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Abstract: The goal of this work is to combine a world model based agent called
Dreamer with adversarial imitation learning, addressing the situation where the en-
vironment does not provide rewards. Dreamer learns behaviors purely on the basis
of predictions made by its world model in a compact latent space. This work adds a
discriminator module that is trained on expert demonstrations and policy rollouts to
provide an implicit reward for Dreamer. The model is tested on the Crafter environment
using three tasks of different nature. The results are evaluated both numerically and
visually. The experiments show that this approach appears to work in open-world
environments with complex dynamics and that the design of the discriminator seems to
have great importance for the algorithm’s performance.
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1. Introduction

Out of the three main machine learning paradigms, reinforcement learning (RL), or
learning from interacting with the environment, is the one that most closely resembles
how humans and other animals learn (Sutton & Barto, 2014-2015). Reinforcement
learning involves sequential decision-making, where each action influences future states
of the environment. One distinct feature of RL is that it is goal-directed, making it
especially suitable for settings where a certain goal is defined, such as tasks in robotics
or games with a win condition.

Consequently, robotics simulation environments (Plappert et al., 2018) and 2D games (Belle-
mare, Naddaf, Veness, & Bowling, 2012) have remained the main testing grounds in
RL research, bridging the gap between simulation and reality. However, the need
for more challenging environments grows along with the need for more novel and
successful algorithms. Zhang, Wu, and Pineau (2018) criticise the widely used RL
benchmarks for their limited complexity and deterministic settings. The real world is,
on the contrary, complex and non-deterministic. To develop algorithms that can solve
tasks in a constantly changing environment, researchers require benchmarks that both
demand and encourage generalization abilities and adaptability. Open-world games as
simulation environments (Fan et al., 2022; Johnson, Hofmann, Hutton, & Bignell, 2016)
can be considered a step towards the complexity of the real world, compared to standard
benchmarks.

Some RL algorithms build an internal model that captures their knowledge about the
world, allowing them to plan ahead. Some of these model-based algorithms (Sutton &
Barto, 2014-2015) can even learn by "imagining" situations within the model, reducing
the amount of environment interactions needed. Model-free algorithms (Sutton & Barto,
2014-2015), on the other hand, learn simply by trial and error. However, whether
model-based or model-free, a classic RL algorithm would still depend on rewards that
come from the environment to learn (Fig. 1.1a). For complex tasks, defining a reward
function can be challenging (Milani et al., 2023): for example, a task defined as "find a
cave" would first prompt a definition of what can be considered "a cave" in terms of
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(a) Reinforcement learning (b) Imitation learning

Figure 1.1: Main differences between RL and IL. In RL, the agent receives a reward
from the environment for taking an action on the basis of how that action affects the
environment. In IL, the agent receives a reward for how well its behavior matches the
expert’s behavior.

visual perception. Defining a suitable reward function is often an iterative process, and
human designers cannot account for all possible cases in an uncertain world, which may
lead to undesirable behavior and the reward failing to represent the goal adequately (He
& Dragan, 2021). Imitation learning (IL) is different from reinforcement learning in the
sense that it does not require a reward function for a specific task. In imitation learning,
an agent learns to copy an expert’s behavior, the only thing defining its success being
how good it is at mimicking the expert (Fig. 1.1b). This could be interpreted as learning
the internal reward that drives the expert to complete a given task.

Despite the differences, these approaches can be combined. By applying an imitation
learning approach to a model-based RL agent, this work aims to answer the following
research questions:

1. Is it possible to bring an agent’s imagination closer to human behavior using
imitation learning in complex environments?

2. How do design choices affect learning in such cases?

The following chapters can be divided into four topics: the main formal concepts
involved, world models, imitation learning, and the core of this work - adversarial
imitation learning applied to a model-based RL agent Dreamer. Description of the idea
and implementation constitutes its own chapter, followed by experimental setup, results
of the experiments, conclusions and discussion of the results.
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2. Background theory

2.1 Reinforcement learning

To discuss more advanced concepts in the following chapters, it is first necessary to
provide foundation for them by describing the reinforcement learning framework in
more detail. The setting of reinforcement learning amounts to the agent - a decision
making entity - learning to achieve a goal from interaction with the environment -
everything outside the agent (Sutton & Barto, 2014-2015). From the agent’s perspective,
the goal is to maximize the total amount of reward, or the expected return it gets from
the environment. At each discrete time step 𝑡, the agent receives a representation of
the environment’s state 𝑆𝑡 and uses it to select an action 𝐴𝑡; at the following time step
𝑡 + 1, the agent receives a reward 𝑅𝑡+1, and the environment transitions to state 𝑆𝑡+1

(Figure 2.1). The other relevant concepts are policy 𝜋, which is a mapping from states to
probabilities of selecting actions, and value function, which estimates either how good
it is for an agent to be in a given state (state-value function) or how good it is to perform
a given action in a given state (action-value function) (Sutton & Barto, 2014-2015). In
other words, value function evaluates the current policy.

Figure 2.1: The interaction between agent and environment in reinforcement learning.
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The expected return the agent aims to maximize can be expressed as 𝐺 𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 +
· · · + 𝑅𝑇 ; however, this formulation assigns equal importance to every expected reward,
however distant it might be from the present moment. For the purpose of distinguishing
between immediate and distant future rewards, the discount rate 𝛾 is introduced into the
formulation:

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · · =
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1, (2.1)

where 0 ≤ 𝛾 ≤ 1. The closer the discount rate is to 0, the more interested the agent is
in the immediate rewards and the less farsighted it becomes. Using the formulation in
Equation 2.1, the state-value function 𝑣𝜋 can be defined formally as:

𝑣𝜋 (𝑠) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠] = E𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

�����𝑆𝑡 = 𝑠
]
, (2.2)

and the action-value function 𝑞𝜋 can be defined as:

𝑞𝜋 (𝑠, 𝑎) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

�����𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
]
. (2.3)

Often, it does not make sense to consider rewards for all future steps, especially if 𝑇 is
not fixed. Then, expected returns are only considered up to some horizon ℎ, resulting in
partial returns 𝐺ℎ

𝑡 (Sutton & Barto, 2014-2015).

A reinforcement learning task can be modeled as a Markov decision process
(MDP) (Sutton & Barto, 2014-2015), if its environment satisfies the Markov prop-
erty. An environment having the Markov property means that its one-step dynamics
𝑝(𝑠′, 𝑟 |𝑠, 𝑎) = 𝑃𝑟{𝑅𝑡+1 = 𝑟, 𝑆𝑡+1 = 𝑠′|𝑆𝑡 , 𝐴𝑡} allows to predict the next state and ex-
pected reward given the current state and action without needing the history of previous
actions and states. More generally, it means that the state signal retains all the information
necessary to predict the dynamics. An MDP is described by a tuple ⟨𝑆, 𝐴, 𝑇, 𝑅⟩, where
𝑆 is a set of states, 𝐴 is a set of actions, 𝑅 is the reward function 𝑅(𝑠, 𝑎), and 𝑇 is the
state-transition function such that 𝑇 (𝑠, 𝑎, 𝑠′) is the probability of ending in state 𝑠′ given
starting state 𝑠 and action 𝑎.

In reality, the Markov property is not always satisfied, but even in such a case it is
still appropriate to treat a reinforcement learning task as an approximation to an MDP.
For example, an improved state representation can be constructed from a non-Markov
one provided by the environment. A partially observable Markov decision process
(POMDP) (Sutton & Barto, 2014-2015) is a generalization of an MDP that uses this
approach. In POMDP, the environment’s state is not directly observable, but the agent
receives an observation signal that is stochastically related to the state. It is often the case

4



in games. Take an enemy’s position, for example: in terms of the environment’s state, it
would be defined with coordinates, while the visual position on the screen would be the
observation, indicative of the true state and available to the agent. In case of POMDP,
the definition of policy is changed to a mapping from belief states that summarize
the previous experience to probabilities of selecting actions (Kaelbling, Littman, &
Cassandra, 1998). A POMDP can be described as a tuple ⟨𝑆, 𝐴, 𝑇, 𝑅,Ω, 𝑂⟩, where Ω is
a set of observations the agent can experience and 𝑂 is the observation function which
gives a probability distribution over Ω such that 𝑂 (𝑠′, 𝑎, 𝑜) is the probability of making
observation 𝑜 given action 𝑎 and resulting state 𝑠′. A belief state 𝑏 is a probability
distribution over states 𝑆 such that 𝑏′(𝑠′) = 𝑃𝑟 (𝑠′|𝑜, 𝑎, 𝑏), where a new belief 𝑏′ for a
given state 𝑠′ is computed given an old belief state 𝑏, an action 𝑎 and an observation 𝑜.

The history of observations, or more simply, a trajectory is usually a sequence of state-
action pairs 𝜏 = (𝑠0, 𝑎1, 𝑠1, . . . , 𝑠𝑇 ). An episode is a subsequence of agent-environment
interaction with finite number of time steps 𝑇 (Sutton & Barto, 2014-2015). A trajectory
can cover a whole episode, only a part of it, or possibly combine different episodes,
depending on what it is used for.

Based on whether the same policy is used for selecting actions and being improved or
evaluated, reinforcement learning methods can be divided into two groups. On-policy
methods improve the same policy that is used to select actions, while off-policy methods
select actions based on a different policy from the one that is learned (Sutton & Barto,
2014-2015). From all the variety of RL methods, an on-policy method called actor-critic
is the most relevant to this work. Actor-critic methods owe their name to their dual
structure, where the policy exists separately and independently from the value function.
The policy structure, or the actor, selects actions, while the estimated value function, or
the critic, judges its actions. After an action has been selected and the environment has
transitioned into a new state, the critic determines whether the action selection has led
to a better or worse outcome than expected.

2.2 Variational inference

Another concept that can prove beneficial for understanding a large part of the following
work is variational inference. Variational inference (Jordan, Ghahramani, Jaakkola,
& Saul, 1998) methods are machine learning methods for approximating probability
densities, related to Bayesian statistics. In Bayesian models, the random process
generating the data is assumed to involve unobserved latent variables (Blei, Kucukelbir,
& McAuliffe, 2017; Kingma & Welling, 2022). The goal of variational inference is to
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approximate a density of these latent variables given observed variables, which can then
be used to estimate latent variables or form predictions of new data (Blei et al., 2017).

The setting for the inference problem includes a joint density 𝑝(𝑧, 𝑥) = 𝑝(𝑧)𝑝(𝑥 |𝑧),
where the latent variables 𝑧 are drawn from a prior density 𝑝(𝑧) and then related to the
observations 𝑥 through the likelihood 𝑝(𝑥 |𝑧). The inference problem is to compute the
posterior density 𝑝(𝑧 |𝑥) = 𝑝(𝑧,𝑥)

𝑝(𝑥) , where 𝑝(𝑥) is the evidence, or marginal density of
the observations. In many cases, the evidence is either unavailable or hard to compute,
making the inference difficult.

Variational inference uses optimization to approximate the posterior instead of computing
it. For that, it defines a family of approximate densities Q (a set of densities over the
latent variables) and tries to find a candidate 𝑞(𝑧) that minimizes the Kullback-Leibler
(KL) divergence to the posterior. The KL divergence is the average extra amount of
information required to encode the data using the candidate probability distribution
instead of the actual distribution (Ganguly & Earp, 2021), and for two probability
distributions Q(S) and P(S) it is defined as KL(𝑄∥𝑃) = ∑

{𝑆} 𝑄(𝑆) log 𝑄(𝑆)
𝑃(𝑆) (Jordan et

al., 1998). The objective in question can be expressed as:

KL(𝑞(𝑧)∥𝑝(𝑧 |𝑥)) = E[log 𝑞(𝑧)] − E[log 𝑝(𝑧 |𝑥)] (2.4)

This objective, however, is not computable because it requires computing the evidence.
An alternative objective, the evidence lower bound (ELBO), can be derived from the
one in Equation 2.4 (Blei et al., 2017):

ELBO(𝑞) = E[log 𝑝(𝑧, 𝑥)] − E[log 𝑞(𝑧)] (2.5)

ELBO lower-bounds the (log) evidence, and maximizing it is equivalent to minimizing
the KL divergence in Equation 2.4.

2.3 Variational autoencoders

Variational autoencoder (VAE) (Kingma & Welling, 2022) is a neural network ar-
chitecture that makes use of variational inference methods. The formulation of the
inference problem remains largely the same as explained in Section 2.2: a generative
model 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧), where the true parameters 𝜃 and values of the latent variables
𝑧 are unknown. Additionally, Kingma and Welling (2022) introduce a recognition
model 𝑞𝜑 (𝑧 |𝑥), which is an approximation to the intractable true posterior 𝑝𝜃 (𝑧 |𝑥). The
resulting model is summarized in Figure 2.2. The recognition model can be called
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a probabilistic encoder, because given 𝑥 it produces a distribution over the possible
values of the latent variables, or the code 𝑧 from which 𝑥 could have been generated.
𝑝𝜃 (𝑥 |𝑧) is its counterpart, a probabilistic decoder, because it produces a distribution
over the possible values of 𝑥 that could correspond to a given code 𝑧. The encoder aims
to learn patterns from the input data, while the decoder uses latent space representation
to regenerate the data which is similar to the input. VAE can be used both for learning
the representation of data and mimicking the generative process to generate new data.

For the purpose of learning the recognition model parameters 𝜑 jointly with the
generative model parameters 𝜃, Kingma and Welling (2022) introduce a Stochastic
Gradient Variational Bayes (SGVB) estimator, which is based on the reparameterization
trick. The random variable 𝑧 ∼ 𝑔𝜑 (𝑧 |𝑥) is reparameterized using a differentiable
transformation of an auxiliary noise variable 𝜖 ∼ 𝑝(𝜖): 𝑧 = 𝑔𝜑 (𝜖, 𝑥). This way, latent
variable is represented as a deterministic function of the stochastic noise variable and
observations, which allows to bypass the stochastic variable when backpropagating the
gradient. In short, backpropagation involves updating the weights of the neural network
so that the cost or loss function is minimized, and the gradient descent is the algorithm
that finds this local minimum (Kelley, 1960).

First, a generic SGVB estimator A for a datapoint 𝑥 (𝑖) is defined, which is similar to
ELBO (Eq. 2.5):

L̃𝐴 (𝜃, 𝜑; 𝑥 (𝑖)) = 1
𝐿

𝐿∑︁
𝑙=1

log 𝑝𝜃 (𝑥 (𝑖) , 𝑧(𝑖,𝑙)) − log 𝑞𝜑 (𝑧(𝑖,𝑙) |𝑥 (𝑖)) (2.6)

Then, SGVB estimator B can be defined for the cases where the KL divergence can be

Figure 2.2: A directed model used in VAE. Parameters 𝜃 along with solid lines denote
the generative model 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧). Parameters 𝜑 along with dashed lines denote the
variational approximation 𝑞𝜑 (𝑧 |𝑥).
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integrated analytically:

L̃𝐵 (𝜃, 𝜑; 𝑥 (𝑖)) = −𝐷𝐾𝐿 (𝑞𝜑 (𝑧 |𝑥 (𝑖))∥𝑝𝜃 (𝑧)) +
1
𝐿

𝐿∑︁
𝑙=1

log 𝑝𝜃 (𝑥 (𝑖) , 𝑧(𝑖,𝑙)), (2.7)

for example, when both distributions (prior and approximate posterior) are Gaussian,
which is the typical case for the VAE.

Figure 2.3: VAE architecture. Encoder 𝑞𝜑 (𝑧 |𝑥) produces mean (𝜇) and variance (𝜎) of
the posterior distribution, and the posterior is sampled using 𝜇 + 𝜎 ∗ 𝜖 . The sample 𝑧 is
fed into the decoder 𝑝𝜃 (𝑥 |𝑧) to reconstruct the input.

Kingma and Welling (2022) propose the Auto-Encoding VB (AEVB) algorithm for the
case with an i.i.d. dataset and continuous latent variables per datapoint. Typically, both
the prior over the latent variables and the variational approximate posterior are modeled
as Gaussian distributions (𝑝𝜃 (𝑧) = N(𝑧; 0, 𝐼) and log 𝑞𝜑 (𝑧 |𝑥 (𝑖)) = logN(𝑧; 𝜇(𝑖) , 𝜎2(𝑖) 𝐼),
respectively). The output of the encoder consists of two parameters: mean (𝜇) and
variance (𝜎) of the posterior distribution. The latent space (posterior) distribution is
then sampled randomly, and the sample is assumed to generate the input data. The
decoder log 𝑝𝜃 (𝑥 |𝑧) is either a Gaussian or Bernoulli distribution, depending on the type
of the data. This process is depicted and summarized in Figure 2.3. The loss function
for the autoencoder corresponding to Eq. 2.7 can be written as follows:

𝐿 (𝑥) = −𝐷𝐾𝐿 (𝑞𝜑 (𝑧 |𝑥)∥𝑝𝜃 (𝑧)) + E𝑞𝜑 (𝑧 |𝑥) [log 𝑝𝜃 (𝑥 |𝑧)] (2.8)

2.4 Generative adversarial networks

The goal of deep learning is to automatically discover hierarchical models that represent
probability distributions over data (Bengio, 2009; Goodfellow et al., 2014). Deep
architectures, such as neural nets with many hidden layers, can discover abstractions of
the data of varying levels: from the lowest level features, like edges in the image, to the
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Figure 2.4: GAN architecture. 𝐺 generates samples from input noise, 𝐷 tries to
distinguish whether they come from the actual data distribution or are generated by 𝐺.

highest level concepts, like the object depicted (Bengio, 2009). Deep discriminative
models combine deep neural networks with discriminative models, which model the
conditional probability 𝑃(𝑌 |𝑋), mapping inputs 𝑋 to class labels 𝑌 (A. Ng & Jordan,
2001), essentially classifying the data. Deep generative models combine deep neural
networks with generative models. Generative models model the joint probability
𝑃(𝑋,𝑌 ) (A. Ng & Jordan, 2001), from which the conditional probability 𝑃(𝑋 |𝑌 ) can
be computed, allowing to generate random samples 𝑋 conditioned on labels 𝑌 (Mitchell,
2015).

In a generative adversarial network (GAN), a generative model𝐺 that generates samples
from random noise competes with a discriminative model 𝐷, both models being
multilayer perceptrons. 𝐷 is trained to maximize the probability of assigning a correct
label to the input, in other words, determining which distribution a given sample comes
from. Figure 2.4 illustrates the architecture in simple terms. 𝐺 is trained to minimize
the probability of the generated samples being labeled correctly. As a result, 𝐷 and 𝐺
play the following minimax game:

min
𝐺

max
𝐷
E𝑥∼𝑝data (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))], (2.9)

where 𝐺 (𝑧) is a mapping of input noise to data space, 𝑝𝑧 (𝑧) is the prior on input noise
variables, and 𝐷 (𝑥) outputs a single scalar that represents the probability that x came
from data rather than from the generator’s distribution.

Rather than training 𝐺 to minimize log(1 − 𝐷 (𝐺 (𝑧))), it can be trained to maximize
log𝐷 (𝐺 (𝑧)) instead to avoid the saturation problem, when the gradients become so
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Figure 2.5: GAN convergence process. The discriminative distribution (red dotted line)
is updated so that it distinguishes between samples from the actual data distribution 𝑝𝑥
(grey dashed line) and samples from the generative distribution 𝑝𝑔 (green solid line).
The gradient of 𝐷 guides 𝐺 (𝑧) to flow closer to the actual data distribution. If 𝐺 and 𝐷
have enough capacity, they will eventually arrive at the point where 𝑝𝑔 = 𝑝data and 𝐷 is
unable to differentiate between them.

small that it stagnates learning. 𝐷 must also be synchronized well with𝐺 during training
in order for 𝐺 to not collapse, which would result in 𝑝𝑔 not being diverse enough to
model 𝑝data. Usually, 𝐷 is optimized for several steps, which are then followed by
a single step of optimizing 𝐺. This is done in order to maintain 𝐷 near its optimal
solution, while 𝐺 learns slowly enough to remain stable. The process of convergence is
shown in Figure 2.5. An undeniable advantage of the architecture is that no inference is
needed during learning.
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3. World models

Many concepts in machine learning are inspired by processes that occur in living
organisms. World models, in particular, correspond to mental models that humans build
of the world around them and base their decisions on (Forrester, 1971). Model-based
reinforcement learning uses a world model to represent the behavior of the environment.
Dyna, presented by Sutton (1991), is an example of model-based RL architecture. Dyna
uses an action model that takes in a state and an action and outputs a prediction for the
resulting state and reward. The action model is learned through interacting with the
environment and accumulating examples of desired behavior. According to Lin (1992),
the action model can output either the most likely outcome or a list of outcomes and
probabilities associated with them. In Dyna, planning and selecting an action are not
strongly coupled: these processes happen in parallel. The action model is trained in the
background, gradually improving the agent’s reactive policy. Using world models for
planning can improve data efficiency because of a richer training signal, and the learned
dynamics can potentially be transferred to other tasks (Hafner et al., 2018). Being a
general architecture, Dyna does not explicitly address the way the RL task is modeled;
however, in its most straightforward form it is modeled as an MDP.

3.1 Latent space

While a model can be learned directly from pixels, making predictions and planning in
the same high-dimensional space is computationally expensive. Watter, Springenberg,
Boedecker, and Riedmiller (2015) emphasize the need for algorithms that can overcome
this limitation and propose their own system that uses a variational autoencoder to
learn a mapping of high-dimensional inputs to a low-dimensional latent space. Ha
and Schmidhuber (2018) describe the two main components of a world model that
uses representation learning: 1) visual component that compresses inputs into a latent
representation and 2) memory component that makes predictions based on history.
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The memory component remains an integral part of a world model, while the visual
component serves to enable faster planning in the latent space.

A model that operates in a latent space, like described above, can be called a latent
dynamics model or a state-space model (SSM). Buesing et al. (2018) describe two
types of SSMs: deterministic (dSSM) and stochastic (sSSM). The latent transition
of a deterministic SSM 𝑠𝑡+1 = 𝑔(𝑠𝑡 , 𝑎𝑡) is a deterministic function of the past state
𝑠𝑡 and past action 𝑎𝑡 . A stochastic SSM instead explicitly models uncertainty over
the state 𝑠𝑡+1 using transition distributions 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). For every 𝑡, a latent variable
𝑧𝑡+1 ∼ 𝑝(𝑧𝑡+1 |𝑠𝑡 , 𝑎𝑡) exists; the state function then becomes 𝑠𝑡+1 = 𝑔(𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡+1). These
two types of SSMs are shown in Figure 3.1, though the notation is somewhat different:
in the figure, treat ℎ𝑡 as 𝑠𝑡 in the dSSM. The main disadvantage of sSSM is that stochastic
transitions make it difficult for the model to remember information over multiple time
steps, while dSSM cannot capture multiple futures due to determinism and is prone to
inaccuracies in predictions (Hafner et al., 2018).

3.2 RSSM: PlaNet

(a) Deterministic SSM (b) Stochastic SSM (c) RSSM

Figure 3.1: Different SSM types, figure based on Hafner et al. (2018). Square nodes
denote deterministic variables, while round nodes denote stochastic ones. ℎ𝑡 denotes
deterministic states, 𝑠𝑡 - stochastic states, 𝑎𝑡 - actions, 𝑜𝑡 - observations and 𝑟𝑡 - rewards.
Straight lines denote the generative process, dashed lines denote the inference process.

Deep Planning Network (PlaNet) (Hafner et al., 2018) is an example of an agent that is
based on a state-space model. The task is modeled as a POMDP, because individual
image observations do not reveal the full state of the environment. The model Hafner
et al. (2018) propose is called recurrent state-space model (RSSM). RSSM splits the
state into a stochastic part and a deterministic part to ensure the model learns robustly
to predict multiple futures; the difference in structure between dSSM, sSSM and RSSM
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is illustrated in Figure 3.1. The RSSM consists of the following parts:

Deterministic state model: ℎ𝑡 = 𝑓 (ℎ𝑡−1, 𝑠𝑡−1, 𝑎𝑡−1),
Stochastic state model: 𝑠𝑡 ∼ 𝑝(𝑠𝑡 |ℎ𝑡),
Observation model: 𝑜𝑡 ∼ 𝑝(𝑜𝑡 |ℎ𝑡 , 𝑠𝑡),
Reward model: 𝑟𝑡 ∼ 𝑝(𝑟𝑡 |ℎ𝑡 , 𝑠𝑡),

where 𝑡 is a time step, 𝑠𝑡 denotes hidden states, 𝑜𝑡 denotes image observations, 𝑎𝑡
denotes continuous action vectors, and 𝑟𝑡 denotes scalar rewards. The policy is defined
as 𝑎𝑡 ∼ p(𝑎𝑡 |𝑜≤𝑡 , 𝑎≤𝑡), where ≤ 𝑡 denotes all time steps before and including 𝑡, and
implemented as a planning algorithm that searches for the best sequence of future
actions. An approximate belief over the current hidden state is inferred using the encoder
𝑞(𝑠𝑡 |𝑜≤𝑡 , 𝑎≤𝑡).

The training process of PlaNet consists of two parts: 1) model fitting and 2) data
collection. Initial dataset used for model fitting consists from a small number of episodes
collected under random policy. During model fitting, this experience dataset is sampled
and the dynamics model is updated based on the samples. During data collection, a
belief over current state is inferred, an action is selected using policy, exploration noise
𝜖 ∼ 𝑝(𝜖) is added to the action, and the action is repeated several times to provide a
clearer learning signal. The episode is then added to the experience dataset to be used
in the model fitting.

PlaNet uses latent overshooting, which can be interpreted as a regularizer in latent space
meant to maintain consistency between one-step and multi-step predictions. To do that,
Hafner et al. (2018) generalize the variational bound (analogous to one in Equation 2.8)
on one-step predictions to the variational bound on the multi-step predictive distribution
𝑝𝑑 . Multi-step predictions of a fixed distance 𝑑 are calculated by repeatedly applying
the transition model and integrating out the intermediate states. Latent overshooting
objective that trains the model on multi-step predictions of all distances 1 ≤ 𝑑 ≤ 𝐷 is
defined as follows:

1
𝐷

𝐷∑︁
𝑑=1

ln 𝑝𝑑 (𝑜1:𝑇 ) ≥
𝑇∑︁
𝑡=1

(
E𝑞(𝑠𝑡 |𝑜≤𝑡 ) [ln 𝑝(𝑜𝑡 |𝑠𝑡 )]

− 1
𝐷

𝐷∑︁
𝑑=1
E𝑝(𝑠𝑡−1 |𝑠𝑡−𝑑)𝑞(𝑠𝑡−𝑑 |𝑜≤𝑡−𝑑)

[
KL[𝑞(𝑠𝑡 |𝑜≤𝑡)∥𝑝(𝑠𝑡 |𝑠𝑡 − 1)]

] )
(3.1)

Latent overshooting, along with the RSSM’s dual structure, ensures the robustness of
the predictions and enables longer planning horizons by predicting all multi-step priors.
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Figure 3.2: World Model learning. At each step, RSSM computes a posterior state 𝑧𝑡
and a prior state 𝑧𝑡 that tries to predict the posterior without access to the current image
𝑥𝑡 . The learned prior is used for imagination. 𝑥𝑡 is the reconstructed input.

Efficient planning in latent space also allows to scale this algorithm to larger state and
action spaces.

3.3 Dreamer

Dreamer is a model-based reinforcement learning agent that utilizes the RSSM model
described in previous section as a transition model. The defining characteristics of
DreamerV1 (Hafner, Lillicrap, Ba, & Norouzi, 2020) include predicting both actions
and state values to allow for predicting beyond the imagination horizon, as well as
learning behaviors purely by imagination. DreamerV2 (Hafner, Lillicrap, Norouzi, &
Ba, 2020) builds upon the previous version of the algorithm, changing Gaussian latents
used by the world model to categorical ones. It is hypothesized that categorical latents
outperform Gaussian ones because they are better at capturing small details and make it
easier to predict changes between subsequent images. DreamerV2 achieves human-level
performance on the Atari benchmark (Bellemare et al., 2012). The most recent version
of the algorithm, DreamerV3 (Hafner, Pasukonis, Ba, & Lillicrap, 2024), can master
diverse domains without the need for hyperparameter tuning.

Dreamer consists of three neural networks: world model, actor and critic. The world
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model learns from a dataset of past experience (Fig. 3.2), while actor and critic learn
from abstract sequences predicted by the world model ( Fig. 3.3). The actor interacts
with the environment to grow the experience dataset, from which sequences are sampled
uniformly regardless of episode boundaries.

The world model of DreamerV3 consists of the following parts:

Sequence model: ℎ𝑡 = 𝑓 (ℎ𝑡−1, 𝑧𝑡−1, 𝑎𝑡−1)
Encoder: 𝑧𝑡 ∼ 𝑞(𝑧𝑡 |ℎ𝑡 , 𝑥𝑡)
Dynamics predictor: 𝑧𝑡 ∼ 𝑝(𝑧𝑡 |ℎ𝑡)
Reward predictor: 𝑟𝑡 ∼ 𝑝(𝑟𝑡 |ℎ𝑡 , 𝑧𝑡)
Continue predictor: 𝑐𝑡 ∼ 𝑝(𝑐𝑡 |ℎ𝑡 , 𝑧𝑡)
Decoder: 𝑥𝑡 ∼ 𝑝(𝑥𝑡 |ℎ𝑡 , 𝑧𝑡)

The encoder, sequence model and dynamics predictor form the RSSM. Distributions that
generate samples in the real environment are denoted with 𝑝, and the approximations of
these distributions that enable latent imagination are denoted with 𝑞. The encoder maps
sensory inputs 𝑥𝑡 to discrete representations 𝑧𝑡 . The sequence model with recurrent state
ℎ𝑡 predicts the sequence of these representations given past actions 𝑎𝑡−1. The model
state 𝑠𝑡 ¤={ℎ𝑡 , 𝑧𝑡} is used to predict rewards 𝑟𝑡 and episode continuation flags 𝑐𝑡 as well
as to reconstruct the inputs, yielding 𝑥𝑡 . A sequence batch of inputs, actions, rewards
and continuation flags is used to optimize the world model’s parameters 𝜙 to minimize
the total loss:

L(𝜙) = E𝑞𝜙
[ 𝑇∑︁
𝑡=1

(𝛽predLpred(𝜙) + 𝛽dynLdyn(𝜙) + 𝛽repLrep(𝜙))
]
, (3.2)

where Lpred is the prediction loss with loss weight 𝛽pred = 1, Ldyn is the dynamics loss
with loss weight 𝛽dyn = 0.5, andLrep is the representation loss with loss weight 𝛽rep = 0.1.
The prediction loss Lpred = − ln 𝑝𝜙 (𝑥𝑡 |𝑧𝑡 , ℎ𝑡) − ln 𝑝𝜙 (𝑟𝑡 |𝑧𝑡 , ℎ𝑡) − ln 𝑝𝜙 (𝑐𝑡 |𝑧𝑡 , ℎ𝑡)
trains the decoder, reward and continue predictors. The dynamics loss Ldyn =

max(1,KL[sg(𝑞𝜙 (𝑧𝑡 |ℎ𝑡 , 𝑥𝑡))∥𝑝𝜙 (𝑧𝑡 |ℎ𝑡)]) trains the sequence model. The represen-
tation loss Ldyn = max(1,KL[𝑞𝜙 (𝑧𝑡 |ℎ𝑡 , 𝑥𝑡)∥sg(𝑝𝜙 (𝑧𝑡 |ℎ𝑡))]) trains the representations
to become more predictable. The sg(·) in the losses is the stop-gradient operator.

The critic learns to predict the return of each state under current policy, in other words,
it predicts the expected value of the return distribution: 𝑣(𝑠𝑡) ≈ 𝐸 [𝑅𝑡]. The actor
𝑎𝑡 ∼ 𝜋(𝑎𝑡 |𝑠𝑡) aims to maximize the expected return for each model state. The actor
uses an entropy regularizer to ensure sufficient exploration as well as return scaling to
accelerate exploration in the case of sparse rewards.
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Figure 3.3: Actor-Critic learning. A trajectory of abstract representations is predicted
from an actual posterior state, training both actor and critic within the current world
model.

Similar to PlaNet, Dreamer’s training process can be divided into two main parts: 1)
dynamics and behavior learning, and 2) environment interaction. During the dynamics
learning, data sequences (𝑥𝑡 , 𝑎𝑡 , 𝑜𝑡 , 𝑐𝑡) are drawn from the experience dataset and the
world model is updated. Then, during the behavior learning, the dynamics predictor and
the actor together produce imagined trajectories of form (𝑠1:𝑇 , 𝑎1:𝑇 , 𝑟1:𝑇 , 𝑐1:𝑇 ), where
𝑇 is the imagination horizon, starting from each representation of the replayed inputs.
The actor aims to predict actions that maximize the critic’s estimate, while the critic
aims to accurately estimate the expected returns. During the environment interaction
for collecting the data, the actions are sampled without lookahead planning, which is
different from PlaNet.
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4. Imitation learning

Imitation learning (Schaal, 1999) (IL) paradigm involves an agent learning by first
observing an expert completing a task and then mimicking it. For complex tasks, IL is
generally preferred to standard RL for two main reasons. First, IL is in general more
sample efficient (Hussein, Gaber, Elyan, & Jayne, 2017). Second, by not requiring a
reward signal, IL tackles a harder problem than standard RL (Popov et al., 2017). While
the agent can have access to the environment in IL, the environment would only provide
the information about the state, without outputting the reward. Instead, the agent learns
the policy based on expert trajectories of form 𝜏 = (𝑠0, 𝑎1,− . . . 𝑠𝑇 ), where 𝑇 is the final
time step of the episode.

Two classic imitation learning approaches can be used to learn a policy. Behavioral
cloning (BC) (Bain & Sammut, 1995; Sammut, Hurst, Kedzier, & Michie, 1970) is a
method in which an agent is trained using supervised learning (SL) to directly map
states to actions based on expert demonstrations (Bratko, Urbančič, & Sammut, 1995).
Well-known flaws of this approach include distributional shift (Ross & Bagnell, 2010)
and poor generalization, resulting in the need to use large amounts of data for training.
Inverse reinforcement learning (IRL) (A. Y. Ng & Russell, 2000) can be used to infer a
reward function from expert data, from which a policy is then extracted via reinforcement
learning. The reward function learned by IRL explains expert behavior but does not
necessarily tell the agent how to act (Ho & Ermon, 2016). Despite some success in
control tasks (A. Y. Ng & Russell, 2000), due to computational costs associated with
the IRL approach it has not been successfully applied to larger problems.

4.1 GAIL

Generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016) is an imitation
learning approach that draws inspiration from generative adversarial networks, or
GANs (Goodfellow et al., 2014). GANs train a generative model 𝐺 and a discriminative
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1 Generative adversarial imitation learning
Require: Expert trajectories T𝐸 ∼ 𝜋𝐸

1: for step i do
2: Update the discriminator parameters by sampling trajectory T𝑖 from a fixed policy

𝜋

3: Optimize policy such that it decreases the expected cost function 𝑐(𝑠, 𝑎) =

𝑙𝑜𝑔(𝐷 (𝑠, 𝑎))
4: end for

classifier 𝐷. 𝐷 learns to distinguish between the distribution of data generated by 𝐺
from the distribution of true data, while 𝐺 learns to generate samples that are closer
to the true data. GAIL uses a concept of occupancy measure instead, which can be
interpreted as the distribution of state-action pairs the agent (or the expert) encounters.
The goal of GAIL is then to find such policy for which its occupancy measure is closer
to the occupancy measure of the expert. GAIL is sample-efficient in terms of expert
data, unlike BC, and is a direct approach, unlike IRL. However, the training can be slow
and unstable, as is the case with normal GANs (Arjovsky & Bottou, 2017).

Algorithm 1 describes the process of GAIL as explained by Ho and Ermon (2016), where
𝐷 (𝑠, 𝑎) denotes the output of the discriminator given a state-action pair. It can be said
that the discriminator aims to solve the binary classification problem of distinguishing
between policy and expert occupancy measures (𝜌𝜋 and 𝜌𝜋𝐸 , respectively). The optimal
objective for the policy to minimize (and for the discriminator to maximize) is then the
Jensen-Shannon divergence between the two distributions

𝐽𝑆(𝜌𝜋, 𝜌𝜋𝐸 ) = 𝐾𝐿 (𝜌𝜋∥(𝜌𝜋 + 𝜌𝜋𝐸 )/2) + 𝐾𝐿 (𝜌𝜋𝐸 ∥(𝜌𝜋 + 𝜌𝜋𝐸 )/2), (4.1)

where KL is the Kullback-Leibler divergence (Goodfellow et al., 2014; Ho & Ermon,
2016). The discriminator loss corresponding to the objective in Equation 4.1 and used
in line 2 can be expressed as

E𝜋 [− log(1 − 𝐷 (𝑠, 𝑎))] + E𝜋𝐸 [− log(𝐷 (𝑠, 𝑎))], (4.2)

which effectively punishes the discriminator for misclassifying policy samples as expert
ones and expert samples as generated by the policy.

The reward function corresponding to the cost function on line 3 can be written as
𝑟 (𝑠, 𝑎) = − log(1−𝐷 (𝑠, 𝑎)), but it is not the only alternative. Orsini et al. (2021) examine
the effect of different design choices, including implicit reward function choice, on the
performance of GAIL. The following reward functions were compared: GAIL reward
𝑟 (𝑠, 𝑎) = − log(1−𝐷 (𝑠, 𝑎)), AIRL reward 𝑟 (𝑠, 𝑎) = log(𝐷 (𝑠, 𝑎))−log(1−𝐷 (𝑠, 𝑎)) (Fu,

18



Figure 4.1: Adversarial policy learning in latent space. 𝑥𝐸𝑡 in the upper row are the
inputs belonging to an expert trajectory, 𝑠𝑡 are model states (concatenation of ℎ𝑡 and 𝑧𝑡),
the lower rows depict the policy rollout. 𝐷 is the discriminator.

Luo, & Levine, 2017), and 𝑟 (𝑠, 𝑎) = log(𝐷 (𝑠, 𝑎)). The experiments have shown that
AIRL reward performs best for synthetic demonstrations while GAIL reward is best
suited for human demonstrations. GAIL reward optimizes the symmetric Jensen-
Shannon divergence, which means this reward provides an equal penalty for doing
things the expert never does and for not doing some of the things the expert does. AIRL
function optimizes the Kullback–Leibler divergence that is not symmetric, and as a
result, it penalizes the policy much more heavily for doing things the expert never does.
Additionally, it was hypothesized that the performance of adversarial imitation learning
heavily depends on whether the demonstrations were provided by a human or generated
by an RL algorithm.

4.2 V-MAIL

Variational model-based adversarial imitation learning, or V-MAIL (Rafailov, Yu,
Rajeswaran, & Finn, 2021), is an attempt at uniting the benefits of model-based RL and
adversarial imitation learning. The authors claim that model-based approach improves
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the stability of adversarial training because it enables on-policy learning. However,
V-MAIL was only applied to simple control tasks. Hence, its effectiveness on more
complex domains, like open-world games, has yet to be investigated.

V-MAIL trains a variational latent-space dynamics model, like Dreamer, and a discrimi-
nator. The discriminator is trained alongside actor and critic/value, separately from the
world model, generally following the process illustrated in Figure 4.1. The discriminator
parameters are updated with the gradient used by Ho and Ermon (2016) in line 2. The
discriminator output 𝐷 (𝑠, 𝑎) for imagined trajectories is then used as a learning signal
to the policy. Contrary to the original GAIL, which does not use any discriminator
regularizer, V-MAIL uses gradient penalty (Gulrajani, Ahmed, Arjovsky, Dumoulin, &
Courville, 2017). The resulting discriminator loss is as follows:

E𝜋 [− log(1 − 𝐷 (𝑠, 𝑎))] + E𝜋𝐸 [− log(𝐷 (𝑠, 𝑎))] + 𝜆E𝑥∼P𝑥̂ [(∥∇𝑥𝐷 (𝑥)∥ − 1)2], (4.3)

where the last term is the gradient penalty, 𝜆 is the penalty coefficient, and P𝑥 samples
uniformly along straight lines between pairs of points sampled from 𝜋 and 𝜋𝐸 , in this
case.
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5. Dreamer with Adversarial
Imitation Learning

This work follows V-MAIL’s approach for integrating adversarial policy learning with
Dreamer’s architecture. Implementation details aside, V-MAIL’s non-adversarial part
consists of roughly the same networks as Dreamer: world model including RSSM, actor,
and critic. World model learning is not affected by adding the adversarial part, and
all loss definitions remain unchanged from the normal Dreamer (Chapter 3.3). In the
implementation, the discriminator is considered a part of actor network for simplicity and
trained alongside actor and critic, following the process in Figure 4.1. The discriminator
is updated using the loss formulation from V-MAIL (Equation 4.3), along with the
gradient penalty regularizer. The pseudocode for the resulting learning process is shown
in Algorithm 2.

The agent’s reward function is changed to the one that uses the discriminator output.
Out of the three reward functions investigated by Orsini et al. (2021), the AIRL reward
function (Fu et al., 2017), defined as 𝑟 (𝑠, 𝑎) = ln(𝐷 (𝑠, 𝑎)) − ln(1−𝐷 (𝑠, 𝑎)) was chosen.
In the preliminary experiments it was found that 𝑟 (𝑠, 𝑎) = ln(𝐷 (𝑠, 𝑎)) slowed down the
convergence of AIL, while 𝑟 (𝑠, 𝑎) = − ln(1 − 𝐷 (𝑠, 𝑎)) led to a successful but random
policy (Figures 7.1 and 7.2). The AIRL reward was accepted as a valid compromise
between them.

A distinct aspect of Dreamer that has to be considered when integrating the use of expert
data into the algorithm is that the first step of normal agent’s trajectories is explicitly
marked as the first step of the corresponding trajectory. While this detail might seem
insignificant, the "first step" flag is considered in the observe function of the RSSM,
which the encoded expert trajectories have to go through in order to be used for training.
This aspect was not explored in detail, but the experiments have shown that setting this
flag to false seems to lead to a more relaxed training and better scores. However, for
consistency purposes the agents were trained on the trajectories with this flag set to true,
following the Dreamer’s approach to its own trajectories.
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2 Dreamer with AIL
Initialize dataset 𝐵𝜋 with random seed episodes
Randomly initialize neural network parameters for Dreamer components and discrim-
inator 𝐷
for number of iterations do

for update step do
// Dynamics learning
Sample 𝐵 trajectories of length 𝐿 from 𝐵𝜋
Map inputs to stochastic representations and predict the sequence of representa-
tions given past actions
From model states 𝑠𝑡 , predict rewards 𝑟𝑡 and continuation flags 𝑐𝑡
Reconstruct the inputs
Update the world model
// Adversarial policy learning
Sample 𝐵 trajectories of length 𝐿 from expert dataset 𝐵E
Infer expert latent states 𝑧E and form expert model states 𝑠E
Generate latent rollouts (imagine trajectories) 𝑧𝜋 and form policy model states
𝑠𝜋

Update the discriminator 𝐷 using 𝑠E and 𝑠𝜋
Update the policy 𝜋 using 𝑟𝑡 = ln(𝐷 (𝑠𝜋)) − ln(1 − 𝐷 (𝑠𝜋))

end for
// Environment interaction
Reset environment
for time step 𝑡 = 1..𝑇 do

Compute model states from history
Sample action 𝑎𝑡 from the actor model
Environment step

end for
Add experience to 𝐵𝜋

end for
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6. Experimental setup

Dreamer provides several pre-defined model sizes: small, medium, large and extra large.
The model size is directly proportional to both performance and data-efficiency. A
medium size Dreamer model was chosen for the experiments as a compromise between
lower computational costs and better performance. Dreamer’s hyperparameters were
left unaltered and matching those in Hafner et al. (2024).

In the experiments, AIL+Dreamer is compared with two baselines: a random policy
and a vanilla BC agent. For each method, three agents are trained on three different
seeds of the environment. The BC baselines were trained for a maximum of 30 epochs,
stopping the training prematurely to avoid overfitting if convergence was reached early.
The AIL+Dreamer models were trained on either 500k or 1M timesteps, depending on
the complexity of the task. The agents were evaluated over 5 runs of 100 episodes each.

6.1 Environment

Crafter (Hafner, 2021), a 2D open-world survival game provided as one of the default
available environments for Dreamer, was chosen to be the main environment for the
experiments. The environment features 22 unique achievements, related to collecting
resources or crafting tools (a complete list in Table 8.1). The environment features a
hierarchical crafting system: some resources, like stone, can be collected only upon
crafting a specific tool; conversely, some tools can be crafted only after collecting a
specific resource. The wide variety of achievements, combined with the hierarchical
crafting system, creates a complex and generally hard environment. Additionally, Crafter
features enemies like zombies and skeletons that can harm the player. Because of this
fast-paced game world, surviving in Crafter requires strong generalization abilities.
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6.2 Tasks and datasets

The approach was evaluated on both custom and pre-defined tasks. More specifically,
two custom tasks were defined to assess basic navigation and interaction skills of an
agent: Circle and Wood. The aim of the Circle task is learning the behavior of walking
in circles. While deceivingly simple, this task might be challenging for an agent because
1) it does not include actions that directly affect the environment, 2) it includes a
certain looped sequence of actions, and 3) the environment introduces natural moving
disruptions to the walking pattern such as cows and zombies. Conversely, the aim of
the Wood task is learning to consistently chop trees. Contrary to the Circle task, it
focuses on the actions that directly affect the environment and are reflected visually (i.e.
when chopped, a tree disappears). Intuitively, it would be easier for an agent to learn to
succeed in the Wood task.

16 human demonstrations of Crafter gameplay were manually recorded for these two
tasks. For the Circle dataset, the demonstrations feature the behavior of running around
in 3x3 circles in a world with the same seed; the circle patterns are sometimes interrupted
by cows and zombies but mostly preserved. For the Wood dataset, the demonstrations
feature walking over to the observable trees and chopping them. The datasets feature no
other behavior besides mentioned.

In addition to these two tasks that mostly serve to assess the basic learning and
generalization capabilities of the model, another goal was to see whether the model can
learn meaningful behavior based on a more "chaotic" dataset of natural human gameplay
demonstrations. This goal is reflected in the broader Survival task. The author of the
Crafter environment provides a human gameplay dataset of 100 episodes total. However,
for more efficient training, 16 episodes that feature a wide range of achievements (see
Table 8.1) and are long enough to be considered successful (200+ steps) were selected
to be used for the Survival task. Conversely, the BC baselines were trained on the full
dataset.

6.3 Evaluation

Crafter natively defines an explicit numerical reward signal, even though AIL+Dreamer
does not use it. Additionally, the environment provides a measure called Crafter score,
defined as the geometric mean of achievement success rates. Following the evaluation
guidelines of Hafner (2021), Crafter score is reported for each trained agent. For the
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Survival task, the success rates of achievements can provide meaningful insights into an
agent’s behavior as well.

In addition to numerical evaluation, the agent’s behavior is also evaluated visually. While
it is not an objective method of evaluation, in certain cases it is beneficial: even though
an agent might perform poorly in numerical terms, its behavior can visually resemble
that of a human player, which would be considered a meaningful result. Moreover, the
performance on certain tasks (such as Circle) might not be related to a numerical score.
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7. Results

The AIRL reward was chosen based on the experiments results in Figures 7.1 and 7.2.
Since the purpose of any learning is to learn behaviors, which are not chaotic and random
but rather directed and purposeful instead, random policy is not what we want to achieve
in an agent. The measure of randomness depends on the measure of entropy (Jaynes,
1968), which in the case of machine learning measures the unpredictability of the actions
agent takes under given policy. In the experiments, agents that used GAIL reward
function tended to fare not so differently from others in the very beginning of their
training. However, this reward function soon led to a random policy and was deemed
unsuitable.

Figure 7.1: Episode scores comparison for the reward functions.

The three BC agents trained on the Circle dataset mostly display the behavior of walking
towards the bottom of the screen, with two of them also occasionally turning and going
in the opposite direction. The cause for the agents’ inability to learn the behavior might
be the temporally-extended nature of the task: the vanilla BC baseline does not retain
any past information, making it hard for the agent to complete tasks that require memory.
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Figure 7.2: Policy randomness measure comparison for the reward functions.

All three Dreamer+AIL agents trained on the Circle dataset rarely exhibit complete
patterns of walking in circles. An example of what can be considered a complete circle
pattern is shown in Figure 7.3. However, the agents tend to do considerably fewer
actions aside from walking around than a random agent would, which is reflected in the
overall score (a mean of 0.56).

Figure 7.3: An example of circle pattern exhibited by one of the models trained on the
Circle dataset.

The three BC agents trained on the Wood dataset were not able to learn the wood
collecting behavior. Surprisingly, the Dreamer agents trained on the Wood dataset
achieve the best score among the trained models with a mean of 1.11. The success
rate of the Collect Wood achievement is 35.72%, compared to 25% in random agent.
However, it is considerably less than 52.64% achieved by the Survival models. Figures
7.4 and 7.5 contain scores and success rates for Wood and Circle models compared to
the BC survival baseline and the random policy.

Out of three BC agents trained on the full Survival dataset, two were able to achieve
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Figure 7.4: Crafter scores for Wood and Circle models.

Figure 7.5: Achievement success rates for Wood and Circle models.

some basic goals. In particular, agents were able to drink water and, occasionally, chop
wood. On the contrary, the third agent was able to complete some basic exploration, but
did not complete any achievements. The Dreamer agents successfully learn to collect
wood, place table and occasionally make wood pickaxes and swords. They tend to
do fewer actions associated with plants (collecting saplings or placing plants) as well
as sleep less than a random agent; this result is more or less consistent with expert
gameplay, as humans rarely choose to do these actions. On the other hand, the agents
seem to have trouble learning to drink water compared to random and BC agents, which
is different from human behavior. Figure 7.6 contains Crafter scores comparison for
Survival models. Figures 7.7 and 7.8 contain success rates for the more prominent
achievements of Survival models.
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Figure 7.6: Crafter scores for Survival models. Survival-TI has the first step of an
expert trajectory marked as the first step, Survival-NTI makes no distinction.

Figure 7.7: Achievement success rates for Survival models (Part 1).

Figure 7.8: Achievement success rates for Survival models (Part 2).
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8. Conclusions

Generally, the experiments have shown the agents to be able to learn expected behaviors.
The agents’ performance, compared to a random agent’s one, is consistent with human
gameplay, aside from not being able to learn to drink water. The answer to the first
research question is therefore positive: it is possible to bring an agent’s behavior closer to
human behavior using imitation learning in its imagination. However, survival abilities
of the agents leave something to be desired in terms of scores. There are multiple
possible causes for this. Agents might have difficulty predicting the movements of
nondeterministic elements like moving enemies (Lin, 1992) and learning to consistently
defend themselves as a result. Some achievements are only unlocked once in an expert
episode, and with the random trajectory sampling there is no guarantee the agent will
get a certain part of an episode often enough to affect its policy. There is a multitude of
possible solutions to this problem, ranging from more careful manual selection of the
trajectories/episodes to implementing a search over expert dataset to obtain the most
relevant actions (Malato & Hautamaki, 2024).

Additionally, Dreamer ensuring sufficient exploration might have both positive and
negative consequences. It allows the agent to try out more actions even if they are not
featured in the expert trajectories that often, but it also makes it more difficult to discern
the learned behavior from the exploratory one. On a more technical note, there is a need
for conducting more experiments and training the agents for the full 1M steps budget. It
would also be beneficial to use larger models, as they provide performance gains, and
Hafner et al. (2024) use an extra large Dreamer model on Crafter.

The answer to the second research question is less certain and warrants further research
in this area. The design choices seem to be interconnected and it is difficult to predict
how the different combinations and changes will affect the training. The environments’
specifics certainly play their own part: a solution that worked excellently for robotics
simulation environments might not work as well for open-world games.

One aspect that requires further exploration is the choice of discriminator regularizer,
which might be more important when dealing with complex tasks (Orsini et al., 2021).
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A regularizer that performed best for the discriminator training was found by Orsini et
al. (2021) to be spectral norm (Miyato, Kataoka, Koyama, & Yoshida, 2018). Another
regularization technique worth mentioning is variational discriminator bottleneck (Peng,
Kanazawa, Toyer, Abbeel, & Levine, 2018), designed specifically for adversarial learning
methods and based on the idea of constraining information flow. A third approach that
could be tried is converting the discriminator into a SAN-type discriminator instead of
the one used in GANs. Takida et al. (2024) question whether the standard minimax
objective used in GANs actually brings the generated distribution closer to the target one,
and propose a different training scheme for GANs, called slicing adversarial network.
The results shown in the paper are promising, and converting a GAN into a SAN only
requires small modifications.
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16
Collect
Coal 4 2 4 7 2 2 4 4 9 5 4 9 2 5 5 2

Collect
Diamond 0 0 1 1 1 0 2 0 1 1 1 0 1 1 2 0

Drink 30 34 33 26 0 18 141 14 38 41 121 119 83 130 115 7
Collect
Iron 2 4 3 2 1 2 5 5 4 2 9 4 5 2 4 2

Collect
Sapling 5 2 6 1 0 3 10 0 1 2 8 7 5 8 8 2

Collect
Stone 19 44 18 11 25 29 69 18 35 41 72 84 48 72 41 11

Collect
Wood 8 14 17 13 15 12 17 10 12 11 18 26 29 20 11 9

Defeat
Skeleton 0 3 0 0 0 0 4 0 2 1 3 4 4 2 4 1

Defeat
Zombie 1 4 9 0 1 1 7 2 4 1 14 12 11 6 8 2

Eat Cow 2 4 4 2 1 5 11 2 5 5 9 13 10 6 6 0
Eat Plant 0 0 0 0 0 1 6 0 0 0 12 5 3 17 7 0
Iron Pick-
axe 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1

Iron
Sword 1 1 1 1 0 1 2 1 1 1 1 1 1 1 2 1

Stone
Pickaxe 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Stone
Sword 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Wood
Pickaxe 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Wood
Sword 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0

Place Fur-
nace 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1

Place
Plant 4 0 6 1 0 3 10 0 0 2 6 6 4 5 6 0

Place
Stone 12 9 3 1 1 9 31 1 10 9 21 20 17 22 22 1

Place Ta-
ble 1 2 1 1 1 2 3 1 2 2 3 1 3 3 1 1

Wake Up 1 2 2 2 0 2 8 1 4 3 10 7 5 10 6 0

Table 8.1: Number of times an achievement has been unlocked in an expert episode.
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