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ABSTRACT

This thesis contains various new results for univalent functions of the unit disc of the
complex plane, partly via considering an extension to a known univalence criterion
by Becker, and partly via studying the univalent functions of certain weighted spaces
of analytic functions. This leads to both geometric and analytic considerations on
the properties of univalent functions.

The case of Nehari’s univalence criterion with a linear error, originally posed
by Chuaqui and Stowe, is considered in the context of Becker’s famous univalence
criterion. We find that Becker’s criterion with a linear error guarantees the univa-
lence of locally univalent functions in certain horodiscs of the unit disc. Conversely,
it’s shown that univalence in certain horodiscs guarantees a type of Becker’s crite-
rion with a larger upper bound. We also consider generalizations of these results to
locally univalent harmonic functions.

The univalent functions of certain spaces of analytic functions are studied to
attain new estimates and inclusions between the spaces. In the case of the Hardy
space Hp, we improve a known characterization and present its extension to the
radially weighted Bergman space Ap

ω. Norm inequalities depending on the inducing
radial weight are presented for the weighted Bergman space. We establish a variety
of inequalities for the conformal maps of certain weighted Dirichlet and Besov type
spaces as well as the Hardy-Littlewood space HLp. In addition, the relation of these
inequalities to certain weighted integral involving the maximum modulus and some
geometrically defined function spaces is considered.

MSC 2010: 30C55, 30C45, 34C10, 30H10, 30H20.
Keywords: Bergman space, Bloch space, complex variables, conformal mapping, differential
equations, Dirichlet space, doubling weight, Hardy space, Hardy-Littlewood space, integral
estimates, univalence criteria, univalent functions.
Library of Congress Subject Headings: Bergman spaces; Conformal mapping; Dirichlet
spaces; Functions of complex variables; Function spaces; Hardy spaces; Univalent functions.

v



ACKNOWLEDGEMENTS

First and foremost, I wish to express my sincerest gratitude to my supervisor, Pro-
fessor Jouni Rättyä. I am highly indebted to Jouni for his kindness, constant encour-
agement, patience, and support in teaching and guiding me throughout the long
years of somehow trying to fit together a full-time occupation with mathematical
studies and research.

I wish to thank my collaborators, Doctor Juha-Matti Huusko, Professor Fernando
Pérez-González, and Professor Jouni Rättyä for their friendliness, persistence and
valuable insights in our research. The amount I have learned via working with all
of you is immeasurable to me.

I am deeply grateful to Professor Martin Chuaqui and Professor María José
González Fuentes for the review of my thesis. I also wish to sincerely express my
gratitude to Professor Toshiyuki Sugawa for acting as my opponent.

For financial support, I am indebted to the Faculty of Science, Forestry and Tech-
nology of University of Eastern Finland, for awarding me a grant for the completion
of this dissertation. In addition, I warmly thank the University of Eastern Finland
for providing me with more than a decade of safe, friendly and supportive environ-
ment for studying and conducting research.

Finally, I deeply wish to thank my family, especially my parents Irina and Seppo,
for their constant support in my studies and, more importantly, for their mutual fair-
ness, kindness, and understanding in all the aspects of life we experience together.
In the same voice, I wish to sincerely thank my friends for all their involvement in
my life.

Joensuu, August 9, 2024

Toni Vesikko

vi



LIST OF PUBLICATIONS

This thesis consists of the present review of the author’s work in the field of mathe-
matical analysis comprised of the following selection of the author’s publications:

I J.-M. Huusko and T. Vesikko, "On Becker’s univalence criterion," J. Math. Anal.
Appl. 458, 781–794 (2018).

II F. Pérez-González, J. Rättyä, and T. Vesikko, "Integral means of derivatives of
univalent functions in Hardy spaces," Proc. Amer. Math. Soc. 151, 611–621
(2023).

III F. Pérez-González, J. Rättyä, and T. Vesikko, "Norm inequalities for weighted
Dirichlet spaces with applications to conformal maps," submitted
https://arxiv.org/abs/2201.06122

Throughout the overview, these papers will be referred to by Roman numerals.

AUTHOR’S CONTRIBUTION

The publications selected in this dissertation are original research papers on mathe-
matical analysis. All authors have made an approximately equal contribution.

vii





TABLE OF CONTENTS

1 Introduction 1

2 Univalent functions 3
2.1 Classical theory ................................................................................ 3
2.2 Differential equations and univalence criteria .................................... 5
2.3 Important subclasses ........................................................................ 7

3 Function spaces 9
3.1 Classes of weights ............................................................................ 9
3.2 Function spaces and univalent functions ........................................... 11

3.2.1 Hardy, Bergman and Dirichlet spaces ..................................... 11
3.2.2 Bloch, Besov and other spaces ............................................... 13

4 Summary of papers 15
4.1 Summary of Paper I ......................................................................... 15

4.1.1 Distortion theorems ............................................................... 15
4.1.2 Main results .......................................................................... 16
4.1.3 Generalizations for harmonic functions ................................... 18

4.2 Summary of Paper II ....................................................................... 18
4.3 Summary of Paper III ...................................................................... 20

4.3.1 Lemmas on radial weights ...................................................... 20
4.3.2 Auxiliary results ..................................................................... 23
4.3.3 Main results .......................................................................... 25

BIBLIOGRAPHY 29

ix





1 Introduction

The study of univalent functions, also known as conformal mappings, or simply
maps, is an important and classical subject in the field of mathematical analysis.
This research has over the last century focused on studying some of the profound
qualities of normalized univalent (or Schlicht) functions, but has also kept broaden-
ing in various ways to now contain many new branches and areas of interest.

Time has shown that the concepts present within the study of univalent functions
of the unit disc D = {z ∈ C : |z| < 1} often have some kind of a connection to dif-
ferential equations. One of the most well-known examples is the linear differential
equation

f ′′ + A f = 0, (1.1)

with an analytic coefficient A, for which we have the relation 2A = S f , where S f is
the Schwarzian derivative of f = g/h and g, h ∈ H(D) are two linearly independent
non-trivial solutions of (1.1). The famous univalence criterion by Nehari [43] states
that if

|S f (z)|(1− |z|2)2 ≤ 2, z ∈ D, (1.2)

for a locally univalent meromorphic function, then f is univalent in D, or f ∈
U . Due to the aforementioned relation between the analytic coefficient A and the
Schwarzian of f , this criterion has also served as a natural path to studying the zero
separation and oscillation of solutions of linear differential equations.

In relation to Nehari’s criterion, another famous univalence criterion by Becker
[5] states that if an analytic function f with f ′(0) �= 0 satisfies

|zPf (z)|(1− |z|2) ≤ 1, z ∈ D, (1.3)

then f is univalent in D. Chuaqui and Stowe showed in [10] that replacing the
right-hand side of (1.2) with any continuous function decaying to one (with the
substitution 2A = S f ) slower than at a linear rate allows oscillation for some non-
trivial solution of (1.1). Naturally this raised the question whether or not (1.2) with
an additive linear error guarantees any kind of univalence for f , a question which
was partially answered in [24]. In the same sense one might ask whether (1.3)
with a linear error guarantees any kind of univalence or other neat properties for
f . This has been the primary focus in Paper I, in which partial answers are given.
In addition, analogues of the main results of the paper are considered for harmonic
functions.

As with most types and classes of functions, inclusions to well-known function
spaces and estimates regarding their norms are important topics of interest. This
is especially true for conformal maps, whose behaviour in most classical function
spaces has been studied to some extent. In Paper II, a known characterization of
univalent functions of the Hardy space Hp in terms of the integral

Ip,q( f ) =
∫ 1

0
Mp

q (r, f ′)(1− r)p
(

1− 1
q

)
dr + | f (0)|p,

1



where 0 < p ≤ q < ∞, is studied. Its counterpart in the setting of the Bergman
space Ap

ω induced by a radial weight, that is, an integrable function ω : D → [0, ∞)
such that ω(z) = ω(|z|) for z ∈ D, is also discussed. In addition, the characteri-
zation for the Hardy space Hp is considered in the context of the close-to-convex
functions, an important subclass of S .

In Paper III, various norm inequalities for analytic and conformal mappings
are studied in the context of weighted Bergman and Dirichlet type function spaces.
While some of the results are true for all analytic functions, others serve as char-
acterizations of conformal mappings of the studied weighted function spaces and
classes via asymptotic equalities. Additionally, the relation of the integral quantity

Jp
ω( f ) =

∫ 1

0
Mp

∞(r, f )ω(r) dr,

involving the maximum modulus function Mp
∞(r, f ) of f to the norms of the afore-

mentioned spaces is considered. Some results are compared with the geometrically
defined function spaces Hp

ω and Sp
ω defined as the sets of analytic functions for

which

‖ f ‖p
Hp

ω
=

∫ 1

0

(∫
D(0,r)

Δ| f |p dA
)

ω(r) dr =
∫

D
Δ| f |p �ω dA,

and

‖ f ‖p
Sp

ω
=

∫ 1

0

(∫
D(0,r)

| f ′|2 dA
) p

2
ω(r) dr =

∫ 1

0
Area( f (D(0, r)))

p
2 ω(r) dr,

are respectively finite. These definitions originate from [31, 42] for the classical
weight ωα(z) � (1− |z|2)α. As all of the studied function spaces and integral quan-
tities are radially weighted, proving most of the results requires analysis specifically
on how much needs to be assumed from the inducing weight function in order to
attain certain key estimates.

The remainder of this overview is organized as follows. In Chapter 2, the classi-
cal analysis and research history of univalent functions are discussed and the nec-
essary concepts for placing the upcoming research results into their proper context
are introduced. Chapter 3 consists of discussion on relevant function spaces and
analysis of the weight functions which induce the weighted versions of the said
spaces. We also briefly discuss existing research regarding the univalent functions
of these functions spaces. To conclude, Chapter 4 is comprised of the summaries of
Papers I-III in separate sections.
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2 Univalent functions

In this chapter we will cover the basic theory of univalent functions necessary for
the purposes of this thesis, as well as delve into some related topics to place the
research conducted in this thesis in its proper context.

We begin by defining some basic notation that will be used for the entirety of
this thesis. The complex plane is denoted by C. We denote its unit disc by D = {z ∈
C : |z| < 1} and the unit circle by T = {z ∈ C : |z| = 1}. We denote the Euclidean
disc of center a ∈ C and radius r > 0 by D(a, r) = {z ∈ C : |z − a| < r}. The
conformal automorphisms of the unit disc D are defined by ϕa(z) = λ z−a

1−az for all
z, a ∈ D and a unimodular constant λ ∈ T. The pseudohyperbolic distance of two
points a, z ∈ D is ρ(a, z) = |ϕa(z)| and the pseudohyperbolic disc of center a ∈ D

and radius δ > 0 is denoted by Δ(a, δ) = {z ∈ D : ρ(a, z) < δ}. The hyperbolic
metric in D is defined as

dH(z, w) = inf
γ

∫
γ

|dz|
1− |z|2 =

1
2

log
1 + |ϕz(w)|
1− |ϕz(w)| , z, w ∈ D,

where the infimum is taken over all parametrized smooth curves γ joining z and w.

2.1 CLASSICAL THEORY

For the fundamental theory of univalent functions, the classical monographs [14]
and [56] are excellent sources and are also utilized in this section. Let D be a domain
of the complex plane C. An injective analytic function f : D → C is called a
univalent function. We denote the class of all univalent functions of the unit disc
by U . The class of Schlicht functions S is comprised of functions f ∈ U normalized
such that f (0) = 0 and f ′(0) = 1. If f ∈ U , then ( f − f (0))/ f ′(0) belongs to S .
Clearly functions in S are of the form f (z) = z + �f (2)z2 + · · · = z + ∑∞

k=2
�f (k)zk,

z ∈ D, where we use the notation an = �f (n) for the Maclaurin coefficients.
If a function f : D → C is analytic at z0 ∈ D such that f ′(z0) �= 0, then f is

univalent in some neighborhood of z0 [62, p.198]. Therefore, a function f analytic
in D is locally univalent if its Jacobian J f = | f ′|2 is non-vanishing. A univalent
function is also known as a conformal mapping, the geometric rationale for which
can be found in [14, pp. 6]. We write f ∈ UA

loc for the class of analytic functions
locally univalent in D. A function f is meromorphic in D if at each point of the
unit disc f is either analytic or has a pole. Furthermore, a function f meromorphic
in D is locally univalent, denoted by f ∈ UM

loc, if and only if its spherical derivative
f #(z) = | f ′(z)|/(1 + | f (z)|2) is non-vanishing.

The study of univalent functions of the unit disc, and especially the normal-
ized Schlicht functions, has been an active and important topic in the mathematical
research of function theory. It is well known that the Koebe function

k(z) =
z

(1− z)2 =
∞

∑
k=1

nzn =
1
4

(
1 + z
1− z

)2
− 1

4
, z ∈ D,

3



maps the unit disc D conformally onto the slit domain C \ (−∞, 1
4 ]. One way to see

this is the fact that the function z 	→ (1 + z)/(1− z) maps the unit disc conformally
onto the right half-plane {z ∈ C : 
z > 0}. The Koebe function is, in many sense,
the maximal function of the class S . One of the most fundamental estimates for
f ∈ S shows that ∣∣∣∣ z f ′′(z)

f ′(z) −
2|z|2

1− |z|2
∣∣∣∣ ≤ 4|z|

1− |z|2 , z ∈ D, (2.1)

see [56, Lemma 1.3]. From this, the important Koebe growth and distortion theorem
is deduced.

Theorem 2.1. [56, Theorem 1.6] Let f ∈ S . Then the following estimates hold for z ∈ D.

(i)

k′(−|z|) = 1− |z|
(1 + |z|)3 ≤ | f ′(z)| ≤

1 + |z|
(1− |z|)3 = k′(|z|),

(ii)

−k(−|z|) = |z|
(1 + |z|)2 ≤ | f (z)| ≤

|z|
(1− |z|)2 = k(|z|),

(iii)

|z|−k′(−|z|)
k(−|z|) =

1− |z|
1 + |z| ≤

∣∣∣∣z f ′(z)
f (z)

∣∣∣∣ ≤ 1 + |z|
1− |z| = |z|

k′(|z|)
k(|z|) .

In each case equality holds if and only if f is a suitable rotation of the Koebe function.

The Koebe distortion theorem already provides insight to the role of Koebe func-
tion as the maximal function of the class S . It is also used in deriving the Koebe-
1/4-Theorem [56, pp. 22], which states that D(0, 1/4) ⊂ f (D) for all f ∈ S . The
study of univalent functions in general contains multiple geometric topics of inter-
est. The distance of a point f (z) = w from the boundary of the image domain ∂ f (D)
is dist(w, ∂ f (D)) = infξ∈∂ f (D) |w− ξ|. It can be deduced from the Koebe distortion
theorem [56, Corollary 1.4] that

1
4
| f ′(z)|(1− |z|2) ≤ dist(w, ∂ f (D)) ≤ | f ′(z)|(1− |z|2), (2.2)

for f ∈ U , and in particular 1
4 ≤ dist(0, ∂ f (D)) ≤ 1 for f ∈ S , further underlining

the Koebe-1/4-theorem for Schlicht functions. It turns out that the geometric and
analytic properties of conformal maps are often linked with one another, which we
will briefly discuss later.

The Maclaurin coefficients of the functions f ∈ S have also been heavily studied.
The famous Bieberbach conjecture states that, for a Schlicht function f ∈ S and
n ∈ N, the Maclaurin coefficients satisfy | �f (n)| ≤ n with strict inequality unless f
is a rotation of the Koebe function. Note that this means that the Koebe function
has the maximal coefficients in the class S . This conjecture was first presented by
Bieberbach in 1916 in a footnote of paper [8] in which he proved the inequality for
the second coefficient �f (2). Löwner proceeded to prove it for the third coefficient
�f (3) in 1923 [41] introducing the Löwner differential equation and Löwner chains.
The initial good estimate for all coefficients was soon after provided by Littlewood
in 1925 [39], showing that | �f (n)| < en, n ∈ N. These findings were followed by
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decades of research, during which the conjecture was eventually proved for the
fourth [19], fifth [45] and sixth [44] coefficients. In addition, the general estimate
by Littlewood was improved multiple times, see for example [56, pp. 25] and the
references therein. Eventually in 1985, Louis de Branges published a proof of the
Bieberbach conjecture [11], leading to the result also being known as de Branges’s
theorem. It should also be noted that Fitzgerald and Pommerenke completed and
published their proof of the conjecture later during the same year [16].

The study of univalent functions still contains various open questions, the most
famous of which is widely considered to be the Brennan conjecture. Consider a
simply connected domain Ω ⊂ C with at least two boundary points in the extended
complex plane. Let ϕ : Ω → D a conformal mapping onto D with ϕ(w) = z ∈ D

and let p ∈ R. Then the conjecture states that the integral
∫

Ω
|ϕ′(w)|p dA(w)

converges for 4/3 < p < 4. The integral was already known to converge for 4/3 <
p < 3 when Brennan conjectured the problem in 1978 [9]. Some improvement has
since been made raising the upper bound of p, but the conjecture remains open.

2.2 DIFFERENTIAL EQUATIONS AND UNIVALENCE CRITERIA

The study of univalent functions and univalence criteria has shown to be in part
closely related to the study of differential equations. It is known that for the differ-
ential equation

f ′′ + A f = 0, (2.3)

where A is analytic, and any two of its linearly independent solutions g and h such
that f = g/h, we have 2A = S f analytic in D, where S f is the Schwarzian derivative
of f . For f ∈ UA

loc the quantity Pf = (log f ′)′ = f ′′/ f ′ is called the pre-Schwarzian
derivative of f . The pre-Schwarzian can also be derived from the Jacobian J f = | f ′|2
with Pf = ∂

∂z (log J f ), which perhaps emphasizes its geometric nature better. For
f ∈ UM

loc the Schwarzian derivative is related to its pre-Schwarzian derivative by the
relation

S f = P′f −
1
2

P2
f =

f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

.

The Schwarzian derivative is identically zero if and only if f is a Möbius transfor-
mation, thus it can vaguely be thought of as a measure of how much f differs from
being a Möbius transformation.

The famous Nehari univalence criterion [43, Theorem 1] establishes a sufficient
condition for the univalence of locally univalent meromorphic functions in terms of
the Schwarzian derivative. Namely, if f ∈ UM

loc satisfies

|S f (z)|(1− |z|2)2 ≤ δ, z ∈ D, (2.4)

for δ = 2, then f is univalent in D. This criterion is often seen with the earlier
mentioned substitution 2A = S f and δ = 1 due to the Schwarzian derivative being
intimately related to the solutions of (2.3). A converse of this theorem by Kraus [36]
states that (2.4) with δ = 6 is a necessary condition for the univalence of f . Nehari’s
univalence criterion is sharp by an example by Hille [30], which shows that for each

5



δ > 2 there exists a function f analytic in the unit disc such that f satisfies (2.4) and
attains the value 1 infinitely many times. Explicitly, Hille considered the function

f (z) =
(

1− z
1 + z

)γi
, z ∈ D,

where γ is a real constant, the branch of the complex power function is fixed with
f (0) = 1, and the right-hand constant in (2.4) is δ = 2(1 + γ2). An example by
Schwarz [59, p.162] also shows that, for each γ > 0, the functions

f (z) =
√

1− z2 sin
(

γ log
1 + z
1− z

)
, A(z) =

1 + 4γ2

(1− z2)2 , z ∈ D,

satisfy (2.3) and (2.4), latter with δ = 1 + 4γ2, but f has infinitely many zeroes in D.
Furthermore, by careful inspection of the proof of [59, Theorem 1] by Schwarz, it
can be seen that for any non-trivial solution of (2.3) with f (z1) = f (z2) and z1 �= z2
we have

max
ξ∈〈z1,z2〉

|S f (ξ)|(1− |ξ|2)2 > 2, z1, z2 ∈ D, (2.5)

where the maximum is taken over the hyperbolic segment 〈z1, z2〉 = {ϕz1(ϕz1(z2)t) :
0 ≤ t ≤ 1} joining z1 and z2. Note that (2.5) implies the following: If (2.4) holds in
an annulus r0 < |z| < 1 for δ = 2 and for some 0 < r0 < 1, then f has finite valence
in D, see [59, Corollary 1].

In relation to Nehari’s univalence criterion, Chuaqui and Stowe showed in [10]
that replacing the right-hand side constant in (2.4) with any continuous function
β : [0, 1) → (0, ∞) decaying to one slower than at a linear rate allows oscillatory
behaviour for the solutions of (2.3).

Theorem 2.2. [10, Theorem 5] If β : [0, 1) → (0, ∞) is continuous and limr→1
β(r)−1

1−r =

∞, then there is a holomorphic function A in D satisfying |A(z)| ≤ β(|z|)/(1− |z|2)2 for
all z ∈ D such that some nontrivial solution of f ′′ + A f = 0 has infinitely many zeroes.

Following this, Chuaqui and Stowe also posed the natural question of whether
or not Nehari’s condition with a linear error, that is,

|A(z)|(1− |z|2)2 ≤ 1 + C(1− |z|), z ∈ D, (2.6)

where C > 0, would imply finite oscillation of the solutions of (2.3). Some re-
cent progress regarding this question has been made in [24]. Steinmetz [61, p. 328]
showed earlier that if (2.6) holds, then f is a normal function, that is, the family
{ f ◦ ϕa : a ∈ D}, where ϕa is the unit disc automorphism, is normal in the sense of
Montel [58, Chapters 2 and 3]. Equivalently, ‖ f ‖N = supz∈D f #(z)(1− |z|2) < ∞,
see [37], and we write f ∈ N .

Now let g analytic in D. Then, by the Cauchy integral formula

|g′(z)|(1− |z|2)2 ≤ 4 max
|ζ|= 1+|z|2

2

|g(ζ)|(1− |ζ|2), z ∈ D.

Consequently, the inequality

‖S f ‖H∞
2
≤ 4‖Pf ‖H∞

1
+

1
2
‖Pf ‖2

H∞
1

6



holds. Here, for 0 < p < ∞, we denote ‖g‖H∞
p = supz∈D |g(z)|(1− |z|2)p. Thus,

both the conditions (2.4) and (2.6) hold if |Pf (z)|(1− |z|2) is sufficiently small for
z ∈ D. Note also that by [55, p. 133], we conversely have

‖Pf ‖H∞
1
≤ 2 + 2

√
1 +

1
2
‖S f ‖H∞

2
.

In a similar fashion to Nehari’s criterion, the well-known univalence criterion
by Becker [5, Korollar 4.1] states that if an analytic function of the unit disc with
f ′(0) �= 0 satisfies

|zPf (z)|(1− |z|2) ≤ ρ, z ∈ D, (2.7)

for ρ = 1, then f is univalent in D. For ρ > 1, condition (2.7) does not guarantee
the univalence of f [6, Satz 6]. Note that the inequality holds for ρ = 6 by (2.1).
This is the converse of Becker’s criterion providing another necessary condition for
the univalence of f . Becker’s univalence criterion also has a deep connection to
the theory of differential equations, as the tools and methods used by Becker to
initially prove the theorem originate from Löwner’s differential equation and his
1923 paper [41].

If the assumption on the derivative of f is omitted in Becker’s criterion and we
assume only the analyticity of f , the left side of (2.7) reduces to |Pf (z)|(1− |z|2) [6].
Thus, in relation to the Chuaqui-Stowe question, it is natural to consider whether
Becker’s criterion with a linear error, that is,

|Pf (z)|(1− |z|2) ≤ 1 + C(1− |z|), z ∈ D, (2.8)

for C > 0 would also guarantee any kind of univalence or bounded valence for the
functions it holds for. Indeed, this has been the primary focus in Paper I.

2.3 IMPORTANT SUBCLASSES

There are some subclasses of univalent functions which play a key role in the ge-
ometric study of univalent functions of the unit disc. A domain D ⊂ C is starlike
with respect to a point z0 ∈ D, if for each z ∈ D the line segment [z, z0] is contained
in D. A domain is convex if it is starlike with respect to each of its points. A con-
formal mapping f : D → D is starlike if the set D is starlike with respect to the
origin, and similarly f is convex if D is a convex set. The subclass of S consisting of
convex functions is denoted by C and the subclass consisting of starlike functions is
denoted by S∗. Clearly we have the inclusions C ⊂ S∗ ⊂ S .

A closely related class of analytic functions g with a positive real part such
that g(0) = 1 is denoted by P . This class of analytic functions has proven use-
ful in noteworthy characterizations of both the starlike and convex subclasses of S .
For instance, by [14, Theorem 2.10], a function analytic in D normalized such that
f (0) = 0 and f ′(0) = 1 belongs to S∗ if and only if z f ′(z)/ f (z) ∈ P . Similarly
by [14, Theorem 2.11], an analytic function normalized in the same way as above
belongs to C if and only if (1 + z f ′′(z)/ f ′(z)) ∈ P .

Another important geometric subclass of interest is the class of close-to-convex
functions introduced by Kaplan [34]. A function f analytic in D is close-to-convex
if there exists a convex function g such that the real part of f ′/g′ is strictly posi-
tive in D. Although this definition may seem arbitrary at first, it is equivalent to
| arg f ′/g′| < π/2. This means that the variation of the argument of f ′ is limited
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by a convex function, providing the definition with a more concrete geometric mo-
tivation. For more information on close-to-convex functions, see [14, Chapter 2]
and [56, Chapter 2].

We now turn our attention to the generalization of local univalence to harmonic
functions. Let f be a complex-valued harmonic function in D. Then f has the unique
representation f = h + g, where both h and g are analytic in D and g(0) = 0. In this
case, f is orientation preserving and locally univalent, denoted by f ∈ UH

loc, if and
only if its Jacobian J f = |h′|2 − |g′|2 is strictly positive, by a result by Lewy [38]. In
this case, h ∈ UA

loc and the dilatation ω f = ω = g′/h′ is analytic in D and maps D

into itself. Clearly f = h + g is analytic if and only if the function g is constant.
We can calculate the pre-Schwarzian and Schwarzian derivatives for f = h + g ∈

UH
loc similarly to their analytic versions using their definitions including the Jacobian

J f = |h′|2 − |g′|2, resulting in

Pf = Ph − ωω′

1− |ω|2 ,

and

S f = Sh +
ω

1− |ω|2
(

h′′

h′ ω′ −ω′′
)
− 3

2

(
ωω′

1− |ω|2
)2

.

This generalization of Pf and S f to harmonic functions was introduced and moti-
vated in [29]. Extensions of univalence criteria for harmonic functions are further
discussed in Paper I.

8



3 Function spaces

In this chapter, we present the fundamentals on some function spaces and classes
that are relevant in the context of this thesis. We begin by discussing some proper-
ties of radial weights and proceed to both classical function spaces as well as their
weighted versions induced by the aforementioned weights.

We adopt the following notation. If there exists a constant C = C(·) > 0 for
functions a, b : I → [0, ∞) defined on some set I such that a(x) ≤ Cb(x) for all
x ∈ I, we write a(x) � b(x) or a � b for short. The converse a � b is defined
analogously. If a � b and a � b, we write a � b to indicate that the functions a and
b are comparable or asymptotically equivalent.

3.1 CLASSES OF WEIGHTS

Let D be a domain of the complex plane C. An integrable function ω : D → [0, ∞) is
called a weight. Such a function induces a measure on the domain D, for which we
write ω(E) =

∫
E ω(z) dA(z) for measurable subsets E ⊂ D. If ω(z) = ω(|z|) for all

z ∈ D, then ω is a radial weight. For the purposes of this thesis, we always assume
D = D unless specified otherwise. We also assume that �ω(z) =

∫ 1
|z| ω(s)ds > 0 for

all z ∈ D, for otherwise the weighted spaces of analytic functions considered in this
overview would consist of all analytic functions. For each x ∈ R and a weight ν, we
adopt the notation ν[β](z) = ν(z)(1− |z|2)β. A radial weight ω belongs to the class

of doubling weights �D if there exists a constant C = C(ω) > 1 such that

�ω(r) ≤ C �ω

(
1 + r

2

)
, 0 ≤ r < 1.

Similarly, if there exist constants K = K(ω) > 1 and C = C(ω) > 1 such that

�ω(r) ≥ C �ω

(
1− 1− r

K

)
, 0 ≤ r < 1, (3.1)

we write ω ∈ �D. Observe that by a direct calculation (3.1) is equivalent to

�ω(r) ≤
(

1 +
1

C− 1

) ∫ 1− 1−r
K

r
ω(t) dt, 0 ≤ r < 1.

The intersection �D ∩ �D is denoted by D. The dual nature of the classes �D and �D
can be seen via the known results stating that ω ∈ �D if and only if there exist
C = C(ω) > 0 and β = β(ω) > 0 such that

�ω(r) ≤ C
(

1− r
1− t

)β

�ω(t), 0 ≤ r ≤ t < 1, (3.2)

see [46, Lemma 2.1]. In the same sense, it can be proven using similar arguments,
see for example [47, Lemma B], that ω ∈ �D if and only if there exist C = C(ω) > 0
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and γ = γ(ω) > 0 such that

�ω(t) ≤ C
(

1− t
1− r

)γ

�ω(r), 0 ≤ r ≤ t < 1,

which is effectively the converse of (3.2). It follows that, for 0 ≤ r < 1 and a radial
weight ω of the unit disc, �ω(r)(1− r)−β is essentially increasing for some β > 0
when ω ∈ �D, and similarly �ω(r)(1− r)−γ is essentially decreasing and for some
γ > 0 when ω ∈ �D. This gives an insight to how the radial weights in classes �D
and �D compare to the classical weights ωα(z) = (1− |z|2)α, −1 < α < ∞, since
clearly 1− r � 1− r2 for 0 ≤ r < 1. Namely, weights in the class �D cannot decay to
zero too rapidly while weights in �D cannot grow too fast when compared with the
classical weight. Weights in the intersection D can be thought of as being closest to
the classical radial weights. To give concrete examples, let 1 < α < ∞ and consider
the weight vα defined by

vα(z) =
1

(1− |z|)
(

log e
1−|z|

)α , z ∈ D, (3.3)

for which �vα(z) �
(

log e
1−|z|

)1−α
and vα ∈ �D \D. On the other hand, for the weight

ωγ defined by

ωγ(z) =
γ

(1− |z|)2e
γ

1−|z|
, z ∈ D, γ > 0,

we have �ωγ(z) � exp
( −γ

1−|z|
)

and ωγ ∈ �D \ D, emphasizing the different natures

of the two classes of weights. We proceed to provide useful characterizations for �D
and �D later in the summary of Paper III.

There is a third class of weights of the unit disc which is of special interest in the
context of this thesis. For 1 ≤ x < ∞ we define the moment ωx of a weight ω as

ωx =
∫ 1

0
rxω(r) dr, 0 ≤ r < 1.

Furthermore, if there exist K = K(ω) > 1 and C = C(ω) > 1 such that ωx ≥ CωKx,
then we write ω ∈ M. It is known that �D � M, the proof of which can be found
in [50, Proposition 14], and D = �D ∩ �D = �D ∩M, see [50, Theorem 3]. In addition,
the following lemma shows a useful characterization for the class M. This lemma
originates from [50] wherefrom its proof can be found.

Lemma 3.1. [50] Let ω be a radial weight. Then the following statements are equivalent:

(i) ω ∈ M;

(ii) There exist C = C(ω) > 0 and K = K(ω) > 1 such that

�ω(t) ≤ C
∫ t

0
s

1
K(1−t) ω(s) ds, 1− 1

K
≤ t < 1;

(iii) For some (equivalently for each) β > 0, there exists C = C(ω, β) > 0 such that

ωx ≤ Cxβ
(

ω[β]

)
x

, 1 ≤ x < ∞.
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Lemma 3.1(ii) shows that M is closed under multiplication under any non-
increasing weight. In particular, if ω ∈ M, then ω[β] ∈ M for each β > 0. For more

information on the classes �D, �D, D, M and other related classes, see [46,48,50] and
the relevant references therein.

3.2 FUNCTION SPACES AND UNIVALENT FUNCTIONS

In this section, we present and discuss necessary function spaces to put the upcom-
ing summaries of papers into their proper context. We also discuss some results
regarding univalent functions in those spaces. Recall that H(D) is the set of all
analytic functions in D. Each weighted function space and class presented in this
chapter reduces to its non-weighted version with the natural choice of ω ≡ 1 and to
the classically weighted version with ωα(z) = (1− |z|2)α, α > −1. In the latter case,
for a function space or class X, we write Xωα = Xα.

3.2.1 Hardy, Bergman and Dirichlet spaces

For f ∈ H(D) the Lp-integral means Mp are defined via the restrictions of f to the
circle of radius r, namely

Mp(r, f ) =
(

1
2π

∫ 2π

0
| f (reiθ |p dθ

) 1
p

, 0 < r < 1,

and we set M∞(r, f ) = max|z|=r | f (z)|. For 0 < p < ∞, the Hardy space Hp consists
of all analytic functions f ∈ H(D) such that

‖ f ‖Hp = sup
0<r<1

Mp(r, f ) < ∞.

We also set

Jp
ω( f ) =

∫ 1

0
Mp

∞(r, f )ω(r) dr, f ∈ H(D),

which will prove to be a useful notation in comparing certain kinds of Hardy and
Dirichlet type norms with the maximum modulus. For the fundamental theory
of Hp spaces, see the classical monograph [13]. The weighted Bergman space Ap

ω

consists of functions f ∈ H(D) such that

‖ f ‖p
Ap

ω
=

∫
D
| f (z)|pω(z) dA(z) < ∞,

where πdA(z) = dx dy = dθ rdr, that is, dA is the Lebesgue area measure on the
unit disc normalized such that dA(D) = 1. For the theory of Bergman spaces,
see [15, 27]. The relation between the norms of Hp and Ap can be seen through the
Hardy-Spencer-Stein identity

‖ f ‖p
Hp =

1
2π

∫
D

Δ| f |p(z) log
1
|z| dA(z) + | f (0)|p, f ∈ H(D), (3.4)

where Δ| f |p = p2| f |p−2| f ′|2 is the Laplacian of | f |p, see [60] in relation to the Hardy-
Spencer-Stein identity. It is well known that the Hardy space Hp is, roughly speak-
ing, a limit case of the classically weighted Bergman space Ap

α as α → −1+ [65]. We
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proceed to define

‖ f ‖p
Hp

ω
=

∫ 1

0

(∫
D(0,r)

Δ| f |p dA
)

ω(r) dr =
∫

D
Δ| f |p �ω dA, f ∈ H(D).

Clearly Hp
ω coincides with the Hardy space Hp for ω ≡ 1 by (3.4). We also set

‖ f ‖p
Sp

ω
=

∫ 1

0

(∫
D(0,r)

| f ′|2 dA
) p

2
ω(r) dr =

∫ 1

0
Area( f (D(0, r)))

p
2 ω(r) dr, f ∈ H(D),

where Area( f (D(0, r))) denotes the area of the image of D(0, r) under f count-
ing multiplicities, giving the integral quantity an obvious geometric meaning. We
denote by Hp

ω and Sp
ω the spaces of analytic functions f ∈ H(D) for which the

above respective integral quantities are finite. These spaces originate for the classical
weights in [31, 42] and further appear in the study of conformal maps in [22, 31, 52].

For 0 < p < ∞, the weighted Dirichlet space Dp
ω is defined by

‖ f ‖p
Dp

ω
= ‖ f ′‖p

Ap
ω
+ | f (0)|p =

∫
D
| f ′(z)|pω(z) dA(z) + | f (0)|p < ∞, f ∈ H(D).

The inclusions Dp
p−1 ⊂ Hp and Hq ⊂ Dq

q−1 for 0 < p ≤ 2 ≤ q < ∞ are known
due to results by Littlewood and Paley [40, Theorems 5 and 6]. The inclusions are
strict whenever p �= 2, see [4, pp. 839–840]. The univalent functions of the Hardy
space and the classically weighted Dirichlet space have been studied in [4,22,23,52].
Especially [4, Theorem 1] states that Hp ∩ U = Dp

p−1 ∩ U , 0 < p < ∞, showing that

the univalent functions of Hp coincide with those of Dp
p−1.

The Hardy-Littlewood space HLp consists of those f ∈ H(D) whose Maclaurin
series coefficients satisfy ‖ f ‖p

HLp
= ∑∞

k=0 | �f (k)|p(k + 1)p−2 < ∞. For background
on Hardy-Littlewood spaces, see [13, pp. 95–98] and [26, 31]. Recently, a weighted
version of HLp naturally emerged in relation to the study of integration operators
in [51]. There, for 0 < p < ∞ and a radial weight ω, the weighted Hardy-Littlewood
space HLω

p was defined by the condition

‖ f ‖p
HLω

p
=

∞

∑
k=0
| �f (k)|p(k + 1)p−2ωkp+1 < ∞. (3.5)

Since the Hardy-Littlewood inequalities [13, Theorems 6.2 and 6.3] provide that
Hp ⊂ HLp for 0 < p ≤ 2 and HLp ⊂ Hp for 2 ≤ p < ∞, we have the inclusion
chains

Dp
p−1 ⊂ Hp ⊂ HLp, 0 < p ≤ 2,

and
HLp ⊂ Hp ⊂ Dp

p−1, 2 ≤ p < ∞.

Similarly with the here combined relations between the Hardy and Dirichlet spaces
stated before, the inclusions are strict whenever p �= 2.

Finally, we denote

Ip,q,ω( f ) =
∫ 1

0
Mp

q (r, f ′)(1− r)p
(

1− 1
q

)
ω(r) dr + | f (0)|p, f ∈ H(D),
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for 0 < p, q < ∞, and similarly Ip,q( f ) for short when ω ≡ 1. While this quantity
is strictly speaking not used in the manner of a function space per se, the notation
will prove useful in the studies within Paper II for ω ≡ 1 and in Paper III for
more general radial weights. Using this notation, we state the following known
characterization for univalent functions of the Hardy space:

Theorem 3.1. [23, Theorem 2] Suppose that f ∈ U and β = 1
2 − 1

316 . Then the following
statements hold.

(i) For 0 < p ≤ q < ∞, f ∈ Hp if and only if

Ip,q( f ) =
∫ 1

0
Mp

q (r, f ′)(1− r)p
(

1− 1
q

)
dr + | f (0)|p < ∞, f ∈ U . (3.6)

(ii) If 0 < p < ∞ and (3.6) holds for some q with p
p+1 < q < p, then f ∈ Hp.

(iii) If 0 < p < 1
β and f ∈ Hp, then (3.6) holds for all q with p

p+1−pβ < q < p.

The constant β = 1
2 − 1

316 appearing in the theorem has its roots in an article by
Baernstein [3]. This result will be discussed further in the summary of Paper II.

3.2.2 Bloch, Besov and other spaces

The Bloch space B consists of functions f ∈ H(D) such that

‖ f ‖B = sup
z∈D

| f ′(z)|(1− |z|2) + | f (0)| < ∞, f ∈ H(D).

The above quantity is called the Bloch norm. The little Bloch space B0 consists of
analytic functions for which | f ′(z)|(1− |z|2) → 0 as |z| → 1−. Both [2] and [20]
are great sources for fundamentals on Bloch functions, with latter also containing a
chapter on their relation to univalent functions.

For 1 < p < ∞ the classical Besov space Bp consists of functions f ∈ H(D) such
that the Besov seminorm is finite, that is,

‖ f ‖p
Bp =

∫
D
| f ′(z)|p(1− |z|2)p−2 dA(z) < ∞.

Both the Bloch and Besov spaces are conformally invariant in the sense that ‖ f ◦
ϕa‖B = ‖ f ‖B and similarly for the Besov space. For a good reference on descriptions
of analytic Besov spaces of the unit disc, see [64]. Let Ω ⊂ C a simply connected
domain, denote dΩ(w) = dist(w, ∂Ω), w ∈ Ω, and recall the geometric estimates
(2.2) for univalent functions. Walsh extended this result to Besov spaces in 2000 [63]
in the following manner.

Theorem 3.2. [63, Theorem 1] Let 1 < p < ∞ and let Ω be a simply connected proper
subdomain of C. Suppose further that f ∈ U and f (D) = Ω. Then f ∈ Bp if and only if

∫
Ω

dΩ(w)p−2 dA(w) < ∞.
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The same publication continues to show another similar description for the Besov
space, see [63, Theorem 2]. In general, for a (locally) univalent function f , it is typ-
ical to see some kind of a correspondence between the analytic properties of f , like
inclusions to certain function spaces or norm estimates, and the geometric proper-
ties of either f (D) or f (T). For example, if f ∈ B ∩ U , then f (D) cannot contain
any arbitrarily large discs by (2.2). In addition, [18] contains multiple interesting
results tying certain smoothness conditions of f (T) to the analytic properties of
f ∈ UA

loc. There exist numerous results of the same essence as the phenomenon is
somewhat prevalent within the study of univalent functions, but some additional
good examples can be found in [17] as well as the classical monograph [57].

Although the research articles of this thesis do not contain studies related to the
following spaces and we will not process them in a detailed manner, it is notewor-
thy that multiple geometric and analytic properties of (locally) univalent functions
belonging to the BMOA and VMOA spaces have also been a topic of interest within
existing literature. The function space BMOA of analytic functions with bounded
mean oscillation on T consists of functions f ∈ H2 such that

‖ f ‖2
BMOA = sup

ξ∈D

‖ fξ‖2
H2 = sup

ξ∈D

1
2π

∫
T
| f (z)− f (ξ)|2 1− |ξ|2

|z− ξ|2 |dz| < ∞, z, ξ ∈ D,

where fξ(z) = ( f ◦ ϕξ)(z) − f (ξ) and ϕξ is the automorphism of the unit disc.
The VMOA space of analytic functions with vanishing mean oscillation similarly
consists of functions f ∈ H2 such that ‖ fξ‖H2 → 0 as |ξ| → 1−. Regarding the
univalent functions of these spaces, it is known that B ∩ U = BMOA ∩ U and B0 ∩
U = VMOA ∩ U , see [17, pp. 3] and the references therein. For further references
regarding the study of univalent functions in these spaces, see [12, 17, 18, 21].

To conclude, we note that there is a certain expression that also turns out to play a
significant role in the study of univalent functions in the spaces of analytic functions
discussed in this subsection. Namely, the primitive of the pre-Schwarzian log f ′
expectedly appears in numerous results, especially in ones concerning the Bloch
space B or BMOA. Typically, it should not be surprising to see some kind of results
utilizing this expression when discussing univalent functions of function spaces that
are defined in terms of the derivative of f . For example, majority of the results
in [18] are formulated around this expression. In addition, some interesting results
concerning the relation of Bloch and Dirichlet norms of log f ′ and the univalence of
f can be found in [7].
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4 Summary of papers

4.1 SUMMARY OF PAPER I

In Paper I, we consider conditions for the univalence of locally univalent analytic
functions f ∈ UA

loc of the unit disc D in terms of their pre-Schwarzian derivative.
In particular, we study functions restricted by the condition in (2.8). We find that
imposing this condition guarantees the univalence of a function f ∈ UA

loc in certain
horodiscs, that is, Euclidean discs D(a, r) ⊂ D internally tangent to the unit circle.
We also consider as growth restrictions for the pre-Schwarzian in similar horodiscs.
In addition, we derive an extension to distortion theorems found in classical research
of univalent functions and touch upon generalizations of our main results to locally
univalent harmonic functions.

4.1.1 Distortion theorems

Our first result can be seen as an extension to existing distortion theorems. By using
arguments similar to those in the proof of [7, Theorem 3.2] and in [35], we obtain
the following result.

Theorem 4.1. [33, Theorem 1] Let f be meromorphic in D such that
∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣ ≤ ϕ(|z|), 0 ≤ R ≤ |z| < 1, (4.1)

for some ϕ : [R, 1)→ [0, ∞).

(i) If

lim sup
r→1−

(1− r) exp
(∫ r

R
ϕ(t) dt

)
< ∞, (4.2)

then sup
R<|z|<1

| f ′(z)|(1− |z|2) < ∞.

(ii) If ∫ 1

R
exp

(∫ s

R
ϕ(t) dt

)
ds < ∞, (4.3)

then sup
R<|z|<1

| f (z)| < ∞.

Clearly the required bound in (4.1) for the pre-Schwarzian reduces to (2.1) by
choosing ϕ(t) = (4 + 2t)/(1− t2). The assumptions (i) and (ii) in Theorem 4.1 are
respectively satisfied by the functions

ϕ(t) =
2

1− t2 =

(
log

1 + t
1− t

)′
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and

ψ(t) =
B

1− t2 +
C

1− t2

(
log

e
1− t

)−(1+ε)

,

where ε, C > 0 and 0 < B < 2. By Theorem 4.1, if f is meromorphic in D and
satisfies (4.1) and (4.2) for some ϕ, then f ∈ N . Moreover, if f is also analytic in D,
then f ∈ B, and if (4.3) holds, then f is bounded.

4.1.2 Main results

Our first main result concerns Becker’s univalence criterion in a neighborhood of a
boundary point ζ ∈ T.

Theorem 4.2. [33, Theorem 2] Let f ∈ UA
loc and ζ ∈ T. If there exists a sequence {wn} of

points in D tending to ζ such that
∣∣∣∣ f ′′(wn)

f ′(wn)

∣∣∣∣ (1− |wn|2)→ c (4.4)

for some 6 < c ≤ ∞, then for each δ > 0 there exists a point w ∈ f (D) such that at least
two of its distinct preimages belong to D(ζ, δ) ∩D.

Conversely, if for each δ > 0 there exists a point w ∈ f (D) such that at least two of its
distinct preimages belong to D(ζ, δ) ∩D, then there exists a sequence {wn} of points in D

tending to ζ such that (4.4) holds for some 1 ≤ c ≤ ∞.

It is clear that (4.4) does not guarantee infinite valence for f when c > 6. For
example, the polynomial f (z) = (1− z)2n+1, n ∈ N, satisfies the sharp inequality

∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ (1− |z|2) ≤ 4n, z ∈ D,

although f (z) = ε2n+1 has n solutions in D(1, δ) ∩D for each 0 < ε < δ when
0 < δ(n) < 1 is small enough. Similarly, the function f (z) = (1− z)−p, 0 < p < ∞,
satisfies the sharp inequality

∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2(p + 1), z ∈ D,

and for each 2n < p ≤ 2n + 2, n ∈ N ∪ {0}, the valence of f is n + 1 for suitably
chosen points in the image set.

Let 0 < a < 1 and 0 ≤ θ < 2π. Then the function T(z) = aeiθ + (1 − a)z,
z ∈ D, maps the unit disc D onto the horodisc D(aeiθ , 1− a). We proceed to use this
localization to study the behaviour of locally analytic functions in said horodiscs
by considering the composed mapping g = f ◦ T. The following result shows that
condition (2.8) guarantees univalence in horodiscs of the unit disc for f ∈ UA

loc.

Theorem 4.3. [33, Theorem 4] Let f ∈ UA
loc and assume that (2.8) holds for some 0 < C <

∞. If 0 < C ≤ 1, then f is univalent in D. If 1 < C < ∞, then there exists 0 < a < 1,
a = a(C), such that f is univalent in all discs D(aeiθ , 1− a), 0 ≤ θ < 2π. In particular,
we can choose a = 1− (1 + C)−2.
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Conversely, if f is univalent in all horodiscs of the unit disc, we can derive an
estimate for the growth of its valence. Let f ∈ UA

loc be univalent in each horodisc
D(aeiθ , 1− a), 0 ≤ θ < 2π, for some 0 < a < 1. By the proof of [24, Theorem 6], for
each w ∈ f (D), the sequence of pre-images {zn} ∈ f−1(w) satisfies

∑
zn∈Q

(1− |zn|)1/2 ≤ K�(Q)1/2 (4.5)

for any Carleson square Q and some constant 0 < K < ∞ depending on a. Here

Q = Q(I) =
{

reiθ : eiθ ∈ I, 1− |I|
2π

≤ r < 1
}

is a Carleson square based on the arc I ⊂ ∂D and |I| = �(Q) is the Euclidean arc
length of I. By choosing Q = D in (4.5), we obtain

n( f , r, w) � 1√
1− r

, r → 1−,

where n( f , r, w) is the number of pre-images {zn} = f−1(w) in the disc D(0, r).
Namely, arrange {zn} = f−1(w) by increasing modulus, and let 0 < |zn| = r <
|zn+1| to deduce

(1− r)1/2n( f , r, w) ≤
n

∑
k=0

(1− |zk|)1/2 ≤ K�(D)1/2 < ∞

for some 0 < K(a) < ∞.
We continue to show that, for f ∈ UA

loc, univalence in certain horodiscs guar-
antees growth restrictions for its pre-Schwarzian derivative. In the next theorem
we consider slightly larger horodiscs in comparison to Theorem 4.3 by choosing
a = 1− (1 + C)−1.

Theorem 4.4. [33, Theorem 5] Let f ∈ UA
loc be univalent in all Euclidean discs

D
(

C
1 + C

eiθ ,
1

1 + C

)
, eiθ ∈ ∂D,

for some 0 < C < ∞. Then∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2 + 4(1 + K(z)), z ∈ D,

where K(z) � (1− |z|2) as |z| → 1−.

In view of (2.1), Theorem 4.4 is in a sense sharp. Moreover, since (2.1) implies∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ (1− |z|) ≤ 4 + 2|z|
1 + |z| ≤ 4

for univalent analytic functions f , the last main result of this paper is sharp as well
and is essentially a direct consequence of the above estimate.

Theorem 4.5. [33, Theorem 6] Let f ∈ UA
loc be univalent in all Euclidean discs

D(aeiθ , 1− a) ⊂ D, eiθ ∈ ∂D,

for some 0 < a < 1. Then ∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ (1− |z|) ≤ 4, a ≤ |z| < 1.

17



4.1.3 Generalizations for harmonic functions

To conclude, we consider extensions of our main results to harmonic functions. Uni-
valence criteria, analogous to those of Nehari’s and Becker’s, for harmonic functions
have recently been discovered using the generalizations of the pre-Schwarzian and
Schwarzian derivatives presented in Section 2.3. Namely, there exists 0 < δ0 < 2
such that if f ∈ UH

loc satisfies (2.4) for δ = δ0, then f is univalent in D, see [1]
and [28]. The sharp value of δ0 is not known. Moreover, if f ∈ UH

loc satisfies

|Pf (z)|(1− |z|2) + |ω′(z)|(1− |z|2)
1− |ω(z)|2 ≤ 1, z ∈ D,

then f is univalent. The constant 1 is sharp, by the sharpness of Becker’s univalence
criterion. If one of these mentioned inequalities holds in an annulus r0 < |z| < 1 for
some 0 < r0 < 1 with a slightly smaller right-hand-side constant, then f is of finite
valence [32]. Conversely to these univalence criteria, there exist absolute constants
0 < C1, C2 < ∞ such that if f ∈ UH

loc is univalent, then (2.4) holds for δ = C1 and (2.7)
holds for ρ = C2, see [29]. The sharp values of C1 and C2 are not known.

By the above-mentioned analogues of Nehari’s criterion, Becker’s criterion and
their converses, we obtain generalizations of the results in this paper for harmonic
functions. Of course, the correct operators and constants have to be involved. Theo-
rem 4.2 and its analogue [24, Theorem 1] for the Schwarzian derivative S f are valid
as well. Moreover, the generalizations of Theorems 4.3, 4.4, and 4.5 to harmonic
mappings are valid.

Finally, we state an important generalization of [24, Theorem 3] for harmonic
functions. It gives a sufficient condition for the Schwarzian derivative of f ∈ UH

loc
such that the preimages of each w ∈ f (D) are separated in the hyperbolic met-
ric. Here ξ(z1, z2) is the hyperbolic midpoint of the hyperbolic segment 〈z1, z2〉 for
z1, z2 ∈ D.

Theorem 4.6. [33, Theorem 9] Let f = h + g ∈ UH
loc such that

|SH( f )|(1− |z|2) ≤ δ0(1 + C(1− |z|)), z ∈ D,

for some 0 < C < ∞. Then each pair of points z1, z2 ∈ D such that f (z1) = f (z2) and
1− |ξ(z1, z2)| < 1/C satisfies

dH(z1, z2) ≥ log
2− C1/2(1− |ξ(z1, z2)|)1/2

C1/2(1− |ξ(z1, z2)|)1/2 . (4.6)

Conversely, if there exists a constant 0 < C < ∞ such that each pair of points z1, z2 ∈ D

for which f (z1) = f (z2) and 1− |ξ(z1, z2)| < 1/C satisfies (4.6), then

|SH( f )|(1− |z|2) ≤ C2(1 + ΨC(|z|)(1− |z|)1/3), 1− |z| < (8C)−1,

where ΨC is positive, and satisfies ΨC(|z|)→ (2(8C)1/3)+ as |z| → 1−.

4.2 SUMMARY OF PAPER II

In paper II we consider a known characterization of univalent functions of the
Hardy space Hp in terms of an integral quantity over the Lp means of their deriva-
tives. Namely, by combining [4, Theorem 1] with Theorem 3.1 we see that (3.6) holds
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if either 0 < p ≤ q < ∞ or p
1+p < q < p < 2 + 2

157 , where the last upper bound

comes from the constant β = 1
2 − 1

316 in Theorem 3.1. Our main result shows that
these restrictions on p and q can be significantly loosened and that the estimate is,
for certain values of p and q, valid for all close-to-convex functions.

Theorem 4.7. [53, Theorem 1] Let 0 < p, q < ∞ such that either 2p
2+p < q < 2 or q ≥ 2.

Then

‖ f ‖p
Hp �

∫ 1

0
Mp

q (r, f ′)(1− r)p
(

1− 1
q

)
dr + | f (0)|p (4.7)

for all f ∈ U . Moreover, if 0 < p < ∞ and 1 ≤ q < ∞, then (4.7) is valid for all
close-to-convex functions f .

On one hand, Theorem 4.7 shows that for q ≥ 2 there is no restriction on p.
On the other hand, 2p

2+p ∈ (0, 2) for all 0 < p < ∞, and hence the range 2p
2+p <

q < 2 covers many cases previously excluded by the requirement p < 2 + 2
157 .

However, the hypothesis 2p
2+p < q is obviously strictly stronger than p

1+p < q for
each 0 < p < ∞. The statement on close-to-convex functions is a generalization
of [23, Proposition 1] concerning the case q = 1. In particular, we offer two proofs
concerning the case q ≥ 2, one of which reveals that for p ≥ q we have an asymptotic
equality which we have previously not found in the literature and consider to be of
interest, namely

‖ f ‖p
Hp �

∫ 1

0

(∫
D(0,r)

Δ| f ′|q(z) dA(z)
) p

q
(1− r)p dr, f ∈ U .

We proceed to show that Theorem 4.7 has an extension to the weighted Bergman
space. The natural approach we adopt to obtain (4.8) consists of first applying (4.7)
to the univalent dilatation fr(z) = f (rz) appearing in the Bergman space norm of
f , and then changing the order of radial integrations. The problem then no longer
involves the weight ω and the final step is managed by using the well-known fact
that, for f ∈ U , the estimate | f ′(ρξ)| � | f ′(rξ)| holds for all ξ ∈ T and 0 ≤ r ≤ ρ < 1
such that 1− r � 1− ρ, see for example [57, Corollary 1.6].

Corollary 4.1. [53, Corollary 2] Let 0 < p, q < ∞ and let ω : D → [0, ∞) such that
ω(z) = ω(|z|) for all z ∈ D. Further, assume that one of the following conditions is
satisfied:

(i) 0 < p ≤ q < ∞;

(ii) p
1+p < q < p < 2 + 2

157 ;

(iii) q ≥ 2;

(iv) 2p
2+p < q < 2.

Then

‖ f ‖p
Ap

ω
�

∫ 1

0
Mp

q (r, f ′)(1− r)p
(

1− 1
q

) (∫ 1

r
ω(t)t dt

)
dr

+ | f (0)|p
∫ 1

0
ω(r)r dr, f ∈ U .

(4.8)
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The case q = p of Corollary 4.1 is of special interest. It states that

‖ f ‖p
Ap

ω
�

∫
D
| f ′(z)|p(1−|z|)p−1

(∫ 1

|z|
ω(r)r dr

)
dA(z)+ | f (0)|p

∫ 1

0
ω(r)r dr, f ∈ U .

It is well known that this asymptotic equality is valid for all f ∈ H(D) if ω is the
standard radial weight (1 − |z|2)α with −1 < α < ∞. These kind of asymptotic
equalities are known as Littlewood-Paley formulas. The rough idea behind these
asymptotics is that f ′ behaves in a somewhat similar way as f divided by the dis-
tance from the boundary. However, it is known that all Bergman spaces do not
admit this property. Namely, there exist radial weights ω such that

‖ f ‖p
Ap

ω
�

∫
D
| f ′(z)|p(1− |z|)pW(z) dA(z) + | f (0)|p, f ∈ H(D),

fails to be true for each non-negative radial function W on D unless p = 2 [48,
Proposition 4.3].

4.3 SUMMARY OF PAPER III

In Paper III we consider a variety of inequalities related to Bergman and Dirichlet
type spaces induced by radial weights, as well as some other function spaces. Some
of the results obtained can be considered as generalizations of certain known special
cases, especially ones known from existing literature consisting of similar analysis
conducted on classically weighted function spaces, while others are completely new.
Furthermore, we apply the obtained norm inequalities in order to relate the growth
of the maximum modulus of a conformal map f , measured in terms of a weighted
integrability condition, to a geometric quantity involving the area of image under
f of a disc centered at the origin. Our findings in this direction yield geometric
characterizations of conformal maps in certain weighted Dirichlet and Besov spaces.

4.3.1 Lemmas on radial weights

We begin by presenting necessary lemmas for the radial weights we proceed to use
in the proofs of this paper, focusing on the classes �D, �D, D and M introduced
earlier. While some of the weight-related lemmas are slight extensions on existing
characterizations of weights of the aforementioned classes, others are unpublished
results of J. A. Peláez and the paper’s second author J. Rättyä, in which case the
connection is explicitly stated. The first lemma contains useful characterizations of
the class �D. For a proof of the fact that (i)–(iv) are equivalent, see [46, Lemma 2.1]
and [50]. The last part of the lemma is new. It is worth noticing that it fails in
the case β = 0 because by [49, Theorem 3] there exists a weight ω �∈ �D such that
�ω[−1] ∈ �D. However, the proof shows that if ω ∈ �D then �ω[β−1] ∈ �D for each
−1 < β < ∞, provided �ω[β−1] ∈ L1.

Lemma 4.1. Let ω be a radial weight. Then the following statements are equivalent:

(i) ω ∈ �D;

(ii) There exist C = C(ω) ≥ 1 and β = β(ω) > 0 such that

�ω(r)
(1− r)β

≤ C
�ω(t)

(1− t)β
, 0 ≤ r ≤ t < 1;
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(iii) For some (equivalently for each) β > 0 there exists a constant C = C(ω, β) > 0 such
that

xβ
(

ω[β]

)
x
≤ Cωx, 0 ≤ x < ∞;

(iv) There exists C = C(ω) > 0 such that ωx ≤ Cω2x for all 0 ≤ x < ∞;

(v) �ω[β−1] ∈ �D for some (equivalently for each) β > 0.

The next elementary lemma proves to be useful for studying the types of in-
equalities examined in this paper. The special case q = p shows that �ω � �ν on [0, 1)
is a sufficient condition for the identity operator I : Ap

ν → Ap
ω to be bounded.

Lemma 4.2. [54, Lemma 8] Let 0 < p < ∞, 0 < q ≤ ∞ and 0 ≤ ρ < 1, and let ω and ν
be radial weights such that �ω � �ν on [ρ, 1). Then

∫ 1

ρ
Mp

q (r, f )ω(r) dr �
∫ 1

ρ
Mp

q (r, f )ν(r) dr, f ∈ H(D).

A basic result that we will need is a set of characterizations of weights in �D given
in the next lemma. The characterization (ii) is well known and a detailed proof can
be found in [47], while the characterizations (iii)-(vii) are unpublished results by J. A.
Peláez and the second author J. Rättyä, and (viii) is new. In this paper we do not use
the conditions (iii) and (iv) as such but as the proof passes naturally through them
and the characterizations seem useful they are included here for the convenience of
the reader and for further reference. The points ρn = ρn(ω, K) ∈ [0, 1) appearing in
(iv) are defined by the identity

ρn = ρn(ω, K) = min{0 ≤ r < 1 : �ω(r) = �ω(0)K−n}, 1 < K < ∞, n ∈ N ∪ {0}.

Observe that ρ0 = 0 < ρ1 < · · · < ρn < ρn+1 < · · · for all n ∈ N \ {1}, and ρn → 1−
as n → ∞.

Lemma 4.3. Let ω be a radial weight. Then the following statements are equivalent:

(i) ω ∈ �D;

(ii) There exist C = C(ω) > 0 and β = β(ω) > 0 such that

�ω(t)
(1− t)β

≤ C
�ω(r)

(1− r)β
, 0 ≤ r ≤ t < 1;

(iii) For some (equivalently for each) γ ∈ (0, ∞), there exists C = C(γ, ω) > 0 such that
∫ r

0

dt
�ω(t)γ(1− t)

≤ C
�ω(r)γ

, 0 ≤ r < 1;

(iv) For some (equivalently for each) K > 1, there exists C = C(ω, K) > 0 such that
1− ρn ≤ C(1− ρn+1) for all n ∈ N ∪ {0};

(v) For some (equivalently for each) β ∈ (0, ∞), there exists C = C(β, ω) > 1 such that

�ω(r) ≤ C
�ω[β](r)

(1− r)β
, 0 ≤ r < 1;
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(vi) For some (equivalently for each) β ∈ (0, ∞), there exists C = C(β, ω) ∈ (0, 1) such
that ∫ 1

r �ω(t)β(1− t)β−1 dt
(1− r)β

≤ C �ω(r), 0 ≤ r < 1;

(vii) For some (equivalently for each) γ ∈ (0, ∞), there exists C = C(γ, ω) > 0 such that
∫ 1

r

�ω(s)γ

1− s
ds ≤ C �ω(r)γ, 0 ≤ r < 1;

(viii) �ω[β−1] ∈ �D for some (equivalently for each) 0 ≤ β < ∞.

We proceed to prove a proposition which provides us with more necessary tools
to handle the main results of our paper. Although (i) is an estimate concerning
Bergman space norms for all analytic functions, the essence of this result lies in han-
dling the weights in an appropriate manner to gain all three parts of the proposition.

Proposition 4.1. [54, Proposition 10] Let ω be a radial weight and 0 < p < ∞. Then the
following statements hold:

(i) If 0 < q < 1, then

‖ f ‖Ap
�ω[q−2]

� ‖ f ‖Ap
ω[q−1]

, f ∈ H(D); (4.9)

(ii) If 1 ≤ q < ∞, then a necessary condition for (4.9) to hold is that both �ω[q−2] and ω
belong to M;

(iii) If 1 ≤ q < ∞, then a sufficient condition for (4.9) to hold is ω ∈ �D.

The next lemma is an unpublished result by J. A. Peláez and the second author
J. Rättyä. It contains a set of characterizations of the class M, and it should be
compared with Lemma 3.1 in Section 3.1.

Lemma 4.4. Let ω be a radial weight. Then the following statements are equivalent:

(i) ω ∈ M;

(ii) For some (equivalently for each) 0 < γ < ∞, there exists C = C(ω, γ) > 0 such that∫ ∞

x
ω

γ
y

dy
y
≤ Cω

γ
x , 1 ≤ x < ∞;

(iii) For some (equivalently for each) 0 ≤ β < ∞, there exists C = C(ω, β) > 0 such that∫ ∞

x
ωy

dy
yβ+1 ≤ C

ωx

xβ
, 1 ≤ x < ∞;

(iv) For some (equivalently for each) 0 ≤ β < ∞, there exists C = C(ω, β) > 0 such that
∫ 1

1− 1
x

�ω[β−1](t) dt ≤ C
ωx

xβ
, 1 ≤ x < ∞.

We will need one more auxiliary result concerning the class M. It is the next
lemma which is an unpublished result by J. A. Peláez and the second author J. Rät-
tyä.

Lemma 4.5. [54, Lemma 16] Let ω ∈ M. Then there exists β = β(ω) > 0 such that
ω[−β] ∈ M.
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4.3.2 Auxiliary results

We continue to present the auxiliary results and lemmas used to obtain our main
results. Many of these lemmas prove more than what is strictly needed for the
asymptotic estimates in our main results alone. The first lemma considers different
ways of attaining upper bounds for Jp

ω in terms of suitable Dirichlet space norms.

Proposition 4.2. [54, Proposition 12] Let ω be a radial weight. Then the following state-
ments hold:

(i) If 0 < p ≤ 1, then Jp
ω( f ) � ‖ f ′‖p

Ap
�ω[p−2]

for all f ∈ S ;

(ii) If 0 < p < 1 and ω ∈ �D, then Jp
ω( f ) � ‖ f ′‖p

Ap
�ω[p−2]

for all f ∈ H(D);

(iii) J1
ω( f ) � J1

�ω
( f ′) + | f (0)| � ‖ f ′‖A1

ω
+ | f (0)| for all f ∈ H(D);

(iv) If 1 < p < ∞ and ω ∈ �D, then

Jp
ω( f ) � ‖ f ′‖p

Ap
ω[p−1]

+ | f (0)|p, f ∈ H(D).

Moreover, this estimate is in general false for the class S if ω ∈ �D \D.

In the next result, we find upper bounds for ‖ f ‖p
Hp

ω
and ‖ f ‖p

Sp
ω

for univalent

functions in terms of Jp
ω( f ).

Lemma 4.6. [54, Lemma 13] Let 0 < p < ∞ and ω a radial weight. Then

‖ f ‖p
Hp

ω
≤ 2πpJp

ω( f ), f ∈ U ,

and
‖ f ‖p

Sp
ω
≤ π

p
2 Jp

ω( f ), f ∈ U .

None of the corresponding asymptotic inequalities is valid for all f ∈ H(D) unless ω
vanishes almost everywhere on D.

The last assertion on the necessity of univalence of f can be deduced with the
following reasoning. The monomial mn(z) = zn, n ∈ N, satisfies

Jp
ω(mn) = ωnp, ‖mn‖p

Hp
ω
= 2πnpωnp, and ‖mn‖p

Sp
ω
= (πn)

p
2 ωnp, n ∈ N,

and hence Jp
ω(mn) does not dominate ‖mn‖p

Hp
ω

nor ‖mn‖p
Sp

ω
unless ω vanishes almost

everywhere on D.
For f ∈ H(D) with the Maclaurin series expansion f (z) = ∑∞

k=0
�f (k)zk, write

P(r, f ) =
∞

∑
k=1
| �f (k)|rk, 0 ≤ r < 1.

We proceed to state a generalization of [25, Theorem 15] and [42, Proposition 2] to
doubling weights. We show that the quantity Jp

ω is bounded by ‖ f ‖p
Sp

ω
for suitably

chosen radial weights.

23



Lemma 4.7. [54, Lemma 14] Let 0 < p < ∞ and ω ∈ D. Then

Jp
ω( f ) �

∫ 1

0
P(r, f )pω(r) dr + | f (0)|p � ‖ f ‖p

Sp
ω
+ | f (0)|p, f ∈ H(D).

Moreover, the estimate Jp
ω( f ) � ‖ f ‖p

Sp
ω
+ | f (0)|p is in general false for the class S if 0 <

p < ∞ and ω ∈ �D \D.

The next result is a generalization of a known result based on [31, Theorem 1]
and [42, Theorem 2] which state, that the estimates presented below are valid for
the classical weight ωα(z) = (1− |z|2)α, α > −1.

Lemma 4.8. [54, Lemma 15] Let ω ∈ D. Then the following statements hold:

(i) If 0 < p ≤ 2, then ‖ f ‖Sp
ω
� ‖ f ‖Hp

ω
for all f ∈ H(D);

(ii) If 2 ≤ p < ∞, then ‖ f ‖Hp
ω
� ‖ f ‖Sp

ω
for all f ∈ H(D).

Both estimates are in general false for the class S if p �= 2 and ω ∈ �D \D.

We continue with two lemmas allowing us to compare the functions in Sp
ω and

the maximum modulus Jp
ω with Hardy-Littlewood type sums.

Lemma 4.9. [54, Lemma 17] Let ω ∈ M. Then the following statements hold:

(i) If 0 < p ≤ 2, then ∑∞
k=1 | �f (k)|pkp−1ω2k � ‖ f ‖p

Sp
ω

for all f ∈ H(D);

(ii) If 2 ≤ p < ∞, then ‖ f ‖p
Sp

ω
� ∑∞

k=1 | �f (k)|pkp−1ω2k for all f ∈ H(D).

Both estimates are in general false for the class S if p �= 2 and ω ∈ �D \D.

Lemma 4.10. [54, Lemma 18] Let 1 < p < ∞ and ω ∈ M. Then

Jp
ω( f ) �

∞

∑
k=0
| �f (k)|p(k + 1)p−1ωk, f ∈ H(D).

This estimate is in general false for the class S if ω ∈ �D \D.

The results of this subsection will be completed by stating a result comparing
the sum ∑∞

k=1 | �f (k)|pkp−1ωk and the Dirichlet norm ‖ f ′‖p
Ap
�ω[p−2]

under a natural hy-

pothesis on ω in our setting. While not used in any of the proofs of the main results
to be presented, it provides useful norm inequalities on its own. The proof relies on
the Hardy-Littlewood inequalities, see [13, Theorems 6.2 and 6.3].

Proposition 4.3. [54, Proposition 19] Let 0 < p < ∞ and let ω be a radial weight such
that �ω[p−2] ∈ �D. Then the following statements hold:

(i) If 0 < p ≤ 2, then ∑∞
k=1 | �f (k)|pkp−1ωk � ‖ f ′‖p

Ap
�ω[p−2]

for all f ∈ H(D);

(ii) If 2 ≤ p < ∞, then ‖ f ′‖p
Ap
�ω[p−2]

� ∑∞
k=1 | �f (k)|pkp−1ωk for all f ∈ H(D).
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Multiple of the lemmas presented in this section state that the estimates therein
are generally not valid for all functions in the class S if ω ∈ �D \ D. To see the rea-
soning behind this, consider the function f (z) = − log(1− z) along with the radial
weight vα defined in (3.3). Clearly f ∈ S and vα ∈ �D \ D. With these choices, the
integral quantities that define their respective function spaces and classes studied in
this paper take the form

‖ f ‖Xp
vα
�

∫ 1

0

dr

(1− r)
(
log e

1−r
)α+x ,

where the exponent x is dependent on the function space or class X. Straightforward
calculations show that x = 0 for Ap

vα [p−1]
for the derivative f ′(z) = (1− z)−1 in view

of Proposition 4.2. Similarly for f , we have x = −p for Jp
vα , x = −p/2 for Sp

vα , and
x = 1− p for Hp

vα . The last asymptotic for Hp
vα is a consequence of the fact that,

for each δ > 0, the function t 	→ tδ log(2e
1
δ t−1) is increasing on (0, 2). For the sum

appearing in Lemma 4.9, we have

∞

∑
k=1
| �f (k)|pkp−1(vα)2k �

∞

∑
k=1

k−1
�vα

(
1− 1

k

)
�

∞

∑
k=1

1

k (log(k + 1))α−1 ,

and similarly for the sum appearing in Lemma 4.10. Hence the parts of our results
claiming that the presented estimates do not generally hold for all f ∈ S and ω ∈
�D \ D can be shown by choosing α suitably depending on the comparison under
inspection.

4.3.3 Main results

We turn to present the main results of the paper. The first few results concentrate
on establishing asymptotic inequalities between weighted Bergman spaces in terms
of what assumptions are necessary to demand from the respective radial weights.
Note that multiple results are not restricted to conformal maps, but rather are valid
for all analytic functions of the unit disc.

Theorem 4.8. [54, Theorem 1] Let ω be a radial weight and 0 < p, q < ∞. Then there
exists a constant C = C(p, q, ω) > 0 such that

‖ f ‖Ap
ω[q−1]

≤ C‖ f ‖Ap
�ω[q−2]

, f ∈ H(D), (4.10)

if and only if either �ω[q−2] ∈ �D or �ω[q−2] �∈ L1.

The case q = 1 is valid by [49, Theorem 8], so our contribution consists of treating
the other positive values of q. Moreover, for each 1 < q < ∞, we have �ω[q−2] ∈ �D
if and only if ω ∈ �D by Lemma 4.1(v). This equivalence is certainly false in general
for 0 < q ≤ 1, because, for each 1 < α < ∞, the weight vα defined in (3.3) belongs
to �D, but �vα [−1] is not even a weight if α ≤ 2. However, if ω ∈ �D and �ω[q−2] ∈ L1,

then �ω[q−2] ∈ �D for each 0 < q < ∞ by the proof of Lemma 4.1(v). The converse

implication is also false because there exists a weight ω �∈ �D such that �ω[−1] ∈ �D
by [49, Theorem 3].
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The estimate in Theorem 4.8 would not be much of use unless we were able to
say when the two norms or seminorms are actually comparable. The next theorem
establishes the norm comparability we are after.

Theorem 4.9. [54, Theorem 2] Let ω be a radial weight and 0 < p, q < ∞ such that
�ω[q−2] ∈ L1. Then the following assertions hold:

(i) If 0 < q < 1, then

‖ f ‖Ap
�ω[q−2]

� ‖ f ‖Ap
ω[q−1]

, f ∈ H(D), (4.11)

if and only if �ω[q−2] ∈ �D.

(ii) If q = 1, then (4.11) is satisfied if and only if �ω[−1] ∈ D.

(iii) If 1 < q < ∞, then (4.11) is satisfied if and only if ω ∈ D.

The next theorem concerns the converse of (4.10), to which we give a partial
result. Proposition 4.1(ii) shows that, for each radial weight ω, 1 ≤ q < ∞ and
0 < p < ∞, a necessary condition for the estimate

‖ f ‖Ap
�ω[q−2]

� ‖ f ‖Ap
ω[q−1]

, f ∈ H(D), (4.12)

to hold is ω ∈ M. We have been unable to judge if ω ∈ M is also a sufficient
condition for (4.12) to hold unless p = 2 (or p = 2n for some n ∈ N).

Theorem 4.10. [54, Theorem 3] Let ω be a radial weight and 1 ≤ q < ∞. Then the
following assertions are equivalent:

(i) There exists a constant C = C(ω, q) > 0 such that

‖ f ‖A2
�ω[q−2]

≤ C‖ f ‖A2
ω[q−1]

, f ∈ H(D);

(ii) There exists a constant C = C(ω, q) > 0 such that
(
�ω[q−2]

)
x
≤ C

(
ω[q−1]

)
x

, 1 ≤ x < ∞;

(iii) ω ∈ M.

The next result establishes a generalization to the well-known embeddings be-
tween Dp

p−1 and Hp discussed in Section 3.2.1 as well as giving a concrete charac-
terization of the weights the inequalities hold for. In addition, we show that the
estimates require certain conditions from the weight ω with the doubling class �D in
the case of all analytic functions, but for conformal maps these assumptions are not
necessary.

Theorem 4.11. [54, Theorem 4] Let 0 < p < ∞ and let ω be a radial weight. Then the
following assertions hold:

(i) If 0 < p < 2, then ‖ f ‖Hp
ω
� ‖ f ′‖Ap

�ω[p−2]

for all f ∈ H(D) if and only if �ω[p−2] ∈ �D
or �ω[p−2] �∈ L1;
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(ii) If 2 < p < ∞, then ‖ f ′‖Ap
�ω[p−2]

� ‖ f ‖Hp
ω

for all f ∈ H(D) if and only if ω ∈ �D.

Moreover, both norm estimates are valid for all f ∈ S without any hypotheses on ω.

In proving the last assertions for the class S , we appeal to the growth and dis-
tortion theorems for functions in S . Namely, by [14, Theorem 2.7],∣∣∣∣ f ′(z)

f (z)

∣∣∣∣ ≤ 1
|z|

1 + |z|
1− |z| , z ∈ D \ {0}, f ∈ S ,

and hence, for 2 ≤ p < ∞ and 0 < r < 1, we have

Mp
p(r, f ′) = 1

2π

∫ 2π

0
| f (reiθ)|p−2| f ′(reiθ)|2

∣∣∣∣ f ′(reiθ)

f (reiθ)

∣∣∣∣
p−2

dθ � M1(r, Δ| f |p)
rp−2(1− r)p−2 .

The assertion for 2 ≤ p < ∞ follows from this estimate and standard arguments. In
a similar way we obtain

Mp
p(r, f ′) � M1(r, Δ| f |p)r2−p(1− r)2−p, 0 < r < 1,

provided 0 < p < 2. This yields the assertion concerning the class S .
All the theorems and the estimates within so far have primarily been valid for

all analytic functions of the unit disc. The remaining main results will turn our
focus more towards conformal maps. We continue to present a result generalizing
known results for classically weighted spaces in [22] and [52] to more general radial
weights. We find that ω ∈ D suffices to guarantee that the norms of univalent
functions in Hp

ω and Sp
ω along with the maximum modulus integral quantity Jp

ω are
comparable for all 0 < p < ∞.

Theorem 4.12. [54, Theorem 5] Let 0 < p < ∞ and ω ∈ D. Then

‖ f ‖p
Hp

ω
+ | f (0)|p � ‖ f ‖p

Sp
ω
+ | f (0)|p � Jp

ω( f ), f ∈ U .

The following theorem provides yet another comparability result for univalent
functions, now tying two differently weighted Dirichlet spaces with the quantities
Jp
ω and Ip,q,ω.

Theorem 4.13. [54, Theorem 6] Let 2 ≤ p, q < ∞ and ω ∈ D. Then

‖ f ‖p
Dp

ω[p−1]

+ | f (0)|p � ‖ f ‖p
Dp

�ω[p−2]

+ | f (0)|p � Jp
ω( f )

� Ip,q,ω( f ) + | f (0)|p, f ∈ U .

We conclude this section with a result showing a comparability between the max-
imum modulus quantity Jp

ω and a sum of the Hardy-Littlewood type for univalent
functions. Note that, for ω ∈ �D, the sum appearing in the definition of the weighted
Hardy-Littlewood space in (3.5) is comparable to the right hand side of (4.13), since
an application of Lemma 4.1(iv) shows that in this case, for each fixed 0 < p < ∞,
the moments satisfy ωkp+1 � ωk for all k ∈ N.

Theorem 4.14. [54, Theorem 7] Let 1 ≤ p ≤ 2 and ω ∈ D. Then

Jp
ω( f ) �

∞

∑
k=0
| �f (k)|p(k + 1)p−1ωk, f ∈ U . (4.13)

Moreover, this estimate is valid for all close-to-convex functions if 1 ≤ p < ∞.
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