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Abstract

The time synchronization of sleep spindles and slow wave oscillation in
electroencephalogram (EEG) signal has been increasing in interest due to
their possible link to processes such as memory consolidation and forgetting.
However, considering the amount of different tools that have been used for
pattern detection and analysis of time synchronization (e.g. wavelet transforms,
correlation histograms), it is essential to be aware of the differences between
the methodologies behind these tools and the possible effect of the different
methods on the obtained results. Therefore, the main objective of this thesis
was to compare the time synchronization results from complex demodulation
and the Hilbert transform and to analyze possible differences between these
methodologies. Furthermore, time synchronization of spindles and slow waves
can be studied from two approaches; either by detecting spindles related to
the slow waves or vice versa. Both of these approaches were considered in the
analyses.

The study was performed on EEG-signals obtained from overnight polysom-
nographies of 899 patients with suspected sleep apnea. To utilize both of
aforementioned approaches, two separate datasets were formed in the study.
The first dataset was obtained by detecting and position-locking slow waves
from the sleep EEG. The second dataset was obtained by identifying spindles
from the same EEG-segments, using an algorithm based on the combination
of the empirical mode decomposition (EMD) and the continuous wavelet
transform (CWT), and position-locking the spindles. Thus, the two datasets
were formed from the same EEG-signal segments, but in the first dataset the
segments were position-locked according to the slow waves and in the second
dataset according to the spindles. For both of these datasets separately, the
Hilbert transform and complex demodulation were performed to study the time
synchronization, and the results from these methods were compared.

Time synchronization between slow waves and sleep spindles was observed
using both the Hilbert transform and complex demodulation. Specifically, the
strongest coupling of the spindles and slow waves was observed with both
methods at the ascending slope of the slow wave, close to the positive peak of
the slow wave, and at the positive peak. Another location where coupling was
detected was at the descending slope of the slow wave. The aforementioned
results were found in both datasets when using the Hilbert transform and
complex demodulation. In conclusion, both Hilbert transform and complex
demodulation were observed to produce similar results. Thus, both methods
were concluded to be equally sufficient to study the time synchronization of
sleep spindles and slow waves.



Tiivistelmä

Unenaikaisesta aivosähkökäyrästä (electroencephalogram, EEG) havaittavien
hidasaaltojen ja unisukkuloiden aikasynkronisaatiota on tutkittu lähivuosina
runsaasti johtuen aikasynkronisaation mahdollisesta yhteydestä aivoissa tapah-
tuviin prosesseihin, kuten muistin vahvistamiseen sekä unohtamiseen. EEG:n
hidasaaltojen ja unisukkuloiden välistä aikasynkronisaatiota on myös tutkittu
usealla eri menetelmällä, kuten aallokemuunnoksilla tai korrelaatiohistogram-
meilla. Eri menetelmiä käytettäessä on kuitenkin tärkeää ottaa huomioon niiden
mahdollinen vaikutus saatuihin tuloksiin Täten tässä tutkielmassa on vertailtiin
kahden eri aikasynkronisaatiomenetelmän; Hilbertin muunnoksen ja komplek-
sisen demodulaation tuloksia. Erilaisten menetelmien käyttämisen lisäksi aika-
synkronisaatiota on tutkittu kahdesta eri lähestymiskulmasta: joko tarkaste-
lemalla hidaasaaltojen yhteydessä esiintyviä unisukkuloita tai unisukkuloiden
yhteydessä esiintyviä hidasaaltoja. Täten tässä tutkielmassa huomioitiin mo-
lemmat lähestymistavat.

Lähestymistapoja tutkittiin EEG-signaaleista, jotka oli kerätty 899 potilaal-
ta unipolygrafiatutkimuksen yhteydessä uniapneaepäilyn vuoksi. Tutkimukses-
sa rekisteröinneistä muodostettiin kaksi eri tietoaineistoa. Ensimmäinen koostui
EEG-pätkistä, jotka sisälsivät paikannetut hidasaallot. Näistä EEG-pätkistä
havainnointiin edelleen unisukkulat käyttämällä algoritmia, jossa yhdistettiin
empiirinen tyyppiarvohajotelma (empirical mode decomposition, EMD) ja jat-
kuva aaltomuunnos (continuous wavelet transform, CWT). Ensimmäisessä ai-
neistossa edellämainitut EEG-segmentit paikkalukittiin niiden sisältämien hi-
dasaaltojen pienimmän amplitudin mukaan ja toisessa aineistossa samat EEG-
pätkät paikkalukittiin niistä havaittujen spindlejen suurimman amplitudin mu-
kaan. Näiden kahden tietoaineiston aaltomuotojen aikasynkronisaatiota tutkit-
tiin Hilbertin muunnoksen ja kompleksisen demodulaation avulla.

Hidasaaltojen ja unisukkuloiden aikasykronisaatiota havaittiin sekä Hilber-
tin muunnoksella että kompleksisella demodulaatiolla siten, että molempien
menetelmien havainnot tukivat toisiaan. Vahvin aikasynkronisaatio havaittiin
hidasaallon nousevalla käyrällä ennen hidasaallon positiivista huippua sekä po-
sitiivisella huipulla. Myös hidasaallon laskevalla käyrällä havaittiin aikasynk-
ronisaatiota. Edellämainitut tulokset havaittiin molempien menetelmien lisäk-
si myös molemmissa tietoaineistoissa. Täten molemmat menetelmät tuottivat
vastaavat tulokset ja molempien menetelmien havaittiin olevan riittäviä uni-
sukkuloiden ja hidasaaltojen aikasynkronisaation tutkimisessa.
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1 Introduction
Sleep has been a subject of interest for centuries and cures for sleep disorders such
as insomnia can be traced back to ancient Egypt [1]. In ancient Greece, Aristotle
attempted to explain the phenomenon of sleep and waking as well as the relationship
between sleep and food [1]. Additionally, ancient Chinese medicine offered solutions,
such as acupuncture, for sleep disorders [1]. In the western world, France and Italy
took steps to understand sleep in the Middle Ages, and in the 17th century Thomas
Willis was able to describe narcolepsy and restless leg syndrome [1]. In the 19th
century the amount of studies on sleep increased and circadian rhythms as well as
body temperature changes related to sleep were studied [1].

However, the most notable steps in the field of sleep studies were taken in the 20th
century [1]. One of these steps was taken by a German psychiatrist Hans Berger,
who was able to extract an electrical waveform from measured brain activity, called
alpha rhythm, and is considered to be the father of electroencephalography (EEG) [2].
However, Berger was not the first to study the electrical activity of the brain. Instead,
in 1874 a Scottish physiologist Richard Canton had published studies on rabbit and
monkey brains, where he observed that applying light to the eye would result in
strong current fluctuations in the cerebral cortex [3]. Subsequently, in 1935 Alfred
Lee Loomis conducted measurements on human subjects while they were sleeping [4].
Loomis et al. would play sounds to the sleeping subjects and as a result they recorded
“trains of rhythmic potential changes” [4]. In the later decades of the 20th century,
the studies continued on EEG recordings and in 1968 a manual for the analysis of
sleep recordings was released by Allan Rechtschaffen and Anthony Kales: A Manual of
Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human
Subjects [5]. This manual gave common rules for staging the sleep recordings, i.e.,
dividing the sleep into segments of light, deep or rapid eye movement sleep based on
the characteristics of the recorded signals [1]. Later, in 2007 the American Academy
of Sleep Medicine (AASM) proposed new scoring definitions to replace the previous
R&K rules [6]. Since then, the AASM guidelines have been updated and remained
to be the standard in clinical practice [7].

Nowadays, sleep research is more widespread, not just focusing on adults but
adolescents and children as well [8, 9, 10]. Studies have concluded that humans spend
approximately 25 years of their lives sleeping [11] and insufficient sleep can lead to
a decrease in cognitive performance [12] as well as an increased risk in mortality
[13]. Decreased amount of sleep has also been linked with diseases such as cancer,
cardiovascular disease, and obesity [13]. Therefore, studying and understanding sleep
disorders, which can seriously alter the quality and the length of sleep, is vital.
However, despite all advances in sleep research, a lot still remains to be discovered on
the purpose of sleep [14]. The current perspective focuses on sleep being a restorative
process, however, it is still unclear where this restoration extends [11].
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The work on sleep EEG has lead to the discovery of several patterns in the signals
such as K-complexes, sleep spindles, parahippocampal ripples, and slow waves [15,
16]. These patterns and their possible synchronization with each other has been a
subject of interest due to their possible link to processes such as memory consolidation
and forgetting [17].

Historically, sleep waveforms such as sleep spindles have been detected visually by a
trained technician, however due to intra- and interscorer variabilities and the laborious
effort required by visual detection, new more automated approaches have been
developed [18]. Over the years, several analyzing methods have been implemented
in the detection of sleep waveforms [19, 20, 21, 22] and the amount of methods is
constantly increasing. However, considering the amount of different tools that can
be chosen for pattern detection and analysis, it can be overwhelming to decide which
approach may be the most suitable for a certain application. Therefore, it can be
useful to compare different methods and their results to understand their benefits and
disadvantages in regards to the chosen application.

Furthermore, time synchronization between sleep spindles and slow wave oscillation
has been observed in previous studies [17, 23, 24, 25, 26]. However, these studies
have utilized several different methods in the detection of sleep spindles and the
time synchronization between spindles and slow waves. Therefore, comparing results
obtained by different methods can give more insight on how to choose a method for
these studies and which methodology would suit each purpose the best. In this thesis
I present my results on sleep spindle and slow wave time synchronization utilizing two
different analyzing methods. Both methods were first conducted from the perspective
of the slow waves and then from the perspective of the spindles. This was done for
the purpose of studying whether the chosen approach has an impact on the results.
The analyzing methods investigated in this thesis study are complex demodulation
and Hilbert transform.
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2 Electroencephalography
EEG is a measurement method utilized to obtain a biosignal originating from the
electrical activity in the brain [27]. The electrical activity of the brain is generated
in nerve cells in the form of action potentials [28]. The action potential is generated
when the membrane potential of the nerve cell rises from approximately -70 mV to
-50 mV due to excitatory stimulus [29]. This will lead to changes in the membrane
permeabilities for sodium (Na+) and potassium (K+) ions [29]. Due to increased
permeability, sodium ions flow inside the nerve cell, resulting in increased potential
inside the nerve cell [28]. During this event, also referred to as depolarization, the
potential inside the nerve cell can increase up to 20 mV [28]. The depolarization phase
of the action potential will end when the sodium ion channels close automatically [28].

After the depolarization phase, the potassium ion permeability, which is voltage
dependent, increases and results in a slow efflux of potassium ions [28]. The efflux of
potassium ions will restore the membrane potential of the nerve cell back to resting
potential [29]. This event is also referred to as repolarisation [29].

After the action potential has been generated in the nerve cell, it will propagate
along the axon of the nerve cell [29]. However, the action potentials itself are not
high enough in extracellular amplitude and in duration (approximately 1 ms) to
be recorded [28]. Instead, postsynaptic potentials have a longer duration (over 10
ms) and therefore, the summation of several simultaneous and parallel postsynaptic
potentials of pyramidal nerve cells can be recorded from the scalp as EEG [28]. More
specifically, EEG is considered to measure the extracellular currents of activated
nerve cells [27]. The postsynaptic potentials can be either excitatory postsynaptic
potentials (EPSP) or inhibitory postsynaptic potentials (IPSP) [28]. With EPSP,
the neurotransmitters are excitatory and them binding to neurotransmitter receptors
result in positive voltage at the postsynaptic membrane, i.e., depolarization [28].
Alternatively, IPSP is produced when inhibitory neurotransmitters binding to their
receptors result in more negative voltage than the resting membrane voltage on the
postsynaptic membrane, i.e., hyperpolarization [28].

To measure the brain activity, EEG electrodes are placed on the scalp according
to the so-called 10-20 system [30]. In this standard electrode placement method,
21 electrodes are placed at “10% or 20% relative distances between the cranial
landmarks” [31]. However, the number of channels used in EEG recordings can
increase up to 256 in certain applications, which will require a higher density of
electrodes [31]. Therefore, to enable repeatability between studies, other placement
methods have been proposed to answer the demands of the increasing number of
electrodes. One of the methods is the 10-10 system, which is an extension from 10-
20 system and it replaces the 20% relative distance with 10% [31]. This extension
has been accepted by the American Clinical Neurophysiological Society and the
International Federation of Clinical Physiology [31].

EEG is the most used signal acquisition modality related to brain activity measure-
ments due to it being relatively cost-effective, having good temporal resolution and
portability as well as being safe to use [32]. Downside of EEG is that the signals are
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non-stationary and the quality of the signals can be easily compromised by noise or
other artefacts [33]. Even the mood or the posture of the subject can have an effect
on the signal quality [33]. Furthermore, the source localization from EEG recordings
can be challenging since the tissues surrounding the cortex, i.e., cerebrospinal fluid,
skull, and skin have different electrical conductivities leading to low spatial resolution
[27].

EEG has several applications in the medical field, for example in neurology with
epilepsy, Parkinson’s disease, and sleep disorders, as well as in neuroscience such
as sleep research [30]. In disorders such as schizophrenia, the EEG signal recorded
from the patient may have abnormalities [34]. Additionally, EEG has applications in
neurogaming, brain-computer interfaces, and navigating robotic body parts, among
others [30].

3 Sleep
Sleep is a fundamental part of human life. The reasons for sleep and dreaming are
still debated, despite the increased knowledge on the neuroanatomy and -physiology
over the past 50 years [11]. Currently the perspective is that sleep is “a highly
organized state generated by the cooperative interplay of many behavioral and
neural components” [11]. Studies have linked the importance of sleep to various
bodily functions that are important to human health such as cardiovascular health,
mental health, cognition, memory consolidation, immunity, reproductive health, and
hormone regulation [35].

In normal human EEG, frequencies in the range of 1–30 Hz are recorded [11]. This
frequency range can be further divided into four different frequency bands: delta
(0.5–4 Hz), theta (4–7 Hz), alpha (8–13 Hz), and beta (13–30 Hz). The EEG
measured during sleep can be evaluated based on the frequency content and specific
characteristics of the signal such as sleep spindles and K-complexes [6]. According to
the AASM, the sleep EEG can be scored, i.e., separated into four different stages [6].
These stages include three non-rapid eye movement (NREM) stages and one rapid
eye movement (REM) stage. The NREM stages are scored in 30 s long segments,
also referred to as epochs, as stage N1 (NREM 1), stage N2 (NREM 2) and stage
N3 (NREM 3) [6]. During the stage N1, sleep is the lightest, during stage N2, it is
slightly deeper and during stage N3 sleep is the deepest [36]. The sleep EEG typically
consists of 90 minute cycles where all sleep stages are usually visible progressing from
N1 to N2 to N3, and ending in REM sleep after which a new cycle begins [36]. The
sleep stages form a graph called a hypnogram (Figure 1).

N1 is a sleep stage defined by low amplitude mixed frequency content in the EEG
and slow eye movements (SEM) with length of >500 ms [6]. This sleep stage may
also exhibit vertex sharp waves in the EEG signal [6].

The second NREM sleep stage, N2, can be scored when sleep spindles and K-
complexes are observed in the EEG signal [6]. Sleep spindles often exhibit their
highest amplitudes in central EEG channels [6]. K-complexes are sharp waveforms
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which can be recognised from the EEG by observing a negative peak which is then
followed by a positive peak with a total length of ≥0.5 s for the whole waveform [6].
K-complexes exhibit the highest amplitudes in the frontal EEG channels [6]. The
background activity of EEG in N2 stage has a low amplitude and a variety of mixed
frequencies [37].

Sleep stage N3 has been defined in the AASM scoring manual to consist of slow
wave activity which refers to EEG waves in the frequency range of 0.5–2 Hz [6].
Additionally, the peak-to-peak amplitude should be higher than 75 µV when recorded
over the frontal channels [6]. In N3 sleep spindles and K-complexes may occur but
eye movements are not observed [37].

REM sleep stage is characterized by rapid eye movements and low chin electromyo-
graphy (EMG) tone [6]. The rapid eye movements are maximally 500 ms long sharp
deflections, observed in the electrooculography (EOG) signal [6]. Other phenomena
observed in REM sleep stage are sawtooth waves in the EEG and transient muscle
activity that can be seen in the EEG, EMG, or EOG signals [6]. Additionally, the
baseline EEG signal has mixed frequency content as well as a low amplitude [6]. From
a physiological perspective, REM sleep stage has been associated with dreaming [35].

Age plays a vast role in the amount and the quality of human sleep. Newborns sleep
considerable amounts during the day, up to 16–18 hours and over 50% of the sleep
is REM sleep [11]. When the child grows, the amount of sleep decreases, and by the
time that they are 3 to 5 years old, the amount of sleep needed in a day is around
10 to 12 hours [11]. At this age, the deep sleep stage N3 is relevant while REM sleep
is still prominent [11]. As the age increases, the amount of sleep decreases and sleep
will become more fragmented [11]. Additionally, the risk for sleep disorders, such as
insomnia and restless legs syndrome, becomes more prevalent with age [11].

The gold standard method of sleep recordings is type I polysomnography (PSG) [38],
recorded in a specialized sleep laboratory. In type I PSG, several signals are recorded
from the body and based on the recorded signals, possible diagnoses for sleep disorders
can be made [38]. The PSG includes signals such as EEG, electrocardiography (ECG),
EOG, EMG, nasal and oral airflow, blood oxygen saturation, and chest and abdominal
movement [38]. EOG is a signal commonly recorded with two channels, one channel
for each eye to record the movement of the eyes [38]. The reference electrode for these
channels is usually at the mastoid. To record muscle activity during sleep, EMG
signal is recorded from the chin and limbs [38]. Respiratory activity is measured
with a nasal cannula to examine the nasal airflow and the pressure of the airflow
[38]. Additionally, oral airflow can be taken into account with a combined nasal-oral
measurement device [38]. Other measurements for detecting breathing are respiratory
inductance plethysmography (RIP), which includes belts measuring the movement of
the ribcage and abdomen [38]. In addition to directly monitoring respiration, the
oxygen saturation of arterial blood is often recorded [38]. It can be measured with
a pulse oximeter from the finger or the earlobes [38]. Moreover, possible snoring of
the subject is recorded by a microphone [38]. Additionally, PSG studies are usually
performed in sleep laboratories and therefore, the sleeping position of the subject is
recorded on video [38].
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Figure 1: Example of a hypnogram, i.e., a scheme where all the sleep stages (wake,
non-rapid eye movement (N1, N2, N3) and, rapid eye movement (REM)) have been
scored for the duration of the whole night. One sleep cycle is determined when all
the sleep stages from wake to deep sleep to REM sleep are visible in the hypnogram.
Picture modified from [39].

3.1 Spindles
Sleep spindles were first separated from the EEG and named by Loomis et al. in 1935
[4]. Moreover, Hans Berger was involved in differentiating EEG rhythms [3]. In the
AASM manual, spindles are defined as “a train of distinct waves with frequency of
11–16 Hz with duration of ≥0.5 s” (Figure 2) [6]. They can be detected from EEG
signals in several channels [6].

Studies have shown that the 11–16 Hz spindle frequency range can be divided into
two different groups depending on their frequency. Spindles with frequencies <13 Hz
[40] or having their spectra centered around 12 Hz [41] are referred to as slow spindles
[40] or low frequency spindles (LFS) [41] and spindles with frequencies >13 Hz [40]
or having their spectra centered around 14 Hz [41] are referred to as fast spindles [40]
or high frequency spindles (HFS) [41].

Sleep spindles are characteristic for N2 sleep stage but they can be observed during N3
sleep stage as well [37]. However, sleep spindles in N2 sleep stage tend to have a higher
amplitude and occur more frequently compared to N3 sleep stage [40]. Furthermore,
there is evidence to implicate that sleep spindles in N2 are primarily fast spindles and
most of the spindles manifesting in N3 sleep stage are slow spindles [40]. Slow spindles
can also occur in N2 but they tend to be smaller and they occur less frequently, while
their location is not limited to parietal derivations only [40]. Additionally, fast spindles
can be observed during N3 sleep stage, however they are typically observed in central
EEG derivations [40].
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Figure 2: Sleep spindle is a train of oscillation in frequency of 11–16 Hz with a waxing
and waning shape.

Some studies have associated sleep spindles with different disorders such as focal
epilepsy and schizophrenia as well as Alzheimer’s disease [17, 42, 43, 44]. In
schizophrenia studies, spindle activity has been found to be diminished when com-
pared to individuals without schizophrenia [43]. Furthermore, artificially increasing
the amount of sleep spindles has been associated with improved cognition through
memory consolidation [43]. Therefore, there is an interest to study whether increasing
the amount of sleep spindles could be used as a treatment for patients with
schizophrenia to improve their cognitive abilities [43]. Studies have also linked the
absence of sleep spindles with an increased risk of mortality in Intensive Care Unit
(ICU) patients [45]. Therefore, an interest remains to study sleep spindles as a
potential biomarker for critically ill patients [45].

Already in 1950, fast and slow spindles were observed to originate from different parts
of the brain [41, 46]. Gibbs et al. observed that LFS would occur mostly in the frontal
recordings and HFS would be more prominent in the posterior derivations [46]. These
findings have been confirmed by Jobert et al. [47] as well as Zygierewicz et al. [41].
Zygierewicz et al. found that LFS occur primarily in the frontal channels while HFS
can be observed in the parietal channels [41]. They also observed that HFS would
occur in a rhythmic manner with a period of 3.9 s while LFS showed no rhythmicity.
Werth et al. concluded in their study that the origin of the sleep spindles included
two functionally independent systems [48].

Despite the extensive research on the origin of sleep spindles, no consensus has
been reached on which part of the brain is responsible for producing the sleep
spindles. There are studies where sleep spindles have been shown to originate
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from the thalamus [49] and it has been shown that the thalamic reticular nucleus
(TRN) will continue generating spindle-related rhythms (7–16 Hz) even after being
disconnected from other thalamic nuclei [50]. Therefore, TRN is also referred to as
sleep spindle pacemaker [40]. According to this theory, a sleep spindle is formed when
TRN generates rhythmic inhibitory synaptic potentials, as these inhibitory synaptic
potentials have been detected being in phase with spindle waves [49].

However, studies done with EEG recordings support the idea that the origins of slow
and fast spindles differ [40]. According to EEG measurements, the precuneus has been
suggested to be the origin for fast spindles and prefrontal cortex has been linked with
slow spindles [40]. Furthermore, studies done with magnetoencephalography (MEG)
have indicated that there can be several sources for sleep spindles [40]. However, some
results have shown that fast and slow spindles would originate from a common source
but manifest successively [40]. This may indicate a presence of a single thalamic
spindle generator which would produce one spindle that propagates in posterior-
anterior direction [40]. Thus, despite the efforts, the origin of sleep spindles remains
undetermined.

The standard method for detecting sleep spindles from sleep recordings is visual
identification by trained technicians in sleep clinics [51]. Despite advances in
automatic detection of sleep spindles, visual inspection by sleep technicians is still
considered the gold standard [18]. However, relying only on visual inspection has its
downsides. Variability has been reported between sleep experts, and more concealed
spindles have been found difficult to detect due to background EEG activity [18,
51]. In these cases, automated detection methods can be efficient and consistent
[18]. However, automated detection methods have their own disadvantages. Different
automated detection methods tend to disagree more with each other than with
visual detection [18]. Additionally, it may be difficult for the same automated
detection method to consider the differences between spindle characteristics in older
and younger populations [18].

There are various methods on how sleep spindles can be automatically detected
from sleep EEG [40]. These methods can be divided into four categories: fixed
thresholding, adaptive thresholding, time-frequency analysis, and machine learning
techniques [40]. In fixed thresholding algorithms, the EEG signal is usually bandpass-
filtered to spindle frequency range and then an amplitude criteria is added to detect
the spindle [40]. Furthermore, a criteria for the length of the spindle is added as
well [40]. This approach is quite inflexible since the amplitude is usually pre-set
and it does not take into account spindle amplitude differences between subjects or
EEG-channels [40]. Therefore, utilizing the same algorithm for a different dataset
without prior knowledge of the individuals’ spindle amplitudes can be problematic
[40]. Additionally, these fixed threshold-techniques do not take into account the
spindle shape [40]. With adaptive thresholding, spindle amplitude variability between
individuals has been taken into account [40]. However, the problem of excluding the
spindle shape still remains [40].

Time-frequency analysis is a category of techniques in which both temporal and
spectral properties of the signal are taken into account simultaneously [40]. This will

12



lead to optimized time-frequency resolution [40]. In this category, wavelet transform
analysis is typically preferred [40]. In wavelet analysis, an appropriate mother wavelet
is chosen, in the case of sleep spindles it is usually the Morlet wavelet (Figure 5) [40].
It has the desired spindle shape and thus it is often used [40]. Furthermore, wavelet
analysis is applicable to non-stationary signals and thus is considered as a good choice
for EEG signal analysis [40].

The newer methods include the use of machine learning in the detection of sleep
spindles [40]. There are two different ways machine learning can be applied to spindle
detection [40]. The algorithm can either learn the spindle characteristics through
supervised learning from datasets where the spindles have been detected previously
or the algorithm can be trained through unsupervised learning, where the machine can
start detecting the spindles without any pre-existing information about the spindle
waveform [40]. The supervised learning is more commonly used method, however, it
is dependent on the quality of the datasets used in the teaching process [40]. If the
the quality of the teaching dataset is poor, it will result in poor algorithm as well [40].

3.2 Slow wave oscillation
The terms used when describing slow wave sleep (SWS) can be confusing since the
definitions for the terms tend to vary across different studies [52]. Genzel et al. noted
that in human studies SWS refers to sleep stage N3 while in animal studies SWS refers
to all NREM stages [52]. Therefore, in this thesis, the term SWS will be used to refer
to N3 sleep stage. Following the definitions given by Leger et al., slow oscillation
(SO) is an “oscillation visible in the local field potential (LFP) or EEG between 0.5
and 4.5 Hz” [53]. Furthermore, they define slow wave activity (SWA) as a “signal
obtained after filtering in the low frequency range followed by a threshold to detect
large fluctuation in the LFP/EEG during sleep” [53]. However, in the AASM manual
SWA is defined as a signal with frequencies between 0.5–2 Hz [6].

The waveform of an SO is characterized by an upstate with positive voltage amplitude
and a downstate with negative voltage amplitude [54]. During upstates, also
known as depolarized states, local cortical neurons synchronously depolarize, and
during downstates, or hyperpolarized states, local cortical neurons hyperpolarize
[54]. According to the AASM, the peak-to-peak amplitude between the upstate and
downstate of the SO must be >75 µV in the frontal derivations [6].

The origin of the SOs has not been fully determined. However, the cortex has been
found to play a role in the generation of slow oscillations [55, 56]. In fact, Murphy et
al. found that even disconnected cortical slabs still generate SOs [56]. Furthermore,
a source modelling study has shown that the origin points of the slow waves center
around the lateral sulci and then propagate into insular, parietal, temporal, and
frontal cortices [55]. However, even though SOs have been shown to originate from
several areas in the brain, studies have found that the SOs originate more frequently
in anterior areas and propagate in anterior-posterior direction as traveling waves [55,
57]. Nevertheless, despite concluding that the SOs originate from the cortex, some
subcortical structures have been hypothesised to contribute to the SO as well [54].
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These subcortical structures include thalamus, basal forebrain, and brainstem nuclei
[54]. There especially is an interest to find out whether the thalamus has an impact
on, for example, the initiation, persistance, and termination of SO upstates [54].

The amount of SOs has been found to increase as the sleep progresses from wakefulness
and light sleep to deep sleep [57]. Thus according to the AASM, if slow wave activity
is detected in ≥ 20% of the sleep stage epoch in question, that epoch should be scored
as N3 sleep [6]. As with sleep in general, age has a big impact on the amount of SWS
for humans. The amount of N3 has been found to decrease with increasing age [58].
Furthermore, N3 has been found to be more fragmented with older subjects compared
to younger subjects [58].

Studies have found a link between disrupted N3 and Alzheimer’s disease [59].
Additionally, a decrease in SWA has been found in patients with mild cognitive
impairment [59]. Therefore, it has been suggested that reduced SWA during NREM
sleep can be a biomarker for patients with Alzheimer’s disease [59]. Furthermore,
there is an interest to study whether it would be possible to restore SWA during
NREM sleep in patients with Alzheimer’s disease [59]. This could be done with
transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation
(TMS) [59]. Both methodologies have resulted in an increase in SWA and
improvement in memory tasks in human subjects [59].

3.3 Time synchronization of sleep spindles and slow wave
oscillation

In addition to sleep spindles and SOs individually, their time synchronization and
the effects of the time synchronization has been studied. In these studies, their
coupling has been linked to brain plasticity and memory consolidation [17, 25, 40].
Furthermore, even though sleep spindles have been linked to memory consolidation
on their own, cortical pyramidal cell activations by coupled SOs and sleep spindles
have been found to be more powerful than the activation by just spindles alone [40].

Several factors have been linked to the location of the sleep spindles regarding the SO
phase. These factors include the topographical location of the sleep spindles, the age
of the subject, and whether the spindles are fast or slow. For example, Andrillon et
al. found an increased number of spindles 0–500 ms after a negative slow wave peak
[23]. They also noted that fast centroparietal spindles were more likely located in the
upstates of a SO compared to frontal slow spindles [23]. Andrillon et al. also found
that when detecting spindles in several parts of the brain, fast centroparietal spindles
often appeared before slow frontal spindles [23]. These results were supported by
Mölle et al. who found that fast spindles were often located at the up-state of the SO
whereas slow spindles often occurred in the transition phase from the up-state to the
down-state of the SO [24]. Muehlroth et al. found that with older subjects, the fast
spindles did not occur at the SO peak, as is often the case in younger subjects [25].
However, older subjects were observed to have an increase in the slow spindle power
at the end of the SO up-state [25].
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Increased slow spindle occurrence at the end of the SO up-state was found to result in
worse memory consolidation in younger subjects while fast spindle and SO coupling
resulted in improved memory consolidation in both younger and older subjects [25].
Furthermore, Mölle et al. concluded that even though time synchronization of
spindles and slow waves was present in subjects without prior learning, but the
results were enhanced in subjects who did do a memory task prior sleeping [24].
Moreover, the coupling of sleep spindles and SOs has been found to decrease in older
compared to younger subjects [17]. Enhancing the SWS without affecting the number
of sleep spindles has not been found to enhance memory consolidation [60]. However,
pharmacologically increasing sleep spindle and SO coupling has been found to result
in improved verbal memory [61]..

The time synchronization between sleep spindles and slow wave oscillations has been
studied using several different methods. These methods have included correlation
histograms [16, 24], complex demodulation [26], power spectra [17], spectrograms
[17], Hilbert transform [61], and modulation index [61], among others. They are based
on filtering the signal in sleep spindle frequency, after which either thresholding or
envelope power estimation often takes place.
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4 Time-frequency analysis of non-stationary sig-
nals

This section focuses on the mathematical description of the signal analysis methods
in the data analysis part of this thesis. These methods included empirical mode
decomposition, the continuous wavelet transform, the Hilbert transform, and complex
demodulation.

4.1 Empirical mode decomposition
Empirical mode decomposition (EMD) is a nonlinear data analysis method rivaling
with Fourier spectral analysis [62]. Fourier transform is widely used in signal analysis
and it has become the standard due to its less restrictive conditions compared to
most data analysis techniques [62]. The restrictive conditions in Fourier analysis only
include assumptions for linearity and stationarity [62]. Furthermore, in the cases
where these assumptions are not fulfilled, Fourier transform is still useful if proper
approximations are used on the data [62]. However, when using Fourier transform
in cases where linearity and stationarity approximations are not valid, the results
will have misleading harmonic components [62]. These harmonic components will
cause energy spreading, leading to biased energy-frequency distribution [62]. This
can issue a challenge when waveforms with certain frequency need to be detected, as
the Fourier transform cannot distinguish instantaneous frequencies [62]. Therefore,
other non-stationary data analysis techniques, such as EMD, are needed to extract
the temporal frequency information in a time-series [62].

EMD is a method designed to decompose nonlinear and non-stationary signals [62].
In EMD, the idea is to decompose the signal into separate intrinsic oscillatory modes
called intrinsic mode functions (IMFs) [62]. These IMFs are oscillatory signals,
consisting of equal number of extremas and zero-crossings [62]. The decomposition is
performed empirically, i.e., it is based on the time scales in the data [62]. The time
scales were defined by Huang et al. as the time lapse between successive extrema [62].
Choosing the time scales as aforementioned leads to better resolution of oscillatory
modes than if the time scales were defined as time lapses between successive zero
crossings [62]. This choice also allows EMD implementation to data with non-zero
mean [62].

The IMFs can be extracted from the signal with a process of shifting [62]. In shifting
two envelopes are drawn for the maximum and minimum values of the signal, for
example with cubic splines [62]. After this, all the data should be located between the
maximum and minimum envelope [62]. Furthermore, the mean of the two envelopes
is calculated and this mean is then subtracted from the original data [62]. If the
resulting signal is a zero-mean signal, the first IMF has been created [63]. If the
resulting signal does not have a zero mean, the shifting process is repeated on the
subtracted signal of two previous consecutive iterations until the zero-mean condition
is fulfilled, in which case the first IMF has been created [63].
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The second IMF can be extracted in the same manner, implementing the shifting
process on a residual signal obtained by subtracting the first IMF from the original
signal [63]. This process can be continued until the residual signal is a monotonic
function or a signal with one maximum and one minimum (Figure 3) [63].

The aim of the shifting process is to remove any riding waves, which can be described
as, for example, a maximum that does not cross the zero line between two consecutive
minimas [62]. This is important for making the instantaneous frequency meaningful,
i.e., in order to the Fourier transform of the real part of the signal to have only positive
frequencies [62]. If any negative frequencies are present, which is the case in riding
or asymmetrical waves, the instantaneous frequency is not defined [62]. Also with
shifting, the aim is to produce more symmetric waveforms which is important for cases
where the neighbouring wave amplitudes differ considerably [62]. This smoothing of
uneven amplitudes may come at a cost if the shifting process is continued for too
long, causing some physically significant waveforms to disappear [62]. Therefore, it
is important to have some stopping criteria for the shifting process in place [62].

EMD can be useful in signal event detection due to the extracted IMFs being
symmetric in respect to the local zero mean, and having an equal number of zero
crossings and extrema [62]. With these characteristics it is possible to utilize the
concept of instantaneous frequency to localize an event from the signal [62].
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Figure 3: The original electroencephalogram (raw EEG) and the first six of its intrinsic
mode functions (IMFs) obtained through empirical mode decomposition.
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4.2 Continuous wavelet transform
The continuous wavelet transform (CWT) is a popular tool in time-frequency analysis
of non-stationary signals [64]. The main reason for this is the accurate time-frequency
localization of the CWT [64]. With other methods, such as the Fourier transform,
even though the information of the frequency content of the signal is obtained, the
temporal locations of the frequency features are not given [64]. This can be addressed
with a windowed Fourier transform, also known as the short-time Fourier transform
(STFT) [64]. However, choosing the window function can be challenging if there are
signal features of different scales to be recognized [64]. Furthermore, for the STFT, the
signal is required to be piece-wise stationary, and additionally, preserving sufficient
frequency and time resolution simultaneously can be challenging [63]. Thus, in these
cases, the CWT can be a useful option due to its capability to change according to
the analyzed frequency content [64].

The CWT is defined as

Wf(u, λ) =
∞∫︂

−∞

∞∫︂
−∞

f(t)ψu,λ(t)dt, λ > 0

=
∞∫︂

−∞

∞∫︂
−∞

f(t) 1√
λ
ψ
(︃
t− u

λ

)︃
dt,

(1)

where t denotes time, f(t) is the signal for which the wavelet transform is calculated
and ψu,λ(t) denotes a wavelet, also referred to as the mother wavelet, with a scaling
parameter λ and a temporal location parameter u [65]. The mother wavelet must
satisfy an admissibility condition

Cψ = 2π
∞∫︂

−∞

|ψ̂(ω)|2
|ω|

dω < ∞, (2)

where Cψ is the admissibility constant, ψ̂ is the Fourier transform of the wavelet
function ψ and ω is frequency [66]. Condition 2 holds for wavelet functions if
ψ ∈ L2(R). However, if ψ ∈ L1(R) and therefore ψ̂ is continuous, (2) is still true
if the condition ψ̂(0) = 0, i.e.,

∫︁
ψ(x)dx = 0 holds [66]. If the chosen wavelet is of

complex form, ψu,λ(t) is replaced with the complex conjugate of the wavelet ψu,λ(t)
[64]. Furthermore, to achieve temporal localization, the mother wavelet must have
compact support or decay fast [64].

Depending on the application, the wavelet can be modified with the choice of λ, as
the temporal width of the wavelet varies directly proportional to λ, and the width of
the wavelet’s frequency band varies inversely proportional to λ. If λ > 1, the wavelet
is stretched along the temporal axis and contracted along the frequency axis, and vice
versa, if λ < 1. This can be illustrated with Heisenberg boxes in time-frequency plane
(Figure 4). [65] Additionally, the choice of u will result in a directly proportional shift
in the temporal location of the wavelet ψu,λ(t) [64].
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Figure 4: Two wavelets ψu,λ and ψu0,λ0 , presented as Heisenberg boxes in time-
frequency (t,ω)-plane. σt represents the time width and σω represents the frequency
height of the Heisenberg box. |ψ̂u,λ(ω)| and |ψ̂u0,λ0(ω)| represent the energy spreading
of the two wavelets. The boxes are located at time points u0 and u and they are dilated
or contracted according to the scale parameters λ0 and λ. The scale parameter also
determines the positive frequency interval, centered around η/λ or η/λ0. Picture
modified from [65].

As the purpose of the study was to detect patterns such as sleep spindles, Morlet
wavelet was chosen as the mother wavelet due to its suitable form. The Morlet
wavelet is defined as

ψ(t) = π−1/4(e−iω0t − e−ω2
0/2)e−t2/2, (3)

where i is the imaginary unit and ω0 is the center frequency [67]. Furthermore, if
ω0 ≥ 5, the equation can be approximated as

ψ(t) = π−1/4e−iω0te−t2/2, (4)

since the term e−ω2
0/2 in (3) becomes negligible [64]. However, the Fourier transform

of (4) is
ψ̂(ω) =

√
2π1/4e−1/2(ω−ω0)2 (5)

and thus, the admissibility condition

ψ̂(0) =
√

2π1/4e(−ω0)2/2 ̸= 0 (6)
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is not fulfilled [67]. Nevertheless, for ω0 ≥ 5, the Fourier transform of (4) becomes

ψ̂(ω) ≈ 0, ω ≤ 0, (7)

thus satisfying the admissibility condition [64, 67]. From (4), a Gaussian function
e−t2/2 can be observed to modulate the harmonic oscillating function e−iω0t [20]. Thus,
the shape of the Morlet wavelet is similar to a sleep spindle (Figure 5). Additionally,
it is a complex function, which makes the extraction of the phase and the amplitude
feasible [64]. Furthermore, the wavelet energy can be calculated as

E(u, λ) = |W (u, λ)|2. (8)

The wavelet energy describes the distribution of spectral power of the signal [20]. It
can be used to detect the sleep spindles by setting a threshold at which a waveform
is considered to be similar enough to the mother wavelet that it can be considered a
sleep spindle [20].
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Figure 5: The Morlet wavelet ψ(t). The solid line represents the real part and the
dotted line represents the imaginary part of the wavelet.
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4.3 Hilbert transform
The Hilbert transform (HT) is a signal analysis tool which transforms a real signal
x(t) into a complex valued signal z(t),

z(t) = x(t) + iH(t), (9)

where H(t) is the HT of a real signal x(t), i is the imaginary unit i =
√

−1 and t
denotes time. In other words, the transform produces a complex component H(x(t))
for the real signal x(t) and as a result an analytical signal z(t) is obtained. Obtaining
an analytical signal allows the extraction of instantaneous phase and amplitude of
the signal x(t). [68] The instantaneous phase ϕ(t) can be calculated as

ϕ(t) = arctan
(︄

Im(H(t))
Re(H(t))

)︄
, (10)

and instantaneous amplitude a(t) as

a(t) =
√︂

Re(H(t)) + Im(H(t)). (11)

Furthermore, the HT is defined as

H(t) = 1
π

P
∞∫︂

−∞

x(τ)
t− τ

dτ, (12)

where τ is the integration variable and P represents Cauchy’s principal value [62]. The
HT is a convolution between the original real signal and the impulse response (12) [69].

The HT extends a two-dimensional real signal into a three-dimensional complex
signal. In practice this means that after the HT, the difference between the original
real signal x(t) and the new complex valued signal can be seen in the frequency
content. The positive frequency components of the real signal z(t) are equal to the
positive frequency components of the real signal x(t) but shifted by −π/2 in phase.
Similarly to the negative frequency components but this time the phase shift is π/2.
[70]

The usefulness of the Hilbert transform lies in its ability to extract the instantaneous
envelope and phase of a signal waveform [70]. Due to its complex form, the extracted
envelope is more accurate than in other methods such as amplitude demodulation,
might produce [70]. From the instantaneous phase it is possible to calculate the
instantaneous frequency of the signal which is crucial in applications studying the
time synchronization of signal waveforms [70]. Furthermore, the HT is also popular
due to its simplicity, as there is no need for domain changes [69]. If the HT is
performed on a signal in time domain, the resulting signal will be in time domain as
well [69]. As the same applies in frequency domain, the computational demand of the
technique is little compared to techniques that require domain changes [69].
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4.4 Complex demodulation
Complex demodulation is a technique in the analysis of modulated signals [71]. The
idea behind complex demodulation is to acquire a complex representation of an
analytic signal [72]. Therefore, after acquiring the complex form of the real signal
by complex demodulation, the envelope and phase functions can be extracted. The
envelope function describes the energy of the signal, and therefore, any maximum
peaks observed in the envelope function can be utilized to localize any transient waves
[71]. Additionally, the phase function and more importantly, the first derivative of
this phase function, describes the instantaneous frequency of the signal.

Complex demodulation can be performed in the time domain as follows: the analytic
signal x(t) can be modelled as

x(t) = A(t) cos(f0(t) + h(t)), (13)

where t denotes time, f0 is the center frequency, A(t) is the amplitude function and
h(t) denotes the phase function [73]. Furthermore, by using Euler’s equation, (13)
can be expressed as

x(t) = A(t)(ei(f0t+h(t)) + ei(−f0t+h(t)))/2. (14)

Now, after expressing the analytic signal in a polar form, the signal equation is
multiplied with exponential function e−if0t. This will result in the spectrum of the
analytic signal x(t) to be shifted towards the origin by f0 (Figure 6)[73]. Thus

z(t) = x(t)(2e−if0t)
= A(t)(eih(t) + e−i(2f0t+h(t))).

(15)

After shifting the spectrum of the analytic signal, the signal z(t) is lowpass filtered
to obtain the spectra of the signal components that are of interest (Figure 6). The
resulting signal y(t) is of form

y(t) = A(t)eih(t), (16)

which is also the complex envelope of the analytic signal x(t). Furthermore, the
envelope function is

A(t) = |y(t)| (17)
and the phase function is of form

g(t) = f0t+ tan−1
(︄

Im(y(t))
Re(y(t))

)︄
. (18)

To be able to extract the envelope and phase functions appropriately, the signal is
required to be a bandpass type [73]. Therefore, a preprocessing step might be needed
and hence, the total process of complex demodulation includes two filtering steps [71].
This results in two convolution integrals to be performed in time domain, which leads
to increased computation time [71]. To address this issue, complex demodulation has
been suggested to be performed in frequency domain instead of time domain, thus
decreasing the amount of convolution integrals needed in the process [71]. However,
despite the possible computational demands, Ktonas et al. have pointed out that
complex demodulation is the most effective and flexible technique to implement in
demodulation applications [71].
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Figure 6: Complex demodulation performed in frequency domain. F(f) denotes the
frequency spectrum, f is the frequency and F+(f) is the positive frequency spectrum.
Furthermore, f0 is the central frequency of the frequency spectrum, f1 is the first
frequency value of the spectrum and f2 is the last frequency value of the spectrum.
A) Initial frequency spectrum of a real signal. B) Frequency spectrum is shifted by
frequency f0. C) After lowpass filtering, only the desired frequencies are left.
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5 Aims and hypotheses
The aim of this Master’s thesis was to investigate the time synchronization of
sleep spindles and slow wave oscillation in nocturnal EEG signals using complex
demodulation and the Hilbert transform. The aim was to compare the obtained time
synchronization results between these two methods and to investigate whether the
different methods affect the perceived position of the sleep spindles in reference to
the slow waves. Additionally, the aim was to investigate two different approaches,
first by detecting slow waves and performing a time synchronization analysis and
secondly, detecting spindles from the slow waves, and then performing the time
synchronization analysis. The aim was to compare these two approaches to study
if any major differences between these approaches were observed.

We hypothesized that the time synchronization between the sleep spindles and slow
waves can be found using both methods and that similarly to previous literature the
sleep spindles would be located in the positive peak of the slow wave. Furthermore,
we hypothesized the time synchronization results obtained with the different methods
and approaches mainly support each other, possibly having only minor discrepancies.
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6 Methods
In this section, the methods of the thesis study are explained. This section describes
the used dataset (Section 6.1), and the detection of the slow waves (Section 6.2)
and sleep spindles (Section 6.3). Additionally, the the time synchronization and
coupling analyses between sleep spindles and slow waves are described (Section 6.4).
All analyses were carried out using MATLAB R2019b (MathWorks, 174 Natick,
Massachusetts, USA).

6.1 Data
The data used in this study was a collection of EEG signals from diagnostic type
I PSGs. The PSGs were recorded in Australia at the Sleep Disorders Center of
Princess Alexandra Hospital (Brisbane, Australia) from 899 patients with suspected
obstructive sleep apnea. The data was collected in 2015–2017 with an acquisition
system Compumedics Grael (Compumedics, Abbotsford, Australia) and the collection
was approved by the Institutional Human Research Ethics Committee of the Princess
Alexandra Hospital (HREC/16/QPAH/021 and LNR/2019/QMS/54313).

The maximum power spectra of slow sleep spindles and SO frequencies have been
found in the fronto-central derivations of EEG [24]. Additionally, the maximum
power spectrum for fast sleep spindle frequencies has been found in the centro-parietal
derivations of EEG [24]. Therefore, the chosen EEG signals for this study were from
the channel C4-M1, i.e., a central channel of EEG. The signal was recorded with 1024
Hz frequency and for signal analysis purposes, the signal was downsampled to 64 Hz
after lowpass-filtering in frequency range 1–128 Hz, according to the Nyquist theorem
to avoid any aliasing during downsampling. In addition to the EEG-signals, every
patient had manually scored sleep stages available. Furthermore, since the epochs
scored as N3 include both sleep spindles as well as slow wave activity [37], only these
were chosen to be analyzed.

6.2 Slow wave detection
The amplitude of normal human EEG is in the range of 20–100 µV [11]. Therefore
any N3 epoch containing EEG amplitude higher than 250 µV was excluded. After
the artefact exclusion, the N3 epochs of interest were bandpass filtered in the range
of 0.5–2 Hz. The bandpass filter was a Finite Impulse Response (FIR) filter with
order of 60 and sampling frequency of fs = 64 Hz. From the filtered EEG, slow waves
were detected using a similar approach as Dang-Vu et.al [74]: the slow wave negative
peak amplitude should exceed 80 µV, and the combined amplitude of the negative
and the positive slow wave peaks should be higher than 140 µV. In addition to the
amplitude criteria, the duration of the negative slow wave peak should be in the range
of 300–1500 ms and the duration of the positive slow wave peak should be <1000 ms
(Figure 7). If a slow wave fulfilling the criteria was detected, a segment of raw EEG
with duration of 5 seconds was extracted. The segments fulfilling these criteria were
position-locked, i.e., the negative slow wave peaks were placed 2.5 seconds from the
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start of each segment.

Figure 7: Slow wave detection criteria.

6.3 Sleep spindle detection
Spindle detection was performed with a combination of EMD and wavelet transform
by using a method previously described by Grubov et al. [20]. EMD was performed
to the 5 seconds long segments of slow wave-locked signals and thus, the IMFs were
obtained. For the spindle detection, the first IMF was chosen, since it contains the
frequencies of sleep spindles [20]. After obtaining the first IMF of the signal, the CWT
was performed using (1) to detect sleep spindles from the signal using the Morlet
wavelet as the mother wavelet due to its similar shape to a sleep spindle. The wavelet
coefficients and u (1) were obtained from the the CWT, out of which the coefficients
corresponding to spindle frequencies (11–16 Hz) were chosen. Furthermore, the
wavelet energies were computed using (8). As several wavelet coefficients were
obtained due to the use of dilated and contracted variations of the mother wavelet, a
mean of the wavelet energies was calculated within the frequency band. Additionally,
to avoid short-time artifacts and the following pattern recognition errors, temporal
mean wavelet energy was calculated using moving average.

From the mean wavelet energy spectrum, all the positive peaks were identified, as
they corresponded to possible sleep spindles. Moreover, to choose the most probable
sleep spindles out of all the peaks, a threshold was chosen. If the peak in the wavelet
energy spectrum was higher than 70% of the mean value of the peaks, a possible
spindle was detected (Figure 8). As spindles should range between 0.5–3 seconds in
duration, wavelets with durations outside this range were discarded as not spindles.If
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a spindle was not found in a slow-wave segment, that segment was excluded from
the analyses. After detecting the spindles, 4-second-segments, ±2 seconds around the
maximum amplitude points of the spindles were separated from the spindle filtered
EEG. These segments were then position-locked to the maximum amplitude point of
each spindle, determined from the first IMF of the EEG.
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Figure 8: Spindle detection. First figure shows the raw electroencephalogram (EEG)
signal, second figure shows the first intrinsic mode function (IMF) and the last figure
shows the wavelet power spectrum. In addition in the wavelet power spectrum, there
is a threshold presented in red, which is the 70% of the mean of the peak values. Even
though several peaks surpassed this threshold, they might not have been desired
length and thus were excluded from spindle detection. The detected spindles are
marked as black in the raw EEG signal as well as in the IMF signal.
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6.4 Sleep spindle and slow wave coupling
As a result of the slow wave and spindle detection, two separate datasets were formed:
one including the EEG-segments that were position-locked according to the slow
waves, and another one including essentially the same EEG-segments, but position-
locked according to the corresponding spindles. Hence the two data-sets were equal-
sized, as one slow wave in the first dataset was always related to one spindle in the
second dataset. The coupling of these spindles and slow wave oscillations was studied
by using the HT as well as complex demodulation. The analyses were done using two
approaches, i.e., on two datasets; first on the dataset including the position-locked
sleep spindles and then on the dataset including the position-locked slow waves. The
the HT and complex demodulation were applied to both datasets to study the time
synchronization.

The HT was calculated for each signal from both spindle-locked and slow wave-locked
datasets using (12). For the HT, EEG segments during the slow wave- and spindle-
locked segments were filtered with FIR band-pass filters (fs = 64, filter order =
60) to obtain the slow wave oscillation in frequency range of 0.5–2 Hz and spindle
oscillation in frequency range of 11–16 Hz. Before further analyzing, the filtered slow
wave segments were shortened from 5 seconds to approximately 2 seconds in length,
while maintaining the position-locking. The extra length was cut from both ends of
the signals to avoid any effects of the filtering on the HT. The HT was calculated for
the filtered slow wave oscillation and the phase of the slow wave was obtained using
(10).

Similarly, for the spindle-locked dataset, the segment lengths were shortened from 5
seconds to 2 seconds, to avoid filtering effects on the HT. With the HT, the amplitude
of the filtered spindle oscillations were calculated using (11). Furthermore, mean
spindle amplitude in each slow wave phase was calculated. The spindle amplitudes
were then normalized with the mean of the mean amplitudes across all slow wave
phases, i.e. the grand-mean. By normalizing the amplitudes with the grand-mean, it
is possible then to compare the results with other studies, where the absolute values
might differ greatly from our own results. Additionally, the maximum amplitudes,
i.e., the maximum amplitude of each spindle, and their location were calculated.

For the same position-locked signal segments, complex demodulation was computed.
The signals were band-pass filtered with the same filter as previously to obtain the
signal in spindle frequencies 11–16 Hz. The envelopes of the spindle-filtered signals
were computed using (17) (Figures 9a and 9c) and the powers of the envelope were
obtained by calculating the square of the envelope amplitudes (Figures 9b and 9d).
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(a) (b)

(c) (d)

Figure 9: Examples of complex demodulation. In a) and c) the raw position-locked
slow wave signal is presented in blue and the signal filtered in spindle frequencies
in orange. Furthermore, the envelopes obtained through complex demodulation are
presented in black. In b) and d) the power of the envelopes in a) and c), respectively,
are presented.
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7 Results
In this section, the results of the thesis are presented. First, the results of the HT are
presented in section 7.1. The results for slow wave-locked segments and spindle-locked
segments are presented in the sections 7.1.1 and 7.1.2, respectively. Furthermore,
results of the complex demodulation are presented in section 7.2. The results for slow
wave-locked segments and spindle-locked segments are presented in the sections 7.2.1
and 7.2.2, respectively.

7.1 Hilbert transform
7.1.1 Slow wave-locked segments

Mean instantaneous spindle amplitudes were the lowest between the slow wave phases
π/2 and π, which corresponds to the decreasing slope after the slow wave peak, and
the highest between the slow wave phases 3π/2 and 0 (Figure 10a). This translates
to the increasing slope of the slow wave before the positive peak.

Higher maximum spindle amplitudes were observed around the positive peak of the
slow wave, i.e., between phases 3π/2 and π/2 than around the negative peak, i.e.,
between phases π/2 and 3π/2 (Figure 10b). These phases 3π/2 and π/2 correspond
the middle points of the increasing and decreasing slopes of the slow wave.

7.1.2 Spindle-locked segments

Mean instantaneous spindle amplitudes were the lowest between the slow wave phases
π/2 and π, corresponding to the decreasing slope of the slow wave. The highest
amplitudes were observed between the slow wave phases 3π/2 and π/2 (Figure 10c).
This translates to the middle of the increasing slope and the positive peak of the slow
wave.

Higher maximum spindle amplitudes were observed between the slow wave phases
3π/2 and 0 (Figure 10d), which translates to the increasing slope of the slow wave
before the positive peak. Even though these were the highest, other peaks between
the phases 0 and π/2 were close in value as well, which would correspond to the
decreasing slope, right after the positive peak of the slow wave.
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Figure 10: The mean instantaneous spindle amplitudes are presented as a function of
the mean slow wave phase during a) slow wave-locked segments and c) spindle-locked
segments. The amplitudes were normalized with the grand-mean. The maximum
amplitudes of the spindles in the corresponding slow wave phases are shown during
b) the slow wave-locked segments and d) spindle-locked segments.
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7.2 Complex demodulation
7.2.1 Slow wave-locked segments

From the mean power of the complex envelopes, five peaks were observed, indicating a
possible spindle (Figure 11c). The first smaller spindle peak occurred in the beginning
of the slow wave, i.e., already before the slope of the negative amplitude. The next
peak was observed at the decreasing slope of the slow wave, before its negative peak.
The third and the highest peak in the power envelope was observed in the increasing
slope of the slow wave, before its positive peak. In addition, two similar but slightly
smaller peaks closely followed the highest peak, effectively forming one wide spindle
peak extending over the positive amplitude of the slow wave.

Additionally, the mean of the spindle-filtered segments was calculated (Figure 11a)
to investigate whether the shape of the spindle could be observed and whether its
location matched with the complex envelope power peaks. However, no clear spindle
shape was observed from the result.

7.2.2 Spindle-locked segments

The results obtained through complex demodulation (Figure 11d), showed that after
obtaining the mean power of the signal envelopes, two smaller peaks and one higher
peak could be observed. The first peak was located at the decreasing slope of
the slow wave, before the negative peak. The second and the highest peak in the
complex envelope was located at the positive peak of the slow wave. However, the
shape of the slow wave diminished by the third complex envelope peak, so no clearly
distinguishable position in reference to the slow wave was observed. In addition from
the mean spindle filtered signal, one spindle shape was observed and its maximum
point was located after the positive peak of the slow wave (Figure 11b).
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Figure 11: Means of differently decomposed electroencephalogram segments including
the same spindles and slow waves, but position-locked according to the location of the
a) and c) slow waves, and b) and d) spindles. Means of the slow wave filtered (0.5–2
Hz) signals are presented in the upper figures of a) and b). Lower figures of a) and
b) show the mean of the spindle filtered (11–16 Hz) signals. In c) and d), the mean
power of the complex envelopes are presented, calculated with complex demodulation.
The black lines on figure mark the locations of the corresponding complex envelope
peaks and the red lines present the location of the maximum points of the spindles,
observed from the mean spindle-filtered signal.
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8 Discussion
In this thesis we studied time synchronization of sleep spindles and slow wave
oscillation in nocturnal EEG signals and the location of the sleep spindles in reference
to the slow waves. First, slow waves and their related spindles were detected and
separated from the signals. After that, two signal analysis methods (the HT and
complex demodulation) were used to study their time synchronization. In addition,
both of these analysis methods were implemented using two different approaches. In
the first approach, the spindles were position-locked to obtain the location of the
related slow waves, and in the second approach this was done the other way round.
The results showed indications of time synchronization between sleep spindles and
slow wave oscillation. In the spindle-locked dataset, the results showed strongest
coupling between spindles and slow waves in the increasing slope and the positive
peak of the slow wave. This notion was supported by the results from the HT.
The results from complex demodulation supported the notion, that the spindles were
observed at the positive peak of the slow wave. In the slow wave-locked dataset,
similar results were obtained as the strongest coupling of sleep spindles and slow
waves were observed in the increasing slope of the slow wave. These results were
supported by both methodologies, complex demodulation and the HT.

Time synchronization between sleep spindles and slow waves has been reported in
previous studies [24, 25, 26, 61]. Fast spindles have been reported to be coupled with
the positive peak of the slow wave [24, 25, 26] and slow spindles have been observed
to be coupled with the slow wave at the transition to the slow wave decreasing
slope [24, 25, 26]. Furthermore, Yordanova et al. were able to distinguish that
fast spindles would locate themselves either at the ascending slope of the slow wave,
after the negative peak or right before the positive peak of the slow wave [26]. In this
study, sleep spindles were not separated into fast or slow spindles. However, although
separating fast and slow sleep spindles was outside the scope of this study, similar
results were obtained.

From the spindle-locked results, the HT showed that the most spindles would be
present right before the positive peak of the slow wave. Similar results were obtained
for the slow wave-locked segments, where in the HT results, most spindles were
observed closer to the middle point of the increasing slope of the slow wave, rather
than the positive peak. The results from the complex demodulation for spindle-locked
segments showed the highest spindle-related complex envelope peak at the positive
peak of the slow wave. For slow wave-locked segments, complex demodulation showed
the highest spindle-related complex envelope peak at the ascending slope of the slow
wave. However, the peak of the complex envelope was quite wide, consisting of two
additional smaller peaks. Thus, the peak continued from the ascending slope of the
slow wave through the positive peak to the beginning of the descending slope of the
slow wave.
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Additionally, even though most spindles detected during N3 sleep stage have been
considered to be slow spindles, fast spindles can also be observed in the central
derivations [40]. Furthermore, Gibbs et al. have noted that slow spindles can
be observed in the frontal derivations of EEG and fast spindles in the posterior
derivations [46]. Therefore, considering the abovementioned as well as the previous
literature [24, 25, 26], it is possible that the spindles detected the most in this study
were fast spindles.

The results from the HT in the spindle-locked dataset showed that there was another
point where a slightly higher amount of maximum spindle amplitudes were detected.
This point was found between the phases 0 and π/2, which translates to the beginning
of the decreasing slope of the slow wave. Correspondingly, complex envelope of the
slow wave-locked signals showed a peak in the middle section of the decreasing slope of
the slow wave. Similar results were obtained from the HT as well. These observations
are supported by the study done by Yordanova et al., where they observed that slow
spindles were coupled to the downstate of the slow wave [26]. Thus, it is possible
that the peak observed at the descending slope of the slow wave in the present study
is due to detection of slow spindles. The smaller height of the peak compared to the
peak at the ascending slope could be explained by the fact that even though sleep
stage N3 includes mainly slow sleep spindles [40], they are mostly detected from the
frontal derivations of EEG [46].

The sleep spindles were detected by using a method introduced by Grubov et al. [20],
where they were able to successfully detect sleep spindles by using a combination of
EMD and the CWT. The mean spindle filtered signal of the spindle-locked segments
showed one sleep spindle shape and the spindle had its maximum amplitude at the
point 0.1 s. This point agreed with the 1st IMF-based maximum amplitude point,
where the spindles were originally position-locked (at 0.0 s). Additionally, in the
complex envelope of the spindle-locked segments, the most prominent peak was also
observed approximately at the time point of 0.0 s, where the detected sleep spindles
were time-locked. Thus, these results imply, that the complex demodulation was able
to detect the same spindles as the spindle detection algorithm.

Even during the spindle-locked segments, the mean slow wave filtered signal revealed
a slow wave shape, although it did not meet the slow wave amplitude criteria. This
supports the abovementioned conclusion that the spindles detected in the slow waves
were fast spindles and therefore they were mainly located at the positive peak of the
slow wave, even though the spindle detection algorithm did include the whole sleep
spindle frequency range (11–16 Hz). This may be explained by the fact that the
spindle location is more likely to be at the positive peak of the slow wave in young
adults [17]. Since age has been found to affect the shape of the spindle [46, 75] and
the shape of the spindle has been found to become more even with age [75], it is likely
that the spindle detection algorithm was able to mainly detect fast spindles. Thus the
slight differences between the slow wave-locked and spindle-locked approaches may
result from the spindle-detection algorithm focusing more on the exact spindle shape
unlike the HT or complex demodulation.
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Age plays a large part in the characterization of sleep spindles. Sleep spindle
amplitude has been found to decrease, causing the spindles to lose their shape with
age [46, 75]. Hence, the amplitude for the duration of the spindle becomes more
even with age [75]. Therefore, this might lead to differences in results from different
analysis methods, as methods such as complex demodulation can pick up more spindle
shapes from flatter spindles. Furthermore, this may result in missing possible spindles
in the spindle detection algorithm, when it is used to analyze a group of patients with
varying ages.

Age plays a part in slow wave detection as well. It has been shown that the amplitude
of slow wave sleep decreases in older subjects [76]. Therefore, comparing results of
different studies that have dissimilar slow wave detection criteria, can be challenging.
Since the detection methods often rely on amplitude thresholding, the threshold
values between different methods can be very different, depending on which age
demographic they have been developed on. The slow wave detection method which
was implemented in this study, has been utilized previously in [26] with a threshold
for detecting slow half waves being -80 µV. In other studies, the threshold for slow half
wave detection has varied broadly. Papalambros et al. used -40 µV in their study [77]
and Schneider et al. used mainly -80 µV threshold in their study, but they adapted
the thresholds to -50 µV or -60 µV in some cases [78]. Furthermore, the challenge with
threshold-based methods is that they tend to be susceptible to marking artefacts as
slow waves and therefore result in off-target recognition [79]. However, in this study,
this was avoided by removing any EEG waves which had an amplitude higher than
the normal EEG amplitude range.

This study included some limitations that need to be considered. One of these
was that the study population consisted of patients of different ages. As already
mentioned, the age has an effect on spindle shape [46, 75] as well as the location of
the spindle [17]. Furthermore, age has been reported to have an effect on slow wave
amplitude [15]. Therefore, choosing a demographic within set age range is beneficial.
Additionally, the lowpass filter before downsampling had a higher threshold for
filtering that was required by the Nyquist theorem. Therefore, the results may still
include errors due to the aliasing effect. Furthermore, the study population consisted
of patients with suspected sleep apnea. Therefore, the results obtained in this thesis
do not reflect the healthy population. However, this study focused on comparing
different analysis methods and the aim was to include as much data as possible, and
thus, dividing the data by age was not essential. Furthermore, the definition of a
slow wave depends on the study [77, 78] and therefore, studies utilizing a different
definition for a slow wave will not be comparable with this study. Additionally, only
one channel was used in this study. Slow spindle and slow wave frequencies have
been detected mainly in the fronto-central derivations, while fast spindles have been
detected more in the centro-parietal derivations [24]. Therefore, the central channel
C4-M1 was selected in this study to obtain the whole sleep spindle frequency range
(11–16 Hz). However, the possible mixture of slow and fast spindles originating from
different parts of the brain most likely had an effect on the results.
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9 Conclusions
Time synchronization between sleep spindles and slow wave oscillation was found in
this study using both the HT and complex demodulation. The coupling of these two
EEG patterns was observed to be the strongest at the ascending slope and around the
positive peak of the slow wave. Weaker coupling between these two wave patterns
was observed at the descending slope of the slow wave. These observations were
supported by the results from both datasets. Furthermore, for the slow wave-locked
approach the used analysis method did not show any major differences. Both the
complex demodulation and the HT performed similarly. As for the spindle-locked
approach, the results showed that both complex demodulation and HT performed
comparably as well. Additionally, the spindle detection algorithm was found to agree
with the spindle location obtained using complex demodulation.
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