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Abstract:  

Image data enhancement is a vital method in the field of deep learning for enhancing model 

performance and generalization capabilities. This thesis explores various image data 

augmentation methods and their effectiveness in improving the performance of deep 

learning neural networks. 

The study begins with an overview of image data augmentation techniques, including 

rotation, flipping, scaling, cropping, translation, brightness adjustment, contrast 

adjustment, and Gaussian noise addition. Each augmentation method is examined in detail, 

discussing its impact on the variety and richness of the training collection. 

Following the theoretical overview, a series of experiments are conducted using widely 

used deep learning models such as Convolutional Neural Networks (CNNs), VGG, and 

MobileNet. These experiments aim to evaluate the performance of different augmentation 

methods in terms of model accuracy, robustness, and generalization on benchmark datasets. 

The results of the experiments demonstrate the effectiveness of certain augmentation 

techniques in improving model performance, while also highlighting potential trade-offs 

and considerations for real-world applications. Additionally, the study investigates the 

impact of augmentation parameters such as magnitude, probability, and combination 

strategies on model training dynamics and convergence. 

This thesis provides valuable insights into the role of image data augmentation in deep 

learning and offers practical guidance for selecting and implementing augmentation 

methods to enhance the effectiveness of neural networks across various computer vision 

assignments. 

 

 

Keywords: Class Imbalance, Sampling Techniques, Oversampling, Undersampling, 

Machine Learning, Evaluation, Artificial Neural Network, Image Data Augmentation, 

Image Processing, Deep Learning Neural Network, Image Augmentation.



ii  

Acknowledgments 

 

I am deeply grateful to the University of Eastern Finland (UEF) for giving me the chance 

to join the IMPIT course. Additionally, my extend thanks to the professors who have 

contributed to my understanding of various aspects of computer science. During my term 

at UEF, I have gained invaluable knowledge and skills. 

I am especially grateful to my supervisor, Professor Xiao-Zhi Gao for his invaluable 

guidance and support during my studies. His insights into my research have significantly 

enhanced my proficiency and expertise in computer science. Professor Xiao-Zhi Gao has 

been instrumental in addressing numerous technical inquiries throughout my master's 

program, aiding me in completing my thesis. 

Special thanks are also due to Jukka Pitkänen, a IT Specialist at UEF, and Oili Kohonen, 

whose assistance was indispensable in my academic journey at UEF. 

I desire to extend my sincere appreciativeness to my mother, Halima Khanam, and my wife, 

Sharmin Sultana, for their solid moral assistance and encouragement. I am immensely 

grateful for everything my parents have done for me, and I have strived to fulfill my 

mother's and spouse lifelong aspiration of securing a master's degree. I am always be 

grateful to my family and my life partner, Sharmin Sultana, for their enduring support and 

encouragement. 

 

 

 



iii  

 

List of abbreviations 

ANN Artificial Neural Network 

VGG Visual Geometry Group 

CNN Convolution Neural Network 

MobileNet Mobile Network 

ADAM Adaptive Momentum Optimizer 

CNN  Convolutional Neural Network  

DCNN  Deep Convolutional Neural n=Networks  

GAN  Generative Adversarial Networks  

ReLU  Rectifier Linear Unit  

SGD  Stochastic Gradient Descent  

Conv2D 2-Dimensional Convolutional Layer 

GPU Graphical Processing Unit 

CPU Central Processing Unit 

TPU Tensor Processing Units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv  

 

 

 

List of Tables 

 
Table 1. Single Data Augmentation Method CNN Model............................................................36 

Table 2. Single Data Augmentation Method with Changing Hyperparameters CNN Model...…38 

Table 3. Double Data Augmentation Method CNN Model ……………………………………..40  

Table 4. Single Data Augmentation Method VGG16 Model……………………………............42 

Table 5. Single Data Augmentation Method MobileNetV2 Model……………………………...44 

Table 6. Double Data Augmentation Method MobileNetV2 Model…………………………….46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v  

 

 

List of Figures 

 
Figure 1. Exploring and understanding the principles and methodologies behind image data 
augmentation           8  

Figure 2. Illustration of CNN architecture for image classification     11 

Figure 3. The representation of RGB channels 17      11 

Figure 4. Convolutional architecture layer. Image source: IBM 2020   12 

Figure 5. The Max pooling operation        14 

Figure 6. The Max pooling operation        14 

Figure 7. A fully connected layer. Figure adapted from Mao, et al. 2018   15 

Figure 8. Classes of activation functions: (a)Sigmoid, (b)Tanh, (c) ReLU,and (d) LReLU 16  

Figure 9. A residual block of ResNet        18 

Figure 10: Importing a VGG 16 model from Keras      21 

Figure 11. The augmentation techniques employed in the study    22  

Figure 12. The channel shifting augmentation technique     26 

Figure 13. The CNN architecture        28 

Figure 14. The MobileNet architecture       30 

Figure 15. The VGG architecture        32 

Figure 16. The MobileNet architecture       33 

Figure 17. The summary of the implementation of models     34 

 

  



6  

Table of Contents 

1 Introduction  ..................................................................................................................... 8 

2 Related Work  ..................................................................................................................... 9 

2.1 Deep Learning   .......................................................................................................... ..9 

2.2 Data Augmentation…………………………………………………………………... ..... 10 

2.3 Convolutional neural network……………………………………………………….. ...... 10 

2.3.1 Convolutional layers………………………………………………………… ............... 12 

2.3.2 Pooling layer………………………………………………………………. ............. 13 

2.3.3 Complete Connected Layer…………………………………………………… ........ 15 

2.3.4 Activation Function………………………………………………………. ............... 16 

2.3.5 Optimization and loss function…………………………………………… .............. 17 

2.3.6 Residual neural network………………………………………………….. ............... 18 

2.3.7 Residual Block……………………………………………………………. .............. 19 

2.3.8 Batch Normalization……………………………………………………… .............. 19 

2.3.9 Hyper-parameter………………………………………………………….. .............. 20 

2.4 VGG Model……………………………………………………………………........ ........ 21 

2.4.1 VGG-16 Architecture…………………………………………………….. ............... 21 

2.5 MobileNetV2 Model………………………………………………………………… ...... 23 

3 Framework………………….. ........................................................................................... 25 

3.1 Data preparation and Preprocessing………………………………………..…………… . 25 

3.1.1 Datasets…………………………………………………………………… .............. 25 

3.1.2 Data pre-processing………………………………………………………. ............... 26 

3.1.3 Augmentation…………………………………………………………….. ............... 27 

3.2 Set-up specification…………………………………………………………………. ....... 32 

3.2.1 Hardware…………………………………………………………………. ............... 32 

3.2.2 Software………………………………………………………………….. ............... 32 

3.3 Model Architecture and Implementation…………………………………………… ....... 33 

3.3.1 CNN Architecture……………………………………………………….. ................ 33 

3.3.2 VGG Atchitecture ...................................................................................................... 34 

3.3.3 MobileNet Atchitecture .............................................................................................. 36 

3.3.4 Implementation of methods ........................................................................................ 37 

4 Outcome and Discussion .............................................................................................................. 39 

4.1 Results of CNN Model with Different Combination Augmentation ................................. 39 

4.1.1 Single Data Augmentation Method ............................................................................ 40 

4.1.2 Enhancing Model Robustness with Double Data Augmentation ............................... 44 

4.1.3 Comparing One augmentation method and two augmentation .................................. 46 

4.2 Results of VGG16 model with Single Combination Augmentation .................................. 46 

4.2.1 Optimizing Training Efficiency and Augmentation Effectiveness References ......... 48 



7  

4.3 Results of MobileNetV2 model with Different Combination Augmentation .................... 48 

4.3.1 Outcome of MobileNetV2 model with Single Combination Augmentation ............. 48 

4.3.2 Outcome of MobileNetV2 model with Double Combination Augmentation ............ 51 

5 Conclusion…… ...................................................................................................................... 54 

6 References  ........................................................................................................................ 57 

 

 

 

 

 

 



8 

 

1. INTRODUCTION 
 

Image data augmentation competes a pivotal role in enhancing model robustness and 

performing in the realm of deep learning neural networks. By artificially expanding the 

dataset through transformations, such as rotation, scaling, and flipping, augmentation 

techniques enable models to generalize better to unseen data and improve overall accuracy. 

The integration of image data augmentation techniques has become increasingly essential 

in various applications, ranging from image classification and object detection to medical 

imaging and satellite imagery analysis. In essence, these techniques allow for the creation 

of more diverse and representative training datasets, thereby enhancing the capability of 

model to learn complex patterns and variants present in real-world images. 

Moreover, image data enhancement serves as a vital tool for mitigating the challenges 

posed by inadequate training data, remarkably in scenarios someplace collecting large 

volumes of labeled images is impractical or costly. By synthesizing new training samples 

from existing data, augmentation techniques help alleviate issues related to overfitting and 

improve the generalization performance of model. 

In this particular context, exploring and understanding the principles and methodologies 

behind image data augmentation are essential for practitioners and researchers alike. This 

introduction sets the stage for delving deeper into the various augmentation techniques, 

their applications, and their impact on the implementation of deep learning neural systems.

 

Figure 1. Exploring and understanding the principles and methodologies behind image data augmentation 

Source: 

https://docs.ecognition.com/eCognition_documentation/User%20Guide%20Developer/8%20Classi

fication%20-%20Deep%20Learning.htm 
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2. Related Work 
 

2.1 DEEP LEARNING  
 

Deep learning, an advanced part of machine learning, is rooted in artificial neural networks. 

Through deep learning, machines autonomously glean insights from vast datasets by 

organizing algorithms into layers within artificial neural networks. This method excels in 

processing extensive datasets and furnishing predictive and precise outcomes (Hatcher & 

Yu, 2018). Its applications span diverse spheres such as vision recognition, natural semantic 

processing, speech recognition, biomedicine, and acoustic modeling (Emmert-Streib et al., 

2020). Additionally, deep learning powers innovations like self-driving cars, virtual 

assistants, and sentiment analysis in digital content (Alzubaidi et al., 2021). 

Employing neural networks, deep learning amalgamates low-level attributes to extract 

high-level features, thereby enhancing accuracy in tasks like image recognition compared 

to traditional methods. Commonly employed networks include convolutional neural 

network (CNN), multilayer perceptron, and recurrent neural network (RNN) (Lu et al., 

2021). Notably, deep learning has found successful applications in medical imaging and 

clinical diagnostics, delivering precise disease diagnosis and detection, thus significantly 

impacting healthcare and well-being (Aggarwal et al., 2021). 

Deep learning has been utilized for automated classification of radio modulation categories. 

Two convolutional neural network (CNN)-based deep learning models, GoogleNet [13] 

and AlexNet [14], originally developed for image classification after convertion radio 

signals into imagery, are used for modulation classification [15], [16]. By a modified deep 

residual network (ResNet) [17], the modulation classification accuracy is further advanced, 

which is fed with modulated in-phase (I) and quadrature phase (Q) signals. The CNN 

structure also attains a considerable classification accuracy [18] considering channel 

interference,. In adjunct to the CNN-based models, the Long Short-Term Memory (LSTM) 

design with time-dependent amplitude and phase statistics can achieve the state-of-the-art 

classification accuracy [16]. Various subsampling techniques are investigated in [15] to 

reduce the dimensions of input signals to reduce the training time of deep learning models. 
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2.2 DATA AUGMENTATION 

The importance of data enhancement (Cheng, Benlin, Dong, Shu and Zhenyu) in improving the 

generalization performance of deep learning models for vision classification. It presents a 

preliminary examine evaluating the impact of four variables (enhancement method, enhancement 

rate, size of important dataset per label, and method grouping) on model accuracy. The study 

provides recommendations based on the experiment's findings, such as the effectiveness of 

certain augmentation methods and the optimal augmentation rate for training. Additionally, it 

highlights the influence of method combinations on model performance. Deep learning models 

require extensive training data to generalize well, leading to challenges in data availability and 

labeling. 

Data enhancement is proposed as a solution to boost both the quantity and variety of training 

data, thereby enhancing model performance. The study examines ten augmentation methods 

across triplet datasets: MNIST, Fashion-MNIST, and CIFAR-Guidelines are derived from the 

experimental results, including the recommendation of specific augmentation methods and 

optimal augmentation rates. 

 

2.3 Convolutional neural network 

A convolutional neural network (CNN) is a sophisticated neural network architecture comprising 

multiple concealed layers, extensively employed in tasks like pattern recognition and image 

classification, owing to its capability to analyze images with structured arrays. Typically, CNNs 

are trained using backpropagation via Stochastic Gradient Descent (SGD), aiming to minimize 

the loss function by adjusting weights and biases, thereby mapping arbitrary inputs to desired 

outputs (Albelwi & Mahmood 2017). CNN architectures are structured with interleaved 

convolutional and pooling layers, culminating in completely connected layers, as depicted in 

Figure 2. The input layer encodes the pixel values of the image, while convolutional layers 

identify features within the pixels. Subsequent pooling layers abstract these features, and fully 

connected layers leverage these acquired features to predict the output. 

Compared to traditional neural networks, CNNs offer several advantages, including reduced pre-

processing requirements, higher accuracy, simpler implementation at scale, mitigation of 

overfitting, and improved computational efficiency. 
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Figure 2. Illustration of CNN architecture for image classification. Figure adapted from 

Alzubaidi, et al. 2021. 

CNNs have primarily found application in image classification tasks. In the case of colored 

images, particularly those based on the RGB (Red, Green, Blue) model, as illustrated in figure 3, 

various colors contribute to a three-dimensional input dataset. For instance, in an RGB image 

with dimensions of 255 x 255 pixels (Width x Height), three matrices correspond to each image, 

representing each color channel. Consequently, the image is structured as a three-dimensional 

array known as an Input Volume (255x255x3) 

 

 

 

Figure 3. The representation of RGB channels. 
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Likewise, CNNs are utilized for the categorization of plant species, wherein features are extracted 

from leaf images. This facilitates an automated computational approach for the efficient and time-

effective identification and classification of plants (Sobha & Thomas, 2019). 

 

2.3.1 Convolutional layers 

The convolutional layer serves as an underlying component of CNNs, bearing a significant 

portion of the network's computational burden. It operates as the initial layer responsible for 

discerning various features within input images. To function, the convolutional layer necessitates 

input data, a filter, and a feature map. In the case of a colored vision comprising RGB channels, 

the input possesses trio dimensions: height, width, and depth. The filter, also known as a kernel, 

assesses the presence of features by traversing the receptive fields of the image. Each segment of 

the image is denoted by a matrix of weights termed a detector of feature. The size of the filter 

controls the extent of the sensitive field. Upon applying the filter to a specific region of the 

imagery, a dot product ensues between the pixels and the filter of the input. Subsequently, the dot 

product is fed into an output array, after which the filter modifications by a stride. This iterative 

method continues until the filter traverses the complete image. The resultant output, known as a 

feature map, provides insights into the image's features. The outcome derived from the input and 

the filter is referred to as the convolved feature of the feature map. Figure 4, presented below, 

illustrates a convolutional layer featuring an input image, filter, and output array. 

 

 

Figure 4. Convolutional architecture layer. Image source: IBM 2020. 
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Figure 4 illustrates that the feature map of each output value corresponds to the territory of the 

input where the filter is operated, rather than each individual pixel value in the input vision. 

Consequently, convolutional layers are often indicated to as sparsely connected layers, as the 

resultant array does not necessitate a direct mapping to each input value. 

Before training the neural network, three parameters that influence the volume size must be 

established: 

The output depth is determined by the number of filters employed. 

• A greater stride results in a reduced output. In this context, stride refers to the count of pixels 

the kernel traverse over the input matrix. 

• Zero-padding, which involves surrounding the matrix with zeroes or adding a border of pixels 

with zero values around the edges of the beginning photographs, is commonly implemented 

to preserve initial photographs features and regulate the size of output. 

There varieties of padding exist: 

• Valid padding, also known as no padding, where the convolutional layer remains unpadded, 

or the last convolution is omitted if the dimensions do not align. 

• Same padding, where the original input undergoes padding to confirme the output layer 

maintains equal in size to the input layer. 

• Full padding, which entails adding zeroes to surrounding area of the input, thereby increasing 

the output dimension. 

2.3.2 Pooling Layer 

Pooling layers decrease the quantity of input parameters and enable the reduction in sizes of the 

feature maps. The Pooling operation uses a filter like convolution layer, but it is devoid of weights 

and the kernel applies aggregate values and fills the output array. 

Two foremost types of pooling exist: 

Max pooling: In this operation, the element with highest value will be selected by the filter and 

sent to the output array, thus producing the output with the most vital features of the feature map. 

The following Figure 5 shows the Max pooling process. 
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Figure 5. The Max pooling process. 

 

Average pooling: This pooling method calculates the average value of elements within the 

feature map and forwards it to the output array (IBM 2020). The process of average 

pooling is illustrated in Figure 6 below 

 

 

 

Figure 6. The Max pooling process. 
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2.3.3 Complete Connected Layer 

The complete connected layer constitutes the final layers within the neural network 

architectural model. It receives the output from the convolutional layer of last pooling as its 

input and synthesizes the final output by amalgamating the information gathered from 

preceding layers. Functioning akin to a conventional multi-layer perceptron, a fully 

connected layer establishes connections between all connections in the earlier layer and 

those in the subsequent layer. Its role encompasses two primary functions: firstly, learning 

nonlinear combinations of various features for feature extraction, and secondly, serving as 

the concluding layer that translates the ultimate feature map into the classification outcome 

(Mao, et al. 2018). Illustrated in Figure 7 below, the fully connected layer employs the 

plant image as input. Layer m-1 and layer m depict dual consecutive hidden layers that are 

completely interconnected. The two nodes within the output layer denote the two predicted 

plant classes by the CNN model. 

 

 

 

 

Figure 7. A fully connected layer. Figure adapted from Mao, et al. 2018. 
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2.3.4 Activation Function 

 

The activation function has a vital role in neural networks lies in deciding whether a neuron 

should be activate, influenced by the weighted sum of inputs and biases. It produces an 

output within a defined range, typically between 0 and 1 or -1 and 1, and can be classified 

into two types: linear and non-linear activation functions. Essentially, it serves to normalize 

data and introduce nonlinearity into the network, influencing its performance. 

Among the common activation functions, Sigmoid, Tanh, and ReLU are notable (Kaloev & 

Krastev 2021). Sigmoid is effective for output prediction due to its restricted range, 

facilitating probabilistic decision-making. However, it fails to tackle the issue of gradient 

diminishing. Tanh, a scaled version of Sigmoid, shares similar limitations. 

Rectified Linear Unit (ReLU) stands out as a widely recommended non-linear activation 

function. It applies a simple transformation to the feature map after each convolution 

operation, enhancing model nonlinearity. ReLU produces the input value for positive 

inputs and return zero for negative inputs, making it computationally efficient and easily 

optimized with gradient-based methods (Gibson & Patterson 2017). 

Despite its advantages, ReLU may encounter the "dying ReLU" problem, where neurons 

deactivate for negative inputs, leading to dead regions in the network. In such cases, Leaky 

ReLU offers a solution by assigning a small slope to negative inputs, preventing complete 

deactivation (Xu, et al. 2020). The figure below illustrates the characteristics of varieties 

activation functions, including Sigmoid, Tanh, ReLU, and Leaky ReLU. 
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Figure 8. Classes of activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) LReLU. 

Image source: Feng et al. 2019. 

 

 

2.3.5 Optimization and loss function 

Gradient descent is an iterative algorithm utilized to minimize loss by adjusting and 

updating the learning parameters within the network. It serves as a fundamental technique 

in training machine learning models and neural networks. Mathematically, the gradient of 

the loss function represents the partial derivative of the loss with respect to each learnable 

parameter. A single parameter update is expressed as: 

𝑤:=𝑤−𝛼⋅∂𝐿∂𝑤w:=w−α⋅∂w∂L 

Here, 𝑤w denotes each learnable parameter, 𝛼α signifies the learning rate, and 𝐿L denotes 

the loss function. 

However, processing the entire dataset with a large sample size during each iteration 

demands significant computational resources and time. Therefore, a more refined 
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optimization algorithm, known as Stochastic Gradient Descent (SGD), has been developed 

and broadly adopted for educating deep neural networks. SGD computes gradients of the 

loss function with respect to the parameters and applies them to variable updates. It 

minimizes the cost function by employing Gradient Descent to determine the parameters, 

with each training data point's parameters being updated by SGD (Bhuiyan et al., 2021). 

Consequently, SGD demonstrates enhanced computational efficiency compared to 

traditional gradient descent methods. 

Adaptive Moment Estimation (Adam) represents a method for optimizing stochastic 

gradient descent. Adam estimates individual adaptive learning rates for different 

parameters determined by the first and second moments of the gradients (Kingma & Ba, 

2017). By incorporating bias correction, Adam optimizers achieve superior test accuracy 

(Rowel, 2018). Moreover, Adam tackles non-convex problems using minimal resources 

compared to alternative optimization techniques. By amalgamating the advantages of other 

stochastic gradient methods, such as Adaptive Gradients and Root Mean Square 

Propagation, Adam introduces a novel learning approach. 

 

 

2.3.6 Residual neural network 

 

The Residual neural network (ResNet) constitutes an architecture for artificial neural 

network composed of building blocks known as residual units, which maintain the same 

connection shape (He et al., 2016). These residual units employ convolution, batch 

normalization (BN), and ReLU activation functions to learn the residual mapping function 

(He et al., 2016). By incorporating shortcuts, ResNet addresses the challenge of vanishing 

gradients, enabling direct backpropagation of gradients to preceding layers. Additionally, 

ResNet mitigates issues related to covariate shifts and enhances network performance 

through the utilization of batch normalization (Chandran et al., 2021). 
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2.3.7 Residual Block 

 

In contrast to traditional networks, where each layer absolutely connects to the successive 

layer, networks with residual blocks incorporate skip connections, allowing layers to feed 

into layers located a few blocks away. This technique applies non-linearity by adding the 

output of the corresponding layer in the main path. The residual block typically contains of 

a convolution layer succeeded by batch normalization and a ReLU activation function. 

To summarize the basic residual function: If 𝑥x represents the input and 𝐹(𝑥)F(x) denotes 

the output from the layer, then the output of the residual block can be expressed as 

𝑌=𝐹(𝑥)+𝑥Y=F(x)+x. This concept is explained in Figure 9 below. 

 

 

 
Figure 9. A residual block of ResNet. Image source: He, et al. 2016. 

 

 

2.3.8 Batch normalization 

 

Batch normalization addresses the challenge of disappearing/exploding gradients that can 

happen at the time of the training of machine learning algorithms using gradient-based 

optimization methods. By reducing internal covariate shift, it enhances the speed and 

stability of neural networks, accelerating the training process. Furthermore, it promotes a 

smoother gradient flow through the network, minimizing the dependence on initial values 

or parameter scale. Additionally, batch normalization enables the utilization of saturating 

non-linearities while preventing network saturation. 
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The advantages of using batch normalization, as proposed by Khan et al. (2018), include: 

• Decreased sensitivity of network training to hyper-parameter choices 

• Mitigation of the vanishing gradient problem 

• Prevention of activation function saturation, such as with Tanh and sigmoid 

functions 

• Enhanced stability in neural network training 

• Improved convergence rate of the network 

• Integration of normalization into the network, facilitating error backpropagation. 

 

2.3.9 Hyperparameters 

 

The hyperparameters of deep learning models are predefined parameters that remain 

constant throughout the process of training, influencing the performance and accuracy of 

the model. These hyperparameters, including the number of epochs, batch size, learning 

rate, and architectural elements such as layer size and number of layers, play a crucial role 

in optimizing model performance. 

Epochs, which represent iterations of the training process, determine how frequently the 

learning algorithm processes the entire dataset for training. Each epoch consists of multiple 

batches, where the batch size specifies the amount of samples processed before updating 

internal parameters for model. While substantial batch sizes provide more accurate gradient 

estimates, memory limitations in parallel processing systems often constrain their size 

(Brownlee 2018). Conversely, smaller batch sizes offer advantages such as reduced memory 

usage, increased regularization due to added noise, and faster training as weights are 

updated more frequently (Kandel & Castelli 2020). 

For example, if a dataset contains 300 samples and a batch size of 6 is chosen with 1,200 

epochs, the dataset is divided into 50 batches of 6 samples each. With each epoch 

comprising 50 batches, the model undergoes 1,200 passes through the dataset, totaling 

60,000 batches throughout the training process. 

Convolutional neural networks propose added hyperparameters such as filter size, padding, 

filter numbers, stride, and all of which impact model performance. Optimal hyperparameter 

combinations must be carefully selected to enhance the efficiency and effectiveness of the 

learning model. 



21  

2.4 VGG15 Model 

there isn't a widely recognized or standardized "VGG15" model. However, given the 

naming convention of the VGG (Visual Geometry Group) models, it's likely that "VGG15" 

refers to a variant or custom implementation of the VGG architecture with 15 layers. The 

original VGG architectures, VGG16 and VGG19, are well-known for their deep 

convolutional neural network structures and their effectiveness in image classification 

tasks. 

2.4.1 VGG-16 Architecture 

The VGG-16 architecture (Prerepa, Aiswarya, Sufyan, Rahul, and Reena) developed by 

researchers at the University of Oxford, stands as a stalwart in image recognition and 

classification tasks due to its simplicity, moderate complexity, and effectiveness. 

Comprised of 16 layers, involving thirteen convolutional layers, thrice fully connected 

layers, and five max-pooling layers, VGG-16 operates hierarchically, with each layer 

building upon the features extracted by its predecessors. 

 

Key Components and Functions: 

 

1. Convolution and Pooling Layers: VGG-16 utilizes small 3x3 filters in its 

convolutional layers to isolate intricate patterns from input images, enabling the 

network to discern hierarchical representations with fewer parameters. These filters 

slide through the input data, performing element-wise multiplication and summation to 

generate feature maps. Max-pooling layers follow specific convolutional layers, 

reducing spatial dimensions and aiding computational efficiency by retaining maximum 

values within pooling windows. 

 

2. Fully Connected Layers: The final layers of VGG-16 combine extracted features and 

make class predictions. An activation function of SoftMax is employed in the last 

totally connected layer to output probabilities for each class. 
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Advantages of VGG-16: 

1. Simplicity and Understandability: VGG-16's straightforward architecture, coupled 

with the use of small filters, facilitates ease of understanding and implementation. 

2. Reduced Computational Complexity: Compared to other architectures, VGG-16 

demands fewer parameters, reducing computational resources required for training and 

inference. 

3. Transfer Learning Capabilities: Pre-trained VGG-16 models, trained on datasets such 

as ImageNet, can be fine-tuned for specific tasks, leveraging existing knowledge and 

adapting it to new applications. 

4. Robust Feature Learning: The hierarchical structure of VGG-16 enables the model to 

learn robust feature representations, rendering it suitable for diverse image recognition 

tasks, including medical image analysis (S. Serte, A. Serener, 2022; A. Ajit, K. Acharya, 

2020, S. Batra, S. S. Malhi, 2019) 

In essence, the VGG-16 architecture's blend of simplicity, efficiency, and robust feature 

learning makes it a versatile tool for various image-related tasks, offering both performance 

and interpretability. 

 

 

Figure 10: Importing a VGG 16 model from Keras, source: https://graiphic.io/importing-a-vgg-

16-model-from-keras/ 
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2.5 MobileNetV2 Model 

 

MobileNetV2 is a state-of-the-art convolutional neural network architecture tailored 

specifically for mobile and embedded vision functions. It is an evolution of the original 

MobileNet architecture, introduced by Google researchers in 2017. MobileNetV2 improve 

upon the achievements of its forerunner by incorporating various innovative design choices 

aimed at improving performance and efficiency. 

An important key characteristic of MobileNetV2 is its use of inverted residual blocks with 

linear bottlenecks. This design assists the network to achieve a good balance between 

model complexity and computational efficiency. Inverted residuals consist of a lightweight 

bottleneck layer pursued by a depth wise separable convolution layer, ultimately supports 

to minimize the number of parameters and computational cost while maintaining dramatic 

power. Additionally, linear bottlenecks ensure that information flow through the network 

remains efficient by reducing the impact of non-linear activations. 

Another important aspect of MobileNetV2 is its use of shortcut connections, similar to 

those found in residual networks (ResNets). These connections help facilitate gradient flow 

during training, enabling deeper networks to be trained more effectively. By incorporating 

shortcuts, MobileNetV2 is able to achieve higher accuracy without significantly increasing 

computational overhead. 

MobileNetV2 also introduces a novel architecture design called "efficient inverted 

residuals with linear bottlenecks." This design includes a new layer called the "squeeze-

and-excitation" block, by adaptively recalibrating channel-wise feature responses enhances 

feature representation. This mechanism allows the network to prioritize on informative 

features while suppressing irrelevant ones, resulting in enhance performance. 

The study developed a WeChat applet using the MobileNetV2 network (Liying, Le Ma, 

Dandan, Liping, 2023), enabling users to classify household garbage via mobile upload. 

Compared to a CNN model, MobileNetV2 achieved a 15.42% higher classification 

accuracy. The paper's novelty lies in training lightweight network models and integrating 

them into a user-friendly applet, prioritizing practical application over network 

performance improvement. This approach addresses real-world garbage classification 



24  

needs while leveraging cutting-edge deep learning algorithms within widely used platforms 

like WeChat. 

 

 

 
Figure: 11 MobileNetV2 network structure, image source  (Liying, Le, Dandan, Liping, 

2023)
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3. Framework 

The main goal of this research work is to conduct a comparative analysis of various 

augmentation techniques, both individually and in combination. In order to assess the 

efficacy of these augmented techniques, we employed several models including CNN, 

VGG, and MobileNET. 

 

This chapter offers comprehensive insights into the experimental procedures employed in 

the research. Section 3.1 delves into details regarding the datasets, their pre-processing, and 

the image augmentation techniques applied in the project. Section 3.2 outlines the 

necessary software and hardware for image classification, while Section 3.3 elaborates on 

the architectures of the deep learning models CNN, VGG and MobileNet. 

 

3.1 Data preparation and Preprocessing 

3.1.1 Datasets 

 

The thesis delves into an in-depth exploration of the CIFAR-10 and CIFAR-100 datasets 

(https://www.cs.toronto.edu/~kriz/cifar.html), which are meticulously curated subsets 

derived from the extensive tiny images of 80 million dataset. These subsets, crafted by the 

collaborative efforts of Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton, serve as 

pivotal resources for studying image classification and deep learning methodologies. 

CIFAR-10 encompasses a vast array of color images contains 60,000 32x32 distributed 

through 10 distinct classes, with each class comprising six thousand meticulously labeled 

images. These images are thoughtfully divided into training and test sets, with training 

purposes of fifty thousand images allocated and for rigorous testing is 10,000. The layout 

of the dataset, including its organization into batches, is comprehensively outlined, 

providing researchers with valuable insights into its structure and composition. Moreover, 

the CIFAR-100 dataset, mirroring the architecture of CIFAR-10 but expanded to 

encompass 100 diverse classes, is thoroughly examined, shedding light on its unique 

characteristics and potential applications. 
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Furthermore, the thesis meticulously documents baseline results obtained from these 

datasets, offering valuable insights into the performance metrics achieved by various 

convolutional neural network (CNN) architectures. These insights serve as a foundational 

framework for further research endeavors, guiding researchers in the exploration of novel 

methodologies and techniques for image classification tasks. 

 

Overall, the comprehensive analysis presented in this thesis provides researchers with a 

robust foundation for conducting in-depth investigations into image classification, deep 

learning model training, and the broader applications of machine learning in computer 

vision. 

 

3.1.2 Data Preprocessing 

 

Data preprocessing implies converting into a format from raw data that is both usable and 

efficient. Within the realm of Deep Learning, data preprocessing stands out as a critical 

initial step in dataset preparation. Numerous image preprocessing techniques, including 

normalization, grayscale conversion, noise reduction, and image augmentation, serve to 

enhance the image features. This experiment specifically utilizes image augmentation, 

which will be elaborated upon in the subsequent section. 

The significance of preprocessing in deep learning cannot be overstated, as it serves to 

mitigate issues such as overfitting and subpar results, as highlighted by Mridha et al. 

(2021). Furthermore, image preprocessing plays a crucial role in optimizing training times, 

particularly when dealing with large datasets, by reducing image sizes. 

 

In this research, the data preprocessing comprised the subsequent procedures, as outlined 

by Papandrianos et al. (2020). 

1. The RGB images are organized into folders labeled as "Magnoliopsida" and 

"Pinopsida" based on their respective classes for CNN training. The 

"Magnoliopsida" folder corresponds to class label 0, while the "Pinopsida" folder 

corresponds to class label 1. 
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2. Input data normalization involves adjusting the RGB values of each image in the 

dataset. This process subtracts the mean RGB values across all images and divides 

by the standard deviation, as outlined by Zakir et al. (2021). In PyTorch, this 

normalization is achieved using the torchvision.transforms.Normalize() function. 

3. Data partitioning: For the CNN/VGG/MobileNet image classification, splitting the 

dataset is into three segments: training, validation, and testing. This division, in an 

80:10:10 ratio, is accomplished using the random split function, ensuring non-

overlapping datasets. 

4. Data Loader: When dealing with large datasets, memory constraints and slow 

execution can be common issues. GPU/TPU setting and High Level Server 

addresses this challenge by employing Data Loader, a tool that facilitates parallel 

data loading and automatic batching. By leveraging Data Loader, memory usage is 

optimized and processing speed is enhanced. This utility is readily available within 

the torch.utils.data package. 

 

3.1.3 Augmentation 

 

Augmentation involves artificially expanding the image dataset by generating additional 

training samples through various processing techniques such as rotation, brightness 

adjustment, pixel shifting, and horizontal or vertical flipping (Gu et al., 2019). When 

working with deep learning models, extensive datasets are typically required. However, in 

limited number of images scenarios, augmentation techniques become essential (Zakir et 

al., 2021). Studies have shown that training models with augmented images can reduce 

error rates and improve generalization performance. Imbalance in data distribution often 

leads to overfitting and poor model generalization. To mitigate these issues and bolster 

model robustness (Sokolova et al., 2021), diverse augmentation techniques like rotation, 

flipping, brightness correction, and contrast adjustments are applied to enhance the training 

dataset, consequently expanding its volume. 
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Augmentation Model  

CNN (Convolutional Neural Network), MobileNet, and VGG (Visual Geometry Group) are 

all types of deep neural network models, particularly designed for tasks involving image 

recognition, classification, and related computer vision applications. Each of these models 

is composed of neurons in multiple layers, including convolutional layers, pooling layers, 

and completely connected layers, to achieve specific goals with organized in different 

architectures such as high accuracy, computational efficiency, or suitability for 

implementation on devices with limited resources such as smartphones, mobile phones or 

the systems of embedded. 

 

1. CNN (Convolutional Neural Network): 

• A type of deep neural network is CNN that is primarily used for analyzing visual 

imagery. It is widely used in image recognition and classification tasks. 

• They are composed of multiple layers, including convolutional layers, pooling 

layers, and complete connection of layers. 

• Convolutional specific layers apply filters or kernels to the specific input image, 

extracting the features such as textures, edges, and shapes. 

• Pooling layers reduce the dimensionality of the feature maps produced considering 

convolutional layers, helping to make the model more computationally efficient and 

reducing overfitting. 

• Fully connected layers utilize the high-level features obtained from preceeding 

layers to make predictions or classifications. 

 

2. VGG (Visual Geometry Group): 

• A convolutional neural network named VGG which architecture proposed by the 

Visual Geometry Group at the University of Oxford. 

• The VGG network is renowned for its simplicity and uniform architecture, 

consisting mainly convolutional layers with 3x3 filter and stride 1 followed by max-

pooling layers with 2x2 windows with two stride. 

• VGG networks come in several variants, including VGG19 and VGG16, which 
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differ in the number of layers. 

• Despite its simplicity, VGG has been widely used and achieved competitive 

performance on various image recognition benchmarks. 

3. MobileNetV2: 

• An efficient convolutional neural network architecture named MobilenetV2 tailored 

for use on embedded devices and smartphones with restricted computational 

resources. 

• MobileNet uses convolutions that are depthwise separable, which factorize standard 

convolutions into pointwise convolutions and depthwise convolutions. 

• A single convolutional filter applied by depthwise convolutions per input channel, 

separating spatial and channel-wise operations reducing computation. 

• Pointwise convolutions then apply 1x1 convolutions to combine the output channels 

of depthwise convolutions, enabling the network to learn complex features 

efficiently. 

• MobileNet models are characterized by their small size, low latency, and high 

efficiency, making them suitable for applications where computational resources are 

limited, such as mobile recognition of image and detection of real-time object. 
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Augmentation techniques  

An augmentation technique employed in the experiments are presented  

in Figure 12 below: 

 

Figure 12. The augmentation techniques employed in the study. 

 

The augmentation techniques utilized in this study are 

1. Horizontal Flip: In horizontal flip augmentation, an image is flipped horizontally 

along its vertical axis. This means that the pixels on the image left side are swapped 

with the pixels on the right side. For example, if there's an image of a cat facing 

towards the left, after applying horizontal flip augmentation, the cat would appear to 

be facing towards the right. 

2. Vertical Flip: In vertical flip augmentation, an image is flipped vertically along its 

horizontal axis. This means that the pixels on the top of the image are swapped with 

the pixels on the bottom. For instance, if there's an image of a person standing 

upright, after applying vertical flip augmentation, the person would appear upside 

down. 

3. Zoom Range: This parameter controls the range by which an image can be zoomed 

in or out during augmentation. It is typically specified as a range or tuple depicting 

the smallest and largest zoom levels. For example, a zoom range of (0.8, 1.2) means 

that the image can be zoomed in by up to 20% or zoomed out by up to 20%. When 
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applying zoom augmentation, the image is magnified or shrunk along its width and 

height dimensions, which can simulate the effect of objects appearing closer or 

further away in the image. This augmentation technique helps the training dataset 

for the increment of diversity and improvement for the ability of model to generalize 

to invisible data. 

4. Width Shift Range: This parameter controls the range by which an image can be 

horizontally shifted during augmentation. It is typically specified as a range or tuple 

representing the minimum and maximum shift distances as the total width fraction 

of the image. For instance, a width shift range of (-0.1, 0.1) means that it is possible 

to shift the image horizontally by up to 10% of its total width to the left or right. 

When applying width shift augmentation, the pixels of the image are shifted 

horizontally, which can simulate changes in the objects position within the image. 

This augmentation technique helps to introduce variability in the spatial location of 

objects and improve the ability of model to learn robust features regardless of their 

image position. 

5. Channel Shifting: This technique randomly changes the RGB channel values of the 

image. The channel_shift_range parameter is used to specify the channel values. 

The following Figure 13 shows the RGB channel shifting of an image. 

 
 

Figure 13. The channel shifting augmentation technique. 

 

The data size of the class increased from 5 to 775 images after the application of the image 

augmentation techniques to the Pinopsida plant class. 
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3.2 Setup Specifications  

3.2.1 Hardware 

 

Deep learning (Potluri et al. 2012) relies heavily on computational resources to perform its 

tasks efficiently. During the training phase, the neural network undertakes intensive tasks, 

passing inputs through its layers, including hidden layers. These inputs are processed 

within the hidden layers using weights that are continually adapted during training, 

ultimately contributing to the model's predictions. The refinement of these weights allows 

the model for identification of patterns and make more perfect predictions. Notably, matrix 

multiplications are frequently employed in both training and prediction operations. 

 

Deep learning demands and is dependent upon a great amount of computational power 

(Thompson et al. 2020). GPU parallelization, particularly for tasks like convolution and 

backpropagation, is pivotal for efficient processing. Consequently, the display memory of 

GPU devices is indispensable for facilitating machine learning tasks. Notably, the 

conducted experiments on a laptop equipped with an Intel(R) Core (TM) i7-1065G7 CPU, 

16 GB RAM, and Intel(R) Iris(R) Plus Graphics with 4 GB of display memory. 

 

3.2.2 Software  

The experiments were conducted utilizing Python 3.10.12on Google colab. PyTorch, 

TensorFlow, and Keras were the primary libraries employed. PyTorch, developed by the 

Facebook AI Research team, serves as an optimized tensor for Deep Learning tasks, 

offering an open-source machine learning framework for Python. Similarly, Keras, another 

open-source library, furnishes an interface of Python for constructing artificial neural 

networks and serves for the TensorFlow library as an interface.  

 

Matplotlib is a comprehensive library for the static creation, interactive, and animated 

visualizations in Python. It presents a wide range of functionalities for generating plots, 

charts, histograms, and diverse types of visualizations that are achieving it a robust tool for 

data exploration and presentation. 
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Numerical Python, short form is NumPy, is a fundamental package for scientific computing 

in Python. Along with a collection of mathematical functions to operate on these arrays 

efficiently  it provides support for large, multi-dimensional arrays and matrices,. 

 

ImageDataGenerator is a versatile device for efficiently preprocessing and augmenting 

image data during deep learning model training, contributing to improved model 

performance and generalization. The process is simplified for the data augmentation and 

integration with deep learning pipelines, managing it an essential component of image-

based machine learning workflows in Keras. 

 

3.3 Architectures Model and Implementation 

Following section explains the architectures of CNN, VGG and MobileNet models and the 

implementation of these models to classify the plant classes for the study 

 

3.3.1 CNN Architecture 

The architecture of CNN comprises three convolutional layers, three max-pooling layers, 

one flattening layer, and two completely connected layers. 

The initial input is an image of dimensions 224 x 224 with 3 RGB channels. It undergoes 

processing through the first 2D convolutional layer, featuring a 3x3 kernel size, a stride of 

1x1, padding of 1x1, 32 filters, and a ReLU activation function. This layer yields an output 

shape of 224 x 224 x 64. Subsequently, max-pooling with a dimension of 2 x 2 is applied, 

reducing the image dimensions to 112 x 112 x 64. 

Passing the image through additional sets of 2D convolutional layers and max-pooling 

layers twice this sequence repeats, until the image size reaches 28x28x256. The flattening 

operation transforms into a single-dimensional tensor from the multi-dimensional tensor, 

preparing it for input into the fully connected layers. For classifying the images these layers 

are responsible into two categories: Pinopsida and Magnoliopsida. 

The CNN architecture described above is represented in Figure 14. 
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Figure 14. The CNN architecture. 

 

3.3.1 VGG Architecture 

The VGG (Visual Geometry Group) architecture is a deep convolutional neural network 

(CNN) architecture proposed by the Visual Geometry Group at the University of Oxford. 

For its simplicity and effectiveness in image classification tasks it gained prominence. 

 

Key features of the VGG architecture include: 

1. Depth: VGG is characterized by its deep architecture, with up to 19 layers (VGG-19) in 

the original configuration. Followed by max-pooling layers to reduce spatial 

dimensions the basic building blocks are repeated convolutional layers with small 3x3 

filters, 

2. Convolutional Layers: VGG consists primarily of convolutional layers, where each 

layer performs convolutions on the input image to extract features. The use of small 3x3 

filters with a stride of 1 pixel allows for better feature extraction and more parameters 

compared to larger filters. 
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3. Pooling Layers: After a few convolutional layers, max-pooling layers are used to 

reduce the size of the feature maps, reducing their spatial dimensions while retaining 

important features. Max-pooling is typically applied with 2x2 filters and a stride of 2 

pixels. 

4. Completely Connected Layers: Towards the network ending, fully connected layers 

are utilized for high-level reasoning and classification using the extracted features. 

These layers aggregate information from the feature maps and output the final class 

predictions. 

5. Activation Function: Rectified Linear Unit (ReLU) activation functions are commonly 

applied followed by each convolutional and fully connected layer for the introduction of 

non-linearity into the network and allow it to learn complex relationships in the data. 

6. Architecture Variants: VGG architectures come in different variants, such as VGG-16 

and VGG-19, which differ layers in amount of numbers. VGG-16 has 16 layers 

(thirteen convolutional and three fully connected), while VGG-19 has 19 layers (sixteen 

convolutional and three fully connected). 

The VGG architecture which is known For its simplicity, uniformity, and effectiveness in 

feature extraction and classification tasks of image. Despite being deeper than previous 

architectures like AlexNet, VGG achieved competitive performance on benchmark datasets 

such as ImageNet. 

 

 

Figure 15. The VGG architecture. 
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3.3.1 MobileNetV2 Architecture 

A lightweight convolutional neural network (CNN) architecture, MobileNetV2 is designed 

for efficient and fast deployment on mobile and embedded devices with limited 

computational resources. Google researchers Andrew G. Howard, Menglong Zhu, Bo 

Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and 

Hartwig Adam developed it. 

 

Key features of the MobileNet architecture include: 

1. Depthwise Separable Convolution: The fundamental component of MobileNet is the 

depthwise separable convolution operation, which factorizes standard convolutions into 

two different operations: depthwise convolution and pointwise convolution. Depthwise 

convolution applies a single convolutional filter to each input channel individually, 

followed by pointwise convolution, which combines the output of the depthwise 

convolution across channels using 1x1 convolutions. This approach substantially 

reduces the number of parameters and computational cost compared to traditional 

convolutional layers. 

2. Depthwise Convolution: Depthwise convolution operates independently on each input 

channel, resulting in a set of intermediate feature maps for each channel. This operation 

captures spatial information within each channel while keeping computational costs 

low. 

3. Pointwise Convolution: Pointwise convolution combines the intermediate feature 

maps from depthwise convolution across channels using 1x1 convolutions. This 

operation enables the network to learn complex feature combinations and interactions 

across channels. 

4. Depthwise Separable Convolution Block: MobileNet uses a series of depthwise 

separable convolution blocks stacked sequentially to form the network architecture. 

Each block comprises a depthwise convolution layer succede by a pointwise 

convolution layer, optionally followed by batch normalization and ReLU activation. 

5. Width Multiplier and Resolution Multiplier: MobileNet presents hyperparameters 

known as width multiplier and resolution multiplier to control the computational cost 

and model size. The width multiplier scales the number of channels in each layer, while 
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the resolution multiplier scales the input image resolution. These hyperparameters allow 

for trade-offs between model size, accuracy, and inference speed, making MobileNet 

adaptable to different deployment scenarios. 

6. Global Average Pooling and Softmax: MobileNet typically ends with a global 

average pooling layer followed by a softmax layer for classification tasks. Global 

average pooling aggregates spatial information across feature maps and produces a 

single feature vector, which is then fed into a softmax layer to compute class 

probabilities. 

 

MobileNet architecture is optimized for efficiency and performance, making it suitable for 

the classification of real-time image, detection of object, and other computer vision tasks 

on devices with limited resources such as smartphones, drones, and devices of IoT. 

 

Figure 16. The MobileNetV2 architecture. 

 

3.3.3 Implementation of Models 

The process begins with an input images that is subjected to the pre-processing of data. The 

dataset is subsequently divided into training, validation, and testing subsets. This entails 

constructing the models, which are then trained using the training dataset. The performance 

of model is assessed using the validation dataset. Later, the test dataset is utilized for image 

classification predictions, ultimately culminating in the final output. Figure 15 below 

illustrates a summary of the model implementation process. 
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Figure 17. The summary of the implementation of models 
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4. OUTCOME AND DISCUSSIOINS 

 
This chapter presents the outcomes derived from image classification and augmentation 

utilizing Deep Learning models. Below are the detail findings of the CNN model, VGG 

model and MobileNet models across distinct image datasets for the original image dataset 

and augmented image dataset with varying different parameters.  

Various combinations of augmentation techniques have been applied, including single 

augmentation, double augmentation, and triple augmentation. 

 

4.1 Outcome of CNN Model with Different Combination Augmentation 

 

Optimizing Model Performance through Gradual Epoch Incrementation: A 

Study on CNN with Single Data Augmentation Method 

 

Upon experimenting with varying numbers of epochs, a notable trend emerges. Initially, 

with fewer epochs, the model's performance appears suboptimal, showcasing poorer 

results. However, as the epochs number increases gradually, reaching the range of 40 to 45 

epochs, a significant improvement is observed in the model's outcomes. 

This progression suggests that the model requires an extended training period to adequately 

learn the underlying patterns within the data. By incrementally increasing the epoch count, 

the model can refine its representations and achieve superior performance metrics. 

It's evident that a careful balance must be struck to prevent overfitting, as excessively 

prolonged training may lead to diminishing returns or even degradation in performance on 

unseen data. Nonetheless, the observed enhancement in results with an extended epoch 

range underscores the importance of sufficient training iterations for optimizing model 

performance. 
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4.1.1 Single Data Augmentation Method 

 
The training process spans 40 epochs, during which the model continually refines its 

performance. Notably, the loss of training steadily diminishes from 0.7177 to 0.1392, while 

the accuracy of training steadily increases from 0.7493 to 0.9517. These trends suggest that 

the model effectively learns from the training data over successive epochs. 

Likewise, the loss of validation falls from 0.8682 to 2.1932, and the accuracy of validation 

increases from 0.7070 to 0.6911. However, there seems to be a point of diminishing 

returns, as the validation metrics start to degrade after around epoch 25, despite 

improvements in the training metrics. This indicates that the model may start to overfit the 

training data as training progresses, leading to reduced generalization of  the validation set 

performance. 

Overall, the CNN model with single data augmentation demonstrates the capability 

learning from the training data and achieve reasonably high accuracy on the validation set. 

However, further investigation into mitigating overfitting beyond epoch 25 may be 

necessary to improve generalization performance. 

Table 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

7 0.7177 0.7493 0.8682 0.7070 

8 0.6725 0.7637 0.8892 0.6990 

9 0.6299 0.7791 0.8660 0.7117 

10 0.5991 0.7901 0.8782 0.7102 

11 0.5624 0.8012 0.8604 0.7171 

12 0.5276 0.8130 0.8658 0.7183 

13 0.4991 0.8247 0.9323 0.7147 

14 0.4660 0.8363 0.9146 0.7122 

15 0.4444 0.8414 0.9964 0.7054 

16 0.4143 0.8522 1.0218 0.7067 

17 0.3932 0.8603 1.0263 0.7104 

18 0.3658 0.8696 1.0708 0.7046 

19 0.3472 0.8746 1.0874 0.7141 

20 0.3220 0.8855 1.1498 0.7108 

21 0.3021 0.8924 1.1703 0.7079 

22 0.2864 0.8964 1.2339 0.7130 

23 0.2721 0.9021 1.3217 0.7034 

24 0.2564 0.9076 1.3485 0.7033 
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Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

25 0.2485 0.9103 1.4355 0.6963 

26 0.2291 0.9160 1.4381 0.7000 

27 0.2149 0.9236 1.5113 0.7055 

28 0.2053 0.9261 1.6045 0.6933 

29 0.2039 0.9267 1.6566 0.7000 

30 0.1956 0.9312 1.7448 0.6913 

31 0.1814 0.9347 1.8570 0.6822 

32 0.1664 0.9398 1.8167 0.6854 

33 0.1688 0.9396 1.8768 0.6928 

34 0.1630 0.9414 1.8643 0.6957 

35 0.1590 0.9432 2.0126 0.6990 

36 0.1542 0.9462 1.9535 0.6942 

37 0.1551 0.9440 2.0561 0.6852 

38 0.1427 0.9492 2.0763 0.6942 

39 0.1436 0.9495 2.1502 0.6867 

40 0.1392 0.9517 2.1932 0.6911 

 

Table: 1 Single Data Augmentation Method CNN Model 

 

Performance Analysis of CNN Model with Additional Convolutional Layers 

and Dropout Regularization for Image Classification 

 
This model architecture aims to increase the efficiency and robustness of the convolutional 

neural network (CNN) through the introduction of additional convolutional layers and the 

incorporation of a dropout layer for regularization. The key changes in this architecture are 

outlined below: 

 

1. Additional Convolutional Layers: The model incorporates two sets of convolutional 

layers, each comprising two convolutional layers succeeded by a max-pooling layer. 

This design choice enables the model for capturing more complex features from the 

input data, potentially enhancing its ability to discriminate between different classes. 

2. Dropout Layer: A dropout rate of 0.5 in dropout layer is inserted before the final dense 

layer. A regularization technique, dropout that helps mitigate overfitting by randomly 

disabling a fraction of input units during the process of training, thereby influencing the 

network to become more resilient and adaptable representations. 
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Experimentation with this architecture and adjustment of hyperparameters offer avenues 

for exploring its impact on model performance across diverse datasets. 

 

Table: 

Epoch Time/Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

1 66s 1.5505 0.4368 1.2843 0.5413 

2 62s 1.1862 0.5788 1.1034 0.6125 

3 63s 1.0403 0.6330 1.0827 0.6185 

4 62s 0.9449 0.6690 0.9735 0.6628 

5 63s 0.8713 0.6937 0.9070 0.6840 

6 64s 0.8193 0.7125 0.8959 0.6859 

7 60s 0.7662 0.7316 0.8758 0.6974 

8 63s 0.7256 0.7468 0.8568 0.7088 

9 63s 0.6842 0.7593 0.9245 0.6840 

10 62s 0.6536 0.7706 0.9085 0.6898 

11 64s 0.6169 0.7836 0.8716 0.7098 

12 64s 0.5922 0.7914 0.9075 0.7077 

13 61s 0.5609 0.8032 0.8912 0.7103 

14 63s 0.5353 0.8111 0.9357 0.7089 

15 62s 0.5122 0.8184 0.9190 0.7101 

16 61s 0.4844 0.8276 0.9451 0.7105 

17 62s 0.4604 0.8372 0.9819 0.7068 

18 60s 0.4367 0.8459 1.0162 0.7062 

19 62s 0.4140 0.8523 1.0491 0.7071 

20 63s 0.3977 0.8585 1.0740 0.7065 

21 62s 0.3761 0.8668 1.1069 0.7015 

22 62s 0.3562 0.8727 1.1847 0.6935 

23 68s 0.3407 0.8785 1.1979 0.6972 

24 62s 0.3169 0.8857 1.3513 0.6792 

25 62s 0.3031 0.8916 1.2966 0.6954 

26 62s 0.2893 0.8960 1.3419 0.6914 

27 62s 0.2747 0.9014 1.4347 0.6934 

28 60s 0.2591 0.9081 1.4245 0.6890 

29 61s 0.2530 0.9082 1.4679 0.6907 

30 61s 0.2384 0.9140 1.5357 0.6922 

31 61s 0.2261 0.9169 1.5546 0.6850 

32 61s 0.2194 0.9211 1.6999 0.6775 

Table: 2 Single Data Augmentation Method with Changing Hyperparameters CNN Model 
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The introduction of additional convolutional layers and the incorporation of a dropout layer 

in this model architecture demonstrate a gradual improvement in performance over epochs. 

Initially, the model exhibits relatively lower accuracy and higher loss, which is typical 

during the early stages of training. However, as training progresses, the accuracy steadily 

increases, while gradually decreases the loss, demonstrating that the model is learning to 

better classify the data. 

 

The accuracy of training consistently outperforms the accuracy of validation, suggesting 

that the model may be slightly training data overfitting. This phenomenon is further 

corroborated by the observation of increasing validation loss over epochs, indicating that 

the generalization ability of model may be compromised. 

 

Nevertheless, the model reaches a peak accuracy of validation of approximately 71%, 

indicating that it can effectively classify the validation data. However, further 

experimentation with regularization techniques or model architecture adjustments may be 

necessary to mitigate overfitting and enhance generalization performance. 

 

While the model demonstrates promising performance, there is room for optimization to 

achieve better generalization and robustness across diverse datasets. 
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4.1.2 Enhancing Model Robustness with Double Data Augmentation: A 

Comprehensive Investigation 

 

 
The model trained with two augmentation methods, horizontal flipping and rotation range 

of 45 degrees, shows decent performance during training, achieving an accuracy of around 

95% on the training set. However, the validation accuracy hovers around 68-71%, 

indicating some degree of overfitting which occurs when the model learns to memorize the 

training data instead of generalizing well to invisible data. 

Despite the overfitting, the model maintains a relatively stable training accuracy throughout 

the epochs, suggesting that the model is continuously learning from the training data 

effectively. However, the accuracy of validation plateaus early on and does not 

substantially improve even with further training, indicating that the model struggles to 

generalize to data which is invisible. 

Further regularization techniques, such as early stopping or additional dropout layers, could 

potentially help overfitting mitigation and improve the performance of model 

generalization. Additionally, fine-tuning the augmentation parameters or exploring 

different augmentation techniques might also yield improvements in model performance. 

Refer to the table below. 

 
Table: 

Epoch Loss Accuracy Validation Loss Validation Accuracy 

1 1.4977 0.4536 1.2789 0.5412 

2 1.1408 0.5955 1.0282 0.6363 

3 0.9886 0.6532 0.9676 0.6611 

4 0.8918 0.6873 0.9370 0.6697 

5 0.8165 0.7147 0.8645 0.7013 

6 0.7547 0.7351 0.8528 0.7038 

7 0.7025 0.7526 0.8884 0.6995 

8 0.6579 0.7688 0.9290 0.6886 

9 0.6169 0.7845 0.8687 0.7104 

10 0.5784 0.7950 0.8753 0.7130 

11 0.5434 0.8073 0.8855 0.7172 

12 0.5052 0.8220 0.9076 0.7146 

13 0.4718 0.8329 0.9250 0.7187 

14 0.4388 0.8459 0.9514 0.7157 
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Epoch Loss Accuracy Validation Loss Validation Accuracy 

15 0.4143 0.8520 1.0996 0.6953 

16 0.3855 0.8622 1.0659 0.7032 

17 0.3619 0.8712 1.0873 0.7075 

18 0.3288 0.8829 1.1478 0.7037 

19 0.3128 0.8883 1.1534 0.7022 

20 0.2971 0.8946 1.2130 0.6978 

21 0.2762 0.9015 1.2684 0.7032 

22 0.2604 0.9060 1.3405 0.6964 

23 0.2458 0.9107 1.3990 0.7004 

24 0.2305 0.9163 1.4457 0.6999 

25 0.2273 0.9177 1.5291 0.6865 

26 0.2099 0.9247 1.5791 0.6913 

27 0.1964 0.9298 1.6212 0.6896 

28 0.1962 0.9285 1.7715 0.6880 

29 0.1803 0.9360 1.8138 0.6880 

30 0.1747 0.9365 1.8347 0.6861 

31 0.1711 0.9385 1.8862 0.6871 

32 0.1644 0.9410 1.8753 0.6864 

33 0.1568 0.9438 1.9177 0.6855 

34 0.1506 0.9469 2.0464 0.6805 

35 0.1484 0.9476 2.1215 0.6810 

36 0.1442 0.9485 2.0696 0.6817 

37 0.1457 0.9489 2.2542 0.6846 

38 0.1398 0.9507 2.2578 0.6857 

39 0.1408 0.9492 2.2615 0.6822 

40 0.1382 0.9506 2.2147 0.6889 

 

Table: 3 Double Data Augmentation Method CNN Model 
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4.1.3 Comparing One augmentation method and two augmentation method 

Combining Both Augmentation Methods: 

• Validation Accuracy after Epoch 1: 0.5412 

• Validation Accuracy after Epoch 2: 0.6363 

One Augmentation Method: 

• Validation Accuracy after Epoch 1: 0.5616 

• Validation Accuracy after Epoch 2: 0.6341 

 

4.2 Results of VGG16 model with Single Combination Augmentation 

Observations for the VGG16 model with ImageDataGenerator(horizontal_flip=True, 

vertical_flip=True): 

1. Training Accuracy and Loss: The training accuracy starts at 52.80% and increases 

steadily over the epochs, reaching 84.69% by the 30th epoch. Similarly, the loss of 

training decreases from 1.3455 to 0.4392 during the epochs, representing that the 

perfect model is learning successfully from the accurate training information. 

2. Validation Accurateness and Loss: The validation accurateness starts at 55.27% and 

fluctuates around 60-62% throughout the training process, showing some signs of 

overfitting as the progression of training. The validation loss follows a similar 

inclination, initially decreasing but then increasing gradually, indicating that the 

model's performance on unseen data is not improving significantly. 

3. Epoch Time: Each epoch takes a considerable amount of time, ranging from around 

620 to 689 seconds. This suggests that training the VGG16 model with the given 

dataset and augmentation settings is computationally intensive. 

4. Performance with Data Augmentation: Although data augmentation (horizontal and 

vertical flips) is used, it does not seem to have a positive substantial impact on the 

performance of the model in terms of validation accuracy. The model might benefit 

from further experimentation with different augmentation techniques or tuning of 

hyperparameters. 

5. Potential Overfitting: The increasing gap between the training and the accuracy of 

validation after several epochs indicates potential overfitting, where the model starts to 

memorize the training of data rather than generalizing well to invisible of data. 
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Finally, while the model achieves decent training accuracy, there is room for improvement 

in terms of validation accuracy and addressing overfitting. Further optimization and 

experimentation with hyperparameters and augmentation techniques could help improve 

the model's performance. 

 

Table 

Epoch 

Duration per 

Epoch 

Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

1 630s 1.3455 52.80% 1.2646 55.27% 

2 666s 1.1663 59.21% 1.1730 58.59% 

3 629s 1.1014 61.44% 1.1633 59.03% 

4 666s 1.0522 63.15% 1.1341 60.29% 

5 626s 1.0083 64.79% 1.1434 59.83% 

6 668s 0.9714 65.79% 1.1262 60.58% 

7 667s 0.9358 67.09% 1.1064 61.94% 

8 655s 0.9013 68.10% 1.1119 61.28% 

9 664s 0.8713 69.36% 1.1194 61.71% 

10 620s 0.8430 70.44% 1.1159 61.56% 

11 661s 0.8131 71.29% 1.1397 61.26% 

12 663s 0.7860 72.29% 1.1437 61.65% 

13 621s 0.7608 73.32% 1.1567 61.38% 

14 621s 0.7360 74.10% 1.1539 61.78% 

15 662s 0.7099 74.85% 1.1725 62.43% 

16 666s 0.6874 75.90% 1.1812 62.21% 

17 689s 0.6683 76.54% 1.2108 61.37% 

18 663s 0.6445 77.28% 1.2338 61.06% 

19 666s 0.6240 78.24% 1.2618 61.30% 

20 672s 0.6073 78.76% 1.2888 60.93% 

21 624s 0.5846 79.51% 1.2790 61.16% 

22 664s 0.5672 80.02% 1.3111 61.10% 

23 662s 0.5494 80.83% 1.3828 60.33% 

24 664s 0.5326 81.18% 1.3844 60.19% 

25 664s 0.5154 81.94% 1.3742 60.73% 

26 662s 0.5010 82.45% 1.3979 60.81% 

27 661s 0.4840 83.12% 1.4437 60.54% 

28 661s 0.4689 83.54% 1.4487 61.13% 

29 660s 0.4562 83.98% 1.4885 60.06% 



48  

Epoch 

Duration per 

Epoch 

Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

30 671s 0.4392 84.69% 1.5591 60.05% 

 

Table: 4 Single Data Augmentation Method VGG16 Model 

 

4.2.1 Optimizing Training Efficiency and Augmentation Effectiveness: A 

Journey through Epochs 

The training process exhibits prolonged execution times per epoch, likely attributable to the 

augmentation technique employed. Initially, a modest attempt with 5 epochs was made, but 

the augmentation's efficacy fell short of expectations. Subsequently, an extensive training 

session spanning 35 epochs was initiated, demanding nearly 8 hours of computational 

resources. Regrettably, the process stalled at the 33rd epoch. In response to this setback, a 

more streamlined approach was adopted, limiting the training regimen to 30 epochs, yet 

ensuring a thorough evaluation of the model's performance. 

 

4.3 Results of MobileNetV2 model with Different Combination Augmentation 
 

MobileNetV2 represents a significant advancement in convolutional neural network 

architectures for mobile and embedded devices. Its efficient design, combined with 

powerful feature representation capabilities, including image classification, object 

detection, and semantic segmentation, especially in resource-constrained environments 

where computational resources are limited makes it well-suited for a wide range of 

computer vision tasks. 

 

4.3.1 Results of MobileNetV2 model with Single Combination Augmentation 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

8 1.8754 0.3234 1.8942 0.3168 

9 1.8723 0.3236 1.8943 0.3163 

10 1.8702 0.3250 1.8939 0.3162 

11 1.8687 0.3262 1.8932 0.3170 

12 1.8674 0.3264 1.8940 0.3170 

13 1.8662 0.3260 1.8938 0.3157 
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Table: 5 Single Data Augmentation Method MobileNetV2 Model 

 
Analysis 

The training and validation performance of the model over the 35 epochs show a gradual 

improvement in accuracy and a corresponding decrease in loss. 

 

• Training Loss and Accuracy: The training loss consistently decreases from 1.8754 to 

1.8553, indicating that the model is learning and fitting the training data better as the 

epochs progress. The accuracy of training shows a steady increase from 0.3234 to 

0.3303, reflecting improved performance. 

• Validation Loss and Accuracy: The validation loss shows minor fluctuations but 

overall remains stable, starting at 1.8942 and ending at 1.9007. This suggests that while 

the model is continuously learning, its ability to generalize to invisible data does not 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

14 1.8652 0.3272 1.8935 0.3169 

15 1.8641 0.3278 1.8942 0.3174 

16 1.8636 0.3273 1.8936 0.3200 

17 1.8628 0.3283 1.8944 0.3155 

18 1.8620 0.3281 1.8949 0.3161 

19 1.8614 0.3283 1.8951 0.3196 

20 1.8607 0.3291 1.8959 0.3140 

21 1.8603 0.3279 1.8955 0.3190 

22 1.8599 0.3287 1.8958 0.3187 

23 1.8594 0.3286 1.8963 0.3182 

24 1.8589 0.3291 1.8966 0.3176 

25 1.8585 0.3292 1.8966 0.3206 

26 1.8580 0.3293 1.8975 0.3190 

27 1.8578 0.3288 1.8972 0.3199 

28 1.8575 0.3306 1.8979 0.3182 

29 1.8571 0.3296 1.8980 0.3202 

30 1.8567 0.3298 1.8984 0.3200 

31 1.8566 0.3298 1.8988 0.3199 

32 1.8563 0.3303 1.8997 0.3202 

33 1.8561 0.3303 1.8995 0.3188 

34 1.8557 0.3294 1.9003 0.3208 

35 1.8555 0.3303 1.9002 0.3192 
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show significant improvement. The validation accuracy similarly fluctuates but does 

not show a marked increase, beginning at 0.3168 and ending at 0.3192. 

Observations 

• Plateau in Performance: Both the training and validation metrics suggest that the 

model's performance is plateauing. Despite the decrease in training loss, the validation 

loss and accuracy do not improve significantly after a certain point, which might 

indicate overfitting. 

• Small Improvements: There are slight improvements in training accuracy, but these 

are not mirrored in the validation accuracy, suggesting that the model might be learning 

noise in the training data rather than useful patterns that generalize well. 

• Need for Regularization: The small fluctuations and lack of significant improvement 

in validation performance suggest that regularization techniques such as dropout, 

weight decay, or data augmentation might be necessary to enhance the model's 

generalizability. 

 

Recommendations 

• Hyperparameter Tuning: Experimenting with different learning rates, batch sizes, and 

optimization algorithms could help in achieving the performance in better way. 

• Regularization: Implementing regularization techniques might help in reducing 

overfitting and improving validation accuracy. 

• Early Stopping: Using early stopping based on the performance of validation can 

prevent the model from overfitting and helps to save training time. 

• More Data: If possible, acquiring more data or using data augmentation techniques 

could help the model learn more robust features and improve generalization. 

 

In conclusion, while the model shows improvements in training performance, the 

validation metrics indicate a need for strategies to enhance generalizability and prevent 

overfitting. 
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4.3.2 Results of MobileNetV2 model with Double Combination Augmentation 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

1 1.4977 0.4536 1.2789 0.5412 

2 1.1408 0.5955 1.0282 0.6363 

3 0.9886 0.6532 0.9676 0.6611 

4 0.8918 0.6873 0.9370 0.6697 

5 0.8165 0.7147 0.8645 0.7013 

6 0.7547 0.7351 0.8528 0.7038 

7 0.7025 0.7526 0.8884 0.6995 

8 0.6579 0.7688 0.9290 0.6886 

9 0.6169 0.7845 0.8687 0.7104 

10 0.5784 0.7950 0.8753 0.7130 

11 0.5434 0.8073 0.8855 0.7172 

12 0.5052 0.8220 0.9076 0.7146 

13 0.4718 0.8329 0.9250 0.7187 

14 0.4388 0.8459 0.9514 0.7157 

15 0.4143 0.8520 1.0996 0.6953 

16 0.3855 0.8622 1.0659 0.7032 

17 0.3619 0.8712 1.0873 0.7075 

18 0.3288 0.8829 1.1478 0.7037 

19 0.3128 0.8883 1.1534 0.7022 

20 0.2971 0.8946 1.2130 0.6978 

21 0.2762 0.9015 1.2684 0.7032 

22 0.2604 0.9060 1.3405 0.6964 

23 0.2458 0.9107 1.3990 0.7004 

24 0.2305 0.9163 1.4457 0.6999 

25 0.2273 0.9177 1.5291 0.6865 

26 0.2099 0.9247 1.5791 0.6913 

27 0.1964 0.9298 1.6212 0.6896 

28 0.1962 0.9285 1.7715 0.6880 

29 0.1803 0.9360 1.8138 0.6880 

30 0.1747 0.9365 1.8347 0.6861 

31 0.1711 0.9385 1.8862 0.6871 

32 0.1644 0.9410 1.8753 0.6864 

33 0.1568 0.9438 1.9177 0.6855 

34 0.1506 0.9469 2.0464 0.6805 

35 0.1484 0.9476 2.1215 0.6810 
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Table: 6 Double Data Augmentation Method MobileNet Model 

 

Analysis 

Training Performance 

• Improvement Over Epochs: The training loss consistently decreases from 1.4977 to 

0.1382 over 40 epochs, indicating a strong learning trend. Similarly, the training 

accuracy shows a significant improvement starting from 0.4536 to 0.9506, determining 

that the model is becoming increasingly proficient at ranking the training data perfectly. 

Validation Performance 

• Initial Improvement: The loss of validation diminishing substantially in the initial 

epochs, from 1.2789 to a low of 0.8528 around epoch 6, and validation accuracy 

improves from 0.5412 to 0.7038 by epoch 6. This suggests that the model generalizes 

well to unseen data initially. 

• Plateau and Decline: From around epoch 7 onwards, validation loss begins to fluctuate 

and generally increases, peaking at 2.2615 by epoch 39. Validation accuracy, after an 

initial rise, fluctuates around the 0.68 to 0.71 range and does not show significant 

improvement, ending at 0.6889 by epoch 40. 

Observations 

• Overfitting: The divergence between training and validation performance, particularly 

after epoch 6, suggests overfitting. The model continues to improve on training data but 

fails to generalize to validation data, as evidenced by the rising validation loss and 

stagnant validation accuracy. 

• Early Stopping Point: The optimal stopping point appears to be around epoch 6-10, 

where validation accuracy is at its peak (0.7130) and validation loss is relatively low 

(0.8753). Training beyond this point does not yield better validation performance and 

leads to overfitting. 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

36 0.1442 0.9485 2.0696 0.6817 

37 0.1457 0.9489 2.2542 0.6846 

38 0.1398 0.9507 2.2578 0.6857 

39 0.1408 0.9492 2.2615 0.6822 

40 0.1382 0.9506 2.2147 0.6889 
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• Regularization Need: The increase in validation loss and stagnation in accuracy 

indicate the need for regularization techniques such as dropout, batch normalization, or 

L2 regularization to improve generalization and prevent overfitting. 

Recommendations 

• Early Stopping: To halt training, implementation of early stopping when validation 

performance stops improving, around epoch 10 in this case. 

• Regularization: Introduce regularization techniques to combat overfitting. Options 

include dropout layers, L2 regularization, or data augmentation. 

• Iterative-Validation: Use iterative-validation to ensure that the performance of model's 

is consistent across various subdivisions of the data, which can help in identifying and 

mitigating overfitting. 

• Hyperparameter Tuning: Hyperparameters tuning such as learning rate, batch size, 

and architecture for the network might help in achieving a better balance between 

training and validation performance. 

By addressing overfitting and optimizing the stopping point, the model can achieve better 

generalization and more reliable performance on unseen data. 
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5. CONCLUSION 

This thesis investigated the performance and robustness of convolutional neural networks (CNNs) 

in image classification tasks through various model architectures and data augmentation 

techniques. The study spans 40 epochs of training, analyzing the interplay between training and 

validation metrics to understand model behavior and identify potential overfitting issues. Key 

observations include: 

Initial Learning Phase: 

• All models demonstrated effective learning during the initial epochs, as evidenced by a 

consistent decrease in training loss and an increase in training accuracy. 

• Validation metrics showed substantial initial improvement, indicating good generalization to 

unseen data. 

Overfitting Concerns: 

• Post the initial learning phase, a divergence was observed between training and validation 

metrics. Training accuracy continuously improving while the accuracy of validation plateaued 

or declined, accompanied by increasing validation loss, signaling overfitting. 

• The optimal stopping point for training was identified around epoch 10, where validation 

accuracy peaked. 

Impact of Regularization Techniques: 

• The incorporation of additional convolutional layers and dropout regularization showed a 

gradual performance improvement and helped mitigate overfitting to some extent. 

• Despite these enhancements, further regularization was necessary to achieve better 

generalization. 

Data Augmentation: 

• Single and double data augmentation methods were explored, including horizontal flipping and 

rotation. Although these techniques contributed to improved training performance, their impact 

on validation accuracy was limited. 

• The models with more extensive data augmentation demonstrated relatively better 

generalization but still faced overfitting challenges. 
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Model Architecture Adjustments: 

• Comparisons between different architectures, including VGG16 and MobileNetV2, highlighted 

that while advanced architectures could capture intricate features and improve training 

accuracy, they also necessitated careful regularization to prevent overfitting. 

Recommendations 

Based on the analysis, several recommendations are proposed to enhance the generalization and 

robustness of CNN models in image classification tasks: 

1. Early Stopping: 

• Implementation of early stopping mechanisms to halt training when validation performance 

ceases to improve, effectively preventing overfitting. 

2. Enhanced Regularization: 

• Introduce more robust regularization techniques, such as higher dropout rates and L2 

regularization, to improve the ability of model to generalize. 

3. Diverse Data Augmentation: 

• Utilize a broader range of augmentation of data methods to generate additional varied samples, 

which can help the model learn more features in generalize way. 

4. Hyperparameter Tuning: 

• Conduct extensive hyperparameter tuning, including adjustments to learning rates, batch sizes, 

and optimization algorithms, to find the optimal configuration for balanced performance. 

5. Cross-Validation: 

• Employ cross-validation ensuring consistent model performance through different data subsets, 

providing a more reliable assessment of the model's generalization capabilities. 

6. Architectural Adjustments: 

• Explore architectural adjustments, such as for the enhancement of the number of convolutional 

layers and incorporating batch normalization, to enhance feature extraction and model stability. 

This thesis underscores the critical balance between model complexity and regularization in 

achieving robust image classification performance. While CNNs demonstrate powerful learning 

capabilities, preventing overfitting remains a significant challenge. Through strategic 

implementation of early stopping, regularization techniques, diverse data augmentation, and 

thorough hyperparameter tuning, it is possible to develop CNN models that not only perform well 
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on training data but also generalize effectively to unseen data. Future work should continue to 

explore innovative regularization methods and more complex augmentation techniques to push the 

boundaries of CNN performance in image classification tasks. 
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