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Abstract: The propagation of a novel class of paraxial spatially partially coherent beams
exhibiting Bessel-type correlations is studied in free space and in paraxial optical systems. We
show that, under certain conditions, such beams can have functionally identical forms of the
absolute value of the complex degree of spatial coherence not only at the source plane and in
the far zone, but also at all finite propagation distances. Under these conditions the degree of
spatial coherence properties of the field is a shape-invariant quantity, but the spatial intensity
distribution is only approximately shape-invariant. The main properties of this class of model
beams are demonstrated experimentally by passing a coherent Gaussian beam through a rotating
wedge and measuring the coherence of the ensuing beams with a Young-type interferometer
realized with a digital micromirror device.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
OCIS codes: (030.1640) Coherence; (320.6629) Wave propagation.
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1. Introduction

Partially spatially coherent model sources and light beams generated by them have attracted a
great deal of interest over the past few decades. Apart from classical Gaussian Schell-model
(GSM) sources and beams [1], a large number of fields with more unconventional correlation
properties have been introduced and demonstrated, which exhibit a wide variety of interesting
propagation properties and applications [2–4]. Among these, Bessel-correlated fields originally
introduced by Gori [5] are particularly interesting [6–10]. This type of fields can be generated, e.g.,
by collimating light emitted by a spatially incoherent ring source. They can be (approximately)
propagation-invariant in the sense that the spatial coherence coherence properties remain nearly
unchanged as the field traverses forward over considerable distances [11]. As such, they can
be viewed as generalizations of fully coherent Bessel fields [12] into the domain of partially
coherent optics.
While no fields with a finite spatial extent can possess the property of strict propagation-

invariance, a less strict condition of shape-invariant propagation can sometimes be satisfied.
By this we refer to fields that experience only a scale change of the intensity distribution upon
propagation. An even less strict condition is that the field at the source plane is of the same
functional form as the radiation field in the far zone; we will call fields that behave in this matter
as being self-Fourier-transforming. Hermite–Gaussian and Laguerre–Gaussian laser beams are
well-known examples of fully coherent fields that are both shape-invariant and self-Fourier-
transforming. Partially coherent fields that satisfy these criteria are also known. These include
standard GSM fields, which can be thought of as superpositions of either laser modes [13–15]
or ‘elementary’ spatially or angularly displaced Gaussian beams [16–18]. Such superpositions
can also lead to spatially partially coherent fields with anisotropic shape-invariant intensity
distributions extending from the source plane to the far zone, which is not possible with fully
coherent fields [19]. Moreover, partially coherent beams with properties not shared by coherent
beams, such as twist phase [20], can also be described using coherent-mode superpositions [21].
It is therefore safe to state that partial spatial coherence adds new degrees of freedom to optical
beam formation, which motivates further studies on the subject.
We have recently introduced a class of Bessel-correlated fields, which can be generated by

particularly simple experimental techniques: passing a coherent light beam through a rotating
tilted glass plate or wedge [22]. Under certain conditions the cross-spectral density function at
the source plane and the angular correlation function were found to have the same functional
form. In this sense the fields introduced in [22, 23], behave like self-Fourier-transforming fields.
In this paper we consider the paraxial propagation of this class of Bessel-correlated fields both
analytically end experimentally.
The paper is structures as follows. In Sect. 2 we summarize briefly the main results of [22].

The propagation of these fields in free space and in first-order optical systems is discussed in
Sects. 3–5, with particular attention to self-Fourier-transforming fields in Sect. 4. It is shown,
e.g., that the absolute value of the complex degree of spatial coherence of these beams is a
shape-invariant quantity if the condition for self-Fourier-transformation is satisfied. However, the
beam intensity distribution is not strictly shape-invariant, and in this sense the behavior of the
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model fields considered here is different from those radiated by GSM sources [17]. Experimental
verifications of the main results are provided in Sect. 6, and conclusions are drawn in Sect. 7.

2. Source model

Figure 1 illustrates the geometry to be considered in our experiments, and it represents a simple
method to generate model fields discussed below. Here a coherent Gaussian beam with its waist
at the plane z = 0 is incident on a rotating prism with axial thickness d, wedge angle α, and
refractive index n. When the wedge rotates about the z axis, the axial ray draws a circle of
radius R = d tan (α − α′), with α′ = arcsin (sinα/n), on the rear face of the wedge (at z = 0)
and propagates at an angle β = arcsin [n sin (α − α′)] with respect to the z axis. At each instant
of time a Gaussian beam propagating in the direction of this ray emerges; upon rotation of the
wedge a partially spatially coherent field consisting of all such ‘elementary’ fields is generated in
time-averaged sense. We describe it with a cross-spectral density function, considering the CSD
in the sense of ensemble averaging with the elementary fields acting as realizations with equal
probability of occurrence.

w0

d

α

β z

R

n

0

Fig. 1. Geometry. A Gaussian beam with 1/e2 waist radius w0 is incident on a rotating
prism with wedge angle α, central thickness d, and refractive index n. In the paraxial domain
(small values of α) the output beam at z = 0 is a spatially displaced [by R ≈ dα(1 − 1/n)]
and angularly deflected [by β ≈ α(n − 1)] Gaussian beam.

The cross-spectral density function (CSD) of the field that emerges from the wedge in the
geometry of Fig. 1 can be described (at any plane z ≥ 0) by an elementary-field superposition [22]

W(x1, y1, x2, y2, z) =
1

2π

∫ 2π

0
e∗(x1, y1, z; φ)e(x2, y2, z; φ)dφ, (1)

where a single elementary-field contribution e(x, y, z; φ) depends on the (time-varying) azimuth
angle φ. When the wedge is illuminated by a coherent Gaussian beam, the emerging Gaussian
elementary field at the exit plane z = 0 of the wedge can be expressed as

e(x, y, 0; φ) = e0 exp

[
−(x − R cos φ)2 + (y − R sin φ)2

w2
0

]
exp [ik0 sin β (x cos φ + y sin φ − R)] ,

(2)

where k0 = 2π/λ0 is the vacuum wave number. At the plane z = 0 the CSD then becomes

W(x1, y1, x2, y2, 0) = S0 exp

(
− x2

1 + x2
2 + y2

1 + y2
2 + 2R2

w2
0

)
I0 [a(x1, y1, x2, y2, 0)] , (3)
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where S0 = |e0 |2, I0 is the zeroth-order modified Bessel function,

a(x1, y1, x2, y2, 0) =
4R
w2

0

[(
x̄ − i

zR sin β
R

∆x
2

)2
+

(
ȳ − i

zR sin β
R

∆y

2

)2
]1/2

, (4)

and zR = k0w
2
0/2 is the Rayleigh range of the incident Gaussian beam. In writing Eq. (4) we

have introduced average spatial coordinates x̄ = 1
2 (x1 + x2), ȳ = 1

2 (y1 + y2) as well as difference
spatial coordinates ∆x = x2 − x1, ∆y = y2 − y1. The intensity distribution at z = 0 is given by

S(x, y, 0) = W(x, x, y, y, 0) = S0 exp

[
−2

(
x2 + y2 + R2)

w2
0

]
I0

[
4R
w2

0

√
x2 + y2

]
(5)

and the complex degree of spatial coherence takes the form

µ(x1, x2, y1, y2, 0) =
W(x1, x2, y1, y2, 0)√

S(x1, y1, 0)S(x2, y2, 0)

=
I0 [a(x1, y1, x2, y2, 0)]√

I0 [a(x1, y1, x1, y1, 0)] I0 [a(x2, y2, x2, y2, 0)]
. (6)

This is the class of Bessel-correlated model sources introduced in [22], where also the limiting
cases R→ 0 and β→ 0 were considered in detail.

3. Propagation in free space

By inserting from Eq. (2) into the standard Fresnel formula

e(x, y, z; φ) = k0
i2πz

exp (ik0z) exp
[
ik0
2z

(
x2 + y2

)]
×

∬ ∞

−∞
e(x ′, y′, 0; φ) exp

[
ik0
2z

(
x ′2 + y′2

)]
exp

[
− ik0

z
(xx ′ + yy′)

]
dx ′dy′ (7)

for free-space propagation and carrying out the integrations, we obtain an expression for the
elementary field at any propagation distance in the form

e(x, y, z; φ) = e0
1 + iz/zR

exp
[
ik0z

(
1 − 1

2
sin2 β

1 + iz/zR

)]
exp

[
−(x − R cos φ)2 + (y − R sin φ)2

w2
0 (1 + iz/zR)

]
× exp

[
ik0 sin β
1 + iz/zR

(x cos φ + y sin φ − R)
]
. (8)

On inserting this expression into Eq. (1) we arrive at

W(x1, y1, x2, y2, z) =
|e0 |2

1 + (z/zR)2

× exp

[
−k0zR sin2 β

(z/zR)2
1 + (z/zR)2

]
exp

[
− x2

1 + y2
1 + R2

w2
0 (1 − iz/zR)

]
exp

[
− x2

2 + y2
2 + R2

w2
0 (1 + iz/zR)

]
× 1

2π

∫ 2π

0
exp {[c(z)x̄ − id(z)∆x/2] cos φ + [c(z)ȳ − id(z)∆y/2] sin φ} dφ, (9)

where

c(z) = 4
w2

0

R + z sin β
1 + (z/zR)2

=
4R

w2(z)
(
1 +

z
R

sin β
)
, (10)
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d(z) = 2k0
Rz/z2

R + sin β
1 + (z/zR)2

=
4R

w2(z)

(
z

zR
+

zR
R

sin β
)
, (11)

and

w(z) = w0
[
1 + (z/zR)2

]1/2
. (12)

The integration in Eq. (9) then gives

W(x1, y1, x2, y2, z) = S0
w2

0
w2(z) exp

[
− x2

1 + x2
2 + y2

1 + y2
2 + 2 (R − z sin β)2

w2(z)

]
× I0 [a(x1, y1, x2, y2, z)] exp

[
ik0

2R(z)
(
x2

2 − x2
1 + y2

2 − y2
1

)]
, (13)

where

a(x1, y1, x2, y2, z) =
{
[c(z)x̄ − id(z)∆x/2]2 + [c(z)ȳ − id(z)∆y/2]2

}1/2

=
4R

w2(z)

{[(
1 +

z
R

sin β
)

x̄ − i
(

z
zR
+

zR
R

sin β
)
∆x
2

]2

+

[(
1 +

z
R

sin β
)
ȳ − i

(
z

zR
+

zR
R

sin β
)
∆y

2

]2
}1/2

(14)

and

R(z) = z + z2
R/z. (15)

The intensity distribution S(x, y, z) = W(x, y, x, y, z) of the field reads as

S(x, y, z) =

S0
w2

0
w2(z) exp

{
− 2
w2(z)

[
x2 + y2 + (R − z sin β)2]} I0

[
4R

w2(z)
(
1 +

z
R

sin β
) √

x2 + y2
]
. (16)

and the complex degree of coherence has the form

µ(x1, x2, y1, y2, z) =
I0 [a(x1, y1, x2, y2, z)]√

I0 [a(x1, y1, x1, y1, z)] I0 [a(x2, y2, x2, y2, z)]
exp

[
ik0

2R(z)
(
x2

2 − x2
1 + y2

2 − y2
1

)]
. (17)

Clearly, w(z) and R(z) are the standard propagation parameters (beam width and radius of
wavefront curvature) of the incident Gaussian beam at propagation distance z, which are
determined by the initial beam width w0. In addition, the parameters R and β related to the
rotating wedge appear in the expressions of the CSD and the transverse intensity profile.
In the far zone z � zR we may approximate, as usual in the theory of Gaussian beams,

w(z) → w0z/zR = 2z/k0w0 and R(z) → z. Then the CSD takes the asymptotic form

W (∞)(x1, y1, x2, y2, z) = S0

(
zR
z

)2
exp

[
−

(
zR
z

)2 x2
1 + x2

2 + y2
1 + y2

2 + 2 (R − z sin β)2
w2

0

]
× I0

[
a(∞)(x1, y1, x2, y2, z)

]
exp

[
ik0
2z

(
x2

2 − x2
1 + y2

2 − y2
1

)]
(18)
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with

a(∞)(x1, y1, x2, y2, z) =
2Rk0

z

[(
zR
R

sin β x̄ − i
∆x
2

)2
+

(
zR
R

sin β ȳ − i
∆y

2

)2
]1/2

. (19)

The intensity distribution in the far zone is

S(∞)(x, y, z) = S0

(
zR
z

)2
exp

[
−2

(
zR
z

)2 x2 + y2 + z2 sin2 β

w2
0

]
I0

[
2k0 sin β

zR
z

√
x2 + y2

]
(20)

and the far-zone complex degree of coherence has the form

µ(∞)(x1, y1, x2, y2, z) =
I0

[
a(∞)(x1, y1, x2, y2, z)

]√
I0

[
a(∞)(x1, y1, x1, y1, z)

]
I0

[
a(∞)(x2, y2, x2, y2, z)

] exp
[
ik0
2z

(
x2

2 − x2
1 + y2

2 − y2
1

)]
. (21)

These results are obtained also by inserting Eqs. (20) and (21) of [22], into the paraxial forms of
the far-field formulas for the CSD presented, e.g., in Sect. 5.3 of [1].

4. Propagation of self-Fourier-transforming fields

Expressions (13)–(19) are valid for any combination of the parameters R and β. However, as
demonstrated in [22], a particularly interesting class of fields is obtained if the condition

zR sin β = R (22)

holds. This condition means that the backward-continuation of the local optical axis of the
elementary Gaussian beam crosses the z axes at a distance z = −zR ≈ −d/n, implying that
w0 ≈

√
dλ0/πn.

If condition (22) is satisfied, the field is self-Fourier-transforming, i.e., the functional forms of
the CSD at the plane z = 0 and the angular correlation function are precisely the same [22]. At
z = 0 we have, from Eq. (4),

a(x1, y1, x2, y2, 0) =
4R
w2

0

[
(x̄ − i∆x/2)2 + (ȳ − i∆y/2)2

]1/2
. (23)

In the far zone Eq. (19) reduces to

a(∞)(x1, y1, x2, y2, z) =
2Rk0

z

[
(x̄ − i∆x/2)2 + (ȳ − i∆y/2)2

]1/2
. (24)

Let us next introduce normalized transverse coordinates x(z) = xzR/z, y(z) = yzR/z, and
similarly for x̄(z), ȳ(z), ∆x(z), and ∆y(z). With these conventions we can write Eq. (19) as

a(∞)(x1, y1, x2, y2, z) =
4R
w2

0

{
[x̄(z) − i∆x(x)/2]2 + [ȳ(z) − i∆y(z)/2]2

}1/2
. (25)

This result is identical in functional form with Eq. (4). Therefore the absolute value of the complex
degree of spatial coherence in the far zone has the same shape as it has in the plane z = 0. In the
scaled coordinates Eq. (20) reduces to

S(∞)(x, y, z) = S0

(
zR
z

)2
exp

{
−2

[
x2(z) + y2(z) + R2]

w2
0

}
I0

[
4R
w2

0

√
x2(z) + y2(z)

]
. (26)
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Hence also the intensity distributions S(x, y, 0) and S(∞)(x, y, z) are of the same form.
Let us next examine the implications of condition (22) at an arbitrary propagation distance. If

this condition holds, Eq. (14) reduces to

a(x1, y1, x2, y2, z) =
4R

w2(z)

(
1 +

z
zR

) [
(x̄ − i∆x/2)2 + (ȳ − i∆y/2)2

]1/2
. (27)

It follows from Eq. (16) that the transverse intensity profile of the field takes the form

S(x, y, z) = S0 exp

{
− 2
w2(z)

[
x2 + y2 + R2

(
1 − z

zR

)2
]}

I0

[
4R

w2(z)

(
1 +

z
zR

) √
x2 + y2

]
. (28)

The complex degree of spatial coherence has the same form as in Eq. (17), with a(x1, y1, x2, y2, z)
given by Eq. (27). Hence its absolute value depend on the function a(x1, y1, x2, y2, z) alone. Let
us next generalize the definition of the scaled transverse coordinates into the form

x(z) = x
1 + z/zR

1 + (z/zR)2
, y(z) = y

1 + z/zR

1 + (z/zR)2
, (29)

and analogously for x̄(z), ȳ(z), ∆x(z), and ∆y(z). We note that, in the far zone, these definitions
reduce to the previously defined scaled coordinates, and at z = 0 to the actual spatial coordinates
at that plane. We then find that

a(x1, y1, x2, y2, z) =
4R
w2

0

{
[x̄(z) − i∆x(z)/2]2 + [ȳ(z) − i∆y(z)/2]2

}1/2
(30)

and therefore |µ(x1, y1, x2, y2, z)| is a shape-invariant quantity at all propagation distances. The
only propagation-induced change in µ(x1, y1, x2, y2, z) is the quadratic phase factor.
The condition for shape-invariant propagation does not extend to the transverse intensity

distribution. Using the modified scaled coordinates introduce in Eq. (29) we can cast Eq. (28) in
the form

S(x, y, z) = S0
w2

0
w2(z) exp ©­«− 2

w2
0

1 + (z/zR)2
(1 + z/zR)2

x2(z) + y2(z) + R2

[
1 − (z/zR)2
1 + (z/zR)2

]2ª®¬
× I0

[
4R
w2

0

√
x2(z) + y2(z)

]
, (31)

which implies that the Bessel contribution to the intensity profile is shape-invariant but the
Gaussian contribution is not. Figure 2 illustrates the scaling of the transverse spatial coordinates
given by Eq. (29) in comparison with the scaling

x(z) = x
[
1 + (z/zR)2

]−1
, y(z) = y

[
1 + (z/zR)2

]−1
(32)

of the coordinates of the incident Gaussian beam required to transform it (mathematically) into a
propagation-invariant form.While the latter is a monotonously decreasing function of z, the former
initially increases, reaching a peak at z/zR =

√
2 − 1, where x(z) = x

(
1/2 + 1/

√
2
)
≈ 1.21.
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Fig. 2. Evolution of scaled coordinates for the complex degree of coherence of self-Fourier-
transforming Bessel-correlated fields (blue solid line) and the incident Gaussian beam (red
dashed line).

Propagation-invariant distributions of the absolute value of the complex degree of spatial
coherence |µ(x1, 0, x2, 0, z)| are illustrated in Fig. 3. These distributions show strong variations of
the antidiagonal width as a function of the average (diagonal) coordinate x̄(z), indicating that
the fields are not of the Schell-model form (the coherence width depends on x̄). A ‘waist’ of the
coherence width is seen at x̄(z) = 0, and the width of this waist narrows down as the normalized
ratio r = R/w0 increases.
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Fig. 3. Absolute values of the complex degree of spatial coherence of self-Fourier-
transforming Bessel-correlated fields for various values of the ratio r = R/w0. (a) r = 0.5.
(b) r = 0.75. (c) r = 1. (d) r = 2.

Figure 4 shows intensity distributions self-Fourier-transforming fields in scaled coordinates.
The dependence of the intensity profile at z = 0 on r = R/w0 is illustrated in Fig. 4(a). When
r exceeds ∼ 0.75, a dip appears in the center of the intensity profile. This dip deepens with
increasing r, and the beam takes on a doughnut shape as the Bessel contribution becomes
dominant. The propagation of a beam with r = 0.5 is illustrated in Fig. 4(b). Since the Gaussian
contribution still affects the intensity profile significantly, the shape varies with propagation
distance. However, when r > 0.75, these changes become nearly indistinguishable (at least
within the plotting accuracy of figures) and hence also the spatial profile becomes virtually
shape-invariant.
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Fig. 4. Intensity profiles of self-Fourier-transforming Bessel-correlated fields. (a) Profiles at
z = 0 for various values of r = R/w0. Black: r = 0.5. Red: r = 0.75. Green: r = 1. Blue:
r = 2. (b) Profiles with r = 0.5 at distances z = 0 (black), z = zR (red), z = 2zR (green),
z = 4zR (blue), and z = 8zR (purple). For clarity the profiles have been normalized to their
maximum values.

5. Propagation in paraxial systems

Wave propagation of the elementary field in a rotationally symmetric paraxial systems character-
ized by a 2 × 2 ABCD matrix is governed by the generalized Fresnel formula [24]

e(x, y, L; φ) = k0
i2πB

exp (ik0L) exp
[
ik0D
2B

(
x2 + y2

)]
×

∬ ∞

−∞
e(x ′, y′, 0; φ) exp

[
ik0 A
2B

(
x ′2 + y′2

)]
exp

[
− ik0

B
(xx ′ + yy′)

]
dx ′dy′,

(33)

where L is the axial path length through the system. By inserting from Eq. (2), performing the
integrations, and simplifying we obtain

e(x, y, L; φ) = e0
A + iB/zR

exp (ik0L) exp
(
− ik0

2
B sin2 β

A + iB/zR

)
exp

(
− R2

w2
0

A
A + iB/zR

)
× exp

(
−ik0R sin β

A
A + iB/zR

)
exp

[
ik0
2

C + iD/zR
A + iB/zR

(
x2 + y2

)]
× exp

[
ik0

sin β − iR/zR
A + iB/zR

(x cos φ + y sin φ)
]
, (34)

where the ABCD matrix determinant relation AD − BC = 1 was used.
It is useful, at this stage, to introduce the propagation parameters of Gaussian beams in

rotationally symmetric ABCD systems:

wL = w0

[
A2 + (B/zR)2

]1/2
(35)

and

RL =
A2 + (B/zR)2
AC + BD/z2

R
. (36)

These expressions give the beam width and radius of curvature at the output plane of an ABCD
system for axial Gaussian beams if a beam waist is located at the input plane of the system. They
apply to Gaussian Schell-model beams as well, with an appropriate extension of the definition of
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the Rayleigh range [25]. They are also extensions of the free-space propagation parameters w(z)
and R(z) in Eqs. (12) and (15).
If we insert from Eq. (34) into Eq. (2) and make use of the propagation paramters just

introduced, we can cast the CSD at the output plane of the ABCD system in the form

W(x1, y1, x2, y2, z) = S0
w2

0

w2
L

exp

[
− x2

1 + x2
2 + y2

1 + y2
2 + 2 (AR − B sin β)2
w2
L

]
× I0 [a(x1, y1, x2, y2, L)] exp

[
ik0
2RL

(
x2

1 − x2
2 + y2

1 − y2
2

)]
, (37)

where

a(x1, y1, x2, y2, L) =
[
(cL x̄ − idL∆x/2)2 + (cL ȳ − idL∆y/2)2

]1/2
, (38)

cL =
4R
w2
L

(
1 +

B
R

sin β
)
, (39)

dL =
4R
w2
L

(
B
zR
+

AzR
R

sin β
)
. (40)

These expressions reduce to the free-space propagation formulas derived in Sect. 3 in the special
case A = D = 1, B = L = z, and C = 0.

6. Experimental verification

In this section we demonstrate two examples of Bessel-correlated fields: in the first example
the condition (22) is approximately satisfied, while in the second example it is clearly violated.
In both cases we measure both the degree of spatial coherence and the intensity profile across
several planes and compare the results with theoretical simulations.

The experimental setup is presented schematically in Fig. 5. The light source is a single-mode
HeNe laser operating at 633 nm. A beam forming system BE consisting of a zoom camera lens
and an achromatic fixed focal length (8.57 mm) lens was aligned in such a way that it reduces the
size of the beam waist according to our requirements. The system BF is closely afocal, and the
demagnification could be varied from ∼ 2 − 10.5 by changing the focal length of the zoom lens.

S BF W L DMDP

Fig. 5. Experimental setup: A is a single-mode HeNe laser source, BF a beam forming
system, W the rotating wedge, L an imaging lens, DMD a digital micro-mirror device, and P
is a plane at a (variable) distance z from the exit plane of the wedge.

A CCD sensor was used to find the axial position of the beam waist and to the measure its
size w0. The wedge W was then placed in the beam path so that the waist position formed by BE
coincides with its exit plane. A positive lens L with 40 mm focal length was used to produce a
magnified image of the plane P of interest to the DMD plane, with a magnification factor of ∼ 5.
The detailed working principle of the DMD can be found in [26]. The wedge was rotated around
the optical axis with a reasonable angular speed compared to the integration time of the recording
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device. Figure. 6 shows the simulated and measured two-point coherence functions, respectively,
for the case when the condition (22) is nearly satisfied, and Fig. 7 shows cross-sectional beam
intensity profiles at several distances.
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Fig. 6. Simulated (top row) and measured (bottom row) absolute value of the complex degree
of spatial coherence in the (x1, x2) co-ordinate system when Eq. (22) is nearly satisfied:
(a,e) z = 0 mm. (b,f) z = 2 mm. (c,g) z = 4 mm. (d,h) z = 6 mm. w0 ≈ 40 µm.
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Fig. 7. Intensity cross-sections at y = 0 µm when (22) is nearly satisfied. Blue: z = 0 mm.
Black: z = 2 mm. Red: z = 4 mm. Pink: z = 6 mm. Green: z = 8 mm. Maroon: z = 10 mm.
w0 ≈ 40 µm.

We used a 6.5 mm thick glass wedge with a prism angle of 1◦, which deviates the beam by
∼ 0.5◦ from its path. With these parameters the desired beam waist size, according to Eq. (22), is
w0 ∼ 29 µm (R ≈ 39 µm). However, in the experimental setup w0 ≈ 40 µm was the smallest
attainable waist size. Hence condition (22) could not be satisfied exactly. However, in view of the
simulations in Fig. 6, carried out with the actual experimental parameters, the absolute value of
the complex degree of spatial coherence is nearly shape-invariant.
The two-point degree of spatial coherence was measured at four planes, including the source

plane z = 0. With the chosen parameters zR ≈ 4 mm, and the measurements extended to a
distance of z = 1.5zR = 6 mm from the source plane. Intensity measurements were made up to a
distance z = 10 mm. Another set of experiments is illustrated in Figs. 8 and 9. Here we used
a wedge thickness of 3.5 mm (with the same prism angle as above) and chose w0 = 100 µm,
which gives zR = 49 mm. With these parameters the condition (22) is violated strongly and, as
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we move away from the source plane by a distance that is only a small fraction of the Rayleigh
range, the spatial coherence and intensity profiles already change drastically in both simulations
and experiments. That clearly confirms that close satisfaction of (22) is a necessary condition for
obtaining an essentially shape-invariant spatial coherence function.
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Fig. 8. Same as Fig. 6, but under experimental conditions where Eq. (22) is not satisfied:
(a) z = 0 mm. (b) z = 2 mm. (c) z = 4 mm. (d) z = 6 mm. w0 ≈ 100 µm.
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Fig. 9. Intensity cross-sections when (22) is not satisfied. Blue: z = 0 mm. Black: z = 4 mm.
Red: z = 8 mm. Pink: z = 10 mm. w0 ≈ 100 µm.

The agreement between the simulated and experimental results is quite reasonable (though
not perfect). In particular, several side lobes of the spatial coherence profile |γ(x1, x2)| (in the
antidiagonal direction) at short propagation distances are seen in Fig. 8 (also experimentally.)
The departure of |γ(x1, x2)| from the Schell-model form at larger propagation distances is
likewise observed. The measurements were disturbed somewhat by interference effects due to
back-reflections from the glass plate protecting the CCD sensor, which could not be completely
eliminated. As we can see some asymmetry in case of Fig 9, was due to the rotational speed of
the wedge glass plate was not very high, so while capturing the image for a particular plane of
interest the intensity was not necessarily distributed uniformly through the whole ring shape.
Additionally, reflections between the CCD surface and the protective glass created independent
ring like interference pattern, which contributes to the asymmetry. This type of effects would be
greatly reduced if a source with more limited temporal coherence were used for the experiments,
such as a superluminescent diode. Small deviations between simulations and experiments also
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undoubtedly arise from difficulties in measuring the beam width w0 at a high precision, and
placing the beam waist exactly at the exit plane of the wedge.

7. Conclusions

In conclusion, we have developed an analytical model for propagation of a novel class of spatially
partially coherent, Bessel-correlated, fields in free space and paraxial optical systems. Here
we considered only monochromatic fields, but the analysis can be extended to polychromatic
stationary field and to pulsed fields. We have also considered only a generation scheme based
on rotating wedges. Other types of rotating elements, in particular custom-designed diffractive
elements, should provide considerable extra freedom in customizing the spatial coherence and
may lead to a wider class of experimentally realizable fields with shape-invariant spatial coherence
properties.
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