2Nn

. (23)

1) Uncorrelated Real and Imaginary Parts: If real and
imaginary parts of the dielectric constant are treated as sta-
tistically uncorrelated, i.e., �ε′

r ε
′′
r

= �ε′′
r ε′

r
= 0, then the prior

covariance matrix can be written as

�εr =
(

�ε′
r
0Nn

0Nn �ε′′
r

)
2Nn×2Nn

(24)

where 0Nn is an Nn × Nn zero matrix. The moisture field
variation inside the foam is assumed to be smooth. Here,
such a random field [36] can be generated using squared-
exponential (SE) covariance function [37], which can account
for the inhomogeneities. In general, the SE structure in 2-D is
defined as

Ci j = exp
(

−1
2

(∥∥xi − x j

∥∥2
c2x

+
∥∥yi − y j

∥∥2
c2y

))
(25)

where cx and cy are characteristic length components and
i, j = 1, . . . , Nn . In practice, the characteristic lengths affect
the moisture distribution (smoothness) in the x and y direc-
tions, respectively, Thus, (24) becomes

�εr =
(

σ 2ε′
r
C 0Nn

0Nn σ 2ε′′
r
C

)
2Nn×2Nn

(26)
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where σε′
r
and σε′′

r
are the standard deviations for the real and

imaginary parts of the dielectric constant, respectively. These
standard deviation values are multiplied with the SE covari-
ance function, so as to control its overall amplitude variation.
The values are chosen based on what knowledge of the
unknown parameters is available prior to any measurements.

2) Correlated Real and Imaginary Parts: Consider that the
real and imaginary parts of the dielectric constant are assumed
statistically correlated. This implies that the cross-covariance
terms �ε′

r ε
′′
r

	= 0 and �ε′′
r ε′

r
	= 0 are required to form the covari-

ance structure in (23). However, to find cross-variances matri-
ces, dependence between the two random variables should be
known. Herein, to establish the correlation between the random
variables and form the prior covariance structure, we use
sample-based densities.
In sample-based densities, we make use of a large set

of previously/numerically obtained samples of the random
variable in question. These datasets are known as samples.
Assume that π = π(εr ) is the probability density of a random
variable εr , and we have a large database χ of size K and
contain realizations of εr

χ =
{(

ε′
r

ε ′′
r

)
1
,

(
ε ′

r
ε ′′

r

)
2
,

(
ε ′

r
ε ′′

r

)
3
, . . . ,

(
ε′

r
ε ′′

r

)
K

}
(27)

where K is the total number of samples. The aim is to
approximate π(εr ) based on the χ . For this, we calculate the
sample mean

ηεr =
(

ηε′
r

ηε′′
r

)
≈ 1

K

K∑
j=1

(
ε′

r
ε ′′

r

)
j

(28)

and sample covariance

�εr ≈ 1

K

K∑
j=1

(
ε′

r
ε ′′

r

)
j

(
ε′

r
ε ′′

r

)T

j

−
(

ηε′
r

ηε′′
r

)(
ηε′

r

ηε′′
r

)T

. (29)

The dielectric constant values for the samples are generated
numerically using the data from the dielectric characterization
of the polymer foam in the laboratory environment. In the
dielectric characterization, a small cylindrical shape volume
of the foam is characterized using a cavity perturbation tech-
nique at room temperature to obtain the complex dielectric
value for different levels of moisture content. The developed
dielectric measurement system is shown in Fig. 2. The foam
sample is located in a quartz tube to have a stable position
inside the cavity. Both sides of the cavity are terminated to
a small iris of 10 mm width and the same height as the
WR340 waveguides [38]. The moisture content is calculated
based on the wet basis, that is,

M = Wm − Wd

Wm
× 100 (30)

where M is the moisture percentage, Wm is the weight of the
foam sample after adding the water, and Wd is the weight
of the dry sample. At the first step, we obtained the dielectric
constant associated with the 0% moisture level. Then, a certain
amount of water is added manually, and the dielectric constant
is recorded in each level. The real part of relative dielectric
constant was found to be in the range of 1.164 and 3.255,

Fig. 2. Experimental setup of the cavity-perturbation [38] method for
dielectric characterization of the foam.

TABLE I

MATERIAL MODEL PARAMETERS

and the imaginary part varying between 0.017–0.276 for wet
basis moisture content from 0% to 80%, respectively. After
the characterization, the relationship between the wet-basis
moisture content Mmeas and its corresponding dielectric value
is obtained using curve fitting and is given as [10], [39]

θ = āθ exp
(
b̄θ Mmeas

)
(31)

where θ = {ε ′
r , ε ′′

r } denotes the material parameters. The
values for the mean terms āθ and b̄θ are provided in Table I.
The variables δaθ

and δbθ
are the standard deviation terms and

denote the uncertainties in the curve fitting.
In order to create the dataset χ containing different mois-

ture content realizations, the experimentally obtained mapping
Mmeas → {ε′

r , ε ′′
r } is applied. To generate simulated moisture

samples, the uncertainties in the dielectric characterization is
also considered, and hence, (31) is replaced as

θ = aθ exp (bθ M) (32)

where aθ and bθ are random variables such that aθ ∼ U(āθ −
δaθ

, āθ +δaθ
) and bθ ∼ U(b̄θ −δbθ

, b̄θ +δbθ
), where the variable

are sample from the uniform distribution U . Numerical values
for δaθ

and δbθ
are given in Table I. The moisture content

distribution in each sample M can be expressed as

M = M∗1 + δM L Z (33)

where 1 is an all-ones vector, M∗ and δM are the mean and
standard deviation of the moisture content field, respectively,
L is the lower triangular matrix of the Cholesky factorization
of the covariance C , and Z is a standard normal random
vector.
Using (32) and (33), a dataset χ with K = 5000 ran-

dom moisture samples is created. For each sample, moisture
mean and standard deviation are chosen randomly. Also,
the characteristic lengths in each sample were randomized.
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Fig. 3. Real (left) and imaginary (right) parts of the dielectric constant for samples drawn from uncorrelated smoothness and sample-based prior models.

Algorithm 1 Steps for Generating Samples for the Correlated
Sample-Based Prior Model. Note That, to Ensure the Positive
Definiteness for Matrix C , a Small Diagonal Component Is
Added
1: M∗ ∼ U(0, 80) %, δM ∼ U(2, 20) %
2: cx ∼ U(xmin, xmax), cy ∼ U(ymin, ymax)
3: Evaluate C = Covariance(cx, cy, x, y) using (25)
4: L = Cholesky(C)
5: M = M∗ ones(Nn) + δM L randn(Nn)
6: Calculate ε ′

r , ε
′′
r using (32)

A pseudocode for generating a sample is given in the fol-
lowing, where the terms xmin = 0 cm, xmax = 50 cm,
ymin = 0 cm, and ymax = 3 cm denote the minimum and
maximum dimensions in the x and y directions of the foam
domain, respectively.
Using the dataset, in which each sample is stacked in a

vector form [see (8)], we calculated (28) and (29) using
MATLAB built-in mean and covariance functions. The new
prior covariance structure, from here on, is known as the
sample-based prior model. The samples (or realization) from
this prior density can be generated as

εr = ηεr + Lεr Z . (34)

A randomized draw from the sample-based prior model is
shown in Fig. 3 (right). Also, the same sample when we
ignore the cross-covariance terms is shown in Fig. 3 (left). It is
evident that, with the sample-based prior model, similar spatial
variations are seen in the real and imaginary parts. How-
ever, with the neglected cross-covariance matrices, real and
imaginary parts show different variations. In the next section,
we present numerical examples that show how the choice of
two priors affects the MAP estimation and overall estimation
accuracy. It should be emphasized that, to evaluate the MAP
estimate with uncorrelated parameters, we have used (26)
instead of sample-based prior covariance with cross-covariance
terms treated as zero.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the MAP
estimates with the smoothness prior and sample-based prior for
different moisture scenarios and levels. The imaging algorithm
is tested with three cases where a high moisture distribution is
tested in the first case. In the second case, it is assumed that
moisture distribution is piecewise constant. For the third case,
considering practical interest, the foam top surface geometry
is assumed rough instead of the planar, and the moisture is
modeled as a hot spot (has more moisture than the surrounding
area). To generate the numerical measurement data from the
MWT setup shown in Fig. 1, a finite element method (FEM)-
based COMSOL simulation tool is chosen. The scattered
electric field data are generated at a frequency of 8.3 GHz
and stored in a matrix of size 12× 12. Also, we added noise
of 3% of the peak value of the numerical scattered field to
the data. Note that the lower frequency point is chosen from
X-band as it presents low degree of nonlinearity for the inverse
scattering problem [40], [41] and computational efficiency.
As for the observation modelF (εr ), we choose the method

of moment (MoM) computation [42] with a pulse basis and
point-matching testing function. For the MoM computation
at 8.3 GHz, we assume that the imaging domain �foam is
discretized into 80× 20 uniform rectangular pixels along the
x and y directions, respectively. Here, the pixel size is chosen
to be of size λ/6, so as to achieve sufficient numerical accuracy
for the MoM solver (in comparison to the COMSOL solver).
Thus, the total number of unknowns in the imaging domain,
i.e., the real and imaginary part of the dielectric constant, for
estimation becomes 3200. Note that a different solver is chosen
for synthetic data generation to ignore “inverse crime,” [12],
i.e., the use of the same grid settings or numerical model for
data generation and observation model. Otherwise, the same
grid setting or the numerical model may potentially lead to
a situation where severe modeling errors are ignored, hence
giving a false impression on the accuracy of the estimates.
To calculate the MAP estimates with the smoothness prior,

we set prior σε′
r

= 1, and σε′′
r

= 0.1. The mean value ηεr

in the prior is set to dielectric constant of the dry foam,
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Fig. 4. High moisture case: MAP estimates with smoothness prior and sample-based prior model with real part (left) and imaginary part (right) of the
dielectric constant. To highlight the dielectric constant values, contour is added.

i.e., 1.16− j0.01. For the sample-based prior, the prior covari-
ance structure evaluated from the database is directly used to
calculate the MAP estimates. For our simulation study, σR and
σI are set to 3% of the peak value of the numerical scattered
field data. To start the iteration, the value of εr0 is set to the
dielectric constant of the dry foam, i.e., εr0 = 1.16 − 0.01i
and α = 0.25 are sets of all the reconstructions. The iterations
are terminated, following the stopping criteria Q(εr
+1 ) <
Q(εr


), where Q(εr

) is the norm term defined in (18). The

reconstruction algorithm is implemented in MATLAB 2018b
and takes approximately or less than 1 min per image.
All computations were performed on a local computer with
the configuration of 32 GB access memory, Intel Core(TM)
i7-7820HQ central processing unit, and Nvidia Quadro M2200
graphics processing unit.

A. Smooth Moisture Variation

In the first set of experiments, numerical scattered electric
field measurement data for a high moisture scenario are gen-
erated using (32) and (33). The MAP estimation with smooth-
ness prior model and sample-based prior model is shown in
Fig. 4. It can be seen that, with both the priors, the real part is
estimated fairly well. However, the estimation of the imaginary
part is much more accurate with the sample-based prior model
with certain moisture regions being clearly indicated.
Post reconstruction, we also plotted the MAP estimate for

a f ixed value y = 0 cm along the cross section of the foam
with ±3 posterior standard deviation and compared it against
the respective true cases for both the real and imaginary parts,
as shown in Fig. 5. Especially, for the imaginary part, the
uncertainty bound is higher when using just smoothness prior.
However, this uncertainty bound is reduced for the case with

TABLE II

HIGH MOISTURE CASE

sample-based prior. To quantitatively evaluate the accuracy of
the reconstruction, we compared the true and estimated profile
by using root mean square error (RMSE) and resemblance
coefficient (RC) performance metrics. The RC parameter is
calculated as

RCεr =

∫ ∫
�foam

εMAPr εTruer dxdy√∫ ∫
�foam

(
εMAPr

)2
dxdy

√∫ ∫
�foam

(
εTruer

)2
dxdy

(35)

where εMAPr = εMAPr − 〈εMAPr 〉, εTruer = εTruer − 〈εTruer 〉, and
〈·〉 is the mean operator. For the RC, its values vary between
0 and 1. As the RC gets closer to 1, the MAP estimation is
closer to the true profile. The RMSE and RC are calculated
separately for the real and imaginary parts of the dielectric
constant. Note that, to calculate these metrics, the number
of pixels in the true profile is interpolated corresponding to
the pixels in the estimated profile. The performance metric
values for high moisture cases are shown in Table II. They
are compared separately for the real and imaginary parts for
the two prior models. It is clear from RC and RMSE values
that the overall accuracy of the MAP estimate has improved
with the sample-based prior model in both cases.
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Fig. 5. Comparison between the true profile and MAP estimate for a high moisture case along the cross section of the foam y = 0 cm. The real part (left)
and imaginary part (right) of the estimates are compared for smooth (top) and sample based prior (bottom), respectively. The light gray color denotes
±3 posterior standard deviation, denoted as σ .

Fig. 6. Representation of RC evaluated for reconstructed distribution with
smoothness prior (top) and sample-based prior (bottom) for 50 moisture
scenarios. The vertical dashed lines indicate the serial number for the moisture
scenario.

Furthermore, we also tested the two prior models on 50 dif-
ferent smoothly distributed moisture scenarios and evaluated
the corresponding RC parameter, as shown in Fig. 6. Note
that the RC metric is chosen for better representation purposes
only. For most of the selected scenarios, significant improve-
ment can be seen in RC with the sample-based prior model.

B. Piecewise Homogeneous Moisture Distribution

In this case, the moisture distribution is assumed piecewise
homogeneous in the foam. The moisture area is given the value
εrmoisture = 1.557− j0.05, and the rest of the foam is assumed
dry with εrdry = 1.16 − j0.01. It should be emphasized that
the primary goal is not to estimate the exact shape of the
moisture area. This special case is taken considering practical
interest where the moisture is sometimes located in bulk in one
portion of the foam. Also, this case will test the generalization
capabilities of the algorithm. As it breaks the smoothness
assumption, which is otherwise present in the dataset of

Fig. 7. MAP estimates for the piecewise homogeneous moisture sce-
nario (top) with sample-based prior with real (middle) and imaginary
parts (bottom) of the dielectric constant. The red dashed lines indicate the
true boundary of the moisture profile.

samples used to build the sample-based prior covariance
structure, the MAP estimates from the sample-based prior
model are shown in Fig. 7 along with the true moisture distri-
bution. We observe that both the estimated real and imaginary
parts of the dielectric constant indicate the same presence of
moisture and are well-estimated. This is also evident from the
performance metrics shown in Table III. In the MAP estimates
with smoothness-based prior, the imaginary part showed the
wrong location of the moisture and hence not shown.

C. Random Rough Surface

So far, the foam with a planar surface is considered for
moisture detection during an industrial process. However, it
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Fig. 8. Top figure shows the top surface of the foam with considered roughness and its mean height. Asymptotic electric fields magnitude (bottom left) and
phase (bottom right) compared with the FEM results of a rough surface with an σ of 0.15 and 0.23 are probed at y = −0.5 cm and −25 cm ≤ x ≤ 25 cm
with shown for the line source number 4 located at y = 11.5 cm.

TABLE III

PIECEWISE HOMOGENEOUS CASE

has been observed that dielectric foam as a porous material
can also have some uncertainty on the surface. In order to
investigate the effect of the roughness of the surface, we con-
sider a dielectric foam with a randomly rough surface (RRS)
at the top. The random roughness is modeled [43] as follows:

y(x) =
M∑

m=−M

m−β Gm cos(2πmx+ Um) (36)

where m is the integer number representing the spatial fre-
quency, β denotes the spectral exponent, Gm ∼ N (0, σ ) is
sampled from a Gaussian distribution, and Um ∼ U(0, 2π)
is sampled from the uniform distribution. The random rough
surface is characterized here by the following parameters:
σ = 0.15 and β = 0.8. To obtain the scattered field, a hot-
spot with 40% moisture (1.3785− j0.0432) with radius 1 cm
at position (15 cm, 0 cm) is considered inside the foam with
permittivity 1.16− j0.01 and a moderate rough surface with
mentioned parameters.
In Fig. 8, for one sample frequency, i.e., f = 8.3 GHz,

the real and imaginary parts of the electric field of FEM and
asymptotic fields are compared [44] for a dry foam with two
different degrees of roughness. It should be noted, in order
to obtain the asymptotic expression for the rough media,
it is assumed that the fluctuation in the top surface is zero
(i.e. root mean square (rms) height). Moreover, in the forward
model, the top surface is given the average distance from each
antennas to the top surface of the foam, i.e., h = 〈hi 〉 and

i = 1, 2, . . . , N/2. The distance from the bottom antennas
to the bottom surface of the foam is considered unique (has
only one value). We observed that, in the MAP estimate,
as shown in Fig. 9, with the smoothness prior, the imaginary
part is indicating the presence of a strong artifact. However,
in the estimated imaginary part with sample-based prior, strong
presences of only one-hot spot is favorable. However, with
both prior models, the shadow image due to the roughness of
the surface is also visible.

VI. EXPERIMENTAL RESULTS

In this section, the sample-based prior model is tested
on the scattering electric field data from our experimental
MWT data for a wet-spot moisture case in a planar foam of
size 50 × 7.6 × 75 cm. The MWT experimental prototype
shown in Fig. 10 consists of 12 WR90 open-ended waveguide
antennas (with a VSWR 1.03 : 1). The distance of the top and
bottom antenna to the top and bottom surface of the polymer
foam is 8 cm, and the center-to-center distance between two
adjacent antennas is 5 cm. The top and bottom antennas are
resided in free-space from −12.5 cm to +12.5 cm along the
x-axis. For data acquisition, antennas are connected to the
Agilent N5224A vector network analyzer (VNA) via a P9164C
2 × 16 USB solid-state switch matrix with the maximum
power level of 5 dBm. It should be noted that a waveguide
calibration is performed to remove the unwanted reflections.
Moreover, the MWT setup is surrounded by absorbers to
increase the signal-to-noise ratio. Phase stable cables (offering
phase stability of 3◦ at the maximum frequency) are used
for the connections between the measurement devices and
the antennas. Communication between the controlling com-
puter, VNA, and the switch is provided using the Ethernet
cable. The data acquisition process is entirely automated using
MATLAB R2018b. For each foam sample, 12 × 12 data points
(S-parameter measurements) were collected at 8.3 GHz using
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Fig. 9. Reconstructions with smoothness prior (first row) and sample-based prior (second row) of a hot-spot area embedded inside the foam with an assumed
rough top surface with σ = 0.15.

Fig. 10. Experimental setup of the MWT system prototype at the KIT Laboratory, Germany. The MWT system consists of X-band open-ended waveguide
antennas as sensors and is indicated by number Tag 1. The alignments of the top and bottom antennas are shown in the bottom left by the green arrow, and
the portion of the metal plate is removed to enable wave propagation between the top and bottom antennas. The polymer foam is shown by number Tag 2
and surrounded by absorbers, as shown by number Tag 3. The measurement data acquisition setup consists of the solid switch and VNA that are denoted by
number Tags 4 and 5, respectively. The location plane of the test target is shown in right by white dash lines.

an IF bandwidth of 500 Hz. The approximate time for data
acquisition was about 40 sec.
To create the wet-spot moisture target, a spherical foam of

diameter 2.5 ± 0.1 cm and with 46% wet-basis moisture level
(εr ≈ 2.0−0.085i ) is chosen. An approximate location of the

target inside the foam is centered at (−9 cm, 1.55 cm, 0 cm).
We follow similar steps described in Section V to obtain
the MAP estimates from the measurement data. Only the
standard deviations of the measurement noise [see (21)] need
to be changed and are calculated for 8.3 GHz frequency point
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Fig. 11. Reconstructions with smoothness prior (left) and sample-based prior (right) of a wet-spot area embedded inside the foam. The red dashed line
indicates the true mean location of the target.

following the approach used in [45]. In the forward model, the
antennas are modeled as line sources, and the electric field data
EMoM are converted to equivalent scattering matrix (in terms
of S-parameter) SMoM through calibration with respect to dry
foam response Sscatdry as

SMoM = Sscatdry
EMoMdry

� EMoM. (37)

The MAP estimate with the smoothness prior and
sample-based prior is shown in Fig. 11 for the selected x-y
plane at z = 0 cm. With the smoothness model, the location
of the target and its value are satisfactorily estimated in the real
part. However, the imaginary part shows completely different
spatial variations of the moisture distribution in the foam. With
the sample-based prior, a significant improvement in the MAP
estimation is observed. It is clear that, with this sample-based
prior approach, the obtained MAP estimates offer a good
reconstruction accuracy in comparison to the smoothness prior
model.

VII. CONCLUSION AND DISCUSSION

In this work, we used microwave tomography to estimate the
moisture distribution (as dielectric constant) in a polymer foam
using the Bayesian inversion framework. The imaging modal-
ity will be integrated to derive intelligent control approach
for an industrial microwave drying system. It is shown that,
when real and imaginary parts are treated uncorrelated in
the smoothness-based prior model, obtained dielectric values
can be conflicting and incorrect i.e., there is some imbalance
between the real and imaginary parts of the dielectric constant.
Thus, we proposed a sample-based prior model to correctly
reconstruct both the real and imaginary parts of the dielectric
constant and the corresponding correlation between them.
To construct the sample-based prior model, we use a large
dataset consisting of simulated moisture samples to evaluate
the prior mean and build the prior covariance structure. In each
sample, moisture values are chosen based on the parametric
model obtained from the dielectric characterization of the
foam. The proposed approach is tested with 2-D numerical

microwave tomography data obtained in the X-band frequency
for the considered moisture scenarios. The results presented
show that a significant improvement in the estimation result is
achieved with the sample-based prior model in comparison to
the smoothness prior model. Also, two performance metrics,
namely, the RC and RMSE, clearly highlight the effectiveness
of the sample-based prior model on the reconstruction accu-
racy. Furthermore, the developed algorithm is tested on the
MWT experimental prototype data. The results obtained with
sample-based prior indicate that the estimated moisture distri-
bution is very close to the true moisture scenarios considered
in comparison to the smoothness prior.
We observed that the real and imaginary parts in the

MAP estimation are slightly underestimated, which may be
caused due to the modeling errors. Together with the source
modeling error, this discrepancy might be caused due to
the 2-D versus 3-D Green’s function mismatch when the
geometry of the target is no longer independent of the
z-coordinates. In essence, these errors are very significant for
the case when spherical geometries are assumed for the wet
spots in comparison to infinite extended scatterer cases (where
the general performance of the 2-D forward model with line
sources is good). A detailed discussion was provided in [46]
for medical imaging applications but is equally applicable for
our application as well. Nonetheless, the source model errors
remain persistent in our study. Thus, one way to improve the
reconstructions is by using the Bayesian inversion approach in
conjunction with the approximation error scheme [4], which
can accommodate statistics of these errors resulting in better
estimates. Therefore, a Bayesian approximation error [47]
scheme will be employed to further improve the microwave
tomography estimation. In the industrial drying system, the
foam temperature will be higher than the room temperature
at the exit. Therefore, dielectric characterization of the foam
with wet-basis moisture levels at different temperatures is
our next task. In this article, the real measurements are done
with the static case where the influence of the conveyor belt
is not considered. Therefore, future work will be related to
doing dynamic measurements where the foam will be under
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movement, and the estimated moisture information will be
utilized in the feedforward loop of the intelligent control
block of the industrial drying system. To further reduce the
data acquisition time from MWT sensor setup and build fast
controllers, limited-view MWT setup with statistical inversion
framework has been in the testing phase.
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