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Abstract: The study has been based on wind turbulence fault detection and diagnosis with the help 

of CNN integrated and LSTM models based on machine learning approaches. There has been 

observed to be an option of several types and variations of explanations that do not create or display 

any form of turbines as the initial expenses of installation of detectors and data collection have 

been regarded to be good for data collection and analysis. The combination of CNN and LSTM 

has been noted to have exceptional performance and a reduction in the possibilities of errors, 

crucial for this subject area. The separation of information among all kinds of groups or distances 

has been designed to be known to be as well as designed to be flexible for an integrated clustering 

process. The SCADA system data has been utilized and based on it all forms of critical analysis 

have been done to the study. Based on the findings, it can be noted that the proposed fault detection 

and diagnosis approach based on the LSTM-CNN model has highlighted effectiveness in terms of 

accuracy, precision, and F1-score. Thus, integrated supervised and unsupervised learning models 

that improve decision-making accuracy and generate the optimal predictive model to understand 

the effective diagnosis of faults in wind turbines can be designed. 
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1. Introduction 

Mucchielli et al. (2021) stated that the EU Renewable Energies Directive, Ireland must have source 

40% of its power from renewable sources by 2020 to be able to meet the legally mandated aim of 

generating 16% of its yearly demand for energy from resources. Ireland boasts one of Europe's 

greatest wind resources in addition to a developed wind energy sector. Because of that, it is 

anticipated that solar power can achieve a huge portion of this goal. Compared to other machines 

that spin, wind turbine parts could encounter significant levels of strain during their service life 

because of the very unpredictable pressures they experience from diverse and turbulent wind 

conditions. As a result, up to 30% of the cost of producing wind power is spent on upkeep and 

operation. In the wind turbine strategy, where wind turbines frequently must run independently 

within remote locations, it could prove impossible to conduct regular visual examinations, making 

the capacity to remotely observe element quality more essential compared to other industries. A 

wind turbine yearly maintenance budget may be heavily depleted by corrective repair required for 

unexpected breakdowns, which can be exceedingly costly. It may be avoided with scheduled 

preventive maintenance, which entails periodic checks and repairs. The lifespan of the parts could 

not have reached their maximum potential at the time they were replaced or repaired, and the price 

of more regular downtime for inspection could be incredibly significant. Nevertheless, this remains 

the case in some needless expenses. 
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1.1 Background 

Baboli et al. (2020) stated that the Condition-based maintenance, potentially CBM, was a 

technique in which a successful servicing selection is taken, when necessary, through continuously 

monitoring the state of the machines to identify potential or emerging problems. When compared 

to planned maintenance for wind turbines, such a method can reduce service expenditures by up 

to 20–25%. Prognostic analysis, which estimates an element's remaining usable life (RUL), is 

another capability of CBM. This may make it possible to arrange servicing duties even more 

precisely. Wind turbine had the condition monitoring systems (CMSs) mostly comprised of 

vibration detectors attached to turbine sub-assemblies for localized monitoring. Visual strain 

measurements and oil particles counts are occasionally used in conjunction with vibration sensors. 

Such data is routed to a centralized information processing system, where exclusive software is 

used for analysis. An alert is then generated if an early defect was found. Nevertheless, considering 

such apparent advantages, the wind energy sector has not fully adopted CBM and predictive 

technology. 

There are several explanations for each turbine that could be spent on the initial expenses of 

installing detectors in addition to data collecting and analysis. Commercial wind turbine CMSs 

have not performed as well as anticipated because of the inherent dangers and errors with CM 

approaches, even though CMSs were extensively effective for various applications. It has resulted 

in false alarms that could be expensive because they need human examinations and delay. Even 

more concerning is the fact that in certain instances they have not performed well enough to 

identify early flaws. Poor upkeep might result in catastrophic breakdown of linked systems and 
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equipment. Although the goal of wind turbine CMSs is to install more sensors as a way provide 

comprehensive forecasting about turbine component parts, the turbine currently has multiple 

detectors connected to the Supervisory Control and Data Acquisition (SCADA) system. A major 

attempt was made recently to use CM methods on wind turbines through the analysis of 

information gathered by SCADA systems. A broad range of evaluations, including active and 

reactive electricity, A device current and voltages, anemometer-measured speed of the wind, the 

engine shaft velocity, power source, gear system, and the roof temperatures, are included in 

SCADA data, which is usually collected at intervals of ten minutes to minimize the information 

transmitted bandwidth and storage. It is feasible to determine whether a defect has emerged or 

whether the generator could soon enter a period of low efficiency simply running statistical 

examinations on several patterns throughout that information. All the above can be accomplished 

without incurring additional expenses from equipping the engine using additional detectors 

offshore (Kang et al. 2020). 

1.1.1 Wind Turbine Failure Modes 

Yu et al. (2018) studied thoroughly in the investigation of the frequency of various methods of 

failure overall windmill elements and individual parts including its effects of interruptions, Figure 

1.1 presents the findings of a Failure Mode Effects Analysis (FMEA) over windmills. It is evident 

that the electrical supply had the most impact on the complete breakdown rate. It translates to a 

contribution to total downtime on the examined turbines of less than 40%. This information is 

derived from research conducted by the EU FP7 Wind project, which was carried out by a group 

of academics and technological specialists, including wind business participants. 
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Figure 1.1: Failure Mode Effects Analysis (FMEA) in wind turbine (Source: Yu et al. 2018) 

 

 

1.1.2 Power Curve 

Aziz (2020) determined that the power-wind velocity connection with a particular turbine of the 

energy output of the turbine is displayed on this graph, sometimes referred to as an efficiency 

curve, as an indicator of hub height and wind speed. A key indicator of wind turbine functioning 

is the output waveform of the windmill illustrated in Figure 1.2 (a). The potential trajectories from 

different windmill designs vary depending on the circumstances of operation that they were created 

intended, usually within a particular band of wind velocity. Three key elements on this graph could 

be connected to a turbine's performance at varying wind speeds. The minimal acceptable wind 

velocity when a turbine starts producing electricity was called the cutting speed. The velocity 

where the maximum nominal generator output is achieved is known as the recommended speed. 

The highest speed at which the turbine can generate electricity is known as the cut-out velocity. 

Engineering and safety restrictions limited that; however certain turbine types enable a restricted 

power output above it by cleverly adjusting the blade pitch angle. The vendor will often provide 

the power curve for a certain generator type according to an operational parameter that was 

assured. 



10  

 
 

 

Figure 1.2: Power Curve of Wind Turbine (Source: Aziz, 2020) 

 

 

A vital way of determining when a windmill is operating appropriately was to compare the power 

it generates at a certain velocity of the wind to the power curve that was provided. Nonetheless, 

that power curve is normally developed by the supplier in accordance with industry standards, 

such as IEC 61400-12-1. Additionally, they are created under typical working conditions using a 

particular approach that cannot be replicated at a windmill that is already in operation. Since 

turbines are typically installed on locations with different topographies and wind patterns, any 

divergence from the manufacturer's power curve may not be a sign of a malfunctioning windmill 

but rather could be the result of multiple external variables. A novel power curve may be built and 

utilized as a visual aid for tracking performance in coming years by utilizing data collected during 

a specific turbine's free of errors optimum operation. Since the landscape and wind direction at a 

particular location will mostly stay the same over time, any variations in the energy curve's 

distinctive shape could be attributed to modifications in the windmill itself, which an expert can 

clearly identify as the root cause of a particular incipient fault referred in the Fig. 2 (b). A specialist 

could clarify the distinctive form of this power curve by stating that improper regulator parameters 

resulted in reduced power output (Moreno et al. 2020). 



11  

1.1.3 Review of SCADA-based CM systems 

Aziz et al. (2021) stated that many efforts were made in previous years to apply analytical and 

neural network techniques to computerize the diagnosis process. Several methods are available to 

estimate the power curve in typical operating scenarios. After that, an aggregate remainder can be 

generated periodically by comparing this to the data obtained online. When the residual rises above 

a particular level, there may be a turbine issue. They employed that the copulate statistical for 

modeling the strength curve during typical circumstances and show that a divergence beyond that 

might potentially be used in the probable future to indicate a Figure 2 shows the power curves for 

the windmill under both (a) ideal operating conditions and (b)malfunctioning controller values. 

Kernel approaches are used to simulate the power curve; variations from this correlate to times 

when the turbine performs poorly because of ice, controller problems, power de-rating, and noise 

reduction mode operating. But the approach does not distinguish between these errors. They 

carried out a comparable investigation by modeling the power curve with Gaussian Processes 

methods. They were successful in demonstrating a decline of efficiency that started shortly before 

the turbine's primary gear failed. Once more, though, this approach lacked diagnostic skills. A 

brand-new method for power curve modeling was created. It exists to find the average power 

production across multiple wind speed "containers." Later, an interim power curve is built by 

extending an interpolation between those two points. The next step is to move this curve up and 

down by different degrees to obtain optimum boundaries. After filtering out any areas that fall 

separate from specified ranges, the procedure is repeated whenever a framework that adequately 

represents actual functioning is discovered. The next step was to create smart alert limitations to 

identify unusual behavior in the future. This approach did not identify a specific problem; rather, 

it indicated improper operation. Using metrics for performance other than the strength curve is an 
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extension of the previously mentioned techniques. Additional metrics including turbine heat, rotor 

rotation rate, transmission oil temperatures, and generator containing temperatures were added in 

the CNN training process. 

Zhang and Lang (2020) illustrated how their framework effectively deteriorates prior to failure. 

Different research used winds that became against power production, rotor velocity, and blades 

pitch angle to assess performance. This provided a useful performance statistic for the turbine, but 

the research's purview did not include defect diagnostics. They have successfully shown fault 

categorization and restricted failure forecasting utilizing a larger range of SCADA information. 

For evaluation of its efficacy on defect diagnosis along with prediction, a variety of models, 

including neural networks, enhancing trees, support vector machines, as well as traditional 

classifications regression trees, was constructed. The literature makes it abundantly evident that 

with only SCADA data, it is possible to identify certain indications of a major component's full 

breakdown decades before advanced. However, forecasting of over thirty minutes ahead of time 

remains extremely difficult on fewer significant but frequently occurring failures that also lead to 

reduced turbine efficiency, including energy eating, blades pitch, or deflector defects. The aim in 

our study was to expand the prediction capacity for these kinds of errors. In the most effective 

attempt to achieve that, which was previously discovered that the boosted tree approach 

outperformed other techniques, such as Support Vector Machines (SVMs), however the 

researchers failed to elaborate on the particulars of the models that were employed. SVMs are a 

popular and effective method for resolving classification issues, unfortunately. The SVM's 

fundamental tenet is that, using designated training information, a choice boundary that separates 

opposed categories was drawn. To avoid any excessive fitting, certain numbers of scores could be 

incorrectly categorized. They are particularly appropriate for this situation, in which there is an 
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extensive along with dynamic interaction among a great deal of variables (such as the numerous 

values gathered by a SCADA system). They have shown excellent results when utilized for defect 

detection and tracking of conditions across various sectors. 

Lei et al. (2019) explored that technological advancement develops, business machinery becomes 

more intelligent and integrated, that improves the composition layout of industrial equipment. 

Simultaneously, this modification also significantly escalates the challenge of fault detection, 

rendering the disassembling fault diagnostic approach impossible to implement in the present 

scenario. There are now two different approaches to defect diagnosis: the first uses techniques like 

mechanisms examination, signaling evaluation, and consequently; the second uses machine 

learning and additional techniques. There are several drawbacks to the former technique when it 

comes to fault identification because it relies heavily on past information. For the latter, deep 

learning and other techniques serve primarily to diagnose faults. The above diagnostic technique 

requires no prior exposure at all, or at least minimal previous understanding. Time-frequency 

analysis and process analysis are the primary methods used in the first diagnostic approach to 

examine faults. It used cepstrum technology to obtain bearing defect characteristics, and they were 

successful in producing a great anti-noise performance. 

Xiang et al. (2021) used practical mode decomposition and ambient spectrum analysis to present 

a novel defect diagnostic technique for bearings that rotate. This technique performed atmospheric 

spectrum assessment on the components following the decomposition of the experimental mode. 

They suggested an automated aperture spectrum analysis-based defect diagnostic approach. The 

second approach to defect diagnostics mostly uses machine learning techniques like SVM and BP 

artificial intelligence. The fault diagnosis technique integrating DS evidence concepts and general 
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set theory had produced outstanding results in the research of fault detection of specialized 

equipment. A hybrid framework based on multi-envelope instructional optimization that combines 

variation mode decomposition and support vector machines was presented for the investigation on 

containing fault diagnosis, and it could deliver satisfactory results in bearing fault classification. 

A fault diagnosis model based on period minimal squares support vector machines proposed in 

response to the inadequate analyzing caused by traditional deep learning computations when 

analyzing a great deal of bearing data. This model efficiently alleviated the challenge by combining 

the least squares support vector machine method with the HHL technique in quantum computing. 

Algorithms for machine learning are also effective in different domains. 

1.1.4 Combining of CNN and LSTM 

Wang and Yin, (2024) combined a hybrid fault diagnosis model integrating decision frameworks 

and a fast CNN was suggested and used to investigate transformer in the fault diagnosis. The 

technique's generalization is shown through experiments. In fault identification, artificial 

intelligence is making significant strides and reduces the need for previous research partially when 

used for problem detection. However, when dealing with complex algorithms or substantial 

quantities of data, the conventional deep learning approach comes with major drawbacks. During 

2006, the idea of deep learning emerged. The advancement of information technology resulted in 

a massive rise in computing resources and the practical use of deep learning in several fields, 

therefore enhancing people's lives. Deep belief networks (DBN), generative adversarial networks 

(GAN), recurrent neural networks (RNN), Convolutional neural networks (CNN) constitute 

typical network topologies in defect diagnostics. 
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1.3 Problem Statement 

The current architecture of fault monitoring conditions and fault detection in wind turbines and 

other energy systems has undergone certain challenges and difficulties concerning the old existing 

methodologies. The existing methods typically relied more on crucial features and expert 

knowledge. Furthermore, these techniques consistently failed to identify the complex long-term 

relationships that are present in time-series data (Lei et al. 2019). The effectiveness of current 

methods in defect detection is more limited because they are unable to completely simulate the 

complex behavior of time-domain signals and sometimes need manual feature engineering. An 

advanced and novel method that can effectively capture long-term interdependence and 

autonomously identify classifiable features from multivariate time-series data needs to be 

developed to minimize these challenges (Yin et al. 2020). Experiments on limited datasets further 

demonstrate the resilience of the framework, indicating its potential influence on improving the 

accuracy and efficiency of problem diagnostics in energy systems. 

1.4 Research Objectives 

The formulated research objectives of the study are as follows: 

 

● To study the various fault detection and related diagnosis of wind turbine using machine 

learning approach 

● To examine the fault detection methods of wind turbine using integrated machine learning 

approach 

● To evaluate the fault diagnosis methods of wind turbine using novel effective machine 

learning classifier. 
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1.5 Research Questions 

The framed research questions based on the research objectives are as follows: 

 

1. What are the various fault detection and related diagnosis of wind turbine using machine 

learning approach? 

2. How to examine the fault detection methods of wind turbine using integrated machine 

learning approach? 

3. How to evaluate the fault diagnosis methods of wind turbines using novel effective 

machine learning classifier? 

1.6 Organization of the Thesis 

The thesis has been divided into four key sections, namely the introduction, literature review, 

methodology, results and discussion and conclusion. The reason for doing the same lies in the 

ground that each chapter has a specific significance, and this can be helpful in achieving a more 

concrete and needed conclusion. 
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2. Literature Review 

Elizondo et al. (2019) considering that wind energy is one of the cleanest energy sources that is 

growing quickly and provides encouragement for the growth of renewable energy globally, wind 

power has attracted a lot of interest in the last 10 years. China has monetized the use of green 

power, increased the employment of renewable energy, and shown its resolve to reach the emission 

peak and carbon neutrality goals of 2030 and 2060, respectively, to accomplish the targets for 

emission maximal and carbon neutrality. The country is the catalyst behind the growth of 

alternative energy globally and places a high value on new energy, particularly wind power 

generation. As to the data provided by the Global Wind Energy Commission (GWEC), the nation's 

newly added capacity attained 65.1 GW in 2019. Large-scale wind turbine production and 

deployment has created enormous prospects for the market economy's growth, but it has also 

mentioned significant issues pertaining to energy security, cost-effectiveness, and dependability. 

On the one hand, wind turbines (WTs) frequently fail due to their distant locations, prolonged 

operation in challenging circumstances, and their capacity to withstand erratic variations on 

temperatures, speed of the wind, wave motion, and workload. 

Zhong et al. (2018) illustrated that the power grid has the largest percentage of WT element defect 

percentage, preceding a control network and detector. However, the necessity of problem 

identification is further highlighted by the substantial expense of operation and maintenance (OM) 

associated with wind turbines. Defect identification and prompt WT maintenance can minimize 

significant financial losses. Given the justifications, WT defect diagnostic and notification ought 

to be carried out. The process is advised to use the artificial neural network-based fault diagnostic 
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approach to identify the operational circumstances of the wind turbines (WTs) to limit downtime, 

lower OM costs, and increase the turbine lifespan. Several worldwide including national 

professionals as well as scientists released certain effective faulty detection techniques across 

multiple elements following the development of the fault diagnosis technological age. To carry 

out real-time defect conclusions, analytically system-based WT failure detection techniques must 

evaluate and model the system. Such errors are frequently directly connected to WT model settings 

shown in figure 2.1. 

 

 

 
Figure 2.1: Fault Rate of Wind Turbine Component (Source: Zhong et al. 2018) 

 

 

Cho et al. (2018) distinguished that modeling is used to improve faulty identification precision in 

accordance with greater knowledge of WT's problem diagnostic procedure. However, the 

technique of using analytical model-based WT fault diagnosis techniques possesses trouble 

guaranteeing the preciseness of responsibility evaluation because it models the inner component 

of the WTs over estimated states and live approximate using structure remainders. Thus, the above 
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procedure is not enough to ensure durability, and unavoidable mistakes and unidentified interfering 

factors happen. Specialist expertise within wind power-related domains is necessary for expertise- 

based WT defect diagnostic techniques (Yang et al. 2016). The degree of knowledge and skills of 

WT fault diagnostic specialists, who possess the capacity for self-learning and acknowledgment, 

determines how accurate the fault identification findings are. When WT is operating, knowledge- 

based techniques for diagnosing WT faults are unable to learn new things through the actual 

instances that are identified in a result, could occurred inadequate accurate diagnosis (Liu et al. 

2017). 

Data-driven WT fault diagnostic techniques leverage information extraction technologies to 

uncover essential information that can be used to define the problem and healthy phases of the 

equipment while requiring previous encounters. This allows for real-time troubleshooting. Both 

substantial delayed information and updated information are present in the WT supervisory control 

and data acquisition (SCADA) system. To collect precise fault characteristics and achieve real- 

time WT fault detection, information mining must be used and analyzed. ML, multidimensional 

statistical analysis, signal evaluation, and information merging techniques are examples of data- 

driven WT problem diagnostic techniques (Yin et al. 2014). 
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Figure 2.2: ML Method for Wind Turbine Fault Diagnosis (Source: de Azevedo et al. 2016) 

 

 

The ML-based WT fault diagnostic techniques are categorized under three main categories like 

supervised, unsupervised, and semi-supervised learning approaches. A thorough assessment of 

research on the ML-based fault identification technique on machine learning remains lacking, 

despite the publication in certain studies on WT fault diagnostics and tracking of conditions. 

Consequently, the current work offers a comprehensive and relevant state-of-the-art evaluation of 

recent research on machine learning methods and approaches that have been used to WT defect 

diagnostics. This study analyzes the advantages and disadvantages of current approaches, 

highlights the difficulties, and makes recommendations for future research directions in the area. 

It also describes the study methodologies employed in WT fault evaluation as seen in Figure 2.2 

(de Azevedo et al. 2016). 
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2.1 Fault Diagnosis of Wind Turbine 

Habibi et al. (2019) stated that the number of nations used to carry out studies regarding WT 

technology, and the US and Europeans are making improvements towards problem detection and 

forecasting. For instance, large renewable energy production businesses utilize Siemens' SCADA 

system extensively. China's wind power sector started later than that of Europe and the United 

States, yet over the past few decades, study of WT finding faults has accelerated. The techniques 

for diagnosing WT faults were thoroughly researched because the introduction and growth of ML 

and AI in the past few years shown in tfigure2.3 depicts the WT structure (Dao et al. 2018). 

 

 

 
Figure 2.3: Structure of Wind Turbine (Source: Habibi et al. 2019) 

 

Lin et al. (2016) mentioned that the wind wheel, gearbox, generator, converter, horizontal and 

pitch systems, hydrodynamic and combined control mechanisms, and other systems are the key 

parts of WT. The wind wheel is essential to WT's converting energy, and WT's effectiveness and 

security are affected by operating reliability. The failure rate of the wind wheel and other elements 

rises with increased WT running duration, which has a negative impact on WT's operational 
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efficiency. The conclusion skills are significantly difficult because, on an irregular condition, the 

incidence components of the WT breakdown at the power source would extend throughout the 

range proportionate to the movement. 

2.2 Fault detection methods of wind turbine using integrated machine learning approach. 

The outcomes of space representation impacted by dictionary learning have some limitations and 

were addressed by Yang et al. (2017). To overcome this, an innovative approach to diagnose faults 

was proposed by this study. This approach relies on sparse representation and shift-invariant 

dictionary learning (SIDL) for effectively identifying and generating wind turbines. The outcomes 

extracted the impulse signal that are directly proportional to the actual signal and obtained the 

sparse coefficients in accordance with SIDL (Yang et al. 2017). 

An important unit in the conversion of WT energy is the converter. This converter allows the 

output current of WT to traverse to the grid. This output current is having constant amplitude and 

frequency while traversing. In most cases, high-pressure and elevated temperature working 

conditions impact the converters due to their nature of low stability. Hence, operating the converter 

for a prolonged period leads to any irreversible faults in the WT systems. A study conducted by 

Toubakh and Sayed-Mouchaweh (2016) examined the faults in the converter due to any changes 

in parameter. The authors suggested an WT converter approach to diagnose faults derived from 

hybrid dynamic classifier. This approach helped to observe the converters’ standard performance 

in the discrete form in the case of non-functioning parameter. The changes in parameter can be 

utilized to diagnose faults at the initial stage of the WT converter (Toubakh and Sayed- 

Mouchaweh, 2016). Another WT converter-based approach for diagnosing faults was proposed by 

Liang et al. (2020). This approach processed the output voltages’ total empirical mode 
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decomposition and obtained a set of implicit mode functions. Along with this, it measured the 

standard entropy based on the statistical characteristic of implicit model function. Moreover, this 

approach was performed to diagnose the faults in the fan system where the diagnostic attributes 

are described using the extracted information. The result of this approach exhibited a greater 

accuracy rate for diagnosis of 99.57 per cent (Liang et al. 2020). 

Another critical element of WT energy is the yaw system. The engine room of wind turbine spins 

around the centerline of tower with the help of this yaw system. This system maintains the vertical 

movement of winds and the scanning surface of the wind wheels. Due to the fluctuations in loading 

functions and in severe operating circumstances, malfunctions in yaw systems arise. This will also 

impact the WTs’ efficiency in generating power. A fault diagnosis approach for the WT yaw 

system was proposed by Pei et al. (2018) for the qualitative evaluation of the zero-setting errors in 

the systems. This approach has analyzed the power features under distinct angles in the yaw system 

to identify the zero point shifting errors. Triggering these zero points shifting errors leads to prompt 

identification of errors that can enhance the efficiency of WT. However, this can occur only if the 

pre-determined threshold values are lesser than the measurement error values in the yaw angles 

(Pei et al. 2018). Another signal analysis-based WT yaw system fault diagnosis approach was 

proposed by Ouanas et al. (2018) concerning the faults in the yaw system. The yaw drive provides 

the inverter signal. By filtering this signal, the excessive unnecessary information can be 

eliminated using the empirical mode decomposition and discrete wavelet transform techniques. 

The efficiency of the approach has been verified by detecting the faults in the Hilbert transform 

(Ouanas et al. 2018). 
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A WT device for controlling the speed and helpful in adjusting any changes in power through 

modifying the angle of attack (AoA) in the WT blades is called “pitch control system.” The 

complex internal pitch system structure and the external wind occurrences may lead to the collapse 

of units, damage to blades, and irregular output power. The rate of failures in this system can be 

high. To overcome this, most of the scholars have suggested approaches to diagnose pitch control 

system faults. One such study was conducted by Habibi et al. (2017) that used a non-linear model 

to propose an WT pitch system approach for diagnosing faults. They designed the optimal desired 

state to address the issue of increasing extraction of energy. For checking the practical aspects of 

this proposed approach, the researchers performed various experiments. Another study on this 

topic was performed by Lan et al. (2018). This study used the pitch system’s function for indicating 

faults and the changing phase-by-phase sliding state observer. The WTs’ pitch fault can be 

identified by effectively dealing with the non-linear distribution functions of faults (Lan et al. 

2018). 

Another crucial element of WT is the hydraulic system. It plays a significant function in the WTs’ 

transmission chain braking, pitch control, and yaw systems and works in any circumstances like 

high-altitude, open-air, and all-weather situations. However, maintaining this system has become 

quite challenging since it may lead to spool jamming and oil leakage. A Petri net model-based WT 

hydraulic system approach for detecting any faults was proposed by Yang et al. (2011). Initially, 

a model was established using the Petri net theory for every distinct WT hydraulic pitch system’s 

operating state. Then, it leads to build a fault Petri net model. Afterward, the Petri net was 

calculated along with the fault qualitative analysis results in obtaining the reliability index for the 

system. This was an effortless process and has an extensive application potential and can be used 

to the WT hydraulic system to diagnose faults (Yang et al. 2011). 
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2.2.1 Machine Learning Methods for Wind Turbine Fault Diagnosis 

The term “Machine learning (ML)” describes the process by which a computer, without the 

assistance of any humans, trains an inductive model from a small quantity of data and then utilizes 

that model to make future choices (Stetco et al. 2019; Clifton et al. 2013). To diagnose the wind 

turbine faults, ML applications can be used, as argued by Leahy et al. (2016). This consists of 

objective functions, models, as well as inputs and outputs. The sample data for WT can be given 

like x = {x1, x2, x3, … xn} (where ‘x’ denotes the data set having ‘n’ number of data samples) and 

‘y’ denotes the fault category. The output training sample for this: 

 

 

The above equation can be used for training the model and obtaining the approximate value ‘f(x)’ 

for the actual value ‘y.’ Also, the total number of training samples is represented by ‘M,’ the loss 

function is represented by ‘L,’ and the interconnection between ‘x’ and ‘y’ can be represented by 

‘y*.’ 

 

 

Calculating the mean value of loss of training set can help identify ‘empirical risk.’ ML methods 

need to reduce this empirical risk. Log loss, absolute value, square, and 0-1 functions are some of 

the loss functions often utilized. ML methods, however, have an issue of overfitting. Hence, 

reducing structural and empirical risks has become essential. The complexity of the models can be 

measured using the regular term J(f). Ridge and Lasso regression are commonly used regular 

terms. The below equation is the final optimized objective function. 
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According to Lei et al. (2020), ML methods can be categorized into three sub-categories: 

supervised, unsupervised, and semi-supervised methods. This study also discussed all the 

categories of ML methods in the context of wind turbine fault diagnosis. 

2.3 Supervised Learning Methods for Wind Turbine Fault Diagnosis 

According to Schwenker and Trentin (2014) and Zhou (2018), supervised ML method involves 

modifying classifier parameters from the known class samples for achieving the expected 

outcomes. The goal of supervised ML method is to provide the computer common mapping 

principles of input to output by providing it with sample inputs and the necessary outputs. 
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Figure 2.4: Flowchart of WT Fault Diagnosis based on Supervised Learning Method (Source: Jiménez et al. 

 

2019) 

 

 

This type of ML methods can be extensively applied in diagnosing the faults in the WT. According 

to Jiménez et al. (2019), supervised ML methods offer unique algorithms based on the type of 

issues (Figure 2.4). Firstly, the research object taken was fault diagnosis of WT; then, data was 

obtained from supervisory control and data acquisition (SCADA) systems; afterwards, it divides 

the data sets for training, evaluation, and test sets; pre-processing of datasets was then performed; 

and finally, the data was normalized after processing of missing values. Secondly, the dataset was 

trained by choosing the right ML modeling algorithm. Thirdly, the quality of the model was then 

evaluated using the test set. Lastly, continuous optimization of WT fault diagnosis leads to produce 

a precise classification of faults (Jiménez et al. 2019). 
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2.3.1 Artificial Neural Network 

According to Agatonovic-Kustrin and Beresford (2000) and Xi et al. (2020), the most employed 

supervised ML method is the Artificial Neural Network (ANN). This network contains multiple 

numbers of neurons and can be classified into three layers: input, output, and hidden layers. As 

noted by Samanta and Al-Balushi (2003) and Saravanan and Ramachandran (2010), the ANN 

methods have been extensively used in fault diagnosis. A faulty device can be identified by 

establishing the relationship mapping between categories and characteristics of faults by learning 

fault samples which are already known. The ANN-based fault diagnosis WT model involving three 

layers are shown in figure 2.5. From the figure 7, x1, x2, … xn denotes the WTs’ input 

characteristics, the total WT fault types is denoted by ‘m’ and the total input characteristics sample 

is denoted by ‘n’. 

 

 

 
Figure 2.5: ANN-based WT Fault Diagnosis Model (Source: Tang et al. 2021) 

Radial basis function (RBF), self-organizing map (SOM) and adaptive resonance theory (ART) 

networks are the commonly used supervised ANN methods (Tang et al. 2021). 
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An approach for diagnosing faults in the main bearing of WT based on ANN models was proposed 

by Zhang and Wang (2014). This study used the data obtained from SCADA systems. The faults 

in the main bearing of WT have been identified as quick as possible by calculating the variations 

in the actual and theoretical parameter values (Zhang and Wang, 2014). 

A hybrid approach of RBF and ART networks was proposed in another study conducted by 

Bielecki et al. (2014). This approach produced high efficiency in real-time by reducing the 

detection time of faults in the WT, monitoring the WTs’ current working conditions through 

Internet, and finding any faults as quick as possible (Bielecki et al. 2014). Nevertheless, ANN 

algorithms are not able to diagnose faults accurately since not all faulty information can be 

collected by the wind farm’s real engineering. Hence, the SOM model was proposed by Zhao et 

al. (2015) to diagnose the WT faults. Here, the network is trained with the WTs’ data samples in 

normal state. Based on the output neuron’s position in the output layers of ANN, identification of 

any malfunctions in the WT has become possible. Consequently, the fault diagnosis of WT 

produces efficient outcomes including strong robustness through this proposed SOM model (Zhao 

et al. 2015). Nonetheless this SOM model offers strong robustness and high accuracy rate, it needs 

more time to train the model and various modeling parameters. Although the Wind power industry 

was established in China only in the later part of 1980s, numerous studies have been conducted 

under the area of fault diagnosis of WT. On the one hand, there have been insufficient data samples 

with regards to fault diagnosis in the WT. On the other hand, the fault diagnosis classification 

accuracy has been severely impacted by the WT data samples’ completeness and accuracy. This 

has been seen as the current key problem that restricts the growth of ANN models in the study area 

of fault diagnosis of WT (Tang et al. 2021). 
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2.3.2 Support Vector Machine 

Vapnik (1999) established the kernel-based ML technique known as support vector machine 

(SVM) and can be mostly applied in classification and regression analysis. The primary goal is to 

increase the margin between two hyperplanes that divide two datasets in a multidimensional space. 

To construct a decision hyperplane that balances model complexity and empirical risk, reduction 

of structural risks is ensured by formulating SVM. SVM has been mostly applied in non-linear 

issues where the isolation margin between positive and negative samples are increased and a 

classification hyperplane is constructed as a decision plane (Deka, 2014). 

 

 
Figure 2.6: Support Vector Machine (Source: Tang et al. 2021) 

 

 

In figure 2.6, ‘b’ is the constant, and ‘W’ is the normal vector that represents hyperplane using the 

following formulas: wTx + b = 1; wTx + b = 0; wTx + b = -1. 

To separate the data points, a hyperplane needs to be found for SVM algorithms where the minimal 

geometric distance is the maximum point. A convex quadratic issue with a universal optimal 

solution can be considered as having a solution process like the SVM. Hence, SVM can be 
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extensively utilized in the realm of diagnosing faults. Raw data is mapped to a high-dimensional 

space using the inner product kernel function in SVM to create linear data. Nevertheless, it has 

been quite challenging to model big data in WT. The precision rate of fault diagnosis can also be 

impacted by choosing the kernel parameters. Additionally, it is challenging to ensure that multi- 

type fault diagnosis of WT (Tang et al. 2021). 

A manifold learning and Shannon wavelet SVM-based fault diagnosis approach for WT was 

proposed by Tang et al. (2014). A feature set with high dimensions was created to extract the 

mixed-domain features. This created feature set was then compressed using manifold learning into 

an eigenvector with low dimensions. Shannon wavelet SVM uses this eigenvector as input for 

diagnosing the faults in the WT gearbox (Tang et al. 2014). Another study used multi-kernel SVM, 

and a random subspace identification-based WT fault diagnosis approach was proposed for 

optimizing the individual kernel parameter by Zhao et al. (2018). This proposed approach 

outperformed other conventional SVM in diagnosing the WT faults. In another study, multi-SVM 

algorithms were utilized for diagnosing the renewable energy power grid faults that exhibited a 

greater precision rate (Liu et al. 2020). 

2.3.3 Decision Tree 

According to Safavian and Landgrebe (1991), a decision tree (DT) has been made up of several 

judgment nodes and the tree structure creates a model for regression or classification. A simple 

DT-based fault diagnosis WT model is shown in figure 2.7. 
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Figure 2.7: WT Fault Diagnosis Method based on Decision Tree (Source: Tang et al. 2021) 

 

 

A DT algorithm-based fault diagnosis approach for DT connected with grids was proposed by 

Benkercha and Moulahoum (2018). This approach yielded a greater accuracy rate and prediction 

performance. Another DT-based approach to diagnosing faults in WT was proposed by Abdallah 

et al. (2018). This study used trained and integrated DT classifiers, and constant and high rate of 

data samples collected from WT. While DT algorithms have been easier to adopt compared to 

other ML algorithms, it is less effective at handling missing values. More number of fault-free type 

samples and a smaller number of fault-type samples can be seen in the DT-based fault diagnosis 

approach of WT. When data handling that has varying sizes in samples across diverse areas, DT 

is likely to select features with extra numerical values for information gain. This leads to overfitting 

and limited usages in diagnosing the faults in WT (Tang et al. 2021). 

2.3.4 Ensemble Learning 

According to Polikar (2012) and Liu et al. (2019), as ensemble members, adjusting and training 

several base learners to become strong learners is the fundamental principle of ensemble learning. 

The mean performance of resultant learners is high when compared with other ensemble members. 

Subsequently, loss function has been optimized for establishing a model and increase the fault 

classification performance. Boosting and bagging ensemble methods are commonly used 

ensemble learning methods (Breiman, 1996). 
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The bagging ensemble method, also known as bootstrap aggregating, has been mostly used for 

statistical and regression classification. In this algorithm, the samples are returned to obtain a new 

set of data and for each dataset, the base learners are efficiently trained or combined. Overfitting 

issues have been prevented and variance has decreased in this algorithm. Random forest (RF) is 

an example algorithm of the bagging algorithm (Breiman, 1996). An RF-based WT gearbox fault 

diagnosis approach was proposed by Cabrera et al. (2015). Firstly, the decomposition of the 

wavelet packet extracted the vibration signal’s conditional variables to serve as classification 

problems’ input features. Afterward, the optimal mother wave set is then identified by 

approximating the parameter space to choose the most effective feature using the RF classifiers’ 

internal ranking. Finally, WT gearbox faults are diagnosed using the RF algorithm (Cabrera et al. 

2015). Another study was conducted to improve the accuracy of diagnosing faults for the WT 

gearbox. This study used a deep RF fusion (DRFF) approach (Li et al. 2016). The wavelet packet 

transforms’ parameter values are characterized using two deep Boltzmann machines. Moreover, 

the RF algorithm is used to combine the integrated DRFF model and the two deep Boltzmann 

machines’ output. The outcomes of this study demonstrated that DRFF algorithm outperforms 

traditional RF in the fault diagnosis for WT gearboxes (Li et al. 2016). 

Boosting, on the other hand, modifies the algorithm by assigning a high priority to the faulty 

classification, leading to considerable enhancements in classification performance (Freund and 

Schapire, 1996). Overfitting issues in this boosting algorithm can be prevented by focusing on the 

reduction of bias. LightGBM and XGBoost are some examples of boosting algorithms. An 

XGBoost- and RF-based approach for the effective diagnosis of faults was proposed by Zhang et 

al. (2018). Using XGBoost, the ensemble classifiers are trained for every individual fault by 

utilizing the features that rank highest after RF algorithm ranks them based on significance. This 
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proposed approach prevents the issue of overfitting. The validity of this approach was verified 

through experiments. Adaptive LightGBM-based approach for improving the accuracy rate in 

diagnosing faults for the WT gearbox was suggested by Tang et al. (2020). High coefficient 

information is used to analyze the correlation of the sample data of WT for accomplishing the 

selection of features in the detection of faults. Concurrently, the WT gearbox fault diagnosis 

approach employed Bayesian optimization and LightGBM methods. The results of this study 

indicated that the proposed approach exhibits a low missing detection rate and false alarm rate 

(Tang et al. 2020). 

Ensemble learning has been extensively applied in many areas for its greater ability to diagnose 

faults as promptly as possible. Nevertheless, certain ensemble learning methods present over- 

fitting issues, convergence speed is slow, and in some cases, weak learners need to be dependent 

on each other. Hence, some factors must be considered while employing ensemble learning 

algorithms, such as weights, number of base learners and iterations (Tang et al. 2021). 

2.4 Unsupervised Learning Methods for Wind Turbine Fault Diagnosis 

Unsupervised training was the process by which a computer learns unprocessed data to uncover 

the underlying structure, clarify the salient characteristics, and categorize the data clustering is a 

representative approach. Several commonly used unsupervised learning methods are derived from 

the clustering technique. Unsupervised teaching educated the data of unlabeled specimens instead 

of analyzing class-labeled examples like supervised learning about the approaches. They reduced 

the interclass deviation from the participant collection organized based on sample resemblance 

which establishes the model. Unsupervised learning techniques have become popular throughout 

troubleshooting, data extraction, computer graphics, and various other fields. They possessed the 
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ability of classifying and predicting data from trials by uncovering concealed patterns and 

connections within the information collection. Unsupervised learning usually used a variety of 

techniques, including the Gaussian combination model, fuzzy C-means (FCM), hierarchical 

clustering technique, K-means algorithm, and others (Zhang and Zhou 2018a). 

2.4.1 K-Means 

Wang et al. (2016) studied that the K-means clustering is a directly unsupervised learning 

technique that divided n data points into K clusters, about every result belonging to the cluster that 

has the closest mean. With the goal recognize the K beginning locations from the information as 

the grouping center, and they first initialize the centers of clusters. Next, then compute the amount 

of time between all points and the exact center and allocate it to the closest cluster. Third, to reduce 

the internal total, they compute the points of the cluster. Lastly, until the focal points of every 

cluster remain unchanged, the distribution and updating procedures are repeated. K-means 

clustering is finished if each point is assigned to an identical group that previously. For instance, 

the K-means method was applied to the WT data collection to try to arrange the information. The 

five various kinds of outcomes from clustering are displayed in Figure 2.9. 
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Figure 2.9: K-Means Algorithm (Source: Wang et al. 2016) 

 

 

Yesilbudak (2016) introduced a K-means clustering technique for rolled bearings defect 

diagnostics, which overcomes K-means' sensitivity to the choice of starting cluster centers. 

Characteristics acquired using simulation waveforms are used to pick the beginning locations. 

Investigations on three diverse types of bearings for identifying flaws demonstrate the 

effectiveness of this technology in classifying defects of unsupervised learning procedure 

developed using kernel technology. It can distinguish between various non-linear processing 

options, efficiently identify errors, and lower the false alarm rate. 

2.4.2 Fuzzy C-Means 

Hu et al. (2019) defined that the information using the FCM method could represent a part of more 

than one cluster. The fundamental principle was to minimize the connection between different 

clusters and enhance the similarities across items assigned to an identical cluster. They presented 

a fault diagnostic approach based on global local mean deconstruction and FCM clustering in the 

WT transmissions failure identification. This approach provides simplistic execution as well as 

producing excellent diagnostic findings. The identified sample was grouped using the FCM 
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aggregation, and the experimental population was determined and categorized. The WT fault 

diagnostic techniques need monitoring as well as instruction based on knowing fault specimens 

from the past, but gathering known fault specimens is costly and takes time. The approach based 

on kernel FCM (KFCM) clustering used for the defect identification of the WT gearbox, 

considering the incomplete features of identified specimens in WT. The specimens containing 

identified patterns are categorized using the KFCM grouping technique, and the categorization 

concentrate with each recorded defect is found. To determine if the newly collected data specimens 

are part of the known defects, similarity characteristics are also computed. This technique can 

precisely and successfully diagnose both recognized and undiscovered WT problems. 

2.4.3 Hierarchical Clustering 

Liu and Ge, (2018) learned that unsupervised training, hierarchy clustering is a statistical technique 

that creates a model by organizing groupings into a hierarchical structure. A "tree diagram," or a 

tree's framework with branches and leaves, should be used to illustrate the sequential clustering 

approach. When it comes to clustering types of trees, the base nodes of the group are at the highest 

point of the tree, while the initial informational points of various groups are at the lowest level. As 

seen in Figure 2.10, the hierarchy clustering approach consists of two processes: divisive top-down 

clustering, which starts at the base and repeatedly separates the groups, and agglomerative 

hierarchy groupings which starts at the branches and gradually integrates clusters. 
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Figure 2.10: Hierarchy Clustering Structure (Source: Liu and Ge, 2018) 

 

 

The separation among the information locations for multiple groups can be determined using the 

distances defined by Euclid using the hierarchy of clustering approach. To detect various 

transmission illnesses, we presented an error evaluation technique that utilized flexible multiple 

habitats structural adjustments and enhanced organizational entropy. They also used the hierarchy 

collection technique to lessen sound in the problem characteristics obtained from the signal. They 

introduced an ordered cluster selection-based weighted random woodland approach for identifying 

faults in intricate manufacturing processes. Continuous fault recognition could be made simpler 

by using the pyramidal clustering approach for online picking models (Lin et al. 2020). 

2.4.4 Gaussian Mixture Model 

Zhang and Dimitrov (2023) stated that the Gaussian Mixture Model (GMM) is derived from a 

combination of limited amount of likelihood models with unidentified variables and assumes that 

every data point followed a Gaussian pattern. With the goal to execute the allocation of data, GMM 

could be defined simply as a method of matching an ordered set of many distributional dispersion 

models. To identify WT gearbox breakdowns and determine the adverse log-likelihood of a 

gearbox's bearings vibrating output section that reflects a properly functioning gearbox. They 
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presented a Gaussian-based hybrid model and non-stationary windmill gearing noise signals 

should be handled using this technique. In the multi-parameter medical evaluation system that 

takes dynamically operating circumstances into account, considering the extremely complicated 

and unpredictable operating characteristics of WT. 

The operating state of WT gets assessed after the pick of characteristic values and GMM-based 

multi-regime simulation, which can detect WT problems. They presented a fault diagnostic 

technique for WT that utilized a GMM randomized variable framework in reaction to recurrent 

WT failures. Using an GMM-based randomized variable structure, the movement impulses of WT 

that vary periodically depending on surroundings and operational circumstances are retrieved, and 

the predictive parameters are established. The most problem levels and kinds were accurately 

identified by the approach offering notable performance gains. The enormous number of WT 

information samples could be handled by GMM with effectiveness, and its sluggish resolution and 

high computation cost are drawbacks (Avendaio-Valencia and Fassois 2017). 

2.5 Semi-supervised Learning Methods for Wind Turbine Fault Diagnosis 

Zhang and Zhou, (2018b) defined the two types of learning that semi-supervised training was a 

method of instruction that find the certain commonalities between unlabeled and labeled 

specimens with the goal to assist identify the features of the predictive model and transfer declared 

from marked to raw data. By mixing labeled and unidentified specimens throughout the 

information set selection procedure could improve the precision of training. The semi-supervised 

Support Vector Machine (SVM), generative model-based, disagreement-based, and graph-based 

approaches are the four primary concepts for semi-supervised training. They worked on co-training 

and laid the foundation for disagreement-based semi-supervised instruction that is mostly 
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employed in human-computer interaction and has less impact by the non-convexity of the lost 

function and the volume of information. 

2.5.1 S3VM 

Liu et al. (2020b) presented that the SVM was created for partially supervised learning or S3VM. 

Marking samples without labeling to optimize the gap after the division of the hyper-plane is the 

main concept of S3VM. A Transductive Support Vector Machine (TSVM) is the most often 

utilized S3VM. The strategy's main concept may be defined by five phases using data labeled, an 

SVM classifier trained in the initial stage. In the second stage, unlabeled data classification 

outcomes are projected with Support Vector Machines (SVM) using the preexisting labeled sample 

and unidentified instance to retrain SVM. In the third phase, it seeks to identify the opposing 

labeling in the projected raw data which would be inaccurate for the marked samples to switch the 

label. 

Mao et al. (2020) repeated the subsequent phases in the final phase unless the best S3VM 

classification is found. The unlabeled samples must be tagged, and the classification outcomes 

predicted utilizing the S3VM algorithm in the fifth phase. The discipline of WT defect diagnostics 

makes a great deal of the S3VM methodologies. Roller bearings defect diagnostic technique based 

on S3VM technique uses a small number of labeled data to create a representation with an excellent 

classification performance. They employed semi-supervised construction, presented a digital 

approach to facilitate initial identification of flaws of bushings with a lower incidence of false 

alarms and better discriminatory capacity towards beginning fault characteristics. 
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2.5.2 Generative Models 

Li et al. (2018) explained the method of tracking were capable of the desired outcomes for problem 

identification and mitigation with this approach. They developed a semi-parametric technique for 

asynchronous motor defect diagnostic and identification that employs the hidden Markov model 

to accomplish automated identifications. They followed the training phase of each probabilistic 

(non-parametric stage) hidden Markov model, which forms the basis of the hidden Markov model 

classifiers (parameter stage). In the two matrix sets are computed using statistical inference to 

address the efficiency issue in the fault classification procedure. They anticipated premature 

transmission component mistakes, introduced a fault detection technique based on a hidden semi- 

Markov modeling and a multivariate Bayesian control strategy (Xin et al. 2018). 
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3. Methodology 

This chapter was focused on providing an actual implementation method of a recommended 

technique to implement suitable machine learning approaches in predicting the faults in wind 

turbines. It provides an implementation strategy with detailed steps that cover a wide range of 

subjects like study design, data collection, feature selection, machine learning methods, model 

building, and evaluation metrics. This chapter provides an implementation of the chosen machine 

learning model in addition to highlighting practical issues and challenges that come up in the 

execution phase to get reliable and accurate predictions in fault types. 

3.1 Research Design 

To determine the association between multiple fault modes and the prevalence of fault diagnosis, 

retrospective methodology was used in this study to investigate the trends and associated fault 

components with fault detection. However, it used the already available dataset from the 

SCADA system, including Scada_data, Fault_data, and Status_data. It was a perfect fit to adopt 

the retrospective method for the study goals of predicting the faults in wind turbines (Wen et al. 

2022). With the examination of large data, long-term trends can be explored based on large data 

for analysis. Moreover, this research design would be beneficial in terms of money- and time- 

efficiency since it does away with the requirement for lengthy follow-up periods included in 

prospective studies. 

In this study, the available prior data may be effectively useful in creating precise models for the 

prognostication of fault detection based on the integrated retrospective research approach. It 

could be possible to evaluate different fault modes that improve the understanding of the 

diagnosis of faults and provide the information for fault diagnosis measures. The retrospective 
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design methodology was aligned with the research objectives that allowed the data collection and 

analysis of large datasets with the potential detection of faults in wind turbine systems. 

3.2 Data Collection 

The method incorporated in predicting faults for wind turbines would be impacted by how data 

collection was performed. This section provided a detailed explanation of the data sources used 

in the research and the criteria of sample size. The SCADA system data was used in this study 

due to the comprehension, availability, and pertinence of large data sets, including fault 

components, fault modes, and their status information (Letzgus, 2015). Moreover, the sample 

size of the dataset should be large enough to provide the necessary statistical power for accurate 

findings. The presumptions on the information variability, impact of size, and confidence levels 

were required to be considered in evaluating the sample size. The large sample size of data 

should ensure that the statistical analysis would provide important results based on sample 

estimates and power evaluation. 

3.3 Feature Selection 

It is crucial to implement the prediction of fault detection and diagnosis models for wind turbine 

systems. The features should be chosen to find out the strongest features that connect the 

prediction of fault modes. Initially, we sorted out which attributes were most significant for this 

study based on earlier studies and the data that was already available. Accordingly, the chosen 

attributes were considered in the dataset. To reduce the extraneous attributes, Principal 

Component Analysis (PCA) was used as a popular method for feature extraction. The approaches 

like wrappers, filters, and embedded programmers have used methods. Before feature selection, 

preprocessing of data was performed to ensure the dataset’s integrity and consistency. Moreover, 
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the model can predict the most valuable metrics for prediction of fault detection and diagnosis 

through the careful selection of key features and filtering. This study used the PCA method as a 

feature selection to determine the significant traits (Wu et al. 2022). However, preprocessing 

involved feature extraction or selection, and cleaning of the data which served as resources for 

model building and evaluation further (Figure 3.1). Accordingly, it is essential to choose the 

most helpful features and ensure the accuracy of the used data in the optimization method for 

enhancing the prediction ability and the understanding of fault detection and diagnosis. 
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Figure 3.1: Proposed Methodology (Source: Author) 

 

 

3.4 Machine Learning Approaches 

With the careful selection and implementation of efficient machine learning approaches, we 

could design a prediction model for fault detection and diagnosis in wind turbine systems. This 

section discussed detailed information about employed machine learning algorithms in the study 

in addition to the rationale and how they achieved the proposed objectives. Several types of 

supervised and unsupervised learning algorithms have been used in energy systems that provide 

unique advantages and drawbacks based on multiple attributes and research questions. The Long 

Short-Term Memory (LSTM) is a type of unsupervised learning that was often used or widely 
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used in energy systems to address faults and diagnosis methods (Appiah et al. 2019). It was 

highly beneficial to examine the attributes of fault detection that predict the probability and 

development of wind turbine systems. Moreover, convolutional neural networks (CNN) also 

demonstrated efficacy in performing the classification tasks that involve both nonlinear and 

linear cases under a supervised learning approach (Rahman et al. 2021). These models could be 

useful in managing large-scale datasets successfully by providing accurate performances. 

Therefore, the LSTM and CNN models were chosen in this study due to their benefits in 

handling linear and non-linear data in the wind turbine energy systems. 

3.5 Deep Learning 

LeCun et al. (2015) initially proposed the concept of “deep learning (DL)”. DL is the subset of 

ML algorithms, and the structure follows a multi-level deep network that uses a specific training 

algorithm with its own data samples. For the identification of distributed data feature 

representation, high-level abstract representation is formed by collectively combining the low- 

level feature representation (LeCun et al. 2015). Many fields broadly employ these DL algorithms 

such as fault diagnosis, data mining, image processing, etc. (Helbing and Ritter, 2018; Goodfellow 

et al. 2016; Schmidhuber, 2015). Convolutional neural networks (CNN), deep auto-encoder 

networks (DAE), and deep belief networks (DBN) are some of the common DL algorithms (Jiang 

et al. 2018). 

An innovative fault diagnosis approach for WT gearbox was proposed by Qin et al. (2018). This 

approach employed improved logical Sigmoid unit and DBN algorithm. This combined approach 

increased the diagnosis accuracy rate by extracting input signals’ impulse components. Soft- 

thresholding, kurtosis index and optimized Morlet wavelet transform were used in this approach. 
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This proposed approach outperformed the conventional Sigmoid approach (Qin et al. 2018). A 

DAE-based DL approach for WT fault and anomaly diagnosis was proposed by Zhao et al. (2018). 

In this, SCADA system was used to collect data and a deep automatic encoder network model was 

formed by Boltzmann machine. The residual of this formed model helps in prompt diagnosis of 

WT faults by identifying its physical location. Due to the WT’s changing operational states and 

significant interference of noise, the precision rate of WT fault diagnosis has been reduced (Zhao 

et al. 2018). To overcome such issues, a concurrent CNN-based WT fault diagnosis approach was 

proposed by Chang et al. (2020). No prior information is needed for the raw WT data; instead, 

they follow adaptive learning. This facilitates greater ability for generalization and precision rates. 

The fault diagnosis of WT offers improved precision rate since various branches’ convolutional 

layers choose kernels with identical levels and at varied sizes (Chang et al. 2020). Despite its 

greater accuracy of fault diagnosis and learning ability, DL algorithms need a lot of processing 

power and data, which is expensive and requires a lot of hardware. Hence, addressing these 

drawbacks has been the primary concern, as argued by Tang et al. (2021). 

3.5.1 Convolution neural network 

As noted by LeCun et al. (1989), the convolutional neural network (CNN) applications have been 

widely used since its establishment in 1989. It is a type of DL algorithm. The faults can be 

classified, and data features are extracted efficiently in this CNN algorithm. A hybrid approach 

based on CNN-MLP applications for diagnosing the faults in the rolling bearing was proposed by 

Sinitsin et al. (2022). This approach used combined input data for performing the rolling bearing 

fault diagnosis. Another CNN-based feature learning approach to monitor states in the rotating 

instrument issues was proposed by Janssens et al. (2016). This proposed approach outperformed 
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the traditional random forest classifiers and feature selection algorithms. According to Guo et al. 

(2023), dedicated equipment has been extensively applied in many kinds of vehicles and is 

considered essential to control the regular functioning of special vehicles. Conventional ML 

algorithms have been mostly used by former researchers since the acquisition of data has been 

difficult for dedicated equipment. Hence, a simulation platform was used to obtain the fault data 

and diagnose it using the DL algorithm in the study conducted by Guo et al. (2023). CNN-LSTM- 

based fault diagnosis approach was proposed by the researchers. The spatial-temporal data 

characteristics were retrieved by integrating conventional CNN and modern LSTM networks. 

Moreover, the ability to extract key features was improved by using the CBAM. Data from the 

hardware-inloop dedicated equipment simulation application was used to train and verify the 

model. The classification techniques of fault and the proposed approaches’ parameters were 

verified, and it has been established that this proposed approach possesses effective classification 

of fault diagnosis of dedicated equipment. Moreover, this approach outperforms the other different 

CNN models (Guo et al. 2023). 

CNN is made up of three layers: activation, pooling, and convolution layers. Of these, convolution 

layer acts as a core layer of the CNN. Inside the convolution layer, there exists a convolution 

operation. The process of extracting feature information from the data has been made possible 

through this convolution operation that acts as the inner product of discrete filter matrix and data 

parts. Different data features can be extracted using different convolution kernels and impacted by 

the kernel size. As a result, both are essential to guaranteeing the normal operation of the 

convolution layer (Guo et al. 2023). The below formula is used to measure convolution operation: 

γ. 
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where, the neural network layer count is represented by ‘γ’, the bias matrix is represented by b, the 

respective convolution kernel’s weight matrix is represented by k, number of input kernels data is 

represented by ‘C’, the data element of the γ-1 layer is x, the jth eigenmatrix of the current layer 

is represented by x, and the activation function is f(x). 

Downsampling function can be implemented by pooling layer by modifying the input data filter 

and selecting the mean or highest sliding window data value as the pooling unit’s output. The 

decision of whether to transmit signals to following neurons and what can be included in it has 

been determined by the activation function. The most common activation functions include ReLU, 

Tanh, and Sigmoid functions (Guo et al. 2023). γj 

 

 

3.5.2 Long-Short Term Memory 

One type of RNN algorithm that has been useful to process long-time data series is called Long- 

Short Term Memory (LSTM). Cell state and gate mechanism are added in the LSTM algorithm to 

efficiently handle the information for a long-term and outperforms the other traditional RNN 

algorithms (Guo et al. 2023). The LSTM architecture is shown in figure 2.8. 
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Figure 2.8: LSTM Architecture (Source : Guo et al. 2023) 

 

 

LSTM stores more essential information for a longer period by adding cell state ‘Ct.’ A change in 

input can adjust this information in a dynamic manner. The gate mechanism executed the operation 

to process information. Three gates are present as shown in figure 10, including output gate, input 

gate, and the memory gate from right to left. 

The below formula can be used to calculate the forgetting door ‘ft’: 

 

ft = sigmoid (wf * [ht-1, xt] + bf) 

 

where, the current input is represented by ‘xt,’ the previous unit output is represented by ‘ht-1’, bias 

vector is represented by ‘bf’, and the weight matrix is represented by ‘wf’. 

The following formulas are used in the first stage: 

 

it = sigmoid (wi * [ht-1, xt] + bi) 

Gt = tanh (wg * [ht-1, xt] + bg) 

where, the bias vector is represented by ‘bi,’ and ‘bs’ and the weight matrix are represented by 

‘wg,’ and ‘wi.’ Choosing which information is to retain has been the aim of this first stage. 
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Updating the cell state is the purpose of the second stage. The following formula can be used for 

this: 

Ct = Ct-1 * ft + it * Gt 

The following two formulas can be used for the output gate: 

Ot = sigmoid (w0 * [ht-1, xt] + b0) 

ht = O * tanh (Ct) 

where the bias vector is represented by ‘b0’, and the weight matrix is represented by ‘w0’. 

 

It was argued that other than the research in fault diagnosis, LSTM offers ideal solution for 

dependency issue between unique words in NLP (Natural Language Processing) due to its nature 

of effective processing of information sequence for a long time (Guo et al. 2023). 

3.6 Model Development 

It is crucial to develop an accurate model for fault detection and diagnosis of wind turbines. For 

that, the Scada and Fault datasets were combined since they have suitable attributes for our study 

like fault components and fault modes. Then, the dataset was categorized into training, 

validation, and test sets. Based on the training set, the characteristics of input data were given 

and the corresponding target variables that indicate the existence or absence of faults. The 

model's hyperparameters were adjusted in the validation process and the results were evaluated 

throughout learning. 

Based on optimization methods like random gradient descent or linear gradient descent, the 

difference between the two models was adjusted frequently using the weights of a model. 

Moreover, accurate predictions can be provided by integrating two models CNN and LSTM 
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(Figure 3.1). The efficacy of a model was evaluated at distinct phases based on different metrics 

like accuracy, prediction, and sensitivity (Duchesne et al. 2020). These measures were useful to 

find out whether the model is accurate enough in the classification of wind turbine systems with 

and without faults. The chosen models were trained, and their effectiveness was evaluated based 

on metrics like accuracy, precision, recall, and F1-score. This stage was used to establish the 

foundation for a thorough examination and understanding of the predictive power of proposed 

machine learning models in fault detection and diagnosis of wind turbine systems. 
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4. Results 

As discussed above, three models were chosen to provide the best possible machine learning 

classifier for evaluating the fault diagnosis of wind turbines. However, deep learning and 

supervised machine learning models like CNN, LSTM, and integrated LSTM-CNN for fault 

detection methods were used in this study. They included AF (Air-cooling Fault), EF (Excitation 

Fault), FF (Feeding Fault), GF (Generator Heating Fault), MF (Mains-Failure Fault), and NF (No 

Fault). In this chapter, data findings and results were analyzed using Python based on precision, 

recall, and f1-scores to determine the novel effective machine learning approach of integrated 

LSTM-CNN to predict the fault detection of wind turbines. In addition, model development, 

selection of different machine learning algorithms, and statistical analysis were performed using 

evaluation metrics to build the most resilient models in the detection of fault diagnosis methods 

of wind turbines. 

4.1 Model Building 

When choosing specific best classifiers, we should be concerned about their distinctiveness and 

evaluate the performance of individual models. An integrated CNN-based LSTM deep learning 

model has been used as a classifier to predict fault detection and achieve the diagnosis of wind 

turbines. Three different datasets, including scada_data, fault_data, and status_data were used to 

evaluate the measures for fault detection accuracy based on the deep learning approach of the 

CNN-LSTM model. These datasets included information on more than 60 wind turbine 

components recorded by SCADA, fault types of wind turbines, and status of wind turbines with 

descriptions, respectively. However, six different faults were identified such as AF (Air-cooling 
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Fault), EF (Excitation Fault), FF (Feeding Fault), GF (Generator Heating Fault), MF (Mains- 

Failure Fault), and NF (No Fault) in wind turbines. The chosen machine learning approach was 

implemented to test the accuracy, precision, and recall scores for these six fault types and 

evaluate the diagnosis methods of faults in wind turbines. 

4.2 Time-Series Analysis 

In the analysis of time series, the given data plot configures the size of the figure with 10*4 and 

the y-axis was set to the limit between 0 and 4. The data status, spanning from 2014 January to 

2016 January, exhibits a trend of consistent values ranging from -0.0 to 0.4 (Figure 4.1). In the 

period from 2014 April and 2015 April, the data of Scada displayed a range of narrower that 

fluctuated between -3.0 to 3.0 which suggests various contexts of operations compared to the 

data status. The data of Scada notably showed a shift of significance around 2015 January, which 

indicates the change in the potential dynamics of the system. The fault data concurrently cover 

2014 June to 2015 January, demonstrating the constrained range of -1.0 to 1., with a correlation 

of possibility between the occurrences of the fault and the anomalies observed in the Scada data. 

This analysis of interaction underscores the nuanced need to understand the interplay of the 

status, Scada, and fault data to unravel the patterns and their causal potential relationships. More 

investigation into the time intervals and their operations in corresponding conditions enhances 

the warranted reliability of the system and performance. 
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Figure 4.1: Time-Series Analysis of Scada, Fault, and Status Data 

 

 

The time series of all three datasets were compared to determine the fluctuations (Figure 4.1) 

from Jan 2014 to Jan 2016. It depicted the constant time series data for Scada, fault, and status 

data sets. Therefore, these results indicated that there were no fluctuations or changes involved in 

information about wind turbine components, fault types of wind turbines, and the status of wind 

turbines over a period from Jan 2014 to Jan 2016. 

4.2.1 Maximum Power 

Scada_data was evaluated for the time series of WEC (Wave Energy Converter): maximum 

power (Figure 4.2) over a period between May 2014 to Apr 2015. In contrast to the results 

mentioned in Figure 4.1, the time-series analysis for WEC: max. power showed that the peak 

value in March 2015 while the lowest values of max. power were observed in May 2014 and 

April 2015. 
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Figure 4.2: Time-Series Analysis of WEC: Max Power from Scada Data 

 

 

4.2.2 Production 

Scada_data was evaluated for the time series of WEC: production (kWh) (Figure 4.3) over a 

period between May 2014 to Apr 2015. Contrary to the results mentioned in Figure 4.1, the time- 

series analysis for WEC: production showed an increasing trend and resulted in the peak value in 

April 2015 while the lowest production was observed in May 2014. 

 

 

 
Figure 4.2: Time-Series Analysis of WEC: Production from Scada 

 

 

To determine the fault predictions for different fault components, we combined the datasets of 

Scada and Fault and proceeded to the exploratory data analysis. 
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4.3 Exploratory Data Analysis 

The combined datasets of Scada and Fault were analysed to evaluate the average predictions of 

faults for different fault components. However, the fault types were AF, EF, FF, GF, MF, and 

NF against fault components, including rotor temperature 2, stator temperature 1 & 2, Nacelle 

ambient temperature, Nacelle ambient temperature 1 & 2, Nacelle cabinet temperature, main 

carrier temperature, rectifier cabinet temperature, fan inverter cabinet temperature, yaw inverter 

cabinet temperature, ambient temperature, tower temperature, control cabinet temperature, 

transformer temperature, RTU: ava. Setpoint 1, inverter averages, inverter std. dev, group, and 

frozen. 

Table 4.1: Fault Average Predictions for Different Fault Components 
 

 

Fault Components Faults 

AF EF FF GF MF NF 

Rotor temp. 2 55.7 99.9 65.9 34.9 52.5 52.6 

Stator temp. 1 68.9 101.6 70.4 42.8 66.4 60.7 

Stator temp. 2 68.3 100.5 69.7 42.5 65.9 60.2 

Nacelle ambient temp. 1 15.6 14.5 11.0 12.1 14.8 12.5 

Nacelle ambient temp. 2 15.6 14.3 10.9 11.9 14.7 12.4 

Nacelle temperature. 19.3 17.4 14.1 14.1 17.9 16.3 

Nacelle cabinet 

temperature. 

22.9 20.7 17.8 19.4 21.0 19.9 

Main carrier temperature. 20.5 19.6 15.9 13.3 19.1 16.6 

Rectifier cabinet 

temperature. 

32.6 30.4 26.7 30.8 30.0 30.4 

Yaw inverter cabinet 

temperature. 

27.7 27.3 22.6 21.1 25.9 24.3 

Fan inverter cabinet 

temperature. 

32.0 29.9 26.3 24.9 30.1 28.8 

Ambient temperature. 16.8 14.9 11.4 12.6 16.8 13.4 

Tower temperature. 28.1 28.9 21.6 16.3 27.2 23.1 

Control cabinet 

temperature. 

36.5 38.8 31.6 24.9 35.2 31.8 
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Transformer temperature. 46.9 64.1 51.1 30.2 45.3 43.9 

RTU: ava. Setpoint 1 3042.2 3049.4 3047.5 2973.4 2940.2 2988.2 

Inverter averages 31.8 34.2 30.1 23.0 30.3 27.8 

Inverter std dev 1.4 1.6 1.6 1.1 1.5 1.9 

group 150.0 251.0 297.0 285.5 95.7 1591.3 

Frozen 0.1 0.0 0.0 0.0 0.2 0.1 

 

 

The highest mean value was observed for Excitation Fault (EF) with 99.9 in the fault component 

of rotor temperature 2 while it was lower generator heating fault (GF) with 34.9 (Table 4.1). 

Both stator temperature 1 and stator temperature 2 fault components were evident that they 

recorded the highest mean score for fault type of excitation fault (EF) with 101.6 and 100.5, 

respectively. Nacelle ambient temperature, Nacelle ambient temperature 1 & 2, and Nacelle 

cabinet temperature were expressed higher for air cooling fault type (AF) with mean scores of 

19.3, 15.6, and 22.9, respectively. They were lower in the case of feeding fault (FF) type. 

Moreover, main carrier temperature, rectifier cabinet temperature, yaw inverter cabinet 

temperature, and fan inverter cabinet temperatures also showed the highest mean scores with the 

air-cooling fault (AF), i.e., 20.5, 32.6, 27.7, and 32, respectively. In addition, these fault 

components resulted in the lowest mean scores for generator heating fault (GF) except for 

rectifier cabinet temperature which expressed at lower conditions in case of feeding fault (FF). 

The ambient temperature was higher on average for AF (air cooling fault) and MF (mains failure 

fault) with a mean value of 16.8 and lowest for FF. Tower temperature, control cabinet 

temperature, transformer temperature, RTU: ava. Setpoint 1, and inverter averages were higher 

for excitation fault with 28.9, 38.8, 64.1, 3049.4, and 34.2, respectively (Table 4.1). They 

resulted in the lowest values except for RTU, such as 16.3, 24.9, 30.2, and 23, respectively for 

GF. RTU had to have the lowest mean of 2940.2 for MF. The inverter std. dev and group were 

highest under no-fault type, i.e., 1.9 and 1591.3, respectively. In the case of frozen, the mean 
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score was reported as 0.2 which was highest for MF while it was lower for EF, FF, and GF with 

a 0-mean score. 

4.4 Analysis of LSTM and CNN-based Machine Learning Models 

Initially, an unsupervised learning algorithm of LSTM (Long Short-term Memory) and a 

supervised learning model of CNN (Convolutional Neural Network) were employed for the 

training dataset to predict the performance of fault detection. Accordingly, these models were 

used to evaluate the accuracy of fault detection individually and compare their accuracies with 

the proposed model of integrated LSTM and CNN-based algorithm with a five-fold cross- 

validation method for diagnosis of faults in wind turbine machines. 

Table 4.2: Accuracies of LSTM, CNN, and Integrated CNN-LSTM Models for Different 

Faults 

 

 Accuracy Precision Recall F1-score 

Long-Short Term Memory 

(LSTM) 

AF 0.70 0.62 0.65 0.63 

EF 0.49 0.49 0.49 

FF 0.64 0.61 0.63 

GF 1.00 1.00 1.00 

MF 0.29 0.29 0.29 

NF 0.95 0.90 0.92 

Convolutional Neural 

Networks (CNN) 

AF 0.69 0.47 0.40 0.43 

EF 0.58 0.84 0.69 

FF 0.73 0.58 0.65 

GF 1.00 1.00 1.00 

MF 0.12 0.14 0.13 

NF 0.83 0.76 0.79 

 AF 0.75 1.00 0.25 0.40 
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Integrated LSTM-CNN- 

based Algorithm 

EF  0.60 1.00 0.75 

FF 1.00 0.51 0.68 

GF 1.00 1.00 1.00 

MF 0.00 0.00 0.00 

NF 0.75 0.93 0.83 

 

 

When compared to the results of LSTM, CNN, and integrated LSTM-CNN models for predicting 

the fault detection in different fault types like AF, EF, FF, GF, MF, and NF, an improved 

accuracy of 75% was observed for the integrated LSTM-CNN model than the individual models 

like LSTM and CNN (Table 4.2). Although the accuracy was lower for CNN (69%) in 

comparison with LSTM (70%), the precision and F1-score values were improved with CNN for 

excitation fault (EF) and feed fault (FF) conditions. However, precision was increased from 49% 

to 58%, and F1-score from 49% to 69% in the case of excitation fault while they were improved 

outcomes from 64% to 73% and 63% to 65% in feed fault type, respectively. With the integrated 

LSTM-CNN model, the precision and F1-scores were further improved for EF (60% and 75%, 

respectively) and FF (100%, and 68%, respectively) (Table 4.2). Overall, the novel algorithm of 

the integrated LSTM-CNN classifier showed improved performance in the detection of faults in 

wind turbines. 

In comparison between CNN-LSTM it is quite evident that the need to completely change and it 

is completely evident that the training time is highly proportional to all aspects. Based on the 

training times, the CNN-LSTM can be noted to be a much faster approach. According to Aksan et 

al. (2023), weather parameters among the datasets can be helpful in detecting and finding out any 

form of variant which can increase the training time. Thus, the input size of a data has been 

associated with being more can affect the training time of the powerflow grids. On the other hand, 
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in contrast, it can be determined that the abilities and the ways things can get affected can be 

studied using the grid cluster which when trained can be useful for power dataflow. Experimental 

results from numerous studies have furthermore proven that the The Convolutional-Long Short-Term 

Memory-Deep Neural Network (CLDNN) model has been associated with being a convenient and accurate 

model as it has the reduced error rate of around 4-6% of LSTM which can better improve the robustness 

among larger datasets and affect different environmental conditions. This CNN-LSTM model can be 

predicted with the usage of factors such as house energy consumption, achievement of prediction 

performance from various previous aspects and predict areas such as power consumption which can 

improve robustness. 
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4.5 Summary of Data Findings 

The chosen three different ML algorithms, such as LSTM, CNN, and combined LSTM-CNN 

models were evaluated against accuracy, precision, recall, and F1-score using Python. The 

results depicted that the proposed novel algorithm of LSTM-CNN based model was more 

accurate with 75% than the other algorithms like LSTM with 70% and CNN with 69% accuracy 

in predicting the fault detection under AF, FF, EF, GF, MF, and NF. In addition, the proposed 

model showed enhanced performance of precision and F1-score with 60% and 100%; and 75% 

and 68%, respectively under Excitation Fault and Feed Fault modes, respectively. Therefore, a 

novel algorithm of integrated LSTM-CNN could be able to predict fault detection and diagnose 

the faults efficiently in wind turbines. 
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5. Discussion and Conclusions 

The integration of Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks identifies the fault wind turbine and diagnoses the approach of the advantages 

that combine both designs. For this reason, to identify these problems it is essential at an early 

stage to decrease the cost of maintenance and downtime, hence the complex systems of wind 

turbines move with various parts. CNNs are specifically suited for structural health to assess the 

wind turbine components for their ability to extract information from multidimensional data. The 

uses of CNN can learn and organize the patterns with spatial arrangements associated with 

different ideal conditions of operation by the sensor data that receives the variations in 

temperature and patterns of vibration. This primary feature of extraction improves the accuracy 

of the overall diagnostic of the system by focusing on the relevant things. 
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5.1 Discussion of Results 

The analysis of exploratory data reveals a set of comprehensive variables related to the system of 

wind turbines, that range from factors of the environment to the temperatures of components and 

different metrics of performance. The fault data, which includes AF, EF, FF, GF, MF, and NF, 

serves as an indicator of critical system reliability and health. Analyzing these occurrences of 

fault temperatures alongside different variables like rotor temperatures, nacelle ambient 

temperature, and stator temperature provides insight into correlations between potential 

operational conditions and fault events. The various temperature measurements across the 

various components such as carrier rectifier, yaw inverter cabinet, and control cabinet suggest a 

need for an understanding of the thermal dynamics systems. The numerical values of presence 

associated implies each variable for the aspect of quantitative to the EDA, allow an analysis of 

further statistics and modeling. The environmental factors including ambient temperature and 

tower temperature underscore the external conditions impacting turbine performance. The metric 

Group with values like 1591.343 and 149.952, further warrants clarification for the dataset 

significance. Overall, this provides EDA with a deeper foundation of investigations into the 

relationships between fault occurrences, temperature variations, and other parameters operation, 

and finally the contribution of more approaches of informed to the system of wind turbine 

maintenance and optimization. 

In this thesis, a data-driven approach was chosen for fault detection and diagnosis based on 

combined SCADA and fault data. The report of classification in the data of fault provides an 

evaluation of the comprehensive performance of the model across five distinct fault modes: 

generator heating fault (gf), mains failure fault (mf), feeding fault (ff), air cooling fault (af), and 

excitation fault (ef). The precision, recall, F1 score, and support metrics reported that insights of 



65  

valuable in the ability of models to classify the correct instances of each fault type. The proposed 

integrated LSTM-CNN model was better than the other competitive models like CNN and 

LSTM algorithms in fault detection based on SCADA and fault data systems. This is due to the 

combined advantages of supervised and unsupervised algorithms that enhance the overall 

performance and accuracy of the model. The LSTM and CNN models were provided the lowest 

accuracies with 70% and 69%, respectively compared to the novel model (combined LSTM- 

CNN algorithm), which resulted in an accuracy of 75% (Table 4.2) under different fault modes 

like AF, EF, FF, GF, MF, and NF. These improved results were aligned with the study of Gong 

et al. (2019), in which the proposed novel CNN model showed better performance in the 

detection of faults. Moreover, the precision and F1-scores were also greatly increased for the 

Excitation Fault (EF) mode with 60% and 75%, respectively with integrated LSTM-CNN model 

than CNN (58% and 69%) and LSTM (49% and 49%) models. On the contrary, the study of 

Jiang et al. (2018) evaluated that the CNN-based model showed improved results of F1-scores in 

the detection of faults and diagnosis in wind turbines compared to other ML algorithms like 

SVM, LR, KNN, and DT. Similarly, the improved precision and F1-scores were observed under 

the Feed Fault (FF) model with 100% and 68%, respectively than LSTM (64% and 63%) and 

CNN (73% and 65%) algorithms. Based on these comparative advantages, the integrated LSTM- 

CNN model can be recommended for application in wind turbines to detect and diagnose faults 

for failure prediction. 
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5.2 Conclusion and Future Research 

 

This thesis presented an improved LSTM-based CNN model for fault detection and diagnosis in 

wind turbines. The proposed approach of fault detection model based on machine learning was 

addressed in a way that the extracted and selected features were introduced based on principal 

component analysis (PCA) as an input for the LSTM-based CNN for classification purposes. The 

proposed novel model’s effectiveness was validated in terms of accuracy, precision, and F1- 

score with two different machine learning approaches LSTM and CNN. We used the combined 

SCADA and fault data sets that included the fault components with several fault modes, 

including AF (air cooling fault), GF (generator heating fault), MF (Mains Failure Fault), FF 

(Feeding Fault), EF (Excitation Fault), and NF (No Fault) to evaluate the performance of the 

novel approach, i.e. integrated LSTM-based CNN. The data findings were evident that the 

proposed fault detection and diagnosis approach based on the LSTM-CNN model showed 

effectiveness in terms of accuracy, precision, and F1-score. 

When using the proposed model, the fault diagnosis accuracy showed reduced outcomes 

specifically in the case of MF (Mains Failure Fault) and AF (Aircooling Fault) modes. Thus, the 

future research direction is to improve the supervised learning-based approaches to update the 

model and improve the classification results. Another future research direction is to improve the 

machine learning approaches dealing with uncertainties in wind turbines based on time-series 

analysis. In addition, integrated supervised and unsupervised learning models can be developed 

to improve decision-making accuracy and generate the optimal predictive model to provide the 

effective diagnosis of faults in wind turbines. 
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