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ABSTRACT

Mechanical loading of the knee joint is connected to pathologies involving struc-
tural degeneration of the knee, including knee osteoarthritis. Information of knee
joint loading during, e.g., walking, could help in planning more sustainable move-
ment strategies in rehabilitation and in predicting further degeneration of the knee
joint. Although knee joint loading cannot be directly measured in vivo without inva-
sive surgery, musculoskeletal modeling provides a way to estimate biomechanically
informed knee joint loading through simulations of human movement. However,
these simulations are not routinely available for clinical use because they require
a trained expert to measure the subject in a motion laboratory and to conduct the
simulations and other analyses. Additionally, the simulations can be cumbersome
to conduct.

Machine learning algorithms, especially artificial neural networks, have been
proposed to eliminate the simulation phase and to estimate knee joint loading di-
rectly from experimental motion data. However, existing solutions still either utilize
motion capture data or are designed for specific portable measurement technologies.
For out-of-laboratory environments such as clinics, a technology-agnostic solution
that estimates knee joint loading from a simple set of inputs is required.

This doctoral work presents modular artificial neural network models for esti-
mating knee joint loading peaks from simple input data that can be retrieved from
a multitude of portable modalities, such as a video camera or inertial measurement
units. It also presents a method for computing the kinematics of motion in real-
time from inertial measurement units. These methods are a step towards enabling
biomechanically informed estimates of human kinematics and kinetics effortlessly
outside the motion laboratory, e.g., in clinical environments.

In study I, a software library was developed to enable the inverse kinematics
of OpenSim in real-time for inertial measurement units. Throughput and delay
of inverse kinematics calculations during walking were quantified using commonly
used musculoskeletal models. The software library allows real-time analysis of kine-
matics using wearable motion sensors, thus allowing immediate information about
kinematics outside the motion laboratory. Both the code and the publication are
available open access.

In study II, artificial neural networks were trained to predict knee joint contact
force peaks during walking. The networks were trained on data from existing mo-
tion capture data sets. The networks were capable of predicting knee joint contact
force peaks from predictor sets of simple input data. Although the predictor set
was retrieved from motion capture data, it was hypothesized that the data could be
calculated without any motion capture data, which would enable estimation of knee
joint loading peaks without the need for measurements in a motion laboratory.
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In study III, inertial measurement units and computer vision-based human pose
estimation from video camera data were separately used to retrieve a simple pre-
dictor set for estimation of knee joint loading. The predictors were fed to artificial
neural networks that predicted knee joint loading peaks. It was shown that no mo-
tion capture data is required to estimate knee joint loading peaks outside the motion
laboratory. The developed methods could enable biomechanically informed treat-
ment decisions, rehabilitation planning and prevention of disease progression in,
e.g., a physician’s office using a simple webcam or wearable motion sensors.

National Library of Medicine Classification: WE 300, QT 34.5, QS 26.5
Medical Subject Headings: Knee Joint / physiology; Weight-Bearing / physiology; Ki-
netics; Biomechanical Phenomena; Neural Networks, Computer; Musculoskeletal System;
Computer Models; Computer Simulation
Yleinen suomalainen ontologia: polvinivel; rasitus; neuroverkot; liikeoppi; dynamiikka;
tuki- ja liikuntaelimet; mallintaminen; simulointi
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Glossary

This dissertation describes objects and methods that are used by a variety of differ-
ent fields and backgrounds. There is no standardized nomenclature shared by all
fields, and different sources use the same terminology differently. To mitigate this
confusion, the terminology of this dissertation will follow the definitions below. We
do not claim that these are the only correct definitions.

backpropagation an algorithm for calculating the gradient of the loss function in a
neural function by moving backward along the layers of the network.

deep learning a subset of machine learning that involves artificial neural networks
that can form layers of increasingly complicated features from simpler ones.

external force a force that is applied between a physical system and its surround-
ings.

feature information in data that can be used to relate variables to one another; can
be latent or explicit; used by some sources as an alias to predictor.

feature map the output image produced by a kernel when convolved over an input
image in convolutional neural networks.

filter in machine learning, a feature detector in a convolutional neural network that
comprises the kernels for each channel; in signal analysis, an algorithm that
removes noise or frequency content from a signal.

forecasting the task of estimating the values of a time series from previous values
of the time series; subset of prediction.

gradient descent an optimization algorithm for finding the minimum of a function;
in deep learning, utilized often in backpropagation training.

inference study of the effect of the parameters of a model to the output of the
model.

internal force a force that is applied between the components of a physical system,
such as the human body.

kernel a matrix containing the weights of a feature detector in a convolutional neu-
ral network; kernels of each channel (e.g., RGB color) constitute a filter.

knee joint contact force the physical force exerted on the articular surfaces of the
knee joint as a result of external forces (e.g., ground reaction force) and internal
forces (e.g., muscle contraction forces); in this work, we focus particularly on
the compressive tibiofemoral contact force.
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machine learning the use of computational algorithms that can adjust their own
parameters and extract patterns from data to solve problems.

node a single functional unit in an artificial neural network that processes the linear
combination of weights and inputs and a bias term in a nonlinear function and
produces a scalar output; analogous to a biological neuron.

prediction the task of estimating the output of a model from input samples or the
output that an artificial neural network gives during a prediction task.

predictor a variable that is used as input in supervised learning tasks.

regression class of algorithms where the parameters of a statistical model are esti-
mated; in machine learning, used by some sources as an alias for prediction.

response the variable that is estimated in prediction tasks; note that the estimate
given by the prediction model is the prediction, not the response.

supervised learning the use of labeled datasets to train machine learning algo-
rithms.

tensor a multidimensional array whose rank describes its dimensionality; a scalar
is a zero-rank tensor, a vector a first-rank or one-dimensional tensor, and a
matrix a second-rank or two-dimensional tensor.
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Acronyms

ACL anterior cruciate ligament.

ANN artificial neural network.

API application programming interface.

BMI body mass index.

CNN convolutional neural network.

COP center of pressure.

DL deep learning.

FNN feedforward neural network.

GRF ground reaction force.

HPE human pose estimation.

ICD intercondylar distance.

IMU inertial measurement unit.

KFA knee flexion angle.

KJCF knee joint contact force.

LCL lateral collateral ligament.

LS least squares.

MCL medial collateral ligament.

ML machine learning.

MOCAP motion capture.

MS musculoskeletal.

NRMSE normalized root mean square error.

PCL posterior cruciate ligament.

ReLU rectified linear unit.
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RMSE root mean square error.

SDK software development kit.

STD standard deviation.

VC video camera.

VRAM video random-access memory.

xiv



TABLE OF CONTENTS

1 Introduction 1

2 Knee joint 3
2.1 Structure and function ..................................................................... 3
2.2 Pathologies and knee joint loading.................................................... 5

3 Motion analysis 7
3.1 Motion tracking technologies ............................................................ 7

3.1.1 X-ray imaging of motion ........................................................ 7
3.1.2 Marker-based motion capture ................................................. 8
3.1.3 Force plates ........................................................................... 10
3.1.4 Wearable motion tracking devices .......................................... 11
3.1.5 Video analysis and markerless motion capture ........................ 13

3.2 Pre-processing of motion data .......................................................... 14
3.3 The human gait cycle....................................................................... 17
3.4 Musculoskeletal modeling and simulation .......................................... 18

3.4.1 Kinematics and kinetics of motion ......................................... 19
3.4.2 Modeling and simulation workflow ......................................... 19
3.4.3 OpenSim ............................................................................... 22

3.5 Challenges in estimating knee joint loading ....................................... 23

4 Artificial neural networks 27
4.1 Basics of artificial neural networks .................................................... 27
4.2 Feedforward neural networks............................................................. 28
4.3 Convolutional neural networks .......................................................... 29

4.3.1 Computational efficiency ........................................................ 31
4.3.2 Layer structure ...................................................................... 32

4.4 Activation functions ......................................................................... 33
4.5 Training of artificial neural networks ................................................. 34

4.5.1 General principles .................................................................. 34
4.5.2 Training, validation, and test sets........................................... 35
4.5.3 The backpropagation algorithm .............................................. 36

4.6 Neural networks in motion analysis ................................................... 38
4.6.1 Human pose estimation with convolutional neural networks .... 39
4.6.2 Neural networks in estimating joint dynamics ......................... 42

5 Aims 45

6 Materials and methods 47
6.1 Motion laboratory ............................................................................ 47

6.1.1 Motion capture equipment ..................................................... 47
6.1.2 Inertial measurement units ..................................................... 47

6.2 Magnetic resonance imaging for calculating knee intercondylar distance 48

xv



6.3 Collection of the Kuopio gait dataset ................................................ 48
6.3.1 Marker and IMU placement ................................................... 50
6.3.2 Walking measurements .......................................................... 51

6.4 Collection of existing gait datasets.................................................... 52
6.5 Enabling real-time processing of inverse kinematics with OpenSim .... 53
6.6 Musculoskeletal modeling and simulation .......................................... 54
6.7 Designing the model for predicting knee joint loading........................ 55

6.7.1 Response variables ................................................................. 56
6.7.2 Predictor selection ................................................................. 56
6.7.3 Constructing the prediction model.......................................... 58
6.7.4 Evaluating the prediction model ............................................. 59

6.8 Estimating predictors from video data............................................... 59
6.8.1 Identifying keypoints from video frames .................................. 59
6.8.2 Correcting artefacts in keypoint data ...................................... 60
6.8.3 Estimating walking speed using keypoint trajectories .............. 61
6.8.4 Estimating knee flexion angle using keypoint trajectories ........ 64

6.9 Estimating predictors from inertial measurement unit data ................ 64
6.9.1 Estimating walking speed using the orientation data of sensors 66
6.9.2 Estimating knee flexion angle using orientation data of sensors 66

6.10 Post-study analyses .......................................................................... 66
6.10.1 Correlation analysis between kinematics and knee joint con-

tact forces ............................................................................. 67
6.10.2 Multiple linear regression of knee joint loading peaks .............. 68
6.10.3 Nonlinear effect of predictors on knee joint loading peaks ....... 69

7 Results 73
7.1 Performance of computing real-time inverse kinematics ..................... 73
7.2 Musculoskeletal simulation-estimated knee joint contact force peaks . 73
7.3 Estimating the walking speed and knee flexion angle predictors ......... 73
7.4 Predicting knee joint contact force peaks .......................................... 75

7.4.1 Nonlinear effect of predictors on knee joint contact force peaks 76
7.5 Linear correlation between kinematics and knee joint contact force

peaks ............................................................................................... 77
7.6 Multiple linear regression of knee joint loading peaks ........................ 78

8 Discussion 81
8.1 Real-time inverse kinematics............................................................. 81
8.2 Validity of estimated knee joint contact force ................................... 81
8.3 Estimating predictors from portable modalities .................................. 82

8.3.1 Walking speed from IMU data ............................................... 82
8.3.2 Walking speed from video camera data .................................. 82
8.3.3 Knee flexion angle from IMU data.......................................... 83
8.3.4 Knee flexion angle from video camera data ............................ 84

8.4 Predicting knee joint loading ............................................................ 85
8.4.1 Practical feasibility of predicting knee joint contact force peaks 85
8.4.2 Clinical potential of the methods ........................................... 86
8.4.3 Defining the criteria for prediction error ................................. 88
8.4.4 Modeling the relationship between knee joint loading and sim-

ple predictors ......................................................................... 89
8.4.5 Comparison to multiple linear regression ................................. 90

xvi



8.4.6 Nonlinear effect of predictors on knee joint contact force peaks 91
8.4.7 Our studies among the existing corpus of machine learning in

biomechanics ......................................................................... 91
8.5 Linear correlation between kinematics and knee joint contact forces .. 92
8.6 Future directions .............................................................................. 93

9 Summary and conclusions 95

BIBLIOGRAPHY 97

xvii





1 Introduction

Knee is an important joint that facilitates most of human locomotion [1,2]. It is sub-
jected to heavy physical loading, generated not only from the weight of the body but
the effects of soft tissues like muscle contraction as well [3–7]. This physical loading
is believed to be linked to structural degeneration of the joint, e.g., cartilage dam-
age [7–11]. Therefore, ways to quantify the loading exerted on the joint could help
in preventing the onset and progression of knee pathologies and assist in physical
rehabilitation to reduce abnormally high knee loading [12].

Knee joint loading is difficult to measure because all available technologies for
its direct measurement are invasive [6]. The physical measurement of knee joint
loading requires cutting through live tissue to place sensors, which is currently only
feasible with some knee implants. However, knee implants are only placed in sur-
gical total knee replacement operations, where the original knee joint is already so
damaged it has to be replaced [13, 14]. Thus, knowledge of knee joint loading af-
ter the surgery is too late to help in analyzing the onset or progression of structural
degeneration of the joint. Furthermore, gait involving implanted knees may not rep-
resent healthy gait because of other gait-affecting conditions surrounding the cause
of the knee degeneration, and because the implant cannot perfectly replicate the
original knee in its structure and function [14]. Therefore, knowledge of knee joint
loading in healthy subjects before the development of any pathology is required.

Knee joint loading can be computationally estimated with musculoskeletal mod-
eling and simulation [6]. It involves measuring the movement and the ground reac-
tion forces related to it, creating a subject-specific computational model of the sub-
ject’s musculoskeletal system, simulating the movement using the model and the
collected data, and extracting the forces exerted to the knee joint of the model in the
simulation [6,15,16]. Although its validity is based on how well the musculoskeletal
model represents the subject and the quality of the measured data, musculoskeletal
modeling and simulation is noninvasive and therefore, the best available option for
estimating knee joint loading.

There are two factors that limit the accessibility of musculoskeletal modeling
and simulation. First, measuring movement and ground reaction forces requires a
specialized motion laboratory with expensive motion capture equipment and soft-
ware [17]. Second, musculoskeletal modeling and simulation is a computationally
demanding workflow that is too slow in use cases where kinematic or kinetics out-
puts are needed immediately, such as in real-time feedback for rehabilitation [18–20].
Furthermore, an expert must conduct the measurements and analyze the data [21].

Enabling accurate measurement of motion outside the motion laboratory would
help in bringing biomechanically relevant information to routine use in clinics, home
environments, and other out-of-laboratory settings [22–24]. To make the estimation
of knee joint loading accessible in routine clinical contexts, technologies to measure
and analyze motion must be usable in an office environment and without special
expertise. Only then estimates of knee joint loading could be used to make risk
assessments of loading-related conditions [25], guide rehabilitation exercises and
gait retraining [26], and develop predictive models for the onset and progression of
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joint diseases [27] in a clinical setting.
Inertial measurement units and video cameras represent an alternative to motion

capture systems for measuring human motion [17, 25, 28–32]. Inertial measurement
units are wearable multi-sensor devices that can be used to track the kinematics of
body segments. They transmit the data wirelessly to a computer. Video cameras are
another alternative to motion capture systems. Modern computational algorithms
can be used to extract motion data comparable to 2D marker trajectories of motion
capture systems from video feed [33–36]. While inertial measurement units and
video cameras are portable and inexpensive compared to a fully equipped motion
laboratory, their data is considered less accurate and they cannot measure ground
reaction forces directly [22,23,37]. Thus, their accessibility comes at a cost that must
be overcome to enable their clinical use.

The increasingly more widespread use of machine learning algorithms has pre-
sented solutions to improve upon the disadvantages of portable measurement modal-
ities [38]. Computer vision algorithms can automatically extract anatomical land-
marks from video data [39–42], and some can even estimate their depth from a 2D
image [43, 44]. Algorithms have been developed to estimate ground reaction forces
from the kinematic data that can be extracted from inertial measurement units or
video frames [17]. Additionally, the function approximation capability of feedfor-
ward artificial neural networks has been utilized to estimate the biomechanical out-
put parameters of the musculoskeletal modeling and simulation, enabling analysis
in real-time without domain knowledge [18–20]. These machine learning solutions
have the potential to make biomechanical evaluation of knee joint loading during
dynamic motion available in routine out-of-laboratory, possibly even clinical, use.

The purpose of this thesis is to utilize portable modalities for computing real-
time kinematics of motion and for estimating knee joint loading peaks. Our aim is to
leverage existing musculoskeletal modeling and simulation software for calculating
real-time kinematics and for predicting knee joint loading peaks from simple input
variables. Those input variables are designed to be obtainable from portable modal-
ities such as inertial measurement units or video cameras. We envision a workflow
where anyone can use an ordinary webcam or wearable sensors to measure a per-
son’s walking technique and retrieve immediate personalized estimates of knee joint
loading for that person.
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2 Knee joint

The knee joint is a pivotal structure to human locomotion. It transmits great physical
loads and actually comprises two joints, the patellofemoral joint and the tibiofemoral
joint. The knee joint is often characterized as a hinge joint, although its structure is
actually somewhat more complex than that. In this chapter, we present the structure
and function of the knee joint, the clinical relevance of its pathologies, and the
importance of physical loading in evaluating the health of the knee.

2.1 STRUCTURE AND FUNCTION

The knee joint is the largest joint in the human body [1]. It actually comprises two
joints, the tibiofemoral joint and the patellofemoral joint [1, 2]. The patellofemoral
joint connects the patella and the femur, while the tibiofemoral joint connects the
tibia and the femur. The latter is a bicondylar joint where two condyles of the
femur articulate with two corresponding condyles on the tibia. These joints and
their function involve four different bones, articular cartilage, four major ligaments,
tendons, muscles, various other soft tissues such as bursae, and in the case of the
tibiofemoral joint, fibrocartilage such as menisci [45].

The bones involved in the function of the knee joint are the femur, the patella,
the tibia, and the fibula (Figure 2.1) [45]. The femur and the tibia have the most
important roles in the general function of the knee, while the patella facilitates knee
extension, protects the knee joint and provides an attachment surface to soft tissues.
The fibula does not connect to the knee joint itself, but attaches to the tibia via the
superior tibiofibular joint; however, it still plays a role in the function of the knee
joint by providing an attachment surface for muscles, ligaments, and tendons [2].
Articular cartilage coats the surfaces of the femoral and the tibial condyles, as well
as the surfaces between the patella and the femur [45].

In the tibiofemoral joint, there are two fibrocartilage structures known as menisci
[1, 2, 45] (Figure 2.2). They lie between the femoral and the tibial condyles [45] and
their function is to make the otherwise fairly flat articular surface of the tibia deeper
to enhance support between the femur and the tibia, to transmit axial forces in the
knee, and to provide shock absorption [1, 2].

The four major ligaments of the knee joint are the medial collateral ligament
(MCL), the lateral collateral ligament (LCL), the anterior cruciate ligament (ACL),
and the posterior cruciate ligament (PCL) [45]. The MCL runs approximately from
the medial epicondyle of the femur to the medial condyle and superior medial
surface of the tibia [2]; the LCL from the lateral epicondyle of the femur to the
lateral side of the head of the fibula [2]; the ACL from the posterior part of the
lateral femoral condyle to the anterolateral aspect of the medial intercondylar tibial
spine [46]; and the PCL from the lateral aspect of the medial femoral condyle to
the posterior surface of the tibia between the two posterior horns of the menisci [2].
The MCL mainly resists forces that would twist the tibia peripherally (away from
the center of the body, causing knee valgus), while the LCL mainly resists forces
that would twist the tibia centrally (towards the center of the body, causing knee
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Figure 2.1: Bony and some cartilaginous anatomy of the knee joint. Image taken
unedited from https://www.injurymap.com/free-human-anatomy-illustrations

under the CC BY 4.0 License.

varus) [2]. The ACL resists anterior translation of the tibia with respect to the fe-
mur [2,46], while the PCL resists posterior translation of the tibia with respect to the
femur [2]. The ligaments also contribute to resisting other forces in smaller quan-
tities [46]. While the aforementioned four ligaments support the function of the
tibiofemoral joint, other ligaments also support the knee; in the patellofemoral joint,
these include the medial [47] and lateral [48] patellofemoral ligaments. Together,
ligaments provide stability to the knee joint as a whole [2].

The muscles quadriceps femoris, semitendinosus, semimembranosus, gracilis,
sartorius, popliteus, tensor fasciae latae, gastrocnemius, and biceps femoris move
the knee joint [2]. Many of the muscles contribute to motion of the knee joint along
more than just one degree of freedom, some facilitate motion in the hip or ankle
joints as well as the knee joint, and a few contribute to opposite movements along
the same degree of freedom depending on the position of the knee. The knee is

4
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Figure 2.2: Sagittal and horizontal superior views of the knee joint. Im-
age taken from https://openstax.org/books/anatomy-and-physiology/pages/

9-6-anatomy-of-selected-synovial-joints under the CC BY 4.0 License. Edited.

mainly flexed by the semimembranosus, semitendinosus, biceps femoris, sartorius,
gracilis, popliteus, and gastrocnemius muscles, and extended by the quadriceps
femoris muscle group [2]. Muscles may also provide internal or external rotation
and stabilize the joint, the magnitude sometimes depending on the flexion of the
joint [2].

Although a small amount of abduction-adduction and internal-external rotation
is possible depending on how flexed the knee is, the knee is constrained to mostly
function as a hinge joint in the flexion-extension direction [2], although it is not a
single-axis joint [49]. During common movements such as walking, great stresses are
exerted on the articulating surfaces of the knee joint. These stresses are generated
not only by the forces from human body mass, but also by soft tissues like muscles
and ligaments that counteract the torques enabled by the moment arms of external
forces [50–52], which results in additional compression in the articular surfaces of
the joint.

2.2 PATHOLOGIES AND KNEE JOINT LOADING

Economically the most important knee pathology is knee osteoarthritis. It can be
onset by damage to the articular cartilage by injury, but often develops over time
even without known injuries [53]. No unambiguous evidence is available on all
the suspected pathways of developing knee osteoarthritis. Possible causes include
hereditary factors [10,53,54], metabolic factors [53], obesity [7,10,54], joint malalign-
ment [54–56], and physical activity [10,54,57]. It has been shown that in addition to
age [10], gender is a factor, as KOA is more likely to develop in women [10, 53].

Structurally KOA manifests as loss of articular cartilage and can also cause, e.g.,
loosening of ligaments [10], weakening of muscles [10], inflammation of the syn-
ovium of the joint [10, 53], and formation of osteophytes [53, 55]. The changes man-
ifest as pain [53, 55] and stiffness [10] in the joint.

There is no cure and treatment is reactive, only trying to minimize the effects
of KOA and slowing its progress [53, 58, 59]. Therefore, facilitation of proactive
methods, e.g., by predicting the onset and progression of the disease is of paramount
importance so that preventive steps can be taken.

5

https://openstax.org/books/anatomy-and-physiology/pages/9-6-anatomy-of-selected-synovial-joints
https://openstax.org/books/anatomy-and-physiology/pages/9-6-anatomy-of-selected-synovial-joints
https://creativecommons.org/licenses/by/4.0/


The assessment of knee osteoarthritis can be approached from two perspectives:
clinical and structural [7, 57]. Clinical knee osteoarthritis considers the disease from
the perspective of clinical characteristics, e.g., radiographic observations, patient
demographics, how much pain is experienced by the patient, and how much the
disease limits the patient’s quality of life [10, 60]. Structural knee osteoarthritis fo-
cuses on the physical degradation of the articular cartilage, often evaluated utilizing
magnetic resonance imaging [57, 61, 62]. These two perspectives do not always go
hand in hand, as patients with MRI-identified characteristics of structural KOA are
not guaranteed to fulfil the clinical criteria of KOA diagnosis [10, 57, 62]. Therefore,
clinical and structural KOA are not necessarily driven by the same factors.

Biomechanics is believed to affect the development of KOA [10]. Because biome-
chanical factors are modifiable, intervention involving them could be a way to pre-
vent KOA [53]. Although the exact effect of biomechanics on KOA has been de-
bated [58], physical loading of the knee joint is believed to be linked to the progres-
sion of structural KOA [7,9,10]. Therefore, ways to estimate knee joint loading could
help in preventing the onset and progress of the disease. Furthermore, knowledge
of the personalized loading of the knee could help in designing joint implants that
retain proper joint function and experience less wear [7, 14], which in turn would
help in managing the aftereffects of surgical KOA intervention.

Biomechanical estimation of the physical loading of the knee joint can be con-
ducted through the analysis of human motion, particularly gait [6], which is impor-
tant to study because it is the primary method of human locomotion and exerts the
knee joint. Knee adduction moment is a commonly investigated surrogate measure
for the distribution of knee joint loading between the medial and lateral compart-
ments [4, 11, 63]. It increases in magnitude as the disease progresses [64] and is be-
lieved to contribute to the structural progression the disease [7, 8, 11]. This increase
has been hypothesized to lead to gait changes that further promote the progression
of KOA [12].

Instead of estimating knee adduction moment, compressive contact forces in the
tibiofemoral knee joint can also be estimated, allowing more direct insights into
knee joint loading [3–5]. These knee joint contact forces (KJCFs) describe how much
force is exerted in the joint as a result of external forces (e.g., ground reaction force
resulting from the leg supporting body weight) and internal forces (e.g., muscle
contraction and ligaments) [3, 4, 6]. The latter forces are particularly important, as
muscles forces contribute significantly to the physical loading in the joint [4]. If
abnormal magnitudes and patterns of KJCFs damage articular cartilage, then inter-
ventions aiming to modify the KJCFs could be useful in preventing and managing
structural KOA [5, 7].

Knee joint contact forces cannot be noninvasively measured directly, but can
instead be estimated using motion analysis and musculoskeletal modeling and sim-
ulation [3–6, 65]. We introduce and expand upon these concepts in chapter 3.
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3 Motion analysis

Before computational analysis, experimental data must be collected using a vari-
ety of measurement technologies. These technologies can include X-ray imaging,
marker-based motion capture, force plates, wearable motion tracking devices (par-
ticularly inertial measurement units), or standard video capture. Few of these meth-
ods are self-sufficient and some are used to complement one another. Although
we present all commonly used technologies, we focus on marker-based motion cap-
ture, wearable motion devices, and video-based methods because they were utilized
the most in this doctoral work, with chapter 4 further expanding upon video-based
methods.

Computational analysis of human motion involves solving physical measures
that drive the motion, including kinematics and kinetics, using experimental data.
We present the main events of the human gait cycle, briefly describe how experi-
mental data is pre-processed, especially from the perspective of digital filtering of
signals, and describe how musculoskeletal simulations are conducted in biomechan-
ical studies of human motion. Finally, we will look into some challenges involved in
using musculoskeletal modeling and simulation to estimate physical loading in the
knee joint and how those challenges could be overcome.

3.1 MOTION TRACKING TECHNOLOGIES

3.1.1 X-ray imaging of motion

Accurate information about the position of the skeletal system can be acquired via
X-ray imaging modalities [49, 66]. The absorption of X-rays travelling through a
medium depends on the wavelengths of the X-rays and the densities of the materials
in the medium [49]. Commonly, dense materials like bone cause more absorption
than sparse materials like soft tissue, which allows the use of X-rays to see bone
tissue through soft tissue [49]. Therefore, X-ray imaging can provide direct infor-
mation about the position and orientation of bones, unlike other motion tracking
methods which seek to estimate the position and orientation of bones by following
the motion of the surrounding soft tissue. An exception is the surgical insertion of
bone pins into the bone so that the bones can be tracked using reflective markers in
the extracutaneous part of the inserted device [67]; in addition to motion capture,
this method still typically utilizes X-ray imaging to associate marker positions to
bony structures [68].

X-ray imaging modalities use one or several image projections, with 3D recon-
structions requiring at least two [49]. The motion of bones can be tracked with im-
planted radio-opaque materials or by tracing bony landmarks or contours [49, 66].
Imaging sequences are adjusted to the use case to find a middle ground between
radiation exposure and image quality [66]. Furthermore, the images can be and
often are used in combination with other motion tracking or tissue morphology in-
formation and technologies [66, 69, 70]. For instance, 3D models reconstructed from
static MRI or CT scans can be used to estimate the position and orientation of bones
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by fitting the 2D projections of the 3D model to low-exposure X-ray images taken
during dynamic movement [52, 66, 69, 70].

Dynamic motion tracking methods utilizing X-ray imaging involve one or two
radiation sources that are placed to image movements that occur within a limited
volume [66] or even move with the subject [70] (Figure 3.1). These methods are
not widely available, not only because they constrain allowed movements, but also
because of the expensive equipment and the health risks of exposing live subjects to
ionizing radiation.

Figure 3.1: An X-ray fluoroscopy device mounted on a trolley that follows along the
movement of the subject. Image taken unedited from "A comprehensive assessment
of the musculoskeletal system: The CAMS-Knee data set" by William R. Taylor et al.
(2017) [70] under the CC BY-NC-ND 4.0 license (https://creativecommons.org/
licenses/by-nc-nd/4.0/).

3.1.2 Marker-based motion capture

Marker-based motion capture is the usual method of modern human motion track-
ing. It involves the use of reflective spheres, known as markers, that are placed
on the subject’s skin [67, 71–77]. During the motion capture measurement, cameras
detect the electromagnetic radiation reflected from the markers or emitted by them.
Reflective markers are called passive markers, while emitting markers are called ac-
tive markers [49]. From the positions of the detected markers, the subject’s pose can
then be reconstructed in each image frame [49].

Three-dimensional reconstruction of the movement of the subject requires the
use of several cameras at different angles. Individual cameras only see the 2D
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trajectories of markers from their perspective, so methods to combine these 2D
trajectories into 3D trajectories (e.g., the direct linear transform method) must be
used [49,67,78,79]. Parameters such as the positions and orientations of the cameras
must be calibrated prior to measurement [76, 79], and therefore, the cameras must
not move during measurements [49]. A minimum of two cameras is required for 3D
analysis, but adding more cameras helps in ensuring that each marker will be seen
by at least two cameras at any given time point [79].

Marker placement is an important consideration to ensure high-quality data in
marker-based motion capture [80]. Markers should be placed so that

1. there is minimal soft tissue between the marker location on the skin and the
underlying bony segment whose motion we assume the marker to follow [67,
71, 78, 79, 81]

2. markers are clearly visible to as many cameras as possible during all move-
ments [78, 79]

3. markers are not immediately adjacent to one another [79].

Point (1) is important as marker motion is assumed to represent the motion of
underlying bony segments, which are assumed to be rigid bodies [71,78,82,83]. The
more soft tissue there is, the more "wiggle room" the marker has with respect to
the underlying bone. In addition to soft tissue, direct motion of the skin should
be considered because loose skin may be present even in areas of little soft tissue.
Additionally, soft tissue surrounding the bones may cause errors in scaling muscu-
loskeletal models and thus, in the final results of biomechanical studies [80,81,84,85].

Failure to follow point (2) will result in occluded markers. The results are sin-
gle frames or several consecutive frames where a marker trajectory disappear from
the data [78, 79]. Small gaps in marker trajectories can be filled with spline fitting,
assuming the missing marker to follow the trajectory of other markers on the same
limb, and other methods. However, marker occlusion can cut a continuous marker
trajectory into several trajectories that the analysis software cannot identify as the
same, which requires additional work in the data pre-processing stage. Filling the
gaps left by marker occlusion are presented in detail in section 3.2. Finally, in addi-
tion to improving the detection rate of markers, increasing the number of cameras
reduces noise in marker trajectories [79].

Disregard of point (3) may result in two adjacent markers being identified as a
single marker (Figure 3.2). If a segment has three markers and only two are detected
by the system, we are unable to track all six degrees of freedom for that segment [79].
Therefore, it can be beneficial to have more than three markers per segment – the
more markers there are, the better the segment can be tracked [86], assuming the
markers can be separated by the camera system. Marker separation is usually simple
to achieve, but can be problematic with small segments or segments where viable
marker locations are very limited (e.g., the foot). In this respect, placing markers
along the same line-of-view from any camera is ill-advised because they may be
detected as a single marker by that camera even if the markers are not adjacent.

Provided the above three points can be followed, marker-based motion capture
is very accurate [87], although measured kinematics always suffer from some soft
tissue error [67, 71]. For instance, Merriaux et al. (2017) reported that an 8-camera
Vicon motion capture system is capable of mean marker positioning accuracy below
0.5 mm during dynamic motion [87]. Marker occlusion by the subject’s own body
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Figure 3.2: View of a motion capture frame from the Vicon Nexus software. The
left side shows markers worn by the subject from the perspective of a single camera,
while the right side shows a 3D reconstruction of the markers from the perspective
of the same single camera. The left side shows markers which cannot be identified as
separate markers because of their proximity in the image in white, while properly
identified markers are in green. The image demonstrates how multiple camera
views are required to properly identify markers and form the reconstruction on the
right.

or objects in the measurement volume can seldom be completely avoided, but the
placement of cameras can be planned to alleviate the issue [78].

3.1.3 Force plates

When you walk, you exert a force on the surface your foot is in contact with [50, 51,
79]. In accordance with Newton’s third law of motion, the contact surface exerts an
equal but opposite force on your foot [79]. This force is called the ground reaction
force (GRF) and it is of paramount importance in motion analysis [79].
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Force plates are measurement devices that measure the ground reaction force
using piezoelectric sensors, strain gauges, or similar technology [50, 79, 88]. They
are typically rectangular plates that can be embedded in the floor [50,76,79] or built
into instrumented treadmills [89]. Modern force plates track the center of pressure
(COP), i.e., the point of application of the GRF, and ground reaction moments, i.e.,
moments that are exerted around the COP, in addition to the GRF [50, 79]. This
information enables an in-depth three-dimensional analysis of the GRF. When cou-
pled with, e.g., marker trajectories from marker-based motion capture systems, it
also enables musculoskeletal modeling to calculate forces and moments affecting
the human body [90].

3.1.4 Wearable motion tracking devices

Traditionally wearable devices for human motion tracking include electrogoniome-
ters and accelerometers, among others [49]. Electrogoniometers are placed over the
joint of interest and experience a change in voltage as their components move with
the body segments around the joint, thereby tracking the relative change in joint
orientation. Accelerometers measure the acceleration that forces affectuating their
motion cause.

Modern wearable devices incorporate several different sensors in a single de-
vice. The most common such device is the inertial measurement unit (IMU), also
sometimes called magnetic inertial measurement unit which emphasizes the pres-
ence of a magnetometer sensor [91]. IMUs usually contain triaxial accelerometers,
gyroscopes, and magnetometers, and may contain other auxiliary sensors such as
thermometers or barometers [11, 92–94]. In IMUs worn by people, these individ-
ual components are very small and packed within the frame of the IMU, which is
usually small enough to fit on a palm (Figure 3.4).

Many modern IMUs communicate with computers wirelessly. They have recharge-
able batteries and onboard microprocessors that use sensor fusion algorithms (e.g.,
the Kalman filter [31, 95, 96]) to estimate the desired output, which is usually the
orientation of the IMU, before it is transmitted to a computer [92, 96]. There, orien-
tation data from several IMUs are combined and may be saved for later analysis or
in some cases, analyzed in real-time [94]. Depending on the IMU model, raw data
(i.e., accelerations, angular velocities, and magnetic fields) may also be retrievable
for analysis.

During measurement, IMUs are usually attached to body segments (Figure 3.3)
[11, 96]. The orientation data is assumed to match the motion of the underlying
segments, such as limbs, which are modeled as rigid bodies [71]. However, as
devices worn on the skin, IMUs are subject to soft tissue artifact [74, 93, 97].

The advantage of wearable motion tracking devices, particularly IMUs, is that
they can be used outside the motion laboratory [74, 93, 94]. Being constrained to a
motion laboratory may cause bias in studies, as many studies measure their data in
laboratory conditions and generalize results to daily life, even though a laboratory
setting may change how the subject moves [5,98]. Furthermore, IMUs do not neces-
sitate expensive motion capture equipment [91,93,94] and their calibration methods
can be simpler than those of laboratory-grade motion capture equipment [74, 99],
even if they involve the subject. Although full kinetic analysis with IMUs requires
force plate data which is normally only available in motion laboratories, IMU data
has been used to estimate it [17]. Therefore, IMUs can be used to measure motion
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Figure 3.3: IMUs are usually strapped to body segments and their orientation is
assumed to equal the orientation of the underlying bony structure. In this case, the
IMU is assumed to follow the orientation of the radius.

in the real context of that motion, e.g., outdoors on a skiing lap to measure skiing
technique.

The downside of IMUs is that they are slightly less accurate than laboratory-
grade motion capture [74,93]. Some sensors, such as the magnetometer, may also be
affected by ferromagnetic materials in the environment, thus increasing noise in the
sensor readings [92]. As a result, some IMU-based solutions ignore the magnetome-
ters data altogether [94, 100]. Furthermore, IMUs are sometimes characterized by
a phenomenon called drift, where the heading orientation of the IMU accumulates
error over time [93, 96]. This phenomenon can make long-lasting measurements
prone to accumulating error [96, 100], especially in cases where magnetometer data
is not present [92, 94]. Finally, IMU data can be sensitive to how sensor calibration
is done [94, 101].

IMUs have been studied in human motion analysis with movements including
walking [11, 32, 74, 93, 100, 102], squatting [31], jumping [31, 32], and running [11,
32]. These studies often involve comparing the retrieved parameters of motion to
reference values obtained from a laboratory-grade motion capture system [31,32,74,
93, 100].

The differences in kinematics between IMUs and laboratory-grade motion cap-
ture systems are small and outshadowed by errors caused by other factors like sen-
sor misalignment or skin movement [93]. A review by Poitras et al. (2019) noted that
IMUs are a suitable alternative to motion capture systems particularly when mea-
suring flexion-extension angles in the lower limbs during simple movements [91].
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They noted that when measuring joint angles on the transverse plane, IMUs had
lower reliability and validity than on the frontal and sagittal planes (commonly
abduction-adduction and flexion-extension joint angles, respectively). Al Borno et
al. (2022) observed that different joint angles are affected by magnetic disturbances
and drift differently [103]. They noted that in the lower limbs, knee flexion angle is
particularly resistant to these errors. Hip rotation angle (which occurs mostly on the
transverse plane) experienced the greatest errors, possibly because of the proximity
of foot IMUs (whose heading angles were in this case used to calculate hip rota-
tion angles) to ferromagnetic materials on the ground. Because of their ease of use
and similar accuracy to laboratory-grade motion capture systems, IMUs have often
been proposed as a suitable technology for measuring human motion, particularly
walking, in clinical settings or patients’ homes [11, 31, 74, 93, 102].

Finally, smartphones have also been used as wearable motion tracking devices
(Figure 3.4). They usually have integrated accelerometers, gyroscopes, and mag-
netometers as well as other components like GPS trackers that can be used in mo-
tion tracking. While these components in smartphones have not been designed for
biomechanical analysis of human motion, most people carry a smartphone with
them nearly all the time and sometimes the smartphones can be fitted snugly to
pockets in normal clothing, which makes them convenient for everyday motion
tracking.

3.1.5 Video analysis and markerless motion capture

Historically, motion analysis could be conducted through manual labeling of video
films [73, 79]. More recently, increase in computational power has enabled the use
of several digital video cameras for markerless motion capture. These markerless
motion capture systems work similarly to marker-based motion capture systems,
but instead of recording the trajectories of physical markers on the subject, they use
manual labeling [79] or, more commonly, computational algorithms to track the tra-
jectories of virtual markers, i.e., keypoints, on the subject [73, 104]. Although "clas-
sical" implementations use image analysis techniques, many modern algorithms
utilize convolutional neural networks [73, 104], which are described in section 4.6.

Markerless motion capture systems are subject to many of the same limitations
as marker-based motion capture systems are regarding marker occlusion [73] and
cumbersomeness of setting up and calibrating multiple cameras. However, subject
preparation is shorter and virtual markers cannot fall off during the measurement.
While typical soft tissue error is not present because there are no physical mark-
ers on the skin, movement of clothing and soft tissue can still affect the detected
virtual markers. Furthermore, although markerless motion capture systems can be
easier to move than marker-based motion capture systems, they are generally de-
signed for multi-camera laboratory conditions and may be proprietary, limiting their
usability because it is impossible or costly to access and utilize their internal work-
ing principles. Nonetheless, they have no operator-specific bias (unless the videos
are manually labelled) and may be suitable for cost-effective and accurate motion
analysis in clinical settings where non-invasive methods involving minimal subject
preparation are encouraged [73, 104, 105].
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Figure 3.4: Wearable devices that can be used in motion capture include inertial
measurement units and even smartphones. Inertial measurement units are particu-
larly useful as portable modalities to measure motion due to their small size. The
three devices on the left of the smartphone are inertial measurement units, with the
bottom-most also including electromyographic sensors.

3.2 PRE-PROCESSING OF MOTION DATA

Force plate data and marker trajectories contain measurement noise [50, 106]. In
marker trajectories, the noise is generated by temperature changes in cameras, the
partial occlusion of the markers to some cameras, artifacts from reflective material
that is not part of the markers, and soft tissue error [71, 78, 81]. Additionally, noise
can be induced by erroneous labeling of markers (e.g., when automated labeling of
markers switches places of markers on the same segment or between different seg-
ments, or a marker cannot be detected in some frames; see Figure 3.5). In force plate
data, the noise is generated by vibration in the material of the force plate [79]. Noise
should be removed from raw data before further analysis to keep it from accumu-
lating error in the results of the study [106]. Noise removal is especially important
because many motion analysis studies involve inverse dynamic simulations, where
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smoothness of input data is emphasized and sudden changes (e.g., by noise) can
cause strong artifacts in the output of the simulation [20]. Smoothed data is espe-
cially important when derivatives of the data are calculated, because otherwise the
derivatives will have sudden noise-induced changes [79, 106].
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Figure 3.5: Trajectory of an ankle marker sampled at 100 Hz before and after 6 Hz
low-pass filtering. Filtering can mostly eliminate single frames of erroneous marker
data; however, a visible filtering artifact remains even after low-pass filtering.

Digital filtering is a common way to reduce assumed random noise from mo-
tion capture data [79]. Particularly low-pass filters can be utilized to reduce noise,
which often has higher frequency content than the information used in motion anal-
ysis [79]. Butterworth zero-phase low-pass filters are often used in biomechanics
analyses because of their good performance and robustness compared to alternative
filtering methods [106,107]. Commonly used cutoff frequencies are at least 6 Hz for
force plate data [3,4,11,20,32,63,76,89,107–109] and between 3–10 Hz for trajectory
data [4, 8, 50–52, 63, 74, 76, 77, 79, 99, 104, 106–109], although the cutoffs can also be
higher [11, 75, 107]. The commonly used cutoff frequencies for force plate data have
a greater range than those for marker data, which is often filtered with a smaller
cutoff frequency. Figures 3.5 and 3.6 demonstrate the effect of filtering on noisy
force plate data and marker trajectories, respectively. Low-pass filtering marker and
force plate data with a matching cutoff frequency may be useful, because frequency
mismatch may between kinematic (marker) and kinetic (force plate) data can create
artifacts in the data during musculoskeletal modeling and simulation [107]. This
artifact can lead to, e.g., abnormally high knee contact forces [107].
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Figure 3.6: Vertical ground reaction force during transition to stance measured by
a force plate at 1000 Hz before and after 12 Hz low-pass filtering. Low-pass filtering
eliminates the higher-frequency oscillation present in the raw signal. However, a
filtering artifact indicating negative force remains just before the actual foot contact
begins.

Filtering does not remove only the irrelevant noise from signals, but often also
removes relevant information [79]. When low-pass filtering at a given cutoff fre-
quency, the frequencies above the cutoff frequency are assumed to contain no infor-
mation, only noise. In real cases, usable information is seldom present only in an
easily definable frequency range, but the frequencies of noise and information over-
lap. Therefore, some information is lost during filtering. Furthermore, the power
spectrum of the signal does not immediately drop to zero at the cutoff frequency,
but will do so gradually depending on parameters such as the order of the filter.
The designer of the filter must use their expertise to define a cutoff frequency that
results in a signal that retains enough information for the use case while sufficiently
removing noise [79]. In some cases, valid assumptions of the data can be used to
model the signal and remove noise efficiently using modified filters such as the
Kalman filter [71, 95].

In addition to digital filtering, gap filling is an effective pre-processing step be-
fore the motion capture data is used. It involves interpolating the trajectory of the
marker trajectories to fill frames where the marker has not been identified [79]. In-
terpolation methods include fitting a spline function to frames where the trajectory
is known, estimating the the trajectory from the motion pattern of the known tra-
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jectory, or assuming the marker and a group of other markers are fixed rigidly on a
body and then using known trajectories of the other markers to estimate the trajec-
tory. This latter rigid body filling is often viable with motion capture data, because
it is fairly common to place markers on rigid clusters worn on the subject [67,71,79].

3.3 THE HUMAN GAIT CYCLE

During human gait, motion occurs in three dimensions. Typically, the largest motion
occurs in the sagittal plane [110]. The gait cycle begins when one foot first touches
the ground. It comprises the following sequential events:

1. initial contact: the foot makes contact with the ground usually with the heel,
which is why this event is often called heel strike or heel contact [49]

2. toe off of the opposite leg: the opposite leg lifts up and stops touching the
ground, with toes being the last parts of the foot to touch the ground [110]

3. heel rise: after the opposite leg swings past the foot and the center of mass of
the person moves past the foot, the heel is lifted up while the toes remain in
contact with the ground [110]

4. initial contact (heel strike) of the opposite leg [110]

5. toe off [110]

For a single leg, the gait cycle can be separated into a stance phase and a swing
phase [49, 111]. During the stance phase, the foot is in contact with the ground, and
during the swing phase, the leg moves in air. The stance phase usually takes 60%
of the gait cycle, while the swing phase takes 40% of it; as a result, both feet are in
stance phase simultaneously for about 10% of the gait cycle during an event known
as double support [110].

Because the leg bears the greatest load during the stance phase, it is of greater
interest than the swing phase in this doctoral work. The stance phase lasts from
initial contact to toe off and thus, includes steps known as loading response and
terminal extension [110]. During loading response, the physical stress exerted on
the leg increases as body weight is supported on it (Figure 3.7). This increase may
begin with the heel strike transient, a sudden peak in the vertical force exerted
between the foot and the ground (i.e., ground reaction force) caused by the impact
of the heel on the ground [110]. Whether heel strike transient is present or not, a
rapid increase in vertical ground reaction force follows as more of the body weight
is supported on the leg and the opposite leg lifts off ground during the toe off event.
Between loading response and terminal extension, the opposite leg swings past the
supporting leg and vertical ground reaction force typically drops momentarily. In
terminal extension, the heel rise event shifts weight towards the front of the foot and
the increase in the downward acceleration of body mass center during mid-stance
is balanced out by a foot push that causes another rapid increase in vertical ground
reaction force [110]. This second force peak drops again as the opposite leg makes
contact with the ground and the support of body weight starts to be shifted to the
opposite leg.

Note that the definitions of loading response and terminal extension presented
here may cover larger parts of the stance phase than in some sources, where the
stance phase is divided into more gait cycle phases and the terminal extension is
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called terminal stance [110]. Our choice of simplifying the stance phase will become
evident later in this work in the context of knee joint loading maxima.
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Figure 3.7: Vertical ground reaction force between ground and the supporting leg
during stance. After heel strike, body weight is increasingly supported on the leg
during loading response, and ground reaction force experiences rapid increase (1).
The force culminates in the loading response peak when the opposite leg is lifted
off ground (2). When the opposite leg swings past the supporting leg, the center of
mass moves towards the toes and the force decreases momentarily (3). The terminal
extension peak (4) occurs right before the heel strike of the opposite leg, after the
ground reaction force drops (5) when weight is shifted to the opposite leg. The heel
strike transient is not present in the image.

During each gait cycle, the knee flexion-extension angle has two flexion peaks
and two extension peaks [110]. It is extended before initial contact, flexes during
the loading response phase and the early part of mid-stance, then extends during
late mid-stance. Finally, it starts flexing again and reaches a flexion peak during
the initial swing of the leg before extending again before the initial contact of the
following gait cycle.

3.4 MUSCULOSKELETAL MODELING AND SIMULATION

The reader has been introduced to different technologies for collecting experimental
measurement data and how that data may have to be processed before using it in
musculoskeletal simulation and modeling. We have also presented a simple model
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of the human gait cycle. Next, we will look into how the pre-processed experimental
data can be used to calculate important biomechanical parameters, e.g., in studies
of human gait.

We start by defining the terms that describe the physical state of a human in
motion. Then, we present the various analysis steps that a musculoskeletal modeling
and simulation study can comprise. Finally, we introduce a software that can be
used to conduct the analyses.

3.4.1 Kinematics and kinetics of motion

Kinematics describes the motion of bodies, whereas kinetics describes the forces
that are exerted on bodies [111]. Kinematics is often used to describe the motion of
joints, i.e., joint angles, and translative motion of body segments [79, 90, 111]. For
instance, knee flexion angle is a commonly investigated kinematic variable [42, 74,
77, 89, 112, 113].

On the other hand, kinetics is often used when discussing the moments that
effectuate motion around joints, and the internal and external forces that body seg-
ments are exerted to [79, 90]. Internal forces are applied between segments within
the human body, while external forces are exerted between the human body and its
surrounding environment [78,79,90]. Ground reaction force between the foot and its
contact surface is a commonly investigated external force [50, 51, 78]. However, ex-
ternal forces do not always require a contact surface, e.g., in the case of air resistance
or the weight of the human body [78, 79, 90].

As a whole, kinematics and kinetics can be used to describe the physical state
of a human in motion [79, 90]. In musculoskeletal modeling, this state is explicitly
programmed as a combination of joint angles, moments and internal and external
forces during a given point in time.

3.4.2 Modeling and simulation workflow

In order to retrieve in-depth biomechanical information (e.g., the kinematics and ki-
netics of individual segments in the human body) that is usable in real-life scenarios
such as gait retraining [18,19,65,114], we need to run simulations on sufficiently re-
alistic computational models of the human body [15]. These models are called mus-
culoskeletal models because they incorporate information about the skeletal system,
including segment mass, inertia, size, alignment, connecting joints, and relative po-
sitions; and the muscles, including the bones they attach to through tendons, the
joints they actuate motion over, contraction dynamics, and the strength and cost of
activating them [71, 72].

Available musculoskeletal models are usually generic in the sense that they rep-
resent the average properties for some population sample. These properties are
obtained from studies on cadavers [65, 115]. However, the aim of musculoskele-
tal modeling is usually, at the very least as an intermediary step, to simulate the
kinematics and kinetics of motion for individual subjects [72, 108]. Because people
have differently built bones and musculature, population averages cannot accurately
describe their biomechanical properties. Therefore, during biomechanical studies,
these generic models must be modified so that they are specific to each subject. This
process of modifying the properties of a generic musculoskeletal model to make
it a subject-specific musculoskeletal model is called model scaling. Note that the
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model scaling described here is a common method to generate subject-specific mus-
culoskeletal models, but musculoskeletal models can also be made subject-specific,
e.g., by imaging the individual subject’s skeletal system or muscle geometry or con-
ducting experimental measurements of muscle force [116].

Model scaling of the skeletal system is done by matching the dimensions of the
bony segments of the generic model to experimental measurements [15, 72, 108, 115,
117]. Usually, bone shape is assumed to remain unchanged, while segment mass
is adjusted to match the mass of the individual subject, and the inertial properties
are then calculated from the scaled properties [15, 117]. Ideally, this scaling would
be done individually for each bone, but in effect, the available experimental data
usually requires grouping the bones by limbs or body segments and scaling all
bones in that group similarly. Instead of using experimental data (typically utiliz-
ing marker trajectories from marker-based motion capture [15, 72, 115]), the generic
models can also be scaled using manually defined scale factors. Recently, fitting
a statistical shape model of the skeletal system rather than matching experimental
markers from MOCAP with virtual markers on the model has been proposed as an
alternative for conducting subject-specific scaling of generic musculoskeletal models
and has been shown to be more resistant to marker placement-related errors [84].
Similarly to scaling of the skeletal system, the properties of the muscular system and
other soft tissues can be scaled, e.g., by assuming that they change proportionally to
the anthropometrics, height, or weight of the subject [4, 15, 108, 115, 118].

After model scaling, the next step is solving the kinematics of motion. This step
requires experimental measurement data, which usually means marker trajectories.
The basic assumption is that body segments are rigid bodies whose motion can be
approximated by tracking markers on the skin [71,82]. If marker trajectories from at
least three markers per body segment are available, it is possible to directly rotate
and position the corresponding body in the model according to those three mark-
ers in three-dimensional space and solve kinematics from the resulting poses [90].
However, because of measurement error, this method can lead to unrealistic poses
of the model. To alleviate this effect, musculoskeletal models have constraints on
the motion of their joints (e.g., the knee cannot overextend far) [99]. Therefore, in-
stead of directly aligning each body of the model according to measurement data,
solving kinematics is about finding the set of joint angles that aligns and positions
the bodies in a way that minimizes the error between the experimental data and the
valid poses of the model (as defined by the constraints on joint angles) [72, 99, 114].
The error is usually defined as the error of the sum of squares of individual errors,
which for marker data are differences in position between experimental markers and
virtual markers in the model [72, 114]. The process of calculating kinematics (i.e.,
joint angles) this way is called inverse kinematics. Finally, in cases where the exper-
imental measurement data contains orientation data from wearable sensors instead
of marker trajectories, the error can be defined as the difference in a parametrization
of rotation between experimental data and model poses [99].

Using mathematical notation, inverse kinematics in a single frame of data can
be solved by finding the set of generalized coordinates that minimizes the objective
function

f (⃗q) =
N

∑
i

wi||⃗x∗i − x⃗i (⃗q)||2 +
M

∑
j

ωj||q∗j − qj||2, (3.1)

where N is the number of markers (the same number for experimental markers
placed on the subject and virtual markers defined in the musculoskeletal model), wi
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is the weight of the i–th marker, x⃗∗i is the position of the i–th experimental marker,
x⃗i (⃗q) is the position of the i–th virtual marker (and dependent on the set of gen-
eralized coordinates q⃗), M is the number of generalized coordinates to solve in the
model, ωj is the weight of the j–th generalized coordinate, q∗j is the value of the j–
th experimental generalized coordinates, and qj is the value of the j–th generalized
coordinate in the model [119].

Here, generalized coordinates describe the rotations of joints (i.e., joint angles)
and sometimes the translational offsets of bodies (e.g., the position of the parent
body of the model, usually pelvis, with respect to the reference coordinate system
or ground). Experimental generalized coordinates may be, e.g., defined manually
or calculated from IMU data. If only marker data is available (and no manual goals
for the values of solvable generalized coordinates are set), the second sum term of
the equation may be left out, and if only IMU data is available, the first sum term
may be left out. Note that equation 3.1 describes one way, but not the only way, to
solve inverse kinematics.

Once the kinematics of motion are solved, the dynamics of motion can be cal-
culated. Following a similar principle as inverse kinematics, where data about the
pose was known and the joint angles leading to that pose had to be solved, in inverse
dynamics the kinematics are known and the problem is to find the net forces and
torques that lead to those kinematics [4, 79, 83]. Experimentally measured external
forces, namely the ground reaction forces, are incorporated into the computations
to find the internal forces (i.e., joint moments) that together with the external forces
create the motion [72,109]. Inverse dynamics is an iterative process that moves prox-
imally from foot (or another segment subjected to external forces) to other segments
of the human body and finally leaves a set of residual forces and moments that have
no physiological meaning [15,65]; to counteract this, forward dynamics provides an
alternative [108].

Next, muscle activation levels can be solved. Because the dynamics of motion
(from experimental measurements and inverse dynamics) and the properties of mus-
cles (defined in the musculoskeletal model) are known, it is possible to estimate
how much force different muscles must generate to produce the known dynam-
ics [4, 72, 114]. Because the association between muscle activation and the force it
produces is part of the musculoskeletal model, the set of estimated muscle forces
can be linked to muscle activations [16]. In other words, the optimization algorithm
tries to find the set of activations of individual muscles that produce the dynam-
ics of motion while minimizing the sum of those activations. Additionally, instead
of solving a pure optimization problem without measured muscle activation data,
EMG-informed methods exist to utilize electromyographically measured experimen-
tal muscle activation data for optimizing muscle activations in the musculoskeletal
simulation [120].

For instance, muscle activations at each frame can be solved using a process
known as static optimization by minimizing the objective function

f (⃗a) = |
n

∑
m
(am)

p|+ |
n

∑
m
(amF0

m)rm,j − τj|, (3.2)

where am is the activation of muscle m, F0
m is the maximum isometric force of muscle

m, rm,j is the moment arm of muscle m about joint axis j, τj is the generalized force
about joint axis j (solved during inverse dynamics), and p is a constant [121]. Note
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that different implementations of solving muscle activations exist, and the equations
may vary depending on how muscle is modeled [122].

Although static optimization is a computationally efficient and commonly used
method for solving muscle activation levels [88], it has several known drawbacks.
Anderson and Pandy have summarized that the validity of static optimization re-
lies heavily on the accuracy of input kinematics for estimating the dynamics of
the model (as explained in section 3.2), that the time-independence of static opti-
mization can make it difficult to model muscle physiology properly (determining
properties like force-length-velocity can be difficult when observing just a single
time point at once), and that static optimization cannot incorporate time-dependent
performance criteria which may be relevant for the motion task (e.g., utilizing dis-
tance moved or energy expenditure over a period of movement in the performance
criterion) [88, 123]. Dynamic optimization methods have been proposed as a solu-
tion to some of these drawbacks. These dynamic methods include the computed
muscle control algorithm, which combines the computation of desired accelerations
in a future time step, static optimization, and forward dynamics [124]. Dynamic
optimization allows solving muscle activation levels over a motion trajectory rather
than just at individual time steps [116] and even enables predictive modeling [88].
Nonetheless, static optimization provides a computationally faster solution that re-
sults in dynamics of motion similar to dynamic optimization during walking [123].

Finally, when muscle activation levels and external dynamics are known, the
joint reaction forces (e.g., tibiofemoral compressive knee joint contact forces) can
be solved [4]. This process combines information about the external forces acting
around different generalized coordinates and the internal forces generated by, e.g.,
muscle contractions.

The validity of musculoskeletal modeling and simulation can be evaluated by
comparing the estimated kinetic outputs of the simulation to corresponding ground
truth information. However, real joint loading information is difficult to obtain be-
cause there is no instrumentation in healthy joints to give researchers direct quantita-
tive information about loading. Therefore, researchers have instead utilized loading
data measured with instrumented joint implants [5, 6]. For instance, in the context
of knee joint loading, knee replacement surgery patients have been implanted with
instrumented knee implants that measure loading in the replaced joint [6,125]. Com-
parison between estimated and implant-measured loading allows the evaluation of
not only the accuracy of the loading estimate, but indirectly also the validity of the
underlying modeling assumptions [5].

The intermediary kinematics and kinetics are often low-pass filtered between the
analysis steps to reduce simulation-related artifacts that could affect the results of
the analyses that follow. Although all the steps of musculoskeletal modeling and
simulation can be implemented manually, doing so would be cumbersome, and
several software are available to provide the underlying optimization algorithms,
standardized models and data protocols, and user-friendly interfaces. These soft-
ware include OpenSim [15], which we will introduce as it was utilized extensively
in studies I, II, and III.

3.4.3 OpenSim

OpenSim is a software system for musculoskeletal modeling and simulation that
provides a graphical user interface (Figure 3.8) and application programming inter-
faces on various programming languages [15]. It implements model scaling, solving
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of kinematics and kinetics, and other musculoskeletal analyses as user-accessible
and modular tools [15]. The user of a tool has to provide the input data and set-
tings, all of which can be conveniently saved in an XML file [16]. This file allows
simple human-readable access to modeling parameters and allows their effortless
modification. Researchers can pick the musculoskeletal model that best suits their
research question from the wealth of different models that the OpenSim community
has created and validated; these models are likewise in XML-compatible format [16].
Furthermore, the data files (e.g., joint kinematics and kinetics) generated by Open-
Sim are in human-readable format and can be easily opened in MATLAB, Python
or other programming languages if the user so desires. OpenSim also has an ap-
plication programming interface (API) to several languages, including C++, Java,
MATLAB, and Python [16]. Unlike many of its competitors, OpenSim is completely
free and open-source [15].

OpenSim’s ease of use, contribution, and collaboration in studies involving mus-
culoskeletal modeling and simulation have elevated OpenSim from just another
analysis software to a biomechanical research community [16]. Additional analysis
software and plugins utilizing OpenSim or supporting OpenSim analyses include
OpenSense (elaborated in the next paragraph), OpenSimRT (a tool for real-time
kinematics and kinetics analysis from marker and IMU data) [29], OpenSenseRT (a
wearable system and software real-time kinematics analysis from IMU data) [94],
rtosim (a software for real-time kinematics analysis from marker data) [126], NMS-
Builder (a software for creating subject-specific OpenSim models from segmented
imaging data) [127], CEINMS (a plug-in for predicting neural control solutions)
[120], and OpenSimLive (which was developed in study I and is explained in the
methods chapter).

OpenSense is a software tool for kinematics analysis of IMU orientation data
[103]. It extends the API of OpenSim and is included in the current version of
OpenSim. It operates on same principles as OpenSim’s marker-based inverse kine-
matics tool, i.e., by finding joint kinematics that minimize the differences between
measured and modeled data. However, instead of marker trajectories as the data,
OpenSense uses IMU orientations. OpenSense is included in current versions of
OpenSim.

3.5 CHALLENGES IN ESTIMATING KNEE JOINT LOADING

Now that we have described the fundamentals of musculoskeletal simulation and
its relevant tools, we have the means to approach the problem introduced in section
2.2: estimating the loading of the knee joint. Conventional estimation of knee joint
loading can be separated into two major steps: (1) data collection and (2) muscu-
loskeletal modeling and simulation.

Among the methods we presented for data collection in section 3.1, at least
marker-based motion capture systems and force plates are required to collect the
necessary data (i.e., marker trajectories for kinematics and force plate data for dy-
namics simulation) for estimating joint dynamics, although the data of some portable
technologies (e.g., IMUs) can be used for approximating force plate data [17]. The
requirement of a motion laboratory with expensive and cumbersome equipment
sets an accessibility barrier for estimating the loading of the knee joint routinely for
people who need those estimates the most (e.g., patients of physiotherapists and
clinicians).
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Figure 3.8: A snapshot from the model visualization of the OpenSim graphical
user interface. The musculoskeletal model and its motion can be visualized in 3D.
The illustrated model shows the skeletal structure of the lower limbs, with muscles
on the right leg shown in blue. Virtual markers defined on the model are shown as
magenta spheres and experimentally measured marker positions matched to them
during inverse kinematics are shown as blue spheres.

Musculoskeletal modeling and simulation further raises this accessibility barrier,
as physiotherapists and clinicians seldom have the expertise required to run these
analyses [21]. Additionally, the computational steps involved are too cumbersome
to enable real-time results during the measurement session (e.g., in gait retraining)
[18–20]. These challenges are presented in more detail in section 4.6.

Therefore, to enable the simple and routine estimation of knee joint loading,
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the challenges related to these two steps must be overcome. In the past decade,
AI-based solutions, namely machine learning algorithms, have seen increasing use
to solve these challenges [128] [38]. Among machine learning algorithms, various
types of artificial neural networks have been among the most used algorithms [38],
e.g., to extract useful data from portable modalities [42,129,130], reduce the analysis
time [20], and estimate joint dynamics [18, 20, 128].
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4 Artificial neural networks

In this chapter, the reader is introduced to the basics of artificial neural networks,
particularly fully connected feedforward networks and convolutional neural net-
works. We focus on artificial neural networks for supervised learning tasks. We
explain what artificial neural networks are and how they work in very simple terms.
This includes their basic structure (layers, weights, nodes, and activation functions)
and how the two architectures (fully connected feedforward and convolutional) dif-
fer from one another. We also introduce the basic principles of training artificial
neural networks. Lastly, we briefly review the use of artificial neural networks in
human motion analysis and estimation of knee joint loading. Unlike the previous
sections where we introduced basic theory, at that point we also present some real
applications of artificial neural networks.

4.1 BASICS OF ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are computational systems that can learn to solve
problems. They are modeled after and derive their name from biological neural
networks of the central nervous system, which consists of a series of connected neu-
rons, or nerve cells [131–133]. Neurons receive information as signals from other
cells through dendrites, combine and modify that information in the body of the
neuron, and send it to other cells through axons [134]. The projections of neurons,
i.e., dendrites and axons, connect through synapses and modify the neural signal as
it travels between cells. In ANNs, these projections are called weights and the bodies
of neurons are called nodes (or units or simply neurons, depending on source ma-
terial). Similarly to biological neural networks, nodes are organized into layers with
one or more nodes each. Thus, an ANN comprises layers, which in turn comprise
nodes.

A typical layer structure contains an input layer, an output layer and one or more
layers, known as hidden layers, between them (Figure 4.1) [38, 134]. The input layer
has nodes corresponding to the number of inputs of the ANN, and the output layer
has nodes corresponding to the number of output values of the ANN. The hidden
layers may have any number of nodes each. When there is just one hidden layer, the
ANN is called a shallow neural network. When there are several, it is called a deep
neural network; the depth of a network is a property that describes the number of
hidden layers it has [135].

ANNs are suitable for a wide variety of tasks including classification, regression,
optimization, and clustering [132, 134, 136]. Although the reputation of ANNs as
"black boxes" may make them daunting to approach [137], the fundamentals of
ANNs actually rely on simple mathematics. In ANNs, numerical information from
the input nodes is propagated through the network in a series of mathematical
operations, most notably through linear combinations of the weights of the network
and through nonlinear activation functions [132]. Weights enable the ANN to learn
how to better handle its task, while activation functions enable the ANN to solve
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nonlinear problems. The latter are presented in more detail below in their own
subsection.

The weights of the network are where its information is stored [134, 135]; they
can be thought of as the main parameters or coefficients of the network [135]. They
enable the ANN to learn how to better handle its task. Weights act as connections be-
tween nodes (in feedforward networks, they provide one-way connections). Between
the nodes of adjacent layers, weights connect at least some of the nodes, although
every node does not necessarily connect to all nodes in the following layer [134].
Whenever the output of a layer connects to a node in another layer, it undergoes a
dot product with the weights assigned between the original layer’s nodes and the
target node [134]. This way, the original input is modified by the weights between
each layer. Furthermore, each node typically has a bias that is added to the dot
product before the result is inputted into the activation function of the node; this
activation function is often nonlinear [134]. Modifying the biases and weights will
change the output of the ANN and the ANN is said to learn. The process of modi-
fying the weights to make the ANN suitable for its task is called training the ANN.
Network training aims to find the optimal weights for solving a problem [134].

When we know what value or label the ANN should output for given input
data and the weights are changed such that the difference between the output of the
network and the known target output is minimized, the training process is called
supervised learning [131, 132, 138]. Supervised learning aims to produce models
that can then be used to make predictions about unseen or future data [138]. Oth-
erwise, such as when we do not know the target values but can define some kind
of objective function the output should minimize, the training process is called un-
supervised learning. Several different training methods exist, e.g., modifying the
weights according to the derivative function of the activation function for super-
vised learning, and generating random weights and seeing if the output improves
for both unsupervised and supervised learning [131, 134, 136].

Several different architectures of ANNs exist and are suited for different tasks
[75, 131, 134, 136]. For this thesis, the relevant architectures are fully connected feed-
forward neural networks and convolutional neural networks. The operating princi-
ples of these two architectures are presented in their respective subsections.

4.2 FEEDFORWARD NEURAL NETWORKS

Feedforward neural networks (FNNs) received their name from the fact that the
nodes are connected acyclically. In other words, the connections between the nodes
do not loop back and the input propagates only in one direction (Figure 4.1): from
the input to the output through the layers [134, 135, 139]. In feedforward neural
networks, the output of a node depends on the outputs of the neurons in previous
layers, but not on the outputs of neurons in the following layers [131]. They are often
used in regression and classification tasks; the difference is that in regression tasks
the output is a continuous value while in classification it is discrete and typically an
integer [138].

In this thesis we focus on FNNs that solve regression problems. The universal
approximation theorem states that given the right parameters and structure, a multi-
layer FNN can approximate any real function arbitrarily well, meaning that FNNs
can be used to solve regression problems where no analytical solution is known
[136].
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Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 4.1: A layer-level illustration of an artificial neural network with an input
layer, two hidden layers and an output layer. The nodes are connected with black
arrows, each of which represents a weight between two nodes. The input layer has
five nodes, the first hidden layer has three, the second hidden layer has two, and the
output layer has one node. Therefore, the illustrated neural network would take five
scalars as an input and output a single scalar. The illustration describes the fully
connected feedforward network architecture.

4.3 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are feedforward networks designed for in-
put data that is arranged in a grid-like pattern, such time series and images [133,
135, 138, 140]. In CNNs, the weights of the network are placed in arrays called
kernels [133]. For one-dimensional data such as time series, the kernels are one-
dimensional tensors (i.e., vectors), and for two-dimensional data such as images, the
kernels are two-dimensional tensors (i.e., matrices) [135]. If the input data has sev-
eral channels, such as RGB images, where the channels describe the intensity of the
colors red, green, and blue for each pixel, then there is a kernel for each channel and
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the combination of the kernels in that layer is called a filter [133]. A filter with sev-
eral kernels can be thought of as a three-dimensional tensor, although some sources
treat filters as two-dimensional tensors and may even use the term "filter" and "ker-
nel" interchangeably [138]. A layer may have several filters, i.e., filters with different
sizes and weights. In this dissertation, we will focus on CNNs for image-format
data.

When applied on images, filters are feature detectors that detect visual patterns
(Figure 4.2) [134]. Typically, filters in early layers detect low-level features such
simple geometrical shapes and layer by layer the filters gradually detect higher-level
features [134, 138]. For instance, in a CNN trained to identify human poses, the
filters in the first layers only detect edges and corners, but in the later layers they
detect simple objects like eyes, noses, and limbs, and finally in the last layers they
detect entire people and their activities.

Figure 4.2: Filters in convolutional neural networks extract visual patterns from
the image. In this example, we demonstrate how different visual patterns can be
extracted from the input image (left) using a horizontal (center) and vertical (right)
edge detection filters. Note how the different filters highlight different patterns
in the image (e.g., ground texture and the church in the background). Here, the
filters are 3x3 matrices. For demonstration purposes, the elements of the filters are
integers from known edge detectors; in convolutional neural networks, the elements
are weights of the network that are optimized during training, and more features
are extracted sequentially from the previously extracted ones using other filters.

When a filter is applied in a convolution layer, the kernels of the filter sequen-
tially slide over the image data and calculate the dot product between the weights in
the kernel and the image data it overlaps [134]. The result of this convolution oper-
ation is another two-dimensional matrix, i.e., another image [134,138]; the use of the
convolution operator gives CNNs their name [135]. Sometimes, zeros are appended
to the edges of the input image before applying the filter because otherwise a kernel
with a size greater than 1x1 will output an image that has a smaller resolution than
the input image (Figure 4.4). This technique is called zero padding [134, 138, 140].
Furthermore, the kernel will not necessarily slide over the image pixel by pixel,
but may move several pixels before the next convolution operation. The amount of
pixels the kernel moves between convolution operations is called stride and is of-
ten an adjustable parameter in CNNs [134, 138, 140]. The output image has a lower
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resolution than the original image if the stride is greater than one (4.3).

Figure 4.3: Illustration of a 3x3 kernel (dark blue) with two different stride param-
eters sliding over an 8x8 image. The first four positions of the kernel are shown
from left to right. When stride is 1 (top row), the kernel moves one pixel between
operations and produces a 6x6 image. When stride is 2 (bottom row), the kernel
moves two pixels between operations and produces a 3x3 image. In the illustrated
case, the image resolution is reduced even when stride is 1 because the kernel does
not slide over the boundaries of the image.

A pooling operation is often applied on the image to downsample its data [135].
This is similar to the filter in the sense that it also sequentially picks values in the 2D
matrix of the original image and produces an output based on them [134]. However,
unlike the weights in the kernels of the filter, the pooling operator has no learnable
parameters. If it has weights, they are not changed during training. A common
pooling method is the max pooling method, which picks the maximum value from
the elements it overlaps with [134]. The max pooling operator is an example of a
pooling operator without weights.

4.3.1 Computational efficiency

Compared with "traditional" artificial neural networks, CNNs are computationally
more scalable [134]. For a traditional ANN, all pixels in an image represent an input
value that is connected to each node in the following layer by a unique weight. In
CNNs, every pixel is not connected to the following layer by a unique weight [140].
Instead, the weights are placed in a number of filters such that each filter is small in
comparison to the input image [134]. For instance, the filter size may be as small as
3x3 [33,141,142], meaning there are nine weights in each kernel of the filter. Several
different filters are used to extract different features (for low-level features, these
could be different kinds of edges in the image), but the number of filters is lim-
ited enough to keep the number of unique weights low. This sparse connectivity
and reusability of the same weights (organized in kernels) is made possible because
many features of interest in image data (e.g., edges, corners, shapes) are non-unique
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Figure 4.4: Illustration of a 3x3 kernel (dark blue) sliding over an 8x8 image. The
first four positions of the kernel are shown from left to right. When zero padding
is used (zeros not shown in image), the kernel is allowed to slide past the original
boundaries of the image (top row) and produces an 8x8 image, i.e., the resolution
remains unchanged. Without zero padding (bottom row), the kernel produces a 6x6
image.

and reoccur in different parts of the image [135]. Lastly, in addition to faster training
because of the limited number of trainable weights, the limited number of param-
eters reduces the memory requirement of storing trained CNN models compared
with fully connected ANN models [135].

For instance, a 64x64 image has 4096 pixels. Between the input layer and the fol-
lowing layer with, say, ten nodes, there are 4096 × 10 = 40960 weights to train in a
traditional fully connected ANN where a unique weight connects each input to each
output in the following layer. To reach the computational load (i.e., cumbersome-
ness, not equal performance) comparable to traditional ANNs with 40960 weights,
there would have to be approximately 4500 3x3 single-kernel filters (which would
equal 4500 × 3 × 3 = 40500 trainable weights). Usually, CNNs reach pattern recog-
nition capability comparable to the overcomplicated fully connected ANN with a
fraction of that number. In other words, the number of trainable parameters in a
CNN can be several orders of magnitude smaller than the number of trainable pa-
rameters in a fully connected ANN of comparable performance. Therefore, CNNs
are computationally more efficient than traditional ANNs.

4.3.2 Layer structure

Like traditional artificial neural networks, convolutional neural networks have a bi-
ological analogy [134, 138]. The visual cortex of the brain is organized in layers.
Each layer processes the features detected by the previous layer into more compli-
cated features that are passed on to the following layer: visual input is processed
into lines, lines into shapes, and so forth until finally, distinct objects are detected.
Within a layer, the feature detectors are replicated over the features to be processed.
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Convolutional neural networks are feedforward artificial neural networks with
an input layer, one or more hidden layers, and an output layer [134]. Commonly
used layers are convolutional layers, pooling layers, and fully connected layers [135,
138, 140].

Convolutional layers are the eponymous layers of CNNs. They contain one or
more filters that perform the convolution operation over the input image to pro-
duce the feature map of the following layer [134, 135]. The size of the feature map
can change in the process, usually by decreasing its resolution. Convolutional lay-
ers can be thought to arrange the nodes of traditional ANNs in three dimensions:
width, height, and depth [134, 140]. Width and height describe the resolution of the
resulting feature map and are determined by the stride parameter, zero padding,
and filter size. Depth of the feature map equals the number of filters used on the
input [134]. To introduce nonlinearity, the outputs of the convolutional layer are
usually activated (see section 4.4.

Pooling layers can be used after the convolution layer to reduce the resolution of
the image [134]. They split the input feature map into equally sized tiles and create a
condensed feature map by picking an element from each tile into the output feature
map [134]. Pooling can be non-overlapping, where no tiles share any elements, or
overlapping, where the boundary elements of a tile are shared with one or more
other tiles [134]. The commonly used pooling method is max pooling, where the
maximum element from each tile is selected into the condensed feature map [134].
Max pooling introduces local invariance, where small changes in input do not affect
the output. Furthermore, max pooling can help in avoiding overfitting.

Fully connected layers simplify the data pattern back to a vector and treat is as
the input to a standard fully connected feedforward neural network. This process
produces the desired final output. The last layer of a CNN architecture is often a
fully connected layer [133, 140].

4.4 ACTIVATION FUNCTIONS

In a typical node, a bias is added to the linear combination of inputs and weights
and the result is inputted in an activation function 4.5 [132]. The bias is a special
weight that applies an offset to the activation function. The final output of the node
is the output of that activation function [139]. This activation function is typically
nonlinear, and ensures that the ANN is not simply a series of linear combinations
[136]. If it were, it could only solve linear problems, e.g., approximating linear
functions [134].

Common activation functions include sigmoid functions [132, 134, 139] (as illus-
trated in 4.5) and the rectified linear unit (ReLU) function [20, 134, 135]. Sigmoid
functions are bounded and differentiable for all real-valued inputs, which makes
them excellent for ANNs. The fact that they are bounded ensures that the output
of the network is limited to a manageable range, and because the range is between
0 and 1 (logistic sigmoid) or -1 and 1 (hyperbolic tangent) for common sigmoid
functions, they have uses in binary classification tasks. Differentiability in the entire
real domain enables the use of gradient-based learning methods such as backprop-
agation [132]. However, because the derivative can approach zero at very small
and very large inputs, sigmoid functions are vulnerable to the vanishing gradient
problem (see section 4.5.3).
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The ReLU function is defined as [134]

ReLU(x) =
{

x if x ≥ 0
0 if x < 0 . (4.1)

While it has no upper bound, it is differentiable for all real-valued inputs except
zero (where the derivative can be chosen to be 0 or 1 in practical implementations)
and both it and its derivative function are very simple to compute. The use of the
ReLU function instead of sigmoid functions can eliminate the vanishing gradient
problem. However, it is insensitive to negative inputs, which may in some cases re-
duce its usefulness. To cimcumvent the problem, "leaky ReLU" has been introduced
as

LReLU(x) =
{

x if x ≥ 0
ax if x < 0 , (4.2)

where a is a positive constant greater than but usually close to zero.

vy

x

z

ux+vy+wz+b

Figure 4.5: Illustration of a node in an artificial neural network. A bias term b is
added to the linear combination of inputs [x, y, z] with weights [u, v, w]. The result
is inputted to a nonlinear activation function whose output is the final output of the
node.

4.5 TRAINING OF ARTIFICIAL NEURAL NETWORKS

4.5.1 General principles

The training of artificial neural networks involves adjusting their weights (and pos-
sibly other parameters) such that the output of a loss function is minimized [134].
In supervised learning, the loss function is usually defined as the error between the
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output of the network given some input data and and the "true" value for that input
data [134]. Therefore, training in supervised learning ideally adjusts the weights
such that the inputs produce the corresponding, already known outputs [139].

Variables that control the training process are called hyperparameters [134, 135].
They define how much each training sample affects the weights during a single it-
eration, how many iterations are looped during training, what kind of function or
process directs the training, and so forth. Some hyperparameters define the net-
work’s structure and remain in the network even after training, such as the number
of nodes in each layer or the activation functions in those nodes.

The motivation of training artificial networks is to make the network able to
solve a particular problem or a type of problems [134]. Usually, not all data related
to all possible cases of the problem are available [134] and thus, the network must
be trained such that "generalization error" is minimized [136]. Generalization error
describes the performance of the network in solving the problem type in the general
case, not only constrained to the kind of data that is available during training [38,
134]. In other words, it is a metric of how well the network performs on data it has
not "seen" before [136].

4.5.2 Training, validation, and test sets

In terms of data, the training of ANNs involves three subsets of data: a training
set, a validation set, and a test set [38, 63, 75, 134, 143]. The subsets consist of paired
input and output values, with each input having a corresponding output and vice
versa [139]. In the pair, the input itself may be a single scalar or a vector of scalars;
the same applies to the output. Furthermore, the dimensions of input and output
in the pair do not have to match (e.g., an input-output pair may consist of 6 input
scalars and one output scalar). The output constituent of the pair is called the
desired output or the ground truth output [136]. This term distinguishes it from the
output that the network gives for the input [136], which in prediction tasks is called
the predicted output or the prediction.

The training set comprises the data that is used to train the network, i.e., adjust
its weights [75, 143]. This is done iteratively by feeding an input from the train-
ing set into the network, computing the output, comparing it to the target output
from the training set and adjusting weights such that the difference between the
network output and the target output decreases. This difference, or a function of
it, represents training error. A set of operations ending with calculating the differ-
ence between network output and target output and adjusting the weights of the
network is called an epoch [134]. Training of complicated networks may take a very
large number of epochs before finishing. Ideally, the training process will reduce
the generalization error of the network [134]. However, it is usually undesirable to
completely minimize the difference between the network output and the target out-
put using the training set [134, 135]. After a point, decreasing the difference further
usually no longer decreases generalization error but will instead start increasing it
again as the network becomes trained to solve the problem type represented only
by the relationships in the training set [134]. This situation is called overfitting, and
it is one of the main obstacles to overcome during training [134, 135]. Similarly, too
little training will result in underfitting, where the generalization error remains high
and could still be reduced by training the network using the training set.

The validation set is used to prevent overfitting [134]. The idea of a validation
set is to separate a subset of the data used during training and instead of using it
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directly to change the values of the weights during training, using it to evaluate
the error of the network between training epochs on the data in the validation set
[75, 134]. The error evaluated on the validation set is called the validation error and
it provides a rough estimate of the generalization error during the training process.
Because validation error has local increases and decreases as epochs go by, halting
training after the validation error stops decreasing the first time may underfit the
model. On the other hand, if validation error is ignored and training processes until
training error is minimized, the model is overfitted [38]. Hence, a way to achieve
a good balance between underfitting and overfitting is to stop training after the
validation error has not decreased for a set number of epochs (e.g., 10), and take
the model’s state at the last epoch that resulted in decreased validation error as
the final trained model [75, 136]. This method is known as early stopping [136].
The validation set can also be used to optimize the other hyperparameters of the
model [134].

After training, the ANN is typically used on data that wasn’t used during its
training. To evaluate how the ANN performs on such data, a test set is required
[75]. This test set must be independent from the training and validation sets or its
use with the network will result in misleading performance metrics [38, 134, 143].
Because of this independence, test error is usually reported as the best estimate of
the generalization error of the network, and used to compare different networks
[38, 63].

An important distinction between the validation and the test subsets is that the
validation set is used during the training process, while the test set must be kept
separate from it and only used to evaluate the model after its training is completed
[75, 138, 143]. Failure to keep the test set separate from the training set will result in
"data leakage" where the model can learn from features in the test subset, resulting
in the perceived generalization error calculated against the test subset to be lower
than it actually would be if used with independent data [38, 143].

4.5.3 The backpropagation algorithm

Backpropagation is an algorithm that has been used extensively in training multi-
layer ANNs [134, 136, 139]. It has a strong mathematical foundation and is fairly
understandable. Furthermore, the neural networks used in studies II and III em-
ploy backpropagation training. For these reasons, the working principles of the
algorithm are briefly presented here.

Backpropagation consists of two phases: the forward pass and the backward
pass [139]. In the forward pass, input is fed to the network to calculate the predicted
output [136,139]. The predicted output is compared to the desired output to evaluate
the error of the network [136]. The error is evaluated using a loss function which
can be the simple difference between the prediction and the desired output or a
more complicated function involving them. In the backward pass, the error is used
to adjust the weights of the network so that the error of the next iteration is reduced.
The process of alternating between forward pass and backward pass is repeated for
a desired number of iterations or until the error is smaller than some threshold.

In the backward pass, the weights are adjusted starting from the output layer
and passing backwards all the way to the weights between the input layer and the
first hidden layer [134]. Computational complexity increases as the algorithm passes
towards the first layer of the network.
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Mathematically, the necessary equations can be found by applying the chain rule
of derivation. The steps won’t be repeated here but are presented in many literature
sources on artificial neural networks, e.g., [132, 134, 139].

Although backpropagation is very useful, it has caveats. Two major ones are the
vanishing gradient problem (also called "network paralysis" in some sources [139])
and getting stuck in local minima [134]. Fortunately, solutions have been proposed
to both problems.

The vanishing gradient problem occurs when the derivative of the activation
function is close to zero [139]. Because the derivative of the activation function
affects how much the weights are adjusted each iteration, a derivative that is effec-
tively zero makes training extremely slow [139]. For instance, sigmoid functions are
common activation functions and their derivatives are close to zero at very small
and very large inputs (Figure 4.6, left side). Hence, the vanishing gradient problem
is quite common.

Solutions to the vanishing gradient problem include modified activation func-
tions and careful pre-processing of the input data. Activation functions with man-
ageable derivatives have been proposed, notably including the ReLU function (Fig-
ure 4.6, right side) and its variations (e.g., leaky ReLU if nonzero derivative is de-
sired with negative inputs). Pre-processing of the input data (e.g., by centering mean
to zero and normalizing to a standard deviation of one) can help in managing the
magnitude of the inputs to each activation function.
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Figure 4.6: The logistic sigmoid (left) and ReLU (right) activation functions and
their derivatives. Note that although the derivative of the ReLU function has a
discontinuity at 0, the derivative can be chosen to be 0 or 1 for the purpose of using
it in training algorithms.

Instead of finding the global minimum of the loss function, the training can get
stuck in a local minimum [134,139]. In an arbitrarily small neighbourhood of a local
minimum of a function, the gradient of the function guides the weights to converge
to the local minimum (Figure 4.7 shows an example of a loss surface with local
minima) [134]. Because training usually occurs in small steps, it is not uncommon
for the algorithm to happen upon and get stuck in a local minimum. In such a case,
the optimal weights are never found.

Introducing momentum to the gradient has been proposed as a way to avoid
getting stuck in local minima [139]. The idea of momentum is that the weights are
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Figure 4.7: Demonstration of a loss surface with two local minima and a global
minimum. The minima are indicated by the vertical lines running through them.
Note that for ease of visualization, there are only two weights to optimize; in most
artificial neural networks there are more than two weights.

not updated only according to the gradient at the solution of the current iteration,
but also according to the direction of the updates from previous iterations [134].
Therefore, the training process has "momentum": if the updates have been done
in a particular direction for several recent iterations, a single iteration of an oppo-
site or otherwise different gradient has only a small effect on the adjustment of
the weights. Hence, during a single iteration, the weights are updated according
to the combined effect of several recent iterations rather than relying only on the
current iteration (which could throw the weights into a local minimum instead of
towards a more global solution). This method can help the algorithm in escaping
the neighbourhoods of local minima when they are encountered.

4.6 NEURAL NETWORKS IN MOTION ANALYSIS

In section 3, the reader was introduced to how motion data is captured and ana-
lyzed through musculoskeletal modeling and simulation. Section 4 presented the
basic principles of two types of neural networks, fully connected feedforward and
convolutional. Here, we describe how neural networks are applied to solve two
prominent issues in motion capture and musculoskeletal modeling and simulation:
1) the cumbersomeness of capturing motion capture data and 2) the complexity of
analyzing the captured motion data (briefly presented in section 3.5).
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Capturing motion capture data and the subsequent analysis is troublesome for
the following reasons:

1. motion capture requires a large indoor space with expensive equipment [63,79]

2. said equipment needs to be moved to fit the needs of individual studies and
calibrated afterwards [76, 78]

3. the subject of study must travel to the motion laboratory for the measurements
[79]

4. the measurements involve a preparatory stage where markers are placed on
the skin of the subject [79]

5. markers must be placed by trained personnel [63, 79]

6. trained personnel must operate the measurement devices and software [21]

7. the analysis involves a multi-stage workflow which takes time [19, 20]

Point 1 creates a monetary barrier to using motion analysis. Points 2, 3, and
4 increase the time a study of motion study requires before even allowing the re-
searchers to start analyzing the collected data, while points 2, 4, 5, and 6 employ
special expertise. While the individual steps of point 7 can be implemented in real-
time so that the results of the analysis are immediately available during the mea-
surement [29, 126], existing studies have focused on the inverse kinematics [94, 126]
and sometimes the inverse dynamics stage [29] or are not modular and adaptable to
different musculoskeletal models [26]. Additionally, sometimes achieving real-time
throughput has necessitated the reduction of the accuracy of algorithms used by the
workflow [94].

Luckily, artificial neural networks can be leveraged to overcome these obstacles.
Here, we split the use of artificial neural networks into two partially overlapping
categories: those where ANNs are used to estimate some intermediary outcomes of
the study (e.g., keypoints in an image) and those where ANNs are used to estimate
the final outcomes of the study (e.g., joint moments or forces). Among the former,
human pose estimation algorithms stand out as their own solution. Among the
latter, knee dynamics are a common subject of study, sometimes utilizing the former
in the process. Next, we will introduce some existing work in both categories.

4.6.1 Human pose estimation with convolutional neural networks

Although both feedforward and convolutional neural networks have been directly
applied to predict joint dynamics, the use of convolutional neural networks also
enables human pose estimation (HPE) algorithms [33,35], which have been adapted
in the study of human biomechanics [23, 42, 144]. In biomechanics, HPE is used
to infer the kinematics of a subject or subjects from images, typically from a video
recording. Most HPE algorithms achieve this by identifying keypoints, which are
anatomical locations on the human body [33,141]. Keypoints are usually discernible
locations between limbs within the human body (e.g., ankle, knee, hip, shoulder,
and elbow joints) or otherwise recognizable features (e.g., eyes, nose, mouth, fingers,
toes), but can also be inferred behind occlusions by some HPE algorithms [23, 43,
77, 145]. The trajectories of keypoints are typically given in the 2D coordinates of
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the image, but can be combined from multiple camera views to reconstruct 3D
trajectories [39, 42].

HPE algorithms are trained on large datasets of labeled images that are available
online. These datasets include the ImageNet [146], COCO [147], and MPII [148]
datasets [145]. Although the amount of available training data is satisfactory, the
images are usually labeled by amateurs rather than experts of human physiology.
Therefore, some disagreement exists between the positions of the keypoints identi-
fied by HPE algorithms and true positions of the anatomical features those keypoints
represent [22, 23].

Because HPE algorithms are not created for the sole purposes of biomechanical
studies, the researcher must take their output and use it to calculate biomechani-
cally relevant parameters [23]. This can be achieved by tracking the trajectories of
keypoints and treating them as motion capture markers [22, 149]. Usually this sort
of analysis is done on a plane (e.g., to calculate 2D kinematics) because the HPE al-
gorithms usually operate on 2D images, but augmented neural networks solutions
exist where the HPE algorithms can infer the 3D trajectories of the keypoints from
single camera view 2D images [150], depth camera data is utilized to transform 2D
keypoints to 3D keypoints [43,44], or 2D keypoints from multiple camera views are
transformed to 3D [39, 42, 145]. The use of keypoints serves the needs of biome-
chanical studies well, because keypoint trajectories can be used in place of marker
trajectories from laboratory-grade motion capture systems and fed to musculoskele-
tal modeling and simulation pipelines [145].

Currently available HPE algorithms include AlphaPose [35], BlazePose [151],
DeepLabCut [34], OpenPose [33], and YOLOv7 [36], just to name a few. Their per-
formance in different tasks has been studied in literature. For instance, Needham et
al. (2021) found that between AlphaPose, DeepLabCut, and OpenPose, the accuracy
of joint center localization when compared against MOCAP-based joint centers de-
pended on the joint but systematic differences differences of 3–5 cm were observed
for all three HPE algorithms [22]. These differences were attributed to mislabeling
of ground truth datasets and are important to acknowledge because hip and knee
are pivotal joints in the study of human biomechanics. Moreover, HPE localizations
of the ankle joint had low systematic and random error when compared to the hip
and knee joints. Needham et al. believed that this relatively low error resulted from
the ankle joint being easy to identify and label in the training data. It seems plau-
sible that the more soft tissue or clothing surrounds the bony landmark, the more
difficult pinpointing its location in images becomes. Therefore, obese subjects may
present additional challenges to accurate HPE-based localization of joint centers,
which could be problematic because some conditions that are studied using motion
analysis have been linked to obesity (e.g., knee osteoarthritis) [7, 10, 54].

One of the best-known HPE algorithms, OpenPose, works by iteratively refining
estimates of body part positions in the image (Figure 4.8) [33]. OpenPose is very
robust and identifies keypoints on many different human shapes as demonstrated in
Figure 4.9. In biomechanics, OpenPose has been used, e.g., to estimate the hip-knee-
angle of KOA patients from frontal images [129], to estimate spatiotemporal gait
parameters [40], to estimate joint kinematics during walking, running, and cycling
[23, 40, 77, 145, 152], and to estimate joint dynamics of cyclists [104]. It has been
shown to estimate knee kinematics as accurately or even more accurately than many
competing freely available HPE algorithms [22, 40, 152]. For instance, Washabaugh
et al. (2022) compared OpenPose to the Tensorflow MoveNet Lightning, Tensorflow
MoveNet Thunder, and DeepLabCut pose estimation algorithms against marker-
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based optical motion capture and found that OpenPose outperformed the others in
estimating the kinematics of healthy gait and spatiotemporal gait parameters, noting
that OpenPose excelled over the others particularly in estimating knee kinematics
[40]. Van Hooren et al. (2023) made similar observations when comparing OpenPose
and DeepLabCut against marker-based optical motion capture [152].

Figure 4.8: The workflow OpenPose uses to detect keypoints from an input image
using the BODY_25 model. Confidence maps of body part positions are estimated
in the original image and body parts of the person are associated with one another
to locate the keypoints for each body part.

OpenPose follows a bottom-up approach, meaning that it first detects body parts
in the image and then assigns each detected body part to a person. This approach
is an alternative to top-down approaches, which first detect different people in the
image and then try to detect the body parts belonging to each person [43]. All body
parts do not have to be visible at the same time, although detection works best when
they are [145].

Like in many other HPE algorithms, the main outputs of OpenPose are called
keypoints. They are the positions of various anatomical landmarks on a 2D image.
In addition to the 2D position, OpenPose also outputs a confidence value for each
keypoint. This value describes how sure OpenPose is of the correct identification of
the keypoint and ranges from 0 to 1. Confidence of OpenPose keypoints has been
shown to correlate nonlinearly with keypoint detection accuracy [41].

Although OpenPose can fail to correctly identify keypoints especially in the
case of limb occlusions, challenging environments and motions, or high veloc-
ity [23, 24, 104], methods exist for correcting keypoint trajectories similarly to mo-
tion capture marker trajectories, i.e., by utilizing assumptions of the motion and
information about the previous positions of the keypoints [23, 104]. Due to its
usability, OpenPose has been investigated as an alternative to laboratory-grade
motion capture systems in clinical and other out-of-the-laboratory environments
[22, 23, 39–41, 77, 104, 129, 152]. However, it likely performs best in controlled envi-
ronments instead of sports venues where the lighting and camera conditions are far
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from ideal [24]. Furthermore, while OpenPose can detect keypoints on occluded
limbs, their detection accuracy is lower than those of visible limbs [23].

4.6.2 Neural networks in estimating joint dynamics

Where human pose estimation algorithms rely mostly on convolutional neural net-
works, dynamics of motion can be estimated with a variety of different types of net-
works including not only convolutional neural networks, but also fully connected
feedforward neural networks and recurrent neural networks [19, 75]. In some cases,
these solutions utilize human pose estimation algorithms, e.g., to substitute keypoint
trajectories for marker trajectories [39, 40].

Existing applications of artificial neural networks in estimating joint dynamics
mostly involve feedforward networks. For instance, Ardestani et al. (2014) trained
feedforward network models to predict knee joint contact forces in the medial com-
partment after gait modification [18]. They evaluated three architectures of net-
works; the first trained on pre-rehabilitation marker and GRF data from a single
subject to predict post-rehabilitation KJCFs of the same subject, the second trained
on pre-rehabilitation GRF and EMG data of several subjects to predict the subjects’
post-rehabilitation KJCFs, and the third trained on post-rehabilitation marker, GRF,
and EMG data to predict post-rehabilitation KJCF of a subject whose data was not
used during training. They found that the model trained on subject-specific data
to predict the same subject’s loading after gait modification was the most accurate.
However, that model required motion capture data (marker trajectories and GRFs)
during both training and its actual use. Similarly, Rane et al. (2019) used CNNs
to predict medial KJCFs with combinations of marker and GRF data [19]. Giar-
matzis et al. (2020) trained feedforward networks to predict compartmental KJCFs
from marker and GRF data or just marker data, and observed that excluding GRF
data did not greatly increase prediction error [20]. While the elimination of GRFs
makes the method slightly more portable, marker data still requires motion capture
equipment or a means to accurately estimate 3D marker trajectories.

Utilizing more accessible data, Mundt et al. (2020) used marker trajectories to
calculate simulated IMU signals and used them for predicting joint kinematics and
kinetics using fully connected feedforward network and long short-term memory
network architectures [75]. Stetter et al. (2019, 2020) trained ANNs to predict net
knee joint forces from IMU data during different movements and noted that some
movement types are better suited to the prediction task than others [11, 30]. In an
interesting development, Zhang et al. (2022) incorporated laws of physics as a soft
constraint into the neural network training process to develop a physics-informed
CNN for predicting muscle forces and joint angles from surface EMG data [142].

Finally, in addition to artificial neural networks, other machine learning algo-
rithms have also been used for similar purposes. For instance, Brisson et al. (2021)
used regularized least squares regression to predict medial KJCF from gait speed,
vertical knee reaction force, and knee adduction moment [128]; Long et al. (2023)
predicted the kinematic and kinetic time series of ankle and hip joints with random
forest regression using a single IMU on the ankle [32]; di Raimondo et al. (2023)
used IMU data and a trained probabilistic PCA model to estimate GRFs and then
used the estimated GRFs together with IMU-based kinematics to estimate knee joint
contact forces [25].

These studies noted that machine learning algorithms provide a faster way to
estimate knee joint loading than traditional musculoskeletal modeling and sim-
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ulation and pave the way for real-time applications outside the motion labora-
tory, [18–20,25,30,32,75,128,142] where wearable devices could be used to eliminate
the need for motion capture data [11, 25, 30, 32, 75].

Futhermore, the existing literature presented here exhibits two approaches to
using trainable machine learning models for predicting the dynamics of motion:
personalized and non-personalized [11, 18, 19].

In the personalized approach, the ANN models are trained using the data from
the subjects that are also present in the test set, i.e., the models are personalized to
particular subjects. This approach is in slight contrast to the principles presented
in section 4.5; however, the personalized approach wilfully accepts a degree of data
leakage as networks are trained and tested on data from the same subjects [20, 89].
Such networks could be used, after initial thorough collection of training data, to
make accurate intra-subject predictions with less cumbersome measurements. Thus,
the networks would generalize poorly to other subjects, but provide more accurate
subject-specific predictions after a thorough measurement session for obtaining the
training data for that subject [89].

The non-personalized (alias generalized) approach is more stringent about the
independence of the training, validation, and test subsets. It generally restricts the
data samples belonging to one subject to just one of the subsets [19]. Its purpose is
to develop prediction models that can be used for the general population.

The existing literature has also proposed solutions that use several independent
networks in sequence (instead of just one multi-layer network), e.g., to first estimate
kinematics with one network and then to use another network to estimate kinetics
from the output of the first network [89]. This workflow could increase modularity,
usability, and explainability of the methods as it separates the learning problems and
allows training and re-training the networks independently from one another [89].

Despite these advances in research, existing studies are often limited to either
requiring motion capture data in their use case or support only a specific portable
modality [130]. Hence, there is a need for modular methods that can extract pre-
dictors from a variety of different portable modalities (instead of being tied to a
specific modality) and utilize those predictors to predict knee joint dynamics. Such
methods could facilitate the effortless prediction of knee joint dynamics out of the
laboratory in various different settings without being tied to specific equipment or
technologies.
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Figure 4.9: OpenPose is very robust and works even with cartoon depictions of
people. On the left, public domain images "Together We Win", a WWI era poster by
James Montgomery Flagg, and the cover illustration of "The Dialogue Concerning
the Two Chief World Systems", a 17th century book by Galileo Galilei. On the
right, the keypoints detected by OpenPose are overlaid on the images. Note that the
algorithm detects legs even though they are covered with gowns.
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5 Aims

As described in the previous sections, structural damage in the knee joint may be
linked to physical loading exerted in the joint. The loading cannot be measured
non-invasively in vivo, and must instead be estimated using musculoskeletal model-
ing and simulation. This estimation requires collection of experimental motion data
from live subjects and computational analysis of the data, which together require ex-
pensive equipment, trained personnel, a specialized location for the measurements
where the subject must be be present for the length of the measurements, and time
to compute the musculoskeletal simulations. These requirements rule out routine
estimation of knee joint loading in clinical or other environments and prevent ac-
cessing the results in real-time or immediately after the measurements. Further-
more, the entire process is too cumbersome for routine use with people even in a
motion laboratory. Available solutions to these problems include the use of artifi-
cial neural networks and other machine learning algorithms to estimate knee joint
loading, but those solutions either require motion capture data, are developed for
a specific measurement technology, thus making its adoption to wider use difficult,
or are cumbersome and effectively unavailable for portable use.

Therefore, this thesis explores ways to estimate human movement with more
accessible, modular, and portable ways. Particularly, we present methods to estimate
human kinematics (i.e., joint angles) in-real time and to estimate knee joint loading
from simple input data that can be measured with little effort. Specifically, the aims
of this doctoral dissertation were as follows:

1. To develop a method for real-time analysis of inverse kinematics from iner-
tial measurement unit data and quantify its performance on standard desktop
and laptop computers (study I). We designed our method to use wearable in-
ertial measurement units extend an existing open-source and commonly used
software for musculoskeletal modeling and simulation. In the long term, we
hoped that this could better enable real-time sports training and physical re-
habilitation.

2. To develop simple and modular methods for estimating subject-specific knee
joint loading outside the motion laboratory (study II). To this effect, we trained
feedforward artificial neural network models for predicting compartmental
tibiofemoral compressive contact force peaks from predictors (i.e., input vari-
ables) that do not necessitate the use of motion capture equipment. Although
the predictors were designed to be obtainable without motion capture data,
at this point we still calculated them from motion capture data, leaving actual
demonstration of out-of-laboratory use for later. To obtain the tibiofemoral
compressive contact force peaks, we used musculoskeletal simulationg with
human models whose properties were adjusted according to subject-specific
information. Although the musculoskeletal models were made subject-specific,
we trained the prediction models to be non-personalized.

3. To test the knee joint loading prediction methods of study II using predictors
that have been calculated from portable modalities usable outside the motion
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laboratory (study III). In effect, the data of a single video camera or inertial
measurement units; however, the prediction models themselves were designed
to be technology-agnostic and do not necessarily require either of the two
modalities. Thus, we showcased the modularity and portability of predicting
knee joint loading peaks. Note that although we developed methods to es-
timate knee walking speed and knee flexion angle from the two modalities,
our aim was not to develop state-of-the-art methods for doing so but to sim-
ply demonstrate possible out-of-laboratory use cases of our knee joint loading
prediction models.

During the course of the studies and based on the like-numbered aims, we ex-
amined the following hypotheses:

1. Analysis of musculoskeletal model-based kinematics during gait can be con-
ducted portably and in real-time using a laptop and wearable sensors. The
workflow enables the use of different musculoskeletal models and sensor con-
figurations.

2. Compartmental knee joint contact force peaks can be estimated from a very
simple set of predictors.

3. The predictors used in predicting knee joint contact force peaks can be esti-
mated using different portable modalities, namely inertial measurement units
or a video camera recording motion in the sagittal plane.
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6 Materials and methods

6.1 MOTION LABORATORY

All experimental motion capture data that we collected during studies I and III was
collected in the HUMEA motion laboratory of the Department of Technical Physics,
University of Eastern Finland. The HUMEA laboratory has a host of equipment for
motion capture, presented in the subsections below.

6.1.1 Motion capture equipment

We used a marker-based Vicon motion capture system with 10 Vicon Vero optical
cameras and a single Vicon Vue video camera (Vicon Motion Systems Ltd, UK). The
Vicon motion capture system is one of the most common systems used in studies of
human motion [3,4,11,20,52,72,75–77,82,89,96,99,102,109,115,117,153]. The cameras
were embedded on rails running along the ceiling and on tripods on the floor so that
they tracked reflective markers in the capture volume from many different angles.
The placement of the Vero cameras was designed to minimize occlusion of markers
by objects and human subjects, so that as many markers as possible would be visible
to as many cameras as possible at any given frame.

During study III, the Vue video camera was placed approximately 4 meters from
the line of walking at the height of the hip. The video camera was aimed and focused
to record walking in the sagittal plane of the participants.

The floor of the capture volume includes three embedded force plates measuring
at 1000 Hz the ground reaction forces and moments and the center of pressure of
the object pushing against them (Figure 6.1). The participants were instructed to
step on the middle one (AMTI OR 6–7, Advanced Mechanical Technology Inc, MA,
USA) during the collection of the Kuopio gait dataset in study III.

The laboratory contains a Motek M-Gait (Motek Medical B.V., Netherlands) dual-
belt instrumented treadmill (Figure 6.2). It has integrated force plates under each
belt. The treadmill is placed within the capture volume of the Vicon Vero cameras
and was used while collecting motion capture data in study I.

6.1.2 Inertial measurement units

We used the MTw Awinda (Movella Inc, Henderson, NV, USA) wireless inertial
measurement units (IMUs) as one of the two portable motion tracking modalities
(Figure 6.3). The IMUs utilize a proprietary Kalman filter that estimates the 3D ori-
entation of the sensor from its tri-axial magnetometer, accelerometer, and gyroscope
readings. The sampling rate of the orientation data depends on the number of IMUs
in concurrent use. We used a total of seven IMUs concurrently with a sampling rate
of 100 Hz.
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Figure 6.1: Three force plates are embedded in the floor in the HUMEA laboratory
to ensure they do not hinder gait. Data from the middle force plates was used in
study III.

6.2 MAGNETIC RESONANCE IMAGING FOR CALCULATING KNEE
INTERCONDYLAR DISTANCE

Participants of study III underwent a low-field MRI (0.18T E-Scan XQ, Esaote SpA,
Italy) scan of the knee of their dominant leg. The images were taken in the sagittal
plane and reconstructed to retrieve projections in the frontal and transverse planes.
From the projections, we extracted the intercondylar distances (ICDs) between the
center points of medial and lateral condyles of the distal femur.

To extract the ICDs, we first located the boundaries of the condyles of the femur.
Next, we calculated the midpoint of each condyle as the point exactly between the
boundaries. Finally, we calculated ICD as the distance between the midpoints (Fig-
ure 6.4). The ICD was used to scale the knee of the musculoskeletal model in the
mediolateral direction in study III (see section 6.6).

6.3 COLLECTION OF THE KUOPIO GAIT DATASET

In study III, for testing the knee joint contact force (KJCF) prediction models trained
using the combined dataset (put together in study II), we collected a dataset of 51
willing participants in the HUMEA motion laboratory, University of Eastern Fin-
land, Kuopio, Finland.

The participants participated in walking measurements where their gait was
captured with the Vicon Nexus marker-based motion capture system and floor-
embedded force plates. Concurrently, sagittal-plane video of walking was recorded
with the Vicon Vue video camera, and inertial data was collected using the MTw
Awinda IMUs. Finally, magnetic resonance images were taken of the knee of the leg

48



Figure 6.2: An instrumented Motek M-Gait treadmill was used while collecting
motion capture data in study I.

Figure 6.3: In studies I and III, we used MTw Awinda IMUs. Their small size of
47 mm × 30 mm × 13 mm makes them convenient to wear.

the participants identified as dominant.

Due to data processing difficulties, the data of five participants were not included
and analyzed in study III. The remaining 46 participants (29 male, 17 female) were
between 20 and 45 years of age (mean ± std 28.7 ± 5.9) and had masses between
54 and 136 kg (76.3 ± 14.5 kg), heights between 1.61 and 1.89 meters (1.74 ± 0.7 m),
and body mass indices between 18.8 and 40.4 (25.1 ± 4.1).
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Figure 6.4: Magnetic resonance images in the sagittal plane (left) were used to
reconstruct images in the frontal (center) and transverse (right) planes. Annotated
points are the boundaries of the condyles at the level of the lateral depression of
the lateral condyle (i.e., the popliteal groove). Knee intercondylar distance was
calculated as the distance between the midpoints (between P-1 and P-2, and P-3
and P-4) of the condyles. Red line shows the transverse plane, green the frontal
plane, and yellow the sagittal plane.

6.3.1 Marker and IMU placement

When possible, we wanted to subject the IMUs to the same soft tissue movement
as the markers. Thus, to aid in the placement of markers and IMUs, we designed
and 3D printed marker clusters for the pelvis and the thighs (Figure 6.5). The base
shape of the clusters was rectangular, with extending posts in each corner, an indent
slot for an IMU in the middle, and two rails to slip through a strap that would also
hold the IMU in place. The back of the pelvis cluster was flat, while the backs of the
thigh clusters were curved to better fit against the convex surface of the thigh.

IMUs were fitted to a slot on the pelvis marker cluster and the thigh marker
clusters. On both shanks, a single IMU was strapped on the skin distolaterally. On
both feet, a single IMU was taped centrally on the metatarsal. This resulted in a
total of seven IMUs, tracking the inertial motion of the pelvis, the femurs, the tibias,
and the feet.

A total of 42 reflective markers were placed on each participant. On the torso,
single markers were placed on the shirt on the manubrium of the sternum, on the 7th
cervical vertebra, and on the acromion of the left and right scapula. Four markers
were placed asymmetrically on a marker cluster that was strapped behind the pelvis.
On both thighs, four markers were placed asymmetrically on a marker cluster that
was strapped to the skin on the lateral side, and single markers were placed on
the medial and lateral epicondyles of the knee. On both shanks, four markers were
placed on a marker cluster that was taped on the skin on the lateral side, and single
markers were placed on the medial and lateral malleoli of the ankle. On both feet,
single markers were placed on the skin posteriorly to the calcaneus, on the first distal
phalanx and on the fourth proximal phalanx. Finally, two markers were placed
anteroposteriorly on the IMU on the metatarsal.
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Figure 6.5: 3D printed clusters for markers and IMUs were used in study III.
During measurents, a marker was attached to each of the four posts in each cluster.

6.3.2 Walking measurements

All walking trials were synchronously recorded with the optical motion capture
system (marker trajectories and force plate data), IMUs, and video camera capturing
sagittal-plane motion — a plane where joint angles can be measured with good
agreement with respect to standard methods [42, 86]. A single walking trial started
with the participant standing still outside the view of the video camera, accelerating
to an approximately constant walking speed, walking over the force plates while
stepping on the middle force plate with their dominant leg, and decelerating after
passing the force plates. The trial ended with the participant standing still outside
the view of the video camera a few meters after the force plates, facing the same
way as they did when the trial started. Because the trials involved no systematic
rotation around the vertical axis and a single trial only lasted a few seconds, we
could ignore the effect of accumulating drift error [93, 100] and make assumptions
about the motion for later estimation of predictors (section 6.8).

A walking trial and its recording started when the operator of the motion lab-
oratory clicked a button to start the IMU measurement. Clicking the button sent
a voltage signal to the Vicon motion capture system as a cue to start capturing.
Thus, the motion capture system started the collection of marker trajectories and
force plate data and the video camera recording. When the participant finished,
the operator clicked a button to stop the IMU measurement, which sent a terminat-
ing voltage signal to the motion capture system. This procedure ensured that the
collected data from marker trajectories, force plates, video camera, and IMUs were
synchronized.

Ten successful walking trials were recorded per three instructed walking speeds:
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the participant’s comfortable walking speed, a walking speed 25% slower than com-
fortable, and a walking speed 25% faster than comfortable. The walking speeds were
not controlled and they were based on the participants’ own judgment. On average,
the participants walked at 1.11± 0.18 m

s , 1.35± 0.17 m
s , and 1.55± 0.23 m

s during slow,
comfortable, and fast trials, respectively (Figure 6.6).

Furthermore, because we wanted to assess how occlusion by the non-dominant
leg affects video analysis of the dominant leg, these 30 trials were repeated with
the participant walking in the opposite direction. In summary, we had six trial
configurations and collected a total of 60 successful walking trials per participant
(10 slow, 10 comfortable, and 10 fast walking speed trials, and another set repeated
in the opposite direction).
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Figure 6.6: The inter-participant mean (bar height) and standard deviation (er-
ror bars) of intra-participant mean walking speeds for different instructed walking
speeds (slow, comfortable, and fast). The walking speeds are calculated from pelvis
marker trajectories of the Kuopio gait dataset collected in study III.

6.4 COLLECTION OF EXISTING GAIT DATASETS

We combined five existing motion capture datasets: four open datasets of healthy
subjects [154–157] and one dataset of knee osteoarthritis patients [158] obtained from
research collaborators. This sort of pooling of different datasets is recommended by
Halilaj et al. (2018) in their literature review, where they observed that datasets used
in biomechanics studies usually only involved data from a single laboratory [38]. All
five datasets included marker trajectories from optical motion capture and ground
reaction forces and moments from floor-embedded force plates, measured during
walking trials of the subjects. The datasets were in similar formats and all datasets
contained overground walking trials, so there was little need to standardise the data.
However, because they used different marker sets, we defined unique model scaling
and inverse kinematics setup templates for each dataset.
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The data was analyzed with musculoskeletal modeling and simulation and used
in studies II and III, where it is referred to as the "combined dataset". In study II
the data was used to train and evaluate feedforward neural networks for predicting
KJCF peaks. In study III, the data was used to train feedforward artificial neural
networks, but data from the dataset we collected ourselves (see section 6.3) was used
as the test set.

6.5 ENABLING REAL-TIME PROCESSING OF INVERSE KINEMATICS
WITH OPENSIM

In study I, our plan was to use the OpenSim API to write a software tool that im-
plements the inverse kinematics functionalities of OpenSense in real-time. Because
OpenSim is written in C++, we also chose to write our software tool using C++,
which allowed us to leverage the classes of OpenSim directly.

We based our programmatical real-time IMU IK class on that of OpenSense,
modifying it to read and analyze data one frame (i.e., orientations of an arbitrary
number of IMUs in a single time point) at a time. To improve the throughput of
our tool, we used thread pooling to enable parallel processing of IMU orientation
frames.

To pass data between IMUs and the OpenSim API, we wrote classes for reading
data from two IMU manufacturers (Xsens and Delsys) using the Xsens Device API
and the Delsys Software Development Kit. These classes interfaced with the man-
ufacturers’ programs to read IMU orientations into a data structure that could be
utilized by the OpenSim API.

Finally, we evaluated the performance of the software tool by analyzing previ-
ously recorded IMU orientations frame by frame in a simulated real-time analysis,
and by analyzing walking on a treadmill in real-time during actual live measure-
ments. The simulated real-time analysis was performed on two computers, one
a standard motion laboratory desktop computer and the other a standard laptop,
which represented a computer one could easily use outdoors or in other portable
situations. The live measurement was analyzed using the desktop computer to see
how the possibly reduced sampling rate caused by real-time analysis would affect
the range of motion of joint angles compared to offline measurement at the full
sampling rate of the IMUs.

The IMU orientation data from 12 IMUs was measured from a volunteering par-
ticipant. Ten walking trials, lasting approximately a minute each, were recorded on
the treadmill. The placement of IMUs during the measurements is shown in Figure
6.7.

When developing the software tool, our aim was to acknowledge the drawbacks
of existing real-time analysis studies and develop a solution that is not reliant on a
specific data set, measurement setup, or musculoskeletal model [26, 28, 37, 159–161],
and could instead be used plugged in different studies to provide an analytical
and physics-informed solution, much like any other OpenSim tool. The software
tool can be built from its source code, which is available at https://github.com/
jerela/OpenSimLive.
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Figure 6.7: The placement of 12 inertial measurement units (blue circles) on the
subject in study I. Image is taken from the article of study I, published in PeerJ
(https://doi.org/10.7717/peerj.15097).

6.6 MUSCULOSKELETAL MODELING AND SIMULATION

In study I, we conducted musculoskeletal modeling and simulation to solve the joint
angles of a musculoskeletal model in real-time. We used two different musculoskele-
tal models, the Gait2392 lower extremities and torso model [88,112,162,163] and the
Hamner full-body model [164]. Although the models were generic, we did not scale
their bony dimensions or muscles because we worked directly with orientation data
and wanted to solve only joint kinematics. Therefore, the pipeline comprised the
registration of worn IMUs on the musculoskeletal model using a static standing cal-
ibration pose and then the estimation of the pose of the model that best matched
the experimental orientations measured from IMUs.

In studies II and III, our musculoskeletal modeling and simulation pipeline was
more thorough and comprised the following steps:

1. model scaling to turn generic musculoskeletal models subject-specific

2. esimation of model kinematics to solve joint angles during the motion

3. estimation of model kinetics to solve the forces and moments in each joint
during the motion

4. estimation of muscle activations to solve how much force different muscles
produced during the motion

5. estimation of internal forces to solve how much force is applied on joints.

54

https://doi.org/10.7717/peerj.15097


Similarly to [114], in studies II and III, we used the Rajagopal model [165] but
removed the arms while adding their mass to the torso, and included a bicompart-
mental knee model developed by Lerner et al. (2015) [166]. During step 1, the bony
dimensions of the modified model were scaled according to subject anthropome-
try [15] and allometric scaling with respect to subject mass with an exponential
factor suitable for lean populations [167] was used to adjust muscle strengths [118].

The scaling step also involved tuning the positions of virtual markers on the
scaled model and setting the initial pose of the model. To this end, in study II,
we used marker data from static standing, whereas in study III, we additionally
used functional calibration methods to determine the centers and axes of rotation of
the hip and knee joints [81, 168–170]. Although those methods were mainly devel-
oped to reduce soft tissue errors in marker data and enable accurate localization of
joint centers and axes of rotation, we used the estimated joint positions to calculate
scaling factors for the segments of the model, as they have been shown to perform
relatively well compared to other similar methods [153]. Because of possible error
in lateral position of the hip joint center [171] (which we also observed during initial
analyses), we did not use the functionally determined hip joint centers to scale the
pelvis. Instead, we used palpation-based measurement of the participant’s inter-
ASIS distance (i.e., the distance between the two anterior superior iliac spines of the
pelvis) to scale the pelvis segment. In study II, the knee abduction-adduction angle
during static standing was also estimated in the scaling step.

Finally, we included small reserve actuators in hip, knee, and ankle joints with
a stronger reserve actuator in the hip flexion direction to account for moment-
inducing effects of elastic structures (e.g., ligaments) not explicitly included in the
musculoskeletal model [172].

The pipeline in study II was validated against in vivo data; in study III, we
changed some parameters, most importantly by scaling knee width from mag-
netic resonance images rather than based on subject height like we did in study
II. However, this change should only make the modeling more realistic and subject-
specific [166].

The outputs of the musculoskeletal modeling and simulation pipeline included
joint angles (where knee abduction-adduction angle during static standing was used
in study II and knee flexion-extension angle during walking was used in study III;
the use of both is elaborated in section 6.7.2) and knee joint contact force time series
(elaborated in section 6.7.1).

The musculoskeletal modeling and simulation pipelines were implemented us-
ing the OpenSim API. We used version 4.0 in study I, version 4.1 in study II, and
version 4.3 in study III.

6.7 DESIGNING THE MODEL FOR PREDICTING KNEE JOINT LOAD-
ING

In this section, we describe the ANN-based models for predicting KJCF peaks. We
introduce the response variables (i.e., variables that a prediction model estimates
with its output) and the predictors (i.e., input variables to a prediction model). We
also present the architecture of the utilized ANNs and how their prediction accuracy
was evaluated.
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6.7.1 Response variables

In studies II and III, we trained models to predict nine response variables. During
musculoskeletal modeling and simulation, we solved three time series for tibiofemoral
compressive KJCFs: those in the medial compartment, those in the lateral compart-
ment, and their sum. In each of these three, we extracted the maximum value of the
loading response peak (i.e., first peak), the maximum value of the terminal extension
peak (i.e., second peak), and the maximum value over the full time series (i.e., the
full-stance peak, which always equals one of the two aforementioned peaks). These
response variables were extracted from each walking trial. Thus, we had three re-
sponse variables per three time series, resulting in nine response variables in total
(Figure 6.8).
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Figure 6.8: The nine response variables predicted in studies II and III. In each
walking trial, the full-stance maximum equaled the loading response peak or the
terminal extension peak, whichever was higher.

6.7.2 Predictor selection

After establishing the response variables, we wanted to build prediction models
to estimate the values of these response variables given some input variables (i.e.,
predictors). For our predictor candidates, we established that the predictor must
be retrievable without motion capture data. From demographic data we selected
the mass, height, body mass index (BMI), age, and sex as the predictor candidates
because they are easily collected, generally available in studies involving motion
capture, and usually when at least one of these variables is collected, so are the
others [8]. Furthermore, mass has been found to correlate with maximum knee joint
contact force [173].

However, we also wanted information that describes gait. For this purpose,
walking speed was chosen because it is simple to measure and has both intuitive
physical connection to knee joint loading as well as a scientifically demonstrated
one [76, 128, 173]. At this point, we had two measures of walking speed: (1) the

56



mean walking speed over the stance phase and (2) the instantaneous walking speed
calculated from the frame of heel strike detection and the frame just before it.

Additionally, because we wanted information that could differentiate loading be-
tween the medial and the lateral compartments of the knee, we chose knee frontal
plane alignment as a predictor in study II; it has been shown to correlate with the
loading ratio between the medial and the lateral compartment [13]. We extracted
knee frontal plane alignment as the knee abduction-adduction angle of the mus-
culoskeletal model after scaling it using marker data from a static standing trial
and the inverse kinematics procedure of OpenSim. Estimates of knee frontal plane
alignment using marker data have been shown to correlate with the mechanical axis
of the lower extremity measured from radiographic images and KOA severity [56],
which further makes frontal plane alignment from motion capture a potentially use-
ful predictor.

In study III, the knee frontal plane alignment was replaced by knee flexion angle
(KFA) because, unlike frontal plane alignment, it was easy to estimate using inertial
measurement units and video cameras [42] (although OpenPose could be used to
estimate knee frontal plane alignment from image data [129]). There, we could
extract a time series instead of a single value, so we calculated the KFA predictor
as the difference between the maximum of the first half and the minimum of the
second half of the KFA time series during stance (Figure 6.9).

We used variance inflation factor to assess the multicollinearity of the predictors.
The results guided us to drop BMI (while keeping mass and height) and instanta-
neous walking speed at heel strike (while keeping the mean walking speed during
stance). The final predictors are shown in Table 6.1.

Predictor Unit
mass of the subject kilograms

height of the subject meters
age of the subject years
sex of the subject binary with 1=male and 0=female

mean walking speed during stance meters per second
knee frontal alignment (study II) degrees

knee flexion angle predictor (study III) degrees

Table 6.1: The final predictors after omitting some predictor candidates.

From the predictors, we constructed four predictor sets of different complexities
as shown in Table 6.2. These predictor sets were later used as the input while
training and evaluating ANNs for predicting KJCF peaks.

Set Included predictors
A mass, height, age, sex
B mass, height, age, sex, walking speed
C mass, height, age, sex, knee frontal alignment (study II) or knee flexion angle

predictor (study III)
D mass, height, age, sex, walking speed, knee frontal alignment (study II) or

knee flexion angle predictor (study III)

Table 6.2: Predictor sets constructed from the predictors.
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Figure 6.9: In study III, the knee flexion angle predictor was calculated as the
difference between the maximum of the first 50% and the minimum of the last 50%
of the knee flexion angle time series. The vertical distance between the dashed lines
represents the knee flexion angle predictor.

6.7.3 Constructing the prediction model

Because we wanted to include the possibility of near-arbitrary nonlinear relation-
ships between the predictors and knee joint loading peaks, we chose feedforward
artificial neural networks over least squares regression. We trained an individual
network for each unique combination of predictor set and response variable.

We designed the networks as fully connected feedforward shallow neural net-
works. Nodes in the hidden layer had a hyperbolic tangent activation function,
while an identity function was used to activate the single node in the output layer.
The input layer consisted of four to six nodes depending on the predictor set used
(i.e., the number of nodes in the input layer was the number of predictors in the pre-
dictor set). In study II, the number of hidden nodes was optimized with grid search
with values ranging from one to ten. Study II indicated that the number of nodes in
the hidden layer was not important for the accuracy of predicting KJCF peaks, and
therefore, in study III we only used one node in the hidden layer. This decision re-
duced the ability of the networks to approximate arbitrary nonlinear functions and
its effect is discussed later in this dissertation.

The networks were trained using backpropagation (see section 4.5). In study
II, the algorithm used a validation set to avoid overfitting; the process was im-
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plemented as a nested k-fold cross-validation [143, 174] scheme for optimizing the
hyperparameters of the model and computing test error. In study III, we used a
Bayesian regularization backpropagation algorithm that required no validation set
and instead used a number of training epochs that minimized the linear combina-
tion of squared training errors and weights [134, 136]; there, a separate holdout test
set was used instead of cross-validation.

The inputs underwent pre-processing that normalized them to zero mean and a
range of [-1, 1]. This helped in preventing the saturation of the activation function
and comparing the weights to determine the importance of the inputs (elaborated
in section 6.10.3). Consequently, the output had to be post-processed to scale it up
to meaningful units of physical loading. This sort of normalization is a standard
practice in artificial neural networks [38].

6.7.4 Evaluating the prediction model

For comparing the predictions (i.e., outputs of the networks) against reference val-
ues, we used response values from musculoskeletal simulation and modeling cor-
responding to the inputs of each prediction. The reported accuracy metrics are the
root mean square error (RMSE) between the predictions and the reference values,
the RMSE normalized to the mean of the reference values (NRMSE), and Pearson
linear correlation coefficients; these are common metrics in evaluating the perfor-
mance of ANN prediction models [20, 75, 143]. The metrics presented in studies
II and III have been calculated against a test set whose data points were not used
during training or validation.

In study II, dataset overlap but no subject overlap was allowed between the
training, validation, and test subsets. This practice is recommended while training
generalizable models [38]. In study III, we further eliminated the possible dataset-
related bias by using the Kuopio gait dataset as the test set, while the combined
dataset was used as the training set. Thus, there should be no data leakage between
the subsets.

It should be noted that although we calculated Pearson correlation coefficients,
the data points were not always independent. Each subject in the data had several
walking trials associated with them. Because one data point represents a single
walking trial, the assumption of independence does not hold. Thus, the correla-
tion coefficients are not comparable to other studies but instead serve to provide
comparison between predicting different responses in studies II and III.

6.8 ESTIMATING PREDICTORS FROM VIDEO DATA

This section describes how walking speed and the knee flexion angle predictor were
estimated from sagittal-plane video data of the walking trials in study III. We first
used a human pose estimation (HPE) algorithm to detect keypoints in video data.
After artefact correction, both walking speed and the KFA predictor could be calcu-
lated from the trajectories of the keypoints.

6.8.1 Identifying keypoints from video frames

In study III, we used the OpenPose HPE algorithm (introduced in section 4.6.1)
because among HPE algorithms, it is relatively easy to use and has been shown
to be robust in detecting keypoints during commonly performed exercises outside
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the motion laboratory [39, 41]. OpenPose is a framework with different models that
define what keypoints are identified. We used the BODY_25 model, which identifies
25 keypoints as named in Table 6.3 and demonstrated earlier in Figure 4.8.

Index Name Description
0 Nose tip of the nose
1 Neck manubrium of the sternum
2 RShoulder right shoulder
3 RElbow right elbow
4 RWrist right wrist
5 LShoulder left shoulder
6 LElbow left elbow
7 LWrist left wrist
8 MidHip middle of the pelvis
9 RHip right hip joint

10 RKnee right knee
11 RAnkle right ankle
12 LHip left hip joint
13 LKnee left knee
14 LAnkle left ankle
15 REye right eye
16 LEye left eye
17 REar right ear
18 LEar left ear
19 LBigToe left big toe
20 LSmallToe left small toe
21 LHeel left heel
22 RBigToe right big toe
23 RSmallToe right small toe
24 RHeel right heel

Table 6.3: The indices, names, and approximate locations of the 25 keypoints of the
BODY_25 model of OpenPose. Note that the positions are not anatomically exact
because the model is trained on images labeled by amateurs instead of experts of
human anatomy.

OpenPose was run on all sagittal-plane videos recorded during the walking tri-
als in the Kuopio gait dataset. We used a resolution of 480x272 to identify the
keypoints because high resolutions often erroneously detected human shapes in the
background texture of the image (e.g., the wall). In an ideal case, we could extract
the positions of 25 keypoints on the participant in each video frame. However, all
keypoints were seldom correctly identified and we had to implement corrections to
the data to mitigate the effect of artefacts.

6.8.2 Correcting artefacts in keypoint data

Common issues with OpenPose keypoints are the mistracking of body parts [24]
and the flipping of paired extremities, particularly legs, between frames [42]. In
the latter, OpenPose can make the left leg and the right leg keypoints switch places
suddenly. In study III, this appeared to occur more frequently when the left and

60



right leg overlapped in the sagittal camera view and it was difficult to discern which
leg shape was in the front and which was in the back, although it could also occur
at other times. When this artefact occurs just in single isolated frames, its effect
can be minimized by filtering the trajectories, which mitigates the effect of a single
outlier point. However, sometimes steps such as interpolation of missing data points
precede the filtering and the flipping of paired extremities can make them difficult,
possibly extending the issue to interpolated data points and preventing filtering
from alleviating it. A case where interpolation and filtering are successfully used
for artefact correction is shown in Figure 6.10.
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Figure 6.10: Demonstration of keypoint signal processing from a walking trial with
isolated leg switching and missing data. Raw keypoint data (left) can contain arte-
facts from leg switching (around frame 10) and missing data where the coordinate
values are set to zero (around frame 75). Single frames of missing data can be inter-
polated (middle). Low-pass filtering can mitigate the artefacts from single frames of
leg switching (right).

However, if the flipped assignment of paired extremities occurs back and forth
repeatedly in a short time period or lasts for several consecutive frames, filtering
will not be as effective in removing its effect (Figure 6.11).

Additionally, as outlined in study III, OpenPose has trouble assigning the correct
keypoints to the correct person when two people overlap in the image (Figure 6.12).
This can cause burdensome work in the analysis phase.

6.8.3 Estimating walking speed using keypoint trajectories

We defined the linked height of the participants using keypoint trajectories by cal-
culating the keypoint-to-keypoint length from the heel to keypoint to the nose key-
point. In effect, the linked height was the sum of the distance from heel keypoint
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Figure 6.11: Demonstration of keypoint signal processing from a walking trial with
repeated leg switching. When raw keypoint data (left) contains several consecutive
artefacts from leg switching, low-pass filtering cannot mitigate their effect properly
and a visible local maximum remains (right, around frame 65). Trials where this
occurred were nonetheless included in the data.

to the ankle keypoint, the ankle keypoint to the knee keypoint, the knee keypoint
to the hip keypoint, the hip keypoint to the neck keypoint, and the neck keypoint
to the nose keypoint. Because the keypoint data was extracted from walking trials
with several video frames (i.e., images), we calculated the linked height as the mean
over all frames.

We then made an assumption that the relationship between the participant’s
linked height and the height during static standing were related according to

linked height = 1.2 × standing height. (6.1)

The factor of 1.2 between linked height and standing height was found to be rea-
sonably accurate during initial tests. While a more accurate factor could probably
have been found by methods like grid search, we opted to keep the factor because it
showed good agreement between estimated walking speeds and reference walking
speeds calculated from motion capture markers (e.g., Figure 6.13). The above as-
sumption, combined with the height of the participant we measured in centimeters,
allowed us to calculate an image-pixels-to-centimeters conversion factor. Using this
factor, we could estimate how much any displacement in the image was in centime-
ters.
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Figure 6.12: When two people overlap in the image, OpenPose sometimes fails
to assign body parts to them correctly. Here, the leg assigned to the person in
the background extends to the ankle and toes of the study participant in the front.
Consequently, OpenPose fails to identify the study participant’s left leg past the
knee.

Thus, we estimated mean walking speed by tracking the displacement of the
MidHip keypoint during the stance phase, using the image-pixels-to-centimeters
conversion factor to convert the displacement to centimeters and dividing the result
by the duration of the stance phase.
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Figure 6.13: An example demonstrating the ratio between walking speeds esti-
mated from the displacement of the MidHip keypoint and reference walking speeds
calculated from the displacement of motion capture markers behind the pelvis. The
figure shows data from all 60 walking trials of one participant. The labels under the
bars indicate the configurations of the walking trials (see section 6.3.2); here, each
configuration has 10 walking trials and a single bar represents one walking trial.

6.8.4 Estimating knee flexion angle using keypoint trajectories

We calculated the vectors from the hip keypoint to the knee keypoint and the knee
keypoint to the ankle keypoint and calculated the angle between them (Figure 6.14).
Because the video data was recorded in the sagittal plane and hip rotation and
abduction were relatively small during walking, we assumed that the angle repre-
sented motion in the knee flexion-extension direction, i.e., the knee flexion angle. By
calculating this angle in all frames of a walking trial, we could extract an estimated
time series of the knee flexion angle.

6.9 ESTIMATING PREDICTORS FROM INERTIAL MEASUREMENT
UNIT DATA

As stated in section 6.3, each participant was equipped with IMUs on the pelvis,
thighs, shanks, and feet. For estimating walking speed and the KFA predictor, we
used orientation data from IMUs on the the thighs and the shanks. Although meth-
ods utilizing machine learning exist for estimating variables from IMU data [100],
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Figure 6.14: Knee flexion angle at each frame can be estimated by calculating the
angle between the vector from the hip keypoint to the knee keypoint and the knee
keypoint to the ankle keypoint. The vectors are drawn in white.

in study III, we opted to keep our methods as simple and intuitive as possible.
We chose thusly because we only wanted to demonstrate how predictors could be
estimated from IMU data, not to develop the new cutting-edge method for doing
so.
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6.9.1 Estimating walking speed using the orientation data of sensors

We modeled the thighs and shanks of the participant as rigid bodies whose lengths
l are proportional to the participant’s height h according to{

lthigh = h
3.7

lshank = h
3.5 .

(6.2)

This proportion was optimized with grid search in a range of common proportions
of limbs to body height [111]. The thighs were constrained to be linked at their
proximal ends, and the distal end of the thigh was constrained to be linked to the
proximal end of the shank.

We reconstructed the motion from the walking trials using this simple physical
model and the orientation data from thigh and shank IMUs. For an entire walking
trial, we calculated the time series of the distance between the distal ends of the
shanks, which we assumed to represent the distance between the feet (Figure 6.15).
Then, we identified the peaks (i.e., local maximum distances between feet) in the
resulting time series; the magnitudes of these peaks represented step lengths. The
time difference from one peak to the next then estimated the duration of one step,
so time from one peak to the two following peaks estimated the duration of one
gait cycle (i.e., stride duration). Therefore, the summed magnitudes of the two latter
peaks estimated stride length. Finally, walking speed was estimated as stride length
divided by stride duration.

6.9.2 Estimating knee flexion angle using orientation data of sensors

Knee flexion angle was estimated from the orientation data of thigh and shank IMUs
of the dominant leg. First, we extracted the orientations of the IMUs as axis-angle
representations and conducted principal component analysis on them. This analysis
retrieved the rotation angles around the principal axis (i.e., the axis of greatest vari-
ance or the axis experiencing the greatest rotation around it), which we assumed to
effectuate rotation in the sagittal plane during walking in a straight line. Further-
more, we assumed that at the beginning of the walking trial when the participant
stood still, the knee was fully extended, which allowed us to set the initial condition
of zero rotation in both IMUs. We then estimated the time series of the knee flexion
angle during the stance phase as the difference between the principal rotations of
the shank IMU and the thigh IMU.

6.10 POST-STUDY ANALYSES

After studies II and II were reported, we conducted additional analyses to support
discussion about the developed methods. In separate analyses, we 1) investigated
the possibility of using other joint angles than knee flexion angle as predictors by an-
alyzing the linear correlation between joint angle-related parameters and knee joint
loading-related parameters, 2) compared the prediction capabilities of the ANNs of
study III against linear least squares regression, and 3) sought a way to explain the
ANN-based prediction models of study III by analyzing their trained weights.
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Figure 6.15: Time series of modeled distance between the feet of the participant
during a walking trial, showing several gait cycles. The maxima of the curve repre-
sent the distances between the feet during gait events where the feet are maximally
distant. The duration from one maximum to the next is the time taken by a single
step and the value of the maximum is the step length.

6.10.1 Correlation analysis between kinematics and knee joint contact
forces

After the Kuopio gait dataset was collected and analyzed, we extracted parameters
of motion from the trial of all 46 analyzed subjects. The parameters were extracted
from some outputs of the OpenSim pipeline, namely the time series of hip, knee,
and ankle joint angles and tibiofemoral compressive knee joint contact forces. The
parameters extracted from joint angles are presented in Table 6.4.

From the time series of the knee joint contact forces, the extracted parameters
from the nine response variables of studies II and III are presented in Table 6.5.
These parameters were extracted from the time series of the medial compartment,
the time series of the lateral compartment, and the time series of both compartments
summed. Some of the parameters are visualized in in Figure 6.16.

Our aim was to evaluate the linear correlation between parameters that could be
easily extracted as predictors using the methods presented in studies II and III (i.e.,
parameters calculated from lower limb joint angles) and parameters that describe
the loading of the knee joint. We hoped to highlight potential features that could be
used as predictors when predicting knee joint loading in our future studies.
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Joint angle time series Extracted parameters
ankle dorsiflexion angle (1) minimum of first half

(2) maximum of second half
(3) difference between maximum of 2nd
half and minimum of 1st half

knee flexion angle (4) maximum of first half
(5) minimum of second half
(6) difference between maximum of 1st
half and minimum of 2nd half

hip adduction angle (7) maximum of full time series
hip rotation angle (8) minimum of full time series

(9) maximum of full time series
(10) difference between maximum and
minimum

hip flexion angle (11) minimum of full time series
(12) maximum of full time series
(13) slope of line drawn between mini-
mum and maximum

Table 6.4: The parameters of joint angle time series used in the correlation analysis.

There were approximately 60 trials per participant at three instructed walking
speeds, meaning that there were also 60 values for each parameter per participant.
However, for our correlation analysis, we wanted one value for each parameter
and instructed walking speed (i.e., three values of each parameter per participant).
Within each participant, we extracted the parameters from the output of the Open-
Sim pipeline from each walking trial. We then calculated the intra-participant means
of the parameters from trials where the instructed walking speed was slow, comfort-
able and fast, separately. This process resulted three intra-participant mean values
for each parameter (i.e., one for each instructed walking speed). Therefore, we had
one mean value per parameter and walking speed for each of the 46 analyzed par-
ticipants. These results allowed us to evaluate the correlation coefficients between
the parameters for three different instructed walking speeds and a sample of 46
independent observations.

For each unique permutation of joint angle parameter and knee joint loading
parameter, we calculated the linear Pearson correlation coefficient and the corre-
sponding probability of observing the correlation assuming there is no correlation
(i.e., p-value). We excluded correlation coefficients where the corresponding p-value
was higher than 0.05 or where the absolute value of the correlation coefficient was
less than 0.6.

6.10.2 Multiple linear regression of knee joint loading peaks

We observed in study III that a shallow feedforward neural network with just one
node in the hidden layer is sufficient to estimate KJCF peaks with accuracy that is
comparable to that of study II, where the hidden layer had several nodes. Using only
one hidden node in study III was motivated by study II, where the hyperparameter
optimization algorithm couldn’t find a conclusive number of hidden nodes for best
prediction accuracy. In this case, it’s possible that the relationship between the
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Loading parameter Description
notch the minimum value between the first (loading re-

sponse) and the second (terminal extension) peak
loading response ascent the ascending slope before the loading response

peak
loading response descent the descending slope between the loading response

peak and the notch
terminal extension ascent the ascending slope between the notch and the ter-

minal extension peak
terminal extension descent the descending slope after the terminal extension

peak
area under curve the total area under the KJCF curve

loading response area the area of the loading response peak above a hori-
zontal line at the height of the notch

terminal extension area the area of the terminal extension peak above a hor-
izontal line at the height of the notch

width at notch the horizontal distance at the height of the notch be-
tween the curve during the ascent before the load-
ing response peak and the curve during the descent
after the terminal extension peak

peak separation the horizontal distance between the loading re-
sponse peak and the terminal extension peak

Table 6.5: The parameters of knee joint contact force time series used in the corre-
lation analysis.

predictors and the output of the networks is so simple that using many hidden
nodes will needlessly complicate the network and possibly cause overfitting. If
so, we are faced with the question: is the approximation of a nonlinear function
necessary at all when predicting KJCF peaks, or could multiple linear regression
suffice?

To explore this question, we fitted multiple linear regression models for predict-
ing KJCF peaks using least squares first-order polynomial fitting. Note that while
in study III we used the data of knee osteoarthritis patients to pre-train the model
before continuing training with the remaining data, here we fitted the parameters
of multiple linear regression using the entire combined dataset. This difference
complicates comparability against trained ANN models slightly because the multi-
ple linear regression likely emphasizes fitting to high-loading data points relatively
more than the ANNs did in study III.

6.10.3 Nonlinear effect of predictors on knee joint loading peaks

In study III, the neural network architecture employed a single hidden layer with
just one node. While this reduces the function approximation capability of the net-
work (see section 8.4.4), it also reduces the "black box" characteristics of the model
because we can evaluate how different predictors affect the prediction by looking
at the weights of the network. Because there is just one node containing a nonlin-
ear activation function (the singular node in the hidden layer) and the activation
function is strictly increasing (as the hyperbolic tangent function is), the weight con-
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Figure 6.16: Some parameters that were extracted from the time series of knee joint
contact forces. Orange dashed lines show the horizontal peak separation and width
at notch. Orange solid lines represent the slopes of loading response ascent, loading
response descent, terminal extension ascent, and terminal extension descent.

necting each input (i.e., predictor value) to that node describes if that predictor has
a positive or a negative correlation with the prediction.

As this train of thought may be difficult to grasp, we will now approach it
through the steps involved in a value passing through a model trained in study
III. The value of a single predictor, as it is given as input to the network, undergoes
the following steps: pre-processing to scale it between -1 and 1, multiplication with
its weight connecting to the hidden node, activation through the activation function
in hidden node as part of the linear combination of other inputs and their weights,
multiplication with the weight between the single hidden node and the single out-
put node as part of the output of the activation function, and finally, post-processing
to scale the prediction to a physically sensible range (Figure 6.17).

Now imagine we pass two different values of the same predictor, e.g., walking
speed, through the network while keeping the values of the other predictors con-
stant. We denote these values by x1 and x2 and assume that the inequality x1 < x2
applies.

The pre-processing and post-processing steps simply scale (by a positive value)
and apply an offset to the inputs, meaning that the inequality still applies after the
inputs have been put through those steps (note that in the case of post-processing,
the original inputs have been transformed to different values). Similarly, between
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Figure 6.17: As a single input value propagates through a feedforward neural
network trained in study III, it undergoes pre-processing and partakes in the linear
combination of inputs and the weights between the input layer and the hidden
layer. The linear combination undergoes activation in the hidden node, the output
of the activation function is multiplied by a weight and finally put through a linear
activation function (i.e., identity function) in the output node.

the input layer and the hidden layer, the values are multiplied by the same weight
winput to hidden, meaning that the inequality applies if the weight is positive and flips
if the weight is negative. We can assume the weight is nonzero because otherwise
the predictor has no effect on the prediction.

Furthermore, because the activation function f (x) in the hidden node is strictly
increasing, for any input values a1 and a2 for which a1 < a2, we have f (a1) < f (a2).
In plain words, if the input to the activation function (and by extension, the input to
the hidden node) increases, the output of the activation function must increase. If
the weight between the hidden node and the output node whidden to output is nonzero
and positive, the output of the network (i.e., the prediction) also increases; if the
weight is nonzero and negative, the output of the network decreases.

Now, we have asserted simple rules that define if an input to the network is
positively or negatively correlated with the input to the hidden layer (when other
predictors are kept constant), and if the input to the hidden node is positively or
negatively correlated with the prediction. In other words, a predictor is positively
correlated with the prediction if

winput to hiddenwhidden to output > 0 (6.3)

and negatively correlated otherwise (assuming nonzero weights).
Because we can read the weights of the network, we can use equation 6.3 to

determine if a predictor is positively or negatively nonlinearly correlated with the
prediction in any of the networks trained in study III. Because of the effect of other
predictors, quantifying the strength of the correlation is difficult. However, assum-
ing the pre-processing step scales the predictors to the same scale, we can compare
the magnitudes of winput to hidden between different predictors to assess how strongly
a predictor affects the prediction compared to other predictors.

Therefore, for the trained ANN corresponding to each of the nine response vari-
ables, we calculated the importance of each predictor (mass, height, age, sex, walk-
ing speed, KFA predictor) of study III according to

τ = winput to hidden sgn(whidden to output), (6.4)

where τ is the importance of a predictor (i.e., how much changing it affects the
KJCF peak prediction), winput to hidden is the weight between input and hidden layer
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for that predictor, sgn is the signum function returning the sign of the input, and
whidden to output is the weight between the hidden layer and the output layer.

We then normalized the importances under each response variable by dividing
them by the maximum absolute magnitude of importances of all predictors for that
response variable to easily compare importances between networks trained for dif-
ferent response variables.

72



7 Results

7.1 PERFORMANCE OF COMPUTING REAL-TIME INVERSE KINE-
MATICS

In study I, we showed that full-body inverse kinematics can be calculated in real-
time. The throughput (solved kinematics frames per unit time) of the computation
could be increased by increasing the number of processing threads (study I, Figure
3) and the execution time of computing a single frame of kinematics during gait was
nearly instantaneous (<60 ms, Figure 2 in study I). The computational performance
of the solution was affected by computer hardware, the complexity of the utilized
musculoskeletal model, the number of IMUs used to measure orientation data, and
the measured movement type. The results applied even with a laptop computer,
meaning that IMUs and a laptop for computation are a suitable combination for
portable measurement and real-time analysis of joint angles during gait.

7.2 MUSCULOSKELETAL SIMULATION-ESTIMATED KNEE JOINT CON-
TACT FORCE PEAKS

Representative characteristics of knee joint contact force peaks obtained using mus-
culoskeletal modeling and simulation in study III are illustrated in Figure 7.1. Dur-
ing self-selected comfortable walking speeds, the participants of study III walked
at 1.04 m/s to 1.78 m/s (mean ± standard deviation was 1.35 ± 0.17 m/s) and
the maxima of their full-stance tibiofemoral compressive knee joint contact force
in both compartments summed varied between 2.82 BW and 4.92 BW (3.59 ± 0.53
BW). During slow walking speeds, the participants walked at 0.72 m/s to 1.66 m/s
(1.11 ± 0.18 m/s) with full-stance maximum KJCF between 2.76 BW and 4.68 BW
(3.34 ± 0.44 BW); during fast walking speeds, they walked at 1.27 m/s to 2.33 m/s
(1.55 ± 0.23 m/s) with full-stance maximum KJCF between 2.86 BW and 7.18 BW
(4.09 ± 0.88 BW). The values are calculated over 46 analyzed participants from their
intra-participant means.

7.3 ESTIMATING THE WALKING SPEED AND KNEE FLEXION AN-
GLE PREDICTORS

In study III, walking speed was estimated with similar accuracy using IMU and VC
data, although IMU estimates were more precise as indicated by the smaller stan-
dard deviation of their intra-participant RMSE over different participants (Table 7.1).
However, the KFA predictor could be estimated from IMU data more accurately than
from VC data as indicated by the smaller mean of their intra-participant RMSE over
different participants (Table 7.1). Comparing to the inter-participant mean reference
values of walking speed (133.84± 17.71 cm/s) and the KFA predictor (16.26± 4.09◦),
the relative root mean square error of estimating walking speed is below 5% for both
modalities, and the relative root mean square error of estimating the KFA predictor
is approximately 23% for IMUs and 32% for VCs.
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Figure 7.1: The inter-participant mean (bar height) and standard deviation (error
bars) of intra-participant knee joint contact force maxima (right) and bodyweight-
normalized knee joint contact force maxima (right) when the instructed walking
speed was slow, comfortable, and fast. The knee joint contact forces are the outputs
of the musculoskeletal modeling and simulation workflow.

IMU VC
Predictor RMSE (µ ± σ) R (µ ± σ) RMSE (µ ± σ) R (µ ± σ

walking speed [cm/s] 6.52 ± 4.42 0.95 ± 0.08 6.29 ± 9.16 0.96 ± 0.10
KFA predictor [◦] 3.75 ± 1.54 0.91 ± 0.11 5.24 ± 1.83 0.58 ± 0.24

Table 7.1: Inter-participant means (µ) and standard deviations (σ) of intra-
participant root mean square errors (RMSE) and Pearson correlation coefficients (R)
of walking speed and knee flexion angle (KFA) predictor estimates retrieved from
inertial measurement unit (IMU) and video camera (VC) data. The values are com-
puted by comparing against reference walking speed and KFA predictors calculated
using MOCAP data.

The knee flexion angle time series, from which the KFA predictor was extracted,
was estimated with an overall mean RMSE of 4.1◦ and 5.1◦ with IMU and VC data,
respectively. IMU-based estimates of knee flexion angle were less accurate during
the minimum of the time series, while VC-based estimates had relatively high error
throughout the stance phase (Figure 7.2). There is a noticeable phase mismatch
between the reference and VC-based estimated knee flexion time series.
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Figure 7.2: Mean inter-subject knee flexion angle time series estimated from inertial
measurement unit (left) or video camera (right) data compared with the reference
time series (from motion capture data and musculoskeletal modeling and simula-
tion). The shaded area depicts the mean inter-subject root mean square error per
data point (all time series were interpolated to 101 data points).

7.4 PREDICTING KNEE JOINT CONTACT FORCE PEAKS

In studies II and III, we showed that artificial neural networks with simple inputs
can be used to predict knee joint loading peaks during the stance phase of gait. Fur-
thermore, in study III, we demonstrated that motion capture data is not necessary
to obtain the inputs for such neural network models after their training, and there-
fore, portable modalities can be used to estimate knee joint loading peaks outside
the motion laboratory.

The accuracy of predicting KJCF peaks depended on the predictor set (Figure
7.3). The predictor set with the most predictors (mass, height, age, sex, walking
speed, and either knee frontal plane alignment or the knee flexion angle predictor)
resulted in the smallest prediction error (root mean square error normalized to the
mean of the reference values in the test set) for most response variables. Further-
more, using only demographic variables and walking speed resulted in prediction
error similar to when using all predictors.

Using the largest predictor set, the KJCF peaks for different response variables
were predicted with mostly comparable error between studies II and III (Figure 7.4).

In addition to the choice of the predictor set, the response variable (i.e., which
loading peak was predicted) affected the prediction error (Figures 7.3). Maxima
over the full stance phase and terminal extension peaks were predicted with smaller
error than loading response peaks were. Response variables in the lateral compart-
ment were predicted with much greater error compared to their counterparts in the
medial compartment or the sum of both compartments.
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Figure 7.3: The effect of predictor set on the normalized errors of knee joint contact
force peaks in studies II (left) and III (right). The predictor set comprised mass,
height, age, sex, walking speed, and either knee frontal alignment (study II) or the
knee flexion angle predictor (study III). Note that "knee frontal alignment" in the
left figure is not the same as "KFA" in the right figure, where "KFA" denotes the
knee flexion angle predictor.

Finally, to see if increasing the number of nodes from one to two increased pre-
diction accuracy, we compared error for the full predictor set (where assumedly the
most complicated relationship between predictors and output exists) for all nine re-
sponse variables. The results are not presented in detail because prediction accuracy
varied very little between ANNs with one and two nodes. Thus, because increasing
the number of nodes had no marked effect on prediction accuracy, a single node is
likely enough to capture the relationship between the predictors and the output.

7.4.1 Nonlinear effect of predictors on knee joint contact force peaks

Mass was always the most important predictor for predicting the KJCF peaks, no
matter the response variable (Table 7.2); hence, mass is not explicitly presented in the
table and its value was always 1. It was followed by the KFA predictor and walking
speed, with the former being slightly more important than the latter. Height had a
small importance, but its importance was still greater than that of sex and lastly, age.
For most response variables, only height and age had negative correlation with the

76



full-s
tance m

ax (s
ummed)

full-s
tance m

ax (m
edial)

full-s
tance m

ax (la
teral)

loading re
sponse peak (s

ummed)

loading re
sponse peak (m

edial)

loading re
sponse peak (la

teral)

term
inal e

xtension peak (s
ummed)

term
inal e

xtension peak (m
edial)

term
inal e

xtension peak (la
teral)

0

100

200

300

400

500

600

R
M

S
E

 [
N

]
Study II

Study III (MOCAP)

Study III (IMU)

Study III (VC)

full-s
tance m

ax (s
ummed)

full-s
tance m

ax (m
edial)

full-s
tance m

ax (la
teral)

loading re
sponse peak (s

ummed)

loading re
sponse peak (m

edial)

loading re
sponse peak (la

teral)

term
inal e

xtension peak (s
ummed)

term
inal e

xtension peak (m
edial)

term
inal e

xtension peak (la
teral)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
R

M
S

E

Figure 7.4: Comparison of the prediction errors of knee joint contact force peaks be-
tween studies II and III. The predictor set comprised mass, height, age, sex, walking
speed, and either knee frontal alignment (study II) or the knee flexion angle pre-
dictor (study III). The knee flexion angle predictor and walking speed in study III
were estimated from motion capture (MOCAP), inertial measurement unit (IMU),
or video camera (VC) data. Root mean square errors (RMSE) in study III are greater
than those in study II for summed and lateral force peaks, but smaller for medial
force peaks.

prediction; otherwise the predictors correlated positively with the predicted KJCF
peaks (except for the KFA predictor for lateral terminal extension peaks, where the
KFA predictor hardly mattered anyway).

7.5 LINEAR CORRELATION BETWEEN KINEMATICS AND KNEE JOINT
CONTACT FORCE PEAKS

The results of the correlation analysis confirmed our choice of using knee flexion
angle data to construct a predictor. However, in addition to the KFA predictor that
we selected as the magnitude between the maximum of the first half and the min-
imum of the second half of the time series, the maximum of the time series had
comparably high correlation with variables related to knee joint loading. Correla-
tion coefficients between knee flexion-related variables and knee joint loading were
generally higher than those between other joint angles and knee joint loading. The
knee flexion angle-related correlation coefficients that made it past the exclusion cri-
teria (p<0.05 and R>0.6) were usually tested against loading response-related knee
joint loading variables.

At comfortable walking speed, the maximum of hip flexion angle correlated
positively with loading response ascent in the medial and summed compartments
(R=0.71 and R=0.68, respectively), and the maximum of hip internal rotation angle
correlated negatively with the lateral terminal extension peak (R=-0.60).

At slow walking speed, the slope of hip flexion angle correlated negatively with
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height age sex walking speed KFA predictor
full-stance maximum
(summed)

-0.12 -0.04 0.08 0.32 0.39

full-stance maximum
(medial)

-0.12 -0.06 0.08 0.29 0.38

full-stance maximum
(lateral)

-0.19 -0.02 0.11 0.35 0.52

loading response
peak (summed)

-0.10 -0.05 0.06 0.40 0.70

loading response
peak (medial)

-0.12 -0.05 0.03 0.34 0.50

loading response
peak (lateral)

-0.11 -0.06 0.11 0.47 0.91

terminal extension
peak (summed)

-0.13 -0.03 0.07 0.24 0.21

terminal extension
peak (medial)

-0.13 -0.07 0.08 0.23 0.36

terminal extension
peak (lateral)

-0.16 0.02 0.05 0.27 -0.02

Table 7.2: Normalized importances of predictors (top row) for trained neural net-
works for predicting various KJCF peaks (leftmost column). Because mass was al-
ways the most important predictor, its normalized value was always 1 and it is not
presented in the table.

the summed loading response ascent and lateral loading response area (R=-0.61 and
R=-0.62, respectively), the maximum of hip internal rotation angle correlated posi-
tively with peak separation and width at notch in the lateral compartment (R=0.68
and R=0.63, respectively) and negatively with the lateral terminal extension peak
(R=-0.62), and the minimum of hip internal rotation angle correlated positively with
peak separation and width at notch in the lateral compartment (R=0.63 and R=0.61).

At fast walking speed, the maximum of the hip flexion angle correlated with
summed loading response descent (R=-0.62), summed loading response ascent (R=0.61),
summed loading response peak (R=0.60), medial loading response descent (R=-
0.60), and medial loading response ascent (R=0.63), and the slope of hip flexion
angle correlated negatively with summed loading response area (R=-0.61) and lat-
eral loading response area (R=-0.67).

Ankle dorsiflexion angles did not correlate significantly with |R|>0.6 at any
walking speed.

7.6 MULTIPLE LINEAR REGRESSION OF KNEE JOINT LOADING PEAKS

Predicting KJCF peaks with multiple linear regression (Figure 7.5) results in the
same observations as predicting KJCF peaks with ANNs, i.e., 1) the simplest pre-
dictor set results in the highest prediction error, 2) for most response variables the
addition of walking speed in the predictor set is more important than the addition of
the KFA predictor, and 3) the addition of both walking speed and the KFA predictor
in the predictor set does not further reduce prediction error.
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MLR NRMSE comparison for IMU data based predictors
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Figure 7.5: NRMSE for different predictor sets when predicting KJCF peaks with
multiple linear regression. The parameters are fitted on the data from study II and
NRMSE calculated against the "ground truth" peaks from the dataset we collected
in study III.

Figure 7.6 shows that multiple linear regression has smaller NRMSE in predict-
ing KJCF peaks than the ANN models of study III has in some cases. For instance,
when the predictor set contains only demographic variables, multiple linear regres-
sion is more accurate for predicting the peaks of most response variables. However,
the ANNs outperform multiple linear regression when the predictor set contains
more than just the demographic predictors.
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NRMSE difference between MLR and ANN
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Figure 7.6: Difference in the NRMSE of predicting KJCF peaks between multiple
linear regression and ANN regression. The ANNs are from study III. Positive values
indicate that multiple linear regression had higher NRMSE than an ANN.
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8 Discussion

8.1 REAL-TIME INVERSE KINEMATICS

Our solution in study I computes inverse kinematics utilizing an user-defined num-
ber of threads within real-time criteria of delay between measurement and output
of the computations [175]. However, it utilizes a now-outdated version of OpenSim
API. Modern versions of OpenSim support a more efficient way to feed data to the
IK-solving algorithm (which was not available during development) than the one
used by OpenSimLive. Therefore, the performance could be further improved.

Furthermore, while we were reporting our results, two other research groups
independently published their own real-time IK solutions utilizing IMU data [29,94].
Unlike our solution, which only enables analysis of inverse kinematics, the solution
by Stanev et al. further enables the real-time calculation of inverse dynamics and
even muscle forces by estimating ground reaction forces and moments using the
solved kinematics [29]. Considering these observations and the fact that our solution
is incompatible with the current version of OpenSim, it is unlikely that it will be
widely used by others. Nonetheless, it provides any interested parties an example
of how to implement real-time biomechanical analysis using the OpenSim API by
utilizing an user-defined number of processing threads.

8.2 VALIDITY OF ESTIMATED KNEE JOINT CONTACT FORCE

We can compare the knee joint contact forces (KJCFs) obtained from our muscu-
loskeletal modeling and simulation pipeline in study III to those in existing litera-
ture to assess the validity of the estimated forces. For self-selected comfortable walk-
ing speed (inter-participant mean 1.35 m/s), the summed knee joint contact force
maxima estimated with our musculoskeletal modeling and simulation pipeline, the
tibiofemoral compressive force peaks varied roughly between 2000 and 3500 New-
tons, or 3–4.5 times bodyweight (Figure 7.1).

In literature, Winby et al. (2009) estimated KCJFs for 11 healthy subjects (44± 6.9
years of age) and found peak tibiofemoral compressive forces of 3.9 BW (range
3.2–4.9 BW) [3]. These peaks occurred during early stance, i.e., loading response
peaks were generally higher than terminal extension peaks. Furthermore, Winby et
al. noted that the estimates probably underestimate the forces because ligaments
(which have a compressive effect on the knee) were not modeled.

Our results conform to those of Winby et al. [3], although the values of peak
KJCFs in study III are slightly smaller (3–4.5 BW versus 3.2–4.9 BW). Winby et al.
did not report the walking speeds, but considering the participants of study III are
much younger than those of their study (age 28.7 ± 5.9 versus 44 ± 6.9), age-related
effects (in addition to differences in modeling and data collection) may affect the
estimated contact forces.

In their review of existing literature, D’Lima et al. (2012) summarized that max-
imum forces transmitted across the knee joint during normal walking vary between
two and three times body weight [5]. However, because of the diversity of compu-
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tational methods to estimate these forces, the estimates of tibiofemoral compressive
forces vary much more: estimated forces from musculoskeletal simulations varied
between 1.7 and 7 times body weight [5]. Similarly, another review by Fregly et
al. (2012) (with several overlapping authors as in the review by D’Lima et al., so
the two reviews cannot be considered entirely independent) summarized that max-
imum forces ranged from 1.8 to 3.0 BW, while estimates ranged from 1.8 to 8.1 BW
during walking [6]. All in all, the outputs of the musculoskeletal modeling and sim-
ulation workflow in study III fit snugly within existing literature. This observation
is no surprise because we already did some validation in study II (elaborated in its
manuscript and supplement). Therefore, it appears that the minor modifications we
did to the musculoskeletal modeling and simulation workflow in study III did not
meaningfully change the estimated knee joint contact forces between the studies.

8.3 ESTIMATING PREDICTORS FROM PORTABLE MODALITIES

The methods we developed provide a way to estimate walking speed and the knee
flexion angle predictor in limited portable use cases (the assumptions of each method
are elaborated in the subsections below). Existing literature contains many examples
of estimating joint angles or walking speed from video camera or IMU data [32], or
even a combination of both [176, 177]. Instead of developing new state-of-the-art
methods to compete with existing solutions, our aim was rather to develop simple,
modular, and portable methods that provide usable estimates of the predictors and
demonstrate their usability in predicting knee joint contact force peaks.

8.3.1 Walking speed from IMU data

Using a physical model-based approach to estimating walking speed from IMU
data using one IMU on the shank, Li et al. (2010) estimated walking speed with
an RMSE of 4% during overground walking [101]. Mariani et al. (2010) used two
IMUs to estimate walking speed with a mean absolute error of 1.4 ± 5.6 cm per
second, corresponding to a relative error of 1.5 ± 5.8 % and a correlation coefficient
of 0.971 [102]. In study III, our walking speed estimates from IMU data had an
RMSE of 6.5 ± 4.4 cm/s and a correlation coefficient of R=0.95, corresponding to a
relative error of 5%.

8.3.2 Walking speed from video camera data

Estimating walking speed from video camera data was the most straightforward
for predictor estimation in study III. The MidHip keypoint was easy to track as it
couldn’t flip between extremities and its trajectory was mostly straight at approx-
imately uniform speed throughout the stance phase. Because we had positioned
the video camera such that the participant was in the center of the view during the
stance phase and the movement was recorded sagittally, we could get an accurate
estimate of walking speed simply by associating pixel displacement in the image to
real-world displacement.

The usability of our method assumes that the motion occurs in a straight line
and that the camera can be placed to record it sagittally. When former fails to hold,
our method is no longer usable. When the latter does not apply, the estimated walk-
ing speed should be corrected by multiplying it with a factor corresponding to the
angle difference from the sagittal plane; further correction may also be necessary to
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associate pixel displacement to real-world displacement if the participant’s distance
from the camera changes significantly during the movement or if the participant
moves close to the edge of the camera view and lens distortions become noticeable.

Even if OpenPose couldn’t identify the MidHip keypoint (we never encoun-
tered such an issue), other keypoints could be used to estimate walking speed.
For instance, torso and head keypoints experience minimal non-uniform trajectory
changes during the stance phase. Alternatively, even if we had to use keypoints
from lower or upper extremities, whose trajectories change non-uniformly during
the stance phase, an average position calculated from the keypoint pairs of paired
extremities could perhaps be used to estimate the movement of the participant’s
center of mass with reasonable accuracy. Therefore, although our aim wasn’t to de-
velop a new state-of-the-art method for walking speed estimation from video data,
our method may be usable also in different conditions with only minor modifica-
tions (e.g., using other keypoints when the MidHip keypoint is not available).

A video-based approach like ours may be useful in mitigating measurer-specific
accuracy and repeatibility errors present in stopwatch measurements of walking
speed (which can be considered an alternative, even more portable way to estimate
walking speed) [178]. With a stopwatch, the measurer must react to the subject
walking over the start and finish lines or some points in space representing those
so that the walking speed can be calculated from the known distance between those
points and the duration measured with a stop watch; a human measurer cannot ex-
actly start and stop the stopwatch at the right moment, causing the error [178, 179].
For instance, during a 4-meter walking test for healthy old adults, walking speeds
estimated with a manual stopwatch were found to be significantly higher than walk-
ing speeds measured with an automatic system when the participants had a moving
start but not when they had a standing start; however, even then the error was less
than 5% of the mean walking speed [179]. Because our method associates image
pixels to real world distance from video data, which also contains time stamps (or
we can exactly define them by knowing the number of frames and the frequency
of the camera), there is no human measurer-induced error. However, a stopwatch
could still be used effectively to time a longer distance of walking (e.g., 100 me-
ters), in which case the human error would become very small in comparison to
the duration of the measurement and the resulting mean walking speed would be
more reliable than a measure from just one gait cycle; such long walking measure-
ments are difficult to capture with a camera, which would either have to move with
the subject or be be placed far from the subject (decreasing the resolution keypoint
tracking) to capture the entire measurement.

8.3.3 Knee flexion angle from IMU data

Our method assumed that the highest variation in IMU rotation occurred along the
knee flexion-extension plane of motion for both thigh and shank IMUs. While this
assumption may mostly apply for healthy gait while walking at a straight line, it
may not apply for pathologically affected gait [118] or when the walking measure-
ment does not occur in a straight line. We observed the latter during some walking
trials, where the participants forgot to stop at the end of the trial and instead started
turning to walk back to their starting position in preparation for the following walk-
ing trial. In such a case, the rotation around the vertical axis measured by the IMUs
had far more variation than the rotation on the sagittal plane of walking. As a
result, our PCA-utilizing algorithm used rotation on the horizontal plane for esti-
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mating knee flexion angle, which led to nonsensical estimates. Wherever a method
utilizing the assumption of most rotational variance in the sagittal plane is used, par-
ticipants forgetting to follow instructions will lead to having to repeat some walking
trials. Therefore, our method is not ideal for many real use cases. However, it still
demonstrates that planar knee flexion information can be estimated with a limited
number of IMUs and used for predicting KJCF peaks. Finally, analyzing the rela-
tive rotation of the two IMUs instead of analyzing the rotations of individuals IMUs
could enable analysis of knee flexion angles despite the participants turning around;
however, such analysis would assume that the IMU coordinate axes are identically
aligned, which is an assumption we could not make due to, e.g., ferromagnetic
disturbances affecting the definition of coordinate axes of individual IMUs.

Long et al. (2023) used just a single shank-mounted IMU for predicting knee flex-
ion angle with an RMSE of 3.30± 0.69◦ [32]. This error is smaller than the RMSE we
got for predicting the KFA predictor (3.75 ± 1.54◦, Table 7.1). Most likely the error
we would have for predicting the KFA time series would be greater than the error
we got for predicting the KFA predictor (which is just the difference of two points
in the time series), because possible systematic error in our time series estimates is
eliminated by the KFA predictor extraction process. Therefore, the method of Long
et al. is more accurate than ours, even though they used just one IMU. However,
they used a more involved machine learning model (random forest regression), so
the accuracy advantage comes at a cost of reduced simplicity. However, because
our solution uses machine learning (artificial neural networks) anyway, adopting
the method of Long et al., or another machine learning method, to improve accu-
racy could increase the accuracy of predicting KJCF peaks without compromising
usability.

8.3.4 Knee flexion angle from video camera data

Out of the four predictor estimates (KFA and walking speed from IMU data and
those from VC data), KFA from VC data had the highest error. This result is similar
to the results of Pearl et al. (2023), where joint flexion angle estimates from IMU data
and VC data (keypoints detected with an HPE algorithm with multiple cameras and
reconstructed in 3D) were compared against reference values from marker-based
motion capture and the estimates from VC data were less accurate than those from
IMU data [177].

In literature, IMU and VC data have also been combined to estimate kinematics
with better accuracy than either modality could separately [177]. However, this
direction is not feasible in the context of our aim, where we try to develop a simple,
modular, and portable method for predicting KJFCs; using both IMUs and video
cameras would be more cumbersome than simply using either, even if accuracy
could be improved in doing so.

In study III, because we conducted walking measurements in two directions, the
analyzed leg of the participant was occluded by the other leg in one of the direc-
tions. This occlusion had no significant effect on the predicted KJCF peaks, i.e., the
effect of occlusion on identified keypoints didn’t lead to any observable changes
in KJCF prediction error when comparing between walking trials where the ana-
lyzed leg was occluded or clearly visible. This indicates that OpenPose is, at least
in our measurement conditions, resistant to partial occlusion of limbs. Ino et al.
(2023) evaluated the accuracy of OpenPose for estimating lower limb kinematics
and found that kinematics of both the camera-side leg and the opposite leg were
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sufficiently robust for clinical evaluation (i.e., mean absolute errors of lower limb
sagittal joint angles with their 95% confidence intervals were below 5 degrees for
both the camera-facing leg and the partially occluded leg, indicating that a single
camera could be used for clinical gait analysis), although the error on the opposite
leg was slightly greater [77]. Wade et al. (2023) also found that tracking occluded
limbs with OpenPose was less reliable than tracking the visible side, although track-
ing the knee joint was more resistant to occlusion than, e.g., tracking the hip joint;
nonetheless, they could only support the use of OpenPose in clinical settings for
tracking visible limbs [23]. Moreover, for visible hip and knee joints, Wade et al.
found that the errors of using single camera-based estimation of sagittal and frontal
joint angles were near or within the error ranges of marker-based motion capture.
Therefore, while OpenPose’s resistance to occlusion can be useful in many out-of-
lab applications as well as in motion laboratories, it may not be robust enough for
tracking occluded limbs in clinical settings, where no more than a single camera
should be required.

When using OpenPose to identify keypoints, we ran into a number of issues
including keypoints switching between pairs of extremities (e.g., OpenPose placing
left leg keypoints on the right leg for a frame or several consecutive frames). This
has been observed in at least one other study and methods exist to correct these arte-
facts [104], but after initial tests in study III, we decided not to use them because
they complicated the analysis pipeline without significantly improving the accuracy
of predicting KJCF peaks. Nonetheless, other studies may benefit from using such
methods. Moreover, proper study preparation, i.e., considering lighting conditions,
recording angle, clothing of participants and the environment visible in the back-
ground, is a good way to mitigate the chances of these issues from occurring in the
first place.

8.4 PREDICTING KNEE JOINT LOADING

8.4.1 Practical feasibility of predicting knee joint contact force peaks

The simplicity of our predictor sets ensure that the demographic predictors (mass,
height, age, sex) should be available in most settings, while the others (walking
speed and knee flexion or abduction-adduction angle) must be estimated somehow.

The results of study III showed that the knee flexion angle predictor is irrelevant
if walking speed is included (i.e., prediction accuracy is hardly affected by further
including the KFA predictor), which simplifies the use of the method because walk-
ing speed is easier to estimate than the knee flexion angle predictor. It was predicted
using IMUs or sagittal video feed in study III, but if no knee flexion angle estima-
tion is required, we can forgo both modalities and use even simpler ones, e.g., a
stopwatch or a photocell. Therefore, predicting KJCF peak with the accuracies re-
ported in study III should be feasible in various settings. However, considering
the fact that our IMU- or VC-based estimates of walking speed were quite accurate,
the accuracy of predicting KJCF peaks may suffer if other modalities cannot accu-
rately estimate walking speed. Because walking speed was observed to be a very
important predictor, its erroneous values will bring similar error to predicted KJCF
peaks.

Furthermore, if prediction of compartment-specific loading is required, knee
abduction-adduction angle may not be informative enough for accurate prediction
of compartmental loading peaks. Although it can be estimated, e.g., with Open-
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Pose [33], other methods may have to be designed to find a predictor that better
corresponds with the loading peaks in specific compartments.

8.4.2 Clinical potential of the methods

Because predicting the joint loading of patients is one of the hypothetical future
uses of the developed methods, their practical suitability to clinical settings should
be considered. Out of the two portable modalities used (IMUs and video cameras),
IMUs are still somewhat uncommon equipment. However, we can expect that each
modern office-like environment (e.g., a clinician’s office appointment) will have ac-
cess to a webcam and a computer, thus enabling the video camera-based method.
A more likely limitation for a video camera is the space required for walking –
even without a motion laboratory, the video camera based method assumes there is
enough room for walking several meters in a straight line and placing the webcam
distant enough from the walking line to capture the patient in the field of view. This
requirement may not be fulfilled in most clinical appointments. Therefore, no matter
the portable modality used to estimate predictors, predicting knee joint contact force
peaks from measured gait may be unrealistic during a normal clinical appointment.
However, a separate larger room to conduct the walking measurements is still much
more accessible than sending the patient to the nearest fully equipped motion lab-
oratory. In our studies, we intentionally limited the number of required cameras to
one (whereas some alternative studies utilizing HPE algorithms use multiple cam-
eras [22, 39]), used a limited number of inertial measurement units (in fact, just one
IMU can be used to estimate, e.g., walking speed [101]), and kept the two modalities
separate (instead of fusing them, even if that could improve results [177]) to keep
our method for predicting KCJF peaks as modular and accessible as possible.

Additionally, OpenPose has hardware requirements that increase with the reso-
lution. The higher the resolution OpenPose uses, the more video memory (VRAM)
is required. Running OpenPose at a resolution of 1920x1080 pixels can take more
than 30 GB of VRAM, which only specialized graphics computing systems have.
This limits the availability of OpenPose if high-resolution analysis is desired. How-
ever, we noticed that using a high resolution with images where a person is fairly
close to the camera will actually result in false detections in the background and
reduce the correct identification of the person’s keypoints. Hence, in study III,
we used a resolution of 480x272 pixels, which detected keypoints on our partici-
pants well and only required approximately 4 GB of VRAM. This amount is present
in many modern computers, although some older laptops may not have enough
VRAM. Therefore, a low-resolution keypoint analysis using OpenPose is possible
with modern office-grade computers, making video cameras an available modal-
ity during physical appointments also in terms of computer hardware. In addition
to downloading and configuring OpenPose, this requires only a webcam, so video
camera-based analysis may be a better option than inertial measurement units in
routine use.

In addition to physical requirements of room and devices, other factors of prac-
tical suitability for clinical settings exist. For instance, Tohka et al. (2021) name
usability for end users and ease of integration in existing processes and infrastruc-
tures [143] as some criteria for an algorithm to succeed in healthcare. As clinicians
cannot be expected to be computer experts, these points are emphasized.

Perhaps the most important point, however, is that the clinical advantage of using
the methods should be proven [143]. Because physical loading estimates have no
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clinical value in isolation, their value in designing better joint implants, improving
physical rehabilitation, or predicting the onset or progression of loading-related
pathologies should be demonstrated through clinical studies. Otherwise, clinicians
have no motivation to adopt the developed methods even if they have the means. In
pursuit of this goal, balanced datasets should be used to minimize bias in the trained
models [38, 180, 181]. Furthermore, the methods should be able to communicate the
recommendations for clinical outcomes clearly (e.g., "lose weight and learn to walk
slower to reduce the pain in your joint") instead of providing metrics that have
little meaning to a clinician or patient (e.g., "at this walking speed, your medial
compartmental loading peaks at 2350 Newtons").

Additionally, explainability and understandability of the results retrieved using
these methods is important [38, 137, 143, 180]. This point is emphasized in "black
box" deep neural network models where the relationship between the input and the
output is unclear [38, 137, 180]. In such cases, the use of other methods simply to
explain the models in common terms may be required [137,180,181]. Our models in
studies II and III were designed to utilize shallow neural networks (i.e., networks
with just one hidden layer) with a relatively small number of nodes in any layer (e.g.,
six input nodes, one hidden node, and one output node in study III). Furthermore,
we formulated the relevant features (demographic variables, walking speed, knee
angle) directly in the input predictor sets instead of using difficult-to-interpret input
data such as marker trajectories. These design choices makes our models more
understandable than many other "black box" solutions. Therefore, the relationship
between the input features and the output KJCF peaks is mostly comprehensible
even if the exact nonlinear function approximated by our ANN models is not known.

Finally, it should be noted that this doctoral work only aimed to develop simple
methods for out-of-laboratory estimation of knee joint loading peaks. Although
clinical settings were presented as a potential out-of-laboratory use case, nothing
rules out non-clinical use, and actual adoption of the methods to clinical use or
convincing clinicians of their value is not within the scope of this doctoral work.

For the purposes of gait retraining, the model should be able to at least tell if
a gait modification results in an increase or decrease in knee joint loading; Kaneda
et al. (2023) call this ability "directional accuracy" [114]. We can assume that de-
mographic predictors (i.e., mass, height, age, and sex) remain constant during gait
retraining, so the model should be sensitive to changes in the other predictors, i.e.,
walking speed and the knee flexion angle predictor in study III. Literature has indi-
cated that walking speed is directly proportional to knee joint loading [128] and the
effect of knee flexion angle can be assumed to also be directly proportional, because
during most of the stance phase, the more flexion there is, the greater the moment
arm of the ground reaction force is and the more muscles must work to keep the
moments balanced [50, 51]. The direct proportionality between knee flexion angle
and knee joint loading was also supported by our correlation analysis (section 7.5).
Therefore, at present, our model incorporating just these two predictors in addition
to demographic information offers no new discoveries. However, it can be used to
estimate the amount of change in knee joint loading instead of just the direction of
change. The model of study III could be more useful in this context if it was further
developed to utilize more predictors describing gait (e.g., more sagittal-plane joint
angles in addition to knee flexion), thus enabling evaluating the effect modifying
them has on knee joint loading.
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8.4.3 Defining the criteria for prediction error

We have quantified the error of predicting knee joint contact force peaks. How-
ever, assessing how much error is acceptable depends on the application [38], which
there are several. As this doctoral work was focused on the development of meth-
ods rather than their application, we cannot provide any frames of reference for
acceptable error in real-world applications.

However, we can try to estimate the theoretically achievable minimum error by
looking at the inter-trial variance of knee joint loading peaks in trials with identical
instructions for the participant. Achieving generalization accuracy greater than the
inherent variability of knee joint loading peaks should be impossible. This vari-
ability was reported in study II for knee joint loading peaks calculated from the
motion capture data of different datasets. For the full-stance maximum peak, the
mean variability varied between 170 and 380 Newtons and showed great variability
between datasets. This variability between datasets likely constitutes a combination
of technical differences and differences in gait of the subjects of different datasets.
Four of the datasets comprised healthy subjects, while one comprised diagnosed
KOA patients. However, in terms of variability, the KOA patient dataset was in the
middle-to-low range of the mean variabilities (216 Newtons), implying that pain-
induced variability of steps cannot be the main cause of KJCF peak variability be-
tween datasets (otherwise the mean variability of the KOA dataset should be higher
than the mean variability of other datasets). Hence, technical differences, such as
the marker set and equipment used and the instructions given to subjects may have
a significant effect on the variability of the knee joint loading peaks retrieved from
musculoskeletal simulation and modeling. Estimating the theoretically achievable
minimum error is therefore difficult and depends on the data used. This observa-
tion conforms with literature, where the quality of the data is often emphasized in
training viable machine learning models [143, 182, 183].

Our prediction errors are at the same scale as the variabilities, which implies
good generalization. Prediction errors much greater than the variabilities would
have implied underfitted or overfitted networks.

Finally, if we wish to estimate the in vivo contact forces in the knee, our mus-
culoskeletal models should be as accurate as possible. This criterion does not only
refer to the anatomical validity of the models’ components, but also that simula-
tions utilizing the models should give accurate results that match reality. In studies
II and III, we quantified prediction error by comparing predictions to reference
loading peaks from musculoskeletal modeling and simulation, but those reference
values may differ from the actual in vivo forces. Our studies, like many other biome-
chanical studies of human motion, scaled generic musculoskeletal models to create
subject-specific models, but more involved methods such as generating the model
geometry from magnetic resonance images exist and may result in, e.g., different
muscle moment arms than generic model scaling [115]. Therefore, if we wish to
minimize the error between predicted and in vivo forces, we must not only hone
our prediction model, but the musculoskeletal modeling workflow as well. How-
ever, depending on the application of the method, it may not be necessary (e.g., if
we only wish to determine if an intervention decreases or increases contact forces
rather than exactly quantifying the change) [114].
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8.4.4 Modeling the relationship between knee joint loading and simple
predictors

In study II, we did not notice the number of nodes having an effect on the prediction
accuracy. We used this observation to justify using only one hidden node in study
III. This may seem somewhat counterintuitive in artificial neural networks, whose
strength lies in approximating arbitrary functions [136], i.e., arbitrary relationships
between predictors and predicted output. The robustness of modeling different
relationships between variables comes from the different connections between the
nodes and the nonlinearity in the activation function of the node. If we use only
one hidden node, we seriously limit the variety of relationships between variables
that the network can be trained to model, i.e., the representational capacity of the
model [135].

For example, consider the network architecture we used in study III. With six
inputs, a single hidden node, and a single output node, we have six weights between
the inputs and the hidden layer, and one weight connecting the hidden layer to the
output layer. In the hidden layer, the linear combination of the inputs xi and weights
wi (plus bias b) is fed to the activation function f to produce the output A of the
node according to

A = f (
6

∑
n=1

wixi + b). (8.1)

Depending on the values of the weights, some inputs may be amplified with respect
to the others. However, only one kind of weight configuration can be used in the
network.

Now consider a network with ten hidden nodes instead of just one. We have ten
equations of the above type, each with unique weight configurations. This means
that, e.g., while the first node may model the combined effect of the first two inputs,
the second node may model the effect of the fourth input alone, the third node may
model the effects of all but the first input, and so forth. The ten weights connect-
ing the hidden layer to the output layer then control how strongly each of these
modeled relationships affects the final output of the network. In plain terms, this
network with ten hidden nodes can model much more complicated relationships
than a network with a single hidden node.

Despite this limitation, we still decided to use a single hidden node in study III.
In part this was because a network with a single hidden node was slightly easier
to write in a function form, which we figured would be helpful in understanding
the model and consequently adopt it in clinical settings. Moreover, we deduced that
the indifference to the number of nodes observed in study II meant that there were
no complicated relationships to model between variables given our data and net-
work architecture. Note that we cannot deny the presence of complicated variable
relationships altogether, but rather state that in our limited dataset and imperfect
network architecture, the relationships between our simple predictor set and the re-
sponse variables were very simple — simple enough to be modeled with a single
hidden node without an observable increase in prediction error.

If we keep simplifying the predictor set, e.g., by including only demographics
and walking speed and omitting information about knee alignment (as study III
hints could be one future direction), then our network architecture should remain
sufficient in future. However, we should then ask ourselves if instead of artificial
neural networks we should use more classical and understandable approaches such
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as linear regression, which may be able to model our data as well as the simple
neural network and is furthermore much easier to explain.

On the other hand, if we leverage the potential of human pose estimation algo-
rithms or IMUs to include more features from joint angle time series in our predictor
set, we may have to increase the number of hidden nodes to model the relationships
in the data.

8.4.5 Comparison to multiple linear regression

We note that Figure 7.5 is very similar to Figure 7.3. This similarity indicates that
our shallow neural networks with a single hidden node approximate a near-linear
relationship. The fact that the simple neural networks of study III are so close to
linear regression indicates that we may have used a needlessly complex method to
model a fairly simple relationship between the predictors and the response variables.

On the bright side, the observation shows that multiple linear regression may
be suitable to predict KJCF peaks from simple predictors. Because multiple lin-
ear regression is simpler and better understood than artificial neural networks, the
method could be more approachable to people lacking the technical expertise to
understand ANNs. For instance, our "simple" shallow neural networks with a sin-
gle hidden node have 23 parameters to estimate (three preprocessing factors, six
weights from input to hidden layer, one bias term in the hidden layer, one weight
from hidden to output layer, one bias term in the output layer, three postprocessing
factors); in contrast, multiple linear regression only has seven (six coefficients for
the predictors and one intercept term). As an equation, multiple linear regression is
also far simpler to express than a neural network prediction model because multiple
linear regression can be written as a linear combination.

Before we abandon feedforward neural networks in favour of linear regression,
we should note that changing the predictor set may result in relationships between
the predictors and the response variables that linear regression is no longer able to
model accurately. Hence, unlike multiple linear regression, feedforward networks
should have a more stable performance than multiple linear regression if the data,
inputs or outputs of the model are changed. Furthermore, nonlinear regression may
provide an easily interpretable alternative to feedforward neural networks when the
data contains nonlinear relationships.

Because multiple linear regression resulted in smaller error than ANNs with
demographic predictor sets (Figure 7.6), it could be used to create prediction mod-
els that are more intuitively understandable than ANNs when working with very
simple predictors. However, ANNs have the potential to model more complicated
relations than linear regression, and have the advantage of not having to assume
the underlying function between predictors and the output (unlike, e.g., polynomial
regression). Therefore, ANNs can be seen as a more robust solution. However,
their adoption to non-expert use may be limited by the fact that they are difficult to
understand.

A potential future model could leverage the strength of both machine learning
and analytical regression. A validation set could be used to optimize the L2 regular-
ization term of ridge regression so that the generalization accuracy of prediction is
maximized. Furthermore, pre-processing such as centering and scaling of predictors
could be tried to further reduce prediction error of the analytical regression model.
In conclusion, if our research continues to the direction of very simple predictor sets
and transparent algorithms, analytical regression is a viable option. Otherwise, if
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we want to use more complicated predictor sets or instead of single-valued peaks
predict entire time series with the help of, e.g., joint angle time series, we may need
to continue using artificial neural networks or similar machine learning algorithms
to maximize the generalization capability of the prediction models.

8.4.6 Nonlinear effect of predictors on knee joint contact force peaks

The high importance of mass is no surprise because following physical intuition,
the more the person weights, the more loading the knee joint experiences whenever
the leg is supported on [5]. Therefore, we expect mass to be the most important
predictor when the responses are not normalized to body weight.

The KFA predictor and walking speed follow the mass as the next most impor-
tant predictors.

The KFA predictor is more important than walking speed for many response
variables, and the difference in the importances of the two are emphasized when
the response variable is the loading response peak. This emphasized difference can
be explained by the fact that the magnitude of the KFA predictor is largely defined
by the maximum of the knee flexion angle during the first half of its time series,
which almost coincides with the loading response peak in time domain (Figure
8.1). The greater the knee flexion at that time instant is, the greater the moment
arm between the ground reaction force and the knee, necessitating a greater knee
extension moment to balance the forces in the musculoskeletal model. The knee
extension moment is generated by muscles that compress the knee, thus leading to
an increased compressive tibiofemoral contact force. Hence, the importance of the
KFA predictor is highlighted when the loading response peak occurs.

The difference in importances between the KFA predictor and walking speed is
small when predicting terminal extension peaks.

Interestingly, Figure 7.3 shows that the error of predicting loading response
peaks is smaller when the predictor set includes demographic predictors and walk-
ing speed than when the predictor set includes demographic predictors and the KFA
predictor. From the importances of the predictors, the opposite could be expected.
However, we should note that the importances are calculated from a trained neural
network model utilizing all six predictors. Therefore, they only state how sensitive
the model is to each predictor when all six predictors are used and the importances
do not apply to cases where some predictors are isolated from the predictor set such
as in Figure 7.3.

8.4.7 Our studies among the existing corpus of machine learning in biome-
chanics

In their survey of existing literature, Halilaj et al. (2018) noted the exponentially
increasing trend of using machine learning methods in human movement biome-
chanics [38]. The number of subjects in those studies ranged from 4 to 2956 with a
median of 40, putting study II (290 subjects) and III (336 subjects) well above the
median. The minimum acceptable number of subjects (or data points in general)
depends on the size of the feature space, i.e., the number of input variables used as
features [38]. If the number of features is larger than the number of observations,
overfitting becomes likely [38]. In studies II and III, where one of our priorities was
simplicity of the prediction model, this number of input variables was six at most.
The number is smaller than the sizes of feature spaces in some other studies, where
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Figure 8.1: The near-coincidence of the first maximum of the knee flexion angle
and the loading response peak of tibiofemoral compressive knee joint contact force.
Dashed vertical lines indicate the positions of the maxima, showing that they occur
very close to one another. The curves are calculated as means over the self-selected
comfortable speed walking trials of participants of study III. The curves are normal-
ized to fit in the same plot.

the predictor set is not simplified and instead uses, e.g., a large number of marker
trajectories [18, 19], joint angles [20], force plate data [19, 20], or electromyographic
signals [18]. Therefore, because studies II and III have a comparably large amount
of data, a very simple model (in the context of artificial neural networks), and a very
limited number of features, the model should generalize well without meaningful
overfitting. The simplicity of the model and its features also reduces the need for
dimensionality reduction methods (e.g., principal component analysis), which were
not used in studies II and III.

While planning to minimize bias in collected datasets should always be one of
the goals in studies involving machine learning, we should acknowledge that all
real data contains some bias.

8.5 LINEAR CORRELATION BETWEEN KINEMATICS AND KNEE JOINT
CONTACT FORCES

The relationship between the predictor and the response does not have to be linear
when using nonlinear regression algorithms. Therefore, the results of our linear
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correlation analysis cannot rule out any features in the general case, but instead
highlight potentially useful features. However, if we use really simple methods
such as multiple linear regression, the results of this analysis can also show us
which features have little importance in predicting knee joint loading with linear
regression.

For knee flexion angle time series, both the difference between the maximum and
the minimum and the simple maximum correlated similarly with knee joint loading-
related variables. While the maximum is simpler to calculate, we used the difference
in study III. Justifications for this include the fact that the difference is not affected
by a possible offset in the time series data of knee flexion angle. In knee flexion angle
time series from video camera data, there should be no offset, but in IMU-derived
time series, an offset could be present if our assumption of fully extended knees
does not apply at the beginning of the walking trial. Furthermore, an offset may
be present in OpenSim-analyzed motion capture data if any is introduced during
the scaling of the muscusloskeletal model. This offset could be important to note
because although we do not feed the networks motion capture data when we use
them, we used motion capture data to train them.

The maxima of hip flexion angle and knee flexion angle occur during the first
half of stance, with the hip flexion maximum occurring at the very beginning of the
stance phase and the knee flexion maximum coinciding with the loading response
part of stance. Therefore, the correlations between the maxima and knee joint load-
ing variables related to the loading response are expected. Knee and hip joint angle
extrema cannot be attributed to the terminal extension part of stance as distinctly,
which may explain why the knee joint loading variables that had strong correla-
tion were mostly related to loading response rather than terminal extension. It is
hence possible that the extremum information from joint angles is more useful in
predicting the loading response peak than the terminal extension peak.

Hip rotation angle correlated with some lateral loading variables and loading
variables not exclusively related to loading response. Therefore, including it as
a predictor could be useful in reducing prediction error of lateral loading peaks
(which had the higher prediction error than medial or summed peaks in studies II
and III) or terminal extension peaks. However, the hip rotation angle is difficult
to estimate from video data, especially in the sagittal plane. Even with IMU data,
estimating hip rotation angle can prove difficult because of its small range of motion
compared to flexion-extension angles, which may result in relatively more noise in
the orientation data. Hence, accurate estimates of hip rotation angles may be inac-
cessible with some portable modalities. However, an IMU on the ankle may provide
a substitute measure of hip rotation provided knee rotation and ankle motion out-
side plantarflexion and dorsiflexion are negligible.

As a closing remark, we expect the musculoskeletal model to affect the correla-
tions strongly. Thus, the results of the correlation analysis may be poorly generaliz-
able to other musculoskeletal models.

8.6 FUTURE DIRECTIONS

We see two main development directions for the methods: 1) keeping the methods
modular and simple, and 2) abandoning modularity to increase prediction accuracy.

In the first direction, artificial neural networks could be replaced by simpler,
more intuitive methods (e.g., least squares regression) while keeping the predictor
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set mostly as it is (e.g., consisting of demographic variables and possibly other pre-
dictors that are easily estimated, such as walking speed). Alternatively, if we identify
more predictors that are simple to estimate while keeping the models modality-
agnostic, we can keep using artificial neural networks and use more nodes to lever-
age larger datasets that allow us to leverage complex nonlinear relationships be-
tween the predictors and output.

In the second direction, we could integrate the measurement modality into the
prediction model and create a model that derives predictors that are more descrip-
tive than our current simple predictors. This has been done by several studies in the
field, e.g., by developing models for predictors specifically from video data [63,149]
or inertial measurement unit data [11,30,75,89], or even a combination of both [177].
While becoming modality-specific would probably increase prediction accuracy, it
has already been done in existing literature and could limit the usability of the
method. Additionally, the results could improve if more data was included [137],
as the total amount of trials is still quite small. This addition of real or synthesized
data could allow leveraging more complicated neural networks than the ones used
in study III.

In either future direction, the accuracy of estimating predictors from the mea-
surement modalities (whether they are modular or tied to the prediction model)
should be improved. For instance, the accuracy of predicting KJCF peaks would
improve if we reduced the error of estimating the KFA predictor with OpenPose,
which was notably high in study III. Camera-based methods in general seem like
a good future investment because they require no physical contact with the sub-
ject and most out-of-laboratory environments have access to a video camera (e.g.,
webcam) or one could at least be used in those environments. Additionally, while
OpenPose is well-known and relatively simple to use, top-down approaches that
first detect people and then their joints may be more accurate, so OpenPose is not
necessarily the ideal HPE algorithm for best-possible keypoint tracking especially
for clinical conditions [43]. Furthermore, as most HPE algorithms currently are not
specifically made with biomechanical validity in mind, it would be interesting to see
how a model trained for detecting precise joint centers as keypoints, or for specific
sports [24], would improve the results. Such specialized models could be achieved,
e.g., by taking existing HPE models and further training them using a small corpus
of application-specific and accurately labeled data.

In our case, the future development choices likely depend on the end use case
of the predicted KJCF peaks. Although we framed our models for general out-of-
laboratory use, their development was driven by the fact that the loading predictions
could be used as more personalized inputs to finite element models for improved
out-of-laboratory prognostics and rehabilitation guidance of patients with muscu-
loskeletal disorders [27, 184, 185].
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9 Summary and conclusions

In this doctoral work, we developed methods for real-time computation of joint kine-
matics, and the prediction of knee joint loading peaks outside the motion laboratory.
Our knee joint loading predictions were non-personalized, i.e., data from a single
subject could only appear in training, validation, or test subset of data, but not
several subsets. Moreover, the predictions are not specifically designed to model
intra-subject variation. Our predictions were also subject-specific, i.e., in training
the networks, we used data from simulations that utilized subject-specifically scaled
generic musculoskeletal models, including subject-specific bony dimensions of the
knee. Our predictions had error on the same scale as the natural variability of knee
joint loading peaks in repeated walking trials.

Supporting our first hypothesis, study I presented a software for real-time in-
verse kinematics analysis using data from inertial measurement units. It was imple-
mented as an plug-in that extended the application programming interface of the
popular musculoskeletal modeling and simulation software OpenSim. Therefore, it
is also compatible with the variety of different and customizable musculoskeletal
models used by OpenSim. The software developed in this study enables real-time
estimation of joint angles outside the motion laboratory using inertial measurement
units. Although it does not support the current version of OpenSim and it was not
the first tool to provide real-time inverse kinematics using OpenSim, its open-source
code is available as an example of how to use the programmatical tools of OpenSim
in real-time analysis.

To support our second and third hypotheses, studies II and III presented a neu-
ral network solution for predicting knee joint contact force peaks. The difference
from existing machine learning solutions is that we designed our method with sim-
plicity (input variables that are mostly demographic and easily collected), portabil-
ity (after training, usable without motion capture equipment), and modularity (use
demonstrated with IMUs and video data, but other methods to estimate the KFA
predictor and walking speed could be used instead) in mind — in the end, this re-
sulted in better interpretability than artificial neural network solutions usually have
(the weights of the network describe the importance of the predictors), although the
simple architecture does not leverage the full approximation potential of nonlinear
functions that typical artificial neural networks have. The solutions developed in
studies II and III enable estimation of knee joint loading peaks using, e.g., inertial
measurement units or a video camera.

Future studies should investigate the possibility of including more predictors
that allow more accurate estimation of knee joint loading while retaining the porta-
bility and modularity of the developed methods. Furthermore, while we developed
methods for accessible out-of-laboratory use, we did not test them specifically in
clinical settings, e.g., for predicting the structural degeneration of the knee joint or
informing gait retraining to exert less loading on the knee. Therefore, the suitabil-
ity of the developed methods should be tested in one or more of the proposed use
cases.
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ABSTRACT
Background: Inertial measurements (IMUs) facilitate the measurement of human
motion outside the motion laboratory. A commonly used open-source software for
musculoskeletal simulation and analysis of human motion, OpenSim, includes a tool
to enable kinematics analysis of IMU data. However, it only enables offline analysis, i.
e., analysis after the data has been collected. Extending OpenSim’s functionality to
allow real-time kinematics analysis would allow real-time feedback for the subject
during the measurement session and has uses in e.g., rehabilitation, robotics, and
ergonomics.
Methods: We developed an open-source software library for real-time inverse
kinematics (IK) analysis of IMU data using OpenSim. The software library reads data
from IMUs and uses multithreading for concurrent calculation of IK. Its operation
delays and throughputs were measured with a varying number of IMUs and parallel
computing IK threads using two different musculoskeletal models, one a lower-body
and torso model and the other a full-body model. We published the code under an
open-source license on GitHub.
Results: A standard desktop computer calculated full-body inverse kinematics from
treadmill walking at 1.5 m/s with data from 12 IMUs in real-time with a mean delay
below 55 ms and reached a throughput of more than 90 samples per second. A laptop
computer had similar delays and reached a throughput above 60 samples per second
with treadmill walking. Minimal walking kinematics, motion of lower extremities
and torso, were calculated from treadmill walking data in real-time with a
throughput of 130 samples per second on the laptop and 180 samples per second on
the desktop computer, with approximately half the delay of full-body kinematics.
Conclusions: The software library enabled real-time inverse kinematical analysis
with different numbers of IMUs and customizable musculoskeletal models.
The performance results show that subject-specific full-body motion analysis is
feasible in real-time, while a laptop computer and IMUs allowed the use of the
method outside the motion laboratory.

Subjects Bioinformatics, Anatomy and Physiology, Kinesiology, Biomechanics, Rehabilitation
Keywords OpenSim, Real-time, Inverse kinematics, Inertial measurement unit, Motion analysis

How to cite this article Lavikainen J, Vartiainen P, Stenroth L, Karjalainen PA. 2023. Open-source software library for real-time inertial
measurement unit data-based inverse kinematics using OpenSim. PeerJ 11:e15097 DOI 10.7717/peerj.15097

Submitted 25 January 2022
Accepted 28 February 2023
Published 5 April 2023

Corresponding author
Jere Lavikainen,
jere.lavikainen@uef.fi

Academic editor
Antonie van den Bogert

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.15097

Copyright
2023 Lavikainen et al.

Distributed under
Creative Commons CC-BY 4.0



INTRODUCTION
Inertial measurement units (IMUs) are measurement devices that contain triaxial
magnetometers, gyroscopes, and accelerometers. IMUs used in biomechanics are usually
packed into cases that fit on a human palm. They utilize sensor fusion algorithms such as
Kalman filters to estimate the three-dimensional orientation of the IMUs in space (Paulich
et al., 2018). This information can be used as an alternative to marker-based optical motion
tracking systems to perform analysis of human movement. Compared with optical motion
tracking systems, IMUs are cheaper, can be attached to the subject without the palpation of
anatomical landmarks, do not suffer from line-of-sight issues, are not limited to a specific
target volume and can be used in field conditions. These advantages come at a small cost of
accuracy compared with optical motion tracking systems (e.g., joint angle errors in the
lower limbs are generally between 0 and 15 degrees but vary strongly per joint and motion
type) (Poitras et al., 2019), and IMU-specific error sources such as drifting (Saber-Sheikh
et al., 2010). In addition, IMUs can be coupled with electromyography (EMG) electrodes to
further enhances the versatility of these sensors for analyzing human movement in sports
and clinical applications (e.g., Cometa Srl, Cometa Systems | Wireless EMG and IMU
Solutions, https://www.cometasystems.com/; Delsys Incorporated, Trigno� Avanti
Platform—Delsys, https://www.delsys.com/trigno/; Noraxon USA, Ultium EMG |
Noraxon USA, https://www.noraxon.com/our-products/ultium-emg/).

Analysis of kinematics of motion is typically done offline after measurement and data
collection in a process called inverse kinematics (IK). Recent years have seen progress in
some real-time IK (RTIK) analysis solutions and systems, but these studies (Bonnet et al.,
2013; Borbély & Szolgay, 2017; Falisse et al., 2018; Miezal, Taetz & Bleser, 2017; van den
Bogert et al., 2013; Yi et al., 2021) have mostly focused on specific marker sets and models
and their generalization to arbitrary measurement setups is difficult. For example, in
real-time IMU-based applications, Bonnet et al. (2013) estimated the RTIK of the trunk
and lower limbs using a single IMU located at the lower back. In another example, sensors
containing IMUs and EMG electrodes, which were placed on surface musculature, were
used in a recent study (Yi et al., 2021) to calculate the real-time kinematics and kinetics of
the lower limb. However, these studies rely on complex computational methods, making it
difficult for others to repeat and adapt the experiment without knowledge of sensor fusion
or deep learning. The IMU-based RTIK solution byMiezal, Taetz & Bleser (2017) does not
allow easy switching between musculoskeletal models or quantify how real-time the
solution is.

It has been shown that a full biomechanical analysis of joint and muscle function can be
obtained in real-time with a C/C++ software library (van den Bogert et al., 2013).
The software library was capable of reading marker data and performing IK and inverse
dynamics on a full-body model at more than 120 samples per second. However, the
software is commercial and relies on a single predefined model rather than a
subject-specific or user-defined musculoskeletal model, limiting its usefulness in research.
Additionally, Falisse et al. (2018) showed that comparing its outputs with those of another
similar software (OpenSim 3.3) resulted in statistically significant differences in joint
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kinematics, kinetics, and muscle forces, highlighting the dependency of the output on the
selected model. Hence, it is invaluable that the user can select or generate a model that best
fits to the application or research question. The OpenSim software for analyzing the
kinematics and dynamics of musculoskeletal systems (Delp et al., 2007) offers a solution to
the aforementioned issues because it is free and open source, it has a graphical user
interface, and it works with customizable musculoskeletal models. While its IK algorithm
originally utilized only marker-based motion capture data, since version 4.1 (Seth et al.,
2018) it has been possible to utilize IMU orientations as input to the IK algorithm of
OpenSim to solve skeletal motion (i.e., joint angles). The IMU orientation-based IK
algorithm minimizes the sum of squares of the difference between experimental IMU
orientations and corresponding segment orientations of the model. Other software with
capabilities similar to OpenSim (Damsgaard et al., 2006) exist, but the fact that OpenSim is
open-source makes it readily available to anyone, enables a variety of community-made
modifications and add-ons, and enables the user to view the source code to better
understand and troubleshoot the workings of the software. Its customizable models allow
the creation of personalized bony geometry, e.g., from imaging data (Valente et al., 2017),
and the inclusion of muscles in the models allows retrieval of muscle length and similar
data that can be used in further analyses. Therefore, although other software may offer
kinematics or kinetics based on biomechanical models, enabling real-time analysis with
OpenSim has advantages in verifiable and customizable motion analysis and research.
While OpenSim has been used for marker-based data to calculate inverse kinematics and
inverse dynamics of human motion in real-time (Pizzolato et al., 2017), OpenSim-based
real-time calculation of IMU-based kinematics with open-source code would enable others
to adapt the solution for customizable motion analysis in portable settings.

IMU-based RTIK solutions that utilize the OpenSim API have been recently developed
by Stanev et al. (2021) and Slade et al. (2022). Slade et al. (2022) developed and tested an
open-source IMU-based IK system for a microcontroller that can be carried on the subject.
Their implementation uses a simplified musculoskeletal model and relaxed IK error
tolerance to enable real-time IK with the limited computational power of the
microcontroller. With the full computational capacity of the microcontroller (i.e., four
threads), they could calculate full-body IK at a throughput of approximately 20 operations
per second and at a delay of approximately 200 ms. Stanev et al. (2021) have published an
open-source software framework that allows kinematical and dynamical analysis of
motion. Their software performs the analysis in real-time and supports both IMU- and
marker-based data.

The aim of this study was to develop a freely available software library that reads
orientation data from IMUs and calculates the IK on a user-given musculoskeletal model
in real-time using OpenSim 4.1 API. The development of this work was done prior to the
publication of works by Slade et al. (2022) and Stanev et al. (2021). Since release of the
aforementioned software, our work is not novel but represents an alternative
implementation to solve the same problem. The development occurred independently of
these software and may therefore provide the community additional value to these
previous implementations. To assess the performance of our software we quantified the
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software’s IK execution time and throughput with different numbers of processor threads
calculating the IK and different numbers of IMUs, and determined if lowered input data
frequency resulting from live visualization meaningfully affects calculated ranges of
motion (ROMs).

MATERIALS AND METHODS
Working principles of the software
A software library for reading real-time IMU orientation data as quaternions and
processing the data to calculate the IK of a musculoskeletal model was developed using
C++ and published on GitHub (https://github.com/jerela/OpenSimLive). The software
utilizes OpenSim 4.1 API to invoke methods that calibrate the musculoskeletal model and
perform the IK to solve joint angles using quaternion-based orientation data from live
measurements.

For each time point, the IK algorithm of OpenSim uses orientation information from all
IMUs to find the poses of individual bodies of the musculoskeletal model that, in the least
squares sense, minimize the error between experimental IMU orientations and the
orientations of the corresponding bodies. For information about the mathematics behind
the IK algorithm, see Delp et al. (2007), where it is explained for markers instead of IMUs;
for IMUs, IMU orientation error is minimized instead of marker coordinate error.
OpenSim’s IK algorithm for IMU data is briefly presented in Supplemental Materials,
although we did not modify it.

The software library supports Xsens MTw AwindaTM (Xsens Technologies B.V.,
Enschede, Netherlands) and Delsys Trigno� (Delsys Inc., Natick, Massachusetts, USA)
IMUs. The open-source nature of the software library allows others to add support for
other devices. IMU orientations are received wirelessly as quaternions using the Xsens
Device API or individual quaternion elements are read from a byte stream via socket
communication sent by Trigno Control Utility. Information about which IMU
corresponds to which body on the musculoskeletal model is read from an XML file. Instead
of reading orientation data from the actual IMUs, an option to generate randomized
quaternion orientations for testing purposes without IMUs is available.

The orientation information from IMUs is combined in a time series table that contains
only one sample, i.e., time point. The time series table is given to OpenSim’s IK solver
object, which solves the IK for that time point. The process is repeated for each sample.
The resulting time series of joint angles can be saved in a text file in .mot format, which
allows the output to be viewed using the OpenSim graphical user interface. The read
quaternions, and also EMG time series in the case of Trigno� Avanti sensors, can be saved
in a text file for later offline analysis.

The working principle of the software library is straightforward. Producer-consumer
thread synchronization is used to get orientation data from IMUs. A producer thread and a
consumer thread run concurrently. The producer reads orientation data as quaternions
from the IMUs and saves it into a buffer that is shared between the threads. The consumer
reads and removes data from the buffer and assigns an IK task to a thread in a thread pool.
This way there can be several concurrent IK calculations, improving the throughput of the
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program. The maximum number of concurrent IK threads is defined by the user. If that
number is already active when the consumer thread starts another IK thread, the consumer
thread will wait for one of the IK threads in the thread pool to finish. A diagram illustrating
the workflow is shown in Fig. 1.

The software library has been tested to work on 64-bit Windows 7 and Windows 10
operating systems. The source code of the software library is available on GitHub at https://
github.com/jerela/OpenSimLive.

Experimental data
Performance tests of the software library and error comparison of joint angles between
real-time IK and offline IK were done for walking data of a single subject. The subject was
of legal age, had no known musculoskeletal disorders or other conditions that affect gait,
and gave their written consent to participate in the study. A total of 12 IMUs (Xsens MTw
Awinda, Enschede, Netherlands) were strapped on the subject’s upper arms, forearms,
chest, pelvis, thighs, shanks, and feet, as shown in Supplemental Information. We recorded
10 trials while the subject walked on an instrumented treadmill (Motek Medical B.V.,
Amsterdam, Netherlands) at a speed of 1.5 m/s (5.4 km/h) and the IMUs transmitted their
orientations at a sample rate of 60 Hz. Each trial contained approximately a minute of gait
data. The subject was instructed to take the standard anatomical position at the beginning
of each trial to calibrate the IMUs on the musculoskeletal model as per the standard IMU
calibration procedure of OpenSim (elaborated in Supplemental Materials). When the
subject was in the desired calibration pose, the user of our software library pressed a key to

Figure 1 A diagram illustrating the working principle of the inverse kinematics (IK) workflow.
Orientation data of inertial measurement units (IMUs) is read as quaternions by the producer thread
and saved to a buffer. Time values are saved to another buffer. The consumer thread reads data from both
buffers and initiates new threads that calculate IK based on the data. IK threads output joint angle values
for the model. Within an IK thread, the IK output can be sent to a visualizer window. The visualization is
based on the Simbody (i.e., the physics engine used by OpenSim) API and not a part of our software
library and hence not described here in more detail. When the program finishes, the IK output frames can
be sorted in a time-ascending order and saved to file. Full-size DOI: 10.7717/peerj.15097/fig-1
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calibrate the IMUs. No model scaling was done because we tracked only sensor
orientations which are independent of model dimensions.

RTIK was calculated during the measurements. The Simbody visualization of RTIK was
enabled, which reduced the throughput of RTIK from the 60 Hz sampling frequency of the
IMUs to 45 Hz on average on the desktop computer. This RTIK output was saved to file at
the end of each trial. Additionally, the time series of received IMU orientations as
quaternions were saved to a file at the full 60 Hz sampling frequency after each trial; the
time series were used in calculating execution times and throughputs of the software
library.

Performance tests
To quantify the performance of the software library, we conducted performance tests using
computer-generated IMU orientations and IMU orientations from recorded human
walking (Table 1). Two performance measures were quantified: throughput and execution
times of IK. The throughput describes how many IK operations are calculated per second
on average when the communication between the producer and the consumer threads is
included in the operation. The execution times describe the delays that the calculation of
IK for a single time frame takes, i.e., how long it takes after retrieving IMU orientations
from one time point to retrieve the corresponding joint angles of the musculoskeletal
model. Therefore, throughputs are increased by using multiple IK threads but execution
times are not. To retrieve time points, the std::chrono::high_resolution_clock class was
used in the C++ implementation.

The tests were conducted with two musculoskeletal models, the Gait2392 lower
extremities and torso model (23 degrees of freedom, DOFs; referenced from here on as the
lower body model) (Anderson & Pandy, 1999, 2001; Delp et al., 1990; Yamaguchi & Zajac,
1989) and the Hamner full-body model (29 DOFs, referenced from here on as the full-body
model) (Hamner, Seth & Delp, 2010). In tests involving the lower body model, data from
one and seven IMUs were used; with the full-body model, data from one, seven, and 12
IMUs were used (Table 2). All joint angles that were unlocked in the model by default were
solved by the IK algorithm of OpenSim, but meaningful results were obtained only for
joint angles defined by the available IMU data, such as joint angles between two segments
that both had an attached IMU sensor. Finally, the tests were conducted with two
computers, a laptop (HP EliteBook 8570w: Windows 10 Education 64-bit, Intel Core i7-
3740QM 2.70 GHz 8-CPU processor, 8192 MB RAM) and a desktop (Fujitsu Celsius

Table 1 Conducted performance tests, the parameters that were varied in them, and their purposes.

Test Varied parameters Purpose

Execution times with computer-generated
random unit quaternions

Computer, MS model, number of IMUs Benchmark upper limit of execution times

Execution times with gait data Computer, MS model, number of IMUs Quantify execution times in normal use scenario

Throughputs with gait data Computer, MS model, number of IK threads,
number of IMUs

Quantify throughput in normal use scenario

Note:
IMU, inertial measurement unit; MS, musculoskeletal.
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W550 Power: Windows 10 Education 64-bit, Intel Core i7-6700 3.40 GHz 8-CPU
processor, 32768 MB RAM). The laptop computer was used to examine if the software can
perform sufficiently using portable devices that allow the measurements to be performed
outside a laboratory environment. The desktop computer was used to examine how large
difference the increased computing power of a typical desktop compared to a typical laptop
makes on the performance of the software.

Execution times with computer-generated IMU orientations were measured with
random unit quaternions. The quaternions represented random and sometimes unrealistic
poses, which varied greatly between time frames and were time-consuming to calculate.
Therefore, the measured execution times represent performance that is worse than in
normal human motion, i.e., they were a benchmark of unrealistically poor performance.
The execution times were measured with data from different numbers of IMUs (one and
seven for the lower body model and one, seven, and 12 for the full-body model). Each
execution time measurement lasted until 10,000 IK operations were calculated. We report
the mean, standard deviation and 95% confidence interval of the 10,000 execution times.

Finally, IMU orientations from real human walking were used to calculate throughputs
and execution times. Performance was measured with pre-recorded quaternion
orientations from 10 one-minute walking trials. Although the throughputs and execution
times were calculated after the walking trials had been recorded, the performance tests
were designed to simulate real-time measurement by feeding the quaternion data into the
test environment one data frame at a time. The use of pre-recorded quaternion
orientations enabled measuring throughputs above the sampling frequency of the IMUs;
otherwise, the throughput would be limited to the sampling rate of the IMUs because IK
operations could only be solved at the rate the IMU orientations are received. The tests
were conducted with different numbers of IMUs (one and seven for the lower body model
and one, seven, and 12 for the full-body model). Furthermore, different numbers of IK
threads (one, two, four, six, eight) were used during throughput tests. The performance
tests on real walking data allowed us to evaluate performance during a common human
motion measurement.

Error comparison of joint angles
Our software library includes an option to visualize motion like in OpenSim GUI by
invoking methods from the Simbody API (namely, from the SimTK::Visualizer class),
which OpenSim API is built upon. The use of the Simbody visualizer in a real-time IK

Table 2 TheMSmodel segments whose inverse kinematics were calculated during performance tests,
presented by the number of IMUs whose data was utilized.

Number of IMUs Segments described by IMU orientations

1 Pelvis

7 Pelvis, thighs, shanks, feet

12 Pelvis, thighs, shanks, feet, torso, upper arms, lower arms

Note:
IMU, inertial measurement unit; MS, musculoskeletal.
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thread slows the thread noticeably, and if the throughput drops below the sampling
frequency of the IMUs, the IK threads skip some orientation frames from the IMUs in a
real-time measurement. This frame drop may negatively affect the accuracy of gait
parameters derived from the IK solution. Although not a core feature of our software
library, the Simbody visualization during RTIK may be of interest of some. Thus, we
evaluated the effect of the frame drops on a kinematic variable that is often of interest and
potentially affected by the frame drops, namely the ranges of motion (ROMs) of the joint
angles. To this end we compared ROM between visualized RTIK (calculated in this case at
approximately 45 Hz) and offline IK at the 60 Hz sample rate of the IMUs. Offline IK was
calculated from IMU orientations that were stored after each of the 10 walking trials; RTIK
with Simbody visualization was calculated on the desktop computer during each walking
trial. Orientations from all 12 IMUs were included, and the full-body model was used in
the analysis. The measured motion exerted 26 of the model’s DOFs. For determining
ROMs, the IK data was divided into periods based on the cyclical nature of the
flexion-extension angle of the right knee. For each of the resulting 715 gait cycles (total
from 10 walking trials), the difference between the highest and the lowest value of each
joint angle was taken as its ROM. The results were reported as the mean absolute error
(MAE) and 95% confidence interval (95% CI) between offline IK and RTIK ROM. Note
that we calculated errors to evaluate the effect of visualization on ranges of motion and to
demonstrate how the software library works, not to validate IMU-based IK.
For IMU-based IK validation, see other studies such as (Al Borno et al., 2022; Tagliapietra
et al., 2018).

RESULTS
Performance tests
Performance test results showed that increasing model complexity and the number of
IMUs for orientation tracking increased execution times (Fig. 2) and decreased IK
throughput (Fig. 3). Increasing the number of IK calculating threads increased throughput
(Fig. 3). The desktop computer always had lower execution times and higher throughput
than the laptop computer in the same performance tests (Figs. 2 and 3).

Using computer-generated random unit quaternions, the means and standard
deviations of execution times (operation delays) increased with increasing number of
IMUs similarly on both the desktop and the laptop (Table 3, Fig. 4). With one IMU, the
full-body model was 60–65% slower than the lower body model and had more variation in
execution times. The mean execution times were approximately 25% longer on the laptop
than on the desktop.

Execution times calculated from human walking (Fig. 2) are shorter than the
corresponding execution times from computer-generated data (Table 3, Fig. 4) and remain
below 55 ms even with 12 IMUs and the full-body model. Performance with real walking
data follows the same patterns as with computer-generated data. Execution times increase
(Fig. 2) when the number of IMUs or model complexity (number of DOFs) is increased.

Execution times below 30 ms using the laptop and below 25 ms using the desktop were
reached with the lower-body model and seven IMUs (Fig. 2). Furthermore, even with the
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laptop, full body kinematics can be calculated with execution times below 60 ms, and
provided at least four IK threads are used, with throughputs above 50 Hz (Fig. 3).

Throughput tests show that on the laptop, human walking can be solved at more than
60 IK operations per second when using eight IK threads, the full-body model and 12
IMUs (Fig. 3). The minimal IMU setup to record motion of all lower-body DOFs, seven
IMUs with the lower-body model, reached a throughput of 130 with eight IK threads.
On the desktop, the corresponding throughputs were 90 and 180, respectively.

Figure 2 Execution times and standard deviations (shaded area) of a single inverse kinematics
operation with respect to the number of inertial measurement units (IMUs). The execution times
are presented as mean over 10 trials for two different musculoskeletal models (lower body and torso
model and full-body model) using one, seven, or 12 IMUs. IMU quaternions orientations were retrieved
from previously recorded walking trials. Red diagonal cross: lower-body model and laptop computer.
Green cross: full-body model and laptop computer. Blue circle: lower-body model and desktop computer.
Purple square: full-body model and desktop computer. Full-size DOI: 10.7717/peerj.15097/fig-2
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Table 3 Mean, standard deviation (STD) and 95% confidence interval (CI) of execution times of a single inverse kinematics (IK) operation.

Lower body, 1 IMU Lower body, 7 IMUs Full body, 1 IMU Full body, 7 IMUs Full body, 12 IMUs

Desktop Laptop Desktop Laptop Desktop Laptop Desktop Laptop Desktop Laptop

Mean time (ms) 6.97 8.52 43.55 56.96 11.52 13.77 48.12 64.01 80.42 95.24

STD (ms) 2.31 3.62 22.39 27.19 6.08 7.05 34.03 46.36 29.49 42.00

95% CI (ms) 0.05 0.07 0.44 0.53 0.12 0.14 0.67 0.91 0.58 0.82

Notes:
The values are calculated over 10,000 IK operations for two different musculoskeletal models, two different computers and one, seven, or 12 inertial measurement units
(IMUs). Randomly selected unit quaternions were used as IMU orientations.
CI, confidence interval; IK, inverse kinematics; IMU, inertial measurement unit; STD, standard deviation.

Figure 3 Inverse kinematics (IK) throughput with respect to the number of IK threads used,
measured on a desktop computer (left) and a laptop computer (right). The throughputs are pre-
sented as mean over 10 trials. The measurements were repeated with two different musculoskeletal
models, and using one, seven or 12 inertial measurement units (IMUs). IMU quaternion orientations
were retrieved from previously recorded walking trials. Red diagonal cross: lower-body model and one
IMU. Green cross: lower-body model and seven IMUs. Blue circle: full-body model and one IMU. Purple
square: full-body model and seven IMUs. Cyan diamond: full-body model and 12 IMUs.

Full-size DOI: 10.7717/peerj.15097/fig-3
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Error comparison of joint angles
Enabling Simbody visualization during the measurement session reduced IK throughput
but, compared to IK at full 60 Hz sampling frequency of the IMUs, caused only minimal
differences in calculated ranges of motion (Fig. 5). The mean ROM error for all DOFs was
0.0675 degrees. The greatest MAE in ROM was observed in ankle joints (up to 360% of the
mean for all joints), followed by the left hip joint (Fig. 5). Pelvis and upper extremities had
the smallest ROM error. All MAEs remained below 0.3 degrees.

Figure 4 Execution times and standard deviations (shaded area) of a single inverse kinematics
operation with respect to the number of inertial measurement units (IMUs), i.e., number of
segments with random orientation data. The values are calculated over 10,000 IK operations for two
different musculoskeletal models, two different computers and one, seven or 12 inertial measurement
units (IMUs). Randomly selected unit quaternions were used as IMU orientations. Red diagonal cross:
lower-body model and laptop computer. Green cross: full-body model and laptop computer. Blue circle:
lower-body model and desktop computer. Purple square: full-body model and desktop computer.

Full-size DOI: 10.7717/peerj.15097/fig-4
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DISCUSSION
We present an open-source software library for the real-time inverse kinematical analysis
of IMU data with user-defined musculoskeletal models using OpenSim 4.1. Full-body IK
can be calculated for random orientations in less than 100 ms; using real walking data, it
can be done in less than 60 ms. On a desktop computer, the software library can solve
RTIK at 180 samples per second while tracking the pelvis and lower extremities and at 90
samples per second while tracking the full-body kinematics. On a laptop computer, the
corresponding throughputs were 130 and 60 samples per second, respectively. Using 12
IMUs to track walking and visualizing the results on a full-body running model, RTIK was
solved at 45 samples per second on a desktop computer. The drop from the IMU output

Figure 5 Mean absolute error (MAE) between real-time inverse kinematics and offline inverse
kinematics ranges of motion (ROMs) of the exerted degrees of freedom of the musculoskeletal
model and the 95% confidence interval of the error. Solid bars show MAEs of ROMs for each exer-
ted degree of freedom. Confidence intervals are shown as error bars centered on the top of the MAE
bars. Full-size DOI: 10.7717/peerj.15097/fig-5
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sampling rate of 60 Hz resulted in a minimal difference in calculated joint ROMs (<0.3
degrees). The software library allows the use of RTIK virtually without limitations due to
location or environment, which opens possibilities for a variety of applications including
rehabilitation, ergonomics, and human-machine interfaces for controlling collaborative
robots. Observing the movement of interest in a natural environment is important because
a laboratory setting may affect how a person moves (Friesen et al., 2020).

Performance tests
We investigated the execution times and throughputs of the IMU-based IK to determine if
the output can be considered real-time. Pizzolato et al. (2017) used an execution time of
75 ms as the threshold for a real-time system. It was based on a study by Kannape & Blanke
(2013) in which the subjects were able to identify the displayed motion as self-generated in
real-time in over 80% of the cases if the delay in motion display was less than 75 ms. Even
with a delay of 210 ms, subjects identified the visualized motion as self-generated in
real-time in 50% of the cases. Borbély & Szolgay (2017) noted that the IK algorithm of
OpenSim 3.3 had an execution time of about 145 ms, thus calculating IK at about 7 Hz and
“falling behind the generally accepted practice in human movement recording of at least
50 Hz”. Therefore, a real-time application should achieve IK throughput of 50 operations
per second with an execution time below 75 ms for any single operation. With our software
library, we aimed to achieve this target by using multithreading and the IK algorithm of
OpenSim 4.1.

Another interesting finding by Kannape & Blanke (2013) was that subjects modulated
their stride based on the delay between the motion and its visualization. Therefore, it is
important to minimize the delay when preparing a real-time measurement setup to
prevent subjects from altering their gait characteristics based on delayed visual feedback.

Live visualization is unnecessary in applications where IK is an intermediate output that
is used to estimate contact forces, instruct a robot arm in rehabilitation applications or
calculate gait parameters, to name a few examples. Thus, the performance tests were
designed so that they evaluate only the performance of IK, which is the core feature of the
software library. Although we adopt the visualization-based 75 ms criterion for real-time
motion from Kannape and Blanke, our performance tests were conducted without
visualization. Our software library relies on Simbody visualization and lacks an elegant
visualization solution of its own, which is a limitation that should be acknowledged.

The performance tests show that IK throughput is more sensitive to the number of
IMUs than the DOFs of the model, although model complexity also increases
computational load because joint angles with no experimental data to solve them are still
considered in the IK algorithm. Execution times clearly increased with the number of
IMUs, although model complexity also affected them noticeably. Therefore, minimally
enough IMUs and DOFs should be chosen to enable high throughput and short execution
times in real-time.

The performance of the software library would benefit from improvements particularly
in solving IK and visualizing the results. Because a new quaternion time series table is
created for a single IMU data point every time an IK frame needs to be solved, the software
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library is computationally much heavier than it would be if a single time series table could
act as a permanent buffer that is updated with new IMU data points. This implementation
was not possible using the OpenSim API during the development stage of our software
library but appears to be supported in the latest version of the API. Furthermore, the data
points in real-time IK may be solved in inconsistent order depending on how quickly each
IK thread finishes. Expired IK frames may be omitted if the real-time IK is used as input in
further real-time analyses but the missing data points may require interpolation or other
consideration, e.g., if filtering the IK is required. Thus, future development of the software
library could implement existing interpolation functionalities from the OpenSim API.
Additionally, if the visualizer would be implemented in its own thread, it could be used
without blocking the IK solving threads and it would enable greater IK throughput while
visualization is enabled. This improvement would also enable the solving of joint angles at
a high frame rate and visualizing them at a reduced frame rate for performance reasons.

Finally, it should be noted that the software library was only tested on the Windows
operating system, and the performance tests were conducted on its operation as a whole.
Thus, no proper profiling analysis was done to discover which parts of the software library
have potential for performance optimization.

Execution times of the IK operation
Real motion, such as walking, contains a combination of different orientations, most of
which are within a typical model’s joint angle boundaries. Randomly generated unit
quaternions used in execution time tests often result in unrealistic poses. As a result, the IK
based on randomized unit quaternions is heavier to calculate than the average orientations
during walking, or any typical human motion. Therefore, the execution times from
computer-generated data can be interpreted as the worst performance when analyzing
human motion without live visualization. Consequently, if the execution times with
computer-generated data are sufficiently small for real-time analysis, then any realistic
motion should be processed with smaller or equal execution times. On the other hand, we
can assume that most human motions can be analyzed with execution times like those
from real walking data because joints angles are likely to change at a similar rate and exert
constraints similarly.

For both models using computer-generated random unit quaternions, the standard
deviations of the execution times are on the same scale as the mean execution times,
implying that there is great variation in the execution time. The randomized nature of the
used quaternion orientations is a likely contributor to the high standard deviation, because
randomized orientations occasionally lead to strange segment orientation combinations
that do not reflect valid human motion and take the IK algorithm a long time to solve. This
is further supported by the much smaller standard deviation in real walking data (Fig. 2).

Before conclusions are drawn from the computer-generated random unit
quaternion-based execution times, it should be acknowledged that the results varied
somewhat on repeated runs with the same parameters. This implies that running the tests
more than 10,000 iterations could improve the precision of the results. However, because
the purpose of the computer-generated random unit quaternions was to estimate
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worst-case performance for the hardware of the tested computers and the effects of
differing the number of DOFs of the model and segments with IMU orientations, which
they show well, we chose not to repeat the tests with more iterations.

For both computer-generated (Table 3) and real walking data (Fig. 2), with one and
seven IMUs, the execution times are shorter and vary less for the lower body model than
for the full-body model. Both the mean execution times and the standard deviations are
smaller on the desktop than on the laptop. However, the execution times vary less with 12
than with seven IMUs on the full-body model.

Because execution times calculated on real walking data remained below 55 ms (Fig. 2),
the software library is capable of real-time inverse kinematics analysis of the full body even
on a laptop. Using computer-generated random unit quaternions, the 95% confidence
intervals of execution times are roughly 1% of the mean execution time in all cases,
meaning that the execution times stay consistently below 75 ms except when 12 IMUs are
used. In that case, the execution times stay consistently below 100 ms, which is still less
than half of the 210 ms delay that marks 50% confidence in perceiving motion as real-time
(Kannape & Blanke, 2013). Therefore, while RTIK is clearly possible with normal walking,
some complicated motions may result in longer execution times but could nonetheless be
analyzed practically in real-time. Because the execution times represent the minimum
delay from the orientation data retrieval to the moment we can visualize or further analyze
the IK output, the number of IMUs in a real-time measurement should be chosen
considering the delays that are acceptable for the application.

Throughputs
Figure 3 shows that increasing the number of concurrent processor threads increased the
throughput until about eight threads, which was the maximum CPU core number for both
computers. Increasing the number of IK threads further had no meaningful effect on the
throughput, which was also observed in an earlier study on RTIK (Pizzolato et al., 2017).
The throughput plateau resulted from CPU utilization of the computer reaching 100% and
is thus hardware dependent.

The increase in throughput by multithreading is especially large with a small number of
threads and one IMU. For example, throughput increases from less than 25 to more than
150 when the number of IK threads increases from one to two on the laptop. Doubled
computational capacity alone cannot explain the increase in throughput. The effect is also
present on the desktop. Furthermore, the relationship between the throughput and the
number of IK threads is clearly nonlinear whereas an earlier RTIK study found it almost
linear (Pizzolato et al., 2017). No explanation for this phenomenon was found, but it
should be addressed in the future development of the software library.

For one IMU and four or more concurrent threads, the lower body model with 23 DOFs
had approximately 20% higher throughput than the full-body model with 29 DOFs.
For seven IMUs, the lower body model throughput was 40% higher than that of the
full-body model. Therefore, model selection has a noticeable effect on the performance of
RTIK and the model with the smallest sufficient number of DOFs should be chosen to
reach maximal RTIK performance.
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The software library is clearly capable of calculating IK at a higher rate than the lower
limit of 50 Hz named by Borbély & Szolgay (2017), but requires multithreading to reach it
with complex musculoskeletal models. For portable real-time gait measurements, a laptop
should be able to achieve sufficiently high IK throughput when seven IMUs are used.
We reached a throughput of 130 samples per second in such a scenario, although others’
results will vary depending on the hardware of the laptop. Nonetheless, a throughput of
130 samples per second should be sufficient for most gait analysis applications.

Error comparison
Because loss of frequency may lead to reduced accuracy in measuring sharp peaks in joint
angles, joints where motion direction changes fast are likely to have high ROM error
(Fig. 5). During walking, ankle flexion (ankle_angle_r and ankle_angle_l) undergoes fast
changes, which explains why its ROM error stands out. However, because all ROM errors
remain consistently below 0.3 degrees, the effect of the drop in visualized IK from 60 to 45
Hz on ROM is very small.

The ROM error of left hip adduction stands out because it is visibly higher than that of
the right hip. The error is caused by an artifact in IMU signal that caused the left leg to be
violently jerked to the right after the left toe-off phase. The artifact is probably caused by
the distortion of magnetic fields near the ferromagnetic laboratory hardware, which the left
leg was closer to.

Comparison to other solutions for IMU-based RTIK using OpenSim
In the introduction, we briefly presented some existing solutions for real-time IMU-based
IK. Two of them, OpenSenseRT (Slade et al., 2022) and the solution by Stanev et al. (2021),
utilize the OpenSim API like our software library. OpenSenseRT had comparable
execution times and throughputs but to optimize performance, they loosened IK solver
tolerance and simplified their musculoskeletal model by removing muscles and locking
unused joints. Therefore, the performance results are not easily comparable to ours, where
many joints remained unlocked despite not having experimental IMU data to solve them
uniquely and muscles of the model were left as they are (although muscles are not part of
IK calculations, we made preliminary and unreported observations that OpenSim’s
standard IMU-based IK throughput is slightly lower on a model with muscles compared
with a model without muscles). OpenSenseRT is a good solution for IMU-based IK where
the Raspberry Pi computing unit is carried with the subject, while our solution relies on a
computer separate from the subject, limiting its applicability slightly but allowing higher
performance due to numerous options of laptop hardware and requiring less work to use
different musculoskeletal models. The solution by Stanev et al. (2021) allows the use of
different musculoskeletal models easily. They support both marker-based and IMU-based
IK and use lower-level API functions to calculate IK quickly. Furthermore, their solution
goes beyond IK, enabling even real-time inverse dynamics and joint reaction force analysis.
Their software architecture relies on two threads: one to collect orientation from IMUs or
marker positions and then perform IK, and another to perform preprocessing and further
musculoskeletal analysis in real-time. Our solution has one thread for collecting
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orientation from IMUs and a user-defined number of threads for IK. Therefore, although
the solution by Stanev et al. (2021) is superior to ours in terms of number of features, our
solution may allow higher throughputs due to the variable number of IK threads that is
only limited by computer hardware.

CONCLUSIONS
An open-source software library that builds upon the widely used OpenSim software was
developed and published for IMU-based RTIK. It allows the joint angles of any
OpenSim-compatible musculoskeletal model to be analyzed in real-time. While another
real-time solution was concurrently and independently developed by Stanev et al. (2021),
its IK calculation does not utilize multithreading, which may limit its throughput, although
its IK calculation relies on lower-level API classes that are faster than those used by the
software library developed in this study when a single thread is used. The authors
encourage others to contribute to the open-source project. The development of the
software library will closely follow the development of OpenSim to utilize its built-in
functionality for processing live data. The software library could be utilized in real-time
estimation of joint moments, muscle forces, and joint contact forces based only on IMU
data. Ground reaction forces and moments and kinematics are required for solving the
equations of motion for the musculoskeletal model using inverse dynamics. It has been
shown that ground reaction forces and moments can be predicted from IMU-derived
kinematics (Karatsidis et al., 2017; Stanev et al., 2021). Moreover, estimation of muscle
forces using optimization techniques uses kinematics and inverse dynamics estimates of
joint moments as inputs and estimates of joint contact forces can be derived based on
kinematics, inverse dynamics, and muscle forces. Hence, IMUs could be potentially used
for the real-time estimation of musculoskeletal dynamics outside the laboratory and
implemented in the software library in the future. Another interesting future application is
the use of RTIK output together with EMG. Thus, combining IK output with EMG in
real-time may provide interesting possibilities for estimating muscle forces and
musculoskeletal loading using EMG driven musculoskeletal simulations (Sartori et al.,
2011), for biofeedback to optimize rehabilitation or ergonomics or for biosignal-based
operating systems.
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Abstract
Joint loading may affect the development of osteoarthritis, but patient-specific load estimation requires cumbersome motion 
laboratory equipment. This reliance could be eliminated using artificial neural networks (ANNs) to predict loading from 
simple input predictors. We used subject-specific musculoskeletal simulations to estimate knee joint contact forces for 290 
subjects during over 5000 stance phases of walking and then extracted compartmental and total joint loading maxima from 
the first and second peaks of the stance phase. We then trained ANN models to predict the loading maxima from predictors 
that can be measured without motion laboratory equipment (subject mass, height, age, gender, knee abduction-adduction 
angle, and walking speed). When compared to the target data, our trained models had NRMSEs (RMSEs normalized to the 
mean of the response variable) between 0.14 and 0.42 and Pearson correlation coefficients between 0.42 and 0.84. The load-
ing maxima were predicted most accurately using the models trained with all predictors. We demonstrated that prediction 
of knee joint loading maxima may be possible without laboratory-measured motion capture data. This is a promising step 
in facilitating knee joint loading predictions in simple environments, such as a physician’s appointment. In future, the rapid 
measurement and analysis setup could be utilized to guide patients in rehabilitation to slow development of joint disorders, 
such as osteoarthritis.

Keywords Knee joint · Contact force · Compartmental loading · Knee osteoarthritis · Gait analysis · Artificial neural 
networks · OpenSim

Introduction

Walking and other forms of human locomotion put joints, 
particularly the knee joint, under stress. Excess loading of 
the knee joint may have adverse effects on the health and 
pathology of the joint [13]. For instance, loading of the 

knee joint may affect the development of knee osteoarthri-
tis (KOA), a disease that affects both the tibiofemoral and 
the patellofemoral knee joints, causes pain and immobiliza-
tion, and has major healthcare costs worldwide [18, 32]. 
Although a causal link between knee joint loading (esti-
mated by knee adduction moments and derived measures 
as well as tibiofemoral compression force) and structural 
disease progression of KOA cannot be plausibly established Associate Editor Thurmon E. Lockhart oversaw the review of 
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[17], knee joint loading is believed to have an important role 
in the development and progression of KOA particularly in 
the context of frontal plane malalignment and excess load-
ing in either compartment of the joint [9, 13]. Personalized 
knee joint loading distributions can be estimated by knee 
joint contact forces, which in turn can be solved with mus-
culoskeletal (MS) modeling utilizing various motion capture 
(MOCAP) setups [10]. Because information about knee joint 
loading can be utilized to instruct better movement strate-
gies, capabilities of providing personalized estimations for 
the joint loading distributions could enable teaching patients 
movements that reduce loading on vulnerable parts of the 
joint. However, the biggest limitation why this is not pos-
sible in clinics is due to availability of MOCAP setups. This 
indicates unmet needs for simpler solutions to be applied in 
the clinics.

MS modeling requires measuring experimental MOCAP 
data and several computational analysis steps to retrieve 
knee joint contact forces (KJCFs). Experimentally measured 
data includes trajectories of markers placed on the subject’s 
skin and ground reaction forces (GRFs) measured with force 
plates; it may also include other data, such as electromyo-
graphic (EMG) signals [2] or data from inertial measure-
ment units [30]. The placing of the markers requires experi-
ence and time. The measurement technologies are generally 
not portable and thus, necessitate measurements in a motion 
laboratory. Additionally, the analysis steps required to cal-
culate KJCFs are time-consuming. This cumbersomeness 
may be acceptable in a research setting but can exclude the 
calculation of KJCFs from clinical use where patient com-
fortability and time are limiting factors. Therefore, less cum-
bersome methods to retrieve KJCFs are required. Machine 
learning methods such as artificial neural networks (ANNs) 
present a potential solution.

Predicting KJCFs with effortlessly measurable input data 
could make the estimation of knee joint loading portable. 
While some previous studies have used raw MOCAP data 
such as marker trajectories and GRF signals as the input to 
predict KJCFs in the medial compartment of the knee joint 
using ANNs [2, 28], the use of predictors with more intui-
tive biomechanical connection to knee joint loading could be 
justified and simplify the experimental measurements. For 
example, the subject’s mass, height, BMI, and walking speed 
have been used as predictors to predict medial KJCF peaks 
using ANNs [4, 20]. However, those studies still included 
joint moments [4] or joint angles [12, 20] among the predic-
tors, meaning that MOCAP data were still required in the 
prediction.

Clearly, the inconvenience of MOCAP data has been 
noticed by biomechanics researchers and existing studies 
show a trend toward dynamics estimation while skipping 
the time-consuming MS analysis steps [2, 12, 20, 28] and 
using light measurement setups (e.g., without full marker 

data) instead of laboratory-grade MOCAP [20, 30]. Elimi-
nating reliance on MOCAP-based input data would be a 
significant step forward in the prediction of the peaks or 
entire time series of compartmental KJCFs. If KJCFs could 
be predicted with sufficient accuracy using demographic 
and anthropometric data, the biomechanical joint loading-
based risk assessment of KOA or similar conditions could be 
done much faster than is possible when MOCAP is required. 
However, it should be noted that this would require very 
large training data sets, which would have to consider all 
possible variations in subject characteristics (such as age, 
height, weight, type of knee injury).

In this study, we trained feedforward ANNs to predict the 
total and compartmental KJCFs peaks using mostly anthro-
pometric and demographic data as the input. The input data 
comprised subject mass, height, age, gender, knee abduc-
tion-adduction angle during static standing, and walking 
speed. Using the same input data, we also investigated the 
accuracy of predicting medial force ratios (MFRs), which 
describe the compartmental distribution of joint loading. We 
aimed to answer the following research questions:

• How accurately can medial, lateral, and total KJCF load-
ing response, terminal extension, and full-stance peaks 
be predicted using ANNs without motion capture data?

• How accurately can loading response, terminal extension, 
and full-stance MFRs be predicted using ANNs without 
motion capture data?

• What is the inter-trial variability of KJCF peaks, i.e., 
what is the theoretical upper limit of prediction accu-
racy?

Materials and Methods

The study workflow is presented in Fig. 1.

Included Datasets

The combined dataset for the study was constructed from 
five separate original datasets. All original datasets con-
tained information about the height, weight, gender, and age 
of the participants in addition to lower body marker trajecto-
ries and ground reaction forces (GRFs) during level walking.

The first original dataset was the CAROT [1] dataset, 
which contained participants of both genders who had been 
diagnosed with osteoarthritis in at least one knee. The patho-
logical leg was used in the analysis. Most participants in 
the dataset had trials from several measurement sessions, 
in which case we utilized all viable sessions. The CAROT 
study was approved by the Scientific Ethical Committees for 
the Capital Region, Denmark (H-B-2007-088). Additionally, 



Prediction of Knee Joint Compartmental Loading Maxima Utilizing Simple Subject Characteristics…

1 3

we used data from four open datasets: datasets by Schreiber 
and Moissenet [29]; Fukuchi et al. [11]; Horst et al. [19]; and 
Camargo et al. [5]. They comprised healthy participants of 
both genders and different ages. All open datasets reported 
informed consent from the participants and ethics approval 
from an appropriate body.

The combined dataset consisted of 124, 49, 42, 54, and 
21 subjects from the CAROT, Schreiber, Fukuchi, Horst, 
and Camargo datasets, respectively. The combined data-
set covers most but not all of the subjects in the original 
datasets because some subjects had too little valid data 

(elaborated below in “Estimation Of Joint Loading” sec-
tion) to be included. Table 1 shows demographic informa-
tion about the combined dataset and the individual datasets 
that constitute it. Visual illustrations of the response vari-
ables and their dispersion are presented in the Supplemen-
tary material.

Estimation of Joint Loading

We used the open-source musculoskeletal (MS) simu-
lation and analysis software, OpenSim [7], to estimate 
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Fig. 1  The workflow consists of extracting data from existing data-
sets, conducting musculoskeletal simulation and analysis, and con-
structing artificial neural networks. The data from existing datasets 
include demographic data and motion capture data. Demographic 
data are used to formulate most of the predictor variables, while 
motion capture data are analyzed to retrieve the remaining predictor 

variables and all response variables. Finally, artificial neural networks 
are trained for each combination of predictor sets and response vari-
ables to predict the value of the response variable from the predictor 
variables in the predictor set. Detailed information about training the 
artificial neural network can be found in the Supplementary material
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knee joint contact forces (KJCF) using the experimental 
marker trajectories and ground reaction forces (GRF) of 
the datasets (Fig. 1). The analysis pipeline included the 
following steps: experimental data extraction, creation 
of subject-specific musculoskeletal model by scaling the 
generic model, calculation of inverse kinematics (IK) and 
inverse dynamics (ID), static optimization (SO) to solve 
individual muscle forces, and finally the calculation of 
joint reaction forces. We implemented this pipeline as 
MATLAB scripts that invoked the OpenSim 4.1 applica-
tion programming interface. Details of musculoskeletal 
modeling and simulation, including validation of the 
selected analysis pipeline, can be found in the Supple-
mentary material.

Before constructing the combined dataset, the esti-
mated KJCF curves were visually checked to exclude 
trials with potential measurement, modeling, and simu-
lation-related error to ensure validity of the data enter-
ing further analyses. Trials were excluded based on non-
physiological reasons, such as simulation-related artifacts 
or technical issues. Exclusion was done on a per-trial 
basis rather than on a per-subject basis, i.e., presence of 
excluded trials did not prevent the inclusion of valid trials 
under the same subject in the combined dataset. Common 
criteria for exclusion were the presence of only half of the 
stance phase and sharp distortions that would have been 
detected as peak values in the following analysis step. 
Reasons for them included the stance phase-detecting 
algorithm mistaking the mid-stance local minimum as 
the end-of-stance minimum in force plate data, jump-
ing marker labels that caused sudden changes in IK, and 
distortions in force plate data. Overall, 19% of analyzed 
trials were excluded based on visual inspection of KJCF 
curves. Although some of these errors could have been 
corrected by trial-specific manual changes in the data and 
analysis pipeline, those trials were excluded instead of 
corrected because fixing them would have taken a lot of 

time and because of the large amount of valid data we 
received with the automatic analysis pipeline. Therefore, 
only trials with visually validated KJCF curves consti-
tuted the combined dataset. Extraction of KJCF peak 
values, calculation of medial force ratios, and dataset-
specific MS modeling notes are presented in the Sup-
plementary material.

Predictor Selection

Predictors (i.e., input variables for the prediction model) 
in the combined dataset were the mass, height, BMI, age, 
gender, knee angle, walking speed, and heel strike velocity 
of the subject (Fig. 1). They were selected due to avail-
ability and the possibility of simple acquisition, e.g., in 
a clinical setting. Knee angle was defined as the abduc-
tion-adduction angle of the knee during static standing 
where positive values indicated adduction and negative 
values indicated abduction. It was determined for each 
subject during the scaling of the musculoskeletal model. 
The walking speed was calculated as the mean velocity of 
MOCAP markers on the pelvis along the walking direction 
during the stance phase. Similarly, heel strike velocity was 
the momentary velocity of the pelvis in three-dimensional 
space between the frame in the marker data where heel 
strike was detected and the immediately following frame.

To assess predictor collinearity, we calculated vari-
ance inflation factors (VIFs) [14] for the predictors. VIF 
describes the multicollinearity of predictors in a multiple 
regression model and is a measure of how much explained 
variance a predictor shares with other predictors. Mass, 
height, and BMI had VIFs above 20, with walking speed 
and heel strike velocity both having VIFs above 3. When 
BMI and heel strike velocity were omitted from the pre-
dictor set, the remaining variables had VIFs below 3. This 
observation confirmed that having BMI, mass, and height 
or walking speed and heel strike velocity in the predictor 

Table 1  Demographic information about the subjects in the combined dataset, presented per original dataset and in the combined dataset as a 
whole

The presented mass and BMI values for CAROT dataset, where there were several measurement sessions and intra-subject mass and BMI 
changed between them, represent the values from the first measurement session

Dataset Age (years) Mass (kg) Height (m) BMI (kg/m2) Gender

Min Median Max Min Median Max Min Median Max Min Median Max m f

Camargo 19 21 33 52.2 68.0 96.2 1.52 1.73 1.80 18.6 23.6 30.3 13 8
CAROT 50 62 78 74.0 99.3 145 1.49 1.65 1.91 28.2 35.9 51.0 25 99
Fukuchi 21 33 84 44.9 68.5 95.4 1.47 1.68 1.92 18.0 24.0 33.1 24 18
Horst 19 22 30 47.3 69.0 94.2 1.55 1.77 1.99 18.5 22.2 26.7 28 26
Schreiber 19 38 67 50.0 68.0 98.0 1.55 1.73 1.92 17.2 23.5 29.6 26 23
Combined 19 53 84 44.9 80.8 145 1.47 1.69 1.99 17.2 26.7 51.0 116 174
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set resulted in high collinearity. Therefore, we removed 
BMI and heel strike velocity from the predictor set; we 
chose the removal of heel strike velocity over walking 
speed because walking speed is easier to measure. Based 
on the simplicity of measuring the predictors, we formed 
four predictor sets PA, PB, PC, and PD with varying number 
of predictors (Table 2).

Artificial Neural Network Analysis

MATLAB R2020b (MathWorks, Natick, MA) with deep 
learning toolbox for the ANN analysis was utilized (Fig. 1). 
For the architecture of the neural network, we chose a fully 
connected feedforward network. The ANNs consisted of an 
input layer, a single hidden layer, and an output layer. In the 
hidden layer, the activation function, the number of nodes, 
and the training algorithm were chosen with a hyperparam-
eter optimization algorithm that is described in Supplemen-
tary materials. The activation function in the output layer 
was a linear function.

We used backpropagation training to train ANNs to pre-
dict loading response, terminal extension, and full-stance 
peak on the medial and lateral compartments and the afore-
mentioned peaks identified from the total sum of the time 
series of both compartments with different predictor sets. 
Additionally, we trained ANNs to predict MFRs during load-
ing response, terminal extension, and the entire stance phase. 
Individual trials, and not their ensemble averages, were used 
in training the ANNs; information about weighting the trials 
can be found in the Supplementary material. In summary, 
an ANN was trained for each predictor-output combination, 
totaling 48 ANNs (four predictor sets times twelve response 
variables).

During training, all data points in the combined dataset 
were distributed into three subsets: a training set, a valida-
tion set, and a test set. Recommended distributions of data 
in the sets vary per source but at least half of the whole data-
set is usually allocated to the training set [15, 22]; we used 
fivefold cross-validation to allocate the subsets, explained in 
detail in the Supplementary material. The data in the train-
ing set were used to iteratively modify the weights between 

the input layer and the hidden layer and the hidden layer and 
the output layer. MATLAB’s predefined training algorithm 
was used to update the weights iteratively. Formulation of 
the weights of the training samples is explained in the Sup-
plementary material.

Finally, according to the cross-validation scheme 
described in the Supplementary material, we determined 
test error by evaluating the independent test set in the ANN 
and calculating the RMSE by comparing the predicted out-
put to the true (i.e., MS model estimated) output. To ensure 
comparability of ANN prediction accuracy between differ-
ent predictor sets, we used the same random seed of one to 
initialize the Mersenne Twister pseudorandom number gen-
erator of MATLAB for subset division and initial network 
weight generation for each predictor set.

Analysis of Response Variability

Because of inherent variability in repeated movements, 
knee loading profiles always differ between trials within a 
single subject. Therefore, no matter how well-trained and 
well-structured ANNs are used, response variables in an 
independent dataset are impossible to predict with perfect 
accuracy. To determine what the highest attainable accuracy 
is, within each subject and trial configuration, the inter-trial 
variability of the response variables was evaluated. For each 
response variable, we grouped the response values under 
their respective subjects and, if applicable, further under dif-
ferent trial configurations. The trial configurations included 
instructed walking speed, measurement session, and other 
parameters so that each group would ideally result in the 
same knee loading if there was no measurement noise and 
the subject could replicate their movement exactly. For each 
set of responses in a group excluding groups with less than 
four trials, we calculated the standard deviation. We then 
calculated the mean and standard deviation of the intra-
group standard deviations for each original dataset.

We chose standard deviation as the measure of dispersion 
(i.e., variability) over other options such as range, interquar-
tile range, and mean absolute deviation because standard 
deviation is more intuitive to compare against RMSE due 
to the similarities in their equations. RMSE is calculated as

where yi is the i-th predicted response, ti is the i-th target 
value of the response, and N is the number of data points. 
Standard deviation is calculated as

RMSE =

�∑N
i=1

�
yi−ti

�2
N

,

Table 2  Chosen predictor sets and the variables they included

Measurement simplicity decreases gradually from PA to PD; PA com-
prises only demographic and anthropometric parameters, while PD 
contains predictors that are possible to measure outside the motion 
laboratory with a goniometer, measuring tape, and a stopwatch

Predictor set Included predictors

PA Mass, height, age, gender
PB Mass, height, age, gender, walking speed
PC Mass, height, age, gender, knee angle
PD Mass, height, age, gender, walking speed, knee angle
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where ti is the i-th true value (i.e., target value) of the 
response, μ is the sample mean of all ti, and M is the number 
of tis. If we assume that yi equals μ for all i and the number 
of data points N in the test subset that is used to calculate 
RMSE equals M − 1, RMSE and standard deviation are 
equal. This assumption fails to hold, but we acknowledged 
this connection between these two measures and treated 
standard deviation as an approximation of the minimum 
attainable RMSE for the ANN.

With standard deviation, we had approximate information 
of how much the response values vary when measurement 
conditions remain unchanged. This information provided the 
context necessary for interpreting the prediction accuracy 
of the ANNs.

Results

The KJCF peaks resulting from the musculoskeletal (MS) 
analysis pipeline are available online on Zenodo (https:// 
zenodo. org/ record/ 72534 58) [23]. The online dataset also 
contains the predictors corresponding to the KJCF peaks so 
that others may use the data in their prediction algorithms. 
The dataset contains data only from the four open datasets.

Analysis of Response Variability

In Table 3, for all 12 response variables, we present the 
means and standard deviations of the standard deviations 
of KJCF peaks over similar trial conditions with four or 
more trials a group (i.e., measures that describe how much 
MS modeling estimated loading peaks vary between tri-
als that are identical in terms of subject characteristics and 

STD =

�∑M

i=1
�
ti − �

�2
M − 1

,

instructed walking speed). The results vary per original data-
set and response variable, but overall the standard deviations 
of the measures are in the same order of magnitude as the 
measures themselves.

Prediction Accuracy of the Artificial Neural 
Networks

The best Pearson correlation coefficient (R = 0.84) and root 
mean square error normalized to the mean of the response 
variable (NRMSE = 0.14) were reached for the summed 
peak of both compartments over the full-stance phase with 
predictor set PD (Table 4). With predictor sets PB and PD, 
the most accurately predicted response variable was the 
summed peak of both compartments over the full-stance 
phase (R = 0.82 for PB and R = 0.84 for PD), whereas with 
predictors sets PA and PC, the summed terminal extension 
peak was predicted the most accurately (R = 0.74 for  PA 
and R = 0.74 for PC).

The worst attained correlation between predicted and 
MS model estimated responses was for the medial loading 
response peak with predictor set PC (R = 0.42), and the worst 
NRMSE was for the lateral loading response peak with pre-
dictor set  PA (NRMSE = 0.42). In both predictor sets, the 
loading response peaks always performed worse than ter-
minal extension peaks or full-stance peaks.

When walking speed was included in the predictor set, 
prediction accuracy improved without exception compared 
with a similar predictor set without walking speed. While 
compartmental KJCF peaks can be predicted with R > 0.4 
with just the mass, height, age, and gender of the subject, 
including the walking speed in the predictors is required for 
R > 0.7.

Although the inclusion of knee abduction-adduction 
angle in the predictors generally improved the prediction 
of KJCF peaks in the lateral compartment, its effects on 
the prediction of medial and summed (non-compartmental) 

Table 3  Mean and standard 
deviation (STD) of the STDs 
of musculoskeletal model 
estimated KJCF peaks of all 
similar trial conditions with 
at least four trials, presented 
for each response variable and 
original dataset

“Full” refers to the peaks from the full stance, while LR and TE refer to the loading response (first peak) 
and terminal extension (second peak) phases of stance, respectively. “Summed” refers to the sum of medial 
and lateral compartment loading. All values are in newtons

Mean ± STD Camargo CAROT Fukuchi Horst Schreiber

Full (summed) 378.5 ± 296.0 216.0 ± 149.6 256.4 ± 153.6 270.1 ± 111.4 171.8 ± 147.6
Full (medial) 271.1 ± 192.3 163.5 ± 94.61 208.5 ± 133.4 213.6 ± 82.5 126.4 ± 95.06
Full (lateral) 272.9 ± 185.7 120.7 ± 91.77 130.6 ± 87.61 90.47 ± 55.66 92.65 ± 65.14
LR (summed) 420.2 ± 272.0 299.1 ± 213.9 317.0 ± 193.7 199.6 ± 112.6 213.2 ± 203.3
LR (medial) 307.2 ± 176.5 200.5 ± 139.4 217.4 ± 139.9 118.2 ± 75.63 144.6 ± 125.7
LR (lateral) 282.4 ± 187.3 131.5 ± 92.55 170.4 ± 88.40 105.3 ± 57.79 131.9 ± 65.85
TE (summed) 340.1 ± 273.5 195.2 ± 124.3 238.9 ± 149.5 280.5 ± 84.39 139.4 ± 90.16
TE (medial) 260.2 ± 205.6 162.3 ± 93.24 212.2 ± 133.5 225.5 ± 69.11 120.1 ± 68.0
TE (lateral) 204.5 ± 120.2 93.48 ± 62.21 100.0 ± 71.2 76.73 ± 25.20 81.27 ± 58.07
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KJCF peaks were inconclusive, sometimes increasing pre-
diction accuracy and sometimes reducing it. When compar-
ing predictor sets PB and PD, the summed loading response 
peak was the only response variable that failed to improve 
by the inclusion of knee abduction-adduction angle.

In summary, Table 4 shows that summed (non-compart-
mental) KJCF peaks were predicted with better accuracy 
than compartmental peaks. Full-stance peaks and terminal 
extension peaks were predicted with R > 0.5 to R > 0.7 and 
more accurately than loading response peaks. Walking speed 
was an important predictor of all KJCF peaks, while knee 

Table 4  Pearson correlation coefficients (R), root mean square errors 
(RMSE) between the MS model estimated “ground truth” and artifi-
cial neural network-predicted response values, and RMSE normalized 

to the mean of the response variable (NRMSE) ± the standard devia-
tions of R, RMSE, and NRMSE

Response variable R RMSE NRMSE

full (summed) 0.71 ± 0.04 479.4 ± 53.92 0.1874 ± 0.0211

full (medial) 0.62 ± 0.06 389.1 ± 39.84 0.2080 ± 0.0213

full (lateral) 0.58 ± 0.04 252.5 ± 28.89 0.3021 ± 0.0346

LR (summed) 0.54 ± 0.04 602.1 ± 32.25 0.2814 ± 0.0151

LR (medial) 0.55 ± 0.09 379.3 ± 32.91 0.2470 ± 0.0214

LR (lateral) 0.47 ± 0.05 305.7 ± 29.18 0.4233 ± 0.0404

TE (summed) 0.74 ± 0.06 406.7 ± 57.97 0.1664 ± 0.0237

TE (medial) 0.63 ± 0.11 379.0 ± 34.58 0.2109 ± 0.0192

TE (lateral) 0.54 ± 0.11 198.1 ± 37.90 0.2801 ± 0.0536

Response variable R RMSE NRMSE

full (summed) 0.82 ± 0.03 384.2 ± 54.52 0.1502 ± 0.0213

full (medial) 0.75 ± 0.04 319.0 ± 24.18 0.1705 ± 0.0129

full (lateral) 0.67 ± 0.08 238.7 ± 50.25 0.2857 ± 0.0601

LR (summed) 0.75 ± 0.03 481.9 ± 39.37 0.2252 ± 0.0184

LR (medial) 0.70 ± 0.06 320.5 ± 29.71 0.2087 ± 0.0193

LR (lateral) 0.67 ± 0.04 262.8 ± 20.66 0.3639 ± 0.0286

TE (summed) 0.80 ± 0.04 368.4 ± 52.32 0.1507 ± 0.0214

TE (medial) 0.68 ± 0.04 355.1 ± 21.08 0.1976 ± 0.0117

TE (lateral) 0.63 ± 0.07 183.6 ± 25.49 0.2597 ± 0.0361

Response variable R RMSE NRMSE

full (summed) 0.71 ± 0.04 470.2 ± 56.07 0.1838 ± 0.0219

full (medial) 0.60 ± 0.22 381.2 ± 59.06 0.2038 ± 0.0316

full (lateral) 0.59 ± 0.02 251.9 ± 26.74 0.3014 ± 0.0320

LR (summed) 0.54 ± 0.06 600.7 ± 36.71 0.2808 ± 0.0172

LR (medial) 0.42 ± 0.21 403.4 ± 32.18 0.2627 ± 0.0210

LR (lateral) 0.50 ± 0.07 302.2 ± 27.18 0.4184 ± 0.0376

TE (summed) 0.74 ± 0.06 405.9 ± 60.92 0.1661 ± 0.0249

TE (medial) 0.65 ± 0.07 372.7 ± 27.35 0.2074 ± 0.0152

TE (lateral) 0.62 ± 0.11 183.5 ± 26.62 0.2596 ± 0.0376

Response variable R RMSE NRMSE

full (summed) 0.84 ± 0.02 370.3 ± 43.71 0.1447 ± 0.0171

full (medial) 0.76 ± 0.04 316.7 ± 24.63 0.1693 ± 0.0132

full (lateral) 0.71 ± 0.02 220.4 ± 23.77 0.2637 ± 0.0284

LR (summed) 0.74 ± 0.04 485.7 ± 51.97 0.2270 ± 0.0243

LR (medial) 0.70 ± 0.02 324.3 ± 12.99 0.2112 ± 0.0085

LR (lateral) 0.69 ± 0.04 252.3 ± 27.79 0.3493 ± 0.0385

TE (summed) 0.80 ± 0.04 365.5 ± 48.58 0.1496 ± 0.0199

TE (medial) 0.71 ± 0.05 345.4 ± 27.09 0.1922 ± 0.0151

TE (lateral) 0.65 ± 0.07 178.4 ± 20.60 0.2524 ± 0.0291

RMSE is in newtons. The results are calculated with predictor set  PA (mass, height, age, gender),  PB (mass, height, age, gender, walking speed), 
 PC (mass, height, age, gender, knee angle), and  PD (mass, height, age, gender, walking speed, knee angle) in the top left corner (blue), top right 
corner (green), bottom left corner (orange), and bottom right corner (red), respectively
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abduction-adduction angle was beneficial in predicting lateral 
peaks.

No prediction algorithms with meaningful prediction accu-
racy could be trained to predict MFRs using the predictors in 
this study, which is why MFR responses are not included in 
the tables.

Discussion

Using musculoskeletal (MS) modeling, we analyzed 
motion capture data from 290 subjects and over 5000 
walking trials to retrieve the time series of knee joint con-
tact forces (KJCFs) during different parts of the stance 
phase and separately in the medial and the lateral compart-
ment. We then trained feedforward artificial neural net-
works (ANNs) to predict KJCF peaks from input data that 
can be collected without laboratory-grade motion capture 
(MOCAP). Our ANN models, which have only one hidden 
layer with relatively few nodes, do not require MOCAP 
data, and predict only the maxima of joint loading, can 
in best cases reach Pearson correlation coefficients above 
0.8 (Table 4, top left and bottom left). We achieved such 
results when walking speed was included in the predictors 
in addition to demographic and anthropometric predic-
tors. While previous studies have also used ANNs or other 
machine learning algorithms to predict KJCFs [2, 4, 12, 
20, 28] and eliminate the time-consuming MS modeling 
steps, they still utilized varying amounts of MOCAP data. 
Our results are a promising step toward predicting KJCFs 
with simple subject characteristics.

During MS analysis, we observed that the typical tibi-
ofemoral KJCF loading curve over a stance phase had two 
distinct maxima: the loading response peak and the termi-
nal extension peak. The terminal extension peak was often 
higher than the loading response peak. When identifying 
response values in such trials, the terminal extension peak 
was also the full-stance peak, which explains why the full-
stance peaks and the terminal extension peaks resulted in 
similar prediction accuracies (Table 4). When the subject 
walked slowly, the typical loading curve distorted as espe-
cially the loading response peak became flatter, in some 
cases merging into the ascent toward the terminal exten-
sion peak. Consequently, the loading response peaks either 
varied a lot or could not be identified in many low-speed 
trials. Therefore, the data available for predicting load-
ing response peaks were less comprehensive and noisier 
than that for terminal extension and full-stance peaks, and 
the prediction accuracy of loading response peaks was 
smaller. The high prediction accuracy of terminal exten-
sion and full-stance peaks can be at least partially attrib-
uted to this effect, as the terminal extension peaks of the 
loading profile underwent more predictable changes with 

changing walking speed. In the context of KOA studies, 
difficulties in measuring loading response peaks at low 
walking speeds are undesirable because pain may cause 
KOA patients to walk slower than healthy subjects. Alter-
native derived measures of KJCF, such as area under the 
curve or mean loading, could perhaps be predicted more 
accurately than peaks for the loading response phase but 
were outside the scope of our study.

In general, the summed peaks were predicted with better 
accuracy than the compartmental peaks (Table 4) and this 
was expected. Because the summed peaks have a greater 
magnitude than compartmental peaks, absolute prediction 
errors in summed peaks do not affect the Pearson corre-
lation coefficient as strongly as the same errors would for 
compartmental peaks.

Because the inclusion of knee abduction-adduction 
angle had only small impact on prediction accuracy and 
the changes were often within the standard deviation of the 
accuracy measure (Table 4), we cannot draw final conclu-
sions about its effect. The angle was measured during static 
standing, so it seems reasonable to assume it is also present 
during the stance phase and affects the KJCF distribution 
between the medial and lateral compartments. Our choice 
to lock the knee abduction-adduction angle of the subject-
specific model during MS analysis to zero (rather than set-
ting it to whatever was estimated for the subject based on 
static standing trials) reduces the importance of the angle 
as a predictor of mediolateral load distribution. Our choice 
was based on validating the method against in vivo data (Fig. 
S1). However, because the difference between locking the 
angle in the model to zero or to its estimated value is small, 
allowing nonzero abduction-adduction angles during MS 
analysis may be reasonable in future studies.

The inclusion of walking speed in the predictor set 
improves prediction accuracy for all response variables 
(Table 4). Intuitively, walking speed should modulate the 
force impulses the knee joint experiences, so its accuracy-
improving effect was expected. The direct proportionality 
between walking speed and knee joint loading has also been 
documented in literature; in 2020, Giarmatzis et al. showed 
that, with increasing walking speed, the loading response 
and terminal extension peaks increase in both joint compart-
ments [12]. Additionally, Brisson et al. [4] found that walk-
ing speed correlated with medial loading response peaks. 
Furthermore, Bergmann et al. have shown with total knee 
replacement patients that in vivo joint loading is greater dur-
ing jogging than walking [3], although in their study there 
are likely several factors instead of only locomotion speed 
involved.

Because the RMSEs of our ANNs (Table 4) are in the 
same scale as the mean ± standard deviation of the stand-
ard deviations of response variabilities (Table 3), the ANNs 
generalize well and without substantial underfitting or 
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overfitting. Therefore, the ANN architecture we used could 
also be viable in similar prediction studies of biomechanical 
functions. This observation is important because although 
the universal approximation theorem states that an ANN 
can approximate KJCF peaks, there is no guarantee that the 
hyperparameters we selected can facilitate such a network. 
In this study, we showed that they can.

Comparison of accuracy measures with previous studies 
is difficult because of differences in, e.g., predictor variable 
selection and validation schemes. To our knowledge, no 
other study has predicted KJCF peaks or KJCFs using our 
predictors without including GRFs or marker trajectories 
in the predictor variables. In the context of our study, it is 
important to note that we trained and evaluated our ANN 
so that there was no subject overlap between the training, 
validation, and test subsets (however, overlap of original 
datasets was allowed). The ANN prediction accuracies of 
previous studies can reach Pearson correlation coefficients 
above 0.9 when MOCAP data are included in the predictors 
[2, 20]. Our ANN models achieved Pearson correlation coef-
ficients above 0.8 without MOCAP data.

Even though our prediction results were promising 
including time series information of gait in the predictor 
set could enable the prediction of the entire stance phase 
KJCF time series, as has been done with many previous 
studies [2, 20, 28, 30]. Including time series does not neces-
sarily mean returning to a cumbersome motion laboratory 
because with existing solutions, such as OpenPose [6], a 
video camera is sufficient to obtain some gait data [26]. An 
interesting topic of future research is how computer vision 
can be integrated into our method to include time series data 
from, for instance, knee flexion-extension angles to enable 
KJCF time series prediction while retaining the simplicity 
of the method. Information about the geometry of the knee 
joint could also be a valuable addition to the predictor set. 
Although our musculoskeletal analysis pipeline involved 
subject-specific scaling of the intercondylar distance based 
on subject height (see supplementary material), no direct 
information of knee geometry was included in the predictor 
set. Although such information could improve predictions 
of compartmental KJCF maxima and subject specificity of 
the ANNs, collecting the information would require MRI 
or X-ray scans, which require specialized equipment and 
operators to obtain. Such equipment is often found in clini-
cal settings and including knee geometry in the predictors is 
a potential future research direction. We acknowledge that 
our method is highly simplified because it predicts peaks 
of KJCF curves rather than the entire curves and relies on 
predictors that are easily collected rather than being the best 
variables to predict KJCF.

Assessing the validity of OpenSim-derived KJCF peaks 
is difficult because different sources have been shown to 
have greatly varying results with respect to the bodyweight 

(BW) of the subject [8] and because available in vivo data is 
limited. After gathering existing studies, Fregly et al. sum-
marized that maximum KJCF peak ranged from 1.8 to 3.0 
BW for forces measured in vivo and from 1.8 to 8.1 BW for 
MS modeling estimates [10], while D’Lima et al. summa-
rized KJCF peaks from 2 to 3 BW for in vivo forces and 1.7 
to 7 BW for MS modeling estimates [8]. Additionally, even 
though we validated our analysis pipeline against in vivo 
measurements, the in vivo dataset had only six subjects 
[31]. Nonetheless, Figure S8 shows that with a median of 
3.15 BW, 25th percentile of 2.79 BW, and 75th percentile 
of 3.59 BW, our MS modeling estimates of summed full-
stance peaks fit within the range for MS modeling estimates 
presented by Fregly et al. Therefore, our MS analysis outputs 
mostly conform to previous literature.

This study was subjected to limitations that need to be 
addressed. First, the weights for training samples can be for-
mulated in different ways. However, in preliminary training 
runs of the ANNs, compared to using no training weights 
(i.e., equal weights for all data samples), our weights set had 
little effect on the prediction accuracy of the ANNs. We did 
not report the difference in prediction accuracy with and 
without weights, so we cannot quantify the role of weights 
in loading prediction and whether differently formulated 
weights have a significant effect on knee loading maxima 
or MFR prediction should be investigated in later studies.

Second, because subjects with masses above 100 kg 
came only from the CAROT dataset, the prediction results 
for heavy subjects contain bias from just a single dataset 
and, therefore, should be evaluated critically. Additionally, 
it should be noted that subjects in the CAROT dataset were 
diagnosed with KOA and we ignored the severity of the 
KOA, which could be important to consider in formulating 
the training weights.

Third, in addition to mass, limited overlap between 
original datasets exists in other predictors. These predic-
tors include walking speed (where both the lowest and the 
highest values are represented by subjects in the Schreiber 
dataset), knee abduction-adduction angle (CAROT dataset 
has the largest range but proportionally the least number of 
values close to zero), and age (particularly in the 40 to 50 
range, which is represented only by subjects in the Schreiber 
dataset). To improve generalization of the prediction mod-
els and mitigate dataset-specific bias, we require a lot of 
overlap in predictor values between the original datasets. 
In fact, although we had many subjects and samples, due to 
differences in subject preparation and marker placement, a 
greater number of different datasets are required to improve 
generalization.

Fourth, the original datasets analyzed in this study con-
tained barefoot trials, but in daily life much of walking is 
done while wearing shoes or similar footwear. The influ-
ence of footwear on foot biomechanics has been previously 
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studied [33] and GRFs, joint kinematics and joint kinetics 
have been found to vary between barefoot and shod walking. 
Therefore, it would be ideal to have datasets with gait data 
from shod subjects. However, wearing footwear can make 
it difficult to perform biomechanical analyses, and addition-
ally, footwear type has been shown to affect the biomechan-
ics of gait [33], which would make it difficult to standardize 
shod gait trials. Thus, barefoot gait trials provide a standard-
ized way to analyze gait biomechanics and we must assume 
that the same relationships between predictors and knee 
loading exist in both barefoot and shod walking.

Fifth, if predictors include gait speed and knee align-
ment that are calculated from markers, then the models 
using those predictors require motion capture (MOCAP). 
However, while in this study we calculated those parameters 
from MOCAP data, MOCAP is not required to obtain them, 
as gait speed can be approximated with a stopwatch and a 
tape measure and knee alignment can be measured with a 
goniometer, to name simple examples (although, e.g., with 
goniometer accurately locating the hip joint may be diffi-
cult). The predictors obtained that way will slightly differ 
from the predictors that were used to train the models due to 
the different methods to measure the predictors. For exam-
ple, Handa et al. [16] validated stopwatch measurements of 
walking speed to marker-based optical motion capture and 
found high correlation (R > 0.9) between speeds measured 
with stopwatch and motion capture, although they also noted 
that the observed speeds were influenced by the operator 
of the stopwatch. Furthermore, Oh et al. [27] compared 
stopwatch-based walking speed to an automatic ultrasound-
based timing system and found that the stopwatch overesti-
mated walking speed when the subject was already in motion 
in the beginning of the measurement. Quantifying the error 
and the correlation between different measurement methods 
of the same predictor is an interesting topic for future stud-
ies. Therefore, we cannot yet quantify how well knee align-
ment and walking speed measured with simple methods in 
a clinical setting correlate to our predictors. Additionally, 
because including frontal plane knee angle in the predictor 
set had inconclusive effects on prediction accuracy, omitting 
it from the predictors in future studies is a possibility if it 
cannot be effortlessly measured.

Sixth, the ANN prediction accuracy results may be biased 
by the fact that we visually checked MS-estimated KJCF 
curves and excluded some trials before constructing the 
combined dataset and training and validating the ANNs. 
While the trials we excluded did not represent successfully 
captured or natural walking (because of, e.g., the presence 
of only one half of stance phase, marker artifacts resulting 
in unrealistic kinematics), such artifacts sometimes occur 
during motion capture sessions; therefore, the ANNs are 
trained on the features present in successful rather than all 
motion capture trials. Furthermore, the fact that a single 

person did the visual validation may introduce small bias 
into the ANNs. However, the reason we excluded erroneous 
trials in the first place was to avoid bias causing prediction 
of biomechanically invalid peak values.

In conclusion, we took promising steps toward predicting 
knee joint loading peaks during gait without requiring meas-
urements in a motion laboratory. This could enable knee 
joint loading prediction in environments, such as during clin-
ical examination, eliminate time-consuming analysis steps, 
and enable the operator to immediately view the results. In 
future, this method may offer a significant improvement for 
the clinically applicable prediction models of knee osteo-
arthritis as those models currently rely on generic loading 
inputs based on the body weights of the subjects [21, 24, 
25]. However, it should be noted that optimal ANN models 
should be trained on larger training datasets, which would 
consider all possible variations in subject characteristics 
(such as age, height, weight, type of knee injury).
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tary material available at https:// doi. org/ 10. 1007/ s10439- 023- 03278-y.
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Thorough evaluation of human 

musculoskeletal movement requires 
measurements in a motion laboratory, which 

involves expensive equipment and trained 
personnel. In this thesis, methods were 

developed to utilize portable measurement 
modalities for estimating musculoskeletal 

modeling outcomes. Artificial neural networks 
were used to predict knee joint loading 

directly from simple input variables. These 
methods could be used for routine estimation 
of movement and loading in field conditions.
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