Removal of Cd²⁺, Ni²⁺ and PO₄³⁻ from aqueous solutions

Hokkanen, Sanna

Elsevier BV

Tieteelliset aikakauslehtiartikkelit
© Elsevier B.V.
CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ijbiomac.2018.06.095

https://erepo.uef.fi/handle/123456789/6929
Downloaded from University of Eastern Finland's eRepository
Removal of Cd²⁺, Ni²⁺ and PO₄³⁻ from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite

Sanna Hokkanen, Amit Bhatnagar, Varsha Srivastava, Valtteri Suorsa, Mika Sillanpää

PII: S0141-8130(17)34953-X
DOI: doi:10.1016/j.ijbiomac.2018.06.095
Reference: BIOMAC 9935
To appear in: International Journal of Biological Macromolecules

Received date: 12 December 2017
Revised date: 18 May 2018
Accepted date: 20 June 2018

Please cite this article as: Sanna Hokkanen, Amit Bhatnagar, Varsha Srivastava, Valtteri Suorsa, Mika Sillanpää, Removal of Cd²⁺, Ni²⁺ and PO₄³⁻ from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite. Biomac (2018), doi:10.1016/j.ijbiomac.2018.06.095

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Removal of Cd$^{2+}$, Ni$^{2+}$ and PO$_4^{3-}$ from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite

Sanna Hokkanen 1, Amit Bhatnagar 2, Varsha Srivastava 1, Valtteri Suorsa 3, Mika Sillanpää 1

1 Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland, Phone: (+358) 40 747 7843, Fax (+358) 15-336-013 E-mail: Sanna.Hokkanen@lut.fi

2 Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland

3 Department of chemistry, Radiochemistry, University of Helsinki, A.I.Virtasen aukio 1, FI-00014, Finland
Abstract

A novel hydroxyapatite-bentonite clay-nanocellulose (CHA-BENT-NCC) composite material was successfully prepared as adsorbent for the removal of Ni$^{2+}$, Cd$^{2+}$ and PO$_4^{3-}$ from aqueous solutions. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR) were used for characterization of the adsorbent. The effect of pH, contact time, temperature, and initial adsorbate concentration were studied for optimization purpose. The adsorption behavior of the investigated ions were well described by the Freundlich adsorption model, and the maximum adsorption capacity for Ni$^{2+}$, Cd$^{2+}$ and PO$_4^{3-}$ was estimated to be 29.46 mmol/g, 10.34 mmol/g and 4.90 mmol/g, respectively. Desorption efficiency was achieved by treatment with 0.01 M HNO$_3$ for metals and 0.10 M NaOH for PO$_4^{3-}$. Five adsorption–desorption cycles were performed without significant decrease in adsorption capacities. The CHA-BENT-NCC material proved to be a very effective adsorption material for the treatment of mining water also from a copper mine in Finland.

Keywords

Composite material; hydroxyapatite-bentonite clay-nanocellulose (CHA-BENT-NCC); Adsorption isotherms; Metals and phosphate removal, Water treatment.
1. Introduction

There are currently 2.1 billion people around the world without safe drinking water at home and more than twice as many are without safe sanitation[1]. Anthropogenic activities, run off and unsafe disposal of toxic wastes are some of the main causes of water pollution. In addition to microbiological contaminants, nutrients (phosphorus and nitrogen) and heavy metals (cadmium, copper, chromium, nickel among others) are important water pollutants that cause problems to the environment and human beings [1-4]. Primarily, phosphorus can enter into freshwater ecosystems through agricultural runoff, domestic sewage and industrial effluents [5]. Nutrients cause the eutrophication in water bodies such as rivers and lakes [5]. Moreover, heavy metal contaminants in water environment have become a major problem due to their highly toxic nature and uncontrolled discharge to the environment [6-8]. It is acknowledged that the exposure to heavy metals may cause a wide range of health problems, including skin diseases, birth defects and cancer [9-11]. Because of this, the strict controls of various heavy metals in wastewaters are recommended by World Health Organization (WHO) [12].

Several technologies have been developed for removing harmful heavy metal contaminants and nutrients from water including physical, chemical, biological and a combination of different methods [11, 13, 14]. In recent years, adsorption as the alternative water treatment method has been study lively as it is recognized to be effective, efficient and inexpensive [5, 8, 11, 15]. Many different inorganic and organic adsorption materials such as minerals, zeolites, industrial by-products, agricultural wastes, biomass, polymeric materials and composite materials, have been investigated for metals and phosphate removal [5, 11, 16-18]. Inorganic–organic composite materials as adsorbents display more effective
properties than the inorganic and organic components individually due to their combined advantages[19, 20]. Our previous investigations indicate that calcium hydroxyapatite-microfibrillated cellulose (CHA/MFC) composites worked as effective adsorbents for metal, sulfates and nutrient removal from water [21-23]. Hydroxyapatite (CHA) is one of the most effective materials due to its capability for simultaneous removal of cationic and anionic contaminants from water [24-27]. Microfibrillated cellulose was used as the template to disperse CHA particles in the cellulose matrix for the preparation of composite materials.

In the present work, we synthesized CHA-BENT-NCC composite for the removal of anionic and cationic pollutants from water. The intrinsic properties of clays (specific surface area, excellent physical and chemical stability, high cation exchange capacity) enhance adsorption, structural and surface properties of the composites, synthesized in this study [28]. In addition to the well-known adsorption properties already known, the cost of clay is low, which makes it economically feasible[28]. The main aim of this work is therefore, to present a more effective, eco-friendly composite adsorbent material consisting of natural materials viz. calcium hydroxyapatite, bentonite clay and nanocellulose, for the removal of metals and phosphate from water.

2. Materials and methods

2.1. Raw material and chemicals

Nanocrystalline cellulose (AaltoCell™) was purchased from Aalto University. All used solutions were prepared in Millipore milliQ high-purity water. The chemicals used in this
study were supplied by Sigma–Aldrich (Germany). The metal stock solutions (1000 mg/L) were prepared by dissolving appropriate amounts of nickel nitrate salt (Ni(NO$_3$)$_2$·6H$_2$O) and cadmium nitrate salts (Cd(NO$_3$)$_2$·4H$_2$O) in deionized water. PO$_4^{3-}$ stock solution (1000 mg/L) was prepared dissolving a dose of NaHPO$_4$·7H$_2$O salt in deionized water. Adjustment of pH was accomplished using 0.1 M NaOH or 0.1 M HNO$_3$. Bentonite clay was supplied by Foodin Oy.

2.2. Synthesis of CHA-BENT-NCC

Nanocrystalline cellulose (3.2 g) and NaOH–thiourea solution containing NaOH (7.0 g), thiourea (12.0 g) and distilled water (100 mL) were mixed under magnetic stirring for 5 min at room temperature. The solution was then cooled to 5 °C for 12 h. For the synthesis of CHA-BENT-NCC composites, 0.110 g of CaCl$_2$ and 0.094 g of NaH$_2$PO$_4$ were added to the mixture of cellulose solution, distilled water (40 mL) and bentonite clay (3.0 g) under vigorous stirring. The mixture was then transferred into an oven at 90 °C for 6 h. The CHA-BENT-NCC material was washed four times in water and ethanol and was then centrifuged at 4000 rpm for 5 min. The synthesis route of CHA-BENT-NCC is illustrated in Figure 1.

2.3. Characterization of CHA-BENT-NCC

The surface functional groups of CHA-BENT-NCC composite material were identified by Fourier transform infrared spectroscopy (FTIR) (Vertex 70 by B Bruker Optics (Germany). An attenuated total reflection (ATR)-FTIR spectra was registered at 4 cm$^{-1}$ resolution from 400 to 4000 cm$^{-1}$ and 5 scans per sample. The morphology of the nanocellulose-bentonite particles was characterized with a Hitachi S-4800 field emission microscope (FESEM). XRD-measurements were carried out on a Philips PW1820 powder diffractometer equipped with Philips PW1710
diffractometer control unit and Siemens Kristalloflex X-ray generator. Copper Kα1 X-rays of wavelength 1.54 Å were used with a 2θ-angle step size of 0.04° and counting rate of 2.5 s per step over the total 2θ range of 7 to 70°. The particle diameter of hydroxyapatite-bentonite clay-nanocellulose composite was determined by transmission electron microscope (TEM) with the HITACHI 7700 operated at 100 kV.

2.4. Batch adsorption studies
AdSORBtion efficacy of CHA-BENT-NCC for Ni^{2+}, Cd^{2+} and PO_{4}^{3-} removal was studied by batch experiments. The adsorbent dose was 0.800 g/L and volume of Ni^{2+}, Cd^{2+} and PO_{4}^{3-} solutions was 0.005 L having concentrations ranging from 10 mg/L to 1000 mg/L. The effect of contact time was studied in reaction mixtures of 1.5 g/L of adsorbent and 50 mL of solution containing 500 mg/L of Ni^{2+}, Cd^{2+} and PO_{4}^{3-}. Agitation was performed under mechanical stirring and 2 mL samples were pipetted and styrene filtrated from the reaction mixtures at fixed intervals. The contact time was varied from 5 to 120 min. Batch experiments were performed at ambient temperature (i.e. 25 °C). The optimum conditions of all pertinent factors such as adsorbent dose, solution pH and contact time were used during the experiments. The metals and phosphate concentrations were analyzed by an inductively coupled plasma optical atomic emission spectrometry (ICP-OES) model iCAP 6300 (Thermo Electron Corporation, USA).

The adsorption capacity (q_{e}) was obtained by calculating the amount of ions adsorbed per mass unit of CHA-BENT-NCC (mmol/g) with the following formula:
\[q_e = \frac{c_i - c_e}{M} V. \]

where \(C_i \) is the initial metal/phosphate concentrations (mmol/L), and \(C_e \) is the equilibrium metal/phosphate concentrations (mmol/L), \(M \) is weight of the adsorbent (g) and \(V \) is the volume of the metal/phosphate solution (L).

2.6 Regeneration studies

To evaluate the reusability of CHA-BENT-NCC, regeneration of the spent adsorbents was also studied. At first, the adsorbent was loaded with studied ions by mixing 1.8 g/L of the adsorbent with 5 mL of 500 mg/L Ni\(^{2+}\), Cd\(^{2+}\) and PO\(_4^{3-}\) solution. Metal ions were eluted using 0.10 M HNO\(_3\) and PO\(_4^{3-}\) was eluted with 0.10 M NaOH. The regeneration efficiency (%RE) of the CHA-BENT-NCC adsorbent was calculated as follows:

\[
(\% \text{RE}) = \frac{q_r}{q_0} \times 100
\]

where \(q_0 \) is the adsorption capacity (mmol/g) before regeneration and \(q_r \) is the adsorption capacity (mmol/g) after regeneration.

3. Results and discussions

3.1. Characterization studies

The FTIR spectrum (Figure 2) showed characteristic bands corresponding to the various functional groups in NCC and CHA-BENT-NCC. A strong peak in both spectrum bands at 3300
cm\(^{-1}\) is ascribed to O-H stretching. The peak at 2900 cm\(^{-1}\) is characteristic of C-H stretching in cellulose. The band at 1640 cm\(^{-1}\) could be ascribed to the H-OH bonding in water. The peak at 1063 cm\(^{-1}\) arises from the C-O-C pyranose ring skeletal vibration [22, 29, 30]. The peaks of CHA-BENT-NCC were observed at 1420 cm\(^{-1}\) and 880 cm\(^{-1}\) (the presence of CO\(_3^{2-}\)), 960-1025 cm\(^{-1}\) (the asymmetric and symmetric stretching vibrations of PO\(_4^{3-}\)) 795 cm\(^{-1}\) (Si-O Stretching), 695 cm\(^{-1}\) (Si-O deformation), 610 cm\(^{-1}\) (Al-O and Si-O out of plane vibration), 543 cm\(^{-1}\) (Al-O-Si deformation), 490 cm\(^{-1}\) (Si-O-Fe deformation), and 470 cm\(^{-1}\) (Mg-O deformation), respectively [31, 32]. It is noteworthy that the hydroxyl groups of the cellulose have an important role in interaction of CHA and bentonite on the surface of NCC.

For SEM analyses, the powdery samples were attached to a carbon tape and excess particles were removed with pressurized air. The samples were coated with 4 nm thick Au-Pd alloy by sputtering before the analysis. The SEM image illustrated, the nano size particles are stuck together to form aggregates of different sizes. The fibrous structure of cellulose does not appear in the images due to it can be assumed that the surface of the cellulose was completely covered by the bentonite clay and calcium hydroxyapatite layers. The contents of elements on the surface of the CHA-BENT-NCC in weight and atomic percentage values are supported by the EDX analysis (Figure 3). The relatively high concentrations of Ca, P, Si, Mg and Al are in line with the results of FTIR and conforms the adhesion of CHA and BENT in the hydroxyl groups of NCC.

For TEM analysis, the composite particles were first dispersed in ethanol and sonicated for 20 min to get suspensions of dispersed nanoparticles and then a drop of suspension was deposited on the carbon-coated copper grids (3 nm Carbon film, 400 Mesh). TEM images
were collected at different magnifications (from 25k to 50K). TEM images of synthesized composite are shown in Fig 4a and b. Particle diameter was found to be in the range of 15.4 nm to 26.5 nm having similar morphology.

The X-ray diffraction patterns were determined for identifying crystalline phases and chemical composition of the synthetized CHA-BENT-NCC composite material. Figure 5 shows clearly typical characteristic X-ray diffraction peaks for calcium hydroxyapatite, bentonite clay and nanocrystalline cellulose materials. The peaks at 2θ = 31, 32 and 33° on diffractogram are characteristic of the CHA and also some lower intensity secondary peaks located at 2θ = 26, 40, 47, and 49°, and other less intense located at 2θ = 29 and 54°, which confirm the presence of calcium hydroxyapatite [33]. The diffraction peaks at 2θ=20°, 35.0° and 62.0° indicate the existence montmorillonite in bentonite clay. The peaks at 2θ=26.3° and 2θ=28.1° are attributed to quartz compounds. The XRD pattern also indicated the presence of calcite 2θ=42.2° and feldspar 2θ=22.3° [34]. The peaks at 2θ = 14.6°, 16.8° and 22.7° are characteristic peaks of NCC [35].

3.2. Adsorption studies

3.2.1. Effect of pH and zeta-potential

The influence of pH on the adsorption of Cd^{2+}, Ni^{2+} and PO_{4}^{3-} was studied by conducting batch adsorption experiments at various pH values ranging from 2.0 to 10.0 with 300 mg/L solutions of adsorbates (Figure 6a). The adsorption efficiency was observed to increase from
62% to 93% for Cd$^{2+}$, from 65% to 91% for Ni$^{2+}$ and from 45% to 82% for PO$_4^{3-}$ with the increase of pH from 2.0 to 5.0. The wearable pH area for metal ion adsorption studies was found to be in the pH range 5-7. When pH was higher, the adsorption capacity increased due to the precipitation. Hydroxide precipitation for nickel occurs at pH ranging from 10 to 11 and cadmium precipitate as hydroxide at pH ranging from 8 to 11 [22]. In the case of PO$_4^{3-}$, the highest adsorption capacity was at pH-values ranging between 5.5-6.5. The adsorption capacity of PO$_4^{3-}$ decreases in alkaline conditions. Zero point charge (pzc) of the adsorbent at pH 6.5 implies that, at pH < 6.5, the surface is positively charged and, at pH > 6.5, it is negatively charged (Figure 6b). At pH > 6.5, both the surface of CHA-BENT-NCC and PO$_4^{3-}$-ions are negatively charged and the net interaction is that of electrostatic repulsion. At pH < 6.5, the surface of the adsorbent is positive and the negative PO$_4^{3-}$-ions are adsorbed through a favorable electrostatic attraction. In the case of metals, the effect of surface charge is the opposite: at alkaline conditions negatively charged surface can have electrostatic interactions with positive metal ions. In addition, the rise in metal ion sorption at the pH range 5-7 may causes ion exchange reaction: the positively charged metal ions in solution may exchange with H$^+$ from hydroxyl groups of the CHA-BENT-NCC surface. The functional groups that are involved in adsorption are: \equivCaOH0, \equivPOH0 on surface of calcium hydroxyapatite; \equivSiOH0, \equivMeOH0 (Me: metal such as Fe, Al, Mg) on the surface of bentonite, \equivOH0, \equivCOOH0 on the surface of cellulose. The pH conditions of the solution determines the charge of these groups [32].
3.2. Effect of contact time

The effect of contact time on the adsorption of Cd\(^{2+}\), Ni\(^{2+}\) and PO\(_4^{3-}\) in aqueous solution is presented in Figure 5. The adsorption studies were conducted for 120 min. It was observed that the adsorption capacity of Cd\(^{2+}\), Ni\(^{2+}\) and PO\(_4^{3-}\) increased rapidly with increasing the contact time and the adsorption equilibrium of Cd\(^{2+}\) and Ni\(^{2+}\) was achieved within the first 5 minutes. The adsorption equilibrium of PO\(_4^{3-}\) was reached within the first 12 minutes. Kinetic modelling of the adsorption was tested using the pseudo-first-order and pseudo-second-order models. The non-linear pseudo-first order model can be expressed as follows [36, 37]:

\[
q_t = q_e (1 - e^{-k_1t})
\]
\(3\)

The pseudo-second-order model, which assumes that the rate-determining step may be a chemical surface reaction, can be presented as follows [36, 37]:

\[
q_t = \frac{k_2 q_e^2}{(1 + k_2 q_e t)}
\]
\(4\)

where \(q_t\) (mmol g\(^{-1}\)) is the amount of adsorbed Ni\(^{2+}\), Cd\(^{2+}\) and PO\(_4^{3-}\) at time \(t\) (min) and \(q_e\) (mmol g\(^{-1}\)) is the amount of adsorbates at equilibrium, \(k_1\) (1/min) and \(k_2\) (g/mmol min) are the rate constants of pseudo-first and pseudo-second order kinetic models, respectively.

The curves of the pseudo-first-order kinetic model and the pseudo-second-order kinetic models are shown in Figure 7 and the kinetic parameters are calculated and presented in
Table 1. The correlation coefficient (R^2) of the pseudo-first-order kinetic model for Cd$^{2+}$, Ni2 was low and because of that the adsorption process cannot be explained by the pseudo-first-order kinetic model. Higher R^2 value of the pseudo-second-order kinetic model and the close correlation between the experimental (q_e) and calculated (q_t) values confirms the applicability of pseudo-second-order kinetic model in the adsorption of Cd$^{2+}$ and Ni$^{2+}$ using CHA-BENT-NCC. Thus, the adsorption process of Cd2 and Ni$^{2+}$ follows the pseudo-second-order kinetic model and the rate-limiting step of the adsorption mechanism is chemisorption. Moreover, the initial adsorption rate was 12.40 mmol/g min for Cd$^{2+}$ and 4.20 mmol/g min for Ni$^{2+}$.

In the case of PO$_4^{3-}$, there was no significant difference with the correlation coefficient (R^2) of the pseudo-first-order and pseudo-second-order kinetic models, but there is better correlation between the calculated q_t values from the pseudo-second-order model and the experimental q_e values (Table 1). In any case, the correlation is poor with both kinetic models and it is hard to say which one is better. The initial adsorption rate (0.27 mmol/g min), was much lower than adsorption rate of Cd$^{2+}$- and Ni$^{2+}$-ions.

3.3 Adsorption isotherms

Several adsorption isotherm models have been developed to represent liquid phase adsorption equilibrium data. Langmuir and Freundlich adsorption isotherms are the most commonly used models [38, 39]. The Langmuir adsorption isotherm is based on the assumption of monolayer and homogeneous surface consisting of a certain number of
active sites, each site can hold only one molecule while the Freundlich isotherm is an empirical model for heterogeneous systems\cite{37, 38, 40}. Langmuir (Eq. 5.) model can be mathematically expressed as follows:

$$q_e = \frac{q_{max}KLC_e}{1+KLC_e}$$ \hspace{1cm} (5)

where q_e (mmol/g) is the equilibrium adsorption capacity and q_{max} (mmol/g) is the maximum amount of the ions adsorbed per unit weight of the adsorbent. The Langmuir equilibrium constant, K_L (L/mmol), related to the affinity of the binding sites and describes the binding energy of the adsorption reaction between adsorbed molecules and adsorbent\cite{22, 37}.

The essential characteristic of the Langmuir isotherm on the nature can be assessed by a dimensionless equilibrium parameter:

$$R_L = \frac{1}{1+KLC_i}$$ \hspace{1cm} (6)

where R_L is a dimensionless equilibrium parameter or the separation factor and C_0 is the initial concentration of adsorbate solution (mmol/L). The value of R_L denotes the adsorption nature to be unfavorable ($R_L > 1$), favorable ($0 < R_L < 1$), irreversible ($R_L = 0$), or linear ($R_L = 1$).

The Freundlich model is given as:

$$q_e = K_fC_i^{1/n_F}$$ \hspace{1cm} (7)
At equilibrium conditions, \(q_e \) is the amount of solute adsorbed and \(C_e \) is raised to the power of \(1/n_F \). \(K_F \) is a relative indicator of adsorption capacity, while the dimensionless \(1/n_F \) indicates the energy or intensity of the reaction and suggests the favorability and capacity of the adsorbent/adsorbate system[23, 37]. According to the theory, \(n_F > 1 \) represents favorable adsorption conditions.

The results in Table 2 show that the \(q_m \) value of Ni\(^{2+}\) (estimated by the Langmuir model) does not correspond to the experimentally obtained \(q_{m,exp} \) value as well as the value of Cd\(^{2+}\) and PO\(_4\)^{3−}.

Figure 8 shows that the Freundlich isotherm fits better with the experimental data than Langmuir, and especially for Ni\(^{2+}\), the adsorption was also supported by high \(R^2 \) value (Table 2). Relatively poor correlation coefficients of the Langmuir model (\(R^2 \) value < 0.99) indicates complex structure of the adsorbent surface and that the active sites are not similar, which is the assumption of Langmuir model. Hence, it can be assumed that adsorption process took place on a heterogeneous surface. These results are also in line with the results of characterization studies that demonstrated that there are different functional groups on the surface of CHA-BENT-NCC, which can work as adsorption sites for investigated ions.

The poor fitting results of PO\(_4\)^{3−} ions may also be explained by the attractive and repulsive electrostatic interaction between the surface and adsorbates during the adsorption process due to there are both positive and negative functional groups on the surface of CHA-BENT-NCC (see section 3.1). Noteworthy, the surface of CHA-BENT-NCC is negatively charged under the experimental conditions and a repulsive electrostatic interaction may experience between the anionic PO\(_4\)^{3−} ions and the surface before the adsorption.
According to the Eq. (5), the R_L values are < 0.14 for Cd$^{2+}$, < 0.71 for Ni$^{2+}$ and < 0.81 for PO$_4^{3-}$, indicating that the adsorption process is favorable. Furthermore, the Freundlich constant n is greater than 1 which indicates a favorable condition for adsorption. The maximum adsorption capacity ($q_{m\text{exp}}$) can reach up to 22.96 mmol/g for Ni$^{2+}$, 9.71 mmol/g for Cd$^{2+}$ and 3.90 mmol/g for PO$_4^{3-}$. Comparison of the maximum metal and phosphate adsorption capacities for some cellulose based materials are presented in Table 3.

3.4 Effect of temperature

There are several thermodynamic parameters such as standard free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), which are associated with temperature dependence of the adsorption process. These parameters are used to define whether the process is endothermic or exothermic, spontaneous or nonspontaneous. The standard free energy change (ΔG°) can be calculated from the following equation [30]:

$$\Delta G^0 = -RT\ln K^\circ$$ \hspace{1cm} (8)

where R is the universal gas constant (8.314 J/mol K), T is the temperature (in Kelvin) and K° is the adsorption equilibrium constant. Values of $\ln K^\circ$ are obtained by plotting $\ln K_d$ ($K_d=q_e/C_e$) versus C_e and extrapolating C_e to zero, the value of Y-axis was the value of $\ln K^\circ$. The standard enthalpy change (ΔH°) and the standard entropy (ΔS°) are calculated for Cd$^{2+}$, Ni$^{2+}$ and PO$_4^{3-}$ from the linear plot of $\ln K^\circ$ versus $1/T$ in the following equation:

$$\ln K^\circ = \frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}$$ \hspace{1cm} (8)
The thermodynamic parameters of the \(\text{Cd}^{2+}, \text{Ni}^{2+} \) and \(\text{PO}_4^{3-} \) adsorption on CHA-BENT-NCC are presented in Table 4. The positive \(\Delta H^\circ \) value suggests that the adsorption on the CHA-BENT-NCC surface was an endothermic process [22, 41].

The negative values of \(\Delta G^0 \) implied the spontaneous adsorption process and the rise in temperature increases the degree of spontaneity of reaction. The positive values of \(\Delta H^0 \) indicated that the adsorption process was endothermic in nature, and as a result, adsorption capacity increased with an increase in temperature. Moreover, the positive value of \(\Delta S^0 \) showed the increased randomness for the overall adsorption process at the solid-solution interface. Accordingly, the van’t Hoff plot gave a good linearity with the correlation coefficient (Table 3). Thus, adsorption was expected to occur spontaneously at cooler conditions than normal room temperature (290 K), relatively typical room temperature (296 K), and warm temperature (308 K) according to the thermodynamic parameters: \(\Delta G^0 < 0, \Delta H^0 > 0, \) and \(\Delta S^0 > 0 \). At all temperatures, \(|\Delta S^0| \) was found to be greater than \(|\Delta H^0| \) indicating that the adsorption of \(\text{Ni}^{2+}, \text{Cd}^{2+} \) and \(\text{PO}_4^{3-} \) was dominated by the entropic rather than enthalpy changes. The removal efficiency of CHA-BENT-NCC for \(\text{Cd}^{2+} \) remained almost the same, despite the change in temperature; in case of \(\text{Ni}^{2+} \), the adsorption efficiency increased 1.6% when the temperature increased by 18 K. The change in temperature clearly affected the adsorption of \(\text{PO}_4^{3-} \) and adsorption efficiency increased by 18% as temperature increased from 290 K to 308 K.

3.5 Removal mechanism

The adsorption of metal ions and \(\text{PO}_4^{3-} \) by CHA-BENT-NCC occur via various possible mechanisms. The factors that influencing the absorption process may be related to the
characteristics of the binding sites (e.g. functional groups, structure, surface properties, etc.), the properties of the adsorbent (e.g. concentration, ionic size, ionic charge, molecular structure etc.) and the solution chemistry (e.g. pH, ionic strength, etc.). As mentioned previously, there are a large amount of potential adsorption sites for both cationic and anionic adsorbates on the surface of CHA-BENT-NCC.

In the case of Cd
2+
and Ni
2+
, ion-exchange between the calcium of and the bivalent ion is one potential removal mechanism. The metal ions replaces the calcium in the CHA lattice, according to the reaction [21]:

\[
Ca_{10}(PO_4)_6(OH)_2 + xMe^{2+} \leftrightarrow (Ca_{10-x})Me_x(PO_4)_6(OH)_2 + xCa^{2+} \quad (9)
\]

Another suggested mechanism with CHA is dissolution – precipitation. This reaction takes place in two steps: at first CHA is dissolved in solution followed by the reaction of the phosphate ion with the metal to form a new insoluble phase:

\[
Ca_{10}(PO_4)_6(OH)_2 + 14H^+ \leftrightarrow 10Ca^{2+} + 6H_2PO_4^- + 2H_2O \quad (10)
\]

\[
10Me^{2+} + 6H_2PO_4^- + 2H_2O \leftrightarrow Me_{10}(PO_4)_6(OH)_2 + 14H^+ \quad (11)
\]

Bentonite clay is consisting mostly of montmorillonite witch is hydrated sodium calcium aluminium magnesium silicate hydroxide \(((Na,Ca)_{0.33}(Al,Mg)_2(Si_4O_{10})(OH)_2\cdot nH_2O)\). Ion exchange of Cd
2+
and Ni
2+
, for Ca
2+
and Mg
2+
 ions of bentonite clay is also possible mechanism for metal ions removal. This process can be represented by following equations:
The adsorption of ions on bentonite in acidic conditions can be described by following equation:

\[\text{Si} - \text{OH} - \text{H} - \text{O} - \text{H}[\text{Me(OH}_2\text{)}_3]^{2+} \rightarrow \text{Si} - \text{O} - \text{Me} + \text{H}_3\text{O}^+ \]

This process is possible due to the ionization and hydrolysis of surfaces silanol sites (=Si–OH) and aluminols (=Al–OH) [43].

The adsorption of \(\text{PO}_4^{3-} \)-ions on CHA can be explained as exchange of ions reaction between \(\text{OH}^- \)-ions and \(\text{H}_2\text{PO}_4^- \)-ions. The adsorption by CHA may also involve electrostatic attraction between positive charged Ca\(^+\) and hydroxyl bonding formation. Al-OH and Si-OH may be the most dominated group that caused the phosphate adsorption on bentonite. The assumed adsorption process of phosphate can be represented as:

\[\equiv \text{Si} - \text{OH} + \text{H}_2\text{PO}_4^- \rightarrow (\equiv \text{Si})_2\text{HPO}_4 + \text{H}_2\text{O} + \text{OH}^- \]

\[\equiv \text{Al} - \text{OH} + \text{H}_2\text{PO}_4^- \rightarrow (\equiv \text{Al})_2\text{HPO}_4 + \text{H}_2\text{O} + \text{OH}^- \]
In alkaline conditions chemical precipitation between phosphate and these cations, forming \(\text{Ca}_3(\text{PO}_4)_2 \) and \(\text{Mg}_3(\text{PO}_4)_2 \) may also attend to removal process [44].

3.6 Regeneration studies

Regenerability of adsorbent is very important property from economy and environmental point of view [45]. Furthermore, it is important to find effective and nontoxic eluents for the quantitative recovery of metal ions. In this study, 0.1 M HNO\(_3\) proved to be effective eluent for metals desorption and 0.1 M. NaOH for phosphate desorption. Figure 9 shows that after five cycles, the adsorption capacity of CHA-BENT-NCC was decreased from 97% to 74% for \(\text{Cd}^{2+} \) and from 98% to 80% for \(\text{Ni}^{2+} \), and form 75% to 68% for \(\text{PO}_4^{3–} \).

3.7 Testing of CHA-BENT-NCC with mining water from copper mine

To see the practical applicability, the efficiency of CHA-BENT-NCC was tested for the removal of metals from mining water from the copper mine in Finland. The composition of the mining wastewater before and after adsorption studies is depicted in Table 4. Mine water treatment is a very complex process and it is affected by many factors, such as waters matrices, composition and pH [46]. The experiments were implemented using the same batch studies conditions described above, at ambient temperature and pH 3.2. The results of the adsorption study showed that CHA-BEN-NCC effectively removed other metal ions also (present in mining water), in addition to \(\text{Ni}^{2+} \) (Table 5.)
4. Conclusions

The present study focused on the adsorption of Ni\(^{2+}\), Cd\(^{2+}\) and PO\(_4^{3-}\) from aqueous solution using the CHA-BENT-NCC as adsorbent. The synthesized adsorbent was found very effective and maximum adsorption capacities were recorded as 22.96 mmol/g for Ni\(^{2+}\), 9.71 mmol/g for Cd\(^{2+}\) and 3.96 mmol/g for PO\(_4^{3-}\). The adsorption was shown to be dependent on the solution pH, and the optimum pH value for the adsorption was around 5 for metals and PO\(_4^{3-}\). The kinetic study demonstrated poor correlation (R\(^2\)) with both the pseudo-first-order kinetic model and the pseudo-second-order kinetic model for all investigated ions. The kinetics of metals followed pseudo-second-order model better. In case of PO\(_4^{3-}\), the result was tolerably the same for both models. Calculated thermodynamic parameters showed that the adsorption process was endothermic for all investigated ions. In the isotherm studies, the Freundlich isotherm model provided the best fit to the experimental adsorption isotherm data for investigated ions. The adsorption/desorption cycle results demonstrated the regenerability of adsorbent up to 5 cycles. The CHA-BENT-NCC material proved to be very effective adsorption material for metals and phosphorus contaminated water, as well as mining water from the copper mine of Finland.

Acknowledgment

This research was funded by Maa- ja vesitekniikan tuki ry.
References:

Figure 1. Synthesis route of CHA-BENT-NCC.

Figure 2. FTIR spectra of a) NCC and b) CHA-BENT-NCC.

Figure 3. SEM (a) and EDAX (b) analysis images of CHA-BENT-NCC.

Figure 4. TEM image of hydroxyapatite-bentonite clay-nanocellulose composite at different magnifications (a) 25k (b)50k

Figure 5. XRD analysis of CHA-BENT-NCC composite material.

Figure 6. The effect of pH (a) for adsorption and surface charge (b) of CHA-BENT-NCC (Adsorbent dose 0.800 g/L; time 12 h).

Figure 7a-c. The effect of contact time on the adsorption of a) Cd$^{2+}$, b) Ni$^{2+}$ and c) PO$_4^{3-}$ onto CHA-BENT-NCC. PS1=pseudo-first-order kinetic model; PS2=pseudo-second-order kinetic model. (Adsorbent dose 0.800 g/L; pH 5.2)

Figure 8a-c. Langmuir and Freundlich isotherm modeling: a) Cd$^{2+}$, b) Ni$^{2+}$ and c) PO$_4^{3-}$ adsorption onto CHABENT-MFC (Adsorbent dose 0.800 g/L; pH 5.2, time 12 h).

Figure 9. The removal efficiency after regeneration metals with 0.10 M HNO$_3$ and PO$_4^{3-}$ with 0.10 M NaOH. (Adsorbent dose 0.800 g/L; pH 5.2)
Table 1. Kinetic parameters of Cd\(^{2+}\), Ni\(^{2+}\) and PO\(_4^{-3}\) adsorption onto CHA-BENT-NCC.

<table>
<thead>
<tr>
<th>Type of contaminant</th>
<th>(q_e) (mmol/g)</th>
<th>(q_t) (mmol/g)</th>
<th>(k_1) (1/min)</th>
<th>(R^2)</th>
<th>(q_t) (mmol/g)</th>
<th>(k_2) (g/mg * min)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(^{2+})</td>
<td>1.265</td>
<td>0.956</td>
<td>2.651</td>
<td>0.466</td>
<td>1.282</td>
<td>7.878</td>
<td>0.656</td>
</tr>
<tr>
<td>Ni(^{2+})</td>
<td>1.241</td>
<td>1.264</td>
<td>1.583</td>
<td>0.695</td>
<td>1.286</td>
<td>1.585</td>
<td>0.852</td>
</tr>
<tr>
<td>PO(_4^{-3})</td>
<td>0.817</td>
<td>0.956</td>
<td>0.148</td>
<td>0.864</td>
<td>1.016</td>
<td>0.264</td>
<td>0.865</td>
</tr>
</tbody>
</table>
Table 2. Langmuir and Freundlich parameters for Cd$^{2+}$, Ni$^{2+}$ and PO$_4^{3-}$ adsorption by CHA-BENT-NCC.

<table>
<thead>
<tr>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorbate</td>
<td>$q_{m,exp}$</td>
</tr>
<tr>
<td></td>
<td>(mmol/g)</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>22.96</td>
</tr>
<tr>
<td>Cd$^{2+}$</td>
<td>9.71</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>3.96</td>
</tr>
</tbody>
</table>
Table 3. Comparison of the maximum metal and phosphate adsorption capacities for some cellulose based materials.

<table>
<thead>
<tr>
<th>Sorption material</th>
<th>Adsorbate</th>
<th>Capacity (mmol/g)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPO—oxidated</td>
<td>Ni^{2+}</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>CNF</td>
<td>Cd^{2+}</td>
<td>0.09</td>
<td>[16]</td>
</tr>
<tr>
<td>Cellulose-ZnO₂</td>
<td>Ni^{2+}</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd^{2+}</td>
<td>0.57</td>
<td>[20]</td>
</tr>
<tr>
<td></td>
<td>Fe^{3+}</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zr^{4+}</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu^{2+}</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd^{2+}</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cr^{3+}</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn^{2+}</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Cellulose/Metal Hybrid Macrogels</td>
<td>PO₄³⁻</td>
<td>0.23</td>
<td>[13]</td>
</tr>
<tr>
<td>Carboxymethyl cellulose</td>
<td>Cu^{2+}</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni^{2+}</td>
<td>4.06</td>
<td>[17]</td>
</tr>
<tr>
<td></td>
<td>Pb^{2+}</td>
<td>5.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO₄³⁻</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Ion</td>
<td>Value</td>
<td>Source</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Reduced iron oxide impregnated wood</td>
<td>PO$_4^{3-}$</td>
<td>1.38</td>
<td>[47]</td>
</tr>
<tr>
<td>Magnesium silicate-hydrothermal carbon composite</td>
<td>Cd$^{2+}$</td>
<td>3.74</td>
<td>[18]</td>
</tr>
<tr>
<td>Chitin-Cellulose beds</td>
<td>Pb$^{2+}$</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd$^{2+}$</td>
<td>0.32</td>
<td>[14]</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Composites synthesized from cellulose and crown ether</td>
<td>Ni$^{2+}$</td>
<td>3.20</td>
<td>[7]</td>
</tr>
<tr>
<td>Composites synthesized from cellulose and crown ether</td>
<td>Cd25</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>Acrylamide grafted cellulose</td>
<td>Cd$^{2+}$</td>
<td>3.12</td>
<td>[8]</td>
</tr>
<tr>
<td>Oxolane-2,5-dione functionalized NC</td>
<td>Pb$^{2+}$</td>
<td>0.59</td>
<td>[15]</td>
</tr>
<tr>
<td></td>
<td>Cd$^{2+}$</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>CHA-BENT-NCC</td>
<td>Ni$^{2+}$</td>
<td>29.46</td>
<td>(This work)</td>
</tr>
<tr>
<td></td>
<td>Cd$^{2+}$</td>
<td>10.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO$_4^{3-}$</td>
<td>4.90</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Thermodynamic parameters of Cd\(^{2+}\), Ni\(^{2+}\) and PO\(_4^{3-}\).

<table>
<thead>
<tr>
<th>T(K)</th>
<th>ΔH(kJ/mol)</th>
<th>ΔS (J/mol K)</th>
<th>ΔG (kJ/mol)</th>
<th>R(^2)</th>
<th>Adsorption efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd(^{2+})</td>
<td>290</td>
<td></td>
<td>-14.90</td>
<td></td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>296</td>
<td>0.08</td>
<td>0.05</td>
<td>-15.15</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td></td>
<td>-21.10</td>
<td></td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td></td>
<td>-10.60</td>
<td></td>
<td>98.2</td>
</tr>
<tr>
<td>Ni(^{2+})</td>
<td>296</td>
<td>0.13</td>
<td>0.40</td>
<td>-12.00</td>
<td>0.989</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td></td>
<td>-17.25</td>
<td></td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td></td>
<td>-3.29</td>
<td></td>
<td>72.0</td>
</tr>
<tr>
<td>PO(_4^{3-})</td>
<td>296</td>
<td>16.64</td>
<td>53.33</td>
<td>-4.44</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td></td>
<td>-6.64</td>
<td></td>
<td>89.8</td>
</tr>
</tbody>
</table>
Table 5. Composition of mining wastewater from a copper mine before and after treatment using CHA-BENT-NCC adsorbent.

<table>
<thead>
<tr>
<th>Studied metal ions</th>
<th>Before treatment (mmol/g)</th>
<th>After treatment (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^{2+}$</td>
<td>1.72</td>
<td>0.01</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>90.77</td>
<td>0.30</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>60.87</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Highlights:

- Ecofriendly composite material for water treatment
- Rapid and efficiency adsorption material
- Possible to remove cationic and anionic ions by same material and simultaneously
- Simple synthesis route
Synthesis Route

1) **NCC**

- 7g NaOH
- 12g Thiourea
- 100 mL H₂O

→ 5 °C, 12 h

2) **Alkaline Cellulose solution**

- 0.110g CaCl₂
- 0.084g Na₂H₂PO₄
- 40 mL H₂O

→ 90 °C, 6 h

3) Washing four times

Figure 1
Figure 2

<table>
<thead>
<tr>
<th>Wavelength (cm(^{-1}))</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300</td>
<td>O-H stretching</td>
</tr>
<tr>
<td>2900</td>
<td>C-H stretching in cellulose</td>
</tr>
<tr>
<td>1640</td>
<td>The bending mode of H-OH in water</td>
</tr>
<tr>
<td>1435</td>
<td>C-H and O-C-H in-plane bending vibration</td>
</tr>
<tr>
<td>1360</td>
<td>C-H deformation</td>
</tr>
<tr>
<td>1060</td>
<td>C-O-C pyranose ring skeletal vibration</td>
</tr>
<tr>
<td>960-1025</td>
<td>The stretching vibrations of (\text{PO}_4^{3-})</td>
</tr>
<tr>
<td>890</td>
<td>C-O-C, C-C-O and C-H deformation modes and stretching vibrations</td>
</tr>
<tr>
<td>690-790</td>
<td>Si-O stretching and vibration</td>
</tr>
<tr>
<td>600-620</td>
<td>Al-O and Si-O out of plane vibration</td>
</tr>
<tr>
<td>550</td>
<td>Al-O-Si deformation</td>
</tr>
<tr>
<td>490</td>
<td>Si-O-Fe deformation</td>
</tr>
<tr>
<td>470</td>
<td>Mg-O deformation</td>
</tr>
</tbody>
</table>
Figure 3
Figure 4
Figure 5

- **X** CHA
- **O** BENT
- ***** NCC

Graph showing intensity (A.U.) against 2θ.
Figure 7
Figure 8

Graphs showing the relationship between q_e (mmol/g) and C_e (mmol/L) for Cd$^{2+}$, Ni$^{2+}$, and PO$_4^{3-}$ ions. The graphs compare experimental data (EXP) with Langmuir and Freundlich models.
Figure 9